1601.05883v2 [math.NA] 17 May 2016

arxXiv

PRECONDITIONING PARAMETRIZED LINEAR SYSTEMS *

ARIELLE GRIM-MCNALLY', ERIC DE STURLER!, AND SERKAN GUGERCIN®

Abstract. Preconditioners are generally essential for fast convergence in the iterative solution
of linear systems of equations. However, the computation of a good preconditioner can be expensive.
So, while solving a sequence of many linear systems, it is advantageous to recycle preconditioners,
that is, update a previous preconditioner and reuse the updated version. In this paper, we introduce a
simple and effective method for doing this. Although our approach can be used for matrices changing
slowly in any way, we focus on the important case of sequences of the type (s E(p) + A(p))xx = by,
where the right hand side may or may not change. More general changes in matrices will be discussed
in a future paper.

We update preconditioners by defining a map from a new matrix to a previous matrix, for
example the first matrix in the sequence, and combine the preconditioner for this previous matrix
with the map to define the new preconditioner. This approach has several advantages. The update is
entirely independent from the original preconditioner, so it can be applied to any preconditioner. The
possibly high cost of an initial preconditioner can be amortized over many linear solves. The cost of
updating the preconditioner is more or less constant and independent of the original preconditioner.
There is flexibility in balancing the quality of the map with the computational cost.

In the numerical experiments section we demonstrate good results for several applications.

Key words. Preconditioning, Updating Preconditioners, Krylov Subspace Methods, Sparse
Approximate Inverse, Parameterized Systems, Model Reduction, Transient Hydraulic Tomography,
Diffuse Optical Tomography

AMS subject classifications. 65F10

1. Introduction. We consider the efficient computation of preconditioners for
sequences of systems which change slowly. Such sequences can often be represented
as

(s E(p) + A(p))xk = by, (1.1)

where the right hand side may or may not change. Here, s is a shift (often re-
lated to a frequency), and the matrices E and A are functions of a parameter vector
p. For example, this is implicitly the case for the Transient Hydraulic Tomography
application (THT) discussed later in this paper and for diffuse optical tomography
[31]. Preconditioners are often essential for fast iterative solutions of linear systems of
equations, but the computation of a good preconditioner can be expensive. Therefore,
we consider recycling preconditioners, that is, updating a previous preconditioner and
reusing the updated version for solving a new linear system. For a sequence of linear
systems, this may provide a substantial reduction in cost compared with computing
a new preconditioner for each system or periodically computing a new preconditioner
from scratch. The latter approach includes the important case of solving all systems
with a single preconditioner, which we refer to as reusing the initial preconditioner.
The main idea underlying our approach comes from [4]. Given a sequence of
matrices, Ay, for kK = 0,1,2,..., and a good preconditioner Py for Ay such that

*This material is based upon work supported by the National Science Foundation under grant
numbers NSF-DMS 1025327 and NSF-DMS 1217156, and by the Air Force Office of Scientific Re-
search under grant number AFOSR FA9550-12-1-0442

fMathematics Department, VA Tech, Blacksburg, VA. (arielleb@vt.edu)

fMathematics Department, VA Tech, Blacksburg, VA. (sturler@vt.edu).

§Department of Mathematics, VA Tech, Blacksburg, VA. (gugercin@math.vt.edu).

1

2 A. Grim-McNally, E. de Sturler, and S. Gugercin

AoPy (or PoAy) yields fast convergence, we could compute for each system the ideal
map Ny such that

AN, = A, (1.2)
If we define the updated preconditioner as

P, = NPy, (1.3)
then, as a result, AgPyg = AP, = --- = ApP;. Therefore, AkﬁkPo = AyPy

will yield the same fast convergence as the original preconditioned system, for each k.
Note that (in general) the matrix NPy is never computed; in an iterative method, we
can just multiply vectors successively by these two matrices (which does lead to some
overhead). If computing these maps can be made cheap and the initial preconditioner
is very good, we obtain fast convergence for all systems at low cost.

In [4], we dealt with a very long sequence of matrices in a Markov chain Monte
Carlo (MCMC) process. These matrices change by one row at a time, Apiq =
Ap+te;, u;;r, where 7j, indicates which row changes and uy, is the change in the row. In
this case, computing the ideal map comes more or less for free, as we already need to
compute u{A;leik for the transition probability in the MCMC process. While this
update is specific to the particular application, the approach proposed in this paper
generalizes the idea of recycling preconditioners to any set of closely related matrices.

Our preconditioner update is advantageous in several ways. To compute the ideal
map, N, or an approximation, knowledge of the original preconditioner, Py, is not
required. Therefore, the map is independent of Py and can be applied to any type
of preconditioner. Further, the cost of updating P is more or less constant and the
potentially high cost of computing a good Py can be amortized over many linear
solves. In practice, we do not calculate the ideal map as in (1.2), but rather an
approximation, N such that

Aka ~ Ao.

Depending on how good we want our approximation to be, there is also flexibility in
balancing the quality of N with the cost of computing it. While there is the additional
cost of applying the map in the matrix-vector product, usually this does not outweigh
the cost of computing another preconditioner from scratch. We demonstrate this for
several applications in Section 4.

Our update scheme is motivated by the Sparse Approximate Inverse (SAI), and so
we refer to it as a Sparse Approximate Map, or SAM update. The SAI was proposed
in [18] and further developed in [19, 30, 42, 47] and references therein. To define SATs
and SAMs we need the following definitions.

DEFINITION 1.1. A sparsity pattern for C"*™ is any subset of {1,2,...,n} x
{1,2,...,n}.

DEFINITION 1.2. Let S be a sparsity pattern for C**™. We define the subspace
SCCasS={XeC"" | X;; =01f (i,7) € S}.

DEFINITION 1.3. For P, A € C"*" and I the identity matriz in C"*™, the Sparse
Approximate Inverse, P, for a matriz, A, is defined as the minimizer of

min [T - AP|F. (1.4)
The computation of a SAI is easily parallelized as n independent small least

squares problems, as discussed in [42]. While our preconditioner update (or SAM)
can also be computed in parallel, we do not discuss this here.

Preconditioning Parameterized Linear Systems 3

Rather than considering the identity matrix in (1.4), other work has focused on
replacing it with another matrix, sometimes referred to as a target matrix [47]. The
problem then becomes

in|B — AP 1.
min [|B I (1.5)

where P is such that AP targets B. In [30, 47], (1.5) is solved in order to improve
a preconditioner, B!, such that the preconditioned system APB™! is closer to the
identity matrix than AB~!. As a preconditioner, B™! is generally available through
an approximate factorization of A (or of A~!). However, the columns of B must be
computed in order to solve (1.5), and the cost of constructing these columns can be
relatively high. In special cases, the structure or type of matrix can be exploited. In
an example using the advection-diffusion equation and targeting the Laplacian, the
authors in [47] are able to use a fast solver for the action of B~! with good results. In
order to reduce the cost of explicitly constructing B, iterative methods with numerical
dropping are used to approximate the columns of B~ in [30].
Our update scheme involves solving

Ny = arg 1r\Inen‘% lALN — Ag||r, (1.6)

where S is the subspace defined by a chosen sparsity pattern S, as given in Definition
1.2, and Ay and A} are matrices from a given sequence. This paper focuses on solving
(1.6) for each or selected k, but we can also incrementally apply such a map where,
at shift k, we solve

Ny = arg gelg AN — Ay_1||F

and define
P = NyPr_1 = NyNi_;---N; Py, (1.7)
or let
N, = in ||[AN — A
k= arg min Ay, illF,
with

Py = NPy, (1.8)

for some j such that 0 < j < k. When applying the preconditioner from the left,
we can also take advantage of row-wise changes made to Ay, as is the case with the
QMC matrices described above. We can define

N = arg min INAL — Aol F,
with
P, = PoN,. (1.9)

In the case of (1.9), the computation of the map can be made significantly cheaper
by considering only those rows of Ay that differ from Ay when computing the least

4 A. Grim-McNally, E. de Sturler, and S. Gugercin

squares minimization. Applying the maps such as in (1.7), (1.8), and (1.9) is the focus
of future research.

While the minimization in (1.6) has a form very similar to (1.5), there are fun-
damental differences. Computing (1.5) involves improving an existing preconditioner,
B, for a fixed matrix, A, where for most preconditioners, |B — A||r is quite large,
and so an accurate solution cannot be expected. Of course, if an accurate solution
would be obtained, the benefit would be faster convergence rather than maintaining
the same convergence. Our approach seeks to map one matrix to another closely
related one, so we often can expect a relatively accurate solution. The high cost of
computing the columns of B when solving (1.5) is avoided when solving (1.6), since
the columns of Ay are readily available, as Ag is a previous matrix in the sequence
of linear systems.

Other update schemes for sequences of matrices have been proposed. A cheap
update to the factorized approximate inverse (AINV) preconditioner is discussed in
[20]. However, this update requires that Py is itself of AINV type. Several incremen-
tal, or iterative, update techniques to an ILU factorization are described in [26]. But
again, these updates require the initial preconditioner to be itself an ILU precondi-
tioner. Moreover, these update techniques seem relatively expensive; they were not
competitive for the problems we considered.

Although the SAM updates discussed in this paper can be used for any set of
closely related matrices, here we focus on shifted matrices of the form

A, =ssE+ A, L (110)

which arise in model reduction [7, 12, 13, 44, 45], oscillatory and transient hydraulic
tomography (OHT/THT) [28], and diffuse optical tomography (DOT) [1, 32, 49, 60].
Note that for a parameterized medium (subsurface or tissue) the latter two problems
result in sequences of type (1.1). While not explicitly considered in this paper, other
work has focused on shifted systems where E = I. Flexible preconditioning is used
for problems of this form in [10, 43]. In [2], the authors take advantage of the form of
the shifted systems in certain model reduction applications and the shift invariance of
Krylov subspaces. In Section 4, we demonstrate the effectiveness of SAM updates to
applications from THT and model reduction. For THT, we consider three sequences
of matrices, referred to as early, middle, and late, where each sequence includes twenty
shifts. For model reduction, we examine two applications, Rail and Flow, with multi-
ple sequences of six shifts each. We also demonstrate the effectiveness of our approach
for a discretization of the Helmholtz equation f = —Au — k?u, where u is an ampli-
tude, A is the Laplacian, and k is the wave number. Indefinite systems, such as the
discretized Helmholtz equation, can also arise in flow control where the systems can
be unstable, resulting in eigenvalues that are in both the right- and left-half planes
[25].

The shifts in these sequences can be real, as with the Rail and Flow matrices, or
complex, as with the THT matrices. Often, the magnitude of the shifts is not large,
and the shifted matrices are closely related. However, in model reduction applications
the magnitude of the shifts can be quite large. More detail for each application will
be provided in Section 4.

In Section 2, we analyze SAM preconditioner updates and their effect on the
convergence of GMRES. In Section 3, we discuss how to implement SAMs. We present

L Analogous results are obtained for A = s, E — A = s, E + A with A = —A.

Preconditioning Parameterized Linear Systems 5

the results of the SAM preconditioner updates for the applications described above
in Section 4. Finally, we provide some conclusions in Section 5.

2. Analysis of Sparse Approximate Maps and their Effect on Conver-
gence. We assume that our matrices take the form (1.10). We define the ideal map,
ﬁk, such that (1.2) holds. As we consider applications in which a sequence of lin-
ear systems must be solved, we assume that the matrices Ay are invertible for all k.
Hence, we can also write Ny, as

Ny = A; A, (2.1)

and, clearly, Ny is invertible (for all k). For a given subspace, S, as defined in
Definition 1.2, the least squares (LS) map, Ny, is the solution to (1.6). We define Ry,
the residual of the LS map at shift k, as

R;, = AN, — Ag. (2.2)

We would like to analyze the convergence of GMRES when using these maps.
The following theorem bounds the convergence of GMRES for matrices that can be
expressed as a small (in norm) perturbation of the identity. This result is well known
and given here for ease of reference.

THEOREM 2.1. Let I, C € C*"*™ and A = I+ C, where I denotes the identity and
ICll2 < p < 1. Let v, = b — Ax,, be the GMRES residual, with x,, € K™ (A;rg) =
Span({rg, Arg,...,A™ ro}). Then ||rm|2 < p™|roll2, and pm — 0 for m — oco.

Proof. We refer to [27, 40, 50] for a proof of this theorem and related discussion.
0

Note that in exact arithmetic r,, = 0, but in practice n is very large, and we are
interested in good convergences for m <« n. Clearly, in Theorem 2.1, the smaller p
is (0 < p < 1), the faster GMRES will converge. However, p need not be very small
in order for GMRES to converge rapidly (consider, for example, p = 1/3). When
the residual Ry is sufficiently small and the initial preconditioner is good, we can
use Theorem 2.1 to guarantee rapid convergence of GMRES for the preconditioned
matrix AP = AyNLPg. Since AN, = Ag + Ry, we have

AP = A NPy = AgPy + R, Py. (23)

We assume that the initial preconditioner Py is a good approximation to Ay ! such
that AgPo =1+ K, with || K]z < ¢ < 1. From (2.3), we get

AN Py =T+ K + RiPy. (2.4)

COROLLARY 2.2. Let the preconditioned system AxNiPo be as in (2.4) with
with K as above. Then GMRES will converge if |RiPoll2 < (1 —9) or |Rill2 <
(1= 3)|[Pollz ™.

From (2.3) we see that RyPy = ApPr — AgPy represents the ‘deterioration’ of
the preconditioned system from the original preconditioned system.

In Section 3 we show how to compute SAMs efficiently, and in Section 4 we show
that these maps are (relatively) cheap to compute. Therefore, computing a very good
preconditioner such that we satisfy the assumptions of Corollary 2.2 is reasonable.

While our convergence results have been defined in terms of || - ||2, we note that
IRk||2 < ||Rk|| 7, which is available more or less for free while computing (1.6). | Pol|#

6 A. Grim-McNally, E. de Sturler, and S. Gugercin

(or ||Po||2) can also be estimated. If Pq is a sparse approximate inverse itself, then
computing |Po||r is trivial. Often, Py is available in a factorized form, such as the
incomplete LU factorization used in this paper. In this case, norm estimators can be
used [46, Chapters 8, 14]. If necessary or cost effective, we can make |Rg| r smaller
by extending the sparsity pattern of Ny guided by Corollary 2.2. In practice, it
may be sufficient for fast convergence to satisfy Corollary 2.2 only approximately, as
a clustered spectrum with a few outliers generally leads to fast convergence as well
[41, Chapter 3] and [62, Chapter 6]. Several strategies for choosing and extending
the nonzero patterns of SAls can be adapted to achieve a good map, Ni. Adaptive
strategies for computing the SAT are discussed in [42]. However, fixing the sparsity
pattern greatly reduces the cost of computing the SAIL. In our numerical experiments,
we choose the nonzero pattern of Ny, to be that of Ay or AZ, though higher powers of
Ay can also be chosen. Other a priori and adaptive choices are discussed in [29, 48]
and the references therein.

Regardless of how the sparsity pattern is chosen, for a sequence of nested pat-
terns with increasing numbers of nonzero entries, the following theorem guarantees a
monotonic decrease in the size of ||Rg] -

THEOREM 2.3. For a sequence of nested patterns,

S C S5 C---C8,

and the corresponding subspaces Sj, let Rfcj) = AN — Ay with NY) the minimizer
of (1.6) for S =S;. Then

t t—1 1
IR r < [RY™|p < < IRV (2.5)

Proof. Since the minimization problem (1.6) has a solution for any sparsity pat-
tern, the proof follows directly from the fact that the sequence of nested patterns
leads to a sequence of nested (sub)spaces. O

In the THT application, we observe that both the relative and absolute residuals
tend to be small (in norm), with the exception of the larger shifts for the matrices from
the ‘early’ sequence. We demonstrate this in Figure 2.1, which shows the relative and
absolute residuals of the early, middle, and late THT matrices. When these residuals
are small, GMRES converges rapidly and GMRES convergence deteriorates for the
larger residuals; see Section 4.1.

To understand under which conditions we can expect small residuals for practical
sparsity patterns (patterns that are not much denser than the system), we analyze
the ideal map and its distance to the LS map, the solution to (1.6).

We first show that, in an appropriate norm, Ny is the best approximation to 1/\\Ik

DEFINITION 2.4. For any nonsingular matric B € C"*™ we define the Frobenius
B-norm of X € C"*™ as

IX[[rB = [BX][p
It is easy to verify that the Frobenius B-norm satisfies the properties of a norm.?
_ THEOREM 2.5. Let S be a sparsity pattern, then Ny is the best approzimation to
Ny in the Frobenius Ajy-norm over the space S.

2In general, |XY|pa, < ||X||lFa,lY|Fa, does not hold. While this property is occasionally
considered part of the definition of a norm for matrices, we consider only the four standard properties
of a norm, omitting the submultiplicative property as a requirement.

Preconditioning Parameterized Linear Systems 7

10°
o Meeomﬁe -¢ -Early Absolute Residual
<
34 %
102} o° e xxx—x”"":ee - -Middle Absolute Residual
@00©

-& -Late Absolute Residual

——Early Relative Residual

X 0@
o

" w —*—Middle Relative Residual
/’W —o—Late Relative Residual

log(Residual)
S
S

Fig. 2.1: The absolute residual [|[AxN; — Ag||r (dotted lines) and relative residual

W (solid lines) of the early (‘¢’), middle (‘x’), and late (‘o’) THT matrices.

Proof. We can represent the residual in terms of the ideal and LS maps,
Ry = AN, — Ag = AN, — AN, = AL (N, — Ny). (2.6)
Hence, solving (1.6) is equivalent to solving
N, = in |A(N - Np)||r = in |[N - N . 2.7
w = arg min | Ay k)llp = arg min | kllFA (2.7)

0
From (2.6)-(2.7) we have ||Rg||r = |[Ny — Ng|/#.a,, which immediately leads to the
following Corollary (to Theorem 2.3)

COROLLARY 2.6. For a sequence of nested patterns,

S1C S5 C---C8,

and the corresponding subspaces S;, let NOU) be the minimizer of (1.6) for S = S;.
Then

IN® — Ny | pa, < INCD - Nyflpa, < < INO - Nyl[pa, (2.8)

Next, we examine the ideal map, Nk. Following the analysis in [8], we consider
the generalized eigenvalues and eigenvectors of A and E in (1.10).

AVM = EV & AVMV ! = E, (2.9)

where M = diag () is the matrix of generalized eigenvalues (we assume diagonaliz-
ability). Substituting (2.9) into (1.2), and recalling the form of our shifted matrices
(1.10), we have

(st AVMV ™! + A)Ny = (s)AVMV ' + A) —>

Ni=V(siM+1I)"(sM+I)V_! = VDV ! (2.10)

8 A. Grim-McNally, E. de Sturler, and S. Gugercin

and

1
D = diag (jg‘:il) (2.11)

The assumption that all matrices s;E 4 A in a given sequence are invertible implies
that the diagonal matrices s;M + I are invertible, and hence that spp; +1 # 0 and
sopi +1 # 0 for i = 1,...,n in (2.11). With (2.10) a similarity transformation,
the eigenvalues of Ny, are the (diagonal) entries of D, d;. Equation (2.11) suggests
clustering of the eigenvalues if |p;| > |sol,|sxk| for most of the eigenvalues, or if si
is relatively close to sp with respect to most |u;|. We will see that, if the condition
number of V, kr a,(V), is modest, clustering leads to a good approximation of the
ideal map by the LS map.

In two of the applications discussed in this paper, we can expect the diagonal
entries of (2.11) - and therefore the eigenvalues of Ny - to be clustered (possibly
with some outliers). For stable dynamical systems, all eigenvalues have negative
real part. Therefore, in model reduction for such systems, the shifts are generally
computed (for example, by IRKA [45]), such that Re(s;) is close to zero and the
shifts are often relatively close to one another. This reflects the fact that the reduced
model needs to represent most accurately the modes of the system that decay slowest
(corresponding to the eigenvalues with the smallest absolute real part). In addition,
a stable dynamical system may have many eigenvalues with large absolute real part
(corresponding to modes that decay very rapidly). Therefore, sop; ~ spp; and d; ~ 1,
or |[Re(u;)| is very large compared to Re(s;), and 22’:11 ~ i =1

We also expect clustering of the eigenvalues of the ideal map for the THT matrices.
In this application, the shifts come from a modified Talbot contour and tend to
be quite small, particularly for larger values of time, as shown in Figure 4.1. For
more information on how these contours, and the parameters which define them, are
determined, we refer to [63]. When these shifts are small and relatively close to one
another, as is the case with the middle and late THT matrices, sou; and sppu; are
both small enough that d; ~ 1. More information on the THT matrices is provided
later in this section as well as in Section 4.1, and more detail on the model reduction
matrices is given in Section 4.2.

Clustering implies a small ep such that, for all ¢,

— €D
d—d;| < —=.
a—di <72

where d is the average of all d; or another appropriate center for the cluster, such as,
d = arg mingc max; |d — d;|. Note that the average minimizes |D — dI|| r, whereas the

minimax solution minimizes | D — dI||z. Writing D = dI + F, with F = (D —dI) and
therefore ||FHF < €p, we have

Ny =VDV ! =dl+ VFV (2.12)

Now assume that the chosen sparsity pattern, S, contains the diagonal. This is often
the case and can easily be ensured. Then

S 28 ={(1,1),(2,2),...,(n,n)}.
Since dI € Sy, the subspace corresponding to S, by Theorem 2.3,

INk = Niellma, < dI-N = |dI - dI = VEV ! |pa, = [VEV||pa,.

Preconditioning Parameterized Linear Systems 9
Therefore,
IRellF = [Nk = Nillpa, < [VEVT[pa,. (2.13)

Hence, for modest xpa,(V), |[Rg|lr will also be small, and we can expect good
convergence. Note that, in general, this bound is rather pessimistic, as N can provide
a much better approximation than dI, and a further analysis of these approximation
problems is a topic of further research.

Since the eigenvalues of ﬁk are not always perfectly clustered, we also consider
IRx||F when Ny has clustered eigenvalues with a few outliers. We expect that, in
that case,

AN Po=1+K+H, (2.14)

where ||K|p is small and rank (H) = p < n, but |H| s is not small. We can still
consider (2.12) for some appropriate d; however, some of the (diagonal) coefficients
of f‘, d; — d, will not be small, and VFV~! will be the sum of a matrix with small
norm and a low rank matrix with (typically) larger norm. Writing

N, =dI+N,
where N has the same sparsity pattern as Ny, gives
Ry = Ap(N, — Nj) = A, (N - VFV). (2.15)

From (2.15) and Theorem 2.5 follows that N is the best approximation of A
in the Frobenius Ag-norm. Although a formal proof appears complicated, we expect
Ry, and hence R;Py, to also be the sum of a matrix with small norm and a low rank
matrix with (typically) larger norm. We numerically verify this for the THT matrices
below. Future work will focus on the conditions under which we can prove this to be
true.

Figure 2.2 shows the eigenvalues of the ideal maps for the THT matrices.®> Note
that they are clustered for the first several shifts. This corresponds to when the
residual of the SAMs is small, as shown in Figure 2.1. In Tables 4.3 and 4.9, it can
be seen that the number of GMRES iterations for these shifts is low. Also in the case
of the LS map, we observe clustering of the eigenvalues, as shown in Figure 2.3.

_Figure 2.2 also shows that for the middle and late THT matrices, the eigenvalues
of Ni are mostly clustered with relatively few outliers. We show the eigenvalues of
the ideal map for shifts 11 through 15 of the late THT matrices in Figure 2.4(a).
Examining the 60 largest singular values of AyN;Pg — I for these same matrices
and shifts in Figure 2.4(b), we see that there are a few singular values larger than 1
and only about ten larger than 0.5.* This shows that, for the THT matrices, it is
reasonable to represent Ak;NkEO — I as a small perturbation of a low rank matrix
(2.14) when the eigenvalues of Ny, are clustered with few outliers. Figures 2.4(c) and
2.4(d) show that when the eigenvalues of Ny are not clustered, there are many more
singular values of AyN;yPy — I larger than 1.

3Figures 2.2 and 2.3 show the eigenvalues of the maps beginning at shift two, since an ILUTP
factorization of A is computed for the first shift and the SAMs are applied at subsequent shifts.
40ur use of the word ”small” is relative to Theorem 2.1.

10 A. Grim-McNally, E. de Sturler, and S. Gugercin

0 ,fgo
46‘
o >-05.7 " 5
£
@© g E 10
c
£ £
(=]
g g /
E E.15) " A
&x*’“s& *****
-2 W K A
2 0 1 2
Real
(b) Middle

0
20 ‘.
BRI
>-
E . 15 %
£ -1 10 *
(=] %
e
- '1 .5 * . &
-2 * Ed
0 1 2
Real
(c) Late

Fig. 2.2: Eigenvalues of the ideal map Ny, for selected shifts (2-5, 10, 15, 20) of the
THT matrices. Note the clustering for the first few shifts for each sequence (early,
middle, and late). Note the clustering with relatively few outliers for the middle and
late sequences (n = 10201).

3. Implementation. To efficiently compute the SAM updates given a sparsity
pattern S, the solution of (1.6) must be implemented in sparse-sparse fashion. Fur-
thermore, the nonzero pattern of the matrices often does not change, as is the case
in the applications in this paper. Then the structure of the small least squares (LS)
problems will be the same for every update. This makes it efficient to setup the data
structures for the small LS problems just once, in advance.

For ease of notation, we drop the indices and consider the problem

N = arg min |[AN — A||z. (3.1)
NeS

Given the pattern S, let si be the set of indices of the (potential) nonzeros in column
k of N: s, = {i|(i,k) € S} and let S = {x € C" | x; = 0ifi & si}. Thus,
for computing nj (the kth column of N) only the columns a; with j € s of A
matter. These columns themselves are sparse, and for the small LS problem defining
n; we need only consider rows ¢ such that a;; # 0 for some j € s;. Note that
if a; # 0 but a;; = 0 for all j € s, row ¢ is irrelevant for computing ny since
e, L Span({a;|j € si}). However, if we wish to compute the residual (R = AN-A)

Preconditioning Parameterized Linear Systems 11

0 25 0 “
10
>-0.5 >-0.5
g g
5 -1 o -1
© ©
E -15 E -1.5
-2 -2
0 1 2 0 1 2
Real Real
(a) Early (b) Middle
0 ™
>-0.5
g
.a_‘ -1
©
Eas
-2
0 1 2
Real
(c) Late

Fig. 2.3: Eigenvalues of the LS map, Ny, for selected shifts (2-5, 10, 15, 20) of the
THT Matrices.

or its norm, in addition to N, we need to include such rows as well. If the matrices
A and A have the same sparsity pattern and the pattern of IN includes at least the
diagonal, this is not an issue. Let 7, be the set of indices of rows in A that are relevant
for the kth small LS problem. Then the least squares problem for nj is defined as

ny = arg_min A (re, si)0g (1) — A(re, k)2,
k k

where A (r, si) is the block submatrix of A indexed by r X sp, N (rx) is the subvector
of n;, indexed by 7y, and K(rk, k) is the corresponding subvector of the kth columns
of A.

We preprocess the matrices or their sparsity patterns to be able to efficiently select
the relevant rows, r, and columns, s, of the small LS problem for each column k.
It may also be efficient to (only once) allocate memory space for solving these least
squares problems. This can be a single memory allocation sufficiently large for each of
the problems or multiple allocations to allow for parallelism. For matrices that derive
from some discretization, the size of these least squares problems typically depends
only on the sparsity pattern, not on the size of the matrix. So, while n may be large,
each of the least squares problems solved is very small (and most are about the same

12 A. Grim-McNally, E. de Sturler, and S. Gugercin

o Late Shift 11
o Late Shift 12
>-0.5 : - 3 x Late Shift 13
] < 2,008 4 Late Shift 14
* x £ c 10 o Late Shift 15
c *
= 9 X % ¥ 4 X% c
=) - S
g —#-Late Shift 11 ©
—+Late Shift 12
=-1.5 —« Late Shift 13 £
Late Shift 14
Late Shift 15
-2 1072
0 1 2 0 20 40 60
Real Real

(a) Eigenvalues of the ideal map, N, (b) The 60 largest singular values of
for the late THT matrices for shifts 11 A, NPy — I for the late THT matrices

through 15. for shifts 11 through 15.
0
>-0.5 >
& g 10°
£ =
% -1 Early Shift 16 °
——Earl I i
£ +Earl¥ Shift 17] g Z E::K g::ff: 13
-=-1.5 +Early Shift 18 - x Early Shift 18
Early Shift 19 A Early Shift 19
2 Early Shift 20 5 o_Early Shift 20
- 10°
0 1 2 0 20 40 60
Real Real

(c) Eigenvalues of the ideal map, Nk, (d) The 60 largest singular values of
for the early THT matrices for shifts 16 A, NP, — I for the early THT matrices
through 20. for shifts 16 through 20.

Fig. 2.4: Comparison of the singular values of AyNiyPy — I with the eigenvalues of
the late and early THT matrices when the eigenvalues are clustered with few outliers
and when the eigenvalues are not clustered.

size). For example, the average size of these least squares problems for the THT
matrices is 18 x 7. In general, the matrices or the underlying problems have structure
that should be exploited. For example, if a matrix derives from discretization on some
mesh or grid, finding the nonzero patterns of powers of the matrix can be done very
efficiently using the information defining the mesh or grid.

Finally, it is essential to store the matrices in an appropriate (sparse) format and
to generate N in an appropriate format. For example, in MATLAB®it is inefficient
to generate a sparse matrix one column at a time, even if the total space is allocated
in advance (presumably because of the required manipulation of sparse matrix data
structures for each column). Therefore, we generate N first in coordinate format
(COO) [58, 59], and after the whole matrix has been computed we convert this tem-
porary data structure into a MATLAB®sparse matrix using the command sparse. In
Algorithm 1, the statement ¢ = £ind(a;) (with reference to the MATLAB®command

Preconditioning Parameterized Linear Systems 13

find), it is important for efficiency that A is stored as a sparse matrix, and that its
columns are easily accessible.

The algorithm for preprocessing is given in Algorithm 1; the algorithm for com-
puting the SAM itself is given in Algorithm 2.

Algorithm 1 Preprocessing for Computing Sparse Approximate Maps

Given sparsity pattern S, and matrix A
maxSk = 0; maxRk = 0; { initialize max num of columns, max num of rows }
for k=1:ndo { for each column do }
s ={4| (i, k) € S} { get indices; typically defined in advance }
ri, =0 { Initialize set of rows for kth LS problem }
for all j € s, do
t =find(a;) { find indices of nonzeros in column a; }
re =7 Ut
end for
nnzy = #(si) { #() gives number of elements in a set }
if nnzp > maxSk then
maxSk = nnzy
end if
if #(ry) > mazRk then
maxRE = #(ry)
end if
end for
Allocate max Rk x maxSk array for storing the LS matrices, max Rk vector for
storing the right hand side, and maxzSk vector for storing the solution.

Algorithm 2 Computing N = arg ming, ¢ |AN — .KHF

ent =0 { counts number of nonzeros in preconditioner }
for k=1:ndo
Aimp = A(ry, s,) { get submatrix indexed by rj and s for LS problem }
f= K(rk) { get rhs for LS problem }
Solve LS Aypz =f
(possibly save residual, norm of residual, etc.)
rowN[ent + 1 : ent + nnzg) = s, { assign indices in the order of values in z }
colN[ent + 1 : ent + nnz| = j
valN[ent + 1 : ent + nnzg) = z
end for
N = sparse(rowN, col N,valN) { convert into sparse matrix }

4. Numerical Experiments. We apply the strategies of reusing and recycling
preconditioners to several applications, focusing both on total computation time as
well as total GMRES iterations. We define total computation time to be the time to
compute the preconditioner or SAM update plus the time for GMRES to converge for
all shifts. We also report the times for the computation of individual preconditioners
and SAMs as well as the number of iterations and runtime per system solve. These
numbers provide good insight into the merits of reusing a preconditioner, possibly

14 A. Grim-McNally, E. de Sturler, and S. Gugercin

including a previous SAM update, computing a new preconditioner, or computing a
new SAM update. Of course, the actual costs of these computations, the number of
iterations saved, and the cost per iteration are all problem dependent. We compare
the results of computing a new ILUTP preconditioner for each shift, reusing the initial
Py for all shifts, updating Py with a new SAM update for all shifts, and updating
Py with a SAM update only at selected shifts. The first approach, a new ILUTP
preconditioner for every shift, is always the most expensive option in runtime, but it
provides a useful benchmark in terms of the number of iterations. The last approach,
to compute a SAM update only at selected shifts, is usually the winner in runtime.
The exceptions are the linear systems for the late THT matrices and the matrices
from the model reduction test problem Rail. For these problems reusing the initial
ILUTP for all systems leads to the lowest runtime. For brevity, we do not provide
data for recomputing the ILUTP at selected shifts. This, of course, can be better
than computing the ILUTP for all shifts, but it was never the fastest - this can easily
be derived directly from the high cost of computing the preconditioner.

Finally, for longer sequences of systems and other problems, many other vari-
ations of computing preconditioners and updates may be effective. Although we
experimented with several indicator functions to decide when to do a SAM update
and the results were encouraging, we did not find a single good indicator. Hence we
leave a further analysis and discussion of these for future work. A simple and effective
strategy is to compute a new SAM or preconditioner based on (1) the time for this
computation and (2) the (relative) increase in the number of iterations or the solution
time for a single system.

For the THT matrices, we also compare with the AINV preconditioner and up-
date. The algorithms for calculating both the AINV preconditioner as well as the
AINV updates can be found in [15, 20, 21, 22, 23, 24, 56]. The implementation of the
ILUTP preconditioner is computed using an implementation based on that in [58].

4.1. Transient Hydraulic Tomography®. Transient Hydraulic Tomography
(THT) is a method for imaging the earth’s subsurface (see [28] for a detailed descrip-
tion of THT). Water is pumped at a constant rate in pumping wells and the measured
drawdown curves of pressure response at the observation wells is recorded. A subset
of this data is used in a nonlinear inversion to recover the parameters of interest,
namely hydraulic conductivity and specific storage. In the example described later in
this section, we choose three key time points (corresponding to early, middle, and late
times). The governing equations of groundwater flow through an aquifer with domain
Q are given by,

Ss(x)% — V- (k(@)Ve(z,t)) = q(t)d(x — zs), x €N (4.1)
¢(x7t) = 07 T € 8QD
Vé(z,t)-n= 0, r € 00N

where z; denotes the location of the pumping well, ¢(¢) is the pumping rate, x(zx)
is the hydraulic conductivity, S is the specific storage, ¢(t)0(xz — x) is the pumping
source, and ¢(x,t) is the hydraulic head (pressure). Qp and Qy denote the parts
of the boundary where the Dirichlet and Neumann boundary conditions are defined,

5We would like to thank to Tania Bakhos, Arvind Saibaba, and Peter Kitanidis for providing the
description of THT as well as the matrices used.

Preconditioning Parameterized Linear Systems 15

respectively. The differential equation (4.1) and its corresponding boundary condi-
tions are discretized by standard linear finite elements using FEnICS [51, 52, 53]. We
obtain the semi-discrete system of equations,

Mo, + Kon = q(t)b (4.2)

where K and M denote the stiffness and mass matrices respectively. Instead of using
a traditional time-stepping scheme to solve these equations, the Laplace transform-
based exponential time integrator is used, as described in [9]. The main idea is
that a contour integral representation of the inverse Laplace transform chosen on the
modified Talbot contour can be used to efficiently solve the groundwater equations
[63]. The solution at a given time ¢ is given by,

N

én(t) ~ > wi(K + zM) ™" (Mgg + §(21)b) (4.3)
k=1

with wg and z; being the weights and nodes of the quadrature scheme, respectively.
Then (4.3) amounts to solving a shifted system of equations for each time point,

(K + 2xM) X, = [b, Mgy, k=1,...,N;/2 (4.4)

In the experiments presented later in this section, we solve for b.

We consider a 2D depth-averaged aquifer with zero Dirichlet boundary conditions
on all boundaries. The domain size is square of size 100m x 100m. For the log
conductivity field, we use a randomly generated field from the exponential covariance
kernel,

r(z,y) = dexp(=2[|lz — y|[2/100) (4.5)

The mean conductivity was chosen to be ux = 1073 [m?/s] and the variance was
chosen to be 0% = 1.6. The specific storage in this example was chosen to be constant
with S, = 107°. There is one pumping source located at (50,50), pumping at a
constant rate of 0.85 L/s. We are interested in the solution at three time instances
which we will refer to as early (1 min), middle (15 min) and late (40 min) - the shifts
zk are shown in Figure 4.1. Note that for the middle and late matrices, the shifts are
clustered together more tightly. The matrices have system size 10201 x 10201.

We provide results for the early and middle THT matrices.® Tables 4.1 and 4.7
show that computing a new ILUTP preconditioner for every system results in the
lowest number of GMRES iterations, but the longest overall time. Tables 4.2, 4.3,
4.8, and 4.9 show that when we apply the SAM update at each shift, we achieve fewer
total GMRES iterations as compared with just reusing Py for all shifts.

While the computation of a SAM update is a factor ten cheaper than that of
an ILUTP, computing an update at every shift is still too expensive. Therefore, it
makes sense to do an update at selected shifts. A simple choice is to do a single
SAM update at shift 10 (halfway), and reuse that update for all subsequent systems.
For comparison, we also try single SAM updates for shifts 5 or 15. We present the
results for the early and middle THT matrices in Tables 4.4-4.6 and 4.10-4.12. We
experimented with indicators for updating, but although results were good we did not

SFor the late THT matrices, the magnitude of each shift is small enough that reusing Pg leads
to the lowest total runtime.

16 A. Grim-McNally, E. de Sturler, and S. Gugercin

0.6
0.5
0.4t
N
0.3
©
£
0.2
0.1/|—— t= 1min
—— t=15min
—+— t =40 min
0.0, \
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2
real (z)

Fig. 4.1: Plot of contours corresponding to N, = 40. Because of symmetry, only
half the contour plot is shown. Here N, is the number of quadrature points in Equa-
tion (4.3). t = 1 min corresponds to the shifts for the early matrices, ¢ = 15 min to
those for the middle matrices, and ¢ = 40 min to those for the late matrices.

find a single indicator that was best in all cases. However, our results demonstrate
the potential of a SAM update at selected shifts.

Note that when applying the SAM update at each shift, the number of GMRES
iterations increases as the norm of the residual of the LS map increases. GMRES iter-
ations are also fewer when the eigenvalues of the ideal map are clustered, potentially
with some outliers (see Figures 2.2(a) and 2.2(b)), and when the eigenvalues of the
preconditioned matrix are clustered near one. For the early THT matrices, Figures
4.2 and 4.3 show that the eigenvalues of A;N;P(are more clustered than those of
APy, especially for the later shifts.

Column pivoting in computing the ILUTP results in a matrix Q such that A Q ~
LU and A;' ~ QU 'L~ = Py.” When applying the SAM update to the ILUTP
preconditioner, we get

NPy = (N,QU 'L ' =N, U 'L,

with N = N,Q. So, an additional advantage (in this case) of the SAM is that it ab-
sorbs this permutation, which saves a bit of time in the preconditioned matrix-vector
product. When reusing the initial ILUTP, however, the U factor must be permuted.
In MATLAB®this leads to a slightly higher runtime for the back-substitution with
U. This explains the slightly increased time for GMRES iterations when reusing the
ILUTP preconditioner compared with using a new ILUTP preconditioner for a similar
number of iterations.

We also apply the AINV updates to the THT matrices. This update scheme
specifies that we compute an AINV preconditioner for Py = ZD 'W7T ~ A~!, with
Z, W unit upper triangular and D diagonal. For this application, it turns out that
this type of preconditioner is expensive to compute and substantially less effective
than ILUTP. While computation of the updates is inexpensive (and the updated
preconditioner preserves GMRES iterations for the first few shifts), this preconditioner

“In practice, we never invert these matrices but rather use forward/backward solves for L and
U. Applying Q (or Q1) amounts to reordering the components of a vector.

Preconditioning Parameterized Linear Systems 17

type and update are not effective for this class of problems. Results are provided in

Tables 4.13-4.15.

Shift | Prec Time | GMRES Time | Iter
1 8.89 0.076 22
2 8.88 0.081 22
3 8.89 0.078 22
4 8.88 0.082 23
5 8.90 0.086 23
10 8.98 0.095 24
15 9.10 0.098 27
20 9.29 0.11 28

Table 4.1: Timings for selected shifts for THT
early matrices with ILUTP computed at each
shift (total time 182.23 s, total iterations 498).

Shift | Prec Time | GMRES Time | Iter
1 8.84 0.068 22
2 0.95 0.087 23
3 0.88 0.085 24
4 0.89 0.089 25
5 0.77 0.10 27
10 0.78 0.17 41
15 0.87 0.45 87
20 0.85 0.90 190

Table 4.3: Timings for selected shifts for THT
early matrices with ILUTP computed at first
shift and SAM updates computed for remaining
shifts (total time 30.38 s, total iterations 1312).

Shift Prec Time | GMRES Time | Iter
Shift 1 8.94 0.073 22
2 0 0.14 23
3 0 0.15 25
4 0 0.17 27
5 0 0.19 30
10 0.94 0.18 41
15 0 0.48 100
20 0 1.54 282

Table 4.5: Timings for selected shifts for THT
early matrices with ILUTP computed at first
shift and SAM update only computed at shift
10 and reused for subsequent shifts (total time
18.68 s, total iterations 1645).

Shift | Prec Time | GMRES Time | Iter
1 9.01 0.14 22
2 0 0.19 23
3 0 0.18 25
4 0 0.19 27
5 0 0.23 30
10 0 0.47 54
15 0 1.11 129
20 0 2.93 325

Table 4.2: Timings for selected shifts for THT
early matrices with initial ILUTP reused (total
time 25.69 s, total iterations 1975).

Shift Prec Time | GMRES Time | Iter
Shift 1 8.88 0.072 22
2 0 0.14 23
3 0 0.15 25
4 0 0.17 27
5 0.93 0.099 27
10 0 0.22 47
15 0 0.53 115
20 0 1.43 301

Table 4.4: Timings for selected shifts for THT
early matrices with ILUTP computed at first
shift and SAM update only computed at shift
5 and reused for subsequent shifts (total time

18.085 s, total iterations 1763).

Shift Prec Time | GMRES Time | Iter
Shift 1 9.015 0.075 22
2 0 0.14 23
3 0 0.15 25
4 0 0.17 27
5 0 0.19 30
10 0 0.40 54
15 0.98 0.40 87
20 0 1.055 226

Table 4.6: Timings for selected shifts for THT
early matrices with ILUTP computed at first
shift and SAM update only computed at shift
15 and reused for subsequent shifts (total time
18.80 s, total iterations 1564).

4.2. Interpolatory Model Reduction. Another set of linear systems arise in
interpolatory model reduction, in particular, in the Iterative Rational Krylov Algo-
rithm (TRKA) [45]. Consider the single-input/single-output linear dynamical system

Ex(t) + Ax(t) = bu(t), y(t) =c’x(t), (4.6)

where E,; A € R™*", b,c € R"”, and u(t),y(t) € R. In (4.6), x(t) € R™, u(t), and
y(t) are called, respectively, the state, the input, and the output of the underlying
dynamical system. By taking the Laplace transform of (4.6), one obtains the transfer
function

H(s) =c'(sE - A)"'b. (4.7)

18 A. Grim-McNally, E. de Sturler, and S. Gugercin

Shift | Prec Time | GMRES Time | Iter Shift | Prec Time | GMRES Time | Iter
1 9.057 0.085 24 1 8.95 0.083 24
2 9.032 0.082 24 2 0 0.20 24
3 8.99 0.08 24 3 0 0.21 25
4 8.99 0.080 24 4 0 0.20 25
5 8.94 0.080 24 5 0 0.22 26
10 9.049 0.091 26 10 0 0.31 35
15 9.008 0.096 27 15 0 0.44 47
20 9.098 0.10 28 20 0 0.99 111

Table 4.7: Timings for selected shifts for THT
middle matrices with ILUTP computed at each
shift (total time 182.023 s, total iterations 514).

Table 4.8: Timings for selected shifts for THT
middle matrices with ILUTP reused (total time
16.80 s, total iterations 880).

Shift | Prec Time | GMRES Time | Iter Shift | Prec Time | GMRES Time | Iter
1 9.00 0.081 24 1 8.97 0.081 24
2 1.026 0.086 24 2 0 0.21 24
3 0.86 0.091 24 3 0 0.22 25
4 0.83 0.091 25 4 0 0.22 25
5 0.83 0.095 26 5 1.069 0.11 26
10 0.86 0.13 32 10 0 0.19 34
15 0.84 0.19 42 15 0 0.28 45
20 0.81 0.39 79 20 0 0.59 102

Table 4.9: Timings for selected shifts for THT
middle matrices with ILUTP computed at first
shift and SAM update computed for remaining
shifts (total time 28.50 s, total iterations 736).

Table 4.10: Timings for selected shifts for THT
middle matrices with ILUTP computed at first
shift and SAM update only applied at shift 5
(total time 15.084 s, total iterations 846).

Shift | Prec Time | GMRES Time | Iter Shift | Prec Time | GMRES Time | Iter
1 8.95 0.078 24 1 9.00 0.082 24
2 0 0.21 24 2 0 0.21 24
3 0 0.22 25 3 0 0.22 25
4 0 0.22 25 4 0 0.21 25
5 0 0.23 26 5 0 0.23 26
10 1.06 0.13 32 10 0 0.25 35
15 0 0.24 44 15 0.98 0.20 42
20 0 0.62 98 20 0 0.46 91

Table 4.11: Timings for selected shifts for THT
middle matrices with ILUTP computed at first
shift and SAM update only applied at shift 10

Table 4.12: Timings for selected shifts for THT
middle matrices with ILUTP computed at first
shift and SAM update only applied at shift 15

(total time 15.24 s, total iterations 814). (total time 15.14 s, total iterations 797).

Dynamical systems with large state-space dimension n appear in many applications,
ranging from nonlinear parameter inversion to optimal control to circuit design. Sim-
ulations in these large-scale settings could be overwhelming. The goal of model re-
duction is, then, to replace the original large-scale dynamical system with one having
a much smaller state-space dimension without losing much accuracy in the system
response. In other words, the goal is to construct the dynamical system

E.x, (t) + A,x, (t) = bru(t)v Yr (t) = Cfxr(t)7 (48)

where E.; A, € R"™*" b, ¢, € R" and r < n, such that y,(t) & y(¢) in an appropriate
norm for a wide range of input selections u(t). The reduced model quantities in (4.8)
are obtained by constructing two matrices V,, W, € R"*" (the model reduction
bases) and performing a Petrov-Galerkin projection

A, =W'AV,, E,=W'EV,, b,=W!b, ¢, =VZc (4.9)

Preconditioning Parameterized Linear Systems

Shift | Prec Time | GMRES Time | Iter Shift | Prec Time | GMRES Time | Iter
1 156.18 1.19 241 1 161.25 1.31 265
2 0.22 1.21 246 2 0.22 1.34 277
3 0.23 1.29 262 3 0.22 1.38 282
4 0.23 1.45 285 4 0.22 1.47 298
5 0.23 1.73 346 5 0.22 1.49 298
10 0.23 6.13 1239 10 0.22 2.54 513
15 0.23 20.84 4150 15 0.22 5.67 1147
20 0.23 50.24 10202 20 0.22 25.38 5101

Table 4.13: Timings for selected shifts for THT
early matrices with (full) robust AINV com-
puted once with AINV updates applied to re-
maining shifts (total time 449.88 s, total itera-

Table 4.14: Timings for selected shifts for THT
middle matrices with (full) robust AINV com-
puted once with AINV updates applied to re-
maining shifts (total time 278.31 s, total itera-

19

tions 57951). tions 22879).

Shift | Prec Time | GMRES Time | Iter
1 149.55 1.24 247
2 0.22 1.26 250
3 0.22 1.26 251
4 0.22 1.29 261
5 0.22 1.36 281
10 0.22 1.75 356
15 0.22 2.73 560
20 0.23 7.24 1467

Table 4.15: Timings for selected shifts for THT
late matrices with (full) robust AINV computed
once with AINV updates applied to remain-
ing shifts (total time 204.085 s, total iterations
10251).

The difference between model reduction techniques results from the choices for V.
and W,.. We refer the reader to [6, 11, 17] for an overview of various model reduction
methods. In this paper, we focus on interpolatory model reduction, for which solving
linear systems plays a fundamental role.

Similar to (4.7), the transfer function of the reduced model (4.8) is given by

H,(s) =cl(sE, — A,)"'b,. (4.10)

While H(s) is a degree-n rational function, H,.(s) is a degree-r rational function.
Interpolatory model reduction, then, aims to construct the reduced model matrices
and thus H,.(s), via projection as in (4.9), so that H,.(s) interpolates H(s) at selected
points. Assume that a set of interpolation points {s1, sa,...,s,} is given. We want
to construct H,.(s) so that it is a Hermite interpolant to H(s) at these points, i.e.,

H,(s;) = H(s;) and H,(s;)=H'(s;), forj=1,2,...,7.
To achieve this, we build the model reduction matrices

V, =[(s1E—A)"'b,...,(s,E - A)"'b],
W, = [(s:E" = A") e, (s, BT — AT) 7],

(4.11)
(4.12)

and obtain the reduced model using (4.9). For more details on interpolatory model
reduction, see [7, 13].

The construction of V,. and W, reveals that computing H,(s), a rational Hermite
interpolant to H (s), requires solving 2r linear systems. However, the number of shifted

20 A. Grim-McNally, E. de Sturler, and S. Gugercin

6 6 0.1
0.05 .

=4 >4 0
_g g 005005 01
g2 22 \
E E

0 0

-5 -5 0 5
Real Real
(a) Shift 5 (b) Shift 10
6] 6 :
0.1 * * *
0.05 . >4

%4 008 g ".05 0 0.050.1
S -0.05 0 0.050.1 £
— 072
g2 \ ¢
= - 0

0

-5 0 5
-5 0 5
Real Real

(d) Shift 20 (eigenvalue at

(c) Shift 15 (5.72, —2.478) omitted).

Fig. 4.2: Eigenvalues of the preconditioned early THT matrices, AxPy, for selected
shifts with the ILUTP preconditioner for Ag reused for all shifts.

linear systems to be solved increases rapidly if the goal is to construct an optimal
interpolant. The construction above is valid for an arbitrary set of interpolation
points, as long as they do not coincide with the eigenvalues of the matrix pencil
AE — A. The reduced model, however, does not inherit any optimality and could be
a poor approximation. Interpolatory optimal s model reduction resolves this issue.

In optimal H, approximation, one seeks a reduced model with transfer function
H,(s) that minimizes the Hs error measure ||H(s) — H,(s)|#,, where

S 1/2
1
10) ~ #$)es = (5 [1 (o) = () P)
The Hs error norm has a direct implication for the time domain error in the system
response y(t) — y,(t); namely,

1y(t) = yr®)ll o < H() = Hr(8)ll94, [[u(®)]| .-

In other words, in order to minimize the Lo, distance between y(t) and y,(t) for every
bounded input in the Ly norm, one has to minimize the Ho distance between H(s)
and H,.(s). The connection to Hermite interpolation is immediately revealed in the
first-order optimality conditions: If H,.(s) is the best degree-r rational approximation
to H(s), then H,(s) is a Hermite interpolant to H(s) at the mirror images of the poles

Preconditioning Parameterized Linear Systems 21

o
[=2]

0.1 0.1 -
005 |, 0.05 .
>4 0 4 0
L -0.05 L -0.05
E 0 0.10.2 g 0 01 02
22 D2 -
E E .
0 " 0
-5 0 5 -5 0 5
Real Real
(a) Shift 5 (b) Shift 10

»
[=2]

0.1 . * *

>-4 0.08 = >4 *
§ * L 005,05 0 0.050.1 § -0.05 0 0.050.1
— * o —
22 : 22
E . E

0 - 0

-5 0 5 -5 5
Real
(c) Shift 15 (d) Shift 20

Fig. 4.3: Eigenvalues of the preconditioned early THT matrices, AN Py, for selected
shifts with SAM updates applied to shifts 2 through 20.

of H.(s), i.e., at the mirror images of the eigenvalues of the reduced matrix-pencil
AE,.—A,; see, e.g., [54, 45]. In other words, the optimal interpolation points depend on
the reduced model to be constructed, and therefore an iterative algorithm is required.
The Tterative Rational Krylov Algorithm (IRKA) [45] precisely achieves this task.
TRKA in its original formulation is a fixed point iteration. The interpolation points
are initialized by the user, but within the algorithm the points {s;} are updated to be
the mirror images of the generalized eigenvalues of the intermediate reduced model
quantities A, and E, [45]. Until convergence of the fixed points, s;, is achieved, the
algorithm iteratively updates the reduced order model by building the new matrices
V, and W,. given in (4.11) and (4.12) for the current interpolation points. The
matrices V,. and W,. give the new A,, E,, b,, and ¢, as in (4.9). Since it may take
many iterations until IRKA converges to the final set of {s;}, many shifted systems
must be solved in computing (4.11) and (4.12). We refer to the set of shifts for an
TRKA iteration as a batch. For more detail on interpolatory model reduction and
TRKA see [7, 12, 13, 44, 45].

Other approaches have been used to reduce the cost of the linear solves in (4.11)
and (4.12). In [14], inexact solves within a Petrov-Galerkin framework are used to
reduce this cost. In [5], the recycling BiCG algorithm is proposed and applied effec-
tively to a parametric model order reduction example, while recycling BICGSTAB
is used (also for parametric model reduction) in [3]. Further discussion of recycling

22 A. Grim-McNally, E. de Sturler, and S. Gugercin

Krylov subspace methods specifically applied to model reduction applications can be
found in [38, 39].

We give results for two sets of matrices, Rail and Flow, which can be found in [16]
along with additional information. The Rail matrices come from a semi-discretized
heat transfer equation for the cooling of steel beams. The matrices A and E are very
sparse with A symmetric negative definite, E positive definite, and n ~ 80 000. We
give results for three batches of six shifts, which are real and range from O(107°) to
O(10). The shifts are provided in Table 4.16.

For the Rail matrices, the number of nonzeros in A is 553921, that in E is 554913,
making the matrices very sparse and therefore the matrix-vector product very cheap.
In addition, the ILUTP preconditioner for these matrices is remarkably good. As a
result, the best choice is to reuse the initial preconditioner for all shifted matrices,
which achieves the fastest overall computation time. However, we do see that applying
the SAM updates at each shift substantially reduces the total number of GMRES
iterations as shown in Tables 4.18 and 4.19. We omit the results for computing the
preconditioner at each shift. While the total GMRES iterations were the fewest when
computing the ILUTP for each shift, the overall computation time was very high (over
two hours).

The Flow matrices arise in a simulation of the heat exchange between a solid
body and a fluid flow. Rather than using computational fluid dynamics, which is
quite expensive, an alternative approach is to include a flow region with a given
velocity profile [55]. However, this requires that the number of elements is drastically
increased. To deal with this, model reduction is used to effectively describe the system
[65]. For further description of the problem as well as how model reduction is applied,
we refer to [55, 57]. The model reduction involves the sparse matrices A and E, where
n =~ 10 000. We use three batches of six shifts, which are real and range from O(1)
to O(10%). The shifts for the Flow matrices are provided in Table 4.17.

Although A is not symmetric, and therefore the generalized eigenvalues of A
and E may be complex, it turns out that for the three steps of IRKA that we used
for our experiments, the shifts remain real. Table 4.20 shows that computing a new
ILUTP preconditioner at each shift results in the the lowest total number of iterations
but the highest overall computation time. When we apply the SAM updates at each
shift, the number of iterations increases, but this still yields a lower total computation
time compared with reusing the initial ILUTP for all shifts, as shown in Tables 4.21
and 4.22. In fact, at the first shift of batch three, the initial ILUTP is not a good
preconditioner and GMRES fails to converge. However, computing a SAM update at
this shift produces a preconditioner for which GMRES does converge.® Here we see
that reusing the ILUTP cannot be done for all shifts. Again note that when reusing
the ILUTP, the U factor must absorb any permutation that results from the initial
factorization of Ay. However, when using the SAM updates, the map absorbs the
permutation and U remains upper triangular. This is why GMRES takes longer for
a similar number of iterations.

As with the THT matrices, we also apply the SAM update at selected shifts of
the Flow matrices. We compute an ILUTP preconditioner for the first shift of the
first batch. We apply a SAM update at the sixth and largest shift of each batch and
again at the start of each new batch. It is at these shifts that we see some of the
largest numbers of GMRES iterations when reusing the ILUTP for all shifts. As seen

8The maximum number of iterations is set to 5000; (5001) in Table 4.22 indicates GMRES does
not converge.

Preconditioning Parameterized Linear Systems 23

Batch 1 Batch 2 Batch 3 Batch 1 Batch 2 Batch 3
Shift 1 le-05 1.8347e-05 | 1.8447¢-05 Shift 1 1.4091 1.4106 1.411
2 0.00013804 | 0.00032778 | 0.0003295 2 28.1234 29.3905 29.7024
3 0.0019055 | 0.0046185 | 0.0046991 3 150.6975 158.8259 160.8
4 0.026303 0.056949 0.067322 4 669.2639 683.6133 687.1313
5 0.36308 0.52928 0.72306 5 3536.6535 | 3555.1646 | 3559.7271
6 5.0119 8.4359 10.9255 6 17329.4291 | 17344.2626 | 17347.9311
Table 4.16: Shifts for the Rail Matrices. Table 4.17: Shifts for the Flow Matrices.

B/S | Prec Time | GMRES Time | Teer B/S | Prec Time | GMRES Time | Iter
T 45750 e = /1| 43838 1075 52
172 5 0 = 1/2 20.96 059 30
178 5 033 = 1/3 10.36 0.32 15

1/4 10.13 0.22 8
1/4 0 0.19 g
175 5 055 5 1/5 10.40 0.3 7
1/6 0 159 77 1/6 10.13 0.51 26

2/1 1174 0.09 18
2/1 0 0.89 48

: > 2/2 10.36 0.49 %

2/2 0 0.42 % (
2/3 0 0.24) 2/3 10.43 0.27 12

2/4 1047 0.23 9
2/4 0 0.20 9

2/5 10.19 0.39 20
2/5 0 0.41 24

- 2/6 10.48 0.74 38

2/6 0 2.30 97

3/1 1151 0.96 18
3/1 0 0.87 I8

3/2 10.24 0.48 %5
3/2 0 0.42 25

3/3 | 1020 0.27 i
3/3 0 0.24 12 .

3/2 | 1025 0.23 9
3/1 0 0.20 9 :

3/5 10.20 0.43 22
3/5 0 048 27 3/6 | 10.12 2.32 93
3/6 0 5.67 109 ' '

Table 4.19: Timings for Rail matrices with
ILUTP computed once and SAM updates ap-
plied for all other shifts (total time 646.60 s, to-
tal iterations 509). B/S = Batch Number/Shift
Number.

Table 4.18: Timings for Rail matrices with
ILUTP for the first system reused for all shifts
(total time 450.77 s, total iterations 647), B/S
= Batch Number/Shift Number.

in Table 4.23, we achieve the lowest overall computation time when we apply the SAM
updates at these selected shifts.

4.3. Indefinite Matrices. In our previous applications, computing a new ILUTP
for each system is better in terms of keeping GMRES iterations low, but it is, in gen-
eral, too expensive in terms of time. Here, we consider linear systems of equations
where the computation of the ILUTP preconditioner may fail or may be unstable (re-
sulting in poor preconditioners). This is the case, for example, for indefinite systems
[59, Chapter 10]. Indefinite matrices may arise when discretizing the 2D Helmholtz
equation for a wave problem in an inhomogeneous medium [36, 37]. In such cases,
we can select a matrix from the set, or choose an additional matrix, for which the
ILUTP algorithm computes an effective preconditioner. Then we use SAM updates
to (approximately) map matrices for which ILUTP may fail to this matrix.

This same idea has also been applied to the Helmholtz equation using other pre-
conditioning approaches. Previous work has successfully used operator-based precon-
ditioners in order to achieve fast convergence of Krylov methods. The shifted Laplace
preconditioner (SLP) is used along with multilevel Krylov methods in [36, 37, 61],
while a sweeping preconditioner is constructed layer-by-layer in [35]. Preconditioning
by replacing a subset of the Sommerfield-like boundary conditions of the discretized
Helmholtz equation with either Dirichlet or Neumann boundary conditions is exam-
ined in [33, 34].

24 A. Grim-McNally, E. de Sturler, and S. Gugercin

- - Prec Time | GMRES Time | Iter
Prec Time | GMRES Time | Iter
1/1 147 1.90 3501 1/1 417 488 3501
172 e e e 12 0.4 0.028 8
1/3 | 4.087 0.020 i1 1/3 0.35 0.034 2
1/4 118 0.023 10 1/4 0.34 0.14 8
418 1/5 0.35 0.19 03
1/5 3.95 0.020 7 :
3.9 1/6 0.34 0.61 207
1/6 3.61 0.021 7 :
_ 2/1 0.35 0.04 596
2/1 120 0.80 579 ‘
: , . 2/2 0.36 0.028 8
2/2 123 0.026 13
= , 2/3 0.38 0.037 b7
2/3 133 0.026 11)
o b i i 2/4 0.36 0.32 139
2/5 0.36 0.19 08
2/5 | 4.050 0.020 7
= 2/6 0.37 0.62 205
2/6 374 0.020 7
: 3/1 0.34 189 1204
3/1 134 0.81 581
3/2 0.36 0.027 18
3/2 139 0.026 13
i’ 3/3 0.35 0.034 24
3/3 135 0.026 T :
a7 - e ~ 3/4 0.37 0.26 123
3/5 0.35 0.090 59
3/5 | 4011 0.021 7 e o o o
3/6 374 0.021 7 ' :

Table 4.21: Timings for Flow matrices with
ILUTP computed once and SAM updates ap-
plied for all other shifts (total time 21.23 s, to-
tal iterations 6731). B/S = Batch Number/Shift
Number.

Table 4.20: Timings for Flow matrices with
ILUTP recomputed for each shift (total time
81.25 s, total iterations 4898). B/S = Batch
Number/Shift Number.

Prec Time | GMRES Time | Iter
Prec Time | GMRES Time | Iter 1/1 4.10 4.85 3591
1/1 4.39 4.98 3591 1/2 0 0.059 18
1/2 0 0.061 18 1/3 0 0.13 41
1/3 0 0.13 41 1/4 0 0.96 205
1/4 0 0.97 205 1/5 0 0.97 211
1/5 0 1.00 211 1/6 0.42 0.62 207
1/6 0 1.066 229 2/1 0.35 0.92 596
2/1 0 7.47 1623 2/2 0 0.028 19
2/2 0 0.056 18 2/3 0 0.30 134
2/3 0 0.13 41 2/4 0 0.62 207
2/4 0 0.97 202 2/5 0 0.62 211
2/5 0 0.99 211 2/6 0.34 0.63 205
2/6 0 1.14 239 3/1 0.36 1.82 1204
3/1 0 22.63 (5001) 3/2 0 0.027 19
3/2 0 0.056 18 3/3 0 0.058 42
3/3 0 0.13 41 3/4 0 0.62 206
3/4 0 0.96 207 3/5 0 0.64 212
3/5 0 0.98 211 3/6 0.34 0.62 207
3/6 0 1.029 232
Table 4.23: Timings for Flow matrices with
Table 4.22: Timings for Flow matrices with ILUTP computed once and SAM updates ap-
ILUTP for the first system reused for all shifts plied at selected shifts and reused until next
(total time 49.12 s, total iterations 12339). B/S SAM update computed (total time 20.40 s, to-
= Batch Number/Shift Number. tal iterations 7535). B/S = Batch Number/Shift

Number.

Our purpose for this section is to demonstrate another possible use of SAM up-
dates; we do not mean to suggest it is a more effective approach than the ones just
mentioned.

Let Ky and right hand side b be generated using a vertex-based finite volume
discretization for the 2D Laplacian on the unit square, with the Dirichlet boundary
conditions

u(z,0) =1, u(0,y)=1, wu(r,1)=0, wu(l,y)=0.

Ky is symmetric, positive definite and of size 100 x 100. We compute an ILUTP

Preconditioning Parameterized Linear Systems 25

preconditioner, P, for Ky, and use GMRES to solve the preconditioned system.
We set the maximum number of GMRES iterations to 100, the relative convergence
tolerance to 1071°, and we take the zero vector as the initial guess. Next, we consider
the systems

Ki = KO - SiI, (413)

with I the identity matrix. We take s; = iAs with As = 0.01, for i = 1,2,...,200.
We solve these systems with preconditioned GMRES as above, computing either a
new ILUTP preconditioner at every shift or updating Py with a SAM for each system.
For these small problems, we are not concerned with runtime; we only demon-
strate the superior convergence behavior obtained with the updated preconditioners
compared with ILUTP. After some number of shifts, the ILUTP preconditioners de-
teriorate due to instability and the number of iterations to convergence rapidly in-
creases. To show that the problem is not due to choices in our implementation of the
ILUTP preconditioner, we also give results for MATLAB’s ilu. Figure 4.4(c) shows
the eigenvalues for selected K;; K; becomes indefinite by the twentieth shift. Figures
4.4(a) and 4.4(b) show that while K; becomes indefinite around the twentieth shift,
ILUTP produces good preconditioners until approximately the 125" shift. At this
shift and subsequent shifts, both our implementation of ILUTP and MATLAB’s ilu
fail to produce a good preconditioner, and the number of GMRES iterations increases
substantially (or GMRES fails to converge). However, the SAM updates combined
with Py are successful in keeping the GMRES iterations low for almost all shifts.

5. Conclusions and Future Work. In applications that involve many linear
systems, recycling a preconditioner can be advantageous. We develop a flexible up-
date to arbitrary preconditioners that we call the Sparse Approximate Map, or SAM
update. This map is motivated by the Sparse Approximate Inverse; however, rather
than approximately inverting a matrix, the SAM update approximately maps one
matrix to another nearby matrix for which a good preconditioner is already available.
In this paper, we discuss several applications with systems defined by a shift, but the
SAM update can be applied to any set of closely related systems. The cost of com-
puting a very good preconditioner for a chosen matrix can be amortized over many
matrices in a sequence of systems, since our map is cheap to compute. Further, the
map is independent of preconditioner type and quality.

When the residual of the LS map is small (in norm) and the initial preconditioner
is sufficiently good, we can guarantee rapid convergence of GMRES for the precondi-
tioned system. We show that the LS map is the best approximation to the ideal map
in the Frobenius Aj-norm. This results in a monotonic decrease in the Frobenius-
norm of the residual for a sequence of nested sparsity patterns. We show for several
applications that the SAM update leads to a good (updated) preconditioner.

Future work will consider applying the SAM update incrementally as in (1.7) and
(1.8) as well as applying the update from the left as in (1.9). Another important topic
is to exploit the possibility of only updating a few columns or rows of the map to match
localized changes in the matrix Aj. We also plan to further analyze how well the LS
map approximates the ideal map under more general conditions as well as determine
the conditions under which our preconditioned matrices - using the SAM updates -
take the form (2.14). We also plan to analyze the SAM updates for more general
sequences of matrices. Finally, we will further analyze and develop good indicators
for when a new map should be computed.

26

A. Grim-McNally, E. de Sturler, and S. Gugercin

100}|___ILUTP calculated
7] at each shift
< ___ILUTP with SAM
-S 80F| ™ updates
©
S
g 60
[72]
w 4ot
o
=
O 20p

0
0 50 100 150 200
Shift, s;

(a) The number of GMRES iterations
to converge for the discretized Helmholtz
problem computing a new ILUTP pre-
conditioner for each K; (blue line) vs.
computing an ILUTP preconditioner for
Ko and computing SAM updates for all
subsequent K; (red line). These results
are based on our implementation of the
ILUTP preconditioner.

100}|___ILUTP calculated
at each shift
___ILUTP with SAM
80y updates

GMRES Iterations

60|
40t
20}
0
0 50 100 150 200
Shift, S;

(b) The number of GMRES iterations

to

converge for the discretized Helmholtz

problem computing a new ILUTP precon-
ditioner for each K; (blue line) vs. com-
puting an ILUTP preconditioner for Ko
and computing SAM updates for all sub-
sequent K; (red line). These results are
based on the MATLAB® ILUTP precon-
ditioner, ilu.

200}
150}
-
£ 100}
= 60
7] 40
50+ 20
0 C e ee
050 05
0 L

-5

0

5

Eigenvalues of K,

(c) Eigenvalues of every tenth matrix, K;.
At the twentieth shift, the matrices be-

come indefinite.

Fig. 4.4: GMRES convergence and selected eigenvalues for a discretized Helmholtz
problem.

6. Acknowledgements. We would like to thank Tania Bakhos, Arvind Saibaba,
and Peter Kitanidis for providing the description of the Transient Hydraulic Tomog-
raphy method as well as the THT matrices.

(1]

(3]

(4]

[10]

[11]

(12]

(13]

[14]

[15]

[16]

Preconditioning Parameterized Linear Systems 27

REFERENCES

ALIREZA AGHASI, MISHA E. KiLMER, AND ERic L. MILLER, Parametric level set methods for
inverse problems, SIAM Journal on Imaging Sciences, 4 (2011), pp. 618-650.

MiaN ILyAs AHMAD, DANIEL B. SzyLD, AND MARTIN B. VAN GLJZEN, Preconditioned multishift
BiCG for Ha-optimal model reduction, Tech. Report 12-06-15, Department of Mathematics,
Temple University, June 2012. Revised March 2013 and June 2015.

KapiL AHuJA, PETER BENNER, ERIC DE STURLER, AND LIHONG FENG, Recycling BiCGSTAB
with an application to parametric model order reduction, SIAM Journal on Scientific Com-
puting, 37 (2015), pp. S429-S446.

KapriL AHuJA, BRYAN K. CLARK, ERIC DE STURLER, DAVID M. CEPERLEY, AND JEONGNIM
KM, Improved scaling for quantum Monte Carlo on insulators, SIAM Journal on Scientific
Computing, 33 (2011), pp. 1837-1859.

KAPIL AHUJA, ERIC DE STURLER, EUN R. CHANG, AND SERKAN GUGERCIN, Recycling BiCG
with an application to model reduction, SIAM J. Sci. Comput., 34 (2012), pp. A1925—
A1949.

ANTHANASIOS C. ANTOULAS, Approximation of large-scale dynamical systems (Advances in
Design and Control), Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2005.

ATHANASIOS C. ANTOULAS, CHRISTOPHER A. BEATTIE, AND SERKAN GUGERCIN, Interpolatory
model reduction of large-scale dynamical systems, in Efficient Modeling and Control of
Large-Scale Systems, Javad Mohammadpour and Karolos M. Grigoriadis, eds., Springer,
2010, pp. 3-58.

ZHAOJUN BAI AND KARL MEERBERGEN, The Lanczos method for parametrized symmetric linear
systems with multiple right-hand sides, SIAM Journal on Matrix Analysis and Applications,
31 (2010), pp. 1642-1662.

TANIA BAKHOS, ARVIND K. SAIBABA, AND PETER K. KITANIDIS, A fast algorithm for parabolic
PDE-based inverse problems based on Laplace transforms and flexible Krylov solvers, Jour-
nal of Computational Physics, 299 (2015), pp. 940-954.

MANUEL BAUMANN AND MARTIN B. VAN GUIZEN, Nested Krylov methods for shifted linear
systems, STAM Journal on Scientific Computing, 37 (2015), pp. S90-S112.

ULRIKE BAUR, PETER BENNER, AND LIHONG FENG, Model order reduction for linear and non-
linear systems: a system-theoretic perspective, Archives of Computational Methods in En-
gineering, 21 (2014), pp. 331-358.

CHRISTOPHER A. BEATTIE AND SERKAN GUGERCIN, Interpolatory projection methods for
structure-preserving model reduction, Systems and Control Letters, 58 (2009), pp. 225—
232.

, Model reduction by rational interpolation, in Model Reduction and Approximation:
Theory and Algorithms, Peter Benner, Albert Cohen, Mario Ohlberger, and Karen Willcox,
eds., STAM, Philadelphia, PA, 2016.

CHRISTOPHER A. BEATTIE, SERKAN GUGERCIN, AND SARAH A. WYATT, Inezact solves in inter-
polatory model reduction, Linear Algebra and its Applications, 436 (2012), pp. 2916-2943.

STEFANIA BELLAVIA, DANIELE BERTACCINI, AND BENEDETTA MORINI, Nonsymmetric precondi-
tioner updates in Newton-Krylov methods for nonlinear systems, STAM Journal on Scien-
tific Computing, 33 (2011), pp. 2595-2619.

PETER BENNER, GENE GOLUB, VOLKER MEHRMANN, AND DANIEL C. SORENSEN,
Oberwolfach ~ model reduction benchmark collection. https://portal.uni-
freiburg.de/imteksimulation/downloads/benchmark, 2015. IMTEK Simulation, University
of Freiburg.

PETER BENNER, SERKAN GUGERCIN, AND KAREN WILLCOX, A survey of projection-based model
reduction methods for parametric dynamical systems, SIAM Review, 57 (2015), pp. 483—
531.

MAURICE W. BENSON, [terative solution of large scale linear systems, master’s thesis, Lakehead
University, Thunder Bay, Canada, 1973.

MAURICE W. BENSON AND PAUL O. FREDERICKSON, Iterative solution of large sparse linear
systems arising in certain multidimensional approzimation problems, Utilitas Math, 22
(1982), pp. 154-155.

MICHELE BENZI AND DANIELE BERTACCINI, Approzimate inverse preconditioning for shifted
linear systems, BIT Numerical Mathematics, 43 (2003), pp. 231-244.

MicHELE BENzI, JANE K. CULLUM, AND MIROSLAV TUMA, Robust approximate inverse precon-
ditioning for the Conjugate Gradient method, SIAM Journal on Scientific Computing, 22
(2000), pp. 1318-1332.

28

22]

23]

24]

[25]

[26]

37)

[38]

A. Grim-McNally, E. de Sturler, and S. Gugercin

MicHELE BENZI, JOHN C. HAwWS, AND MIROSLAV TUMA, Preconditioning highly indefinite and
nonsymmetric matrices, SIAM Journal on Scientific Computing, 22 (2000), pp. 1333-1353.

MicHELE BENzI, REIJO KOUHIA, AND MIROSLAV TUMA, Stabilized and block approzimate inverse
preconditioners for problems in solid and structural mechanics, Computer Methods in
Applied Mechanics and Engineering, 190 (2001), pp. 6533-6554.

MICHELE BENZI AND MIROSLAV TUMA, A sparse approximate inverse preconditioner for non-
symmetric linear systems, SIAM Journal on Scientific Computing, 19 (1998), pp. 968-994.

JEFFREY T. BORGGAARD AND SERKAN GUGERCIN, Model reduction for DAEs with an applica-
tion to flow control, in Active Flow and Combustion Control, Rudibert King, ed., Springer
International Publishing, 2015, pp. 381-396.

CATERINA CALGARO, JEAN-PAUL CHEHAB, AND YOUSEF SAAD, Incremental incomplete LU
factorizations with applications, Numerical Linear Algebra with Applications, 17 (2010),
pp. 811-837.

STEPHEN L. CAMPBELL, ILSE C.F. IpsEN, C. TiM KELLEY, AND CARL D. MEYER, GMRES and
the minimal polynomial, BIT Numerical Mathematics, 36 (1996), pp. 664-675.

MIiCHAEL CARDIFF AND WARREN BARRASH, 3-D Transient hydraulic tomography in unconfined
aquifers with fast drainage response, Water Resources Research, 47 (2011).

EpMuND CHOW, A priori sparsity patterns for parallel sparse approximate inverse precondi-
tioners, SIAM Journal on Scientific Computing, 21 (2000), pp. 1804-1822.

EDMUND CHOW AND YOUSEF SAAD, Approzimate inverse preconditioners via sparse-sparse
iterations, STAM Journal on Scientific Computing, 19 (1998), pp. 995-1023.

ERIC DE STURLER, SERKAN GUGERCIN, MISHA E. KILMER, SAIFON CHATURANTABUT, CHRISTO-
PHER A. BEATTIE, AND MEGHAN O’CONNELL, Nonlinear parametric inversion using inter-
polatory model reduction, SIAM Journal on Scientific Computing, 37 (2015), pp. B495—
B517.

ERIC DE STURLER AND MISHA E. KILMER, A regularized Gauss-Newton trust region approach to
imaging in diffuse optical tomography, STAM Journal on Scientific Computing, 33 (2011),
pp- 3057-3086.

HowarD C. ELMAN AND DIANNE P. O’LEARY, Efficient iterative solution of the three-
dimensional Helmholtz equation, Journal of Computational Physics, 142 (1998), pp. 163—
181.

, Eigenanalysis of some preconditioned Helmholtz problems, Numerische Mathematik, 83
(1999), pp. 231-257.

BJORN ENGQUIST AND LEXING YING, Sweeping preconditioner for the Helmholtz equation: hi-
erarchical matriz representation, Communications on Pure and Applied Mathematics, 64
(2011), pp. 697-735.

Yoci A. ERLANGGA AND REINHARD NABBEN, On a multilevel Krylov method for the Helmholtz
equation preconditioned by shifted Laplacian, Electronic Transactions on Numerical Anal-
ysis, 31 (2008), pp. 403-424.

Yoar A. ERLANGGA, CORNELIS VUIK, AND CORNELIS W. OOSTERLEE, Comparison of multi-
grid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz
equation, Applied Numerical Mathematics, 56 (2006), pp. 648-666.

LinoNG FENG, PETER BENNER, AND JAN G. KORVINK, Parametric model order reduction ac-
celerated by subspace recycling, in 48th IEEE Conference on Decision & Control and 28th
Chinese Control Conference, 2009, pp. 4328-4333.

———, Subspace recycling accelerates the parametric macro-modeling of MEMS, International
Journal for Numerical Methods in Engineering, 94 (2013), pp. 84-110.

NaBIL GMATI AND BERNARD PHILIPPE, Comments on the GMRES convergence for precondi-
tioned systems, in Large-scale scientific computing, Springer, 2008, pp. 40-51.

ANNE GREENBAUM, [terative Methods for Solving Linear Systems, SIAM, Philadelphia, PA,
1997.

MARcUs J. GROTE AND THOMAS HUCKLE, Parallel preconditioning with sparse approrimate
inverses, SIAM Journal on Scientific Computing, 18 (1997), pp. 838-853.

GUIDING GU, XIANLI ZHOU, AND LEI LIN, A flexible preconditioned Arnoldi method for shifted
linear systems, Journal of Computational Mathematics, 25 (2007), pp. 522-530.

SERKAN GUGERCIN AND ANTHANASIOS C. ANTOULAS, A survey of model reduction by balanced
truncation and some new results, International Journal of Control, 77 (2004), pp. 748-766.

SERKAN GUGERCIN, ANTHANASIOS C. ANTOULAS, AND CHRISTOPHER A. BEATTIE, H> model
reduction for large-scale linear dynamical systems, STAM Journal on Matrix Analysis and
Applications, 30 (2008), pp. 609-638.

NicHOLAS J. HIGHAM, Accuracy and Stability of Numerical Algorithms, SIAM, 2002.

RuTH M. HOLLAND, ANDY J. WATHEN, AND GARETH J. SHAW, Sparse approrimate inverses

Preconditioning Parameterized Linear Systems 29

and target matrices, STAM Journal on Scientific Computing, 26 (2005), pp. 1000-1011.

THOMAS HUCKLE, Approximate sparsity patterns for the inverse of a matriz and precondition-
ing, Applied Numerical Mathematics, 30 (1999), pp. 291-303.

MisHA E. KILMER AND ERIC DE STURLER, Recycling subspace information for diffuse optical
tomography, STAM Journal on Scientific Computing, 27 (2006), pp. 2140-2166.

MING L1, VISHWAS RAO, AND ERIC DE STURLER, Effective truncation of low-rank preconditioner
updates. Submitted for publication, 2015.

ANDERS LOGG, KENT-ANDRE MARDAL, AND GARTH N. WELLS, eds., Automated Solution of
Differential Equations by the Finite Element Method, vol. 84, Springer, 2012.

ANDERS LOGG AND GARTH N. WELLS, DOLFIN: Automated finite element computing, ACM
Transactions on Mathematical Software, 37 (2010), p. 20.

ANDERS LOoGG, GARTH N. WELLS, AND JOHAN HAKE, DOLFIN: a C++/Python finite element
ltbrary, in Automated Solution of Differential Equations by the Finite Element Method,
Anders Logg, Kent-Andre Mardal, and Garth N. Wells, eds., Springer, 2012, ch. 10.

L. MEIER AND D.G. LUENBERGER, Approzimation of linear constant systems, IEE. Trans.
Automat. Contr., 12 (1967), pp. 585-588.

CHRISTIAN MOOSMANN, EVGENII B. RUDNYI, ANDREAS GREINER, AND JAN G. KORVINK, Model
order reduction for linear convective thermal flow, in Proceedings of 10th International
Workshops on THERMal INvestigations of ICs and Systems, THERMINIC2004, vol. 29,
2004, pp. 317-322.

AMIN RAFIEL, Left-looking version of AINV preconditioner with complete pivoting strategy,
Linear Algebra and its Applications, 445 (2014), pp. 103-126.

EvGENII B. RUDNYI AND JAN G. KORVINK, Review: Automatic model reduction for transient
simulation of MEMS-based devices, Sensors Update, 11 (2002), pp. 3-33.

YOUSEF SAAD, SPARSKIT: A basic took-kit for sparse matriz computations. http://www-
users.cs.umn.edu/ saad/software/SPARSKIT/, 1994.

, Iterative Methods for Sparse Linear Systems, 2nd Ed., STAM, 2003.

ARVIND K. SAIBABA, TANIA BAkHOS, AND PETER K. KITANIDIS, A flezible Krylov solver for
shifted systems with application to oscillatory hydraulic tomography, SIAM Journal on
Scientific Computing, 35 (2013), pp. A3001-A3023.

ABpuL H. SHEIKH, DOMENICO LAHAYE, AND CORNELIS VUIK, On the convergence of shifted
Laplace preconditioner combined with multilevel deflation, Numerical Linear Algebra with
Applications, 20 (2013), pp. 645-662.

HENK A. VAN DER VORST, [terative Krylov Methods for Large Linear Systems, Cambridge
University Press, 2003.

JAacoB ANDRE C. WEIDEMAN, Optimizing Talbot’s contours for the inversion of the Laplace
transform, SIAM Journal on Numerical Analysis, 44 (2006), pp. 2342-2362.

