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An Activity-Based Energy Demand Modeling Framework for Buildings:

A Bottom-Up Approach

Rajesh Subbiah

(ABSTRACT)

Energy consumption by buildings, due to various factors such as temperature regulation,

lighting, poses a threat to our environment and energy resources. In the United States,

statistics reveal that commercial and residential buildings combined contribute about 40

percent of the overall energy consumption, and this figure is expected to increase. In order

to manage the growing demand for energy, there is a need for energy system optimization,

which would require a realistic, high-resolution energy-demand model. In this work, we

investigate and model the energy consumption of buildings by taking into account physical,

structural, economic, and social factors that influence energy use. We propose a novel activity

based modeling framework that generates an energy demand profile on a regular basis for

a given nominal day. We use this information to generate a building-level energy demand

profile at highly dis-aggregated level. We then investigate the different possible uses of

generated demand profiles in different What-if scenarios like urban-area planning, demand-

side management, demand sensitive pricing, etc. We also provide a novel way to resolve

correlational and consistency problems in the generation of individual-level and building-

level “shared” activities which occur due to individuals’ interactions.
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Chapter 1

Introduction

1.1 Motivation

In the United States, most of the energy consumed at homes, offices, schools, industries,

for vehicle transportation, etc comes from the expense of fossil fuels (see Fig. 1.1). In the

recent years, increasing energy demand has intensified the depletion of fossil fuels. This

scenario of fast depleting fossil fuels has driven interest in finding new ways to build a

sustainable environment with efficient energy production(by use of renewable resources),

distribution, and consumption. Towards that end, one of the major technology innovations

currently under way is the possible transformation of electrical grids into smart grid. The

major objectives of smart grids are - (1) Automated demand response (2) Efficient energy

storage and distribution (3) Sustainable energy production. A detailed analysis of smart

1
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grid opportunities and challenges are done in [2]. However, this kind of transformation is

very complex because it requires a major technology shift, heavy investment on equipments,

and people’s participation. Thus, it requires a systematic evaluation of different what-if

scenarios that identify potential areas for improvement and quantify the impact of any energy

policies or strategies. To carry out such analysis we need to develop a modeling framework

that captures the various factors influencing energy consumption at a very fine granularity.

Such a framework is presented in this thesis for residential and commercial buildings, which

account for 40% of the United States total energy consumption. In our modeling framework,

we formulate the energy demand as a function of individual and building level activities.

Our major hypothesis is that every individual or building will follow a schedule of events,

influenced by their demographics. Figure 1.2 shows an example timeline of activities for a

single working individual. At the household level, we identify the energy consuming activities,

associate appliance usage and calculate energy demand based on the appliance energy rating

and duration of activity. We construct the activity-driven dynamic occupancy for commercial

buildings and generate per-building demand profile.
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21%

38%

25%

9%

7%

Coal

Petroleum

Natural Gas

Nuclear

Renewable

Figure 1.1: United States energy usage by source of fuel used. Source: US Energy Informa-
tion Administration [1]

1.2 Residential Buildings

Background and Significance

Twenty-five percent of total energy consumption in the United States is attributable to the

residential sector, and that number is expected to rise due to the increased use of appliances

and electronic devices [3]. This makes the residential sector an important target group for

energy conservation. To analyze any modern energy optimization strategy, accurate energy

demand profiles of residential buildings are an important prerequisite. We need accurate en-

ergy demand forecasting models to understand the feasibility of energy conservation schemes

from the context of individual and household level consumption behavior. Residential elec-

tricity consumption is influenced by physical factors (e.g. buildings, or infrastructure), social
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Personnel Grooming

08:10 - 11:57Office

00:00 - 06:49

Sleeping

13:03 - 16:59Office

20:10 - 21:15

Laundry

12:05 - 12:58

Lunch

07:33 - 07:53

Breakfast

17:03 - 17:36

Shopping

17:38 - 23:59Home

00:00 - 07:53HOME

21:36 - 23:11

Dishwashing

23:18 - 23:59

Sleep

Person Information

Age: 24

Gender: Male

Working: Full-time

Martial Status: Single

Social Interactions

Figure 1.2: Figure shows the timeline of activities for an individual. The modeling framework
formulates the energy demand as a function of individual and building level activities

practices (e.g. everyday routines, social interactions, policy interventions), and economic as-

pects (e.g. market, prices). Thus, it is important to understand these factors by taking

into consideration specific contexts. Identification of these factors and their contribution in

determining the energy demand is critical for finding ways to influence individual behavior

and making them more energy efficient. Therefore, an ideal modeling framework should

generate accurate energy demand profiles of households, dis-aggregated to the level of the
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individual household member by taking into account their social, economic, and behavioral

aspects.

Our Contribution

Several studies [4] [5] have looked at modeling residential energy demand using time use data

by constructing occupancy patterns. However, there has been little published work [6] [7] for

generating energy demand profiles at a detailed household resolution based on the activities

performed in each household. These works do not address the inherent time-use dependence

within a household due to the sharing of activities among the household members. For

example, all household members may be observed to be simultaneously watching TV– a case

in which the energy use due to the television should only be counted once. If one were to

use individual diaries without taking the sharing of the activity into account, the energy

consumption would be counted once for each household member. The national time use

survey only takes into account the activity schedule of the individuals who responded to the

survey; however, all household members contribute to the total energy load for the household.

In order to account for this fact, we propose a detailed demand analysis, dis-aggregated to

the level of the individual household member and the appliances used within an individual

household. We fill this gap by proposing a data driven model which takes into account the

social, behavioral and economic aspects of individuals and household. We achieve this by

building demographic-based individual activity schedules for each household member, while

accounting for the within-household dependence due to shared and coordinated activities.
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We then aggregate the individuals’ activities to generate the per household activity schedule.

We associate the active appliance for each activity in the constructed activity sequence

and generate the energy demand profile for the entire household. We propose a novel way

to resolve correlational and consistency problems in the generation of individual-level and

household level “shared” activities which occur due to household members’ interactions[8].

We then show the applicability of the detailed demand model in making effective policy

decisions like shifting energy intensive activities between peak and off peak hours based on

the adaptability of households.

1.3 Commercial Buildings

Background and Significance

In the United States, commercial buildings are responsible for one-fifth of overall energy

consumption [9]. Recent forecasts from the U.S. Energy Information Administration (EIA)

predict that the commercial sector will be the dominant factor in the increase in energy

demand for the years ranging from 2012 to 2035 [1]. Even under extremely stringent energy

efficiency policies, the EIA estimates the growth rate of energy demand of the commer-

cial sector to be 0.7 percent per year; floor space is expected to increase by one percent

annually[1]. Figure1.3 compares the projected increase in energy demand for the years 2010

through 2035 across different sectors. To manage this rising energy demand, it is of the
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utmost importance to devise new energy policies and strategies that can help to optimize

energy consumption of commercial buildings. Carrying out this kind of optimization requires

a modeling framework that takes into account the various contributing factors that influence

commercial buildings’ energy consumption. Such a model is presented here.

Figure 1.3: Energy use forecast for different sectors. Source: US Energy Information Ad-
ministration [1]

Our Contribution

Several works [10] [11][12] [13] [14] have modeled commercial buildings’ energy consumption.

However, the main objective of these studies was to establish a benchmark metric, like

energy consumed per square foot, and understand what factors influence the benchmark

metric. These works are very essential in comparing the energy efficiency of two or more

buildings of same type. There are also energy-forecasting tools like DOE-2, eQuest which
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simulate the energy consumption of a building based on some pre-configured parameters.

All these works capture the major factors that influence energy consumption based on space

heating, cooling, and lighting equipment. However, these works do not capture realistic

dynamics in consumption across the day that is a result of changing occupancy. We fill

this gap by constructing profiles of synthetic individuals’ visits based on their

day-to-day activity schedule and generating the buildings’ realistic occupancy

rate at regular intervals. In this way, we incorporate how the number of occupants at

any period of time contributes to the rise and fall in building’s energy demand profile. In

addition, we also build a statistical model using the US EIA Commercial Buildings Energy

Consumption Survey data (CBECS) [15]. The statistical model captures all the significant

non-occupancy-related factors that influence the buildings’ energy consumption.

1.4 Salient features

Specific salient features of this thesis are as follows:

• A highly dis-aggregated energy demand model capturing the demand profile at person

and household level

• A highly scalable integrated demand modeling framework that accounts for social,

behavioral and economical aspects of individuals and buildings

• We propose novel statistical based techniques to account for the within-household
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activity dependency

• We propose a novel way to associate activities with multiple appliances and generate

energy demand

• A high resolution energy demand model for commercial buildings which accounts for

people’s visit and interaction

• A software modeling framework to conduct and evaluate any energy demand modeling

study

1.5 Organization of the thesis

In Chapter 2 and 3, we present our residential and commercial buildings energy demand

modeling framework respectively. We start with examining the relevant prior works in the

respective areas and summarize the different datasets used by the modeling framework.

This is followed by a detailed description of our modeling methodology. We then present our

experimental results and each chapter concludes by summarizing our findings. In addition,

in chapter 2, we provide an illustrative case study to smooth out the load curve.

In Chapter 4, we describe our highly scalable, modular and extensible energy demand mod-

eling software framework. The chapter begins with exploring the different design objectives

required to be incorporated in a flexible and modular framework. Then, it describes our

software system in detail by explaining the design and implementation. Finally, the chap-
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ter presents a web-based energy demand modeling prototype application used to conduct,

analyze demand patterns and evaluate various What-If scenarios.

In Chapter 5, we summarize the different contributions made by this thesis and discuss the

possible ways to extend this work.



Chapter 2

Residential Sector

In this chapter1, we present an overview of our modeling methodology used to generate the

demand profile for residential buildings. We construct the demand profile for Washington

D.C. data and present results of our experiments which verifies the correctness of our model.

We also present an illustrative application which uses our generated energy demand profile

for performing peak-demand scaling.

2.1 Prior Works

The prior works in residential energy demand modeling can be broadly categorized into two

categories: approaches that model energy consumption at an aggregate level (“top-down”

1An extended abstract of this chapter appears in the proceedings of IEEE Innovative Smart Grid Tech-
nologies Conference (ISGT) 2013 [16]

11
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approaches) and others that model residential energy demand profiles based on household

activities and occupancy patterns (“bottom-up approaches”).

The top-down approach models energy consumption as a function of macroeconomic factors,

e.g. price and climate, using techniques such as regression over historical averages [17] [18]

[19]. These approaches model the effect of long-term changes and macro (system-level) socio-

economic and ecological variables on energy consumption. Because this methodology utilizes

only aggregate macro-level data, it is relatively simpler to develop.

Bottom-up approaches [20] [21] [22] [23] study the impact of demographics on energy con-

sumption. These works observe that electricity consumption depends heavily on ownership

of energy intensive appliances, which, in turn depends on income and the size and compo-

sition of the household. A bottom-up approach then estimates energy consumption at the

regional and national levels by extrapolating from a representative set of individual house-

holds. Work by [24] provides a fairly exhaustive review of the pros, cons and applicability

of various modeling techniques for residential energy consumption.

In this thesis for modeling residential energy consumption, we use a bottom-up approach to

calculate the per-household energy consumption based on the household members’ activity

sequence. Using the American Time Use Survey Data [25], we model activity patterns

using individual and household level demographic covariates. We then use the parameters

obtained from fitting our models to the ATUS data to create new activity diaries for a

synthetic population based upon its demographic covariates. We match these activities

to the requisite appliances (and their associated energy consumption) to create an energy
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demand profile for each household.

2.2 Datasets Used

This work uses following data sets:-

1. American Time Use Survey (ATUS):- In this work, to derive the realistic ac-

tivity and time schedules of the people we use the American Time Use Survey [25].

The survey contains 24-hour period activity dairies for 13,260 respondents across the

US with diversified demographics. Each activity in the survey data embeds activity

start time, end time, location, and participating people information. In addition to it,

the survey data also contains respondents demographic information (like age, gender,

marital status, work status etc). However, for a given household, the survey collects

information from only one household member and thus we do not have the complete

activity schedule information at the household level.

2. D.C. Synthetic Population:- To construct the demand profile for the range of an

urban city, we use a synthetic data representing Washington D.C. region. The synthetic

population is derived from the data gathered from the US Census, the National House-

hold Travel Survey (NHTS), Dun and BradStreet, Land Use, and Navtaq. Details of

the methodology can be found in [26, 27]. The synthetic population is statistically

representative of the true population of Washington DC at a block group level in the

US Census. The synthetic population is embedded with individual and household



R Subbiah Chapter 2. Residential Sector 14

level demographic information such as age, gender, race of individuals, and type, size,

income of the household.

3. US EIA’s Residential Energy Consumption Survey (RECS):- We use the

EIA Residential Energy Consumption Survey- 2009 (EIA-RECS) data to estimate the

energy consumed in the household. EIA-RECS is a national survey which collects

energy related information from different types of housing units across the country

and provides estimates of the energy consumption for the entire United States. We use

this dataset to obtain housing unit specific information such as square footage, floor

area, wall type etc. and overlay it on the houses in DC. We use the parameters such as

household size, household type, household income and regional information to match

the synthetic household in DC with the EIA-RECS household.

2.3 Methodology

In this section, we describe our modeling approach for generating an energy demand pro-

file for the synthetic population representing the Washington D.C. area [27] [26]. Similar

characteristics are also available from the ATUS data along with energy related activities.

After matching demographics of the individuals in ATUS and the synthetic population, in-

formation pertaining to the energy activities in ATUS data is overlaid on to the synthetic

individuals. Similarly EIA’s Residential Energy Consumption Survey (EIA-RECS) [28] was

used to assign building characteristics and appliance information to the synthetic individuals’
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home locations. The block diagram shown in Figure 2.1 summarizes our overall methodology.

Each rectangular box in the diagram represents the input data sets and each rounded rectan-

gular box represents a module in our modeling framework. Notations used are summarized

in Table 2.1.

Symbol Denotes
Hi Synthetic household i drawn from the synthetic population
Pij Synthetic household member j from Hi

m Number of persons in Hi

Xij Person Pij’s demographic feature set of length n
Ak Household activity k

Table 2.1: Notations used in residential buildings energy demand model

 

 

 

 

 

ATUS Survey - 

Individual's daily 

activity schedule 

EIA-RECS Survey - 

Building characteristics 

and appliance information 

Extrapolating 

characteristics from 

survey data on to 

synthetic data 

Synthetic household 

level activity sequence 

generation 

Activity-appliance 

association and 

demand profile 

generation 

Statistical models for 

activity sequence 

generation 

Appliance energy rating 

from EIA  

Synthetic population-

Demographic information 

Energy 

demand profile 

Figure 2.1: Residential energy demand modeling framework

We split all household activities into two major categories and represent the total energy

consumption of a household as

ETotal = EActive + EPassive,
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where EActive is the energy consumed due to appliance usage from individual or shared

activities, e.g. the energy consumed when a household member takes a shower or uses the

dishwasher. These activities are mainly a function of the household members’ daily schedule.

For example a person who is working full time will have a completely different schedule of

activities compared to a person who is non-working. Similarly a household with children

will have a different set of activities and their time of occurrence will differ from a household

that has no children.

EPassive is the energy consumed for general maintenance of the house, such as space heating,

space cooling, and water heating. This usage mainly depends on the climate and character-

istics of the house, namely the type and size of housing unit, fuel used, insulation, wall type

etc. and is mostly independent of activities of the residents.

2.3.1 EActive Energy Demand Model

Activity Sequence Generator

The ATUS data consists of the activity diaries of 13, 260 respondents: a 24 hour period

detailed description of activities (duration, location, etc.) and the respondent’s demographic

details. The major limitation of the ATUS data is that it represents the time use pattern

of the survey respondent only and not all members of the household. In order to construct

a household’s energy usage level, we first model each member’s daily activity schedule by

following the steps given below:
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1. Based on [29], we first identify the highest energy consuming activities in a typi-

cal household. These are summarized in Table 2.2 and appear in the calculation of

EActive. Other common but less energy-intensive activities are categorized as well but

not included in the calculation of EActive, such as bathing, work, shopping, etc.

2. Eactive is further refined as follows:

(a) Shared activities: These are the activities in which appliance usage is generally

shared among all the household members. All shared activities except cooking,

are assumed to occur at most once daily.

(b) Independent activities: These are the activities in which the appliance usage is not

shared. These activities can occur multiple times in a day and are independent

for every household member. Sometimes, these activities can also become shared

based on the appliance count. For example, if a household has a single TV,

multiple individuals simultaneously watching the same TV constitutes a shared

activity. If the household has multiple TV sets, it may be an independent activity.

Activity Name Activity Type
Laundry Shared
Dishwashing Shared
Computer usage Independent
Watching TV Shared/Independent
Cooking Shared
Interior Cleaning Shared
Checking Email Independent

Table 2.2: Energy Intensive Activities from ATUS
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3. To assign an activity sequence to each synthetic individual, we match them with an

ATUS survey respondent based upon the similarity of their demographics. Our main

objective is to partition the survey data set into smaller data sets defined by the set

of n demographic variables represented as ~X = (X1...Xn), so that we can overlay the

activity sequence of the ATUS survey respondents on the synthetic population. We use

the CART algorithm [30] to construct a binary decision tree. Initially, the complete set

of surveyed people are represented as root node of the tree and demographic variables

~X are the splitting variables. At each stage, the algorithm tries to split the node into

two groups based on the best possible splitting variable. The algorithm identifies the

splitting variables after performing an exhaustive search of all possible combinations.

The process is recursive in nature i.e. each node can be split into two child nodes and,

in turn, each of these child nodes may themselves be split, forming additional child

nodes. The final constructed tree uses marital information as the dependent variable

and rest of the variables (gender, employment status, etc.) are used as independent

splitting variables.

4. Assigning independent activities

(a) Each household member in the synthetic population is assigned a leaf node based

on his/her demographics variables

(b) We select a ATUS survey respondent at random from that leaf and assign the

activity pattern of the ATUS survey respondent to the synthetic individual.
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5. Assigning shared activities: Interior Cleaning, Dishwashing and Laundry

Only a few people explicitly list activities as “shared” in the ATUS data. Since we have

detailed information for only one person in the household, it is ambiguous whether an

activity was not performed at all or another household member performed the shared

activity and it did not get listed in the survey. Thus, to generate the shared activity

sequence for synthetic households, we need to know whether any person in household

Hi consisting of people P(1,...,m) have performed a particular activity. If a household has

done the shared activity, then we need to find out the most likely time period in which

the shared activity was performed and by whom it was performed. The following steps

illustrate our approach to assigning a shared activities to households:

(a) For each household member, Pij in Hi, we calculate the probability µijk, which

represents that member Pij with the demographic variables ~Xij performs activity

k. That is, for Aijk an indicator which takes value one if person j in household i

performs activity k and 0 otherwise, we estimate µ̂ijk = Pr(Aijk = 1| ~Xij) using

Logistic regression [31]. The next section explains the Logistic regression in detail.

(b) After calculating µ̂ijk, we used the inclusion and exclusion principle [32] to cal-

culate the probability, µ̂ik, that someone in the household performed activity k.

That is, we assume that each individual independently decides on a given day

whether or not they will perform activity k. Then, the probability that household

i performs activity k is equal to the probability that at least one person in the

household decides to do the activity.
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(c) We then designate household i as having performed activity k with probability

µ̂ik.

(d) If the activity k has occurred in household i, i.e. Aik = 1. We then determine the

time at which the activitiy has taken place by dividing the day into 48 time slots

and for each time slot t

i. For each household member, Pij in Hi, we calculate the probability that Pij

with the demographic variables ~Xij performs activity k during the time slot

t using Logistic regression [31].

ii. After calculating the probability for each household member individually, we

again use the probability inclusion and exclusion principle [32] to calculate

the probability µ̂ikt that the household performed shared activity k during

the time slot t.

(e) Because we calculate this for each time slot independently, some adjustments are

required as these ‘probabilities’ do not necessarily add to one. As stated, we

assume that these shared activities occur at most once per day, so given that the

activity occurred, we must select exactly one of the time slots in which to place the

activity. After calculating the probabilities for all the time slots independently,

we re-normalize them so that they add to one, i.e. µ̇ikt = µ̂ikt∑48
t=1 µ̂ikt

. We then select

time slot t with probability µ̇ikt.

We perform the above steps for the all shared activities except cooking and gen-

erate the shared activity sequence for each household present in the synthetic
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population.

Cooking

Unlike other shared activities, cooking can occur multiple times in a day. To model

this behavior our main objective is to estimate the number of cooking events that

can possibly occur in a household Hi. For each household member, we calculate the

expected number of cooking events performed by that Pij, given covariates, using

Poisson regression [33] as described in Section 2.3.1.

6. For each household we aggregated the independent activity sequence of all the house-

hold members and the shared activity sequence to get the complete activity sequence

of the household.

Logistic Regression

As described in the earlier section, given an indicator for an activity Aijk (which takes value 1

if activity k was performed by person j in household i and 0 otherwise) and an n dimensional

set of demographic variables ~Xij that relate to person ij, our objective is to determine the

probability of that person performing the activity,

Pr(Aijk = 1| ~Xij) =
1

1 + e ~Xijβ
.
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To obtain the estimated coefficients,

β̂k = maxβk
∏
i,j

(πijk)
A∗

ijk(1− πijk)1−A
∗
ijk ,

where πijk = logit−1( ~X∗T
ij βk), we fit a logistic regression to the survey data. The (*) nota-

tion indicates survey data; unstarred covariates and outcomes refer to synthetic population

members.

Then, for each household member in the synthetic population, we matrix multiply his/her

demographic covariates by the model coefficients to obtain the probability that he/she per-

formed action k. That is

µ̂ijk = Pr(Aijk = 1| ~Xij) = logit−1( ~XT
ij β̂k).

We follow a similar approach for calculating the probability of doing an activity for a par-

ticular time slot by calculating the regression coefficients for that time slot separately.

As such, there are many well tested software implementations available for estimating this

model. We use logistic regression for several reasons. One, it is a well established technique

for modeling binary data given covariates. Two, the logit link function maps a variable in R

(i.e. XT
ijβ) to [0, 1] and because of this property, logistic regression provides an elegant way

to describe relationship between demographic variables and the probability of occurrence of

an activity.
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Rationale:- We use logistic regression for several reasons. Logistic regression is a well

established technique for modeling binary data given covariates. As such, there are many

well tested software implementations available for estimating this model. The logit link

function maps a variable in R (i.e. XT
ijβ) to [0, 1]. Because of this property, logistic regression

describes relationship between demographic variables to the probability of occurrence of an

activity elegantly.

Poisson Regression

We use Poisson regression to fit the number of cooking events performed by individuals in

household Hi. In this case, the dependent variable is an integer (the number of cooking events

performed by each household member). Poisson regression relates the set of demographic

covariates to this integer value via the model Cij ∼ Pois(µij) and log(µij) = Xijβ. By fitting

a Poisson regression, we obtain coefficient estimates, β̂ and from these we sample the number

of cooking events for each individual as Pois(exp{Xijβ̂}). To resolve any discrepancies

among the household in terms of the total number of cooking events that take place by day,

we simply select the maximum number of individual cooking events to be the total number

for the household. This is equivalent to assuming that the person who cooked the most

times over the day was present at every cooking event. Following this procedure, we use our

Logistic approach to find the times at which these events occur.
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Associating Appliance usage and Energy Demand Calculation

After generating the per household activity sequence, the next major step is to identify and

associate appliances to each activity Ak. We assume that these are the appliances which

get utilized whenever activity Ak occurs. Using the appliance standard wattage rating from

[29] and the duration over which it is active, we estimate the energy consumption using the

formula

ApplianceWattage ∗ ApplianceActiveDuration = EnergyConsumed

Activity Name
Appliance Used Energy rating Usage

(watts)
Laundry Washer 234 0.45
Laundry Dryer 670 0.55
Dish washing Dishwasher 1200 1
Cooking Microwave 500 .5
Watching TV Television 220 1
Computer Usage Computer 160 1

Cooking(Morning)
(Stove, Coffee maker (.35,.05
Microwave, Toaster 865 .5, .05
Oven, Blender) 0.0, 0.05)

Cooking(Night)
(Stove, Coffee maker (.35,.05
Microwave, Toaster 940 .45, .05
Oven, Blender) .05, 0.05)

Table 2.3: Activity-Appliance usage and energy rating information

Sometimes, we may encounter an activity which uses multiple appliances. In this scenario,

the energy consumed is the sum of energy consumed by each appliance. Also, while calculat-

ing the energy for each individual appliance, we need to disaggregate the activity duration

to individual appliance level. Since, we do not have the necessary information on this, we
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use a parameter called “usage fraction” which gives a rough estimate of the duration a single

appliance is active. For example, if laundry activity takes 80 minutes and it uses washer

and dryer; we associate the usage fraction as 0.45 and 0.55 respectively. This means that in

80 minutes, washer is used for 36 minutes and dryer for 44 minutes. This process becomes

difficult for cooking activity because different household use different set of appliances for

cooking. Also, the set of appliances varies based on what meal is cooked (breakfast, lunch

or dinner). To approximately estimate the energy consumed due to the cooking activity, we

associate a generic set of appliances based on the cooking activity time as shown in Table

2.3.

2.3.2 EPassive Energy Demand Model

We use the EIA Residential Energy Consumption Survey- 2009 (EIA-RECS) data to estimate

the EPassive energy consumed in the household. We derive housing unit specific information

such as square footage, floor area, wall type etc. from the survey data and overlay it on

the synthetic houses in DC. We use the parameters such as household size, household type,

household income and regional information to match the synthetic household in DC with the

EIA-RECS household. Once a match with similar characteristics is found, the specifics of the

housing unit information available from EIA-RECS is overlaid on the synthetic household.

This allows us to make realistic estimates of the EPassive energy consumption.



R Subbiah Chapter 2. Residential Sector 26

Space Heating and Cooling

Energy consumed due to space heating and cooling depends on climatic conditions, fuel

used, type of heating/cooling equipment used, etc. To approximately calculate the energy

consumed due to this activity we pick a day from winter season and gather the hourly weather

data for that day from [34]. For each synthetic household unit we derive (a) S: Average

square footage used for space heating (b) Tp: Household temperature when someone is at

home during the day (c) Ta: Household temperature when no one is at home during the

day (d) Tn: Household temperature at night (e) Fuel and equipment used for heating (f)

Wall type from the EIA-RECS survey data. Using these information and the average hourly

outside temperature [34], we use Fourier’s law to calculate the Heat loss rate Q as

Q =
(Area) ∗ (Tinside − Toutside)
ThermalResistanceofWall

=
S ∗ δT
R

,

where Tinside depends on the people’s occupancy factor and can take any one of these values

Tp, Ta and Tn. Since, we have the activity sequence, we sort and order all the activities

occurring in the household. Then, we scan for occurrence of any in-house activity in each of

the 48 time slots. If we encounter any such activity, then we assume that there is someone

present in the house performing the activity. So, we assign Tinside = Tp for that time slot

and also if the activity encountered is “sleeping” then we assign Tinside = Tn. Since, the

activities that occur in the household and outside the household (like going to work) are

complementary to each other, for rest of the time slots we assign Tinside = Ta.
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We assume R, the thermal resistance, is constant throughout the structure, and we use the

standard values of R based on wall type: “4inch thick brick” wall with R-value = 4 ft2 degFh
Btu

and a “cellulose fiber” wall with R-value = 3.70 ft2 degFh
Btu

.

To keep the household at a desired temperature, we need heating equipment to generate the

heat energy required to compensate for the heat loss Q. Generally this kind of equipment has

an efficiency parameter, η, which measures the amount of energy that translates to actual

work. For example if a household uses a natural gas furnace for their space heating and if

the furnace operates at 75% efficiency, then, the furnace needs Q
.75

amount of energy to keep

the house at the desired temperature. Based on the fuel used in the household, we associate

an efficiency value using [35], shown in Table 2.4. Based on this information, we calculate

the energy required to keep household at the desired temperature on an hourly basis.

Fuel Used Equipment Efficiency
Natural
Gas

Furnace/Boiler .78

Natural
Gas

Room Heater .65

Wood Room heater .72
Natural
Gas

Other .47

Electricity Furnace/Boiler .98
Electricity Heat Pump 3.3
Fuel Oil Furnace/Boiler .78
Kerosene Room heater .80

Table 2.4: Efficiency for various heating equipment
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Hot Water Usage

To estimate the energy consumed due to water heating, we identify activities which require

hot water: laundry, dishwashing, showering and cooking. Laundry, dishwashing, taking

shower for 8 minutes and cooking requires 7, 6, 10 and 1 gallons of hot water respectively

[36]. 2.5 shows the list of such activities with their average hot water usage in gallons [36].

The energy factor indicates an efficiency measure based on the amount of hot water produced

per unit of fuel consumed, which we use to estimate the amount of energy required for each

of the activities that consume hot water.

Activity Name Water Usage
Laundry 7
Dishwashing 6
Shower 10 for 8 min
Cooking 1

Table 2.5: Water usage for Activites

2.4 Experiments and Results

2.4.1 Energy Demand Profiles of DC Population

We use our modeling framework to generate the energy demand profiles of the Washington

DC population. We start with the synthetic population of the entire D.C region and then

randomly select 5% of the households. This constitutes 62,763 households and 125,268

persons. We implement the statistical modeling algorithms for EActive and EPassive in R
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using [37] [38]. For each individual in this population, we first generate an activity sequence

for an entire day broken into 48 half an hour intervals. This includes estimation of individual

as well as shared activities in the household, the times at which the activities are performed,

the household members who perform the activity, association of appliances with each activity,

the housing unit based passive energy consumption, and the overall energy consumption by

each households.
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Figure 2.2: Comparison of synthetic data activity occurrence frequency with ATUS data
activity occurrence frequency

Figure 2.2 compares our model based results for washing, dish-washing, cooking and cleaning
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activities with the ATUS survey results. As we can infer from these plots our model is able to

capture the activity patterns present in the ATUS survey data with less than 5% deviation.

Slight deviations between the ATUS data and the model’s output are expected, as the

synthetic population may have slightly different demographic characteristics than those of

the individuals in the survey.
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Figure 2.3: (A) Aggregated EActive Energy demand profile (B) Activity Based Energy
Demand

For this subset of the Washington DC population, Figure 2.3A shows the aggregate (EActive)

energy demand for all the “active” household activities and Figure 2.3B shows the demand

pattern for individual activities. The curves show that in the day time, ‘washing’ and
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‘cleaning’ activities are responsible for the peak in the EActive load curve whereas in the

night time, the peak is due to the ‘cooking’ and ‘watching TV’ activities. Figure 2.4A shows

the estimated energy consumption due to space heating and hot water usage and Figure 2.4B
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shows the total energy demand which is the sum of EActive and EPassive.

2.4.2 Consumption Pattern by Demographics

This section illustrates how we can use this highly resolved demand model to understand

the consumption pattern across various household demographics. Figures 2.5 and 2.6 shows

the fraction of household performing the laundry and interior cleaning activities. Different

curves represent different household sizes i.e. 1, 2, 3 and greater than 4. The results show

that for activity “washing”, the pattern of consumption across different sized households is

the same but the fractions vary.

The employment status of a person in the household influences his/her stay at the household

during the peak hours. Since, any employment either full-time or part time has a definite

schedule, it influences the person’s decision to perform his/her day-to-day activities. To un-

derstand its impact on the activity occurrence, we only consider households with two people

and categorize them into three groups namely :- (i) Households with both individuals not

working(ii) Households with one person working and (iii) Households with both individuals

working. Figure 2.7 shows the percentage distribution of households with size 2, in each of

these groups. Figure 2.8 shows the washing/laundry activity sequence for each of these three

groups. The households, where both individuals are not working, tend to perform these ac-

tivities during the peak hours. A similar trend exists in case of other activities too. This kind

of information can be useful in designing energy policies that account for the demographics
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Figure 2.5: Washing activity pattern for various household sizes

of a local region.

2.4.3 An Illustrative Application

Here we illustrate how this detailed demand model can be used to improve energy efficiency.

In the absence of new energy sources and energy conservation, energy efficiency is the only

option. One way to improve efficiency is to shift the peak time energy consumption to

off-peak time; also known as smoothing out the load curve. This will keep the inefficient
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= 2
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Figure 2.8: Washing/Laundry activity pattern for households with household size = 2,
grouped based on their employment status. Figure illustrates that households with both
non working persons tend to do energy intensive activities during the peak hours.

generators from coming online to serve the load at peak times. The energy demand profile

of EActive shows spikes during the peak hours i.e. 8:00 AM to 11:00 AM. These peaks are

mainly due to cleaning and washing activities. A careful look at these activities shows that

about 40% of the households who undertake these activities during the peak hours have at

least one non-working adult available in their household. If 50% of these households shift

their activities from peak hours to off-peak hours i.e. from 8AM to 11AM to sometime

between 11AM to 3 PM, it could smooth out the EActive curve. Figure 2.9 compares the
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Figure 2.9: An illustrative case study showing the impact of shifting energy intensive activ-
ities from peak to off peak hours

scaled demand profile with the actual demand. By moving the timing of these activities,

we are able to shift about 4.5 MWh from the peak period to the off-peak period. These

savings represent the difference in the area between the two curves from 8am to 11am in

Figure 2.9. This is a substantial amount of energy savings at peak time and could mitigate

the vulnerabilities that occur when the system is running too close to the edge of capacity.

2.5 Summary

In this chapter, we described a modeling framework which generates highly resolved model

to estimate individual and household level energy demand. It models household activity

sequences for each member of the household, identifies which activities are shared, which

ones occur independently and then maps them to appliance usage and the length of time

used. It also calculates energy consumption of each housing unit based on characteristics
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such as square footage, wall type, floor area, heating fuel type etc. The model is run on

a subset of the Washington DC population; demand profiles for each individual and their

household is generated for people in this subset.

The results show that the model accurately maps the survey data activity sequence on the

synthetic households with less than 5% error. An illustrative study shows the applicability

of this detailed demand model. For 20% of the households with at least one non-working

adult, some of the peak time activities were shifted to off-peak time and were performed by

the non-working members of the family. This resulted in smoothing out the load curve and

saving 4.5 MWh at peak time. This model can also help study the necessary incentives for

making demand more price responsive and consumption more efficient.



Chapter 3

Commercial Sector

In this chapter1, we describe the different works relating to our work and then present an

overview of our modeling methodology used to generate the demand profile for commercial

buildings.

3.1 Prior Works

According to US DOE’s “Buildings Energy Data Book” commercial buildings broadly in-

cludes office spaces, educational facilities, food services, retail locations, hospitals, ware-

houses and storage facilities. In these office spaces, educational facilities and retail locations

constitute about 50% of the commercial sector energy consumption [40]. Space conditioning,

lighting and water heating at commercial sites represents more than 50% of the total energy

1An extended abstract of this chapter is going to appear in the proceedings of ETG Congress 2013,[39]

39
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consumption of the commercial sector [40]. Each of these energy consuming functions vary

with number of occupants present in the building. For example, more the number of individ-

uals present, the more hot water gets used. Temperature regulation and lighting also increase

with the number of occupants, though probably non-linearly. Estimating the number of oc-

cupants will be useful in determining the most efficient equipment settings/configuration

that can be set to improve the energy efficiency of the building. Additionally, regardless of

occupancy there is some energy consumption due to general building maintenance.

Work by [41] provides a fairly exhaustive review of different energy demand modeling tech-

niques for commercial buildings. Other works have estimated commercial energy consump-

tion as a function of occupancy. [42] [43] focus on determining or estimating the number

of occupants in the building. They use sensors to collect occupancy-related data and use

mathematical models to estimate the number of occupants. Our approach differs from that

described. We propose a modeling framework in which building occupancies are derived

from the day to day activity schedules of a synthetic population. Synethetic individuals

are assigned activity locations based on geospatial, demographic, and activity scheduling

data. As the synthetic individuals move from location to location, they are tracked, giving

us dynamic occupancy estimates for each of the modeled buildings.

3.2 Dataset Description

This work uses following data sets:-
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1. US EIA Commercial Building Energy Consumption Survey 2003:- In this

work we use the United States Energy Information Administration’s Commercial Build-

ings Energy Survey data (CBECS), which is the most prevalent data source available

containing energy information at the building level granularity. This survey data pro-

vides information about the annual energy consumption for 5,125 buildings and its

physical characteristics(like building type, number of floors, type of wall and etc). It

also captures an extensive list of building’s characteristics which can probably influ-

ence the energy consumption of the building. However, some of the characteristics are

applicable only to certain type or group of buildings. So, these special characteristics

were not relevant or applicable to the majority of buildings which resulted in many

“not applicable” data points. So, in our modeling framework we consider only the

most significant and common parameters which influence the energy consumption of

the buildings like square footage, operating hours, principle business activity of the

building, type of equipment used for space conditioning, water heating, lighting and

refrigeration. The table 3.1 lists the different variables that we use in our statistical

models and their description.

In this survey, each building unit has an weight associated with it captured by the

variable ADJWT8. So, for any building Bi in the survey data we have an weight

ADJWT8i. This weight represents that there are ADJWT8i building units having

the same characteristics of Bi. The survey uses this weight for forecasting the energy

consumption of the whole United States.
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CBECS Variables Description
SQFT8 Building square footage
WKHR8 Building weekly work hours
NWKER8 Number of workers
NFLOOR8 Number of floors
NESLTR8 Number of escalators used
RWSEAT8, PBSEAT8,
EDSEAT8, FDSEAT8

Captures seating capacity information at various buildings

FURNP8, BOILP8,
PKGHP8, SLFCNP8,
HTPHP8, STHWP8,
OTHTP8

Percentage of space heated using various heating equipment

PKGCP8, RCACP8,
ACWNWP8, CHWTP8,
CHILP8, EVAPP8, OT-
CLP8

Percentage of space cooled using various cooling equipment

HEATP8 Percentage of space heated
COOLP8 Percentage of space cooled
REGION8 and CENDIV8 Categorical variable capturing census regional and divisonal

details

CLIMATE8
Categorical variable representing the area‘s climatic condi-
tions based on 30 year average number of heating degree
days (HDD) and cooling degree days (CDD)

ELEVTR8 Number of elevators used in the building
MAINHT8 Main heating equipment used
MAINCL8 Main cooling equipment used
WTHTEQ8 Main water heating equiment used
RFGWIN8, RFGOPN8,
RFGRSN8, RFGCLN8,
RFGVNN8

Number of walk-in, open, residential, closed and vending
machine based refrigerated units used

PCNUM8 Number of computers used
PCRMP8 Percentage of computer area
SRVNUM8, COPIER8,
FAX8, PRNTRN8

Number of servers, coipers, fax machines and printers used

ADJWT8 Building weight
ELBTU8 Building’s annual electricity consumption in BTU
MFBTU8 Building’s annual fuel usage in BTU

Table 3.1: List of various EIA’s CBECS variables used
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2. D.C. Synthetic Population:- To construct the demand profile for the range of an

urban city, we use a synthetic data representing Washington D.C. region. The synthetic

population is derived from the data gathered from the US Census, the National House-

hold Travel Survey (NHTS), Dun and BradStreet, Land Use, and Navtaq. Details of

the methodology can be found in [26, 27]. The synthetic population is statistically

representative of the true population of Washington DC at a block group level in the

US Census.

3.3 Methodology

We formulate the energy consumption of commercial buildings as a summation of two major

components namely an active and passive component. The active component takes into

account the social interactions happening inside the buildings due to the people’s visit. The

social interactions can influence the building’s principle activity which might impact the

building’s energy consumption. For example, the number of people visiting the restaurants

might influence its main activity namely ‘cooking’. The passive component takes into account

all the non-occupancy factors which influence the energy consumption of the commercial

buildings. The non-occupancy factors comprises of building’s structural (building structure,

wall types, square footage), physical (type of equipment used for space conditioning, lighting,

refrigeration) and locational characteristics(regional weather conditions).

ECommercial ∝ f(p) + g(a)
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Where,

f(p) = models the factors which influences passive component of the building’s energy con-

sumption

g(a) = models the factors which influences active component (social interactions) of the

building’s energy consumption

We also define the occupancy Oit of any building Bi at time t as the sum of number of workers

Wit working in the building and the number of visitors/customers visiting the building at t

Oit = Wit + Vit

Our modeling approach consists of five major steps namely :-

1. Categorizing the commercial buildings into different groups based on their principle

activity

2. Building statistical model (incorporates all the influencing factors) for each building

group

3. Visit profile constructor for synthetic population

4. Matching and extrapolating features of CBECS building unit onto synthetic locations

5. Generating location based hourly energy demand profile
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Following sub-sections explain these steps in detail and we provide an algorithm to implement

this framework.

3.3.1 Grouping CBECS buildings based on ‘Building’s Activity’

We classify the 5,125 CBECS buildings into different classes or groups based on their principle

business activity. This approach is similar to the work done by [11]. However, we group

the buildings to match and be consistent with our synthetic population. In the synthetic

population, individuals have an activity schedule and visit the locations/buildings with a well

defined ‘purpose’. The purpose of the visit can be Education (School), Purchase/Shop(retail,

restaurants), Work (office) or Others. So, we group the CBECS building units into these four

groups based on their principle business activity (captured by the survey variables PBA8,

PBAPLUS8). The table summarizes the different groups of buildings we use and their related

mapping variables.

Building Category PBA PBAPLUS8
School 14 28,29
Work 2 2,3,4,5,6,7
Retail 6,15,23,25 42,50,14,32,33
Others 5,8,13 9,10,18,19,35,38,39

Table 3.2: CBECS survey data buildings grouped based on their principle business activity
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3.3.2 Statistical model

In the EIA’s CBECS data [15] we have the annual energy consumption for the buildings. We

use the annual energy usage (annual major fuel used and annual electricity consumed) of the

building as the response variable in our regression equation and identify the most significant

dependent variables influencing the energy consumption using step-wise variable selection

[44]. After identifying the significant dependent variables we fit the data using Negative

Bionomial Regression[45] [46]. We carry out this approach for each group of buildings

and create models specific to each group.

In each of this model the total energy consumption of the building for a given hour is the

response or dependent variable denoted by Y . Then, for each category of buildings we

identify the major set of variables which influence the energy consumption of the building

and these variables becomes the independent variables in the regeression equation denoted by

~X. Each group of buildings have their own unique set of dependent variables. In each of these

statistical models we check for interaction [47] between the different types of equipments used

for space heating, cooling, water heating, refrigeration and with the building’s total operating

hours H. If, we will find any significant relationship or dependency we then introduce an

interaction between these variable and fit the regression model.

Y ∼ NB( ~X)

Rationale:- We use Negative binomial regression because it gave a more realistic fit than



R Subbiah Chapter 3. Commercial Sector 47

the standard Gaussian linear model or the more restrictive Poisson regression model.

3.3.3 Visit profile generator

As mentioned in the earlier section we use a synthetic population representing Washington

D.C region. The synthetic population consists of synthetic individuals endowed with demo-

graphic and social attributes. A detailed sequence of activities and their respective locations

are assigned to each individual based on their demographics such as age, household size,

income, and employment status. The types of activities include home, work, school, shop,

travel and others. We derive visit profiles for each building based on a location identification

scheme, which places the individuals into a suitable building based on their activity type,

the building’s maximum occupancy, and the distance of the candidate building from the

individual’s current location and its anchor location i.e. home. For example, if a person is

to do “shopping” activity, we assign the person to one of the nearby retail stores using a

gravity model. This model consider all candidate buildings for shopping and then assigns a

location if it does not exceed the occupancy limit of the location and the distance is within

some limits to person’s home and from person’s current location.

At each location/building in the synthetic population we calculate the occupancy for each

hour of the day by summing up the number of synthetic individuals who visit the location

for ‘Work’ and the individuals who visit the location for a special purpose which is associated

with the location/building.
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3.3.4 Matching synthetic locations with the surveyed buildings

We exploit the common characteristics exhibited by the CBECS buildings and synthetic

locations to perform the necessary matching. To identify the suitable match for the syn-

thetic location we filter the CBECS buildings based on census division, region and climatic

conditions. Then, since the synthetic population locations contain sub-locations and each

sub-location has an occupancy limit associated with it. We use the occupancy threshold

has the next criterion to filter the CBECS buildings search space. After performing these

steps we have a set of CBECS buildings that match our synthetic location. We use the

CBECS building’s weight as a criterion to randomly choose/pick one CBECS building for

the location. For example we have k buildings, then we sum the weights of each building

and divide it with the building’s weight to get the probability of the choosing the respec-

tive building. We then sample the building’s probabilities and choose one building. After,

choosing the CBECS building we extrapolate the characteristics seen in the survey building

onto the synthetic location.

3.3.5 Energy demand profile construction

For each synthetic location based on the extrapolated characteristics from the CBECS data,

hourly calculated occupancy value we use the appropriate building’s statistical model and

estimate the hourly energy consumption. We then finally aggregate the energy consumption

to generate the overall energy demand profile for the region
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3.4 Experiment and Results

3.4.1 Statistical Models Implementation and Results

We implement the statistical models using R [48]. For each group of buildings we try to

fit the model by selecting the most significant variables which influence or determines the

energy consumption of the building. We use step-wise variable selection is implemented

using the MASS package [49]. The negative bionomial regression is implemented using the

MASS package [49] function “glm.nb()”. For each the groups of buildings we model the

energy consumption using this procedure and select the variables which are most significant.

As stated earlier we clearly have two classes of independent/predictor variables namely (i)

variables which relating to building’s occupancy and affecting the active part of the energy

consumption (ii) non-occupancy related variables influencing the passive component. Most

of the non-occupancy related variables are common across all the building groups. However,

each group has a few unique variables specific to the building group that influence the energy

consumption.

In the regression equations, we have few categorical variables whose values need to be treated

differently with the other continuous variables. Therefore, we use the R factor function [50]

to encode them as factor variables. In this way, we make sure that the modeling equations

are functioning properly.
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School

In modeling the energy consumption for schools we found that variables ‘NWKERS8’ and

‘EDUSEAT8’ contribute to the active component of the energy consumption. The rest

of variables influence the passive component of the energy consumption. In the ‘non-

occupancy’ related variables we found that number of PCs (PCNUM8) and number of copiers

(COPIER8) have significant influence on the energy consumption. The below negative bino-

mial regression equation shows the list of variables used in modeling school building’s energy

consumption. Figure 3.1 shows the plot of fitted values versus the actual values; points

tightly centered around a 45 degree line indicate a good fit.

ELBTU8+MFBTU8 ∼ (factor(CENDIV 8)+factor(CLIMATE8)+factor(WLCNS8)+

factor(RFCNS8)+SQFT8+NFLOOR8+NELV TR8+NESLTR8+factor(OPNMF8)+

NWKER8+PCRMP8+SRV NUM8+RFGWIN8+RFGOPN8+RFGRSN8+RFGCLN8+

RFGV NN8 + PCNUM8 + COPIER8 + EDSEAT8 + H : factor(MAINHT8) + H :

factor(MAINCL8)+H : factor(WTHTEQ8), data = school, init.theta = 2.789532743, link =

log)

Office

In office buildings the main influencing occupancy factor is the number of workers. The final

regression equation used is as follows:-
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Figure 3.1: Model fitted values vs. Actual values (log scale) for schools

ELBTU8+MFBTU8 ∼ (factor(REGION8)+factor(CENDIV 8)+factor(CLIMATE8)+

factor(WLCNS8)+factor(RFCNS8)+SQFT8+NFLOOR8+NELV TR8+NESLTR8+

factor(OPNMF8)+NWKER8+PCRMP8+SRV NUM8+RFGWIN8+RFGOPN8+

RFGRSN8+RFGCLN8+RFGV NN8+PCNUM8+COPIER8+H : factor(MAINCL8)+

H : factor(WTHTEQ8), data = trainset, init.theta = 1.593470638, link = log)

Figure 3.2 shows the fitted values vs. actual values plot.

Retail

In retail buildings, the special measures of occupancy like seating capacity for restaurants and

the number of workers feature in the final regression equation. Figure 3.3 shows regression

model’s fitted values vs. actual values plot and the equation is as follows:-
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Figure 3.2: Model fitted values vs. Actual values (log scale) for office spaces

ELBTU8+MFBTU8 ∼ (factor(CENDIV 8)+factor(CLIMATE8)+factor(WLCNS8)+

factor(RFCNS8) + factor(PBA8) +SQFT8 +NFLOOR8 +NELV TR8 +NESLTR8 +

factor(OPNMF8)+PCRMP8+SRV NUM8+RFGWIN8+RFGOPN8+RFGRSN8+

RFGCLN8+RFGV NN8+FDSEAT8+factor(FACACT8)+NWKER8+H : factor(MAINHT8)+

H : factor(MAINCL8)+H : factor(WTHTEQ8), data = retaildata, init.theta = 2.278492016, link =

log)

Others

The Other building type which includes hospital buildings, warehouse, small and large hotels

and etc. have a special some sort of occupancy measure which is include in the regression
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Figure 3.3: Model fitted values vs. Actual values (log scale) for retail buildings

equation. The results of the model is shown in Figure 3.4 and the regression equation is:-

ELBTU8 +MFBTU8 ∼ (factor(PBA8) + factor(REGION8) + factor(CLIMATE8) +

factor(WLCNS8)+factor(RFCNS8)+SQFT8+RFGRSN8+H : factor(MAINHT8)+

H : factor(MAINCL8) + H : factor(WTHTEQ8) + NWKER8 : HCBED8, data =

traindata, init.theta = 0.8722299412, link = log)

3.4.2 Synthetic Locations Energy Demand Profile

The synthetic population of Washington DC consists of 133,901 commercial locations and

there are distributed as
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Figure 3.4: Model fitted values vs. Actual values (log scale) for other building types

1. 2,054 School locations

2. 54,067 Work locations

3. 16,334 Retail locations

4. 61,446 Other locations

We construct the hourly occupancy profile for each synthetic location using the visit profile

generator. Then we use the occupancy information and estimate the hourly energy demand

of the building based on the constructed statistical model.We follow this approach for each

building and aggregate the energy demand based on the building type.
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Figure 3.5: Energy demand profiles of various categories of commercial buildings located in
Washington D.C. (synthetic data) classified based on their business activity.

Figure 3.5 shows the energy demand profile across various commercial buildings groups over

the 24 hour period. The x-axis represents the 24 hour time duration and the y axis represents

the corresponding forecasted energy demand in kWh. It is evident that people’s visit during

the day is having an impact on the energy consumption. This is evident in the retail buildings.

Also we were able to estimate the energy consumption due the major activities like space

conditioning, water heating, lighting and refrigeration from our regression model. Figure 3.6

shows the total energy demand of all the commercial location in Washington D.C.
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Figure 3.6: Aggregate energy demand profile for all the commercial locations in Washington
D.C. (Synthetic Population)

3.5 Summary

We introduce a framework that uses the day-to-day people’s activity schedules and derive

the visit profiles for each of the commercial locations. The framework uses the people’s

visit purpose and buildings’ visit profiles to construct the realistic occupancy rates for each

commercial location at an hourly basis. We then use the hourly occupancy rate to estimate

the energy consumption of the building at a very fine granularity. In this way, we accom-

modate the social interactions happening inside the building while estimating the energy

consumption. This helps in evaluating various what-if scenarios relating to energy policies

at an urban-city level.



Chapter 4

Energy Demand Modeling Framework

In this chapter, we introduce our software infrastructure used to generate and analyze energy

demand profiles for buildings. The framework provides following features: (i) it provides an

easy extensible modular framework that supports changes in mathematical models, input

datasets, and synthetic data (ii) helps in evaluating different what-if scenarios with minimal

modifications (iii) it provides web-based services and seamlessly integrates with any web

interfaces; this allows the policy makers who are not modeling experts to realm benefits from

our framework. Thus, this chapter describes our software system by focusing into our system

design and implementation. The chapter concludes by providing a web-based prototype built

on top of our software framework that can be beneficial for energy economists.

57
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4.1 Design and Implementation

Design Overview

Both the residential and commercial buildings energy demand generation involves many steps

that are stochastic in nature. In general, each step consists of mathematical modeling process

in which we impose the characteristics of an input or training dataset onto a dataset of our

interest (coined as synthetic population) and then construct the demand profiles. Therefore,

our software design should be able to make the framework extensible and adaptable to

different changes. Thus, we might encounter scenarios where we might need to change the

modeling algorithms based on the input dataset changes. These changes happen because we

choose the best possible model based on the input dataset’s characteristics after performing

extensive analysis, which formulates our hypothesis well. Thus, if the input dataset changes,

then we might need to evaluate the performance of current models on the newer datasets

and most likely we might encounter situations where we need to introduce a new model that

is more suitable and leverages all the information contained in the new dataset. In addition

to that, the design should be flexible enough in interfacing with different What-if scenario

modules and visualization tools. Thus, we design for system such a way that these design

objectives are satisfied.

Since, the modeling methodology discussed in this thesis formulates the energy demand as

a function of individual and building activities. Given a dataset of people and buildings,

at an abstract level, we have three major steps to generate the demand profile namely
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(i) Embedding information from the training/input datasets (ii) Activity generation (iii)

Translating activities into energy demand. Thus, we modularize each of these components

into different independent modules. Then, for each module, we identify whether the module

is stochastic in nature or not and whether it requires a persistent storage for its results. This

helps us in designing the database model for this kind of framework. In addition, for each

module, we identify set of APIs that other services can use and set of configuration settings

that controls the execution of the module. Since, we interface the modules through APIs;

we can easily extend the framework to any data, which contains similar kind of format and

parameters. Thus, a software module abstracts major functionality of the framework and

provides the framework with the flexibility to support simple extensions to other similar data

sets and statistical algorithms.

Each module is implemented in Java and it interfaces with R using Rserve package [51]

to carry out the necessary statistical analysis. The statistical models are implemented in

R as functional modules. The module written in Java connects to R server session and

dynamically loads the statistical modules needed for the current execution in the connected

R session. In the connected R session, implemented statistical module is executed and

results are passed back to the Java module. We will illustrate this design approach in detail

by taking an example module and walk through the different stages of execution. We will

use the UML sequence diagram [52] to illustrate the execution process and it is depicted in

the figure 4.1. The sequence diagram shows the sequence of stages involved in the module

that forecasts the hourly energy consumption of the commercial building embedded with all
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the necessary characteristics required by the statistical model. Following steps explain the

stages of execution in detail:-

Java:estimateBuildingEnergyCon

sumption
R:ServerInstance

getRConnection(IPAddress, Port)

loadConfigurationSettings

connectedRsession

setRWorkspace(config)

loadRWorkspace(config)

predictHourlyDemand(Building Info)

predictEnergy(BuildingInfo,Model)

sendPredicatedEnergy()

saveEnergyInformation()

closeRConnection(IpAddress,port number)

Figure 4.1: Sequence diagram illustrating the stages involved in the module that generates
commercial building’s energy demand at regular basis.

1. The Java module reads a configuration file; loads the R server details and R statistical

module to be executed

2. The Java module sends a connection request to the R server; R server establishes a

connection and creates new R session

3. The R server sends R session handle to the Java module
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4. The Java module loads the desired R workbench based on the information stored in

the configuration file (loaded in the first step)

5. The Java module sends the building’s parameters to the loaded R function, which use

the statistical model to forecast the energy consumption for the given parameters.

6. The R function returns the forecasted value to the Java function

7. The Java function closes the R session and saves the result

In this manner, the decoupling of statistical models from the main software module allows

the system to migrate to different statistical models by just modifying the configuration file

without actually changing the Java source code, which needs recompilation. In this way, this

design can handle most of the design objectives discussed in the beginning of this section.

Residential and Commercial Buildings Energy Demand Framework

Figure 4.2 shows our system design for residential energy demand-modeling framework. Each

box in the diagram represents a software module. We describe the functionalities of these

modules, its input parameters, mathematical model and generated output. Table 4.1 sum-

marizes the different parameters used in residential energy demand modeling system and

also briefly describes them.

• Module 1: This module maps the time use survey individuals onto synthetic individ-

uals
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– Input Parameters: Time-use survey respondent’s demographic information and

activity schedule information; Synthetic population’s people demographic infor-

mation (P2)

– Model: Classification and Regression Tree implemented in R

– Output: Each of the synthetic individual is embedded with the matching re-

spondent’s activity schedule information

– Customization Needed: The input information is stored and retrieved from a

database. Therefore, if there is any change in data, the module needs the data to

be stored in a specific format for execution

• Module 2: This module maps the RECS buildings’ survey characteristics onto the

synthetic population’s households

– Input Parameters: RECS’s buildings demographic information and their char-

acteristics; Synthetic population’s households demographic information (house-

hold size, household income, location and regional information) (P4)

– Output: Each of the synthetic household is embedded with the matching RECS

household’s characteristics (equipment information, appliance information and

temperature settings)

– Customization Needed: The input information is stored and retrieved from a

database. Therefore, if there is any change in data, the module needs the data to

be stored in a specific format for execution
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• Module 3: This module generates the shared activity sequence for a given household

– Input Parameters: Shared activity list & its occurrences in survey data; syn-

thetic household member’s demographic information

– Model: Logistic and Poisson regression

– Output: Generated shared activities sequence for the household

– Customization Needed: List of shared activities can be configured by modify-

ing the module’s configuration file

• Module 4: This module generates the independent activity sequences for given house-

hold

– Input Parameters: Independent activity list; synthetic household member’s

independent activity schedules derived from their matching ATUS individual

– Output: Synthetic household’s independent activities schedules

– Customization Needed: List of independent activities can be configured by

modifying the module’s configuration file

• Module 5: For a given household, this module generates the hot-water usage infor-

mation across a day

– Input Parameters: Synthetic population household’s water heating equipment

details derived from the survey (P7); Synthetic household’s activity sequences
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and information about the activities that use hot water (P8) Synthetic population

demographic variables (P2)

– Output: Household level hot water demand (in gallons)

– Customization Needed: List of activities that use hot-water can be configured

by modifying the module’s configuration file

• Module 6: For a given household, this module generates the hourly heat flow rate

required at keep the household at a desired temperature

– Input Parameters: Synthetic household’s derived information - space heat-

ing/cooling equipment information, square footage under space conditioning in-

formation, thermostat settings, household wall type; Synthetic household In-home

activity sequence; Outside hourly temperature from weather data

– Output: Calculated hourly heat loss rate

– Customization Needed: List of In-home activities can be configured, hourly

outside temperature information can be changed dynamically

• Module 7: Map household activities with appliance and generate energy demand

profile for every household

– Input Parameters: Synthetic household’s fully constructed activity sequence;

Appliance-activity mapping information and its standard energy rating informa-

tion
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– Output: Constructed household-level energy demand profile

– Customization Needed: Appliance power rating information and the activity-

appliance mapping information can be configured in the module’s configuration

file

• Module 8: Construct overall energy demand profile by aggregating demand profiles

of all households;

– Input Parameters: Energy demand profiles of all synthetic household; Optional

policy module information

– Output: Aggregate energy demand profile for all households

Commercial Buildings System Framework

Similarly, the figure 4.3 shows the system design for commercial buildings and the table ??

gives the complete description of model’s input and output parameters.

• Module 1: This module groups commercial buildings and construct a regression model

which represents the energy consumption

– Input Parameters: CBECS’s buildings annual energy consumption and their

associated characteristics (P1)

– Model: Regression model;
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Figure 4.2: A software framework to generate energy demand profile for residential buildings

– Output: This module constructs a statistical model for each category of build-

ing (grouped based on building’s principle activity) and estimates the energy

consumption using the model based on the building’s characteristics

– Customization Needed: If the data-set changes, we might need to review the

model and check whether it fits the data well. Therefore, if a data-set changes,

this module might need modifications to develop the model which best fits the

data
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Parameter
Number

Description

P1 ATUS respondent’s demographic information and his/her activity
sequence

P2 Synthetic individual’s demographic information
P3 Synthetic household’s characteristics (household income, number of

household members)
P4 EIA’s surveyed household characteristics
P5 Shared activity information, Demographic information, ATUS and

Synthetic population mapping information
P6 Individual activity and individual activity information, Demo-

graphic information, ATUS and Synthetic population mapping in-
formation

P7 Type of water heater used information from EIA
P8 Information regarding activities that consume hot water
P9 Type of space heating equipment used, wall type, floorspace, tem-

perature settings used information from EIA survey
P10 Outside temperature from weather data
P11 EActivie activities information
P12 EPassive activities information
P13 Appliance power rating information from EIA
P14 Policy engine describing ‘What-If’ scenario for optimizing consump-

tion pattern

Table 4.1: Residential energy demand modeling framework’s parameters description

• Module 2: This module maps the commercial buildings characteristics onto synthetic

population’s commercial locations

– Input Parameters: CBECS’s buildings characteristics (P2); Synthetic popula-

tion’s commercial location details (P3)

– Output: Each commercial location present in the synthetic population is em-

bedded with a matching CBECS-commercial building’s characteristics

– Customization Needed: The common demographic details used for matching

are stored in a configuration file and it can be modified.
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• Module 3: This module constructs the occupancy rate for each commercial location

present in the synthetic population (P4)

– Input Parameters: Synthetic population’s individual activity details, purpose

of their visit, location information;

– Output: Each commercial location in the synthetic population is embedded with

the hourly occupancy information

• Module 4: This module constructs the hourly energy demand for each commercial

location present in the synthetic population

– Input Parameters: Synthetic population’s location with their derived charac-

teristics from the CBECS’s building mapping (P6), location’s occupancy (P7);

Appropriate statistical model representing the building’s category (P5)

– Output:Constructed hourly energy demand profile for each commercial location

• Module 5: Constructs overall energy demand profile by aggregating demand profiles

of all commercial locations (P8);

– Input Parameters: Energy demand profiles of all synthetic commercial loca-

tions; Optional policy module information

– Output: Aggregate commercial buildings’ energy demand profile
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Figure 4.3: A software framework to generate energy demand profile for commercial buildings

4.2 Web-based Energy Demand Modeling Application:

A Prototype

Increasing interests in optimizing the current energy systems in both academia and industries

has motivated us to develop a web-based system that can expose the benefits of our energy

demand-modeling framework. Towards that end, we built a prototype web based system to

provide access to our generated energy demand profiles and conduct different analysis. The

prototype is built as a J2EE web application and uses Apache Struts framework [53]. We
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use Enterprise Java Beans (EJB) to interact with our modeling framework to run any new

experiment and to retrieve any previously generated demand profile. Figure 4.4 shows the

logical block diagram of our prototype. The prototype consists of three layers presentation

layer, logic or business layer and data layer. The block diagram shows the flow of information

from presentation to data layer via the business layer. The retrieved results are encapsulated

into XML structure, this makes it easy to integrate with or migrate to any front end system.

Figure 4.5 shows the screen shot of our prototype application in which the front end is

developed using Adobe Flex [54].

Energy

DB

H
o

m
e

Dashboard

Web Server

Servlet

Http 

Request

Application Server

EJB 

Container

JNDI

R
em

o
te

Energy Demand 

Module

Figure 4.4: Logical block diagram of our prototype system. The diagram illustrates how the
three different layers communicates
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Figure 4.5: Screen-shot of web-based energy demand modeling system (Prototype Version)



Chapter 5

Conclusions, Discussion, and Future

work

In this thesis, we presented a highly dis-aggregated energy demand-modeling framework

that estimates energy demand profiles based on individual-level and building-level energy-

consuming activities. The modeling framework generates energy demand profile at a regular

basis by taking into account the physical, behavioral, economical and social factors affecting

the energy consumption. The residential energy demand model associates appliance usage

for each household activity and calculates energy consumption based on the appliance energy

rating and duration of activity. It uses this information to generate a building-level energy

demand profile at highly dis-aggregated level. In the residential energy demand model, we

provide a novel way to resolve correlational and consistency problems in the generation of

individual-level and household level ”shared” activities that occur due to household mem-

72
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bers’ interactions. The commercial energy demand model derives occupancy profiles for

different commercial buildings based upon the individuals’ activities and their associated

locations. It then models how the number of occupants at any period of time contributes

to the rise and fall in building’s energy consumption. It also incorporates statistical models

to capture all the significant non-occupancy-related factors that influence the buildings’ en-

ergy consumption. This modeling framework can be used to evaluate ”What-if” scenarios in

urban-area planning, demand-side management, etc. It can also be used to identify potential

areas for improvement and quantify the impact of any energy policy or strategy.

5.1 Future Work

In this thesis, we present a methodology to generate a highly dis-aggregated energy de-

mand as a function of individuals’ and buildings’ activities. The constructed energy demand

can complement many of the currently on-going energy systems research. Some possible

directions in which this work can be extended are:-

1. Electric Vehicles: The generated energy demand profiles from our model can be used

to effectively place the charging stations for electric vehicles. Since, our model captures

the visit profile of individuals (economic status, purpose of visit) visiting the locations,

their duration of stay, location’s spatial information and etc will be helpful in placing

the charging stations.

2. Behavior analysis: Some of characteristic features captured by our model will be helpful
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in evaluating different behavior oriented What-IF scenarios like peer pressure, adapting

to a energy policy, upgrading to energy efficient appliances and etc.

3. Comparative studies: In chapter section 2.4.2, we analyzed the characteristics of energy

consumption on household demographics. This work can be extended to study how

demand varies across different states (within US), regions, cultures and countries. This

kind of comparative study allows us to identify the main influencing factors affecting

the energy consumption and help us devise energy policies that make consumption

more efficient.
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