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Constant Orbital Momentum Equilibrium Trajectories of a
Gyrostat-Satellite

Matthew Clark VanDyke

(ABSTRACT)

This dissertation investigates attitude transition maneuvers of a gyrosat-satellite between
relative equilibria. The primary challenge in transitioning between relative equilibria is the
proper adjustment of the system angular momentum so that upon completing the transition
maneuver the gyrostat-satellite will satisfy all the requirements for a relative equilibrium.
The system angular momentum is a function of the attitude trajectory taken during the
transition maneuver. A new concept, the constant orbital momentum equilibrium trajectory
or COMET, is introduced as a means to a straight-forward solution to a subset of the
possible transitions between relative equilbria. COMETs are a class of paths in SO(3) that
a gyrostat-satellite may travel along that maintain a constant system angular momentum.
The primary contributions of this dissertation are the introduction and analysis of COMETs
and their application to the problem of transitioning a gyrostat-satellite between two relative
equilibria.

The current work introduces, defines, and analyzes COMETs in detail. The requirements
for a path in SO(3) to be a COMET are defined. It is shown via example that COMETs are
closed-curves in SO(3). Visualizations of families of COMETs are presented and discussed
in detail. A subset of COMETs are shown to contain critical points that represent isolated
relative equilibrium attitudes or furcations of the COMET.

The problem of transitioning between two relative equilibria is split into the sub-problems
of transitioning between relative equilibria on the same COMET and transitioning between
relative equilibria on different COMETs. For transitions between relative equilibria on the
same COMET, an open-loop control law is developed that drives a gyrostat-satellite along
the COMET until the target relative equilibrium is reached. For transitions between rela-
tive equilibria on different COMETs, an open-loop control law is developed that transfers a
gyrostat-satellite from the initial relative equilibrium to a relative equilibrium that resides
on the same COMET as the target relative equilbrium. Acquisition of the target relative
equilibrium is then accomplished via the application of the open-loop control law for tran-
sitions between relative equilibria on the same COMET. The results of numeric simulations
of gyrostat-satellites executing these transitions are presented.
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Chapter 1

Introduction

Artificial satellites have become a critical component of modern life. Communication satel-
lites connect billions of people all over the world in near real-time. The Global Positioning
System (GPS) satellite constellation provides accurate real-time navigation that enables a
multitude of commercial, scientific, and military applications. Remote sensing satellites pro-
vide a wealth of information that serves to progress many scientific fields of research. These
are just a few of the many contributions made by artificial satellites.

The successful operation of an artificial satellite requires that its attitude be stabilized or
controlled. Communications between an artificial satellite and a ground station (or other
satellites) may require the use of directed antennas, which must be pointed (with varying
accuracies) at intended targets. Solar cells (either body-mounted or on a solar array) must
be pointed at the Sun to generate sufficient power for mission operations. Thermal control
of an artificial satellite often requires pointing radiators away from the Sun or preventing
constant Sun exposure on a given portion of the satellite. Most satellite payloads, whether
for communication, science, or other use, are required to be pointed at an intended target
to accomplish mission objectives.

Attitude control and stabilization methodologies used by artificial satellites may be split into
three general categories: passive stabilization, semi-passive stabilization, and active control.
Some early satellites employed passive attitude stabilization. These satellites used high-spin
rates (spin-stabilization) to generate gyroscopic stabilizing torques or long booms to gener-
ate stabilizing gravitational torques (gravity-gradient stabilization) to maintain spacecraft
pointing within mission constraints. Some later satellites employed semi-passive attitude
stabilization. These satellites represent the early dual-spin* satellites and used internal or
external rotors to generate a momentum bias that resulted in gyric stabilization of two axes
inertially and three axes in an orbit-referenced frame. Modern satellites typically employ
active three-axis attitude control. The attitude determination and control subsystem (ADCS

* Dual-spin refers to the fact that the spacecraft consists of two primary bodies that are rotating with respect
to one another.

1
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or ADACS) of an active three-axis attitude controlled satellite monitors attitude sensor data
and issues commands to torque actuators to correct attitude deviations. These satellites typ-
ically utilize a complement of reaction wheels, CMGs, thrusters, and/or magnetic torquers
to apply torque to the satellite.

The motivating engineering problem explored by this dissertation is the attitude control of an
artificial satellite equipped with reaction wheels. Many modern satellites use reaction wheels
as the primary torque actuators. A reaction wheel is a mechanism that consists of a rotor
(or flywheel), motor, housing, and associated electronics for command and data handling.*

Reaction wheels are relatively simple mechanisms (when compared to control moment gyros)
that provide precise, propellant-less internal torque actuation. Alternative simple torque
actuators are not able to couple precision with propellant-less operation. Magnetic torque
actuators are imprecise. Thrusters are imprecise and require the expenditure of propellant.
However, a reaction wheel attitude control system must be coupled with either magnetic
torque actuators or thrusters to unload any secular accumulation of angular momentum.�

The subsequent sections of this chapter introduce important concepts related to the current
work, present the thesis of the dissertation, and provide an overview of the dissertation.

1.1 Important Concepts

The current work focuses on two important concepts: the gyrostat-satellite and relative
equilibria of a gyrostat-satellite.

The gyrostat-satellite is a useful mathematical abstraction for the attitude dynamics of an
artificial satellite equipped with reaction wheels. A gyrostat-satellite is a gyrostat that is in
orbit about a massive body.22 A gyrostat (G) is a mechanical system consisting of a rigid
body� (P) with one or more symmetrical rotors (Ri) whose spin axes are fixed in the rigid
body, and which are allowed to rotate about their axes of symmetry.11

G = P ∪
n⋃
i=1

Ri (1.1)

The gyrostat does not model a number of (sometimes important) effects including flexible
structures, liquid slosh, bearing friction, and dynamic and static imbalance. These effects
are often analyzed using extensions of the gyrostat model.

* The literature interchangeably uses the terms “reaction wheel” and “momentum wheel”. Some authors
distinguish “momentum wheels” as nominally operating at a high rotor speeds, whereas “reaction wheels”
nominally operate at rotor speeds near zero. The term ”reaction wheel” is used throughout this dissertation.
� In Low Earth Orbits (LEOs), reaction wheels are coupled with magnetic torquing devices to unload
accumulated momentum. In higher Earth orbits (where the magnetic field is significantly weaker), thrusters
are used to unload the secular accumulation of momentum. � Sometimes called the platform
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Relative equilibria of a gyrostat-satellite are equilibria in which the platform of a gyrostat
rotates about the normal vector of the gyrostat-satellite’s orbital plane at the orbital rate.11

A gyrostat-satellite in relative equilibrium would appear to be motionless with respect to
an observer in an orbit-fixed reference frame. Many modern satellites (including some com-
munication and remote sensing satellites) use orbit-fixed attitudes to meet mission pointing
requirements. The sum of the disturbance torques for a gyrostat-satellite in a relative equilib-
rium is zero, thus eliminating secular angular momentum accumulation. Unloading angular
momentum may require an artificial satellite to expend propellant possibly resulting in a
reduction in mission life.

1.2 Thesis of the Dissertation

This dissertation investigates the dynamics and control of an artificial satellite equipped with
reaction wheels. In particular, semi-passive attitude stabilization techniques (mostly from
the 1960s through the 1980s) are extended and their application to active three-axis attitude
controlled satellites is investigated.

The majority of the existing open literature on relative equilibria of a gyrostat-satellite fo-
cused on the determination of relative equilibrium attitudes and necessary and sufficient
conditions for the stability of those relative equilibria. Only two authors discussed the pos-
sibility of utilizing internal torques (i.e. due to a reaction wheel) to perform transitions
between relative equilibria. And, only one author has investigated these types of maneuvers
in any detail. The current work focuses on a special set of attitude trajectories, called con-
stant orbital momentum equilibrium trajectories or COMETs, that may be used to perform
transitions between relative equilibria via internal torque actuation.

A COMET is a closed-curve in SO(3) that represents a continuous connection of relative
equilibrium attitudes. A gyrostat-satellite starting at a relative equilibrium may travel along
the COMET, on which the starting relative equilibrium resides, and, at any point along the
COMET, apply internal torques to null its rate with respect to an orbit-fixed reference frame,
and be at another relative equilibrium. This type of maneuver along a COMET represents
a simple, “free” transition that eliminates or minimizes propellant expenditure, which may
result in an extended mission life.

The current work introduces and provides a rigorous mathematical definition of COMETs of
a gyrostat-satellite. Attitude and momentum guidance algorithms that exploit the existence
of COMETs are presented and discussed in detail. The results of several numeric simulations
are presented to verify the efficacy of the algorithms and the concept of COMETs.
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1.3 Dissertation Overview

Chapters 2 through 3 are background material and provide context for the reader on the
new contributions presented in later chapters. Chapter 2 presents a review of the literature
related to relative equlibria of a gyrostat-satellite. The chapter summarizes the published
literature, identifies a gap in the literature, and discusses how the current work addresses that
gap. Chapter 3 contains a development of the equations of motion for a gyrostat-satellite.
The chapter also sets the assumptions, nomenclature, and conventions used throughout the
dissertation.

Chapter 4 introduces and defines the concept of relative equilibria for a gyrostat-satellite.
This chapter derives the necessary and sufficient condition that a given attitude can be a rel-
ative equilibrium attitude, presents a three-variable parameterization of all possible relative
equilibrium attitudes, and provides some discussion on the stability of relative equilibria.
Chapter 4 also includes a detailed discussion of the directions of the basis vectors of the
orbital and principal reference frames that admit relative equilibrium attitudes, which rep-
resents a new contribution to the field.

Chapters 5 and 6 contain the bulk of the new contributions offered by the current work.
Chapter 5 introduces and defines the concept of a COMET for a gyrostat-satellite. The
chapter derives the necessary conditions for a trajectory to be a COMET, discusses the
existence of critical points of a small subset of COMETs, and presents numeric simulation
results of gyrostat-satellites on COMETs. Chapter 6 investigates transitions between relative
equilibria with specific emphasis on the use of COMETs to execute those transitions. The
chapter splits the investigation into transitions between relative equilibria that reside on the
same COMET, and transitions between different COMETs.

Chapter 7 summarizes the dissertation and discusses recommendations for further study.



Chapter 2

Literature Review

Investigations into the dynamics and control of a gyrostat-satellite have been extensively
documented in the published literature. The purpose of this chapter is to provide a review of
the portion of the literature that documents investigations pertinant to the current work. The
reviewed literature is catagorized into three topics. Section 2.1 covers literature pertaining
to the determination of the relative equilibrium attitudes of a gyrostat-satellite and studies
into the stability characteristics of those relative equilibria. This section represents the bulk
of the work from prior authors. Section 2.2 reviews a small set of papers that investigate the
use of gravitational torques to unload accumulated angular momentum. Section 2.3 presents
all work found in the literature related to gyrostat-satellites performing transitions between
relative equilibria. Section 2.4 summarizes the findings of the literature review and discusses
how the contributions of the current work intersect with those findings.

2.1 Relative Equilibria and Their Stability

The literature reviewed in this section investigates the determination of relative equilibrium
attitudes of a gyrostat-satellite and the stability characteristics of the corresponding equi-
libria. There are two primary contributions of this literature. The first contribution is the
determination of relative equilibrium attitudes of a gyrostat-satellite. The second contribu-
tion is the conditions on the inertia and relative angular momentum of the gyrostat-satellite
that must be satisfied to ensure that the relative equilibria are stable.

The literature divides the relative equilibria of a gyrostat-satellite into four cases: cylindrical,
conical, hyperbolic, and offset hyperbolic. The cases are distinguished by the alignment of
the relative angular momentum vector with respect to the orbital reference frame.11 The
cylindrical, conical, and hyperbolic cases are sometimes lumped together under the term
elementary cases.11 The relative angular momentum vector lies in a plane perpendicular to
one of the orbital reference frame basis axes in the elementary cases.25

5
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2.1.1 Relative Equilibrium Attitudes

The earliest reviewed work that investigated the existence of relative equilibria of a gyrostat-
satellite is Roberson and Hooker.27 In this conference paper, and most subsequent work on
the topic, the gyrostat-satellite is assumed to be in a circular orbit. Analytic expressions for
the relative equilibrium attitudes are developed for the configuration in which the relative
angular momentum vector is perpendicular to a principal axis of the gyrostat-satellite. This
configuration corresponds to the cylindrical, conical, and hyperbolic cases. The authors
also develop a set of equations that can be solved simultaneously to determine the relative
equilibrium attitudes of the most general configuration.

Longman and Roberson20 extend the results of Roberson and Hooker.27 The authors derive
a simple necessary and sufficient condition for the existence a relative angular momentum
vector that will make an attitude a relative equilibrium. It is determined that there ex-
ists a two-parameter family of orientations which can be made to be relative equilibria by
the proper choice of the relative angular momentum vector. The authors develop analytic
equations for the relative equilibrium attitudes for the offset hyperbolic case. Another con-
tribution of the article is the investigation of the unrestricted case. The unrestricted case
refers to the removal of the assumption that the rotational motion of the gyrostat-satellite
does not effect its translational motion. This assumption is made implicitly in the equations
of motion used in prior work. The primary result is that the relative equilibrium attitudes
found for the “restricted case” are still valid for the “unrestricted case” with slight modifi-
cations to the relative angular momentum vector. The required modifications are defined.
These results are also presented in Longman,15 which is a RAND Corporation memorandum.

Longman18 determines the relative equilibria that exist when the direction of the relative
angular momentum vector is constrained to lie in a principal plane. A principal plane is
defined as any plane perpendicular to a principal axis. Several interesting figures depicting
the surfaces defined by the principal axis directions of the relative equilibrium attitudes for
a given relative angular momentum direction while varying the magnitude of the relative
angular momentum vector are included.

Pascal and Stepanov23 provide solutions to what they term the the “semi-inverse” prob-
lem. The “semi-inverse” problem involves determining all of the possible relative equilibria
(attitude and corresponding relative angular momentum vector) given a constrained set of
attitudes. Pascal and Stepanov23 constrain the relative equilibrium attitudes such that a
given vector expressed in a body-fixed reference frame must be aligned with a given vector
expressed in the orbital reference frame. The new solutions presented restrict the vector
expressed in an orbit reference frame to lie in one of the planes formed by the orbital basis
vectors. Sarychev and Mirer29 present a new analytic solution to the problem of determining
all equilibria of a gyrostat satellite when the internal angular momentum is aligned with a
principal axis of inertia.
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2.1.2 Stability of Relative Equilibria

Kane and Mingori12 is one of the earliest works to investigate the stability of relative equi-
librium of a gyrostat-satellite. The authors devise a procedure using Floquet theory to
analyze the stability characteristics of the cylindrical relative equilibria. Their primary find-
ing is that very light, low-speed rotors in this configuration can act to stabilize or destabilize
the attitude dynamics of the gyrostat-satellite. Stepanov32 investigates the stability of the
cylindrical relative equilibria in both the “restricted” and “unrestricted” cases. It is de-
termined that the differences in the stability criteria are on the order of l2/R2, where l is
the characteristic length of the gyrostat-satellite and R is the distance from the center of
the celestial primary. Crespo da Silva3 states that some of the stable configurations deter-
mined using the procedure in Kane and Mingori12 result in resonant rotational motion of
the gyrostat-satellite. Crespo da Silva3 defines three parameters that determine the stability
of the equilibrium. The parameters are functions of the principal moments of inertia of the
gyrostat-satellite and the magnitude of the relative angular momentum vector. The condi-
tions on these parameters to guarantee local stability are determined using both linear and
Liapunov stability theory. Like Crespo da Silva,3 Yu37 examines the infinitesimal stability
of the cylindrical relative equilibrium using the linearized equations of motion. Sufficient
conditions on the principal moments of inertia and the relative angular momentum vector
for stability are stated in the form of inequalities. The author also investigates the effect of
the addition of two different damping mechanisms on the stability of the equilibrium. The
first damping mechanism uses the relative motion of a much smaller body constrained to
move in a plane. An example of such as device provided by the author is a small ball moving
in a toroid-shaped pipe filled with gas. The second damping mechanism uses a thin metal
coil that interacts with an external magnetic or electrical field to generate an eddy-current
torque for damping.

Roberson26 investigates the stability of the relative equilibria of all the elementary cases. The
investigation is prompted by two previous analyses that either omitted an elementary case or
arrived at unnecessarily restrictive sufficient conditions for stability. The stability analysis is
performed using three methods: Chetaevs method, dynamic energy potential method, and
application of Thomson-Tait-Chetaev theorem. The author shows that the three methods
provide the same results, and states that the application of Thomson-Tait-Chetaev theorem
is the least laborious of the three methods given the classical formulation of the rotational
equations of motion. Longman18 also analyzes the stability of the relative equilibria of the
elementary cases. Sufficient conditions for stability on the principal moments of inertia and
relative angular momentum vector are determined using the Hamiltonian as a Liapunov
testing function.

The stability of the two-parameter family of all possible relative equilibrium attitudes pre-
sented in Longman and Roberson20 is investigated by Longman.16 A parameter space is
defined that includes the principal moments of inertia of the gyrostat-satellite, the two
parameters defining the relative equilibrium attitude, and the component of the angular
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momentum along the orbit normal. The boundaries of the parameter space along which the
nature of the stability behavior changes are determined using a quadratic approximation of
the dynamic potential with Poincare’s theory of bifurcation. The region of parameter space
that admits Liapunov stable relative equlibria is defined. Longman, Hagedorn, and Beck19

investigate the stability of the elementary cases as a generalization of the classical problem
of the gravitational stabilization of a rigid body. In particular, the effect of the magnitude
of the relative angular momentum vector on the boundaries of the Lagrange, Beletskii-Delp,
and instability regions in the parameter space is identified. Hughes10 presents a detailed
investigation of the stability of conical relative equilibrium, and provides many diagrams
showing parameter effects on stability.

Ge and Chen5 determine sufficient conditions for the global stability of the cylindrical rela-
tive equilibria using Liapunov’s direct method. The authors compare their new results with
existing results published in the literature. Ge and Chen5 also investigate the stability of
steady spins with respect to the orbital reference frame. Sarychev, Mirer, and Degtyarev30

investigate the relative equilibria and stability for the case when the relative angular momen-
tum vector has one zero-component in the principal reference frame. The authors determine
parameter dependencies of the stability results, and bifurcation values of the parameters are
determined.

2.1.3 Other Analyses

Perhaps one of the most interesting findings in the literature, is the existence of continua
of relative equilibria for certain configurations. Roberson25 is the earliest reviewed paper
to mention that when the relative angular momentum vector is aligned with a principal
axis there is a critical value of the relative angular momentum magnitude that results in a
continuum of relative equilibrium attitudes instead of the usual isolated equilibrium points.
Longman15 is earliest reviewed paper to describe the continuum of relative equilibria in
detail.

Longman17 presents a stability analysis of the continua of relative equilibrium presented
in Longman.15 The topology of the dynamic potential surface expressed in the parameter
space is investigated to determine stability. The primary result is that if the relative angular
momentum vector is aligned with the minor principal axis a stable tumbling motion results.
The author also shows that the critical spin rate is a point of bifurcation in the stability
behavior of many of the isolated relative equilibria.

Crespo da Silva4 investigates nonlinear coupling between finite motions that leads to energy
exchanges which may excite nonlinear resonances. The author determines that the nonlinear
resonances can cause roll-yaw motion to increase significantly beyond its initial state to an
amplitude independent of initial conditions. Liu14 looks at how small eccentricities can excite
librational motions about a relative equilibrium.
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Optimal feedback control laws utilizing internal torques are devised by Krementulo13 and
Saakian.28 Krementulo13 develops an optimal feedback control law for an axial symmetric
gyrostat-satellite near a cylindrical relative equilibrium. Saakian28 extends the work of Kre-
mentulo13 by developing an optimal feedback control law for a tri-inertial gyrostat-satellite.

A relatively recent subset of the literature have used a noncanonical Hamiltonian approach to
study the dynamics of a gyrostat-satellite. The earliest reviewed work to use this approach is
Wang, Lian, and Chen.35 The authors investigate the “unrestricted” case for the 24 “great-
circle” (cylindrical) relative equilibria and their stability. Hall and Beck,8 Hall,6 and Hall and
Beck9 are a series of papers that present an algorithm for computing the relative equilibria
of a gyrostat-satellite that also directly provides stability information. As an example, the
authors apply the algorithm to the problem of determining cylindrical relative equilibrium.
Molina and Mondejar21 use a noncanonical Hamiltonian approach to determine sufficient
conditions for the nonlinear stability in the case when the relative angular momentum vector
is aligned with a principal axis.

2.2 Momentum Unloading via Gravitational Torques

Several authors investigate the use of gravitational torques to unload accumulated angular
momentum in satellites equipped with momentum-exchange actuators for attitude stabi-
lization and control. The authors investigate attitude deviation profiles that result in the
application of gravitational torques on the satellite in such a way to allow the unloading of
accumulated momentum. The primary benefit of this method is the elimination or mini-
mization of thruster firing and therefore of propellant expenditure. Powell24 discusses the
development of a momentum management system for a satellite that is nominally inertially-
orientated. The author defines theoretical limits for regions of controllable angular momen-
tum. Powell’s24 momentum management system uses one or two large angle slew maneuvers
to perform the bulk of the “unloading” and trim maneuvers for finer corrections. Tong33 also
investigates unloading angular momentum via controlled attitude deviations from nominal
mission attitude profile to use gravity-gradient torques. The author demonstrates feasibil-
ity via a case study of an asymmetric satellite equipped with CMGs in an elliptical orbit.
Yamada, Yoshikawa, Kashiwase, and Matsue36 analyze a control method using gravitational
torques to unload angular momentum, and determine the method’s momentum unloading
capability.

2.3 Transitions between Relative Equilibria

The literature on gyrostat-satellite dynamics and control contains only a few works that dis-
cuss transitioning between relative equilibrium. Roberson25 is the earliest work. Roberson25

states (almost as an aside) that the reorientation of the gyrostat from one relative equilibria
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to another may be accomplished by “simply turning on a certain rotor.” The only technical
investigation into transitions of a gyrostat-satellite between relative equilibria in the reviewed
literature is Anchev.1 The author describes open-loop control strategies for the transition
from a cylindrical relative attitude equilibrium to another relative equilibrium. Specifically,
re-orientations about the orbit normal, nadir, and the velocity vector are investigated. Hall
and Beck9 and Hall6 have also noted that Anchev1 is the only work documented in the
literature to investigate transitions between relative equilibria.

2.4 Summary & Conclusions

A significant amount of work is documented in the literature on the dynamics and control
of gyrostat-satellites. The vast majority of the work has focused on the application of
relative equilibria for semi-passive stabilization of the attitude of an artificial satellite. The
problem of determining the relative equilibrium attitudes of a gyrostat-satellite has been
solved.11,25,27,20,18,23,29 The stability of the relative attitude equilibria has been investigated
in detail.12,32,3, 37,26,16,19,10,5, 30

Although much work has been done in the field, there is a significant gap in the literature.
Roberson25 and Anchev1 are the only works to mention the possibility of using internal torque
actuation to transition between relative equilibria. Roberson25 briefly discusses reorienting
a gyrostat-satellite from one relative attitude equilibrium to another by “simply turning on
a certain rotor.” Anchev1 is the only author to investigate (in any detail) these types of
transitions between relative equilibria in the reviewed literature.

The current work starts to address the significant gap that has been identified in the lit-
erature. The primary new contribution is the definition of COMETs and an investigation
into their utilization for performing transitions between the relative equilibria of a gyrostat-
satellite.



Chapter 3

Gyrostat-Satellite Dynamics

The equations of motion for a gyrostat-satellite are derived in this chapter. The literature
contains many presentations of the derivation of the equations of motion for a gyrostat-
satellite. The reader is referred to Hughes,11 Hall,7 and Schaub and Junkins31 as good
examples. The presentation given here loosely follows that of Hughes,11 but has been tailored
to the problem of interest and introduces the notation used throughout the rest of the
dissertation. The equations of motion form the foundation for the results presented in later
chapters.

First, the linear momentum and moment of momentum for a gyrostat are derived in Sections
3.1 and 3.2, respectively. The gravitational force and torque experienced by a gyrostat-
satellite are then derived in Section 3.3. The translational and rotational equations of motion
for a gyrostat-satellite are determined via application of Newton’s and Euler’s second laws,
respectively, in Section 3.4. Section 3.5 summarizes the important points from the chapter.

3.1 Linear Momentum

The equations defining the linear momentum of a gyrostat are derived in this section. First,
equations are derived for the linear momentum of the platform, Section 3.1.1, and a single
rotor, Section 3.1.2. The linear momenta are summed to arrive at the equation of linear
momentum for a gyrostat in Section 3.1.3.

3.1.1 Platform (P)

The linear momentum of the gyrostat platform, ~pp, is

~pp =
∫
P
~vo + ~ω × ~rp dm (3.1)

11
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where ~vo is the velocity with respect to inertial space of the point o fixed in the platform, ~ω is
the angular velocity of the platform with respect to inertial space, and ~rp is a vector directed
from the point o to the infinitesimal mass element dm. The values of ~vo and ~ω do not vary
over the platform, and may therefore be moved outside of the integral over the platform P .

~pp =
∫
P
dm ~vo + ~ω ×

∫
P
~rp dm (3.2)

The first term is equal to the total mass of the gyrostat platform, mp. The integral in the
second term in Eq. 3.2 is equal to the first mass moment of the platform with respect to the
point o, ~cp0 .

~cp0 =
∫
P
~rp dm (3.3)

Applying these results to Eq. 3.2 gives

~pp = mp~vo + ~ω × ~cpo (3.4)

Equation 3.4 is used in Section 3.1.3 to derive the equation for the linear momentum of a
gyrostat.

3.1.2 Rotor (R)

The linear momentum of one of the gyrostat rotors, ~pr, is

~pr =
∫
R
~vo + ~ω ×~b+ ~ωr × ~rr dm (3.5)

where ~b is the vector directed from the point o to the center of mass of the rotor, ~ωr is the
angular velocity of the rotor with respect to inertial space, and ~rr is a vector directed from
the rotor center of mass to the infinitesimal mass element dm. The values of ~vo, ~ω, ~b, and
~ωr do not vary over the rotor, and may therefore be moved outside of the integral over the
rotor R.

~pr =
∫
R
dm

(
~vo + ~ω ×~b

)
+ ~ωr ×

∫
R
~rr dm (3.6)

The integral in the first term is equal to the total mass of the rotor, mr. The integral in the
second term in Eq. 3.2 is equal to the first mass moment of the rotor with respect to the
rotor center of mass, witch is equal to ~0.∫

R
~rr dm = ~0 (3.7)

Applying these terms to Eq. 3.6 results in

~pr = mr

(
~vo + ~ω ×~b

)
(3.8)

Equation 3.8 is used in Section 3.1.3 to derive the equation for the linear momentum of a
gyrostat.
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3.1.3 Gyrostat (G)

The total linear momentum of a gyrostat, ~p, is the sum of the linear momenta of the platform
P and the rotors R.

~p = ~pp +
n∑
i

~pri (3.9)

Plugging Eqs. 3.4 and 3.8 into Eq. 3.9 results in

~p = mp~vo + ~ω × ~cpo +
n∑
i

mri

(
~vo + ~ω ×~bi

)
(3.10)

Equation 3.10 can be rewritten as

~p =

(
mp +

n∑
i

mri

)
~vo + ~ω ×

(
~cpo +

n∑
i

mri
~bi

)
(3.11)

The quantity in parentheses in the first term is equal to the total mass of the gyrostat, m.

m = mp +
n∑
i

mri (3.12)

The quantity in parentheses in the second term is equal to the first mass moment of the
gyrostat with respect to the point o, ~co.

~co = ~cpo +
n∑
i

mri
~bi (3.13)

Applying these terms to Eq. 3.11 results in

~p = m~vo + ~ω × ~co (3.14)

If the point o is chosen to be the center of mass of the gyrostat, the value of ~co is ~0, and Eq.
3.14 simplifies to

~p = m~v (3.15)

Equation 3.15 is used in Section 3.4.1 to derive the translational equations of motion for a
gyrostat-satellite.

3.2 Moment of Momentum

The equations defining the moment of momentum of a gyrostat are derived in this section.
First, equations are derived for the moments of momentum of the platform, Section 3.2.1,
and a single rotor, Section 3.2.2. The moments of momentum are summed to arrive at the
equation of moment of momentum for a gyrostat in Section 3.2.3.
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3.2.1 Platform (P)

The moment of momentum of the platform P is

~Hpo =
∫
P
~rp × (~vo + ~ω × ~rp) dm (3.16)

Recognizing that ~vo is constant over the platform P and using Eq. 3.3, Eq. 3.16 may be
rewritten as

~Hpo =
(∫
P
~rp dm

)
××~vo +

∫
P
~rp × (~ω × ~rp) dm

= ~cpo × ~vo +
∫
P
~rp × (~ω × ~rp) dm (3.17)

The vector triple product in the integrand of the second term of Eq. 3.17 may be rewritten
so that the platform angular velocity vector, ~ω, can be pulled outside of the integrand.

~Hpo = ~cpo × ~vo +
(∫
P
~rp · ~rp~1− ~rp~rp dm

)
· ~ω (3.18)

The integral term inside the parentheses is equal to the interia tensor of the platform.

~Ipo =
∫
P
~rp · ~rp~1− ~rp~rp dm (3.19)

Equation 3.18 becomes

~Hpo = ~cpo × ~vo + ~Ipo · ~ω (3.20)

after applying the definition in Eq. 3.19. Equation 3.20 is used in Section 3.2.3 to derive the
equation for the moment of momentum of a gyrostat.

3.2.2 Rotor (R)

The moment of momentum of a rotor R is

~Hro =
∫
R

(
~b+ ~rr

)
×
(
~vo + ~ω ×~b+ ~ωr × ~rr

)
dm (3.21)

Equation 3.21 can be rewritten as

~Hro = ~b×
∫
R

(
~vo + ~ω ×~b+ ~ωr × ~rr

)
dm (3.22)

+
(∫
R
~rr dm

)
×
(
~vo + ~ω ×~b

)
+
∫
R
~rr × (~ωr × ~rr) dm

The integral in the first term of Eq. 3.22 is equal to the linear momentum of the rotor with
respect to inertial space (Eq. 3.8). The integral in the second term of Eq. 3.22 is equal to
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the first mass moment of the rotor about its center of mass, which is equal to ~0 (Eq. 3.7).
Applying these two findings allows Eq. 3.22 to be simplified to

~Hro = ~b× ~pr +
∫
R
~rr × (~ωr × ~rr) dm (3.23)

The vector triple product in the integrand of the second term of Eq. 3.23 may be rewritten
so that the rotor angular velocity vector, ~ωr, can be pulled outside of the integrand.

~Hro = ~b× ~pr +
(∫
R
~rr · ~rr~1− ~rr~rr dm

)
· ~ωr (3.24)

The integral term inside the parentheses is equal to the interia tensor of the rotor.

~Ir =
∫
R
~rr · ~rr~1− ~rr~rr dm (3.25)

Equation 3.24 becomes

~Hro = ~b× ~pr + ~Ir · ~ωr (3.26)

after applying the definition in Eq. 3.25. Equation 3.26 is used in Section 3.2.3 to derive the
equation for the moment of momentum of a gyrostat.

3.2.3 Gyrostat (G)

The moment of momentum of the gyrostat G is the sum of the moments of momentum of
the platform and all rotors.

~Ho = ~Hpo +
n∑
i

~Hrio
(3.27)

Plugging in the equations for the moments of momentum for the platform (Eq. 3.20) and
the rotors (Eq. 3.26) results in

~Ho = ~cpo × ~vo + ~Ipo · ~ω +
n∑
i

(
~bi × ~pri + ~Iri · ~ωri

)
(3.28)

and becomes

~Ho = ~cpo × ~vo + ~Ipo · ~ω +
n∑
i

(
~bi ×mri

(
~vo + ~ω ×~bi

)
+ ~Iri · ~ωri

)
(3.29)

when replacing ~pr with its definition (Eq. 3.8). The angular velocity of the rotor with respect
to inertial space, ~ωr, is equal to

~ωr = ~ω + ~ωs (3.30)
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where ~ωs is the angular velocity of the rotor with respect to the platform. Applying Eq. 3.30
to Eq. 3.29 and gathering terms crossed with ~vo and multiplied by ~ω results in

~Ho =

(
~cpo +

n∑
i

(
mri

~bi
))
× ~vo (3.31)

+

(
~Ipo +

n∑
i

(
~Iri +mri

(
~bi ·~bi~1−~bi~bi

)))
· ~ω +

n∑
i

(
~Iri · ~ωsi

)
The quantity in parentheses in the first term is equal to the first mass moment of the gyrostat
with respect to the point o. If the point o is chosen to conincide with the center of mass of
the gyrostat, the first mass moment is equal to ~0.

~cpo +
n∑
i

(
mri

~bi
)

= ~0 (3.32)

The quantity in parentheses in the second term is equal to the inertia tensor of the gyrostat.

~I = ~Ipo +
n∑
i

(
~Iri +mri

(
~bi ·~bi~1−~bi~bi

))
(3.33)

The final term in Eq. 3.31 is the relative angular momentum vector of the gyrostat, ~hs.

~hs =
n∑
i

(
~Iri · ~ωsi

)
(3.34)

Using these definitions simplifies Eq. 3.31 to

~h = ~I · ~ω + ~hs (3.35)

Equation 3.35 is used in Section 3.4.2 to derive the rotational equations of motion for a
gyrostat-satellite.

3.3 Gravitational Effects on a Gyrostat-Satellite

The gravitational force and torque acting on a gyrostat-satellite are derived in this section.
The following assumptions are used in the derivations:

1. The gyrostat-satellite is only affected by the gravitation of a single celestial primary.

2. The celestial primary has a spherically symmetrical mass distribution.

3. The gyrostat is small compared to its distance from the center of mass of the celestial
primary.



M. VanDyke Chapter 3. Gyrostat-Satellite Dynamics 17

These represent the standard set assumptions pertaining to gravitational effects used through-
out the literature on the dynamics and control of a gyrostat-satellite. The reader is referred
to Hughes11 for a detailed discussion on the implications of each of these assumptions and a
qualitative assessment of the error incurred.

The gravitational force acting on a gyrostat-satellite is derived in Section 3.3.1. The gravi-
tational torque acting on a gyrostat-satellite is derived in Section 3.3.2.

3.3.1 Gravitational Force

The gravitational force on the differential mass element dm, d~f , is

d~f = −µ ~r
r3
dm (3.36)

where µ is the gravitational constant of the celestial primary, ~r is the vector starting at the
center of the celestial primary and extending to the differential mass element dm, and r is
the magnitude of ~r. The total gravitational force acting on the gyrostat ~f is

~f =
∫
G
d~f = −µ

∫
G

~r

r3
dm (3.37)

The vector ~r can be written as the sum of the vector from the center of the celestial primary
to the center of mass of the gyrostat, ~rc, and the vector from the center of mass of the
gyrostat to the differential mass element dm, ~rg.

~r = ~rc + ~rg (3.38)

The denominator of Eq. 3.37 can be written as a funtion of ~rc and ~rg.

r−3 = [(~rc + ~rg) · (~rc + ~rg)]
− 3

2 (3.39)

= (~rc · ~rc + 2~rc · ~rg + ~rg · ~rg)−
3
2

=
(
r2c + 2~rc · ~rg + r2g

)− 3
2

= r3c

(
1 + 2

~rc · ~rg
r2c

+
(
rg
rc

)2
)− 3

2

The class of gyrostat-satellites that are of practical engineering interest generally satisfy the
following relation.

rg
rc
� 1 (3.40)

Equation 3.40 requires that the “characteristic length” of the gyrostat is significantly smaller
than the distance from the celestial primary. Applying Eq. 3.40 allows Eq. 3.39 to be
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approximated to first order using binomial expansion as11,31

r−3 ≈ r−3c

(
1− 3

~rc · ~rg
r2c

)
(3.41)

Plugging Eq. 3.41 into Eq. 3.37 results in

~f = −µ
∫
G

~rc + ~rg
r3c

(
1− 3

~rc · ~rg
r2c

)
dm (3.42)

= − µ
r3c

∫
G

(
~rc + ~rg − 3

~rc · ~rg
r2c

~rc − 3
~rc · ~rg
r2c

~rg

)
dm

= − µ
r3c

(
m~rc +

∫
G
~rg dm

)
+

3µ

r5c

(
~rc~rc ·

∫
G
~rg dm+

∫
G
~rg~rg dm · ~rc

)
Because ~rg eminates from center of mass of the gyrostat, the first mass moment is∫

G
~rg dm = ~0 (3.43)

Equation 3.42 simplifies to

~f = − µ
r3c

(
m~1 +

3µ

r2c

∫
G
~rg~rg dm

)
· ~rc (3.44)

= − µ
r3c

(
m~1 +

3µ

r2c
~M

)
· ~rc

where

~M =
∫
G
~rg~rg dm (3.45)

The inertia-like matrix ~M can be expressed in terms of the moments and products of inertia.

M =


1
2

(I22 + I33 − I11) I12 I13
I12

1
2

(I11 + I33 − I22) I23
I13 I23

1
2

(I11 + I22 − I33)

 (3.46)

The second term in the parentheses is significantly smaller than the first term for systems
satisfying Eq. 3.40 and can therefore be ignored. The resulting equation for the gravitational
force, ~f , applied to the gyrostat-satellite is

~f = −µm
r3c
~rc (3.47)

Equation 3.47 depends on the position of the gyrostat-satellite with respect to the celestial
primary, and is independent of the orientation of the gyrostat-satellite. Equation 3.47 is
used in Section 3.4.1 to derive the translational equations of motion for a gyrostat-satellite.
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3.3.2 Gravitational Torque

The total gravitational torque acting on the gyrostat ~g is

~g =
∫
G
~rg × d~f = −µ

∫
G
~rg ×

~r

r3
dm (3.48)

Substituting Eq. 3.38 into Eq. 3.48 results in

~g = −µ
∫
G
~rg ×

(~rc + ~rg)

r3
dm (3.49)

= ~rc × µ
∫
G

~rg
r3
dm

From Eq. 3.48, it is clear that the gravitational torque does not have a component along
the vector directed from the center of mass of the celestial primary to the center of mass
of the gyrostat. Applying the same approximation for r−3 used in the derivation of the
gravitational force acting on the gyrostat, Eq. 3.41, gives

~g = ~rc × µ
∫
G

~rg
r3c

(
1− 3

~rc · ~rg
r2c

)
dm (3.50)

= ~rc ×
(
µ

r3c

∫
G
~rg dm− 3

µ

r5c

∫
G

(~rc · ~rg)~rg dm
)

Utilizing the vector triple product identity and Eq. 3.43 allows Eq. 3.51 to be rewritten as

~g = −3
µ

r5c
~rc ×

(∫
G
~rg × (~rc × ~rg)− (~rg · ~rg)~rc dm

)
(3.51)

= −3
µ

r5c

(
~rc ×

∫
G
~rg × (~rc × ~rg) dm−

(∫
G
~rg · ~rg dm

)
~rc × ~rc

)
= −3

µ

r5c
~rc ×

∫
G
~rg × (~rc × ~rg) dm

The vector triple product identity is used again to arrive at

~g = −3
µ

r5c
~rc ×

(∫
G

(~rg · ~rg)~1− ~rg~rg dm
)
· ~rc (3.52)

The term in parentheses is the interia matrix of the gyrostat, ~I. Equation 3.52 becomes

~g = 3
µ

r3c
~o3 × ~I · ~o3 (3.53)

Equation 3.53 depends on the distance of the gyrostat-satellite from the center of they
celestial primary, and the orientation of the gyrostat-satellite. Equation 3.53 is used in
Section 3.4.2 to derive the rotational equations of motion for a gyrostat-satellite.
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3.4 Equations of Motion

The equations of motion of a gyrostat-satellite are presented in this section. The translational
equations of motion are derived in Section 3.4.1, and the rotational equations of motion are
derived in Section 3.4.2.

3.4.1 Translational

Newton’s second law of motion can be written as

d

dt
(~p)i = ~f (3.54)

where the subscript i indicates that the time derivative is taken with respect to inertial space,
and ~f is the total external force applied to the gyrostat. Based on the linear momentum
of a gyrostat derived in Section 3.1, the first time derivative of the linear momentum of a
gyrostat with respect to inertial space is

d

dt
(~p)i = m

d

dt
(~v)i = m~a (3.55)

where ~a is the second time derivative of the gyrostat position vector taken with respect to
inertial space, and it has been assumed that the total mass of the gyrostat, m, is a constant.
Plugging in the equation for the gravitational force acting on a gyrostat (Eq. 3.47) results
in

m~a = −µm
r3c
~rc (3.56)

The total mass m appears on both the left- and right-hand sides of Eq. 3.56, and can
therefore be canceled out. Thus, simplifying Eq. 3.56 to

~a = − µ
r3c
~rc (3.57)

Equation 3.57 is the standard translational equations of motion for a small object orbiting
a single celestial primary. The solutions to Equation 3.57 are Keplerian orbits. Throughout
the rest of this dissertation, it is assumed that gyrostat-satellite is in a circular orbit about
the celestial primary. The fractional quantity in Eq. 3.57 is equal to the square of the
instantaneous orbital rate, which for circular orbits is a constant.2

ωo =

√
µ

r3c
(3.58)

Plugging Eq. 3.58 into Eq. 3.57 results in

~a = −ω2
o~rc (3.59)

The translational equations of motion are decoupled from the rotational motion of the
gyrostat-satellite.
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3.4.2 Rotational

Euler’s second law of motion can be written as

d

dt

(
~h
)
i

= ~g (3.60)

where ~g is the total external torque applied to the gyrostat. Based on the moment of
momentum of a gyrostat (about its center of mass) derived in Section 3.2, the first time
derivative of the moment of momentum of a gyrostat (about its center of mass) with respect
to inertial space is

d

dt

(
~h
)
i

= ~I · ~̇ω + ~̇hs + ~ω ×
(
~I · ~ω + ~hs

)
(3.61)

where ~̇ω is the angular acceleration of the gyrostat platform with respect to a platform fixed

reference frame, ~̇hs is the first time derivative of the relative angular momentum vector with
respect to a platform fixed reference frame, and it has been assumed that the inertia tensor
of the gyrostat, ~I, is constant. Plugging in the equation for the gravitational torque acting
on a gyrostat (Eq. 3.52) results in

~I · ~̇ω + ~̇hs + ~ω ×
(
~I · ~ω + ~hs

)
= 3

µ

r3c
~o3 × ~I · ~o3 (3.62)

The term ~ω ×
(
~I · ~ω + ~hs

)
is often referred to as “gyroscopic” torque. Equation 3.62 is the

standard formulation of the rotational equations of motion for a gyrostat-satellite found in
the literature. The rotational equations of motion are coupled to the distance from the
gyrostat to the center of the celestial primary. Assuming the gyrostat-satellite is restricted
to a circular orbit, Eq. 3.62 simplifies to

~I · ~̇ω + ~̇hs + ~ω ×
(
~I · ~ω + ~hs

)
= 3ω2

o~o3 × ~I · ~o3 (3.63)

Equation 3.63 is the standard rotational equations of motion for a gyrostat-satellite in a
circular orbit, and is the form of the rotational equations of motion used throughout most
of the literature. Equation 3.63 is decoupled from the translational equations of motion.

3.5 Summary

The equations of motion for a gyrostat-satellite were derived in this chapter. It was shown
that, if the gyrostat-satellite is restricted to a circular orbit, the rotational dynamics decouple
from the translational dynamics. Therefore, only the rotational equations of motion are
considered throughout the rest of the dissertation. Equation 3.63 is the form of the rotational
equations of motion that is used.



Chapter 4

Relative Equilibria of a
Gyrostat-Satellite

Equilibrium solutions to the rotational equations of motion developed in Chapter 3 are
presented and analyzed. A significant portion of the presentation already exists in the
literature (Hughes,11 Longman,15 etc.). New contributions to the literature are explicitly
noted.

Section 4.1 introduces the concept of relative equilibrium. The necessary and sufficient con-
dition that allows an attitude to be made into a relative equilibrium by the proper selection
of the relative momentum vector is derived and presented in Section 4.2. Section 4.3 presents
a three-variable parameterization of all possible relative equilibrium attitudes. Section 4.4
presents a detailed development of the directions of the basis vectors of the orbital and
principal reference frames that admit relative equilibrium attitudes, which represents a new
contribution to the literature. The local stability characteristics of relative equilibria are
briefly investigated in Section 4.5.

4.1 Definition of Concept

A dynamical equilibrium occurs when the attitude and relative angular momentum vector
of a gyrostat-satellite are constant with respect to the orbital reference frame, and the net
external torque applied to the gyrostat-satellite is zero.11 Therefore, a dynamical equilibrium
occurs when the following conditions are met,

~ω = −ωo~o2 (4.1)

~̇hs = ~0 (4.2)

~g = ~0 (4.3)

22
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The vector ~o2 is a basis vector of the orbital reference frame, and is anti-parallel to the orbit
normal of the gyrostat-satellite. The vectors ~o1 and ~o3 complete the orthonormal triad of
basis vectors for the orbital reference frame. The vector ~o3 is directed from the gyrostat-
satellite center of mass toward the center of the celestial primary. The vector ~o1 is parallel to
the velocity vector of the gyrostat-satellite.* If the conditions expressed in Eqs. 4.1 through
4.3 are satisfied, the system momentum is constant with respect to the principal or orbital
reference frames and is perpendicular to the orbital plane. The principal reference frame is a
body-fixed reference frame in which each basis vector is aligned with a principal axis of the
gyrostat-satellite. The inertia matrix expressed in the principal reference frame is a diagonal
matrix.

The literature classifies the dynamical equilibria of a gyrostat satellite as being either of the
cylindrical or hyperbolic case (See Section 2.1). A dynamical equilibrium is said to be of
the cylindrical case if the relative angular momentum vector is perpendicular to the orbital
plane. These equilibrium attitudes are the same as the equilibrium attitudes for a rigid-
body satellite. A dynamical equilibrium is said to be of the hyperbolic case if the relative
angular momentum vector is in the plane perpendicular to ~o3, but not perpendicular to the
orbital plane. In this case, the projection of the relative angular momentum vector onto ~o1
is canceled by the projection of the platform angular momentum vector onto ~o1.

A relative equilibrium occurs when the attitude and relative angular momentum vector of
a gyrostat-satellite are constant with respect to the orbital reference frame.11 Therefore, a
relative equilibrium occurs when the following conditions are met,

~ω = −ωo~o2 (4.4)

~̇hs = ~0 (4.5)

If the conditions expressed in Eqs. 4.4 and 4.5 are satisfied, the system momentum is constant
with respect to the principal or orbital reference frames. Relative equilibria may be thought
of as generalization of dynamical equilibria wherein the third condition (Eq. 4.3) is removed.
The literature classifies the relative equilibria of a gyrostat satellite as being either of the
conical or offset hyperbolic case. A relative equilibrium is said to be of the conical case if
the relative angular momentum vector is perpendicular to ~o1, but not perpendicular to the
orbital plane. A relative equilibrium is said to be of the offset hyperbolic case if the relative
angular momentum vector is not contained in a plane perpendicular to one of the orbital
reference frame basis axes. In this case, the projection of the relative angular momentum
vector onto ~o1 is canceled by the projection of the platform angular momentum vector onto
~o1.

The gravitational torque applied to a gyrostat-satellite in a relative equilibrium is counter-
acted by the “gyroscopic” torque exerted by the relative angular momentum vector rotat-
ing at orbital rate about the orbit normal. In Section 3.3.2, it was determined, based on
Eq. 3.48, that the projection of the gravitational torque along ~o3 is zero. This requires that

* It is assumed that the gyrostat-satellite is in a circular orbit.
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the gravitational torque lies in the plane perpendicular to ~o3. The gyroscopic torque term
in Eq. 3.62 that must cancel out the gravitational torque applied to the gyrostat-satellite is
~ω×

(
~I · ~ω + ~hs

)
, which is the cross product of the angular velocity of the platform with the

system angular momentum. The first relative equilibrium condition (Eq. 4.4) requires that ~ω
is anti-parallel to ~o2. Therefore, in order for the gyroscopic torque term to satisfy Eq. 4.4 and
lie in the same plane as the gravitational torque (perpendicular to ~o3), the system angular
momentum must lie in the plane perpendicular to ~o1.

4.2 Necessary and Sufficient Condition

The derivation of the necessary and sufficient conditions for a relative equilibrium attitude
presented in this section generally follows the presentations in Longman and Roberson20 and
Hughes.11 As derived in Chapter 3, the equation of motion for a gyrostat-satellite is

~I · ~̇ω + ~ω ×
(
~I · ~ω + ~hs

)
= 3ω2

o~o3 × ~I · ~o3

Satisfying the first relative equilibrium condition, Eq. 4.4, requires that the angular acceler-
ation of the principal reference frame, ~̇ω, is ~0, so that

~ω ×
(
~I · ~ω + ~hs

)
= 3ω2

o~o3 × ~I · ~o3 (4.6)

The gyroscopic torque, ~ω×
(
~I · ~ω + ~hs

)
, must cancel the gravitational torque, 3ω2

o~o3× ~I ·~o3.
Plugging in the first relative equilibrium condition, Eq. 4.4, into Eq. 4.6 and simplifying
results in

−ωo~o2 ×
(
−ωo~I · ~o2 + ~hs

)
= 3ω2

o~o3 × ~I · ~o3 (4.7)

ω2
o~o2 × ~I · ~o2 − ωo~o2 × ~hs = 3ω2

o~o3 × ~I · ~o3 (4.8)

~o2 × ~I · ~o2 − ~o2 ×~js = 3~o3 × ~I · ~o3 (4.9)

where the scaled relative angular momentum vector, ~js, is defined

~js =
~hs
ωo

(4.10)

Both Longman and Roberson20 and Hughes11 determine the requirements for a relative
equilibrium atttiude by taking the inner products of Eq. 4.9 with the orbital frame basis
vectors. The inner product of Eq. 4.9 with ~o1 is

~o1 ·
(
~o2 × ~I · ~o2 − ~o2 ×~js

)
= ~o1 ·

(
3~o3 × ~I · ~o3

)
(4.11)

~o3 · ~I · ~o2 − ~o3 ·~js = −3~o2 · ~I · ~o3 (4.12)

~o3 ·~js = 4~o2 · ~I · ~o3 (4.13)
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The inner product of Eq. 4.9 with ~o2 is

~o2 ·
(
~o2 × ~I · ~o2 − ~o2 ×~js

)
= ~o2 ·

(
3~o3 × ~I · ~o3

)
(4.14)

0 = ~o1 · ~I · ~o3 (4.15)

The inner product of Eq. 4.9 with ~o3 is

~o3 ·
(
~o2 × ~I · ~o2 − ~o2 ×~js

)
= ~o3 ·

(
3~o3 × ~I · ~o3

)
(4.16)

−~o1 · ~I · ~o2 + ~o1 ·~js = 0 (4.17)

~o1 ·~js = ~o1 · ~I · ~o2 (4.18)

Recognizing that the elements of the inertia tensor of the gyrostat-satellite expressed in the
orbital frame are

Jij = ~oi · ~I · ~oj (4.19)

and the elements of the scaled relative angular momentum vector (~js) expressed in the orbital
frame are

ji = ~oi ·~js (4.20)

the necessary and sufficient conditions for a relative equilibrium are

j3 = 4J23 (4.21)

J13 = 0 (4.22)

j1 = J12 (4.23)

Equations 4.21 through 4.23 allow for two conclusions to be drawn about the relative equi-
librium attitudes of a gyrostat-satellite:20

1. A necessary and sufficient condition that an attitude can be made into a relative
equilibrium by the proper choice of j1 and j3 is that J13 = 0.

2. The projection of the relative angular momentum vector, ~hs, on to the orbit normal
does not affect the attitude of a relative equilibrium.*

An alternative, though exactly equivalent, method for obtaining the necessary and sufficient
conditions (Eqs. 4.21 through 4.23) would be to simply express all of the quantities in Eq. 4.9
in the orbital reference frame.

(oo2)
× Joo2 − (oo2)

× jos = 3 (oo3)
× Joo3 (4.24)

* However, in Section 4.5 it is shown that the stability of the relative equilibrium is dependent on the
projection of the relative angular momentum vector, ~hs, on to the orbit normal.
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where oo2 and oo3 are defined,

oo2 =
[

0 1 0
]T

(4.25)

oo3 =
[

0 0 1
]T

(4.26)

Carrying out the matrix multiplication in Eq. 4.24 results in the following vector equation. J23
0
−J12

−
 j3

0
−j1

 = 3

 −J23J13
0

 (4.27)

This result matches Eqs. 4.21 through 4.23.

4.3 Parametrization of Relative Equilibrium Attitudes

The set of all possible attitudes that can be made into a relative equilibrium attitude is
a three parameter family of orientations. The first two parameters, θ1 and θ2, define the
direction of the nadir vector, ~o3, with respect to the principal reference frame. The angle θ1
is defined as the angle between ~p3 and the projection of ~o3 onto the ~p2-~p3 plane with positive
values representing a counterclockwise rotation about ~p1. The angle θ2 is defined as the
angle between ~o3 and the projection of ~o3 onto the ~p2-~p3 plane with positive angular values
resulting in a negative value of the projection of ~o3 onto ~p1. The nadir vector (~o3) expressed
in the principal reference frame, o3, is calculated from θ1 and θ2 using

o3 =

 − sin(θ2)
sin(θ1) cos(θ2)
cos(θ1) cos(θ2)

 (4.28)

The necessary and sufficient condition for an attitude to be a relative equilibrium attitude
is

J13 = ~o1 · ~I · ~o3 = 0 (4.29)

The vectors ~o1 and ~o3 are members of an orthonormal triad (the set of basis vectors of the
orbital reference frame), and therefore must satisfy the following equality constraint.

~o1 · ~o3 = 0 (4.30)

Therefore, ~o1 must be perpendicular to both ~o3 and ~I · ~o3. If ‖~o3 × ~I · ~o3‖ 6= 0, there are two
solutions for ~o1, which can be determined using

~o1 = ± ~o3 × ~I · ~o3
‖~o3 × ~I · ~o3‖

(4.31)
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Equation (4.31) shows that for each ~o3 there are precisely two possible relative equilibrium
attitudes, which are separated by a 180◦ rotation about ~o3.

When ‖~o3 × ~I · ~o3‖ = 0, the gravitational torque is zero, and the gyrostat-satellite is at a

dynamical equilibrium. If ‖~o3 × ~I · ~o3‖ = 0, there are an infinite number of solutions for ~o1.
This occurs when ~o3 satisfies,

λ~o3 = ~I · ~o3 (4.32)

where λ is an arbitrary positive scalar. Equation 4.32 is true when ~o3 is aligned with an
eigenvector of the inertia matrix ~I, or equivalently when ~o3 is aligned with a principal axis
of the gyrostat-satellite. In this configuration, any vector lying in the plane perpendicular to
~o3 represents a ~o1 vector of a dynamical equilibrium attitude. Therefore, a third parameter
θ3 is introduced to uniquely define a single attitude. The angle θ3 is defined as the first angle
in a 3-2-1 Euler angle sequence defining the rotation from the orbital to principal reference
frame. So, if ‖~o3× ~I ·~o3‖ = 0, the vector ~o1 expressed in the principal frame, o1, is calculated
from θ1, θ2, and θ3 using

o1 =

 cos(θ2) cos(θ3)
− cos(θ1) sin(θ3) + sin(θ1) sin(θ2) cos(θ3)
sin(θ1) sin(θ3) + cos(θ1) sin(θ2) cos(θ3)

 (4.33)

Because ~o1, ~o2, and ~o3 form an orthonormal triad, ~o2 is

~o2 = ~o3 × ~o1 (4.34)

Once ~o1, ~o2, and ~o3 have been determined, the projections of the relative angular momentum
vector on ~o1 and ~o3 required to make the attitude a relative equilibrium are determined by
applying Eqs. 4.21 and 4.23. The scaled relative angular momentum vector expressed in the
orbital frame is calculated using

jo =
[

oT
1 Io2 j2 4oT

2 Io3

]T
(4.35)

where the value of j2 may be arbitrarily chosen. The relative angular momentum vector
expressed in the principal reference frame (hs) may then be calculated using

hs = ωo
[

o1 o2 o3

]
jo (4.36)

An algorithm for calculating the parameters of a relative equilibrium is presented in Algo-
rithm 4.1. The algorithm takes the gyrostat-satellite inertia matrix expressed in a body-fixed
reference frame (I), the three relative equilibrium attitude parameters (θ1, θ2, and θ3), and
the component of the relative angular momentum vector along the orbit normal (j2) as
input. The algorithm is valid for an inertia matrix expressed in any body-fixed reference
frame, therefore it is not limited to the principal reference frame. The algorithm outputs the
direction cosine matrix for the rotation from the orbital to the body-fixed reference frame
(Rbo) and the relative angular momentum vector expressed in the body-fixed reference frame
(hs).
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Input : θ1, θ2, θ3, j2, I
Output: Rbo, hs

1 o3 ←

 − sin(θ2)
sin(θ1) cos(θ2)
cos(θ1) cos(θ2)

;

2 if ‖o×3 Io3‖ = 0 then

3 o1 ←

 cos(θ2) cos(θ3)
− cos(θ1) sin(θ3) + sin(θ1) sin(θ2) cos(θ3)
sin(θ1) sin(θ3) + cos(θ1) sin(θ2) cos(θ3)

;

4 else

5 o1 ← sgn (θ3)
o×
3 Io3

‖o×
3 Io3‖

;

6 end
7 o2 ← o×3 o1;

8 Rbo ←
[

o1 o2 o3

]
;

9 hs ← ωoR
bo
[

oT
1 Io2 j2 4oT

2 Io3

]T
;

Algorithm 4.1: Algorithm to calculate the relative equilibrium attitude and relative
angular momentum vector

4.4 Admissible Basis Vector Directions

This section presents a detailed analysis into the directions of the basis vectors of the orbital
and principal reference frames that admit a relative equilibrium attitude. The work presented
in this section represents a new contribution to the literature, however some of the results
overlap results presented in Pascal and Stepanov.23

Section 4.4.1 defines the directions of the orbital reference frame basis vectors that admit
relative equilibrium attitudes. Section 4.4.2 defines the directions of the principal reference
frame basis vectors that admit relative equilibrium attitudes.

4.4.1 Orbital Reference Frame

The parameterization of the relative equilibrium attitudes presented in Section 4.3 demon-
strates that a relative equilibrium attitude may be found that aligns ~o3 with any direction
with respect to the principal reference frame. An examination of the equations in Section 4.3
shows that a similar parameterization could be generated to define the direction of ~o1 with
respect to the principal reference frame. Therefore, a relative equilibrium attitude may be
found that aligns ~o1 with any direction with respect to the principal reference frame.

It is only left to determine the directions of ~o2 that admit a relative equilibrium attitude.
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The direction of ~o2 with respect to the principal reference frame is chosen arbitrarily, and the
orientation of ~o1 and ~o3 are parameterized as functions of ~o2 and a “clocking” angle about
~o2, θ.

~o1 = cos θ~t1 + sin θ~t3 (4.37)

~o3 = − sin θ~t1 + cos θ~t3 (4.38)

The vectors ~ti are a set of basis vectors of a temporary reference frame where ~t2 is aligned
with ~o2, and the orientation of the temporary reference frame about ~o2 is chosen arbitrarily.

If there exists an angle θ that satisfies the necessary and sufficient condition for the existence
of a relative equilibrium attitude, then the current direction of ~o2 with respect to the principal
reference frame admits a relative equilibrium attitude. Using Eqs. 4.37 and 4.38 to calculate
J13 gives

J13 =
(
cos2 θ − sin2 θ

)
~t1 · ~I · ~t3 − cos θ sin θ~t1 · ~I · ~t1 + cos θ sin θ~t3 · ~I · ~t3 (4.39)

The quantities ~ti ·~I ·~tj in Eq. 4.39 are entries of the inertia matrix expressed in the temporary
reference frame, J tij. Applying this result and using some trigonometric identities, Eq. 4.39
simplifies to

J13 =
(
cos2 θ − sin2 θ

)
J t13 − cos θ sin θJ t11 + cos θ sin θJ t33

= cos(2θ)J t13 +
1

2
sin(2θ)

(
J t33 − J t11

)
(4.40)

The values of θ that result in J13 = 0 are summarized below:

1. If J t13 = 0 and J t11 = J t33, then θ is unconstrained.

2. If J t13 = 0 and J t11 6= J t33, then

θ = k
π

2
k ∈ 0, 1, 2, ... (4.41)

3. If J t13 6= 0 and J t11 = J t33, then

θ =
π

4
+ k

π

2
k ∈ 0, 1, 2, ... (4.42)

4. If J t13 6= 0 and J t11 6= J t33, then

θ =
1

2
arctan

(
2J t13

J t11 − J t33

)
+ k

π

2
k ∈ 0, 1, 2, ... (4.43)

In summary, it was determined that (in general) for each direction of
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� ~o1 on the unit sphere fixed in the principal reference frame there are two possible
relative equilibrium attitudes separated by rotations of 180o about ~o1,

� ~o2 on the unit sphere fixed in the principal reference frame there are four possible
relative equilibrium attitudes separated by rotations of 90o about ~o2, and

� ~o3 on the unit sphere fixed in the principal reference frame there are two possible
relative equilibrium attitudes separated by rotations of 180o about ~o3.

4.4.2 Principal Reference Frame

The directions of the basis vectors of the principal reference frame that admit relative equi-
librium attitudes are determined in this section. The distinction between basis vectors of
the principal reference frame is arbitrary. Therefore, without loss of generality, only the
directions of ~p1 with respect to the orbital reference frame are analyzed.

The direction of ~p1 with respect to the orbital reference frame is chosen arbitrarily, and the
orientation of ~p2 and ~p3 are parameterized as functions of ~p1 and a “clocking” angle about
~p1, θ.

~p2 = cos θ~t2 + sin θ~t3 (4.44)

~p3 = − sin θ~t2 + cos θ~t3 (4.45)

The vectors ~ti are a set of basis vectors of a temporary reference frame where ~t1 is aligned
with ~p1, and the orientation of the temporary reference frame about ~p1 is chosen arbitrarily.

The basis vectors of the orbital reference frame expressed in the principal reference frame are
related to the basis vectors of the principal reference frame through the following equation.

Rpo =
[

o1 o2 o3

]
=
[

p1 p2 p3

]T
(4.46)

The 1 and 3 basis vectors of the orbital reference frame expressed in the principal reference
frame may be calculated using,

o1 =
[
p11 p21 p31

]T
(4.47)

o3 =
[
p13 p23 p33

]T
(4.48)

Applying Eqs. 4.44, 4.45, 4.47, and 4.48, the 1-3 component of the gyrostat-satellite inertia
matrix expressed in the orbital reference frame may be written as,

J13 = oT
1 Io3 = A+B cos θ2 + C sin θ2 +D cos θ sin θ (4.49)
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where the coefficients A, B, C, and D are defined

A = I1p11p13 (4.50)

B = I2t21t23 + I3t31t33 (4.51)

C = I3t21t23 + I2t31t33 (4.52)

D = I2t21t33 + I2t23t31 − I3t21t33 − I3t23t31 (4.53)

Using a few trigonometric identities, Eq. 4.49 becomes,

J13 = A+
1

2
(B + C) +

1

2

√
(B − C)2 +D2 sin

(
2θ + arctan

D

B − C

)
(4.54)

Equation 4.54 must be equal to zero in order to satisfy the necessary and sufficient condition
for a relative equilibrium attitude.

A+
1

2
(B + C) +

1

2

√
(B − C)2 +D2 sin

(
2θ + arctan

D

B − C

)
= 0 (4.55)

The direction of ~p1 admits a relative equilibrium attitude if a real value of θ exists such that
Eq. 4.55 is satisfied. Solving for the value of the sin(·) quantity in the third term in the
left-hand side of Eq. 4.55 gives

sin
(

2θ + arctan
D

B − C

)
= −

A+ 1
2
(B + C)

1
2

√
(B − C)2 +D2

= βγ (4.56)

where the variables β and γ in Eq. 4.56 are defined

β =
p11√

1− p211

p13√
1− p213

(4.57)

γ = −2
I1 − 1

2
(I2 + I3)

‖I2 − I3‖
(4.58)

The absolute value of the product of β and γ must be less than or equal to one for a real
solution to exist. The value of β is solely a function of the direction of ~p1 with respect to
the orbital reference frame. The absolute value of β is always less than or equal to 1. The
value of γ only depends on the mass distribution of the gyrostat-satellite and the selection
of the principal axis.

If ~p1 is selected to be aligned with the intermediate axis of inertia, the absolute value of γ
will be less than or equal to 1. Therefore, the product of β and γ will be less than or equal
to 1, and a relative equilibrium attitude will exist for any selected direction of ~p1. If ~p1 is not
the intermediate axis of inertia then there are some directions of ~p1 for which the absolute
value of the product of β and γ will be greater than 1. And, therefore, do not admit relative
equilibrium attitudes.
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Figure 4.1: A pseudo-color plot showing the values of
∣∣∣ 1
β

∣∣∣ over the unit sphere, which defines

the directions of ~pi that admit a relative equilibrium attitude for a particular values of
∣∣∣ 1
β

∣∣∣.
Figure 4.1 is a pseudo-color plot showing the absolute value of the quantity

∣∣∣ 1
β

∣∣∣ for each

direction of ~p1. The colorbar on the right-hand side of the figure defines the mapping from
color to the value of

∣∣∣ 1
β

∣∣∣. The black lines overlaid on the plot represent level curves of constant∣∣∣ 1
β

∣∣∣. The principal moments of inertia and the principal axis with which ~p1 is aligned define

the characteristic value of
∣∣∣ 1
β

∣∣∣ for a specific gyrostat-satellite. The directions of ~p1 that admit
a relative equilibrium attitude are those regions in Figure 4.1 that have a value less than the
characteristic value for the specific gyrostat-satellite.

4.5 Stability of Relative Equilibria

Many authors have investigated the local stability characteristics of a gyrostat-satellite about
a relative equilibrium (Hughes,11 Longman,15 etc.). This section presents a brief investigation
that (in part) loosely follows Hughes,11 and is included mostly for completeness. The current
presentation includes an algorithm that calculates intervals of values for the projection of
the relative momentum vector on ~o2, j2, that result in statically stable relative equilibrium,
which represents a new contribution to the literature.

The nonlinear equations of rotational motion, presented in Chapter 3, are linearized about
a relative equilibrium in Section 4.5.1. The linearized equations of motion are used to derive
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sufficient conditions for the local stability of a relative equilibrium in Section 4.5. Sec-
tion 4.5 also presents a deterministic algorithm for determining the intervals of j2 for which
a relative equilibrium attitude is stable. Linear numeric simulation results are presented in
Section 4.5.3 that validate the stability results.

4.5.1 Linearized Equations of Rotational Motion

The nonlinear equations of rotational motion derived and presented in Section 3.4.2 are
linearized about a relative equilibrium. The full nonlinear equations of rotational motion are
repeated below.

~I · ~̇ω + ~̇hs + ~ω ×
(
~I · ~ω + ~hs

)
= 3ω2

o~o3 × ~I · ~o3

The states of the linearized system are the angular displacement vector and its first time
derivative. The angular displacement vector is defined

~α =
∫ t

0
~ωdt+ ~α(0) (4.59)

It is assumed that the system experiences only small angular displacements from the relative
equilibrium attitude. The initial value of the angular displacement vector can be approxi-
mated as

~α(0) ≈ 2q̄pp̂(0) (4.60)

where ~qpp̂ is the vector part of the principal attitude quaternion* representing the rotation
from a reference frame aligned with the relative equilibrium attitude (Fp̂) to the principal
reference frame (Fp). The first time derivative of the angular displacement vector is

~̇α = ~ωpo (4.61)

Linear approximations of the variables appearing in Eq 4.59 are derived assuming small
angular displacements from the relative equilibrium attitude. The angular velocity of Fp
with respect to Fi can be formulated as

~ω = ~ωpo + ~ωoi (4.62)

where ~ωoi is the angular velocity of Fo with respect to Fi and can be written as

~ωoi = −ωo~o2 (4.63)

Equation 4.63 is plugged into Eq. 4.62 to arrive at

~ω = ~ωpo − ωo~o2 (4.64)

* The set of principal attitude quaternions is the subset of attitude quaternions with a scalar component
greater than or equal to zero.
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The first time derivative of ~ω is calculated using

~̇ω = ~̇ω
po

+ ωo~ω
po × ~o2 (4.65)

where the time derivative of ~o2 (defined below) has already been applied.

~̇o2 = −~ωpo × ~o2 (4.66)

The vector o2 may be written as a function of the equilibrium value of the o2, ô2,

o2 = Rpp̂ô2 (4.67)

where Rpp̂ is the direction cosine matrix to rotate vectors from Fp̂ to Fp. Assuming small
angular displacements from the relative equilibrium attitude, Rpp̂ may be approximated as

Rpp̂ ≈ 1−α× (4.68)

The Fo basis vectors expressed in Fp may then be approximated as

oi ≈
(
1−α×

)
ôi = ôi + ô×i α for i ∈ 1, 2, 3 (4.69)

Plugging Eqs. 4.61 and 4.69 into Eq. 4.65 results in

ω̇ ≈ α̈+ ωoα̇
×
(
ô2 + ô×2 α

)
≈ α̈− ωoô×2 α̇ (4.70)

where terms of the linear states of second-order or higher have been approximated as zero.
Plugging Eqs. 4.61 and 4.69 into Eq. 4.62 results in

ω ≈ α̇− ωoô2 + ωoô
×
2 α (4.71)

The linear approximations for ω̇ and ω from Eqs. 4.70 and 4.71 are plugged into Eq. 4.59
to arrive at

Iα̈+ ωoGα̇+ ω2
oKα = 0 (4.72)

where

G = −Iô×2 + (Iô2)
× − ô×2 I− j×s (4.73)

K = ô×2 Iô×2 − (Iô2)
× ô×2 + j×s ô×2 − 3ô×3 Iô×3 + 3 (Iô3)

× ô×3 (4.74)

As noted by Hughes,11 “some stamina is required to carry out the matrix algebra,” including
frequent use of the following equalities.

ô×1 ô2 = ô3 (4.75)

ô×2 ô3 = ô1 (4.76)

ô×3 ô1 = ô2 (4.77)

−ωoô×2 (−ωoIô2 + hs) = 3ω2
o ô
×
3 Iô3 (4.78)

Equations 4.75 through 4.77 come from the fact that o1, o2, and o3 form an orthonormal triad
of vectors. Equation 4.78 is the result of the linearization state being a relative equilibrium,
so that the gyroscopic and gravitational torque terms cancel one another.
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4.5.2 Sufficient Conditions for Stability

The linearized equations of motion of a gyrostat-satellite were derived in Section 4.5.1. Equa-
tion 4.72 represents a conservative gyric system.11 A sufficient condition for a conservative
gyric system to be stable is that it is statically stable.11 A conservative gyric system is
statically stable if K is a positive-definite matrix.11 Longman16 notes that even if K is
sign-indefinite the gyrostat-satellite may be infinitesimally stable due to gyroscopic effects.

One method to determine if a matrix is positive-definite is to check sign of the eigenvalues
of the matrix. The matrix K expressed in the orbital frame is

K =

 4∆23 − js2 −3J12 0
−3J12 3∆13 3J23

0 3J23 −∆12 − Js2

 (4.79)

where

∆12 = J11 − J22 (4.80)

∆13 = J11 − J33 (4.81)

∆23 = J22 − J33 (4.82)

The K matrix is a real symmetric matrix and thus has only real eigenvalues. The Routh-
Hurwitz criteria are used to determine the requirements for all of the eigenvalues of the K
matrix to be positive. The characteristic equation of K is

λ3 + a1λ
2 + a2λ+ a3 = 0 (4.83)

where

a1 = c11j2 + c10 (4.84)

a2 = c22j
2
2 + c21j2 + c20 (4.85)

a3 = c32j
2
2 + c31j2 + c30 (4.86)

The coefficients of the j2 terms, cij, are provided below.

c11 = 2 (4.87)

c10 = ∆12 − 3∆13 − 4∆23 (4.88)

c22 = 1 (4.89)

c21 = ∆12 − 6∆13 − 4∆23 (4.90)

c20 = −3∆12∆13 − 4∆12∆23 + 12∆13∆23 (4.91)

c32 = −3∆13 (4.92)

c31 = −3∆12∆13 + 12∆13∆23 − 9J2
12 − 9J2

23 (4.93)

c30 = 12∆12∆13∆23 − 9J2
12∆12 + 36J2

23∆23 (4.94)
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The eigenvalues of K are positive if11

a1, a3,∆2 > 0 (4.95)

where ∆2 is defined11

∆2 = det

([
a1 a3
1 a2

])
(4.96)

Plugging Eqs. 4.84 through 4.98 into Eq. (4.96) results in

∆2 = c43j
3
2 + c42j

2
2 + c41j2 + c40 (4.97)

where

c43 = 2 (4.98)

c42 = 3∆12 − 12∆13 − 12∆23 (4.99)

c41 = ∆2
12 − 12∆12∆13 − 16∆12∆23 + 18∆2

13 + 48∆13∆23 + 16∆2
23 − 9J2

12 (4.100)

−9J2
23

c40 = −3∆2
12∆13 − 4∆2

12∆23 + 9∆12∆
2
13 + 24∆12∆13∆23 + 16∆12∆

2
23 (4.101)

−9J2
23∆12 − 36∆2

13∆23 − 48∆13∆
2
23 + 27J2

12∆13 + 27J2
23∆13

+36J2
12∆23

Equations 4.84, 4.98, and 4.97 are polynomials in j2. An algorithm was developed and
implemented in MATLAB® that determines the values of j2 that result in a positive-definite
K matrix. The algorithm determines all of the intervals of j2 for which a1 > 0, a3 > 0, and
∆2 > 0 are positive. The output of the algorithm is the intervals denoting the values of j2
that result in a positive-definite K and therefore a stable relative equilibrium. The steps
executed by the algorithm are shown below:

1. Calculate the values of j2 that are the roots of a1, a3, and ∆2

2. Sort the list of roots in ascending order

3. Evaluate each polynomial at each root

4. Remove any roots from the list that evaluate to negative values for any of the poly-
nomials. The remaining roots are the ends of open intervals that define where all the
polynomials are positive.

5. Evaluate each polynomial at a value less than the minimum root, if all values are
positive, the first interval is from negative infinity to the minimum root, and it is
added to the interval list
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6. Evaluate each polynomial at the mean of each sequential pair of roots in the list, if all
values are positive, the interval between the pair of roots is a positive interval, and it
is added to the interval list

7. Evaluate each polynomial at a value greater than the maximum root, if all values are
positive, the last interval is from the maximum root to positive infinity, and it is added
to the interval list

This algorithm was used to select a value for j2 that would result in a stable relative equi-
librium for the numeric simulation presented in the next section.

4.5.3 Linear Numeric Simulation Results

In the previous section, Section 4.5.2, sufficient conditions for the infinitesimal stability
of a relative equilibrium were presented. Numeric simulation of the linear equations of
rotational motion (Eq. 4.72) is performed to validate these stability results. The simulation
is performed in MATLAB® using the built in ode45() ordinary differential equation solver.

The parameters chosen for the relative equilibrium are

θ1 = 72.7461◦ (4.102)

θ2 = 48.4836◦ (4.103)

θ3 = 1.0 (4.104)

The resulting nadir vector expressed in the body frame is

o3 =
[
−0.74877 0.63301 0.1966

]T
(4.105)

The interia matrix of the gyrostat-satellite expressed in the body frame is set to

I =

 65.0 0.0 0.0
0.0 53.0 0.0
0.0 0.0 86.0

 (4.106)

The attitude quaternion from the orbital to the relative equilibrium attitude is

qp̂o =
[

0.4118 0.4818 −0.0042 0.7735
]T

(4.107)

The algorithm presented in Section 4.5.2 is used to determine that the relative equilibrium
is statically stable if j2 satisfies the following inequality.

−∞ < j2 < −36.873 (4.108)
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The value selected for j2 is -150, which satisfies Eq. 4.108. The K matrix expressed in the
orbital reference frame is

K =

 168.3413 7.0896 25.0467
7.0896 106.4694 69.8303
25.0467 69.8303 89.3266

 (4.109)

The eigenvalues of the K matrix are 190.8184, 147.1992, and 26.1196, which are all positive.
The K matrix is positive-definite and the relative equilibrium is confirmed to meet the
sufficient conditions for stability. The initial conditions of the simulation are set to

α =
[

0.81403◦ −0.10645◦ −0.57098◦
]T

(4.110)

α̇ =
[

0.0045312◦/s −0.00075365◦/s −0.001975◦/s
]T

(4.111)

The results of the numeric simulation are presented as Figures 4.2 through 4.4. Figure 4.2 is a
plot of the time history of the components of the angular displacement vector on the abscissa
and the elapsed simulation time on the ordinate. The 1, 2, and 3 components of the angular
displacement vector (αi) are shown as blue, green, and red curves, respectively. Figure 4.3 is
a plot of the time history of the rates of the components of the angular displacement vector
on the abscissa and the elapsed simulation time on the ordinate. The rates of the 1, 2,
and 3 component of the angular displacement vector (α̇i) are shown as blue, green, and red
curves, respectively. The upper-left, upper-right, and lower-left plots in Figure 4.4 depict the
trajectory of the gyrostat-satellite in the phase plane of each axis. The lower-right plot in
Figure 4.4 shows the path of the angular displacement vector in three-space. The simulation
results depicted in Figures 4.2 through 4.4 are consistent with the expected motions of a
system at a stable equilibrium. All of the states remain bounded and in the neighborhood
of the origin. The simulation results also show that the equilibrium, while stable, is not
asymptotically stable. The lack of asymptotic stability is due to there being no mechanism
for damping, resulting in continual oscillations.

4.6 Summary

Equilibrium solutions to the nonlinear equations of rotational motion derived in Chapter 3
were analyzed. In particular, the concept of relative equilibria was introduced and defined.
The necessary and sufficient condition that allows an attitude to be made into a relative
equilibrium by the proper selection of the relative momentum vector was derived. A three-
variable parameterization of all possible relative equilibrium attitudes was presented. A
detailed analysis into the directions of the basis vectors of the orbital and principal reference
frames that admit relative equilibrium attitudes was presented. This analysis represents a
new contribution to the literature. The local stability characteristics of relative equilibria
were briefly investigated. An algorithm was presented that calculates intervals of values
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Figure 4.2: Angular displacements from the equilibrium attitude to the principal reference
frame

Figure 4.3: Angular rates with respect to the orbital reference frame expressed in the prin-
cipal reference frame
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Figure 4.4: Time history of the attitude trajectory throughout the simulation in the α1− α̇1

phase plane (upper-left), α2− α̇2 phase plane (upper-right), α3− α̇3 phase plane (lower-left),
and α configuration space
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for the projection of the relative momentum vector on ~o2, j2, that result in stable relative
equilibrium, which represents a new contribution to the literature. The concept of relative
equilibrium presented in this chapter is extended in the next chapter with the introduction
of constant orbital momentum equilibrium trajectories or COMETs.



Chapter 5

Constant Orbital Momentum
Equilibrium Trajectories of a
Gyrostat-Satellite

Chapter 4 introduced the concepts of dynamic and relative equilibrium of a gyrostat-satellite.
It was shown that relative equilibrium may be thought of as a generalization of dynamic
equilibrium obtained by relaxing the condition that the net external torque applied to the
gyrostat-satellite is equal to zero. In this chapter, a new concept, the Constant Orbital
Momentum Equilibrium Trajectory (COMET), is introduced that results from a further
generalization that relaxes the condition that the gyrostat-satellite is at rest when viewed
by an observer embedded in the orbital reference frame. Table 5.1 provides a comparison of
some of the key characteristics of the three concepts. The purpose of this chapter is to intro-
duce, define, and investigate the new concept of Constant Orbital Momentum Equilibrium
Trajectories (COMETs).

Section 5.1 presents the derivation of the equilibrium solutions to the system angular momen-
tum expressed in the orbital reference frame. Section 5.2 gives a mathematical definition for a

Table 5.1: High-level comparison of dynamic equilibria, relative equilibria, and COMETs

Class of Equilibrium Dynamic Relative COMET
System Angular Momentum (Orbit Referenced) Constant Constant Constant
Platform Angular Velocity (Orbit Referenced) Constant Constant Time-Varying

Rotor Speeds (Platform Referenced) Constant Constant Time-Varying
Gravitational Torque (Orbit Referenced) Zero Constant Constant

Gravitational Torque (Platform Referenced) Zero Constant Time-Varying

42
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family of attitude trajectories that satisfy the equilibrium conditions presented in Section 5.1.
Section 5.3 introduces a coordinate chart for COMETs and presents a method to generate
a mapping from that coordinate chart to an attitude quaternion. Section 5.4 presents a
method to generate visualizations of families of COMETs, and applies the method to gen-
erate multiple examples. Section 5.5 discusses the existence of critical points on COMETs,
which are observable in the visualizations. Section 5.6 presents the results of two numeric
simulations of a gyrostat-satellite traversing a COMET. Section 5.7 summarizes the results
of the chapter and highlights the new contributions to the literature.

5.1 Orbital Momentum Equilibria

The conditions necessary for the system angular momentum of a gyrostat-satellite to remain
constant when expressed in the orbital reference frame are derived in this section. Euler’s
second law of motion for a gyrostat-satellite is

d

dt

∣∣∣∣∣
i

(
~h
)

= 3ω2
o~o3 × ~I · ~o3 (5.1)

where the right-hand side is the gravitational torque (Eq. 3.53). The first time derivative of
the system angular momentum vector with respect to the inertial reference frame may be
written as the sum of the first time derivative with respect to the orbital reference frame
and the rate induced due to the rotation of the orbital reference frame.

d

dt

∣∣∣∣∣
i

(
~h
)

=
d

dt

∣∣∣∣∣
o

(
~h
)

+ ~ωo × ~h (5.2)

Plugging in Eqs. 5.2 into Eq. 5.1 results in

d

dt

∣∣∣∣∣
o

(
~h
)

+ ~ωo × ~h = 3ω2
o~o3 × ~I · ~o3 (5.3)

The scalar equations expressed in the orbital reference frame are

ḣo1 − ωoho3 = −3ω2
oJ23 (5.4)

ḣo2 = 3ω2
oJ13 (5.5)

ḣo3 + ωoh
o
1 = 0 (5.6)

The “pitch” angular momentum dynamics (Eq. 5.5) are decoupled from the roll-yaw angular
momentum dynamics (Eqs. 5.4 and 5.6). The pitch angular momentum is at an equilibrium
if the following condition is met.

J13 = 0 (5.7)
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Equation 4.22 is the sufficient condition for an attitude to be a relative equilibrium attitude
(Eq. 4.22). Equilibrium solutions to the roll-yaw angular momentum dynamics (Eqs. 5.4 and
5.6) occur when the following conditions are met.

ho3 = 3ωoJ23 (5.8)

ho1 = 0 (5.9)

Equations 5.8 and 5.9 are now shown to be equivalent to conditions on the “roll” and yaw
components of the relative angular momentum vector (Eqs. 4.21 and 4.23) for a gyrostat-
satellite to be at a relative equilibrium. The system angular momentum is related to relative
angular momentum vector through Eq. 3.35. The 1 and 3 components in the orbital reference
frame of these two vectors are related by the following equations,

ho1 = −ωoJ12 + hos1 (5.10)

ho3 = −ωoJ23 + hos3 (5.11)

where it has been assumed the gyrostat-satellite is in a relative equilibrium so that Eq.4.4
is true. Applying Eqs. 5.8 and 5.9 and solving for the 1 and 3 components of the relative
angular momentum vector expressed in the orbital reference frame results in

hos3 = 4ωoJ23 (5.12)

hos1 = ωoJ12 (5.13)

Equations 5.12 and 5.13 are equivalent to Eqs. 4.21 and 4.23. Thus, it has been verified
that the conditions for a relative equilibrium are the same as those for an orbital momentum
equilibrium with the addition of requiring that the gyrostat-satellite is stationary with respect
to the orbital reference frame.

5.2 COMET Definition

Constant Orbital Momentum Equilibrium Trajectories (COMETs) are attitude trajectories
where the system angular momentum and the gravity-gradient torque are constant (when
expressed in the orbital reference frame) and balance forming a stationary solution to Euler’s
equation. In the previous section, it was determined that if Eq. 5.7 through Eq. 5.9 are
satisfied the system angular momentum expressed in the orbital reference frame will be at
equilibrium. In this section, a class of non-trivial* attitude trajectories that satisfy Eqs. 5.7
through 5.9 are determined.

The attitude of the gyrostat-satellite affects the dynamics of the system angular momentum
vector expressed in the orbital frame through the 1-3 and 2-3 products of inertia expressed

* Relative equilibria are the class of “trivial” attitude trajectories that satisfy Eqs. 5.7 through 5.9.
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in the orbital reference frame (J13 and J23). From Eq. 5.8 and Eq. 5.9, it can be seen that
the system angular momentum will remain at equilibrium if

J̇23 = J̇13 = 0 (5.14)

and the initial state is an orbital momentum equilibrium. The first time derivatives of J23
and J13 are

J̇23 =
d

dt

(
~o2 · ~I · ~o3

)
= ~̇o2 · ~I · ~o3 + ~o2 · ~I · ~̇o3 (5.15)

J̇13 =
d

dt

(
~o1 · ~I · ~o3

)
= ~̇o1 · ~I · ~o3 + ~o1 · ~I · ~̇o3 (5.16)

The first time derivative of a basis axis of the orbital reference frame is

~̇oi = −~ωpo × ~oi (5.17)

The angular velocity of the principal reference frame with respect to the orbital reference
frame can be formulated as

~ωpo = ω1~o1 + ω2~o2 + ω3~o3 (5.18)

where ω1, ω2, and ω3 are the projections ~ωpo on the orbital reference frame basis vectors, so
that

ωopo =
[
ω1 ω2 ω3

]T
(5.19)

Plugging Eq. 5.18 into Eq. 5.17 results in

~̇o1 = ω2~o3 − ω3~o2 (5.20)

~̇o2 = −ω1~o3 + ω3~o1 (5.21)

~̇o3 = ω1~o2 − ω2~o1 (5.22)

Using this result with Eqs. 5.15 and 5.16 gives[
J̇23
J̇13

]
=

[
J22 − J33 −J12 J13
J12 J33 − J11 −J23

]
ωopo (5.23)

Equation 5.14 is satisfied if ωopo is 0* or is contained in the null space of the coefficient matrix.
The null space of the 2×3 matrix in Eq. 5.23 can be determined by calculating the cross
product of the first and second rows.

v =

 J12J23 − J13 (J33 − J11)
J23 (J22 − J33) + J13J12

(J22 − J33) (J33 − J11) + J2
12

 (5.24)

* This is the trivial solution and corresponds to a relative equilibrium.
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The necessary condition for the existence of a stationary solution of the pitch system angular
momentum is given by Eq. 5.7. Applying this to Eq. 5.24 results in

v =

 J12J23
J23 (J22 − J33)

(J22 − J33) (J33 − J11) + J2
12

 (5.25)

The angular velocity of the principal reference frame with respect to the orbital reference
frame is restricted to satisfy

ωpo = σRpov (5.26)

where σ is an arbitrary, real, and scalar-valued continuous function. Therefore, any attitude
trajectory that is contains a relative equilibrium attitude and whose angular velocity satisfies
Eq. 5.26 is a COMET.

The set of relative equilibrium attitudes is the subset of all attitudes that result in J13 = 0.
Each COMET is a subset of the set of all relative equilibrium attitudes that result in the
same value of J23. However, two relative equilibrium attitudes that result in the same value
J23 do not necessarily share the same COMET. This situation occurs when all members
of the set of continuous paths connecting the two relative equilibrium attitudes result in a
varying value for J23. The next section presents a method to determine the subset of relative
equilibrium attitudes that make up an individual COMET.

5.3 Mapping of COMETs

A necessary first step to analyze COMETs is the determination of their full shape and
extent within SO(3). A method to fully map a COMET is presented in this section. First,
a coordinate chart for COMETs is developed. The coordinate s of the coordinate chart is
defined as

s =
∫
σ
√

vTvdt (5.27)

The coordinate s can be thought of as a “signed pseudo-arclength” measured along the path
defined by the COMET. This is apparent when it is recognized that the absolute value of
the integrand in Eq. 5.27 is equal to the magnitude of the angular velocity vector.

|ωpo| =
∣∣∣σ√vTv

∣∣∣ (5.28)

The first time derivative of the coordinate s is

ṡ = σ
√

vTv (5.29)
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The scalar function σ connects the kinematics of the principal reference frame with respect
to the orbital reference frame to the time history of the coordinate s. Solving Eq. 5.29 for σ
results in

σ =
ṡ√
vTv

(5.30)

It was shown in Section 5.2 that the angular velocity of a gyrostat-satellite traversing a
COMET is restricted to satisfy Eq. 5.26. Plugging Eq. 5.30 into Eq. 5.26 results in

ωpo = ṡ
Rpov√

vTv
(5.31)

Equation 5.31 is a nonholonomic constraint. Numeric integration must be used to map a
COMET because of the nonholonomic constraint. The attitude quaternions that make up
the COMET may now be calculated by integrating the following kinematic relation.

˙̄q
po

=
1

2
ω̄po ⊗ q̄po (5.32)

A discrete approximation of the integration of the attitude quaternion is

q̄pok+1 =

 Rpov√
vTv

sin
(
1
2
∆s
)

cos
(
1
2
∆s
) ⊗ q̄pok (5.33)

where it is assumed that ω̄po is constant over each integration step, ∆s. The corresponding
value of the coordinate s for each q̄pok is calculated using

sk+1 = sk + ∆s (5.34)

The accumulation of numerical errors is an issue that arises due to the use of numeric
integration to relate the coordinate s to the attitude quaternion q̄po. The result of the
accumulated error is that (eventually) the attitude quaternion will drift off of the COMET
being mapped. It is therefore necessary to devise a method to “correct” the propagated
attitude quaternion so that errors do not accumulate. The “drift” in the propagated attitude
quaternion is observable via changes in values of the 1-3 and 2-3 products of inertia expressed
in the orbital reference frame (J13 and J23). The value of J13 should remain zero throughout
the propagation. The value of J23 should remain constant throughout the propagation.

An algorithm is developed that maps observed errors in the values of J13 and J23 to an
attitude correction defined by the angular displacement vector (α). The products of inertia
are calculated using

Jij = oT
i Ioj ∀ i, j ∈ 1, 2, 3 (5.35)
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Assuming the angular distance between the true value of q̄po and the propagated value of q̄po

is small, the linear approximation to oi determined in Chapter 4 (Eq. 4.69) may be plugged
into Eq. 5.35 to give

Jij ≈ ôT
i

(
1 +α×

)
I
(
1−α×

)
ôj

≈ ôT
i Iôj − ôT

i Iα×ôj + ôT
i α
×Iôj − ôT

i α
×Iα×ôj

≈ Ĵij +
(
ôT
i Iô×j + ôT

j Iô×i
)
α+O(2) (5.36)

The functional relationship between the angular displacement vector and J13 and J23 is

J23 ≈ Ĵ23 +
(
ôT
2 Iô×3 + ôT

3 Iô×2
)
α (5.37)

J13 ≈ Ĵ13 +
(
ôT
1 Iô×3 + ôT

3 Iô×1
)
α (5.38)

where terms of 2nd order and higher have been approximated as zero. Rewritten in matrix
form, Eqs. 5.37 and 5.38 become[

J23 − Ĵ23
J13 − Ĵ13

]
≈

[
ôT
2 Iô×3 + ôT

3 Iô×2
ôT
1 Iô×3 + ôT

3 Iô×1

]
α (5.39)

Solving Eq. 5.39 for the angular displacement vector α results in

α ≈
[

ôT
2 Iô×3 + ôT

3 Iô×2
ôT
1 Iô×3 + ôT

3 Iô×1

]+ [
J23 − Ĵ23
J13 − Ĵ13

]
(5.40)

where the (·)+ operator indicates the Moore-Penrose pseudoinverse. Equation 5.40 represents
an underdetermined linear system of equations (2 equations and 3 unknowns). The use of the
Moore-Penrose pseudoinverse results in the solution for α being the minimum magnitude
vector solution. The attitude quaternion representing the rotation from the propagated
principal reference frame (p̂) to the true principal reference frame residing on the COMET
(p) may be approximated, assuming small angles, as

q̄pp̂ ≈

[
1
2
α 1.0

]
√

1
4
αTα+ 1

(5.41)

An algorithm using these equations to correct the propagated attitude quaternion is pre-
sented as Algorithm 5.1. The algorithm takes an “estimated” attitude quaternion q̄p̂o (as-
sumed to be close to the COMET), the J23 value of the COMET, and the inertia matrix
of the gyrostat-satellite (I). The algorithm returns the attitude quaternion on the COMET
that is closest to the “estimated” attitude quaternion.

An algorithm that maps a COMET is presented as Algorithm 5.2. The algorithm generates
a set of coordinates (sk, q̄pok ) that are (generally) evenly spaced around the full extent of
the COMET. The inputs to the algorithm are an initial q̄po (q̄po1 ), the true value of J23 for
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Input : q̄p̂o, J23, I
Output: q̄po

1 Rpo ← R (q̄po);

2 o1 ← Rpo
[

1.0 0.0 0.0
]T

;

3 o2 ← Rpo
[

0.0 1.0 0.0
]T

;

4 o3 ← Rpo
[

0.0 0.0 1.0
]T

;

5 Ĵ23 ← oT
2 Io3;

6 Ĵ13 ← oT
1 Io3;

7 α←
[

ôT
2 Iô×3 + ôT

3 Iô×2
ôT
1 Iô×3 + ôT

3 Iô×1

]+ [
J23 − Ĵ23
−Ĵ13

]
;

8 q̄pp̂ ←

[
1
2
α 1.0

]
√

1
4
αTα+1

;

9 q̄po ← q̄pp̂ ⊗ q̄p̂o;

Algorithm 5.1: Algorithm to calculate the attitude quaternion on a COMET that is
closest to a specified attitude quaternion

the COMET, the inertia matrix (I), the step size in the coordinate s (∆s), and an iteration
limit (imax). The algorithm executes discrete propagation steps using Eqs. 5.33 and 5.34
and the input ∆s until the propagated attitude quaternion q̄pok is close to the initial attitude
quaternion q̄po1 . Algorithm 5.2 calls Algorithm 5.1 on Line 14 in order to correct for numerical
errors due to the propagation performed on Line 13. The values of ∆s and imax must be set
such that the algorithm is able to take enough discrete propagation steps to fully traverse
the COMET.

Algorithm 5.2 was implemented in MATLAB®, and used to map five example COMETs.
The parameters used to map the example COMETs are summarized in Table 5.2. The first
three columns are the values of the parameters defining the initial attitude quaternions (q̄po1 ),
which were calculated using Algorithm 4.1. The fourth column contains the magnitude of
the propagation step ∆s used, which was held constant over all COMETs mapped. The
fifth column contains the “true” value of J23, which is used by Algorithm 5.1 to correct for
accumulated propagation errors. The inertia matrix of the gyrostat-satellite is the same for
all five COMETs and is provided in Table 5.3 as the inertias for Gyrostat-Satellite I. The
results of the mapping are presented in Figure 5.1. The figure shows the paths of the vector
part of the attitude quaternion throughout each COMET. Each curve is color-coded based
on the J23 value of the COMET. The colorbar on the right-hand side of the figure provides
the mapping from the color to the numeric value for J23. The COMETs have very different
shapes and perimeters, but are all closed curves.
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Input : q̄po1 , J23, I, ∆s, imax
Output: q̄poi ∀ i ∈ 2, 3, ..., n

1 i← 1;
2 s1 ← 0.0;
3 φ← 0.0;
4 ∆φ← 1.0;
5 while (∆φ > 0.0) AND (φi > ∆s) AND (i ≤ imax) do
6 i← i+ 1;
7 si ← si−1 + ∆s;
8 Rpo ← R (q̄poi−1);

9 J← (Rpo)T IRpo;

10 vo ←

 J12J23
J23 (J22 − J33)

(J22 − J33) (J33 − J11) + J2
12

;

11 v̂← 1√
(vo)Tvo

Rpovo;

12 ∆q̄i ←

 v̂ sin
(
1
2
∆s
)

cos
(
1
2
∆s
) ;

13 q̄poi ← ∆q̄i ⊗ q̄poi−1;
14 q̄poi ← Algorithm 5.1 (q̄poi , I, J23);

15 q̄pi|p1 ← q̄poi ⊗ (q̄po1 );

16 φi ← 2 arcsin
((

qpi|p1
)T

qpi|p1
)

;

17 ∆φ← φi − φi−1;
18 end

Algorithm 5.2: Algorithm to generate a map of the COMET on which q̄po1 resides

Table 5.2: Parameters used to map five example COMETs

θ1 θ2 θ3 ∆s J23
-10.0◦ -10.0◦ 1.0 0.1◦ -5.3637 kg-m2

-12.7◦ -12.7◦ 1.0 0.1◦ -6.6499 kg-m2

-15.0◦ -15.0◦ 1.0 0.1◦ -7.7037 kg-m2

-15.5◦ -15.5◦ 1.0 0.1◦ -7.9183 kg-m2

-20.0◦ -20.0◦ 1.0 0.1◦ -9.6627 kg-m2

-30.0◦ -30.0◦ 1.0 0.1◦ -12.1456 kg-m2
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Figure 5.1: Paths in the configuration space of the vector part of the attitude quaternion
(qpo) of several different COMETs
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Table 5.3: Principal moments of inertia of example gyrostat-satellites

Moment of Inertia Gyrostat-Satellite I Gyrostat-Satellite II
I1 96.2 80.0
I2 80.6 70.0
I3 67.3 20.0

5.4 Visualizations of Families of COMETs

The purpose of this section is to develop visualizations of families of COMETs to facilitate
qualitative investigation of the characteristics of COMETs. The paths of the orbital basis
vectors on the unit sphere fixed in the principal reference frame and the paths of the principal
basis vectors on the unit sphere fixed in the orbital reference frame are used to visualize
families of COMETs.

Relative equilibrium attitudes residing on the same COMET will all have J13 = 0 and the
same value for J23. In general, for a given direction of a basis vector there are a small number
(≤4) of attitudes that meet the condition J13 = 0. Therefore, level curves of the values of J23
over all possible directions of each basis vector (principal and orbital) represent the paths of
the basis vectors of a gyrostat-satellite traversing a COMET.

In Section 4.4, equations for calculating the relative equilibrium attitudes for specified di-
rections of each orbital or principal basis vector were developed. For each possible direction
of a basis vector, the equations from Section 4.4 are used to determine all of the admissi-
ble relative equilibrium attitudes. The value of J23 for each admissible relative equilibrium
attitude is calculated. Pseudo-color plots of J23 over the azimuth and elevation of each di-
rection of a basis vector are then generated. A contour plot showing level curves of J23 in the
azimuth-elevation plane are overlaid onto the pseudo-color plots. Continuous portions of the
level curves represent the paths of the basis vectors while the gyrostat-satellite is travers-
ing a COMET. Visualizations are developed for two example gyrostat-satellites. Table 5.3
summarizes the two sets of principal moments of inertia investigated.

Section 5.4.1 presents and discusses figures showing the paths of the orbital basis vectors
on a unit sphere fixed in the principal reference frame. Section 5.4.2 presents and discusses
figures showing the paths of the principal basis vectors on a unit sphere fixed in the orbital
reference frame.

5.4.1 Orbital Reference Frame Basis Vectors

Visualizations of the paths of the orbital basis vectors for a gyrostat-satellite traversing a
COMET are presented in the following sections. In Section 4.4.1, it was determined that at
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least two relative equilibrium attitudes could be determined given any direction of ~o1, ~o2, or
~o3. The following three sections present the results for ~o1, ~o2, and ~o3. Each section presents
the algorithms used to calculate the J23 values and example figures using the moments of
inertia of the gyrostat-satellites provided in Table 5.3.

Example Paths of ~o1 on COMETs

Algorithm 5.3 calculates the value of J23 given the direction of ~o1 expressed in the principal
reference frame. The direction of ~o1 is parameterized as an azimuth and elevation angle. As
determined in Section 4.4.1, there are two relative equilibrium attitudes for each direction
of ~o1. This is accounted for on Line 3 of Algorithm 5.3 with the ± in the calculation of o3.
However, the selection of the sign in that equation does not affect the value of J23 that is
calculated. Both relative equilibrium attitudes have the same value of J23.

Figures 5.2 and 5.3 are pseudo-color plots of the values of J23 for each direction of ~o1 on the
unit sphere embedded in the principal reference frame for Gyrostat-Satelite I and Gyrostat-
Satellite II, respectively. The azimuth and elevation angles are the abscissa and ordinate of
the plots, respectively. The value of J23 for a given azimuth and elevation angle is indicated
by the color at those coordinates on the plot. A colorbar is included on the right-hand side
of the figure to indicate the mapping from color to numeric value. Black curves are overlaid
on the plots to indicate level-curves of constant J23. The black curves represent a discrete
sub-sample of the continuous set of COMETs.

Figures 5.2 and 5.3 have “convergent points” that occur when α, ε = k π
2

for k ∈ Z. At these
values, ~o1 is aligned with one of the principal axes of the inertia matrix. This results in
a continuum of admissible relative equilibrium attitudes that differ by rotations about ~o1.
Algorithm 5.3 returns a value of zero for J23 in these cases, which represents only one of
the continuum of possible values. Because of this, the figure depicts multiple level curves
representing different values of J23 converging at these points.

Example Paths of ~o2 on COMETs

Algorithm 5.4 calculates the value of J23 given the direction of ~o2 expressed in the principal
reference frame. The direction of ~o2 is parameterized as an azimuth and elevation angle.
As determined in Section 4.4.1, there are four relative equilibrium attitudes available for
each direction of ~o2. This is accounted for using the input k to select between the four
available relative equilibrium attitudes. The selection of the k affects the value of J23 that
is calculated. Each possible relative equilibrium attitude has a distinct value of J23. The
relative equilibrium attitudes separated by 180o (k ∈ 0, 2 and k ∈ 1, 3) have the same
absolute value but opposite signs.

Figures 5.4 and 5.5 are pseudo-color plots of the absolute values of J23 for each direction
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Input : α, ε, I
Output: J23

1 o1 ←

 cos (ε) cos (α)
cos (ε) sin (α)

sin (ε)

;

2 if ‖o×1 Io1‖ 6= 0 then

3 o3 ← ± o×
1 Io1

|o×
1 Io1| ;

4 o2 ← o×3 o1;
5 J23 = oT

2 Io3;

6 else
7 J23 = 0;
8 end

Algorithm 5.3: Algorithm to calculate the equilibrium value of J23 given the azimuth
α and elevation ε of ~o1 in the principal reference frame

Figure 5.2: The pseudo-color plot for Gyrostat-Satellite I of the values of J23 for each di-
rection of ~o1 expressed in the principal reference frame with level curves overlaid indicating
constant values of J23 and COMETs



M. VanDyke Chapter 5. COMETs of a Gyrostat-Satellite 55

Figure 5.3: The pseudo-color plot for Gyrostat-Satellite II of the values of J23 for each
direction of ~o1 expressed in the principal reference frame with level curves overlaid indicating
constant values of J23 and COMETs

of ~o2 on the unit sphere embedded in the principal reference frame for Gyrostat-Satelite I.
Figures 5.7 and 5.8 are pseudo-color plots of the absolute values of J23 for each direction of
~o2 on the unit sphere embedded in the principal reference frame for Gyrostat-Satelite II.

The existence of four relative equilibrium attitudes for each direction of ~o2 complicates
the interpretation of the figures. The figures show evenly-spaced “convergence points” of
the paths of ~o2. The “convergence points” occur at α = kπ for k ∈ Z and ε ≈ ±42.7◦ for
Gyrostat-Satellite I and ε ≈ ±65.7◦ for Gyrostat-Satellite II. These points represent “switch”
points for the value of the parameter k of the relative equilibrium attitudes on a particular
COMET. Several COMETs that pass near the α = 0◦, ε = 42.7◦ “convergence point” for
Gyrostat-Satellite I are mapped using Algorithm 5.2 to verify this assertion. The parameters
used to map the the COMETs are summarized in Table 5.4. The first three columns are the
values of parameters defining the initial attitude quaternions (q̄po1 ), which were calculated
using Algorithm 5.4. The fourth column contains the magnitude of the propagation step
∆s used, which was held constant over all COMETs mapped. The fifth column contains
the value of J23 for the COMET. Figure 5.6 is a plot of the paths of ~o2 in the α-ε plane of
the mapped COMETs. The plot clearly shows that the paths are combinations of the level
curves from the figures generated using k ∈ 0, 2 and k ∈ 1, 3, and that the “switch” point is
indeed the “convergence” point.

The figures show that local extrema and saddle points of the absolute value of J23 occur when
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Table 5.4: Parameters used to map four COMETs that pass near a “convergence” point

α ε k ∆s J23
0.0◦ 41.0◦ 0 0.1◦ -14.3094 kg-m2

1.0◦ 41.0◦ 0 0.1◦ -13.9954 kg-m2

5.0◦ 41.0◦ 0 0.1◦ -11.8379 kg-m2

10.0◦ 41.0◦ 0 0.1◦ -10.6814 kg-m2

~o2 bisects the angle between two principal axes. These “critical points” represent either a
COMET with an isolated ~o2 direction (where the path of ~o2 collapses to a single point) or a
furcation in the available paths of ~o2 while traveling a COMET. These “critical points” are
investigated in Section 5.5.

Example Paths of ~o3 on COMETs

Algorithm 5.5 calculates the value of J23 given the direction of ~o3 expressed in the principal
reference frame. The direction of ~o3 is parameterized as an azimuth and elevation angle. As
determined in Section 4.4.1, there are two relative equilibrium attitudes for each direction
of ~o3. This is accounted for on Line 3 of Algorithm 5.5 with the ± in the calculation of o1.
The selection of the sign in that equation determines the sign of J23 but does not affect the
absolute value of J23 that is calculated.

Figures 5.9 and 5.10 are pseudo-color plots of the absolute values of J23 for each direction of
~o3 on the unit sphere embedded in the principal reference frame for Gyrostat-Satelite I and
II. Figures 5.9 and 5.10 show concentric paths about a number of points in the α-ε plane.
At points where α, ε = k π

2
for k ∈ Z, the absolute value of J23 is zero. At these points,

~o3 is aligned with a principal axis of the inertia matrix, which results in a continuum of
admitted relative equilibrium attitudes that differ by rotations about ~o3. All of the relative
equilibrium attitudes in the continuum result in J23 = 0, and are therefore also dynamic
equilibrium attitudes.

The figures show that local extrema and saddle points of the absolute value of J23 occur
when ~o3 bisects the angle between two principal axes. Global maxima are reached when ~o3
bisects the angle between major and minor principal axes. These “critical points” represent
either a COMET with an isolated ~o3 direction (where the path of ~o3 collapses to a single
point) or a furcation in the available paths of ~o3 while traveling a COMET. These “critical
points” are investigated in Section 5.5.
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Input : α, ε, I, k
Output: J23

1 o2 ←

 cos (ε) cos (α)
cos (ε) sin (α)

sin (ε)

;

2 v← 0;
3 if o21 < o22, o23 then
4 v1 ← 1;
5 else
6 if o22 < o21, o23 then
7 v2 ← 1;
8 else
9 if o23 < o21, o22 then

10 v3 ← 1;
11 else

12 end

13 end

14 end

15 t1 ← v×o2

|v×o2| ;

16 t3 ← t×1 o2;
17 J t13 ← tT1 It3;
18 J t11 ← tT1 It1;
19 J t33 ← tT3 It3;

20 θ ← 1
2

arctan
(

2Jt
13

Jt
11−J

t
33

)
+ k π

2
;

21 o1 ← cos (θ) t1 + sin (θ) t3;
22 o3 ← o×1 o2;
23 J23 ← oT

2 Io3;

Algorithm 5.4: Algorithm to calculate the equilibrium value of J23 given the azimuth
α and elevation ε of ~o2 in the principal reference frame and the value k selecting one of
the (up to) four equilibrium attitudes
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Figure 5.4: The pseudo-color plot for Gyrostat-Satellite I of the absolute values of J23 for
each direction of ~o2 and k ∈ 0, 2 expressed in the principal reference frame with level curves
overlaid indicating constant values of J23 and COMETs

Figure 5.5: The pseudo-color plot for Gyrostat-Satellite I of the absolute values of J23 for
each direction of ~o2 and k ∈ 1, 3 expressed in the principal reference frame with level curves
overlaid indicating constant values of J23 and COMETs
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Figure 5.6: A plot for Gyrostat-Satellite I of the paths of ~o2 for multiple COMETs that pass
near the “convergence point” in the α-ε plane

Figure 5.7: The pseudo-color plot for Gyrostat-Satellite II of the absolute values of J23 for
each direction of ~o2 and k ∈ 0, 2 expressed in the principal reference frame with level curves
overlaid indicating constant values of J23 and COMETs
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Figure 5.8: The pseudo-color plot for Gyrostat-Satellite II of the absolute values of J23 for
each direction of ~o2 and k ∈ 1, 3 expressed in the principal reference frame with level curves
overlaid indicating constant values of J23 and COMETs

Input : α, ε, I, ±
Output: J23

1 o3 ←

 cos (ε) cos (α)
cos (ε) sin (α)

sin (ε)

;

2 if ‖o×3 Io3‖ 6= 0 then

3 o1 ← ± o×
3 Io3

|o×
3 Io3| ;

4 o2 ← o×3 o1;
5 J23 ← oT

2 Io3;

6 else
7 J23 ← 0;
8 end

Algorithm 5.5: Algorithm to calculate the equilibrium value of J23 given the azimuth
α and elevation ε of ~o3 in the principal reference frame and sign selecting the direction
of ~o1
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Figure 5.9: The pseudo-color plot for Gyrostat-Satellite I of the absolute values of J23 for
each direction of ~o3 expressed in the principal reference frame with level curves overlaid
indicating constant values of J23 and COMETs

Figure 5.10: The pseudo-color plot for Gyrostat-Satellite II of the absolute values of J23
for each direction of ~o3 expressed in the principal reference frame with level curves overlaid
indicating constant values of J23 and COMETs
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5.4.2 Principal Reference Frame Basis Vectors

Visualizations of the paths of the principal basis vectors for a gyrostat-satellite traversing a
COMET are presented in this section. Algorithm 5.6 calculates the value of J23 given the
direction of ~pi expressed in the orbital reference frame. The direction of ~pi is parameterized
as an azimuth and elevation angle. As determined in Section 4.4.2, there are two relative
equilibrium attitudes for each direction of ~pi, if the following inequality is satisfied,

|βγ| ≤ 1 (5.42)

where β and γ are defined by Eqs. 4.57 and 4.58, respectively. This is accounted for on
Line 3 of Algorithm 5.6 with the flag f , which is used to determine how to calculate θ. The
selection of the flag f does (in general) affect the value of J23 that is calculated.

Figures 5.11 through 5.22 are pseudo-color plots of the values of J23 for each allowable
direction of ~pi on the unit sphere embedded in the orbital reference frame for Gyrostat-
Satellite I and Gyrostat-Satellite II. The first set of figures (Figures 5.11 through 5.16) show
the results for Gyrostat-Satellite I; and, the second set of figures (Figures 5.17 through 5.22)
show the results for Gyrostat-Satellite II. Each set consists of two figures for each principal
reference frame basis axis for a total of six figures. The first figure for each basis axis shows
the results when the value of the flag f is 0, and the second figure shows the results when
the value of the flag f is 1. The “white-space” in each figure represents directions of ~pi that
do not admit a relative equilibrium attitude.

In Section 4.4.2, an investigation into the principal basis vector directions that admit relative
equilibrium attitudes was presented. The results of that investigation were summarized in
Figure 4.1, which illustrated the admissible regions based on the value of the parameter β.
The outlines of the “filled-in” regions shown in Figures 5.11 through 5.22 match those results.
For both example gyrostat-satellites, ~p2 is aligned with an intermediate axis of inertia. The
figures showing the results for ~p2 also match the finding determined in Section 4.4.2 that all
directions of the intermediate axis of inertia admit relative equilibrium attitudes. As with
the results for the orbital basis vectors (Section 5.4.1), the figures show local extrema and
saddle points that occur when the principal basis vector bisects the angle between the ~o2
and ~o3 axes. These “critical points” represent either a COMET with an isolated ~pi direction
(where the path of ~pi collapses to a single point) or a furcation in the available paths of ~pi
while traveling a COMET. These “critical points” are investigated in Section 5.5.

5.5 Critical Points on COMETs

The visualizations presented in Section 5.4 showed that critical points exist on a small subset
of COMETs. The critical points either represent isolated relative equilibrium attitudes or
points of furcation of the COMET. The critical points occurred at local extrema and saddle
points of J23. These critical points are investigated in this section.
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Input : α, ε, I, f
Output: J23

1 pi ←

 cos (ε) cos (α)
cos (ε) sin (α)

sin (ε)

;

2 v← 0;
3 if pi1 < pi2, pi3 then
4 v1 ← 1;
5 end
6 if pi2 < pi1, pi3 then
7 v2 ← 1;
8 end
9 if pi3 < pi1, pi2 then

10 v3 ← 1;
11 end

12 tj ← v×pj

|v×pj | ;

13 tk ← p×i tj;
14 a← tj1t33 + tj3tk1;
15 b← tj1t23 − tk1tk3 ;

16 c← −2
I1− 1

2
(Ii+Ik)

|Ij−Ik|
pi1√
1−p2i1

pi3√
1−p2i3

;

17 if ‖c‖ ≤ 1 then
18 if (Ij − Ik) a ≥ 0 then

19 φ← arcsin
(

b√
a2+b2

)
;

20 else

21 φ← π − arcsin
(

b√
a2+b2

)
;

22 end
23 if f == 0 then
24 θ ← 1

2
(arcsin(c)− φ);

25 else
26 θ ← 1

2
(π − arcsin(c)− φ);

27 end
28 pj ← cos(θ)tj + sin(θ)tk;
29 pk ← − sin(θ)tj + cos(θ)tk;

30 o2 ←
[
pi2 tj2 tk2

]T
;

31 o3 ←
[
pi3 tj3 tk3

]T
;

32 J23 ← oT
2 Io3;

33 end

Algorithm 5.6: Algorithm to calculate the equilibrium value of J23 given the azimuth
α and elevation ε of ~pi in the orbital reference frame and flag f selecting the solution
of θ.
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Figure 5.11: The pseudo-color plot for Gyrostat-Satellite I of the values of J23 for the al-
lowable directions of ~p1 and f = 0 expressed in the orbital reference frame with level curves
overlaid indicating constant values of J23 and COMETs

Figure 5.12: The pseudo-color plot for Gyrostat-Satellite I of the values of J23 for the al-
lowable directions of ~p1 and f = 1 expressed in the orbital reference frame with level curves
overlaid indicating constant values of J23 and COMETs
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Figure 5.13: The pseudo-color plot for Gyrostat-Satellite I of the values of J23 for the al-
lowable directions of ~p2 and f = 0 expressed in the orbital reference frame with level curves
overlaid indicating constant values of J23 and COMETs

Figure 5.14: The pseudo-color plot for Gyrostat-Satellite I of the values of J23 for the al-
lowable directions of ~p2 and f = 1 expressed in the orbital reference frame with level curves
overlaid indicating constant values of J23 and COMETs
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Figure 5.15: The pseudo-color plot for Gyrostat-Satellite I of the values of J23 for the al-
lowable directions of ~p3 and f = 0 expressed in the orbital reference frame with level curves
overlaid indicating constant values of J23 and COMETs

Figure 5.16: The pseudo-color plot for Gyrostat-Satellite I of the values of J23 for the al-
lowable directions of ~p3 and f = 1 expressed in the orbital reference frame with level curves
overlaid indicating constant values of J23 and COMETs
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Figure 5.17: The pseudo-color plot for Gyrostat-Satellite II of the values of J23 for the
allowable directions of ~p1 and f = 0 expressed in the orbital reference frame with level
curves overlaid indicating constant values of J23 and COMETs

Figure 5.18: The pseudo-color plot for Gyrostat-Satellite II of the values of J23 for the
allowable directions of ~p1 and f = 1 expressed in the orbital reference frame with level
curves overlaid indicating constant values of J23 and COMETs
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Figure 5.19: The pseudo-color plot for Gyrostat-Satellite II of the values of J23 for the
allowable directions of ~p2 and f = 0 expressed in the orbital reference frame with level
curves overlaid indicating constant values of J23 and COMETs

Figure 5.20: The pseudo-color plot for Gyrostat-Satellite II of the values of J23 for the
allowable directions of ~p2 and f = 1 expressed in the orbital reference frame with level
curves overlaid indicating constant values of J23 and COMETs



M. VanDyke Chapter 5. COMETs of a Gyrostat-Satellite 69

Figure 5.21: The pseudo-color plot for Gyrostat-Satellite II of the values of J23 for the
allowable directions of ~p3 and f = 0 expressed in the orbital reference frame with level
curves overlaid indicating constant values of J23 and COMETs

Figure 5.22: The pseudo-color plot for Gyrostat-Satellite II of the values of J23 for the
allowable directions of ~p3 and f = 1 expressed in the orbital reference frame with level
curves overlaid indicating constant values of J23 and COMETs
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The definition of a COMET given in Section 5.2 is valid if the vector v fully spans the null
space of the matrix M, so that the path that maintains orbital momentum equilibrium is
one-dimensional. Critical points occur on a COMET where the dimensionality of the null
space of the matrix M (shown below) is greater than one. The magnitude of v at critical
points is zero.

M =

[
J22 − J33 −J12 0.0
J12 J33 − J11 −J23

]
(5.43)

The dimensionality of the null space of the matrix M is greater than one when,

1. the magnitude of the first row of M is zero,

2. the magnitude of the second row of M is zero,

3. the magnitude of both rows of M is zero, or

4. the rows of M are linearly dependent.

Each of the cases enumerated above are examined in the following sections.

5.5.1 Magnitude of the First Row of M is Zero

In order for the magnitude of the first row of the M matrix to be zero, the following equalities
must be satisfied.

J12 = 0 (5.44)

∆23 = 0 (5.45)

Equation 5.44 and the necessary condition for a relative equilibrium are

J12 = ~o2 · ~I · ~o1 = 0 (5.46)

J13 = ~o3 · ~I · ~o1 = 0 (5.47)

which require that

ρ~o2 × ~o3 = ~I · ~o1 (5.48)

ρ~o1 = ~I · ~o1 (5.49)

Therefore, ~o1 must be an eigenvector of ~I so that

~o1 = ±~pi i ∈ 1, 2, 3 (5.50)
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To solve for the orientation about ~o1, ~o2 and ~o3 are parameterized as functions of the angle
between ~pj and ~o2, θ.

~o2 = ± cos θ~pj ± sin θ~pk (5.51)

~o3 = ∓ sin θ~pj ∓ cos θ~pk (5.52)

The angle θ is solved for by satisfying Eq. 5.45. The values of J22 and J33 as a function of θ
are

J22 = ~o2 · ~I · ~o2 = cos2 θIj + sin2 θIk (5.53)

J33 = ~o3 · ~I · ~o3 = sin2 θIj + cos2 θIk (5.54)

Satisfying Eq. 5.45 requires that(
cos2 θ − sin2 θ

)
(Ij − Ik) = 0 (5.55)

If the gyrostat-satellite has an axis of inerita symmetry, and ~pj and ~pk are perpendicular to
that axis,

Ij = Ik (5.56)

then the angle θ is unconstrained. Otherwise, the angle θ must satisfy the following equality.

cos θ = ± sin θ (5.57)

The angle θ is

θ =
π

4
+ κ

π

2
κ ∈ Z (5.58)

where Z is the set of integers. Therefore, in order for the magnitude of the first row of M
to be zero, the gyrostat-satellite must be aligned so that one of the principal axes is aligned
with ~o1 and the other principal axes are clocked 45◦ degrees from ~o2 and ~o3.

5.5.2 Magnitude of the Second Row of M is Zero

In order for the magnitude of the second row of the M matrix to be zero, the following
equalities must be satisfied.

J12 = 0 (5.59)

J23 = 0 (5.60)

∆13 = 0 (5.61)

The first and second equalities and the necessary condition for a relative equilibrium require
that ~oi must be an eigenvector of ~I so that

~oi = ±~pj i, j ∈ 1, 2, 3 (5.62)
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This means that the principal reference frame is co-aligned with the orbital reference frame.
The other requirement means that

Ii = Ik (5.63)

so that the gyrostat-satellite must have an axis of inertial symmetry. Therefore, in order for
the magnitude of the second row of M to be zero, the gyrostat-satellite must be co-aligned
with the orbital reference frame and have an axis of inertial symmetry.

5.5.3 Magnitude of Both Rows of M is Zero

In order for the magnitude of both rows of the M matrix to be zero, the following equalities
must be satisfied.

J12 = 0 (5.64)

J23 = 0 (5.65)

∆13 = 0 (5.66)

∆23 = 0 (5.67)

In Section 5.5.2, it was determined that to satisfy the first three equalities the gyrostat-
satellite must be co-aligned with the orbital reference frame and have an axis of inertial
symmetry. The addition of the fourth equality requires that the gyrostat-satellite have a
second axis of inertial symmetry, which only occurs for spherically symmetric mass distribu-
tions.

5.5.4 Rows of M are Linearly Dependent

In order for the rows of the M matrix to be linearly dependent, the following equality must
be satisfied. [

J22 − J33 −J12 0.0
]

= λ
[
J12 J33 − J11 −J23

]
(5.68)

Equation 5.68 is satisfied if the following equalities are satisfied.

J23 = 0 (5.69)

J2
12 −∆13∆23 = 0 (5.70)

Equation 5.69 and the necessary condition for a relative equilibrium are

J23 = ~o2 · ~I · ~o3 = 0 (5.71)

J13 = ~o1 · ~I · ~o3 = 0 (5.72)
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which requires that

ρ~o1 × ~o2 = ~I · ~o3 (5.73)

ρ~o3 = ~I · ~o3 (5.74)

Therefore, ~o3 must be an eigenvector of ~I so that

~o3 = ±~pi i ∈ 1, 2, 3 (5.75)

To solve for the orientation about ~o3, ~o1 and ~o2 are parameterized as function of the angle
between ~pj and ~o2, θ.

~o1 = ± cos θ~pj ± sin θ~pk (5.76)

~o2 = ± sin θ~pj ∓ cos θ~pk (5.77)

The angle θ is solved for by satisfying Eq. 5.70. The values of J11, J22, and J33 as a function
of θ are

J11 = ~o1 · ~I · ~o1 = sin2 θIj + cos2 θIk (5.78)

J22 = ~o2 · ~I · ~o2 = cos2 θIj + sin2 θIk (5.79)

J33 = Ii (5.80)

Satisfying Eq. 5.70 requires that

J2
23 −∆13∆23 = − (Ii − Ij) (Ii − Ik) = 0 (5.81)

Equation 5.81 is independent of the angle θ. Therefore, the gyrostat-satellite must have an
axis of inerita symmetry that is perpendicular to either ~pi and ~pj so that,

Ii = Ij (5.82)

or ~pi and ~pk so that,

Ii = Ik (5.83)

Therefore, in order for the rows of M to be linearly dependent, the gyrostat-satellite must
be aligned so that one of the principal axes are aligned with ~o3 and have an axis of inertial
symmetry.

5.5.5 Summary

The four possible cases for the null space of M are summarized below:
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1. The rows of M are linearly independent and have magnitudes greater than zero, so
that the null space of M is one-dimensional and is aligned with the cross product of
the rows.

2. The magnitude of one row of M is zero and the magnitude of the other row is greater
than zero, so that the null space of M is two-dimensional and resides in the plane
perpendicular to the row with a magnitude greater than zero.

3. The rows of M are linearly dependent, so that the null space of M is two-dimensional
and resides in the plane perpendicular to the rows.

4. The magnitude of both rows of M is zero, so that the null space of M is three-
dimensional and occupies the whole of R3.

Cases 3 and 4 only occur for gyrostat-satellites with inertial symmetries. The qualitative
results presented in Sections 5.3 and 5.4 indicate that Case 1 occurs over the majority of
COMETs, and therefore COMETs are generally one-dimensional curves in SO(3).

The visualizations presented in Section 5.4 indicated that for a small subset of COMETs there
are critical points that represent either isolated relative equilibrium attitudes or furcations
of the COMET. Assuming a tri-inertial gyrostat-satellite, these points correspond to Case 2.
The results of Sections 5.5.1 indicate that critical points only occur (for a tri-inertial gyrostat-
satellite) when one of the principal axes is aligned with ~o1 and the other principal axes are
clocked 45◦ degrees from ~o2 and ~o3. This result matches the locations of the critical points
observed in Section 5.4.

5.6 Example Simulations

The purpose of this section is to present the results of numeric simulations of a gyrostat-
satellite traveling on two COMETs to verify the analytic and qualitative analysis presented in
prior sections. An example gyrosat-satellite is simulated. The principal moments of inertia of
the gyrostat-satellite are provided as Gyrostat-Satellite I in Table 5.3. A numeric simulator
(presented in Appendix A) simulates the rotational dynamics of the gyrostat-satellite.

Table 5.5 summarizes the key parameters of the simulations. The first four parameters (θ1,
θ2, θ3, and ho2) are independent input values defining the initial conditions of the simulations.
The parameters θ1, θ2, and θ3 define the initial attitude of the gyrostat-satellite through the
use of Algorithm 4.1. The parameter ho2 does not affect the COMET but does impact
dynamic quantities such as the relative angular momentum vector. The last two parameters
(J23 and ho3) are derived values that remain constant throughout the simulation and are
included for informational purposes.

Figures 5.23 through 5.40 present the results of Simulation I and II. The first set of figures
(Figures 5.23 through 5.31) show the results for Simulation I; and, the second set of figures
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Table 5.5: Key parameters used to simulate a gyrostat-satellite traversing two COMETs

Parameter Simulation I Simulation II
θ1 -5o -40o

θ2 -25o 0o

θ3 1.0 1.0
ho2 -0.2627 -0.2455
J23 -11.0802 kg-m2 -6.5490 kg-m2

ho3 -0.0363 Nms 72.7952 Nms

(Figures 5.32 through 5.40) show the results for Simulation II. Each set consists of nine
figures. The first two figures of each set (Figures 5.23, 5.24, 5.32, and 5.33) depict the path
of the principal basis vectors on the unit sphere fixed in the orbital reference frame. Each
figure consists of four sub-figures that each give a three-dimensional view of the unit sphere
from a particular vantage point defined by the azimuth α and elevation ε angle noted above
each view. The first figure (Figures 5.23 and 5.32) shows the views from the +~o3 hemisphere,
and the second figure (Figures 5.24 and 5.33) shows the views from the −~o3 hemisphere. The
paths of ~p1, ~p2, and ~p3 are shown as solid red, blue, and green curves on the surface of the
unit sphere, respectively. The third figure of each set (Figures 5.25 and 5.34) shows the path
of the vector part of the attitude quaternion throughout the transition maneuver. The fourth
figure of each set (Figures 5.26 and 5.35) is a plot of the time history of the components
of the attitude quaterion representing the rotation from the orbital reference frame to the
principal reference frame on the abscissa and the elapsed simulation time on the ordinate.
The vector components of the attitude quaternion (q1, q2, and q3) are shown as blue, green,
and red curves, respectively, and the scalar component (q4) is shown as a cyan curve. The
fifth figure of each set (Figures 5.27 and 5.36) is a plot of the time history of the components
of the angular velocity of the principal reference frame with respect to the orbital reference
frame expressed in the principal reference frame on the abscissa and the elapsed simulation
time on the ordinate. The components along ~p1, ~p2, and ~p3 are shown as blue, green, and red
curves, respectively. The values of the products of inertia expressed in the orbital reference
frame during the simulation are shown in the sixth figure of each set (Figures 5.28 and
5.37). The seventh figure of each set (Figures 5.29 and 5.38) shows the time history of the
system angular momentum expressed in the orbital reference frame (ho). The time history
of components of the relative angular momentum vector expressed in the principal reference
frame (hs) are shown in the eighth figure of each set (Figures 5.30 and 5.39). The ninth
figure of each set (Figures 5.31 and 5.40) shows the time history of the internal torque vector
expressed in the principal reference frame (gs).

The three-dimensional figures (Figures 5.23, 5.24, 5.32, and 5.33) show that the COMET
is a closed-curve in SO(3), and that the gyrostat-satellite is traveling along the COMET.
As would be expected while traversing a COMET, J13 is zero, J23 is constant, and the
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components of the system angular momentum vector expressed in the orbital frame are
constant throughout the simulation.
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Figure 5.23: Four isometric views from the +~o3 hemisphere of the paths of the principal
frame basis axes on the unit sphere fixed in the orbital reference frame during Simulation I
of a gyrostat-satellite traveling along a COMET
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Figure 5.24: Four isometric views from the -~o3 hemisphere of the paths of the principal frame
basis axes on the unit sphere fixed in the orbital reference frame during Simulation I of a
gyrostat-satellite traveling along a COMET
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Figure 5.25: Path in the configuration space of the vector part of the attitude quaternion
(~qpo) during Simulation I of a gyrostat-satellite traveling along a COMET

Figure 5.26: Components of the attitude quaternion (q̄po) during Simulation I of a gyrostat-
satellite traveling along a COMET
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Figure 5.27: Components of the angular velocity of the princpal reference frame with re-
spect to the orbital reference frame expressed in the principal reference frame (ωpo) during
Simulation I of a gyrostat-satellite traveling along a COMET

Figure 5.28: Products of inertia expressed in the orbital reference frame (J12, J13, and J23)
during Simulation I of a gyrostat-satellite traveling along a COMET
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Figure 5.29: Components of the system angular momentum vector expressed in the orbital
reference frame (ho) during Simulation I of a gyrostat-satellite traveling along a COMET

Figure 5.30: Components of the relative angular momentum vector expressed in the principal
reference frame (hs) during Simulation I of a gyrostat-satellite traveling along a COMET
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Figure 5.31: Components of the internal torque vector expressed in the principal reference
frame (gs) during Simulation I of a gyrostat-satellite traveling along a COMET
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Figure 5.32: Four isometric views from the +~o3 hemisphere of the paths of the principal
frame basis axes on the unit sphere fixed in the orbital reference frame during Simulation II
of a gyrostat-satellite traveling along a COMET
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Figure 5.33: Four isometric views from the -~o3 hemisphere of the paths of the principal frame
basis axes on the unit sphere fixed in the orbital reference frame during Simulation II of a
gyrostat-satellite traveling along a COMET
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Figure 5.34: Path in the configuration space of the vector part of the attitude quaternion
(~qpo) during Simulation II of a gyrostat-satellite traveling along a COMET

Figure 5.35: Components of the attitude quaternion (q̄po) during Simulation II of a gyrostat-
satellite traveling along a COMET
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Figure 5.36: Components of the angular velocity of the princpal reference frame with re-
spect to the orbital reference frame expressed in the principal reference frame (ωpo) during
Simulation II of a gyrostat-satellite traveling along a COMET

Figure 5.37: Products of inertia expressed in the orbital reference frame (J12, J13, and J23)
during Simulation II of a gyrostat-satellite traveling along a COMET
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Figure 5.38: Components of the system angular momentum vector expressed in the orbital
reference frame (ho) during Simulation II of a gyrostat-satellite traveling along a COMET

Figure 5.39: Components of the relative angular momentum vector expressed in the principal
reference frame (hs) during Simulation II of a gyrostat-satellite traveling along a COMET
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Figure 5.40: Components of the internal torque vector expressed in the principal reference
frame (gs) during Simulation II of a gyrostat-satellite traveling along a COMET

5.7 Summary

Chapter 4 introduced the concept relative equilibrium of a gyrostat-satellite, and it was
shown it was a generalization of dynamic equilibrium. In this chapter, a new concept, the
COMET, was introduced. The COMET was shown to be a further generalization that relaxes
the condition that the gyrostat-satellite is at rest when viewed by an observer embedded in
the orbital reference frame. COMETs are equilibrium solutions to the system angular mo-
mentum expressed in the orbital reference frame. A mathematical definition for COMETs
was derived that included a nonholonomic constraint. A method to map a COMET was pre-
sented. Maps generated for several example COMETs were used to show that COMETs are
(generally) continuous, one-dimensional, closed curves in SO(3). Visualizations of families of
COMETs were presented for two example gyrostat-satellites. The visualizations indicated
the existence of critical points on a small subset of COMETs that represent either isolated
relative equilibrium attitudes or points furcation of the COMET. It was shown that the crit-
ical points correspond to points in SO(3) where the dimensionality of the null space of the M
matrix increases from one to two. Two numeric simulations of a gyrostat-satellite traversing
a COMET were presented, and were shown to agree with the analytic and qualitative results
presented earlier in the chapter.



Chapter 6

Attitude Transitions Between
Relative Equilibria

As discussed in Chapter 2, the literature on equilbria of gyrostat-satellites extensively inves-
tigates the determination of relative equilibrium attitudes and the stability characteristics
of relative equilibria. However, little work has investigated using internal torque actuation
to transition between relative equilibria. The purpose of this chapter is to begin addressing
this gap in the literature by investigating open-loop control laws that transition a gyrostat-
satellite from an initial relative equilibrium to a desired target relative equilibrium.

The problem of transitioning a gyrostat-satellite from an initial relative equilibrium to a
desired target relative equilibrium is broken into two sub-problems. The first sub-problem,
presented in Section 6.1, is transitioning between two relative equilibria that reside on the
same COMET. The second sub-problem, presented in Section 6.2, is transitioning between
two relative equilibria that reside on different COMETs.

6.1 Relative Equilibria on the same COMET

The purpose of this section is to solve the problem of transitioning a gyrostat-satellite from
an initial relative equilibrium to a desired target relative equilibrium where both the initial
and target relative equilibrium reside on the same COMET. As discussed in Chapter 5, a
COMET is a continuous, closed curve in SO(3). Transitions between relative equilibria on
the same COMET may be straight-forwardly accomplished by traversing along the COMET
until the desired target relative equilibrium is reached.

Section 6.1.1 develops an open-loop control law that transitions a gyrostat-satellite from an
initial relative equilibrium to a target relative equilibrium. The open-loop control law is a
function of the coordinate s of the coordinate chart developed in Section 5.3. The results
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of a numeric simulation of a gyrostat-satellite using the open-loop control law to execute a
transition maneuever between two relative equilibria on the same COMET are presented in
Section 6.1.2

6.1.1 Open-Loop Control Law

The open-loop control torques to be commanded to the rotors are defined by Eq. B.1 devel-
oped in Appendix B, and repeated here for convenience.

gs = −Iω̇po − ωoI (ωpo)× o2 −
(
ωpi

)×
h + 3ω2

oo
×
3 Io3

The open-loop control law (Eq. B.1) is fully defined over a transition maneuver given an initial
system state and the time history of the angular acceleration of the principal reference frame
with respect to the orbital reference frame (ω̇po). The initial system state is the relative
equilibrium of the gyrostat-satellite prior to the transition maneuver. The time history of
ω̇po is calculated based on a desired slew profile defined in s-ṡ configuration space.

A simple “ramp-coast-ramp” profile is selected as the desired slew profile. Figure 6.1 depicts
the two possible slew profiles. Longer s distances will result in a slew profile like that depicted
in sub-figure A of Figure 6.1. Shorter s distances will result in a slew profile like that depicted
in sub-figure B of Figure 6.1. The quantities labeled in Figure 6.1 are defined below.

tramp =


√
‖scmd‖
s̈max

if ṡmax ≤ ‖scmd‖
s̈max

ṡmax

s̈max
if ṡmax >

‖scmd‖
s̈max

(6.1)

sramp =
1

2
s̈maxt

2
ramp (6.2)

scoast = scmd − 2sramp (6.3)

tcoast =
scoast
ṡmax

(6.4)

The s acceleration necessary to follow the slew profile is calculated using the following piece-
wise continuous function.

s̈(t) =


s̈max if 0 ≤ t < tramp

0 if tramp ≤ t < tramp + tcoast
−s̈max if t ≥ tramp + tcoast

(6.5)

Equations 6.1 through 6.5 are used by Algorithm 6.1 to calculate the s acceleration com-
mand throughout the transition maneuver. The inputs to the algorithm are the targeted s
coordinate (scmd), the maximum s rate (ṡmax), the maximum s acceleration (s̈max), and the
time since the start of the maneuver (t).

It was shown in Chapter 5 that the angular velocity of a gyrostat-satellite traversing a
COMET is restricted to satisfy Eq. 5.26, which is repeated below for convenience.

ωpo = σRpov
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Input : scmd, ṡmax, s̈max, t
Output: s̈

1 tramp ←
√
‖scmd‖
s̈max

;

2 if s̈maxtramp > ṡmax then
3 tramp ← ṡmax

s̈max
;

4 end
5 sramp ← 1

2
s̈maxt

2
ramp;

6 scoast ← scmd − 2sramp;
7 tcoast ← scoast

ṡmax
;

8 if 0 ≤ t < tramp then
9 s̈← sgn (scmd) s̈max;

10 else if tramp ≤ t < tramp + tcoast then
11 s̈← 0;
12 else if tramp + tcoast ≤ t ≤ tmax then
13 s̈← −sgn (scmd) s̈max;
14 else
15 s̈← 0;
16 end

Algorithm 6.1: Algorithm to calculate the acceleration command (s̈) for a simple
“ramp-coast-ramp” slew profile
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Figure 6.1: The time history of the first time derivative of the coordinate s during a transition
between relative equilibria residing on the same COMET using a (A) “ramp-coast-ramp”
and a (B) “ramp-ramp” profile.
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The first time derivative of the angular velocity vector ωpo is

ω̇po = σ̇Rpov − σ (ωpo)×Rpov + σRpov̇ (6.6)

The first time derivative σ is

σ̇ =
s̈− σ vTv̇√

vTv√
vTv

(6.7)

Plugging Eqs. 5.30 and 6.7 into Eqs. 5.26 and 6.6 results in

ωpo =
ṡ√
vTv

Rpov (6.8)

ω̇po =
s̈− σ vTv̇√

vTv√
vTv

Rpov +
ṡ√
vTv

(
Rpov̇ − (ωpo)×Rpov

)
(6.9)

Equation 6.8 represents the explicit functional relationship between the kinematics of the
coordinate s and the kinematics of the principal reference frame with respect to the orbital
reference frame. Equation 6.9 is necessary to calculate internal control torques to be applied
to the rotors to execute an attitude transition.

In summary, the steps executed at each time step during the transition maneuver are listed
below:

1. Algorithm 6.1 is used to calculate the s acceleration command.

2. Equation 6.9 is used to calculate the ω̇po command.

3. Equation B.1 is used to calculate the internal torques to apply to the rotors.

6.1.2 Example Simulation

The purpose of this section is to present the results of a numeric simulation of a gyrostat-
satellite executing a transition maneuver between relative equilibria on the same COMET
using the open-loop control developed in Section 6.1.1.

An example gyrosat-satellite is simulated. The principal moments of inertia of the gyrostat-
satellite are provided as Gyrostat-Satellite I in Table 5.3. A numeric simulator (presented
in Appendix A) simulates the rotational dynamics of the gyrostat-satellite. Table 5.5 sum-
marizes the key parameters for the simulation. The first four parameters (θ1, θ2, θ3, and ho2)
are independent input values defining the initial conditions of the simulations. The param-
eters θ1, θ2, and θ3 define the initial attitude of the gyrostat-satellite using Algorithm 4.1.
The parameter ho2 does not affect the COMET but does impact dynamic quantities such as
the relative angular momentum vector. The next two parameters (J23 and ho3) are derived
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Table 6.1: Key parameters used in the example simulation of a gyrostat-satellite transitioning
between two relative equilibria on the same COMET

Parameter Value
θ1 -5◦

θ2 -25◦

θ3 1.0
ho2 -0.2627 Nms
J23 -11.0802 kg-m2

ho3 -0.0363 Nms
scmd 90◦

ṡmax 0.1◦/s
s̈max 0.001◦/s

values that remain constant throughout the simulation and are included for informational
purposes. The final three parameters (scmd, ṡmax, and s̈max) define the slew “profile” used to
transition from the initial to the target relative equilibrium. The parameter scmd defines the
location of the target relative equilibrium on the COMET. The parameters ṡmax and s̈max
define the maximum s velocity and the maximum s acceleration along the COMET during
the transition maneuver, respectively.

Figures 6.2 through 6.10 present the results of the simulation. Figures 6.2 and 6.3 depict
the path of the principal reference frame basis vectors on the unit sphere fixed in the orbital
reference frame. Each figure consists of four sub-figures that each give a three-dimensional
view of the unit sphere from a particular vantage point defined by the azimuth α and elevation
ε angle noted above each view. Figure 6.2 shows the views from the +~o3 hemisphere, and
Figure 6.3 shows the views from the −~o3 hemisphere. The paths of ~p1, ~p2, and ~p3 are shown
as solid red, blue, and green curves on the surface of the unit sphere, respectively. The paths
of ~p1, ~p2, and ~p3 throughout the complete COMET are shown as “dash-dot”-ed red, blue,
and green curves on the surface of the unit sphere, respectively. Figure 6.4 shows the path
of the vector part of the attitude quaternion throughout the transition maneuver. The red
curve represents the path over the complete COMET. The green and red circles mark the
initial and final attitudes of the gyrostat-satellite, respectively. The blue curve represents the
path taken by the gyrostat-satellite to transition from the initial relative equilibrium to the
target relative equilibrium. Figure 6.5 is a plot of the time history of the components of the
attitude quaterion representing the rotation from the orbital reference frame to the principal
reference frame on the abscissa and the elapsed simulation time on the ordinate. The vector
components of the attitude quaternion (q1, q2, and q3) are shown as blue, green, and red
curves, respectively, and the scalar component (q4) is shown as a cyan curve. Figure 6.6 is a
plot of the time history of the components of the angular velocity of the principal reference
frame with respect to the orbital reference frame expressed in the principal reference frame
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on the abscissa and the elapsed simulation time on the ordinate. The components along
~p1, ~p2, and ~p3 are shown as blue, green, and red curves, respectively. The values of the
products of inertia expressed in the orbital reference frame during the simulation are shown
in Figure 6.7. Figure 6.8 shows the time history of the system angular momentum expressed
in the orbital reference frame (ho). The time history of components of the relative angular
momentum vector expressed in the principal reference frame (hs) are shown in Figure 6.9.
Figure 6.10 shows the time history of the internal torque vector expressed in the principal
reference frame (gs).

The three-dimensional figures (Figures 6.2 through 6.4) show that the COMET is a closed-
curve in SO(3), and that the gyrostat-satellite is traveling along the COMET. The time
histories of the system parameters (Figures 6.5 through 6.10) show that the gyrostat-satellite
reaches a relative equilibrium because all of the curves are constant over the last 0.02 orbits
of the simulation with the internal torques dropping to zero. As would be expected while
traversing a COMET, J13 is zero, J23 is constant, and the components of the system angular
momentum vector expressed in the orbital frame are constant throughout the simulation.
The time history of the internal torques (Figure 6.10) clearly shows the transitions between
the “ramp-up,” “coast,” and “ramp-down” phases of the transition maneuver, which appear
as discontinuities in the curves.

6.2 Transitions Between COMATs

The purpose of this section is to investigate the problem of transitioning a gyrostat-satellite
from an initial relative equilibrium to a desired target relative equilibrium that resides on a
different COMET.

Section 6.2.1 gives an overview of the method proposed to execute the transition maneuver.
Sections 6.2.2 and 6.2.3 describe the component steps of the method in detail. Section 6.2.4
presents the results of an example simulation of a gyrostat-satellite executing the transition
maneuver. Section 6.2.5 provides a discussion of the limitations the proposed method.

6.2.1 Overview of Proposed Method

The path taken by a gyrostat-satellite during transitions between relative equilibria on the
same COMET may be accomplished independent of duration of the transition. Whereas,
the path and duration of transitions between relative equilibria on different COMETs are
coupled. The reason for the coupling is that the system angular momentum must be adjusted
so that upon reaching the target relative equilibrium attitude the system angular momentum
is at the equilibrium value corresponding to the relative equilibrium attitude.

Gravitational torques experienced during the transition maneuver are used to adjust the



M. VanDyke Chapter 6. Attitude Transitions Between... 96

Figure 6.2: Four isometric views from the +~o3 hemisphere of the paths of the principal frame
basis axes on the unit sphere fixed in the orbital reference frame during a transition between
two relative equilibria on the same COMET
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Figure 6.3: Four isometric views from the -~o3 hemisphere of the paths of the principal frame
basis axes on the unit sphere fixed in the orbital reference frame during a transition between
two relative equilibria on the same COMET
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Figure 6.4: Path in the configuration space of the vector part of the attitude quaternion
(~qpo) of a transition between two relative equilibria on the same COMET overlaid on the
COMET path

Figure 6.5: Components of the attitude quaternion (q̄po) during a transition between two
relative equilibria on the same COMET
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Figure 6.6: Components of the angular velocity of the princpal reference frame with respect
to the orbital reference frame expressed in the principal reference frame (ωpo) during a
transition between two relative equilibria on the same COMET

Figure 6.7: Products of inertia expressed in the orbital reference frame (J12, J13, and J23)
during a transition between two relative equilibria on the same COMET
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Figure 6.8: Components of the system angular momentum vector expressed in the orbital
reference frame (ho) during a transition between two relative equilibria on the same COMET

Figure 6.9: Components of the relative angular momentum vector expressed in the principal
reference frame (hs) during a transition between two relative equilibria on the same COMET
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Figure 6.10: Components of the internal torque vector expressed in the principal reference
frame (gs) during a transition between two relative equilibria on the same COMET

system angular momentum of the gyrostat-satellite. As shown in Chapter 3, gravitational
torque is a function of gyrostat-satellite’s interia matrix expressed in the principal reference
frame and the attitude of the gyrostat-satellite relative to the orbital reference frame. There-
fore, the attitude trajectory used to accomplished the transition maneuver must be designed
such that

1. the terminal attitude is a relative equilibrium attitude,

2. the terminal angular velocity with respect to the orbital reference frame is ~0, and

3. the terminal system angular momentum is equal to the equilibrium value of the target
relative equilibrium.

In Chapter 5, it was shown that the dynamics of the system angular momentum expressed in
the orbital reference frame are a function of the products of inertia expressed in the orbital
reference frame (specifically J13 and J23). Therefore, the correct adjustment of the system
angular momentum may be accomplished by designing a time history of the products of
inertia expressed in the orbital reference frame. The time histories of the products of inertia
are parameterized as polynomial functions of the quantity ωot. The attitude trajectory re-
quirements (enumerated above) are mapped to a set of boundary conditions on the system
angular momentum and products of inertia. The coefficients of the polynomials are calcu-
lated so that the boundary conditions are satisfied. Section 6.2.2 derives and describes the
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set of equations and algorithms used to calculate the coefficients of the polynomials. The
time history of the products of inertia is mapped to a continuous attitude trajectory that
begins at the initial relative equilibrium attitude, takes a path that correctly adjusts the sys-
tem angular momentum, and ends at the target relative equilibrium attitude. Section 6.2.3
derives the equations necessary to map the time history of the products of inertia to an
attitude trajectory.

6.2.2 Product of Inertia Trajectories

The first step in determining an attitude trajectory that successfully transitions a gyrostat-
satellite from an initial relative equilibrium to a desired target relative equilibrium is de-
termining the time histories of the 1-3 and 2-3 product of inertia expressed in the orbital
reference frame. The equations and algorithms required to determine the time histories of
the products of inertia are derived and discussed in this section. First, the time history of
J13 is addressed, and then the time history of J23.

Time History of J13

The functional relationship of the dynamics of the pitch system angular momentum to the
1-3 component of the inertia matrix expressed in the orbital reference frame (J13) is defined
by Eq. 5.5, and is repeated below for convenience.

ḣo2 = 3ω2
oJ13

The Laplace transform of Eq. 5.5 is

sHo
2 − ho2(0) = 3ω2

oL [J13] (6.10)

Solving for the Laplace transform of ho2 (Ho
2) results in

Ho
2 =

ho2(0) + 3ω2
oL [J13]

s
(6.11)

The inverse Laplace transform is applied Eq. 6.11 to determine the time domain solution to
Eq. 5.5.

ho2(t) = ho2(0) + 3ω2
o

∫ t

0
J13(τ)dτ (6.12)

As discussed in Section 6.2.1, the 1-3 product of inertia (J13) is parameterized as a polynomial
function of the quantity ωot.

J13(t) = J13(0) +
n∑
k=2

akω
k
o t
k (6.13)
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The variable ak is the coefficient of the k-th order term of the polynomial. The first time
derivative of Eq. 6.13 is

J̇13(t) =
n∑
k=2

kakω
k
o t
k−1 (6.14)

The definite integral of Eq. 6.13 from 0 to t is

∫ t

0
J13(τ)dτ = J13(0)t+

n∑
k=2

akω
k
o

tk+1

k + 1
(6.15)

Plugging Eq. 6.15 into Eq. 6.12 results in

ho2(t) = ho2(0) + 3ω2
oJ13(0)t+

n∑
k=2

akω
k
o

tk+1

k + 1
(6.16)

The attitude trajectory requirements (enumerated in Section 6.2.1) are mapped to a set
of boundary conditions on the system angular momentum and products of inertia. It is
assumed that the initial state of the gyrostat-satellite is a relative equilibrium so that the
following boundary conditions are satisfied.

J̇13(0) = 0 (6.17)

J13(0) = 0 (6.18)

ḣo2(0) = 0 (6.19)

ho2(0) = ho20 (6.20)

The starting boundary conditions on J13 and ḣo2 (Eqs. 6.17 through 6.20) are satisfied for any
values selected for ak due to the exclusion of the 1st order term from the polynomial param-
eterization of the time history of J13. The terminal boundary conditions of the transition
maneuver are

J̇13(T ) = 0 (6.21)

J13(T ) = 0 (6.22)

ḣo2(T ) = 0 (6.23)

ho2(T ) = ho2T (6.24)

The terminal boundary conditions on J13 and ḣo2 are redundant due to their functional
relationship (Eq. 5.5). Therefore, the independent terminal boundary conditions that must
be satisfied are Eqs. 6.23, 6.22, and 6.24. Equations 6.23 and 6.22 require that the gyrostat-
satellite is at a relative equilibrium, whereas, Eq. 6.24 ensures that the pitch system angular
momentum is at its target value at the end of the transition maneuver.
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The independent set of terminal boundary conditions form a system of three equations that
consist of linear terms of the J13 polynomial coefficients. The system of equations may be
written as

Caa = ca (6.25)

where

Ca =

 ω2
oT

2 · · · ωioT
i · · · ωnoT

n

2ω2
oT · · · iωioT

i−1 · · · nωnoT
n−1

ω4
oT

3 · · · 3/(i+ 1)ω2+i
o T i+1 · · · 3/(n+ 1)ω2+n

o T n+1

 (6.26)

a =
[
a2 · · · ai · · · an

]T
(6.27)

ca =
[

0 0 ho2T − h
o
20

]T
(6.28)

If the parameter n in Eq. 6.13 is selected to be greater than four, the system is under-
determined and there are (in general) an infinite number of solutions for a that satisfy the
system of equations. The selected solution for a is chosen as the solution that minimizes the
magnitude of a. The selected solution for a is calculated using

a = C+
a ca (6.29)

The operation (·)+ is the Moore-Penrose pseudoinverse.

Time History of J23

The dynamics of the “roll” and yaw system angular momenta form a second order coupled
system defined by Eqs. 5.4 and 5.6.

ḣo1 − ωoho3 = −3ω2
oJ23

ḣo3 + ωoh
o
1 = 0

Solving Eq. 5.4 for ḣo1 results in

ḣo1 = − ḧ
o
3

ωo
(6.30)

Plugging Eq. 6.30 into Eq. 5.6 results in

ḧo3 + ω2
oh

o
3 = 3ω3

oJ23 (6.31)

Equation 6.31 defines the functional relationship of the dynamics of the yaw system angular
momentum to the 2-3 component of the inertia matrix expressed in the orbital reference
frame (J23). The Laplace transform of Eq. 6.31 is

s2Ho
3 − sho3(0)− ḣo3(0) + ω2

oH
o
3 = 3ω3

oL [J23] (6.32)
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Solving for the Laplace transform of ho3 (Ho
3) results in

Ho
3 =

sho3(0) + ḣo3(0) + 3ω3
oL [J23]

s2 + ω2
o

(6.33)

The inverse Laplace transform is applied Eq. 6.33 to determine the time domain solution.

ho3(t) = ho3(0) cos (ωot) +
ḣo3(0)

ωo
sin (ωot) + 3ω3

oL−1
[
L [J23]

s2 + ω2
o

]
(6.34)

As discussed in Section 6.2.1, the 2-3 product of inertia (J23) is parameterized as a polynomial
function of the quantity ωot.

J23(t) = J23(0) +
n∑
k=2

bkω
k
o t
k (6.35)

The variable bk is the coefficient of the k-th order term of the polynomial. The first time
derivative of Eq. 6.35 is

J̇23(t) =
n∑
k=2

kbkω
k
o t
k−1 (6.36)

The Laplace transform of Eq. 6.35 is

L [J23(t)] =
J23(0)

s
+

n∑
k=2

bkω
k
o

k!

sk+1
(6.37)

Plugging Eq. 6.37 into the inverse Laplace transform portion of the last term in Eq. 6.34
gives

L−1
[
L [J23(t)]

s2 + ω2
o

]
= J23(0) cosωot+

n∑
k=2

bkω
k
ok!L−1

[
1

sk+1(s2 + ω2
o)

]
(6.38)

The inverse Laplace transform remaining in Eq. 6.38 for even values of k + 1 is

L−1
[

1

si(s2 + ω2
o)

]
= ς(i)

−sinωot

ωi+1
o

+
i/2−1∑
j=0

(−1)j
t2j+1

(2j + 1)!ωi−2jo

 (6.39)

{i|i ∈ 2Z, i > 0}

The inverse Laplace transform remaining in Eq. 6.38 for odd values of k + 1 is

L−1
[

1

si(s2 + ω2
o)

]
= ς(i)

−cosωot

ωi+1
o

+
(i−1)/2∑
j=0

(−1)j
t2j

(2j)!ωi−2j+1
o

 (6.40)

{i|i ∈ 2Z + 1, i > 0}
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The function ς(k) is defined

ς(i) =

{
+1, (i− 1 mod 4) ≤ 1
−1, (i− 1 mod 4) ≥ 2

(6.41)

The attitude trajectory requirements (enumerated in Section 6.2.1) are mapped to a set of
boundary conditions on the yaw system angular momentum and the 2-3 product of inertia.
It is assumed that the initial state of the gyrostat-satellite is a relative equilibrium so that
the following boundary conditions are satisfied.

J̇23(0) = 0 (6.42)

J23(0) = J230 (6.43)

ḣo3(0) = 0 (6.44)

ho3(0) = ho30 (6.45)

The starting boundary conditions on J23 (Eqs. 6.42 through 6.43) are satisfied for any values
selected for bk due to the exclusion of the 1st order term from the polynomial parameterization
of the time history of J23. The terminal boundary conditions of the transition maneuver are

J̇23(T ) = 0 (6.46)

J23(T ) = J23T (6.47)

ḣo3(T ) = 0 (6.48)

ho3(T ) = ho3T (6.49)

Equations 6.48 and 6.46 require that the gyrostat-satellite is at a relative equilibrium. Equa-
tions 6.47 and 6.49 ensure that the yaw system angular momentum is at its target equilibrium
value at the end of the transition maneuver.

The terminal boundary conditions form a system of four equations that consist of linear
terms of the J23 polynomial coefficients. The system of equations may be written as

Cbb = cb (6.50)

where

Cb =


ω2
oT

2 · · · ωioT
i · · · ωnoT

n

ω2
oT · · · ωioT

i−1 · · · ωnoT
n−1

f(2, ωo, T ) · · · f(i, ωo, T ) · · · f(n, ωo, T )
d(2, ωo, T ) · · · d(i, ωo, T ) · · · d(n, ωo, T )

 (6.51)

b =
[
b2 · · · bi · · · bn

]T
(6.52)

cb =
[
J23T − J230 0 ho3T − h

o
30

0
]T

(6.53)

The functions f and d are calculated using Algorithms 6.2 and 6.3, which make use of
Equations 6.38 through 6.41.
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Input : i, t, ωo
Output: f

1 if (i mod 4) ≤ 1 then
2 ς ← +1;
3 else if (i mod 4) ≥ 2 then
4 ς ← −1;
5 end
6 i← i+ 1;
7 if (i mod 2) == 0 then

8 x← − sinωot
ωi+1
o

+
∑i/2−1
j=0 (−1)j t2j+1

(2j+1)!ωi−2j
o

;

9 else if (i mod 2) == 1 then

10 x← − cosωot
ωi+1
o

+
∑(i−1)/2
j=0 (−1)j t2j

(2j)!ωi−2j+1
o

;

11 end
12 f ← 3ω3+i−1

o (i− 1)!ςx;

Algorithm 6.2: Algorithm to calculate the i-th entry in the third row of C23 coefficient
matrix

Input : i, t, ωo
Output: d

1 if (i mod 4) ≤ 1 then
2 ς ← +1;
3 else if (i mod 4) ≥ 2 then
4 ς ← −1;
5 end
6 i← i+ 1;
7 if (i mod 2) == 0 then

8 x← − cosωot
ωi
o

+
∑i/2−1
j=0 (2j + 1)(−1)j t2j

(2j+1)!ωi−2j
o

;

9 else if (i mod 2) == 1 then

10 x← sinωot
ωi
o

+
∑(i−1)/2
j=0 (2j)(−1)j t2j−1

(2j)!ωi−2j+1
o

;

11 end
12 d← 3ω3+i−1

o (i− 1)!ςx;

Algorithm 6.3: Algorithm to calculate the i-th entry in the fourth row of C23 coeffi-
cient matrix
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If the parameter n in Eq. 6.35 is selected to be greater than four, the system is under-
determined and there are (in general) an infinite number of solutions for b that satisfy the
system of equations. The selected solution for b is chosen as the solution that minimizes the
magnitude of b. The selected solution for b is calculated using

b = C+
b cb (6.54)

The operation (·)+ is the Moore-Penrose pseudoinverse.

6.2.3 Open-Loop Control Law

The open-loop control torques to be commanded to the rotors are defined by Eq. B.1 devel-
oped in Appendix B, and are repeated here for convenience.

gs = −I
(
ω̇po + ωo (ωpo)× o2

)
−
(
ωpi

)×
h + 3ω2

oo
×
3 Io3

The open-loop control law (Eq. B.1) is fully defined over a transition maneuver given an initial
system state and the time history of the angular acceleration of the principal reference frame
with respect to the orbital reference frame (ω̇po). The initial system state is the relative
equilibrium of the gyrostat-satellite prior to the transition maneuver. The time history of
ω̇po is calculated based on the time history of J13 and J23 calculated in the previous section.

The time histories of J13 and J23 are related to the kinematics of the principal reference frame
with respect to the orbital reference frame through Eq. 5.23. Equation 5.23 is rewritten as

ṗcmd = MRopωpo (6.55)

where

ṗcmd =
[
J̇ cmd23 J̇ cmd13

]T
(6.56)

and

M =

[
J22 − J33 −J12 J13
J12 J33 − J11 −J23

]
(6.57)

The angular velocity (ωpo) required to follow a commanded time history of the products of
inertia is calculated using

ωpo = RpoPṗcmd (6.58)

where P is the Moore-Penrose pseudoinverse of the matrix M. The corresponding angular
acceleration (ω̇po) is calculated using

ω̇po = −(ωpo)×RpoPṗcmd + RpoṖṗcmd + RpoPp̈cmd (6.59)
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The vectors ṗcmd and p̈cmd are the first and second time derivatives of polynomial functions.
The Moore-Penrose pseudoinverse of M (P) can be written as

P = M+ = MTN−1 (6.60)

where

N = MMT (6.61)

=

[
(J22 − J33)2 + J2

12 + J2
13 J12(J11 + J22 − 2J33)− J13J23

J12(J11 + J22 − 2J33)− J13J23 J2
12 + (J11 − J33)2 + J2

23

]
(6.62)

The first time derivative of the P matrix is

Ṗ = ṀTN−1 −MTN−1ṄN−1 (6.63)

where

Ṁ =

[
J̇22 − J̇33 −J̇12 J̇13
J̇12 J̇33 − J̇11 −J̇23

]
(6.64)

and

Ṅ =

[
Ṅ11 Ṅ12

Ṅ21 Ṅ22

]
(6.65)

Ṅ11 = 2(J22 − J33)(J̇22 − J̇33) + 2J12J̇12 + 2J13J̇13 (6.66)

Ṅ12 = J̇12(J11 + J22 − 2J33) + J12(J̇11 + J̇22 − 2J̇33)− J̇13J23 − J13J̇23 (6.67)

Ṅ21 = Ṅ12 (6.68)

Ṅ22 = 2J12J̇12 + 2(J11 − J33)(J̇11 − J̇33) + 2J23J̇23 (6.69)

Equations 6.58 and 6.59 combined with the initial relative equilibrium of the gyrostat-satellite
fully define the transition from the initial relative equilibrium to a relative equilibrium on
the target COMET.

In summary, the steps executed to accomplish the transition maneuver are listed below:

1. Prior to the start of the maneuver, Eqs. 6.29 and 6.54 are used to calculate the polyno-
mial coefficients defining the values of pcmd, ṗcmd, and p̈cmd to command throughout
the maneuver.

2. At each time step during the maneuver,

(a) The values of pcmd, ṗcmd, and p̈cmd are calculated based on the polynomial coef-
ficients.

(b) Equation 6.59 is used to calculate the ω̇po command.

(c) Equation B.1 is used to calculate the internal torques to apply to the rotors.
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Table 6.2: Key parameters used in the example simulation of a gyrostat-satellite transitioning
between two relative equilibria on different COMETs

Parameter Value
θ1(0) -36◦

θ2(0) -36◦

θ3(0) 1.0
ho2(0) 0 Nms
θ1(T ) -54◦

θ2(T ) -54◦

θ3(T ) 1.0
ho2(T ) 0 Nms
T 1.2 orbits
ṡmax 0.1◦/s
s̈max 0.001◦/s

6.2.4 Example Simulation

The purpose of this section is to present the results of the numeric simulation of a gyrostat-
satellite executing a transition maneuver between relative equilibria on different COMETs.
An example gyrosat-satellite is simulated. The principal moments of inertia of the gyrostat-
satellite are provided as Gyrostat-Satellite I in Table 5.3. A numeric simulator (presented
in Appendix A) simulates the rotational dynamics of the gyrostat-satellite.

Table 6.2 summarizes the key parameters for the example simulation. The first four param-
eters (θ1(0), θ2(0), θ3(0), and ho2(0)) define the initial conditions of the simulations, and thus
the initial relative equilibrium. The fifth through eighth parameters (θ1(T ), θ2(T ), θ3(T ),
and ho2(T )) define the target relative equilibrium. The parameters θ1, θ2, and θ3 define the
relative equilibrium attitude of the gyrostat-satellite using Algorithm 4.1. The parameter ho2
affects dynamic quantities such as the relative angular momentum vector. The parameter T
defines the duration of the transition from the initial to the target COMET. The final two
parameters (ṡmax and s̈max) define the slew profile used to transition to the target relative
equilibrium once the target COMET has been reached. The parameters ṡmax and s̈max de-
fine the maximum s velocity and the maximum s acceleration along the COMET during the
transition maneuver, respectively.

Figures 6.11 through 6.19 present the results of the simulation. Figures 6.11 and 6.12 depict
the paths of the principal reference frame basis vectors on the unit sphere fixed in the orbital
reference frame. Each figure consists of four sub-figures that each give a three-dimensional
view of the unit sphere from a particular vantage point defined by the azimuth α and elevation
ε angle noted above each view. Figure 6.11 shows the views from the +~o3 hemisphere, and
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Figure 6.12 shows the views from the −~o3 hemisphere. The paths of ~p1, ~p2, and ~p3 are shown
as solid red, blue, and green curves on the surface of the unit sphere, respectively. The
paths of ~p1, ~p2, and ~p3 through the complete initial COMET are shown as dotted red, blue,
and green curves on the surface of the unit sphere, respectively. The paths of ~p1, ~p2, and ~p3
through the complete target COMET are shown as “dash-dot”-ed red, blue, and green curves
on the surface of the unit sphere, respectively. Figure 6.13 shows the path of the vector part of
the attitude quaternion throughout the transition maneuver. The green curve represents the
path over the complete initial COMET. The red curve represents the path over the complete
target COMET. The green and red circles mark the initial and final attitudes of the gyrostat-
satellite, respectively. The blue curve represents the path taken by the gyrostat-satellite to
transition from the initial relative equilibrium to the target relative equilibrium. Figure 6.14
is a plot of the time history of the components of the attitude quaternion representing the
rotation from the orbital reference frame to the principal reference frame on the abscissa
and the elapsed simulation time on the ordinate. The vector components of the attitude
quaternion (q1, q2, and q3) are shown as blue, green, and red curves, respectively, and the
scalar component (q4) is shown as a cyan curve. Figure 6.15 is a plot of the time history
of the components of the angular velocity of the principal reference frame with respect to
the orbital reference frame in the principal reference frame on the abscissa and the elapsed
simulation time on the ordinate. The components along ~p1, ~p2, and ~p3 are shown as blue,
green, and red curves, respectively. The values of the products of inertia expressed in the
orbital reference frame during the simulation are shown in Figure 6.16. Figure 6.17 shows the
time history of the total system angular momentum expressed in the orbital reference frame
(ho). The time history of components of the relative angular momentum vector expressed
in the principal reference frame (hs) are shown in Figure 6.18. Figure 6.19 shows the time
history of the internal torque vector expressed in the principal reference frame (gs).

The three-dimensional figures (Figures 6.11 through 6.13) show that both the initial and
target COMETs are closed-curves in SO(3). These figures also distinctly show the two phases
of the transition maneuver. The gyrostat-satellite first transfers from the initial COMET to
the target COMET, and then travels along the target COMET to reach the target relative
equilibrium attitude. The time histories of the system parameters (Figures 6.14 through
6.19) show that the gyrostat-satellite reaches a relative equilibrium because all of the curves
are constant over the last 0.02 orbits of the simulation with the internal torques dropping to
zero. During the transition to the target COMET, J13 is zero, J23 varies, and the components
of the system angular momentum vector expressed in the orbital frame vary. The value of J13
remains zero because the chosen boundary conditions required no pitch system momentum
adjustment. The profile of J23 during the transition to the target COMET adjusts the yaw
system angular momentum from its intitial value to the targeted final value. As would be
expected while traversing the target COMET, J13 is zero, J23 is constant, and the components
of the system angular momentum vector expressed in the orbital frame are constant. The
time history of the internal torques (Figure 6.19) clearly shows the transitions between the
“ramp-up,” “coast,” and “ramp-down” phases of the transition maneuver along the target
COMET as discontinuities in the curves.
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Figure 6.11: Four isometric views from the +~o3 hemisphere of the paths of the principal
frame basis axes on the unit sphere fixed in the orbital reference frame during a transition
between two relative equilibria on different COMETs
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Figure 6.12: Four isometric views from the -~o3 hemisphere of the paths of the principal frame
basis axes on the unit sphere fixed in the orbital reference frame during a transition between
two relative equilibria on different COMETs



M. VanDyke Chapter 6. Attitude Transitions Between... 114

Figure 6.13: Path in the configuration space of the vector part of the attitude quaternion
(~qpo) of a transition between two relative equilibria on different COMETs overlaid on the
COMET path

Figure 6.14: Components of the attitude quaternion (q̄po) during a transition between two
relative equilibria on different COMETs
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Figure 6.15: Components of the angular velocity of the princpal reference frame with respect
to the orbital reference frame expressed in the principal reference frame (ωpo) during a
transition between two relative equilibria on different COMETs

Figure 6.16: Products of inertia expressed in the orbital reference frame (J12, J13, and J23)
during a transition between two relative equilibria on different COMETs
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Figure 6.17: Components of the system angular momentum vector expressed in the orbital
reference frame (ho) during a transition between two relative equilibria on different COMETs

Figure 6.18: Components of the relative angular momentum vector expressed in the principal
reference frame (hs) during a transition between two relative equilibria on different COMETs
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Figure 6.19: Components of the internal torque vector expressed in the principal reference
frame (gs) during a transition between two relative equilibria on different COMETs

6.2.5 Limitations of the Proposed Method

The proposed method to transition between relative equilibria residing on different COMETs
has been shown to be viable for slow transitions between “neighboring” non-extrema relative
equilibria. The computational complexity of the method is sufficiently low to allow “on-
board” implementation on standard radiation-hardened flight computers.

However, the proposed method is not a global solution to the problem of transitioning be-
tween relative equilibrium attitudes. It also requires careful selection of inputs to ensure a
physically realizable transition is determined. The boundary conditions used in the calcu-
lation of the product of inertia time histories guarantee that target products of inertia and
system momentum are reached, but do not guarantee that a particular relative equilibrium
attitude is reached. Analysis of many simulation results show that the proposed method
generally works for slow transitions between “neighboring” relative equilibrium that are not
at extrema points of the physically realizable products of inertia.

A simple example of transition on which the proposed method would fail is when the initial
and target relative equilbria have the same product of inertia values. The calculation of the
time histories of the products of inertia via the proposed method would result in a trivial
solution where the values are constant throughout the transition time, which would have the
gyrostat-satellite remain at the initial relative equilibrium.



M. VanDyke Chapter 6. Attitude Transitions Between... 118

Another limitation of the proposed method is that the process used to solve for the poly-
nomial coefficients provides no explicit guarantee that the time histories of the products of
inertia are physically realizable. The values in the time histories may exceed the physical
minimum and maximum values for products of inertia especially when either the initial or
target product of inertia values are near those limits or when the commanded transition time
is relatively short.

6.3 Summary

This chapter investigated transitions between relative equilibria using internal torque ac-
tuation, which is a topic that has received little attention in the literature. The problem
of transitioning a gyrostat-satellite from an initial relative equilibrium to a desired target
relative equilibrium was broken into two sub-problems:

1. Transitions between two relative equilibria that reside on the same COMET, and

2. Transitions between relative equilibria that reside on different COMETs.

It was shown that transitions between relative equilibria on the same COMET may be
straight-forwardly accomplished by traversing along the COMET. An open-loop control law
was presented that transitions a gyrostat-satellite from an initial relative equilibrium to a
target relative equilibrium on the same COMET. Results from a numeric simulation of a
gyrostat-satellite executing a transition maneuver verified the efficacy of using the COMET
to execute the transition.

A method to transition a gyrostat-satellite from an initial relative equilibrium to a desired
target relative equilibrium that resides on a different COMET was developed. The proposed
method broke up the maneuver into two phases. During the first phase, the gyrostat-satellite
transitions from the initial relative equilibrium to a relative equilibrium residing on the
same COMET as the target relative equilibrium. The transition to the target COMET is
accomplished by first determining a time history for the products of inertia that correctly
adjust the system angular momentum. The time histories of the products of inertia are
mapped to a continuous attitude trajectory that begins at the initial relative equilibrium
attitude, takes a path that correctly adjusts the system angular momentum, and ends at
a relative equilibrium attitude on the target COMET. The second phase of the maneuver
transitions the gyrostat-satellite along the COMET to the target relative equilibrium. The
second phase is executed using the open-loop control law developed to transition between
relative equilibria on the same COMET. Results from a numeric simulation of a gyrostat-
satellite executing a transition maneuver were presented, and verified the efficacy of the
proposed method. Finally, some limitations of the transition method were discussed.



Chapter 7

Summary

This dissertation investigated the dynamics and control of a gyrostat-satellite. A thorough
and targeted review of the literature on the topic identified a significant gap in the published
work. The majority of the published work investigated the determination of relative equilib-
rium attitudes and the stability characteristics of relative equilibria. The literature review
only identified one published work that investigated transitions between relative equilibria
(Anchev1).

7.1 Summary

The focus of this dissertation was the investigation of attitude transition maneuvers of a
gyrosat-satellite between relative equilibria. First, the equations of motion for a gyrostat-
satellite were derived, and served as foundation upon which the rest of the presented work
was built. Next, the concept of relative equilibria was introduced. A significant portion
of the presentation on relative equilibria largely followed that of already published work.
This included the definition of relative equilibrium, the determination of relative equilib-
rium attitudes, and the determination of sufficient conditions for the stability of a relative
equilibrium. A detailed investigation into the basis vector directions (principal and orbital)
that admit relative equilibrium attitudes was performed and represents a new contribution
to the literature. Algorithms were developed to determine admissible relative equilibrium
attitudes when the set is limited to those attitudes with a single basis vector constraint. The
investigation led to six insights:

� For each possible ~o1 on the unit sphere fixed in the principal reference frame there are
two possible relative equilibrium attitude separated by rotations of 180o about ~o1.

� For each possible ~o2 on the unit sphere fixed in the principal reference frame there are
four possible relative equilibrium attitude separated by rotations of 90o about ~o2.

119
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� For each possible ~o3 on the unit sphere fixed in the principal reference frame there are
two possible relative equilibrium attitude separated by rotations of 180o about ~o3.

� The value of β (Eq. 4.57) defines the regions on the unit sphere fixed in the orbital
reference frame in which a principal basis vector direction admits at least one relative
equilibrium attitude.

� If values the moments of inertia of the gyrostat-satellite and the direction of the prin-
cipal basis vector are such that ‖βγ‖ ≤ 1, then there exist two admissible relative
equilibrium attitudes.

� The requirement ‖βγ‖ ≤ 1 is always satisfied if ~pi is aligned with an intermediate axis
of inertia of the gyrostat-satellite.

The remainder of the dissertation was dedicated to the investigation of a new concept termed
the constant orbital momentum equilibrium trajectory or COMET, which is a new contri-
bution to the literature. The primary challenge in transitioning between relative equilibria
is the adjustment of the system angular momentum so that upon reaching the target rela-
tive equilibrium attitude the gyrostat-satellite will satisfy all the requirements for a relative
equilibrium. The terminal system angular momentum is a function of the attitude trajec-
tory taken during the transition maneuver. The COMET represents (somewhat literally) a
“loop”-hole that may be exploited for a subset of possible transition maneuvers. COMETs
are trajectories along which a gyrostat-satellite may travel and maintain a constant system
angular momentum vector expressed in the orbital reference frame. The requirements for
an attitude trajectory to be a COMET were formally defined. A method to map a COMET
was developed and presented. Maps generated for several example COMETs were used to
show that COMETs are (generally) continuous, one-dimensional, closed curves in SO(3).
Visualizations of “families” of COMETs were presented and discussed in detail. The vi-
sualizations indicated the existence of critical points on a small subset of COMETs that
represent either isolated relative equilibrium attitudes or points furcation of the COMET. It
was shown that the critical points correspond to points in SO(3) where the dimensionality
of the nonholonomic constraint increases from one to two.

Finally, the impetus for this dissertation, the significant gap in the literature, was addressed
through the development and validation of open-loop control laws that transition a gyrostat-
satellite from an initial relative equilibrium to a target relative equilibrium. The transitions
were split into two categories: transitions between relative equilibria on the same COMET
and transitions between relative equilibria on different COMETs. For transitions between rel-
ative equilibria on the same COMET, the open-loop control law commands internal torques
that result in the gyrostat-satellite traversing the COMET in the direction of the target
relative equilibrium until the target relative equilibrium is reached. For transitions between
relative equilibria on different COMETs, a two-phase method was developed. During the
first phase, the gyrostat-satellite transfers from the initial relative equilibrium to a relative
equilibrium that resides on the same COMET as the target relative equilibrium. For this
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transition, the open-loop control law commands internal torques that result in the gyrostat-
satellite following an attitude trajectory that adjusts the system angular momentum to match
the target relative equilibrium value. During the second phase, the gyrostat-satellite travels
along the COMET to reach the target relative equilibrium attitude using the open-loop con-
trol law designed to transition between relative equilibria on the same COMET. The results
of numeric simulations of a gyrostat-satellite executing both categories of transitions were
presented to validate the efficacy of the control laws.

The following is a list of the new and significant contributions to the field of research put
forward by this dissertation.

1. Detailed investigation into the basis vector directions (principal and orbital) that admit
relative equilibrium attitudes

2. Identification and definition of the concept of a COMET

3. Development of a method to map the extent of a COMET

4. Presentation of visualizations of “families” of COMETs

5. Identification, definition, and determination of critical points that occur on a small
subset of COMETs

6. Development and validation (via numeric simulation) of an open-loop control law to
transition between relative equilibrium residing on the same COMET

7. Development and validation (via numeric simulation) of an open-loop control law to
transition between “neighboring” relative equilibrium residing on different COMETs
with non-extrema J23 values

7.2 Recomendations for Further Study

Investigations into transitions between relative equilibria represent a potentially large area for
new and significant contributions related to the dynamics and control of gyrostat-satellites.
This dissertation started to address this area, however there is still significant work yet to
be done.

The open-loop control law developed to transition between relative equilibria on different
COMETs is not a global solution. The development of a global solution would represent a
significant contribution to the literature. There are several avenues of investigation which
may lead to a global solution. These include using other parameterizations for the time
history of the products of inertia, more sophisticated methods for parameter selection, and
nonlinear feedback control methods similar to those developed by Vadali.34 Time and energy
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optimal solutions to transitions between relative equilibria would also represent a significant
contribution.

It was surmised via numerous examples that COMETs are one-dimensional, continuous,
closed curves in SO(3), however it has not been proven analytically. An analytic proof
that COMETs are always closed-curves in SO(3) would be a significant contribution to the
literature.

There is a possibly significant body of work associated with the practical application of
methods and theories developed in this dissertation to active three-axis control of a satellite.
This would include investigations determining the types of satellites and regimes of orbits
for which these results are applicable. Case studies into concepts of operation that utilize
relative equilibria and COMETs to extend mission life via fuel expenditure minimization
would be useful in determining the most practically fruitful areas for further investigation.
It is possible that extensions to the gyrostat-satellite model to include other dynamic effects
such as flexible dynamics, environmental disturbances, and liquid slosh may be necessary.
Additionally, in real engineering systems parameter values are uncertain. The effects of these
uncertainties on the performance of the open-loop control laws needs to be fully investigated.
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Appendix A

Gyrostat-Satellite Simulation

A numeric simulation of the rotational dynamics of a gyrostat-satellite was implemented in
MATLAB®. The state vector used by the gyrostat-satellite simulator is defined

x =
[

(q̄po)T (ωpo)T (hs)
T
]T

(A.1)

where q̄po is the attitude quaternion representing the rotation from the orbital reference
frame to the principal reference frame, ωpo is the angular velocity of the principal reference
frame with respect to the orbital reference frame expressed in the principal reference frame,
and hs is the relative angular momentum vector expressed in the principal reference frame.
The simulation propagates the state vector forward in time using the built-in MATLAB®

function ode45(). The odeset() function is used to set the parameters 'AbsTol' and
'RelTol' to a value of 1.0× 10−12 for all simulations. All other parameters are left at their
default values.

The ode45() function requires as an input a function to calculate the first time derivative
of the state vector. The first time derivative of the state vector is

ẋ =
[ (

˙̄q
po
)T

(ω̇po)T
(
ḣs
)T ]T

(A.2)

Equations used to calculate the first time derivatives of the components of the state vector
are now presented. The first time derivative of q̄po is

˙̄q
po

=
1

2
ω̄po ⊗ q̄po (A.3)

where the binary quaternion operator ⊗ is defined

ā⊗ b̄ =

[
a41− a× a
−aT a4

]
b̄ (A.4)
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The angular velocity vector ωpo can be calculated using

ωpo = ωpi − ωoi = ωpi + ωoo2 (A.5)

The first time derivative of ωpo is

ω̇po = ω̇pi + ωoȯ2 = ω̇pi − ωo (ωpo)× o2 (A.6)

Solving Eq. 3.62 for ω̇pi results in

ω̇pi = I−1
(

3ω2
oo
×
3 Io3 −

(
ωpi

)× (
Iωpi + hs

)
− gs

)
(A.7)

Plugging Eq. A.7 into Eq. A.6 results in

ω̇po = I−1
(

3ω2
oo
×
3 Io3 −

(
ωpi

)×
h− gs

)
− ωo (ωpo)× o2 (A.8)

The first time derivative of hs is

ḣs = gs (A.9)

The algorithm used to calculate the first time derivative of the state vector is presented in
Algorithm A.1. The first three inputs of the algorithm (q̄po, ωpo, hs) are the components of
the state vector. The fourth input gs is the output of the open-loop control law presented
in Appendix B. The fifth input ωo is the magnitude of the rate of rotation of the orbital
reference frame (or, equivalently the mean motion of the orbit of the gyrostat-satellite).

Input : q̄po, ωpo, hs, gs, ωo
Output: ˙̄q

po
, ω̇po, ḣs

1 oo2 ←
[

0 1 0
]T

;

2 oo3 ←
[

0 0 1
]T

;

3 o2 ← R(q̄po)oo2;
4 o3 ← R(q̄po)oo3;
5 ωpi ← ωpo − ωoo2;
6 h← Iωpi + hs;

7 ˙̄q
po ← 1

2
ω̄po ⊗ q̄po;

8 ω̇po ← I−1
(
3ω2

oo
×
3 Io3 − (ωpi)

×
h− gs

)
− ωo (ωpo)× o2;

9 ḣs ← gs;

Algorithm A.1: Algorithm to calculate the first time derivative of the state vector



Appendix B

Open-Loop Control Law

The algorithms developed in Chapter 6 calculate attitude trajectories that transition a
gyrostat-satellite between relative equilibria. The attitude trajectories are time histories
of the attitude, angular velocity, and angular acceleration of the principal reference frame
with respect to the orbital reference frame. A gyrostat-satellite executes the transition via
the application of internal torques to the rotors. The functional relationship between the
internal torque vector and the attitude trajectory is given by Eq. A.8 (repeated below for
conviencence).

ω̇po = I−1
(

3ω2
oo
×
3 Io3 −

(
ωpi

)×
h− gs

)
− ωo (ωpo)× o2

Solving Eq. A.8 for the internal torque vector gs results in

gs = −I
(
ω̇po + ωo (ωpo)× o2

)
−
(
ωpi

)×
h + 3ω2

oo
×
3 Io3 (B.1)

Equation B.1 is an open-loop control law that drives the gyrostat-satellite from the initial
state along the attitude trajectory defined by ω̇po and ωpo.
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