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Multivariate Applications of Bayesian Model Averaging

Robert B. Noble Jr.

(ABSTRACT)

The standard methodology when building statistical models has been to use one of several
algorithms to systematically search the model space for a good model. If the number of
variables is small then all possible models or best subset procedures may be used, but for
data sets with a large number of variables, a stepwise procedure is usually implemented.
The stepwise procedure of model selection was designed for its computational efficiency and
is not guaranteed to find the best model with respect to any optimality criteria. While the
model selected may not be the best possible of those in the model space, commonly it is
almost as good as the best model. Many times there will be several models that exist that
may be competitors of the best model in terms of the selection criterion, but classical model
building dictates that a single model be chosen to the exclusion of all others. An alternative
to this is Bayesian model averaging (BMA), which uses the information from all models
based on how well each is supported by the data.

Using BMA allows a variance component due to the uncertainty of the model selection
process to be estimated. The variance of any statistic of interest is conditional on the model
selected so if there is model uncertainty then variance estimates should reflect this. BMA
methodology can also be used for variable assessment since the probability that a given
variable is active is readily obtained from the individual model posterior probabilities.

The multivariate methods considered in this research are principal components analysis
(PCA), canonical variate analysis (CVA), and canonical correlation analysis (CCA). Each
method is viewed as a particular multivariate extension of univariate multiple regression. The
marginal likelihood of a univariate multiple regression model has been approximated using
the Bayes information criteria (BIC), hence the marginal likelihood for these multivariate
extensions also makes use of this approximation.



One of the main criticisms of multivariate techniques in general is that they are difficult to
interpret. To aid interpretation, BMA methodology is used to assess the contribution of each
variable to the methods investigated. A second issue that is addressed is displaying of results
of an analysis graphically. The goal here is to effectively convey the germane elements of an
analysis when BMA is used in order to obtain a clearer picture of what conclusions should
be drawn.

Finally, the model uncertainty variance component can be estimated using BMA. The vari-
ance due to model uncertainty is ignored when the standard model building tenets are used
giving overly optimistic variance estimates. Even though the model attained via standard
techniques may be adequate, in general, it would be difficult to argue that the chosen model
is in fact “the correct” model. It seems more appropriate to incorporate the information
from all plausible models that are well supported by the data to make decisions and to use
variance estimates that account for the uncertainty in the model estimation as well as model
selection.
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Chapter 1

Background on Model Building

1.1 Introduction

The techniques most commonly used in practice for building a linear regression model will
be presented in this chapter. These popular methods result in the selection of a single model
that is used for the purposes of prediction and/or description of a process. This manner
of model building ignores the uncertainty that is an inherent part of the selection process.
Recent advances in this area have addressed the problem using Bayesian model averaging
(BMA), which assigns weights to each candidate model based on how well it is supported
by the data.

Several model building techniques used for multivariate data can be viewed as special cases
of multivariate linear regression which is an extension of the univariate model. The special
cases considered are: principal components analysis, canonical discriminant analysis, and
canonical correlation analysis. Model building is an early step in the analysis of data of these
types and some of the commonly used methodologies will be discussed. Model uncertainty
has not been accounted for in these multivariate settings so Bayesian model averaging is
proposed as a solution.

1.2 Regression

Linear regression and its generalizations are among the most widely used methods in the
sciences for finding relationships between explanatory and dependent variables. With the
advent of faster and more powerful computers, researchers are collecting larger data sets
both in sample size and in the number of possible predictor variables. To find relationships
and develop models, researchers often use automated model selection methods and data-
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mining to determine the set of covariates to be used for prediction and description of the
process of interest. The selection of subsets of predictor variables is a basic part of building a
linear regression model. The problem of model building and selection when using regression
analysis with k independent variables has been approached in several ways.

The first method is the brute force method of fitting all combinations of possible models. A
model performance criterion is computed for each model, such as adjusted r-square, Mallow’s
Cp, PRESS, or APRESS [47]. The model judged to be “best” based on some criterion is
chosen in conjunction with also constructing a parsimonious model. Generally, evaluation
of each individual model is not practical since the number of possible models grows expo-
nentially with respect to k. Even for small values of k, say k ≈ 20, another model selection
technique must be employed since the cost in computer time is large enough so as to make
the procedure impractical.

To alleviate the burden of assessing 2k models, a compromise is attained by using a best
subsets regression algorithm. One popular method is the leaps and bounds algorithm [15]
which uses a relatively small number of operations to compute lower bounds for the residual
sum of squares for all possible regressions without actually looking at each model individually.
This is accomplished by using the fundamental inequality

RSS(A) ≤ RSS(B)
where A is any set of independent variables and B is a subset of A. The efficiency of the
leaps and bounds algorithm comes from the fact that once a model is deemed unacceptable,
all models that are subsets of the model investigated are also removed without explicitly
examining each submodel. Subset methods identify and display the best subset of K mod-
els. Popular computer packages implementing this algorithm, or some variation, allow for
model evaluation based on r-square, adjusted r-square and Mallow’s Cp. These criterion
are allowed for model evaluation because these statistics are monotone functions of the RSS
whereas statistics such as PRESS and APRESS are not. The final model is then chosen by
the practitioner from the K models presented generally using some other criteria, such as
simplicity or some first principles argument. Even though the number of required operations
is much less than the all possible models method, this technique also becomes less practical
as k grows larger.

Forward, backward, and stepwise methods are also popular and used very often in prac-
tice. These sequential techniques were designed to efficiently identify a reasonable subset of
regressors in cases where k can be quite large. These procedures were motivated by compu-
tational efficiency and most likely will result in models that are not the “best” with respect
to the model evaluation criterion of interest [47]. Each of these methods adds and/or drops
regressor variables from the model based on an F -test.

Forward selection starts with the null model and examines the list of possible explanatory
variables by performing regressions on each variable one at a time. The largest partial F -
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statistic associated with the variable of interest that is greater than some critical value, Fin,
is then entered into the model. The process is repeated by looking at the remaining variables
and including each variable one at a time, in the model that (1) has the largest partial F -
statistic as compared to the other candidate variables, and (2) has a partial F -statistic that
exceeds Fin. The process stops when the partial F -statistic associated with each variable
trying to enter the model is less than Fin.

The backward elimination procedure begins with a regression on all possible explanatory
variables. Each parameter is evaluated on the basis of a partial F -statistic. If the smallest
of all the partial F -statistics is found to be less than some critical value, Fout, then that
variable is removed. The process is repeated on the remaining regressors until the smallest
partial F -statistic exceeds the user specified Fout.

Stepwise regression combines elements of both backward elimination and forward selection.
It begins like forward selection by examining the list of all possible explanatory variables
and chooses the variable associated with the largest partial F -statistic that is greater than
Fin. The list of remaining covariates is examined and as before, the variable associated with
the largest partial F -statistic that is greater than Fin is also admitted to the model. At
this point, the stepwise procedure begins to act like the backward elimination scheme. After
adding the subsequent variables (after the first) to the model, each partial F is computed
and if the smallest of these is less than Fout then the variable is removed. Once none of the
remaining out-of-equation variables test as significant and all the variables in the model are
judged to be necessary, the stepwise procedure terminates. It is obvious that the user must
set Fin ≥ Fout in order for the process to eventually stop [10, 43].
In almost all instances some degree of collinearity will exist between the independent vari-
ables in a study. The effectiveness of the sequential procedures is negatively impacted as
collinearity increases [46]. This condition can be eliminated by using principal components
regression or ridge regression. In the case of principal components when each component
is retained, no collinearity exists and the sequential procedures are guaranteed to find the
same model given values Fin and Fout, and this model will be the “best” with respect to
minimizing RSS for all possible models containing the same number of variables selected by
the sequential procedure. A problem with this method is that all of the original possible
covariates need to be kept to form the linear combinations to form the principal component
scores, and this is counter to the idea of attaining a parsimonious model when rotating back
to the original data space and prevents elimination of any variables.

3



1.3 Bayesian Model Averaging

1.3.1 Introduction

Several commonly used model building techniques were identified in the previous section.
While the discussion of all model building methods was not exhaustive, a common feature
to each of the procedures, and their variations, is to select a single model at the conclusion
of the algorithm. A consequence of this action is the assumption that the chosen model is
the correct model. Standard statistical protocol at this point is to proceed as if the selected
model had generated the data. This approach ignores the uncertainty in model selection
leading to over-confident inferences and decisions that are more risky than appears on the
surface [22]. Bayesian model averaging (BMA) provides a mechanism to account for model
uncertainty.

Suppose we want to build a regression model and have k predictors X1, X2, . . . , Xk, and T
possible models of interest. For each model we can compute the posterior probability of the
model Mi given the data D using Bayes rule [16]

P (Mi|D) =
P (D|Mi)P (Mi)PT
j=1 P (D|Mj)P (Mj)

(1.1)

For the sake of completeness we note that all probabilities are implicitly conditional onM,
the set of all models being considered. In equation 1.1 we must compute P (D|Mi) which
is interpreted as the probability of the data given the model, independent of the unknown
parameters, and P (Mi) which is the prior probability that model Mi is the correct model.
In the absence of any prior information all models are generally assumed to be equally likely,
so P (Mi) = T

−1 which reduces equation 1.1 to

P (Mi|D) =
P (D|Mi)PT
j=1 P (D|Mj)

(1.2)

The quantity P (D|Mi) is the marginal likelihood of the data and is obtained by

P (D|Mi) =
Z
P (D|θi,Mi)P (θi|Mi)dθi (1.3)

where θi is the unknown parameter vector for model Mi, P (D|θi,Mi) is the likelihood and
P (θi|Mi) is the prior probability density assumed for θi. In normal multiple linear regression,
θi = (βi, σ

2) and βi the vector of slope parameters such that

βij =

(
βj if xj ∈Mi

0 if xj /∈Mi

4



Hoeting [21] showed that the integral in equation 1.3 may be evaluated analytically in some
special cases [8] such as multiple linear regression assuming iid normal errors using conjugate
normal-gamma priors as follows

P (D|µi, V,Xi,Mi) =
Γ
³
ν+n
2

´
(νλ)0.5ν

µ0.5nΓ
³
ν
2

´
|I +XiViX 0

i|0.5h
λν + (Y −Xiµi)0(I +XiViX 0

i)
−1(Y −Xiµi)

i−0.5(ν+n)
(1.4)

where Xi is the data matrix, µi is the prior mean vector for β, and Vi is the variance
matrix for β corresponding to model i. This is an n dimensional non-central Student’s t
distribution with ν degrees of freedom, mean Xµ, and variance [ν/(ν − 2)]λ(I + XVX 0).
The prior distributions for the unknown regression parameters needed to obtain equation
1.4 are β ∼ N(µ, σ2V ), and νλ

σ2
∼ χ2ν where ν, λ, V , and µ are hyperparameters to be chosen

or calibrated based on the data.

For more general situations, Raftery [55] proposed using the Bayes Information Criterion
(BIC) as an accurate approximation to the integrated likelihood. For normal linear regres-
sion,

BICj = n ln(1− r2j ) + kj lnn
for model j where r2j is the usual r-square for the model, kj is the number of regressors in
model j, and n is the number of observations. The marginal likelihood of model j is then
approximated by

P (D|Mj) ∝ e−0.5BICj (1.5)

After the marginal likelihood is approximated, the posterior probability of each model can be
approximated using equation 1.1. The individual models are then weighted by their posterior
probabilities so that the various quantities of interest may be estimated. If ∆ is the quantity
of interest, such as a prediction in a regression model, then its posterior distribution given
data D is

P (∆|D) =
TX
i=1

P (∆|Mi, D)P (Mi|D) (1.6)

Equation 1.6 is the weighted average of the posterior distributions under each of the models
considered where the weights are the posterior model probability. The posterior mean and
variance of ∆ are

E[∆|D] =
TX
i=1

E[∆|Mi,D]P (Mi|D)
V ar[∆|D] = EM(V ar(∆|D,M)) + V arM(E(∆|D,M))
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where V arM(E(∆|D,M)) is the model uncertainty variance component [9]. Averaging over
all models in this way provides better out of sample predictive ability, as measured by a
logarithmic scoring rule, than any single model Mi, conditional onM [22].

1.3.2 Example

Suppose we have 20 observations with the following correlation structure

X1 X2 X3
Y 0.85 0.85 0.25
X1 0.97 0.10
X2 0.20

Five commonly used methods were used to select a model given this correlation structure.
The methods used are forward, backward and stepwise regression, best adjusted r-square,
and the PRESS statistic.

The three sequential methods, forward, backward, and stepwise, make use of partial F -tests.
The F -statistics can be formed from the r-square statistic as

F =
r2

1− r2
n− p− 1

p

where n is the sample size, p is the number of variables in the model, and

r2 =
SyxS

−1
xx Sxy
Syy

where S·· are the sums of squares and cross product matrices, or equivalently, the corre-
sponding correlation matrices [60]. Since we have the correlation matrix then no data is
required for the sequential tests. The default values used by SAS 8.00 for entry or removal of
a variable were used. Any variable will stay in the model if the p-value for the partial F -test
is less than 0.10 when the backward method is used. In the forward method, variables are
added if their partial F -test results in a p-value less than 0.5. For the stepwise method, a
variable is added if the p-value for the partial F -test is less than 0.15 whereas any variable
already in the model with a p-value greater than 0.15 is removed.

The next model selection criterion considered is based on choosing the model with the highest
adjusted r-square. The adjusted r-square is commonly used as a model selection criterion
since it accounts not only for variance explained, but also for number of variables in the
model and is defined as

r2adj = 1− (1− r2) n− 1
n− p− 1
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Table 1.1: Posterior model probabilities and conventional model selection choices.

Model E(y) −0.5BIC P (Mi|D) adj r-sq PRESS Sequential
1 β0 0.0000 0.0000 0.0000 21.0526
2 β0 + β1X1 12.2404 0.1642 0.7071 6.5380 Backward
3 β0 + β2X2 12.2404 0.1642 0.7071 6.5600 Stepwise
4 β0 + β1X1 + β2X2 12.0660 0.1379 0.7022 7.1195
5 β0 + β3X3 0.0664 0.0000 0.0104 22.1375
6 β0 + β1X1 + β3X3 12.7051 0.2613 0.7206 6.6504
7 β0 + β2X2 + β3X3 11.9047 0.1174 0.6973 7.2279
8 β0 + β1X1 + β2X2 + β3X3 12.1837 0.1551 0.7048 7.5265 Forward

Note: The PRESS statistic for each model is data dependent so the listed values are averages
based on 500 samples. All other columns are constant for given correlation matrix.

where r2 is the model r-square, n is the sample size, and p is the number of variables in the
model [10]. This method chooses the model with the highest adjusted r-square and as with
the sequential procedures, only requires either the sums of squares or correlation matrices
to compute.

The final model selection criterion considered is based on the choosing the model that min-
imizes the PRESS statistic defined as

PRESS =
nX
i=1

µ
ei

1− hii
¶2

where ei is the residual for the i
th observation and hii is the i

th diagonal element of the hat
matrix [47]. Since this statistic is based on residuals and location of the observed values of
the independent variables, then data must be generated to compute it.

The BIC based posterior model probability approximations along with the results of the
various selection criteria are shown in table 1.1. We see that model 2 in table 1.1 has
the lowest PRESS statistic and was also chosen using the backward procedure. Model 6
achieved the highest adjusted r-square, but the stepwise procedure chose model 3 and the
forward selection resulted in model 8. It is not at all clear which model should be the final
model chosen to be the “best”. The model space consists of only eight models but four are
deemed “best” using the different selection criteria.

The competition between models is also apparent upon examination of the posterior model
probabilities. The models chosen based on PRESS, adjusted r-square, stepwise, and backward
elimination each have a high posterior probability. A major benefit at this point is that we
are not forced to choose which is the correct model because we will use the weighted average
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Table 1.2: Sampling distribution of β̂3

Model E(y) P (Mi|D) β̂3 Std.Err.(β̂3) Distribution
1 β0 0.0000 0.00000 0.00000 Point
2 β0 + β1X1 0.1642 0.00000 0.00000 Point
3 β0 + β2X2 0.1642 0.00000 0.00000 Point
4 β0 + β1X1 + β2X2 0.1379 0.00000 0.00000 Point
5 β0 + β3X3 0.0000 0.25000 0.22822 t18
6 β0 + β1X1 + β3X3 0.2613 0.16667 0.12188 t17
7 β0 + β2X2 + β3X3 0.1174 0.08333 0.12882 t17
8 β0 + β1X1 + β2X2 + β3X3 0.1551 0.14875 0.13845 t16

of each model to estimate the quantities of interest. To illustrate this idea, suppose we want
to compare the sampling distribution of β̂3 for model 6 (highest r-square model) with that
achieved using BMA. Table 1.2 shows the distribution of β̂3 for each of the models considered.
Upon choosing model 6 we have that

β̂3 − 0.16667
0.12188

∼ t18

We see that the posterior probability of models 1 and 5 is zero (to four decimal places) so
their weight is zero and hence do not contribute to sum. Models 2—4 are point masses at
zero with total probability of 0.4662. The remainder of the density is the weighted sum
comprised of the three tν distributions centered on their respective parameter estimate and
rescaled by the standard error of the estimate. Both the BMA and the conventional sampling
distributions are shown in figure 1.1.

If variable assessment is the objective, then at this point we could construct (1 − α)100%
confidence intervals or develop interval probabilities for β̂3.

1.3.3 Implementation

Regardless of the method used to compute a posterior probability for a particular model,
we see that all models must be evaluated individually. Just as in the brute force method of
all possible models described in the first section, this becomes impractical for k much larger
than say 20. When it becomes too difficult to enumerate and evaluate each possible model
a suitable subset of the most likely models can be constructed to be used in equation 1.6.
Madigan and Raftery [38] propose a method they call “Occam’s window” which eliminates
any model that is much less likely than the best model. Since science is an iterative process
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Figure 1.1: β̂3 sampling distribution for Model 6 and BMA

in which models that predict far less well than their competitors are discarded, then they
maintain that equation (1.6) should also not include models that are not supported by the
data. The reduced set of models is then

A =

(
Mk :

max{P (Ml|D)}
P (Mk|D) ≤ c

)

for some constant c that depends on the context of the problem and may range from 10 up
to perhaps 1000. The set is then further reduced by the principle of “Occam’s razor”. This
principle would exclude any model that is less likely than any more simple submodel nested
within it. Consequently the final collection of models included in equation 1.6 is

B =

(
Mk :6 ∃Ml ∈ A,Ml ⊂Mk,

P (Ml|D)
P (Mk|D) > 1

)

and equation 1.6 is replaced by

P (∆|D) =
X
Mi∈B

P (∆|Mi, D)P (Mi|D) (1.7)

Madigan and Raftery [38] outline an algorithm for implementing this procedure and a
modification of the method by Raftery [55] incorporates the leaps and bounds method
of model selection by Furnival and Wilson [15]. Since this method is analogous to the
best subset regression discussed in Section 1.2, it also becomes impractical as k grows
larger. Raftery and Volinsky (1996) published S-plus code (available in the StatLib index at
http://lib.stat.cmu.edu/S/bicreg) which limits k ≤ 30.
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Madigan and York [39] proposed approximating 1.6 by using Markov chain Monte Carlo
model composition (MC3). This method generates a stochastic process which moves through
model space. If M is the space of models under consideration, then a Markov chain
{M(t)}, t = 1, 2, . . . can be constructed with state space M and stationary distribution
Pr(Mi|D). Since the transition matrix is finite and can be constructed to be irreducible,
then by applying the ergodic theorem, for any function g(Mi) defined onM, E(g(M)) can
be estimated by drawing from the Markov chain for t = 1, 2, . . . ,N , and

Ĝ =
1

N

NX
i=1

g(M(t))

which is a simulation-consistent estimate of E(g(M)) (i.e. Ĝ → E(g(M)) almost surely)
[64, 39, 49]. Raftery, Madigan, and Hoeting [56] define a neighborhood nbd(M) for each
M ∈M that consists of the model M itself and the set of models with either one variable
more or one variable fewer than M . They define a transition matrix q by setting q(M →
M 0) = 0 for allM 0 6∈ nbd(M) and q(M →M 0) constant for allM 0 ∈ nbd(M). If the chain is
currently in stateM , then proceed by randomly picking a model,M 0, from the neighborhood
of M such that all models in the neighborhood are equally likely to be chosen. The model
is then accepted with probability

min

(
1,
P (M 0|D)
P (M |D)

)

and the process moves to state M 0 otherwise the state stays in M [56, 39, 20]. Since this
process is stochastic, a large number of models may be visited only a few times with the large
majority of iterations taking place within only a few states. At this point we can appeal
to “Occam’s window” and possibly to “Occam’s razor” discussed previously to eliminate
those models that are not supported by the data as compared to the best model, and not
supported by the data as well as one of it’s nested submodels. This technique will greatly
reduce the number of models in equation 1.6 so as to make it more manageable and conform
to the principles and philosophies of model building.

1.4 Multivariate Models

1.4.1 Introduction

Model selection is also an important part of multivariate modeling. In this research, three
multivariate techniques will be viewed as extensions of the univariate multiple regression
model; they are principal components analysis (PCA), canonical variate analysis (CVA)
(also known as canonical discriminant analysis), and canonical correlation analysis (CCA).
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The three methods are similar in that each is a dimension reduction technique and can be
viewed as a special case of multivariate regression [26]. Though there are similarities, the
goals of each model are quite different. Of the three, CVA is most similar to multivari-
ate regression because the model is identical to a one way MANOVA. The goal of CVA is
to describe the group mean separation in a small number of meaningful dimensions. The
variables used to form a CCA model are treated symmetrically, meaning that neither is con-
sidered dependent or independent. The purpose in this situation is to identify and describe
the meaningful linear relationships that exist between the two sets of variables. PCA con-
sists of one set of variables and is used to create a number latent variables, called principal
components. The goal is to adequately describe a high dimensional variable space with a
small number of latent constructs. In describing the components it becomes necessary to
determine which natural variables are important in their construction.

1.4.2 Principal Components Analysis (PCA)

Principal components is a multivariate technique classified as a non-dependent variable
method. The goal in principal components analysis is to create a set of orthogonal vari-
ables (components) from some given data by creating linear combinations of the original
data that maximizes the variance of each new variable.

The goal is accomplished by rotating either the centered data or centered and scaled data,
so that the axis along which the variance is maximum coincides with the axis of the first
principal component. The next step is to rotate the data orthogonally to the first compo-
nent’s axis so as to maximize the remaining variance in the second principal component.
This process is repeated until a zero eigenvalue is encountered or the number of components
equals the number of variables in the original data.

The rotation is accomplished by using either the covariance matrix or the correlation matrix
of the original data. The choice of which to use results in different solutions. If all the
variables are not measured on the same scale it is common to remove the units by using the
correlation matrix to perform the rotation.

Given an (n× k) data matrix X = [x1 x2 . . . xk] the i
th principal component is then

equal to

y
i
= ai1x1 + ai2x2 + · · ·+ aikxk

where a0iai = 1 for all i = 1, . . . , k, and a
0
iaj = 0 for all i 6= j, and var(y1) ≥ var(y2) ≥ · · · ≥

var(y
k
).

The standard procedure for maximizing a function of several variables subject to constraints
is the method of Lagrange multipliers [13].
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Using matrix notation the solution is outlined. Given an n×k matrix X, let Z = S−0.5(X−
1n(1

0
n1n)

−11nX) where 1n is n × 1 column vector of ones and S is the sample covariance
matrix of the data. Let R = (n − 1)−1(Z 0Z) be the sample correlation matrix. The ith
principal component is yi = Zei and var(yi) = λi where ei and λi are the i

th eigenvector and
eigenvalue of R respectively.

In geometrical terms the first principal component defines the best fit line (in the least squares
sense) to the k-dimensional observations in the sample, or equivalently, that it minimizes
the total perpendicular sum of squares from the observations to the first component [13, 60].
The second and subsequent components are interpreted in the same with the add restriction
that they are orthogonal to each of the previous components.

A common reason that PCA is performed is one of dimension reduction while maintaining a
large amount of the original information. Following selection of the number of components,
investigators assign some physical meaning to each of the retained components. Since each
component is a linear combination of all of the original variables it becomes necessary to
identify which variables are important to the construction of a component.

Many different methods have been proposed to accomplish the task of how many components
to retain. Jolliffe [28, 29], Rencher [60], and Jackson [25] describe and investigate the prop-
erties of several of these methods. The techniques can be characterized by the methods that
drive the particular procedure. Each method can be classified as heuristic, inferential, clus-
ter analytic, or multiple correlation in nature. The heuristic methods include Scree graphs;
discarding components with eigenvalues less than one (correlation matrix PCA); attaining
a certain percent of the total variation by keeping the pc’s with the largest eigenvalues;
assigning one variable to each pc via the loading of the eigenvectors and then either keep-
ing the variables that are connected with the largest eigenvalues or discarding the variables
connected with the smallest eigenvalues. With respect to the inferential methods, sequential
tests have been developed for testing equality of the smallest eigenvalues [24, 28], also the
based on a probabilistic argument, the broken stick method has been used to identify compo-
nents that should be discarded [14, 24]. The clustering methods differ from the heuristic and
inferential methods because dimension reduction takes place within the variable space and
not in the rotated component space. The cluster methods define a measure of association
between the vectors called a link. Variables, or groups of variables that are strongly linked
together form the clusters. The clustering process stops at the point where the link between
all remaining clusters is below some threshold, and the number of clusters represents the
number of components that are to be retained [29]. The multiple correlation methods use a
linear regression approach to identify the number of components to retain.

Beale, Kendall, and Mann [3] developed interdependence analysis as an alternative to PCA
and extended the use of regression to the interdependent variable situation by retaining the
p variables that maximize the minimum r-square value when the p selected variables are
regressed on the remaining k− p variables. This method is the same as running all possible
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regressions with each variable being treated in each model as either a dependent variable or
an independent variable. Since this becomes impractical as k grows, Jollife [29] proposed
a modification to the method by suggesting that the procedure be conducted in a stepwise
regression fashion. McCabe [41] developed principal variables analysis (pva) to incorporate
the ideas of model building and dimension reduction but this method does not involve a
rotation to a new variable space and only removes variables that are explained adequately
by the remaining ones.

After the number of components with significant structure is determined, practitioners of-
ten want to interpret the components by looking at eigenvector weights. The purpose of
interpretation is to assign some meaning to these created components that matches up to
some idea in reality. Variables that contribute heavily to a component are important to the
construction of that component. Since the idea of component interpretation has not been
addressed in the context of model building in the literature the method is developed and
illustrated in chapter 2.

1.4.3 Canonical Variate Analysis (CVA)

The CVA model can be viewed from either of two equivalent points of view. The first
approach takes a MANOVA perspective while the second is from a regression point of view.

Viewing the model as a one way MANOVA, suppose that a data set consists of n measure-
ments of variables Y1, · · · , Yp on samples from g known populations. The MANOVA model
is

y
ij
= µ

i
+ ²ij, i = 1, · · · , g, j = 1, · · · , ni

where

E[²ij] = 0

Cov(²ij, ²i0j0) =

(
Σ if i = i0 and j = j0

0 otherwise.

The “between” and “within” matrices, H and E, are then defined as

H =
gX
i=1

ni(yi· − y··)(yi· − y··)0 (1.8)

E =
gX
i=1

niX
j=1

(y
ij
− y

i·)(yij − yi·)0 (1.9)

The four most commonly used statistics to test the hypothesis that the g mean vectors are
equal are known as Wilks’ Λ, Roy’s greatest root, Pillai’s trace test, and the Lawley-Hotelling

13



test. The test statistics for these tests can each be written in terms of the eigenvalues of
E−1H where λ1 > λ2 > · · · > λk, where k = min(p, g − 1) and are shown below [60].

Wilk’s lambda Λ =
Qk
i=1

1
1+λi

Roy’s root θ = λ1
1+λ1

Pillai’s trace V =
Pk
i=1

λi
1+λi

Lawley-Hotelling U =
Pk
i=1 λi

Since the mean vectors are in a k-dimension space there are many possible mean configura-
tions and none of the above tests is uniformly most powerful so all four are generally listed
in the output of popular statistical software packages.

The squared canonical correlation for each canonical variate can be written in terms its
associated eigenvalue as

r2i =
λi

1+ λi
for i = 1, · · · , k. (1.10)

and is interpreted in the same way as the univariate r-square [27].

Alternatively, if we view that model from a multivariate regression perspective we suppose
that a data set consists of n measurements of variables Y1, · · · , Yp on samples from g known
populations. An n× (g − 1) indicator matrix, X, can be constructed so that

Xij =

(
1 if ith observation is in group j
0 otherwise

The linear model relating Y = [y
1
· · · y

p
] to X = [1 x1 · · · xg−1] is obtained by

Y = X β + ²
n× p n× g g × p n× p

where

E(²) = 0
n× p

cov(vec(²)) = Σ⊗ σ2I
(p× p)(n× n)
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Here Σ is a positive semi-definite matrix and σ2I is the identity matrix multiplied by a scalar
σ2, and ⊗ stands for the Kronecker product [35]; that is the np × np matrix Σ ⊗ σ2I that
can be partitioned into arrays of p× p matrices of the form

σ2Σ 0 0 0 . . . 0
0 σ2Σ 0 0 . . . 0
0 0 σ2Σ 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . σ2Σ


This equation is the natural extension of the univariate linear model to the multivariate case
where there are p dependent variates. The residuals of each p-variate observation are assumed
to be independent, but since the different responses may be correlated, the residuals of the
individual y values have unknown covariance matrix Σ. The standard test for H0 : β = 0 is
the likelihood ratio test where

Λ =
|Y 0Y − B̂0X 0Y |
|Y 0Y − n−1yy0|

=
|E|

|E +H|
=

1

|I + E−1H|
= |(I + E−1H)−1|

now, if the eigenvalues of E−1H are λ1 > · · · > λk then the eigenvalues of Λ are 1
1+λ1

< · · · <
1

1+λk
hence we see that the likelihood ratio test is equal to the Wilks’ lambda test. From the

equation 1.10 we then have that the eigenvalues of Λ are equal to (1− r21) < · · · < (1− r2k).
As with the one way MANOVA model, the three other multivariate test statistics previously
described can also be used to test H0 : β = 0.

The intention of CVA is descriptive in nature [60] and may be characterized by any or all of
the following:

• examine separation of the groups in a two dimensional plot,
• find a subset of the original variables that separates the groups almost as well as the
entire original set,

• rank the variables in terms of their relative contribution to group separation,
• interpret the new dimensions represented by the discriminant functions.
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Within the general model building framework, approximate partial F -statistics can be con-
structed from the Wilks’ Λ statistic. The partial F -values are not associated with a single
dimension of group separation, but constitutes an overall contribution of a particular vari-
able to discriminate between the means [60]. Forward selection, backward elimination, and
particularly stepwise discriminant analysis are the most commonly used tools for ranking
variables and significance testing to screen which variables should potentially be included in
the final model [46, 19, 60].

Significance testing of variables can also be done using multivariate regression. Constructing
the dependent variable matrix so that each response vector corresponds to one of the g − 1
degrees of freedom can be done as follows:

yij =

(
1 if jth observation is in group i
0 otherwise

i = 1, . . . , g − 1, j = 1, . . . , n

Assuming normal errors, the usual test of β = 0 for multivariate regression is the likelihood
ratio test which is exactly Wilks’ Λ [60]. Consequently, model building for discriminant
analysis is exactly that of model building for multivariate regression, using dummy variables
for the dependent variables.

The model building procedures and inferences that can be drawn are analogous to those
discussed for univariate [12]. The differences between the two models are in how the resulting
model is interpreted. Using the definitions of H and E from equations 1.8 and 1.9, we obtain
the discriminant functions as the eigenvectors of E−1H. The relative importance of each
discriminant function as it pertains to group mean separation is measured by the size of the
associated eigenvalue. Everitt and Dunn [13] show that the significance of each canonical
discriminant function can be tested by constructing a sequence of Wilks’ lambda tests based
on the relative decreasing size of the eigenvalues. It is generally desired that the group
separation can adequately be described in as few as two dimensions.

If a variable does not significantly contribute to the separation of the group means then
it should be discarded from the model. In the special case where g = 2 then Mardia [40]
describes a test using the Mahalanobis distance between the groups. In the more general
case of g > 2 all pairwise comparisons between the groups inflates the Type I error rate so
a more appropriate test should be used [54].

By extending the principles of Bayesian model averaging to discriminant analysis we will
account for the uncertainty in the model selection process just as was done in the univariate
regression case previously discussed in section 1.3. The posterior probability for any given
model will be estimated using the BIC as in the univariate case.
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1.4.4 Canonical Correlation Analysis (CCA)

Canonical correlation analysis is concerned with the amount of linear relationship between
two sets of variables. If p+q variables are measured on n objects, then the data may be split
into two matrices X and Y with dimensions n× p and n× q respectively. In this instance,
X and Y have a symmetric relationship in that neither represents the dependent variable,
so without loss of generality, let p ≤ q. If R is the overall correlation matrix then it can be
partitioned into four submatrices as

R =

"
Rxx Rxy
Ryx Ryy

#
(1.11)

where Rxx and Ryy represent the correlations or interdependencies within X and Y respec-
tively, and Rxy = R

0
yx represents the correlations between X and Y . The problem is to assess

the between group correlation structure assuming that Rxy contains at least some nonzero
entries [37].

The ith canonical variates are linear combinations ai and bi of the variables in X and Y such
that if Ui = a

0
iX and Vi = b

0
iY , then corr(Ui, Vi) = ri is maximized in absolute magnitude.

If Rxx and Ryy are of full rank then let

Zp = R−0.5xx RxyR
−1
yy RyxR

−0.5
xx

Zq = R−0.5yy RyxR
−1
xxRxyR

−0.5
yy

Let a0i = e0iR
−0.5
xx and b0i = f 0

i
R−0.5yy where ei and f i are the i

th eigenvectors of Zp and
Zq respectively, and the canonical correlations are the corresponding eigenvalues of Zp, so
r21 ≥ r22 ≥ · · · ≥ r2p [26].
Canonical variates have the following properties:

var(Ui) = var(Vi) = 1

corr(Ui, Uj) = 0 i 6= j
corr(Vi, Vj) = 0 i 6= j
corr(Ui, Vj) = 0 i 6= j

There is a direct link between the canonical variate coefficients and multivariate regression
coefficients. The matrix of the regression coefficients of the y’s regressed on the x’s (corrected
for their means) can be written as β̂ = S−1xx Sxy. This matrix can be used to relate ai and bi:
bi = β̂ai. By regression the x’s on the y’s we can obtain a similar relationship between ai
and bi: ai = SS

−1
yy Syxbi [60].

One of the primary goals after running a CCA is interpretation of the variates. Three com-
mon tools to aid in interpretation of the canonical variates are: (1) standardized coefficients,
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(2) correlation between the original variable and the canonical variate, and (3) rotation of
the canonical variate coefficients [60].

Johnson and Wichern [26] and Rencher [60] warn against using the correlation between the
original variable and the canonical variate since they provide univariate information only and
do not indicate how the variables contribute jointly to the analysis. Rencher [59] shows that
rotation introduces correlations between the canonical variates so the gain in interpretability
is offset by the increase in complexity caused by the interrelationships between the canonical
variates.

The assumption that each variable in X and Y contributes in some way and should be in-
cluded in the analysis may not be justified. If its inclusion makes interpretation more difficult
since its contribution may be on the magnitude of sample error then the variable should be
eliminated. BMA will provide a mechanism to identify sets of matrices (X1, Y1), . . . , (XT , YT ),
where T = 2p+q, that are supported by the data and also identify those combinations of the
variables that are not supported by the data. Using this information will account for the
uncertainty of whether a variable is useful in connecting X and Y . Also, changes in the
canonical variates can indicate how confident we can be that the interpretations made are
reasonable.
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Chapter 2

Principal Components Analysis
(PCA)

2.1 Introduction

2.1.1 Background

In principal components analysis (PCA), the original variables in a multivariate data set
are rotated and new variables called principal components are created. The method of
rotation used in PCA has many optimal properties [41] but is generally performed because
of two desirable properties. Firstly, the components are orthogonal, implying independence
of these new variables under the assumption of multivariate normality. Secondly, the new
axes represent directions of maximum variability. This second property is interpreted as
providing a more parsimonious description of the data because any component associated
with a small amount of the total variability may be discarded without a substantial loss of
information.

It is important to note that the parsimony previously mentioned is in terms of the principal
components only since each sample component is made up of a linear combination of all
of the original variables. It is often desirable to ascribe some interpretation to each of the
retained components via inspection of the eigenvector weights associated with each of the
original variables. Large magnitude loadings are interpreted as the variable in question being
important with respect to construction of the given component. When principal components
is performed on the covariance matrix, Anderson [1] and Girshik [17] derived the large
sample distribution theory for the sample eigenvalues and associated eigenvectors hence
formal tests may be constructed to test for zero contribution to a given component. The
large sample results do not extend to the case where principal components is performed
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using the correlation matrix [25]. The cause of this complication is twofold; the correlations
are functions of the elements of the covariance matrix, and the sum of the eigenvalues is
equal to the number of variables. To circumvent the need to rely on large sample results and
distributional assumptions, Lambert et al. [36] proposed using a bootstrap solution to the
problem. Empirical distributions were formed from the bootstrap sample for each eigenvalue
and eigenvector element. The number of “meaningful” components was determined based on
the Guttman-Kaiser criteria, and the eigenvectors elements whose bootstrapped empirical
interval did not include zero identified.

2.1.2 Outline

In subsequent sections of this chapter, limitations of the existing methods of model building
with respect to PCA are discussed, and improvements proposed to overcome these limita-
tions. The notion of model building within the context of principal components analysis is
described. Bayesian model averaging (BMA) and Markov chain Monte Carlo model com-
position (MC3) is introduced and applied to principal components analysis. The properties
of the PCA model obtained using BMA are investigated via a power study performed on
several patterned correlation matrices. Finally, the BMAPCA method is used to analyze a
set of environmental data [51].

2.2 Limitations

Commonly in practice, when eigenvectors from a PCA are interpreted, only the magnitude
of the point estimate of the individual elements is considered and there is no measure of
variability to formalize any decision. Lambert et al. [36] proposed using a bootstrap so-
lution to the problem of relying only on point estimates. The individual observations are
sampled with replacement for each iteration of the bootstrap simulation. A PCA is run
on each bootstrap sample and the sample eigenvectors and eigenvalues are recorded. Em-
pirical (1 − α)100% confidence intervals are then constructed for each eigenvector element
and eigenvalue by trimming 0.5α% of the sample values from each tail of the simulation
distribution. With each bootstrap sample there is potential for the eigenvectors to change
signs and for individual components to swap positions with respect to the original data set.
While Lambert addressed the issue of eigenvectors potentially reversing signs, there was no
mention of the problem of component position swapping. There then must be an algorithm
in place to insure that the eigenvectors generated from each bootstrap sample are assigned
to the “most correct” component based on some criterion. Given original data eigenvectors
e1, · · · , ep with eigenvalues l1 > · · · > lp and bootstrap eigenvectors b1, · · · , bp, we propose
matching the bootstrap eigenvectors to the eigenvectors obtained from the full sample so
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that
pX
i=1

li|e0ibi|

is maximized which has a range from 0 to p. It weights each bootstrap eigenvector assignment
by the full sample eigenvalue magnitude thus putting more emphasis on agreement in the
larger components. The occurrence of component swapping depends on the degree of overlap
in the distributions of the eigenvalues connected to the component. If there is a large amount
of overlap then component swapping is a much larger concern.

While the bootstrap does allow for empirical confidence intervals to be created, it is im-
plemented in an intrinsically univariate manner by considering each empirical confidence
interval individually. Since each element within an eigenvector is correlated with the other
elements [26] it is possible that one variable may contribute significantly only if another is
excluded, and vice versa. Also, since no variables are ever actually being excluded from the
model when using the bootstrap there really is no model or variable selection.

2.3 Model selection

Beale et al. [3], Jolliffe [29], and McCabe [41] discuss variable selection for nondependent
variable data sets. Beale et al. developed Interdependence Analysis (IA) and Jolliffe investi-
gated the various model selection strategies pertaining to it. McCabe introduced the method
of Principal Variables Analysis (PVA) and outlined variable selection strategies. Both IA
and PVA do not use a rotation as PCA does, but instead uses the original variables and
regression methods to remove redundant variables thereby creating a parsimonious data set.
The notion of model building and variable selection in the context of PCA has not been
addressed as such in the literature, but when eigenvector weights are interpreted, variable
selection has in fact occurred for each component interpreted.

If a subset of the original variables contribute significantly to a given component then the
eigenvector weights and hence PC scores may be better estimated if the noncontributing
variables were not present during estimation.

A measure of the impact that a variable or group of variables has on a particular principal
component is how much the proportion of variance explained by that component changes
with various variable configurations (i.e. models). Let R be the sample correlation matrix
obtained from the measured variables X1, · · · , Xp. Now, R can be rewritten in terms of its
spectral decomposition as

R = ELE0

=
pX
i=1

eilie
0
i
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where E is the matrix composed of eigenvectors e1, · · · , ep, and L is the diagonal matrix
of eigenvalues with diagonal elements l1 ≥ l2 ≥ · · · ≥ lp ≥ 0 [60]. Each component, after
the first, is conditioned on all previous components since the variance is maximized subject
to the constraint that the component in question be orthogonal to previously determined
components [28]. With this in mind, it is important to note that if a variable does not
contribute significantly to the second component, for example, it may be a major contrib-
utor to the first component. Hence any variables impact on previous components must be
preserved while investigating subsequent components. To accomplish this we make use of
the spectral decomposition of R in a sequential manner. Suppose the jth component is under
investigation, so to preserve the structure in the previous j− 1 components we construct Rj
by

Rj = R −
j−1X
i=1

eilie
0
i

=
pX
i=j

eilie
0
i

and the eigenvalues of Rj are lj ≥ lj+1 ≥ · · · ≥ lp ≥ 0 with associated eigenvectors ej , · · · , ep.
A model is specified by the variables contained in it. The goal is to identify models that
capture the significant portion of the eigenvector structure while eliminating those variables
that play only a spurious role in the construction. The model spaceM is made up of the 2p

possible variable configurations for each component. Model Mi ∈M can be represented by
δi, a p dimensional column vector such that

δik =

(
1 if Xk ∈Mi

0 if Xk 6∈Mi
for k = 1, · · · , p

so the model index number “i” is

i =
pX
j=1

2j−1δij

For example, if p = 6 then the model with variables X2, X4 and X5 has δ
0 = [0 1 0 1 1 0]

and i = 22−1 + 24−1 + 25−1 = 26 hence M26 is the designation for this configuration.

To impose any model, Mi, onto Rj we construct R
i
j as

Rij = diag(δi)Rjdiag(δi)

where

diag(δi) =


δ1i 0 · · · 0
0 δ2i · · · 0
...

...
. . .

...
0 0 · · · δpi
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This construction essentially zeroes out the rows and columns of Rj corresponding to each
Xk 6∈Mi. This is important since the effect of the variables that are not inMi are eliminated
from Rj, but the dimension of R

i
j is still p× p.

The proportion of variance explained by the jth component given modelMi and the previous
components is then equal to

r2i =
l∗Pp
k=j lk

(2.1)

where l∗ is the eigenvalue of Rij whose associated eigenvector has the largest magnitude
correlation with the first eigenvector of Rj and lj, · · · lp are the eigenvalues of Rj. The
rational for using l∗ comes from the fact that if the variables inMi are actually important to
the jth component, then the components of Rij are likely to swap places so it is necessary to
use the eigenvalue of Rij whose associated eigenvector is most in line with the first eigenvector
of Rj (i.e. the j

th eigenvector or R). The denominator of equation 2.1 is the total variance
minus that accounted for in the previous j − 1 components.
For example, suppose

R =


1 0.8 0.5 0.4
0.8 1 0.4 0.3
0.5 0.4 1 0.0
0.4 0.3 0.0 1


and we wish to determine which variables contribute significantly to the construction of the
second component. The eigenvector associated with the second component is

e02 = [0.010 − 0.012 − 0.612 0.790]
It appears variables that X3 and X4 are most important in the construction of this compo-
nent. Given there are four variables, the table below shows the results for the sixteen possible
models. The results shown in table 2.1 show that the models can be grouped into basically
three categories; those that contain X3 and X4 (i.e. M12, · · · ,M15), those that contain either
X3 or X4 (i.e. M4, · · · ,M11), and those that contain neither X3 or X4 (i.e. M0, · · · ,M3).
Using the r-square measure shown in equation 2.1, we see that the models that contain both
X3 and X4 explain a substantially larger proportion of the variance than models in the other
two groups. Also, in the models where both X3 and X4 are excluded, none of the variance
is accounted for (up to four decimals of precision).

2.4 Bayesian Model Averaging (BMA)

When a model selection method such as an all possible regressions or stepwise procedure is
used, the single model obtained is assumed to be the correct model. All future inferences
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Table 2.1: Example Model r-square Measures

Model Active Variables r2i
M15 X1 X2 X3 X4 0.5888
M14 X2 X3 X4 0.5888
M13 X1 X3 X4 0.5887
M12 X3 X4 0.5887
M11 X1 X2 X4 0.4674
M10 X2 X4 0.4650
M9 X1 X4 0.4497
M8 X4 0.4462
M7 X1 X2 X3 0.3938
M6 X2 X3 0.3873
M5 X1 X3 0.3637
M4 X3 0.3536
M3 X1 X2 0.0000
M2 X2 0.0000
M1 X1 0.0000
M0 Null 0.0000

and predictions that are made with the model do not account for the uncertainty involved
in the selection process. Alternatively, the model obtained using BMA does incorporate the
variance component associated with the uncertainty of model building.

There is a standard Bayesian solution to the problem of accounting for model uncertainty. If
the model space isM = {M1, · · · ,MT} then the posterior probability of Mi given the data
X is given by

P (Mi|X) =
P (X|Mi)P (Mi)P

Mj∈M P (X|Mj)P (Mj)
(2.2)

where P (Mi) denotes the prior probability of each model and P (X|Mi) is the marginal
likelihood of the data. Generally, each model has been assumed to be equally likely a priori,
so equation 2.2 simplifies to

P (Mi|X) =
P (X|Mi)P

Mj∈M P (X|Mj)

Now, the marginal likelihood of the data is

P (X|Mi) =
Z
P (X|Mi, θi)π(θi)dθi (2.3)
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where θi is the unknown model parameters with joint prior density π(θi). Hoeting [21]
shows for univariate multiple regression that the marginal likelihood follows an n dimen-
sional non-central Student’s t-distribution when proper conjugate priors are used. Using the
multivariate non-central t-distribution can be used if hyperparameters are chosen so that
the prior density it calibrated to the data. Raftery [55] approximates equation 2.3 using the
Bayes Information Criterion (BIC) which is a penalized likelihood measure. For the case of
linear regression Raftery shows that

P (X|Mi) ∝ exp (−0.5BICi)
= exp

³
−0.5(n ln(1− r2i ) + pi lnn)

´
(2.4)

where r2i is the model r-square, pi is the number of independent variables in model Mi, and
n is the number of observations. Using Raftery’s approximation requires no calibration to
the data and is composed of readily available regression information. By normalizing we get
the posterior probability of model Mi given the data is

P (Mi|X) ≈ exp (−0.5BICi)P
Mj∈M exp (−0.5BICj)

(2.5)

In the context of linear regression, any model deemed to be less likely than the intercept
only model represents a subset of the variables that is less desireable than doing nothing at
all. The models that do have value are those that are better than the null model. If a model,
Mi has a posterior probability greater than the null model then

P (Mi|X) > P (M0|X)
exp(−0.5BICi) > exp(−0.5BIC0)

−0.5BICi > −0.5BIC0
BICi < BIC0

n ln(1− r2i ) + pi lnn < n ln(1− r20) + p0 lnn
Now, r20 = 0 and p0 = 0, so, solving for r

2
i we get

n ln(1− r2i ) + pi lnn < 0

n ln(1− r2i ) < −pi lnn
ln(1− r2i ) <

−pi
n
lnn

1− r2i < exp
½−pi
n
lnn

¾
r2i > 1− exp

½−pi
n
lnn

¾
r2i > 1− n−pi/n
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So any model with an r-square greater than 1−n−pi/n will be more likely than the null model
whereas if the r-square is smaller the model would most likely be discarded due to its poor
performance. For a PCA application, the proportion of variance explained, from equation
2.1, is analogous to the r-square of a regression model. We want to allow for the possibility
that all p variables may significantly contribute to a given component so if we model the
first component, for example, replacing model r-square with proportion of variance explained
using the eigenvalues, we have

λ1Pp
i=1 λi

> 1− n−p/n

p−1λ1 > 1− n−p/n
λ1 > p− pn−p/n

Suppose for example that p = 20 and n = 250 then if l1 < 7.141 then the full model would
be less likely than the null model even though it is quite plausible that each variable may
significantly contribution to a component associated with such a large eigenvalue.

Since the BIC may penalize for parsimony too heavily for this application, we propose a
penalty term that will let the posterior probability of the full model be as likely as the null
model. If r2f is the proportion of the variance explained by the full model, then let the
truncated information criterion or TIC for model Mi be defined as

TICi = n ln(1− r2i ) + pian (2.6)

where an = min
n
−np−1 ln(1− r2f), lnn

o
. This penalty term lets the full model be at least

as likely as the null model since

P (Mfull|data) ≥ P (M0|data)
exp(−0.5TICfull) ≥ exp(−0.5TIC0)

TICfull ≤ TIC0

n ln(1− r2f ) + pan ≤ 0

an ≤ −n
p
ln(1− r2f )

There exists some finite n0 such that lnn0 < −n0p−1 ln(1 − r2f ), and for all n ≥ n0 the
sample size is large enough so that the standard form of the BIC allows the full model to
be more likely than the null model hence the form of the penalty term chosen for the TIC.
To illustrate the size of the penalty term, suppose that p = 20 and λ1 = 6, then figure
2.1 shows the penalty terms associated with the BIC, TIC and AIC (Akaike’s information
criterion). The penalty using TIC is less then that of the AIC for all n < 113. For
113 < n < 325 the penalty term for the TIC is higher (more conservative) than that of the
AIC, but not as much as BIC, but for all n ≥ 325, TIC = BIC. Since limn→∞ an =∞ and
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Figure 2.1: Bayes, truncated, and Akaike information criteria penalty term for p = 20,
λ1 = 6

limn→∞ n−1an = 0 then TIC falls into the class of generalized information criteria (GIC) (of
which BIC is also a special case) [63, 48] and therefore shares the same asymptotic properties
as BIC. Furthermore, there exists finite n0 such that TIC = BIC for all n > n0. Using the
same form as shown in equation 2.5 the posterior probability of model Mi for component j
will be estimated by

P (Mi|Rij) ≈ exp (−0.5TICi)P
Mk∈M exp (−0.5TICk)

(2.7)

Posterior model probabilities obtained from a marginal likelihood approximated using a
generalized information criteria (GIC) assuming a uniform prior on the model space is
equivalent to posterior model probabilities obtained using the Bayes information criteria
(BIC) where the prior assumed for the model space is defined by

P (Mi) =
exp(−0.5pi(a− lnn))Pp

j=0
p!

j!(p−j)! exp(−0.5j(a− lnn))

where a = an (proof shown in A.1).
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2.5 Stochastic search of model space

Stepwise methods are often used when it is not practical to evaluate a large number of
possible models. While this algorithm is convienient, it is deterministic for a given data set.
Slight perturbations in the data can result in a very different “best” model. By adopting a
stochastic search of the model space we are able to identify the models best supported by
the data almost surely [64, 49, 20]. Madigan and York [39] implemented the Markov chain
Monte Carlo model composition (MC3) procedure on graphical models. Hoeting [21] and
Hoeting, Madigan, and Raftery [22] applied the method to univariate multiple regression.
One advantage in using the MC3 approach is that the model selection process is stochastic,
and each model will be visited during the simulation in proportion to how well it is supported
by the data. Models will be visited during the simulation in proportion to how well they
are supported by the data, so we get a summary of all the best models and not just a single
snapshot that is obtained using a stepwise procedure.

The stochastic search of the model space is made necessary by the potentially enormous
number of models in the denominator of equation 2.7. The MC3 method is used to reduce
the number of terms in this sum by focusing on the most probable models and eliminating
those models that are not supported by the data.

The states of the Markov chain to be sampled from are the individual models inM hence
the chain is discrete and finite. In order to insure the proper stationary distribution we
must specify how to move from one model to another. This task is accomplished by forming
neighborhoods around each model [39]. The neighborhood, centered at an arbitrary model
Mi, denoted by nbd(Mi), consists of model Mi and every other model that can be obtained
by either addition or removal of a single variable to Mi.

The transition from one neighborhood to another is accomplished using Hasting’s [20] method.
Given that the current state of the Markov chain is nbd(Mi), the models in nbd(Mi) are sam-
pled with equal probability. Suppose Mk ∈ nbd(Mi) is proposed, then the move to nbd(Mk)
is accepted with probability

Pacc = min

(
1,
P (Mk|Rj)
P (Mi|Rj)

)
(2.8)

Since the transition matrix is finite and irreducible, then by applying the ergodic theorem
for Markov chains, any function g(Mi) defined onM, E(g(M)) can be estimated by drawing
from the Markov chain for t = 1, 2, . . . , N , and

Ĝ =
1

N

NX
i=1

g(M(t))

which is a simulation-consistent estimate of E(g(M)) (i.e. Ĝ → E(g(M)) almost surely)
[64, 39, 49]. In other words, the posterior probability of model Mi given Rj is approximated
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by the proportion of iterations that the Markov chain spends in nbd(Mi) and as the number of
iterations goes to infinity then the estimate goes to P (Mi|Rj) almost surely. The primary goal
of using the MC3 process in this particular application is not convergence to the stationary
distribution, but rather to identify a subset of models that are most supported by the data.
LetM∗ ⊂M denote the models that are actually visited during the simulation. Any model
Mi ∈ M and Mi 6∈ M∗ has an estimated posterior probability of zero and is therefore
eliminated from the sum in denominator of equation 2.7.

The posterior probability of any Mi ∈ M∗ can be estimated by the number of times the
Markov chain was in state nbd(Mj) divided by the total number of draws from the chain which
is only appropriate when convergence it attained. Alternatively, the posterior probability
for the models can also be estimated by replacing M with M∗ in equation 2.7 since the
TIC must be computed for each model visited during the simulation of the chain. Since the
goal is model identification, the convergence of the Markov chain is not necessary because as
long as each good model is visted at least of once during the simulation then it’s posterior
probability will be estimated using the model’s TIC.

To further reduce the number of models in the denominator of equation 2.7 we use the
principle of Occam’s razor. which holds that models which perform much less well than
their competitors should be discarded [38]. The MC3 algorithm eliminates most of the
poor models by not visiting them, but there may be models inM∗ that still are much less
likely than the most probable model visited and are effectively discredited and should be
eliminated. The reduced class of models is then defined by

M∗∗ =

(
Mk :Mi,Mk ∈M∗,

maxi P (Mi|Rj)
P (Mk|Rj) < C

)

Madigan and Raftery [38] adopted C = 20, but values from 10 to 1000 have been suggested
with respect to the particular application. As a result, equation 2.7 can essentially be
replaced by

P (Mi|Rij) ≈ exp (−0.5TICi)P
Mk∈M∗∗ exp (−0.5TICk) (2.9)

2.6 Implementation

Suppose we have n measurements on each of the variables X1, · · · ,Xp and wish to identify
the important contributors to the jth principal component. In order to construct a set of the
most likely modelsM∗∗ ⊂M we use the following algorithm to analyze the contribution of
each variable to the jth eigenvector.

1. Compute the correlation matrix R
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2. Construct Rj = R−Pj−1
i=1 eilie

0
i

3. Randomly choose Mi ∈M as a starting point. Let all Mi ∈M be equally likely and

M∗ set= ∅
4. Let u ∼ U(0, 1). If u < s then choose some Mi ∈ M at random where all Mi are
equally likely

5. Record current neighborhood indexM∗ set=M∗ ∪Mi

6. Let Rij = diag(δi)Rjdiag(δi)

7. Compute TICi

8. Randomly choose Mk ∈ nbd(Mi) where each model in nbd(Mi) is equally likely.

9. Compute Rkj and TICk for model Mk.

10. Move to nbd(Mk) with probability Pacc = min (1, exp {−0.5(TICi − TICk}) or stay in
nbd(Mi) with probability 1− Pacc

11. Iterate steps 4—10 N times

12. ConstructM∗∗ = {Mi : TICi < minMk∈M∗ TICk + 2 lnC}
13. Compute P (Mi|Rj) = exp(−0.5TICi)P

Mk∈M∗∗ exp(−0.5TICk) for all Mi ∈M∗∗

14. Compute E[δ] =
P
Mi∈M∗∗ δiP (Mi|Rj)

2.6.1 Algorithm details

Steps 1 and 2 summarize the data with the sufficient statistic R and then focus on the jth

component with Rj . In step 3 the starting point is determined at random by selecting a
model Mi ∈M where all models are equally likely. Since no model has been visited prior to
the first sample from the chain, the class of models visited,M∗, is set equal to the null set.

We define the distance between any two models, Mi and Mj to be

dij = (δi − δj)0(δi − δj)
For any model Mi ∈ M, there are Cpk models that are a distance k ≤ p units away from
Mi. As sampling from the chain continues, by the nature of the process there is an emphasis
on spending more iterations in the neighborhoods of the best models. If there are groups
of neighborhoods containing good models that are far apart from one another it may take
many iterations to achieve convergence . One method of assessing convergence is the use
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of multiple sequences using overdispersed starting points [16]. By choosing random starting
points for multiple sequences, the expected distance between any two start points is 0.5p.
We propose starting new sequences at random with probability s (we use s = 0.01) with the
starting point of the new sequence being some model chosen at random. Therefore when a
new sequence is triggered, the initial model in the new chain is some model inM as shown
in step 4 and the MC3 starts anew. Recall that our goal in sampling from the chain is model
identification and not convergence. While the process cycles within a group of good models
we randomly start the process over in a randomly determined spot in the model space in the
hopes of finding other groups of likely models if they exist.

In step 5 the current modelMi that has been selected is unioned withM∗ in order to record
the history of the chain. In step 6 the model is imposed onto Rj and in step 7 the model TIC
is computed. In step 8 a model within the neighborhood of model Mi is chosen at random
where all models in the neighborhood are equally likely. The proposed model,Mk, is imposed
onto Rj to get R

k
j and the chain moves to the neighborhood of Mk with probability

Pacc = min

(
1,
P (Mk|Rj)
P (Mi|Rj)

)

= min

(
1,
exp(−.5TICk)
exp(−.5TICi)

)
= min {1, exp(−.5(TICk − TICi))} (2.10)

or stays in the neighborhood of Mi with probability 1 − Pacc which is shown if step 10.
Whether the chain moves to the neighborhood of Mk or stays in Mi, the set of models
visited,M∗ is updated. The transition probability in equation 2.10 has been used in other
applications so that the correct stationary distribution is attained [20, 39, 21] but is used
here because the best models are more likely to be visited. The random draws from the
chain are repeated N times so that the models most supported by the data can be visited
during the stochastic search process.

The purpose of step 11 is to insure that the best models are visited. Usually, in MCMC sim-
ulations, the number of iterations is chosen to achieve convergence to the proper stationary
distribution and suggested values of N are on the order of 30000 [21]. In this particular ap-
plication we are only interested in the neighborhoods that were actually visited throughout
the simulation which make up the setM∗ hence model identification is of greater importance
than convergence so N may be as small as 5000 to attain the desired result. The justification
for this is that the posterior probability of a model will not be estimated by the proportion
of time the Markov chain spent in the neighborhood of the model, but instead will be ap-
proximated using the observed TIC for each model that is visited during the simulation.
The assumption inherent in this approach is that all models that are most likely inM will
be visited at least one time in 5000 iterations with the aid of the random restarts of the
sequence (from step 4).
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Occam’s razor is performed in step 12 which states that models inM∗ that are C or more
times less likely than the most likely model in the set have been essentially discredited and
should be eliminated. Madigan and Raftery [38] adopted the value of C = 20 to eliminate
models that were far less likely than the best model. We then have

M∗∗ =

(
Mi :

maxMk∈M∗ P (Mk|Rj)
P (Mi|Rj) < C

)

=

(
Mi :

maxMk∈M∗ exp(−0.5TICk)
exp(−0.5TICi) < C

)

=
½
Mi : max

Mk∈M∗ exp(−0.5(TICk − TICi)) < C
¾

=
½
Mi : max

Mk∈M∗−0.5(TICk − TICi) < lnC
¾

=
½
Mi : min

Mk∈M∗ TICk − TICi > −2 lnC
¾

=
½
Mi : TICi < 2 lnC + min

Mk∈M∗ TICk

¾
This is the step in the algorithm where models that were identified during the simulation
but deemed unlikely in comparison to the best model, are removed.

In step 13 the potentially greatly reduced set M∗∗ ⊆ M∗ ⊆ M is then used to estimate
the posterior probabilities of the most likely models and all models not in M∗∗ have an
estimated posterior probability of zero and are therefore eliminated from the denominator
of equation 2.7.

Any variable that is in a given model has its corresponding position in the vector δ set to
one or it is set to zero if the variable is not present. The probability that a variable is a
significant contributor to the component being analyzed can then be estimated by

Ê[δ] =
X

Mi∈M∗∗
δiP (Mi|Rj)

so if the estimated probability that any given variable should be in the model is greater than
0.5, it is more likely than not that the variable in question is a significant contributor to the
eigenvector being investigated.

The elements of Ê[δ] are interpreted as the probability that the corresponding variable
is active or contributes significantly to the component. If a group of variables has been
identified a priori to be important in the construction of an index or latent variable then
its overall importance to any given component can be evaluated as the weighted average of
the activation probabilities of the variables that construct it. In the example that follows
in section 2.9 nine of the variables are characterized as pertaining to water chemistry [51].
In the absence of any previously described weighting scheme, the level of water chemistry
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contribution to any principal component can therefore be assessed as the average activation
probability of the variables in the water chemistry group.

2.7 Power study

As with many multivariate procedures, there are too many scenarios possible to fully in-
vestigate how well a procedure performs in practice. In this section we consider the effect
of sample size, number of contributing variables, and total number of variables on correct
model identification at each of the following combination of levels

Factor Levels
Total number of variables 20, 30
Sample Size 100, 400
Number of contributing variables 5, 10, 15

Within the above described framework, there are still too many correlation structures that
could be investigated so the scope is narrowed further by looking at correlation matrices of
the type

Φ =

"
Bra 0a×(p−a)

0(p−a)×a Ip−a

#

where p is the total number of variables in the data set, a is the number of contributing
variables to the first eigenvector, and Bra is an a× a equicorrelation matrix with off diagonal
elements equal to r. The eigenvalues and first eigenvector characteristics of Φ are

λ1 = r(a− 1) + 1
λ2 = · · · = λp−a+1 = 1

λp−a+2 = · · · = λp = 1− r
and

e01 = [

az }| {
a−0.5 · · · a−0.5

p−az }| {
0 · · · 0]

The number of variables, a, that can significantly contribute to the jth component is between
1 + bljc and p inclusive. The lower limit stems from the fact that each variable can add
at most one unit to a given eigenvalue. Throughout the simulation, a is specified for each
scenario. The eigenvalue under consideration can take on any positive value less than or
equal to a based on the correlation between the a variables. We denote the efficency of
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the contribution, e ∈ [0, 1], to be a measure of how well the contributing variables form the
eigenvalue as

e =
λj
a

Solving for λj we have that λj = ae. Recall that we are modeling the first component from
an equicorrelation matrix so equating these results and solving for r we have

ae = r(a− 1) + 1
r =

ae− 1
a− 1

Specification of an efficency rating is therefore equivalent to specifying the strength of the
correlation structure inBra but puts scenarios with differing numbers of contributing variables
on equal footing in the sense that each is constructed using the same proportion of the total
possible information attainable. For example, suppose a = 10 and λ1 = 6.4 so the efficency
is 6.4/10 = 0.64 and r = 0.6. To construct Bra so that we use the same amount of available
information (64%) if a = 5, then λ1 = 5× 0.64 = 3.2 and r = 0.55 so we see that a smaller
correlation is necessary when a is changed from 10 to 5 in order to obtain an eigenvalue that
uses the same proportion of the total information available. The efficency values used in the
simulation are 0.35, 0.50, and 0.65 and can be thought of as weak, moderate, and strong
usage of total available information.

For each simulation scenario, identified by the 4-tuple (p, n, a, e), a random matrix Zn×p is
generated such that each element is an iid standard normal random variable. The data to
be analyzed, Xn×p, are obtained from the transformation X = ZΦ0.5. The true model for
the first principal component is

δ0 = [

az }| {
1 · · · 1

p−az }| {
0 · · · 0]

Errors in the model decided upon can come from either/both of two sources; (1) a variable
that should not be in the model is included (type I), and (2) a variable that should be in
the model is excluded (type II). The error rate for any particular data set is

ErrRate = p−1(δ − hÊ(δ)i)0(δ − hÊ(δ)i)

where h·i denotes the rounding operation. The estimated error rate is essentially just the
proportion of variables misspecified.

Each data set was also analyzed using the BIC for error rate comparison. Every scenario
was repeated 50 times. The average error rate and standard error estimate is recorded in
the table 2.2.
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Table 2.2: Error Rate Simulation Results

n=100 n=400
p a e TIC ErrRate BIC ErrRate TIC ErrRate BIC ErrRate
20 5 0.35 0.1225 (0.0168) 0.2500 (0.0000) † 0.0025 (0.0025) 0.2500 (0.0000) †

10 0.0500 (0.0131) 0.5000 (0.0000) † 0.0000 (0.0000) 0.1675 (0.0286)
15 0.1700 (0.0160) 0.7500 (0.0000) † 0.0225 (0.0077) 0.0575 (0.0159)
5 0.50 0.0050 (0.0034) 0.2500 (0.0000) † 0.0000 (0.0000) 0.0000 (0.0000)
10 0.0000 (0.0000) 0.5000 (0.0000) † 0.0000 (0.0000) 0.0000 (0.0000)
15 0.0400 (0.0010) 0.7500 (0.0000) † 0.0000 (0.0000) 0.0000 (0.0000)
5 0.65 0.0000 (0.0000) 0.2500 (0.0000) † 0.0000 (0.0000) 0.0000 (0.0000)
10 0.0000 (0.0000) 0.5000 (0.0000) † 0.0000 (0.0000) 0.0000 (0.0000)
15 0.0000 (0.0000) 0.7500 (0.0000) † 0.0000 (0.0000) 0.0000 (0.0000)

30 5 0.35 0.3533 (0.0247) 0.1667 (0.0000) † 0.0033 (0.0023) 0.1667 (0.0000) †
10 0.0500 (0.0104) 0.3333 (0.0000) † 0.0017 (0.0017) 0.3333 (0.0000) †
15 0.0317 (0.0062) 0.5000 (0.0000) † 0.0033 (0.0023) 0.5000 (0.0000) †
5 0.50 0.1283 (0.0133) 0.1667 (0.0000) † 0.0000 (0.0000) 0.0000 (0.0000)
10 0.0033 (0.0023) 0.3333 (0.0000) † 0.0000 (0.0000) 0.0000 (0.0000)
15 0.0000 (0.0000) 0.5000 (0.0000) † 0.0000 (0.0000) 0.0000 (0.0000)
5 0.65 0.0417 (0.0087) 0.1667 (0.0000) † 0.0000 (0.0000) 0.0000 (0.0000)
10 0.0100 (0.0035) 0.3333 (0.0000) † 0.0000 (0.0000) 0.0000 (0.0000)
15 0.0000 (0.0000) 0.5000 (0.0000) † 0.0000 (0.0000) 0.0000 (0.0000)

Note: Standard error estimates are shown in parenthesis.
†— Maximum type II error rate (i.e. no variables selected)
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2.7.1 Discussion of results

For every (p, n, a, e) 4-tuple where n = 100, the BIC based decision resulted in no variables
being selected in spite of the fact that there was structure to detect. These results illustrate
how the BIC tends to be too conservative by using a large penalty term.

The TIC based decisions for n = 100 performed much better in every scenario investigated
except (30, 100, 5, 0.35). Upon further inspection we see that for this simulation configuration
the eigenvalue attached to model

δ0 = [

5z }| {
1 · · · 1

25z }| {
0 · · · 0]

is the largest about 80% of the time based on generation of 1000 data sets. In the 80% of
cases where the desired model does occupy the first component, a 90% empirical confidence
interval for the first eigenvalue is [2.123, 2.714] which accounts for between 7 to 9% of the
total variance. Many would argue this structure is too weak for principal components to be
worthwhile. In the remaining 20% of cases where the model in question does not occupy the
first component position, we would expect a large error rate since we are modeling the noise
portion of the data rather than the structured portion.

As n increases, the effect of the penalty term is decreased so weaker structures can be
detected. In the scenarios where n = 400, the penalty term for TIC was equal to BIC in all
cases except those where e = 0.35. The probability of finding the correct model was quite
high (at least 97.75%) using the TIC based posterior probabilities for each scenario. Once
again, in the instances where the BIC based estimates did not perform well there is the
situation such that the likelihood portion is too small to overcome the penalty term hence
the high type II error rates.

As would be expected, when sample size and efficiency increase the probability of correct
model identification increases. Also, as the number of variables increase, correct model
identification becomes more difficult relative to sample size.

2.8 Graphical summarization of results

The random variable associated with the model space,M, is discrete, finite, and univariate,
yet conventional summary methods and graphical techniques are not useful in characterizing
its properties. The difficulty in displaying summary or distributional graphics pertaining to
this random variable stems from the fact that there is no unique ordering of the elements
(models) of the space, and there are 2p elements to evaluate. The potentially enormous
number of elements aspect of the problem has been addressed by using MC3 methodology
in conjunction with the principle of Occam’s razor in order to reduce the number of models
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Table 2.3: Reduced Model Space and Posterior Probabilities

Model Active Variables Pr(Mi|X) lnPr(Mi|X)
M12 X3 X4 0.8324 -0.18344
M14 X2 X3 X4 0.0843 -2.47337
M13 X1 X3 X4 0.0833 -2.48531

to some manageable quantity by eliminating models that are far less likely than the best
models.

2.8.1 Summarizing the posterior model space

One graphical representation of the reduced model space that has been used is demonstrated
by Clyde [6]. The models are sorted by either log posterior probability or posterior proba-
bility along the vertical axis and the variables that make up each model are aligned along
the horizontal axis. For each model Mi in the reduced space, horizonal line segments across
the areas corresponding to each Xj ∈ Mi are drawn at the appropriate vertical level. For
example, using the information from table 2.1, suppose n = 100 and the Occam’s razor para-
meter used is 20, we get the following posterior model probabilities shown in table 2.3. The
posterior probability information is also displayed graphically in figure 2.2. In this example,
there are only three models inM∗∗ so the graph is not very helpful other than to show that
M12 is much more likely than either M13 or M14, but as the cardinality ofM∗∗ grows, this
graphical technique can be useful in identifying patterns between the variables.

2.8.2 Plotting individual scores

Using PCA to reduce the dimensionality of the data allows more convienient visualization of
how observations may be related. Hopefully most of the available information is contained in
the first few components so a plot of the first two scores, which is commonly done practice,
will aid the practitioner in individual observation assessment. By bootstrapping the observa-
tions, empirical confidence regions can be constructed. Tukey proposed forming convex hulls
around the observed values by using a multivariate analog to the univariate idea of trimming
called “peeling” [40]. The peeling procedure consists of removing extreme points from the
convex hull formed around the bootstrapped samples until a fixed percentage of points has
been removed. The plot of the first two scores for a particular observation obtained from
bootstrap samples is typically crescent shaped (i.e non-convex) so the convex hull method
will be applied to the polar coordinates of the scores rather than the Cartesian coordinate
score values since the in the transformed space, the distribution of points is typically convex
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Figure 2.2: Log Posterior Probabilities versus Model Configuration

shaped.

To incorporate the variance component associated with model uncertainty into the formation
of the empirical regions, the posterior model space is bootstrapped in addition to the indi-
vidual observations. For each bootstrap sample, an individual model is randomly selected
for each component based on their respective posterior probabilities. Using the bootstrap in
this way not only accounts for variability due to sampling, but also the variance component
associated with model uncertainty.

2.9 Application

Biological data were gathered from 1988 to 1994 by the Ohio Environmental protection
Agency (EPA) over the Eastern Corn Belt Plains ecoregion of Ohio [50]. The data analyzed
for this application consists of 20 variables identified as biological “stressor” variables at 178
sites in the region. Nine of the variables are characterized as pertaining to water chemistry
and the remaining eleven variables are classified as habitat variables. In the original analysis
of this set of data, various transformations were applied to individual variables to attain
approximate univariate normality of the data [50]. Sections C.2 and C.3 show the names,
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Figure 2.3: Scree Plot with 90% ECI for data with no structure

brief descriptions, and transformations used for the variables analyzed in this illustration.

To determine how many components should be retained a modified Guttman-Kaiser criteria
was used. Using the standard Guttman-Kaiser criteria all components with sample eigen-
values greater than unity would be retained. If data were generated with no structure (i.e.
iid) then since the components are ordered, several components would be retained using this
criteria although no structure exists. We propose building empirical confidence limits for the
sample eigenvalues based on a Monte Carlo simulation of iid data where the simulated data
matrix has the same dimension as the true data matrix. If a component contains significant
structure to be modeled then its eigenvalue should lie above the empirical interval of the
eigenvalue based on no structure. Ten thousand iid standard normal data matrices of 178
observations and 20 variables were generated and 90% empirical intervals were constructed
for the sample eigenvalues. The eigenvalues for the first five principal components along with
90% ECI are shown in figure 2.3. From the plot we see that the fifth eigenvalue does not
exceed the 95-th percentile so we conclude that there is significant structure to be modeled
in the first four principal components which accounts for 60.12% of the total variance.

The first four eigenvectors are shown in table 2.4. One commonly used method to iden-
tify the most important variables used to construct a given component is to choose those
variables whose elements have magnitudes larger than the average magnitude within the
component being interpreted [28]. The important variables for the contruction of the first
four eigenvectors are also shown in table 2.4. The first component is made up of the habitat
variables (CHANNEL, COVER, RIPSS, RIPARIAN, POOL, EMBSS, RIFEMSS, RIFFLE,
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Figure 2.4: Activation Probabilities For Ohio Habitat and Water Chemistry Variables for
the first four Principal Components
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Table 2.4: First Four Eigenvectors in Standard PCA

Variable PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4
CHANNEL 0.3527 0.1232 0.2254 -0.0407 X X
COVER 0.2828 0.1583 0.2539 0.0495 X X
RIPSS 0.3242 0.0651 0.3079 -0.2170 X X X
RIPARIAN 0.3148 0.1087 0.2369 -0.1919 X X X
POOL 0.2627 0.1163 0.2899 0.1378 X X
EMBSS 0.2886 -0.1032 -0.4197 0.0457 X X
RIFEMSS 0.3056 -0.1153 -0.3003 0.1509 X X
RIFFLE 0.3591 -0.0238 -0.1119 0.2390 X X
SILTSS 0.2657 0.0234 -0.2450 0.0863 X X
SUBSTRAT 0.2908 0.1000 -0.1341 0.1486 X
GRADIENT -0.0063 0.2840 -0.1069 -0.1073 X
FE 0.0449 -0.4118 0.0246 0.2210 X X
TSS 0.0787 -0.3962 -0.0027 0.2013 X X
BOD -0.0198 -0.4004 0.2391 0.2212 X X X
COD -0.0940 -0.1114 0.3663 0.1350 X
AMM -0.0292 0.2974 -0.1340 0.2145 X X
PB -0.1421 0.3126 0.0540 0.1998 X X
ZN 0.0371 -0.1781 -0.0995 -0.4823 X
NOX 0.0889 -0.0861 -0.1921 -0.4753 X
PHO -0.1178 0.2999 -0.1476 0.2628 X X

SILTSS, and SUBSTRAT) and the second component is primarily the water chemistry vari-
ables (GRADIENT, FE, TSS, BOD, AMM, PB, and PHO). The third component appears
to be mainly a habititat component with 10 important variables (8 habitat, 2 water chem-
istry). Finally, the fourth PC is mainly a water chemistry variable with 11 (3 habitat and 8
chemistry) variables identified as important.

Using this technique to identify important variables is not satisfying for several reasons.
Firstly, if the true structure of a given component is such that all variables are important
to it’s construction it will not be identified since there can be no eigenvector constructed
where all elements are above average. Also, there is no theoretical justification for using
the average magnitude so it is used solely because it is easy and has some heuristic appeal.
Finally, interpretation of the components has value to the researcher and making this decision
based on point estimates only is risky.

Figure 2.4 shows the estimated expected value of δ for the first four principal components
using BMA methodolgy developed in this chapter. Recall that the interpretation of the
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Figure 2.5: 90% ECI of first two Principal Component scores for 1990 Swamp Creek location
at 40.28N Latitude 84.28W longitude

estimated expected value of each element within the δ vector represents the probability that
the corresponding variable contributes significantly to the given component. For example, we
conclude that the variables CHANNEL, COVER, RIPSS, RIPARIAN, POOL, RIFEMSS,
RIFFLE, SILTSS, and SUBSTRAT are the most likely contributors to the first component
since each of their corresponding values are greater than 0.5. Norton [50] interprets this set
of variables as stream structure corridor and siltation.

Figure 2.5 shows the sampling variability in the first two component scores for a particular
site in the sample based on 500 bootstrap samples illustrating Tukey’s method of confidence
region construction. The left side of the figure shows the individual bootstrap samples and
the right side illustrates the resulting region formed using Tukey’s procedure [40] applied
to the polar coordinate transformation of the bootstrap scores. Figure 2.6 shows the region
formed without uncertainty compared to the region accounting for model of uncertainty
about the scores for the same site. For this particlar set of data, the variance component due
to sampling variability is much larger than the variance associated with model uncertainty
but this does not hold true in general.

Plots of the first few principal component scores are commonly made in practice to compare
observations to one another and to describe individual observations with respect to their
relative location on each principal axis. Generally these comparisons and interpretations are
made using the point estimate alone without consideration of the sampling variability or the
variance due to model uncertainty. We see from figure 2.6 that the sampling variability is
quite large for this observation and so any interpretation or description should reflect the
level of uncertainty.
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Figure 2.6: 90% ECI of first two Principal Component scores for 1990 Swamp Creek location
at 40.28N Latitude 84.28W longitude. Left region formed with no uncertainty component,
right region constructed accounting for model uncertainty

Figure 2.7: Posterior probabilities of first principal component model configurations
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Figure 2.8: Distributions of the angle between the full sample eigenvectors and bootstrap
eigenvectors for the first four principal components

Component swapping occured infrequently in the first four components of this data. The first
and second component were interchanged with each other in 3.5% of the bootstrap samples,
and the third and fourth swapped places in 1.6% of the samples. The fourth component also
changed places with the fifth component 2.2% of the time and with the sixth component
in 0.4% of the samples. The conclusion we can draw from this is that the eigenvalues are
distinct since there is little overlap in their respective sampling distributions.

Figure 2.8 shows the distribution of angles between the first four eigenvectors from the full
sample and the associated eigenvectors from the bootstrap samples. The lack of precision
in the estimation of the eigenvectors is reflected in the large angular deviations. Since the
component scores are constructed using the eigenvector coefficients, we why there is a large
amount of variability in the pc score depicted in figure 2.6.

Using the activation probabilities from figure 2.4 and the variable classifications from tables
C.2 and C.3, we compute the contribution of the water chemistry latent variable and habitat
latent variable to each of the modeled principal components. The naive estimate for each
was constructed by averaging the activation probabilities over the two classifications with
the results shown in table 2.5. We see that habitat has an activation probability of 0.7056
whereas the water chemistry is relatively inconsequential with a value of 0.1088. The second
component is mainly a water chemistry construction with an average activation probability
of 0.6497 and the habitat is now inactive with a value of 0.1681. The third component is
a mix of four active habitat and three water chemistry variables which is reflected in the
two latent variables overall activation probabilities. Finally, the fourth component is inactive
with respect to habitat (0.2324) and partially active with respect to water chemistry (0.4608).

Figure 2.7 shows the posterior probability of the models inM∗∗ for the first principal compo-
nent. Since this component was previously described as highly active with respect to habitat
and inactive with respect to water chemistry, we see that the most highly probable models
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Table 2.5: Contribution of Water Chemistry and Habitat to Principal Component construc-
tion

Component Water Chemistry Habitat
PC 1 0.7056 0.1088
PC 2 0.1681 0.6497
PC 3 0.4330 0.3359
PC 4 0.2324 0.4608

contain most of the habitat variables and the water chemistry variables are only active in
lower probability variable configurations.

2.10 Comments

In the context of PCA, a variable is important to the construction of any selected component
if it’s deletion results in a substantial decrease in the associated eigenvalue. The importance
of a variable on the retained components is only indirectly addressed by looking at the mag-
nitude of point estimates of associated eigenvectors when standard PCA modeling methods
are used. Finally, the effect of a variable on a component is viewed conditional on every
other variable being present in the model since no variable is ever actually removed from the
model.

Using BMA the impact of a variable on a given component is directly measured in conjunction
with how each variable contributes in the presence of the others. The models with the
highest posterior probabilities are those variable configurations that jointly represent, as
parsimoniously as possible, the meaningful portion of each component. By averaging over the
model space we can estimate the probability that a variable is important to the construction
of a given component.

If the variables can be naturally partitioned into groups (such as chemical and habitat
variables in the application) then the overall contribution of these partitions may be used
to aid in the interpretation. The overall importance of a group to the construction of a
component can be assessed by computing the average probability that a variable within the
group is active. Using this technique enables the investigator to use the natural variable
groupings as an aid in the interpretation of a component.
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Chapter 3

Canonical Variate Analysis (CVA)

3.1 Introduction

3.1.1 Background

Historically, two basic forms of discriminant analysis have emerged with each form having a
different goal. Predictive discriminant analysis (PDA) can be traced to work by Karl Pearson,
and others, on group distances [23]. In the 1930’s R. A. Fisher translated multivariate group
distance into a linear combinations of variables to aid in group discrimination. In PDA
the usefulness of a variable is determined by how well it helps to predict which group an
observation belongs. The other form of discriminant analysis, also known as canonical variate
analysis (CVA), did not appear until the 1960’s [23]. The purpose of CVA is descriptive rather
than predictive and the goal is to describe group mean separation in a dimensionally reduced
space.

Canonical variate analysis (sometimes called canonical discriminant analysis) creates linear
combinations of the original variables called canonical variates. The first canonical variate is
constructed so that the mean separation between the groups is maximized with respect to the
likelihood ratio. The remaining canonical variates are formed so that the mean separation
between the groups is maximized with the added constraint that they be orthogonal to
previously defined canonical variates [60].

The format for data where CVA may be of use consists of measured variables Y1, · · · , Yp on
g populations. While the addition of any measured variable to the data can not reduce the
separation already accomplished by the other variables, there may be the measured vari-
ables that do not significantly contribute to group mean separation and therefore should
not be included in the model [23]. McKay and Campbell [42] categorized and compared
various model building and variable selection techniques. The methods were classified into
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one of three groups; techniques associated with examination of magnitudes of the coeffi-
cients used to construct the canonical variates, techniques involving sequential F tests, and
techniques involving all possible subsets. In practice, methods using sequential F tests are
most commonly employed. These methods include forward selection, backward elimination
and stepwise selection. Sequential multivariate model building techniques suffer the same
criticisms as their univariate analogs [46]. A more recent criticism of classical model building
in general is that it ignores the uncertainty involved in model selection [57, 56]. Typically
a single model is chosen in some manner and is assumed to be the “correct” model to the
exclusion of all other competitors. A consequence of the assumption that the correct model
has been chosen is that all future inferences are valid only if the assumption is true.

3.1.2 Outline

In the following sections of this chapter, the computations involved with CVA are described
and the popular stepwise method is outlined. Bayesian model averaging (BMA) for CVA is
developed and a stochastic model search algorithm outlined. Some popular methods used to
interpret results are discussed and BMA results are used as suggested improvements to aid
in interpretation. The method is then illustrated in the analysis of a set of environmental
data [51].

3.2 The Model

The CVA model can be viewed from either of two equivalent points of view. The first
approach takes a MANOVA perspective while the second is from a regression point of view.

3.2.1 MANOVA

Suppose that a data set consists of n measurements of variables Y1, · · · , Yp on samples from
g known populations. The MANOVA model is

y
ij
= µ

i
+ ²ij, i = 1, · · · , g, j = 1, · · · , ni

where

E[²ij] = 0

Cov(²ij, ²i0j0) =

(
Σ if i = i0 and j = j0

0 otherwise.
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The “between” and “within” matrices, H and E, are then defined as

H =
gX
i=1

ni(yi· − y··)(yi· − y··)0

E =
gX
i=1

niX
j=1

(y
ij
− y

i·)(yij − yi·)0

The four most commonly used statistics to test the hypothesis that the g mean vectors are
equal are, Wilks’ Λ, Roy’s greatest root, Pillai’s test, and the Lawley-Hotelling test. The
test statistics for these tests can each be written in terms of the eigenvalues of E−1H where
λ1 > λ2 > · · · > λk, where k = min(p, g − 1) and are shown below [60].

Wilk’s lambda Λ =
Qk
i=1

1
1+λi

Roy’s θ = λ1
Pillai’s V =

Pk
i=1

λi
1+λi

Lawley-Hotelling U =
Pk
i=1 λi

Since the mean vectors are in a k-dimension space there are many possible mean configura-
tions and a uniformly most powerful test does not exist so all four statistics are generally
listed in the output of popular statistical software packages. Besides testing, it is also com-
mon to summarize group separation through correlation. Canonical correlations are the
multivariate analog of Pearson’s correlation coefficient. Using Pearson’s correlation coef-
ficient may be appropriate when we wish to measure the linear association between one
“X” variable and one “Y ” variable. When we have more than one “X” variables and more
than one “Y ” variables, the canonical correlations are appropriate. The squared canonical
correlation for each canonical variate can be written in terms of its associated eigenvalue as

r2i =
λi

1+ λi
for i = 1, · · · , k. (3.1)

and is interpreted in the same way as the univariate r-square in a multiple regression context.

3.2.2 Multivariate regression

Another view of CVA may be based on multivariate regression. The data set consists of n
measurements of variables Y1, · · · , Yp on samples from g known populations. An n× (g − 1)
indicator matrix, X, can be constructed so that

Xij =

(
1 if ith observation is in group j
0 otherwise

The linear model relating Y = [y
1
· · · y

p
] to X = [1 x1 · · · xg−1] is obtained by
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Y = X β + ²
n× p n× g g × p n× p

where

E(²) = 0
n× p

cov(vec(²)) = Σ⊗ σ2I
(p× p)(n× n)

Here Σ is a positive semi-definite matrix and σ2I is the identity matrix multiplied by a scalar
σ2, and ⊗ stands for the Kronecker product [35]; that is the np × np matrix Σ ⊗ σ2I that
can be partitioned into an array of p× p matrices of the form

σ2Σ 0 0 0 . . . 0
0 σ2Σ 0 0 . . . 0
0 0 σ2Σ 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . σ2Σ


This equation is the natural extension of the univariate linear model to the multivariate case
where there are p dependent variates. The error vectors, ²i of each p-variate observation
are assumed to be independent, but since the different responses may be correlated, the
residuals of the individual y values have unknown covariance matrix Σ. The standard test
for H0 : β = 0 is the likelihood ratio test where

Λ =
|Y 0Y − B̂0X 0Y |
|Y 0Y − n−1yy0|

=
|E|

|E +H|
=

1

|I + E−1H|
= |(I + E−1H)−1|

now, if the eigenvalues of E−1H are λ1 > · · · > λk then the eigenvalues of Λ are 1
1+λ1

< · · · <
1

1+λk
hence we see that the likelihood ratio test is equal to the Wilks’ lambda test. From the

equation 3.1 we then have that the eigenvalues of Λ are equal to (1− r21) < · · · < (1− r2k).
As with the MANOVA, the three other multivariate test statistics previously described can
also be used to test H0 : β = 0.
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3.2.3 Computations

The calculation of the eigenvalues of E−1H with respect to the MANOVA model and the
multivariate regression model was shown to have value in the previous two subsections. In
general, the matrix E−1H is not symmetric and many algorithms for computing eigenvalues
accept only symmetric matrices. It can be shown [60] that

S−1/2yy SyxS
−1
xx SxyS

−1/2
yy (3.2)

is symmetric and that the first k = min(p, g − 1) eigenvalues are the squared canonical
correlations where SS·· are the sums of squares and cross product matrices. Note that if
p = 1 then we have the case of univariate multiple regression and equation 3.2 is a scalar
and is equal to the model r-square.

3.3 Model selection

Currently the stepwise method of model selection is quite popular in practice. When the
number of variables is large, sequential procedures have generally been the only practical
way to construct a reasonable model. The stepwise method is an extension of the forward
procedure and makes use of Wilks’ lambda statistic and partial F -tests.

In the first step, p univariate regressions are run and if the model with the largest F -statistic
is significant, then that is the first variable to be retained. If the best regression fails to be
significant then the procedure stops. In the second step, the variable yielding the smallest
partial Λ for each y adjusted for the first variable in the model is considered for entry into
the model. The partial Λ-statistic is based on the full and reduced model test for a subset
of y’s [60]:

Λ(yi|yj) =
Λ(yi, yj)

Λ(yj)

for each yi 6= yj, and the yi that minimizes Λ(yi|yj) is the candidate to enter the model next.
If the partial F -test is significant then the second variable is added, if not, then the procedure
stops. At the point where there are two variables in the model, a partial F -test is performed
to see if any variables may be removed. The process continues alternating between testing
to add the best possible of the remaining variables and testing whether the weakest already
present in the model should be deleted. When no variables can be added or removed, the
process stops.

Now, since we are adding or removing one variable at a time, there is an exact F test where

F =
1− Λ
Λ

N − 1− p∗
g − 1 (3.3)
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follows an F distribution with g− 1 and N − 1− p∗ degrees of freedom and p∗ is the number
of variables currently in the model.

Though each test can be conducted at the α level of significance, the over all level of sig-
nificance of the model is unknown since the number of tests to be performed before hand is
unknown. As such, all p-values obtained from various tests of interest do not have the usual
interpretation.

3.4 Bayesian Model Averaging (BMA)

When a model selection method such as an all possible subsets or stepwise procedure is
used, the single model obtained is assumed to be the correct model. All future inferences
and predictions that are made with the model do not account for the uncertainty involved
in the selection process. Alternatively, the model obtained using BMA does incorporate the
variance component associated with the uncertainty of model building.

There is a standard Bayesian solution to the problem of accounting for model uncertainty. If
the model space isM = {M1, · · · ,MT} then the posterior probability of Mi given the data
Y is given by

P (Mi|Y ) =
P (Y |Mi)P (Mi)P

Mj∈M P (Y |Mj)P (Mj)
(3.4)

where P (Mi) denotes the prior probability of each model and P (Y |Mi) is the marginal
likelihood of the data. Generally, each model has been assumed to be equally likely a priori,
so equation 4.2 simplifies to

P (Mi|Y ) =
P (Y |Mi)P

Mj∈M P (Y |Mj)

Now, the marginal likelihood of the data is

P (Y |Mi) =
Z
P (Y |Mi, θi)π(θi)dθi (3.5)

where θi is the unknown model parameters with joint prior density π(θi). Hoeting [21] shows
for univariate multiple regression that the marginal likelihood follows an n dimensional non-
central Student’s t-distribution when proper conjugate priors are used. This result can
be used if hyperparameters are chosen so that the prior density it calibrated to the data.
Raftery [55] approximates equation 4.3 using the Bayes Information Criterion (BIC) which
is a penalized likelihood measure. For the case of linear regression Raftery shows that

P (Y |Mi) ∝ exp (−0.5BICi)
= exp

³
−0.5(n ln(1− r2i ) + pi lnn)

´
(3.6)
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where r2i is the model r-square, pi is the number of independent variables in model Mi, and
n is the number of observations. Using Raftery’s approximation requires no calibration to
the data and is composed of readily available regression information. By normalizing we get
the posterior probability of model Mi given the data is

P (Mi|Y ) ≈ exp (−0.5BICi)P
Mj∈M exp (−0.5BICj)

(3.7)

In order to use the BIC approximation we must supply an r-square like measure of associ-
ation. Cramer and Nicewander [7] showed how the four multivariate measures discussed in
subsection 3.2.1 may be converted into invariant measures of multivariate association.

Wilk’s lambda η2Λ = 1− Λ = 1−
Qk
i=1(1− r2i )

Roy’s η2θ =
θ
1+θ

= r21
Pillai’s η2V = k

−1V = k−1
Pk
i=1 r

2
i

Lawley-Hotelling η2U =
k−1U
1+k−1U =

k−1
Pk

i=1
r2i (1−r2i )−1

1+k−1
Pk

i=1
r2i (1−r2i )−1

Even though none of the four multivariate tests statistics is uniformly most powerful, as
previously stated, the measure of associations listed above provide ordered values so that
η2Λ ≥ η2θ ≥ η2U ≥ η2V (proof shown in A.3).
The BIC penalizes heavily for parsimony so it makes sense to use η2Λ as the r-square in the
likelihood portion since it is the least conservative measure of association of those considered.
Using one of the weaker measures of association would only serve to amplify the penalization.

3.5 Stochastic search of model space

Stepwise methods are often used when it is not practical to evaluate a large number of
possible models. While this algorithm is convienient, it is deterministic for a given data set.
Slight perturbations in the data can result in a very different “best” model. By adopting a
stochastic search of the model space we are able to identify the models best supported by
the data almost surely [64, 49, 20]. Madigan and York [39] implemented the Markov chain
Monte Carlo model composition (MC3) procedure on graphical models. Hoeting [21], and
Hoeting, Madigan, and Raftery [22] applied the method to univariate multiple regression.
One advantage in using the MC3 approach is that the model selection process is stochastic,
and each model will be visited during the simulation in proportion to how well it is supported
by the data. Therefore, all good models will be visited more often than those that are not
supported by the data, so we get a summary of all the best models and not just a single
snapshot that is obtained using a stepwise procedure.
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The stochastic search of the model space is made necessary by the potentially enormous
number of models in the denominator of equation 4.5. The MC3 method is used to reduce
the number of terms in this sum by focusing on the most probable models and eliminating
those models that are not supported by the data.

The states of the Markov chain to be sampled from are the individual models inM hence
the chain is discrete and finite. In order to insure the proper stationary distribution we
must specify how to move from one model to another. This task is accomplished by forming
neighborhoods around each model [39]. The neighborhood, centered at an arbitrary model
Mi, denoted by nbd(Mi), consists of model Mi and every other model that can be obtained
by either adding a single variable to Mi or removing a single variable from Mj.

The transition from one neighborhood to another is accomplished using Hasting’s [20] method.
Given that the current state of the Markov chain is nbd(Mi), the models in nbd(Mi) are sam-
pled with equal probability. Suppose Mk ∈ nbd(Mi) is proposed, then the move to nbd(Mk)
is accepted with probability

Pacc = min

(
1,
P (Mk|Y )
P (Mi|Y )

)
(3.8)

Since the transition matrix is finite and irreducible, then by applying the ergodic theorem
for Markov chains, any function g(Mi) defined onM, E(g(M)) can be estimated by drawing
from the Markov chain for t = 1, 2, . . . , N , and

Ĝ =
1

N

NX
i=1

g(M(t))

which is a simulation-consistent estimate of E(g(M)) (i.e. Ĝ → E(g(M)) almost surely)
[64, 39, 49]. In other words, the posterior probability of model Mi given Rj is approximated
by the proportion of iterations that the Markov chain spends in nbd(Mi) and as the number of
iterations goes to infinity then the estimate goes to P (Mi|Y ) almost surely. The primary goal
of using the MC3 process in this particular application is not convergence to the stationary
distribution, but rather to identify a subset of models that are most supported by the data.
LetM∗ ⊂M denote the models that are actually visited during the simulation. Any model
Mi ∈ M and Mi 6∈ M∗ has an estimated posterior probability of zero and is therefore
eliminated from the sum in denominator of equation 4.5.

The posterior probability of any Mi ∈ M∗ can be estimated by the number of times the
Markov chain was in state nbd(Mj) divided by the total number of draws from the chain which
is only appropriate when convergence it attained. Alternatively, the posterior probability
for the models can also be estimated by replacingM withM∗ in equation 4.5 since the BIC
must be computed for each model visited during the simulation of the chain.

To further reduce the number of models in the denominator of equation 4.5 we use the
principle of Occam’s razor which is the principle that holds that models which perform much
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less well than their competitors should be discarded [38]. The MC3 algorithm eliminates most
of the poor models by not visiting them, but there may be models inM∗ that still are much
less likely than the most probable model visited and are effectively discredited and should
be eliminated. The reduced class of models is then defined by

M∗∗ =

(
Mk :Mi,Mk ∈M∗,

maxi P (Mi|Y )
P (Mk|Y ) < C

)

Madigan and Raftery [38] adopted C = 20, but values from 10 to 1000 have been suggested
with respect to the particular application. As a result, equation 4.5 can essentially be
replaced by

P (Mi|Y ) ≈ exp (−0.5BICi)P
Mk∈M∗∗ exp (−0.5BICk) (3.9)

3.6 Implementation

Suppose we have n measurements on each of the variables Y1, · · · , Yp on g known populations
and wish to identify the most important variables that contribute to mean separation. In
order to construct a set of the most likely modelsM∗∗ ⊂M we use the following algorithm.

1. Randomly choose Mi ∈M as a starting point. Let all Mi ∈M be equally likely and

M∗ set= ∅
2. Record current neighborhood indexM∗ set=M∗ ∪Mi

3. Let Y be the matrix such that the columns represent the variables present in Mi

4. Compute the k = min(p, g − 1) non-zero eigenvalues of S−1/2yy SyxS
−1
xx SxyS

−1/2
yy and

represent them by r21 > · · · > r2k
5. Compute BICi = n ln(Λi) + pi ln(n)

6. Randomly choose Mk ∈ nbd(Mi) where each model in nbd(Mi) is equally likely.

7. Compute BICk for model Mk.

8. Move to nbd(Mk) with probability Pacc = min (1, exp {−0.5(BICi − BICk)}) or stay
in nbd(Mi) with probability 1− Pacc

9. Let u ∼ U(0, 1). If u < s then choose some Mi ∈ M at random where all Mi are
equally likely

10. Iterate steps 2—10 N times
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11. ConstructM∗∗ = {Mi : BICi ≤ minMk∈M∗ BICk + 2 lnC}
12. Compute P (Mi|Y ) = exp(−0.5BICi)P

Mk∈M∗∗ exp(−0.5BICk) for all Mi ∈M∗∗

13. Compute E[δ] =
P
Mi∈M∗∗ δiP (Mi|Y )

3.6.1 Algorithm details

In step 1 a model is chosen at random fromM where all models are equally likely. The initial
starting point for the Markov chain is accomplished by generating δ1, · · · , δp ∼ Bern(0.5).
If δi = 1 then Yi is in the model alternatively, if δi = 0 then Yi is excluded.

Step 2 records the iteration history (i.e. models visited) throughout the simulation in set
M∗.

The pi variables that are present in the current model make up the n×pi dimensional matrix
Y in step 3.

In step 4 the k = min(pi, g − 1) squared canonical correlations obtained from model Mi are
computed.

In step 5 the BIC for model Mi is calculated by

BICi = n ln(1− η2Λi) + pi ln(n)
= n ln(Λi) + pi ln(n)

A model is chosen at random from nbd(Mi) where all models are equally likely in step 6.
The model Mj is selected by generating U ∼ U(0, 1) and defining V = bpUc+ 1 then

δV
set
= 1− δV

which causes YV to be added to the model if it was previously excluded or removed if YV ∈Mi.

The BIC for the proposed model, Mj , is computed in step 7 and the process moves to
nbd(Mj) with probability

Pacc = min

(
1,
P (Mj|Y )
P (Mi|Y )

)

= min

(
1,
exp(−.5BICj)
exp(−.5BICi)

)
= min {1, exp(−.5(BICj − BICi))} (3.10)

or stays in the neighborhood of Mi with probability 1− Pacc which is shown if step 8.
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We define the distance between any two models, Mi and Mj to be

dij = (δi − δj)0(δi − δj)
Throughout the MC3 simulation, each step through the model space amounts to a jump of
one unit of distance when a proposed move is accepted. As sampling from the chain continues,
by the nature of the process there is an emphasis on spending more iterations in the neigh-
borhoods of the best models. If there are groups of neighborhoods containing good models
that are far apart from one another it may take many iterations to achieve convergence. One
method of assessing convergence is the use of multiple sequences using overdispersed start-
ing points [16]. By choosing random starting points for multiple sequences, the expected
distance between any two start points is 0.5p since the distance between any two models
chosen at random from M is a binomial random variable with parameters p and 0.5. We
propose starting new sequences at random with probability s (we use s = 0.01) with the
starting point of the new sequence being some model chosen at random. Therefore when a
new sequence is triggered, the initial model in the new chain is some model inM as shown
in step 9 and the MC3 starts anew. Recall that our goal in sampling from the chain is model
identification and not convergence. While the process cycles within a group of good models
we randomly start the process over in a randomly determined spot in the model space in the
hopes of finding other groups of likely models if they exist.

The purpose of step 10 is to insure that the best models are visited. Usually, in MCMC sim-
ulations, the number of iterations is chosen to achieve convergence to the proper stationary
distribution and suggested values of N are on the order of 30000 [21]. In this particular ap-
plication we are only interested in the neighborhoods that were actually visited throughout
the simulation which make up the set M∗ hence model identification is of greater impor-
tance than convergence so N maybe be as small as 5000 to attain the desired result. The
justification for this is that the posterior probability of a model will not be estimated by the
proportion of time the Markov chain spent in the neighborhood of the model, but instead
will be approximated using the observed BIC for each model that is visited during the sim-
ulation. The assumption inherent in this approach is that all models that are most likely in
M will be visited at least one time in 5000 iterations with the aid of the random restarts of
the sequence from the previous step.

Occam’s razor is performed in step 11 which states that models inM∗ that are C or more
times less likely than the most likely model in the set have been essentially discredited and
should be eliminated. Madigan and Raftery [38] adopted the value of C = 20 to eliminate
models that were far less likely than the best model. We then have

M∗∗ =

(
Mi :

maxMk∈M∗ P (Mk|Y )
P (Mi|Y ) ≤ C

)

=

(
Mi :

maxMk∈M∗ exp(−0.5BICk)
exp(−0.5BICi) ≤ C

)
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=
½
Mi : max

Mk∈M∗ exp(−0.5(BICk − BICi)) ≤ C
¾

=
½
Mi : max

Mk∈M∗−0.5(BICk − BICi) ≤ lnC
¾

=
½
Mi : min

Mk∈M∗BICk − BICi ≥ −2 lnC
¾

=
½
Mi : BICi ≤ 2 lnC + min

Mk∈M∗BICk

¾
This is the step in the algorithm where models that were identified during the simulation
but deemed unlikely in comparison to the best model are removed.

In step 12 the potentially greatly reduced setM∗∗ ⊆M∗ ⊆M is then used to estimate the
posterior probabilities of the most likely models. All models not inM∗∗ have an estimated
posterior probability of zero and are therefore eliminated from the denominator of equation
4.5.

Any variable that is in a given model has its corresponding position in the vector δ set to
one or it is set to zero of the variable is not present. The probability that a variable is
a significant contributor to group separation can be assessed by estimating the probability
that the variable in question should be present by

Ê[δ] =
X

Mi∈M∗∗
δiP (Mi|Y )

so if the estimated probability that any given variable should be in the model is greater than
0.5, it is more likely than not that the variable in question is a significant contributor to
group mean separation.

The elements of Ê[δ] are interpreted as the probability that the corresponding variable is
active or contributes significantly to the model. If a group of variables has been identified
a priori to be important in the construction of an index or latent variable then the its
overall importance to any given component can be evaluated as the weighted average of
the activation probabilities of the variables that construct it. In the example that follows
in section 3.8 twenty environmental variables are used to discriminate between locations
based a partition of the Index of Biotic Integrity. To illustrate the concept if assessing the
contribution of a latent construct, nine of the twenty variables are characterized as pertaining
to water chemistry [51]. In the absence of any previously described weighting scheme, the
level of water chemistry contribution to group separation can be assessed by examining the
average activation probability of the variables in the water chemistry group.
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3.7 Interpretation

Canonical variate analysis is a descriptive tool used to help understand the nature of the
separation between group means and to identify which explanatory variables contribute to
discrimination between the groups. A difficult problem is the interpretation of the axes of
separation and variable contribution to that axis. Rencher [60, 61] outlines three methods
used to interprete variable contribution to group separation.

One method involves examination of the standardized coefficients. The standardized coef-
ficients are obtained by multiplying the eigenvectors of E−1H by diag(si), where si is the
within sample standard deviation of the ith variable [61, 44]. The standardized coefficients
reveal the joint contribution of the individual variables to the discriminant functions [59].
The variables with large magnitude standardized coefficients are considered important in the
construction of the discriminant function in the presence of the other variables in the model.
If some variables are deleted or added, coefficients will change signs and/or magnitudes, but
these descriptive measures depend jointly on all other variables in the model so this would
be expected but makes interpretation difficult.

Another method involves calculating partial F -statistics for each variable in the presence of
the other variables in the model. The partial F -statistic shows each variables contribution
to Wilks’ Λ after adjusting for the other variables in the model. In the case of more than
two groups, the partial F -values are not associated with a single discriminant function but
rather indicate the over all contribution to group separation hence this is not useful if it is
desired to interpret individual discriminant functions.

The other popular method of interpretation uses correlations between the original variables
and the canonical structures formed. Three sources supplied by commercial software pack-
ages known as total, between, and pooled within canonical structures. If Y1, · · · , Yp represent
the original data vectors and V1, · · · , Vs denote the canonical variates. Let

Yijk = kth observation in the jth group for variable i

Yij· = n−1j
njX
k=1

Yijk

Yi·· = g−1
gX
j=1

Yij·

with the appropriate counterparts in the canonical variates. The three canonical structures
are then defined as

rT (Ya, Vb) =

Pg
j=1

Pnj
k=1(Yajk − Ya··)(Vbjk − Vb··)qPg

j=1

Pnj
k=1(Yajk − Ya··)2

Pg
j=1

Pnj
k=1(Vbjk − Vb··)2

rB(Ya, Vb) =

Pg
j=1(Yaj· − Ya··)(Vbj· − Vb··)qPg

j=1(Yaj· − Ya··)2
Pg
j=1(Vbj· − Vb··)2
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rW (Ya, Vb) = g−1
gX
j=1

Pnj
k=1(Yajk − Yaj·)(Vbjk − Vbj·)qPnj

k=1(Yajk − Yaj·)2
Pnj
k=1(Vbjk − Vbj·)2

Of these three structures, the between structure seems to be most appealing in the sense
that the goal of CVA is to describe mean separation and the between structure deals directly
with group means. The between canonical structure is composed of the correlations between
the group means of each explanatory variable with each set of group means of the canonical
variates. It therefore is a measure of how well the group means for the explanatory variables
agree with the canonical group means. For any Yi, i = 1, · · · , p, we have that

r2B(Yi, V1) + · · ·+ r2B(Yi, Vs) = 1

so r2B(Yi, Vj) can be interpreted as the percentage agreement of the group means profile
of variable i with the jth canonical group means. Since the correlation is scale invariant
then these structures indicate how much agreement there is between the explanatory group
means with the canonical mean profiles, but do not show the extent to which a given variable
contributes to the overall group separation.

BMA adds to the interpretability of group mean separation at looking at all possible variable
configurations and weighting each configuration by how well it is supported by the data. The
variability modeled by this method is due to model uncertainty. For any quantity of interest,
∆, the total variance is

Var(∆) = E[∆2]− E[∆]2

=
X
M∈M

E[∆2|M ]P (M)−
Ã X
M∈M

E[∆|M ]P (M)
!2

=
X
M∈M

(E[∆2|M ]− E[∆|M ]2 + E[∆|M ]2)P (M)−
Ã X
M∈M

E[∆|M ]P (M)
!2

=
X
M∈M

(E[∆2|M ]− E[∆|M ]2)P (M) + X
M∈M

E[∆|M ]2P (M)−
Ã X
M∈M

E[∆|M ]P (M)
!2

=
X
M∈M

Var(∆|M)P (M) + EM
h
E[∆|M ]2

i
−EM[E[∆|M ]]2

= EM[Var(∆|M)] + VarM(E[∆|M ])
= Within + Between

The “within” variance component is the sample variation. It can be estimated for any
given model using exact distribution theory, asymptotic distribution theory, or via some
simulation technique such as bootstrapping depending on the parameter of interest. The
overall estimate of this component is then obtained as the weighted average of the individual
model sample variance estimates.
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The “between” component is the model uncertainty variance component and accounts for
parameter differences between each of the models considered. The quantity can be estimated
using plug in estimates of the expected values and then taking the variance of those values
based on the posterior probabilities of the models.

The quantities we are interested in fall into one of two categories; variable assessment, and
the nature of group separation. Variable contribution to group separation will be illustrated
using the between canonical structure scores along with the pooled within-class standardized
canonical coefficients. The nature of group separation will be evaluated by forming confidence
regions about the group means of the canonical variates along with the canonical scores
associated with individual observations.

3.8 Application

Biological data were gathered from 1988 to 1994 by the Ohio Environmental protection
Agency (EPA) over the Eastern Corn Belt Plains ecoregion of Ohio [50]. The status of a
fish community was assessed at 178 sites in the region using Ohio EPA’s Index of Biological
Integrity (IBI). The IBI is the sum of twelve metrics measuring the quantities of various
species of fish collected via electroshocking methods [11]. Each of the metrics are evaluated
on a five point Likert scale so the IBI can take on any integer value from 12 to 60. The index
reflects total native species composition, indicator species composition, pollutant intolerant
and tolerant species composition, and fish condition. The higher the IBI score, the healthier
the aquatic ecosystem; conversely, the lower the index, the poorer the health of the aquatic
ecosystem [11]. We partition the sites by IBI score into one of four classifications as follows:

Group Lower Limit Upper Limit Group Size
I 50 60 37
II 40 49 64
III 30 39 51
IV 12 29 26

The explanatory variables for this application consists of 20 variables identified as biological
“stressor” variables. Nine of the variables are characterized as pertaining to water chemistry
and the remaining eleven variables are classified as habitat variables. In the original analysis
of this set of data, various transformations were applied to individual variables to attain
approximate univariate normality of the data [50]. Sections C.2 and C.3 show the names,
brief descriptions, and transformations used for the variables analyzed in this illustration.
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3.8.1 Standard analysis

Performing a classical analysis of the data, a model was selected using stepwise discriminant
analysis. The chosen model has five habitat variables (POOL, RIPARIAN, SUBSTRAT,
RIPSS, and COVER) and four water chemistry variables (AMM, NOX, ZN, and PHO).
The model Wilks’ Λ is 0.4805 (p-value < .0001) all the three canonical correlations (0.5971,
0.4010, 0.3322) were significant at the 0.01 level.

The canonical variate group means as functions of the aforementioned retained variables
are shown in figure 3.1. The group mean profile for the first canonical variate is decreasing
and approximately linear and accounts for 64% of the group separation. The group mean
profile for the second canonical variate is quadratic shaped and accounts for 22% of the group
separation.

Figure 3.2 shows the percent agreement between the group means of the explanatory variables
with group mean structure of the canonical variates using the squared between canonical
structure coefficients (BCSC). Since the canonical variates are orthogonal and have the
same rank as the data, then each of the retained original variables contributes a percentage
of it’s mean separation to each variate. We see that the mean sepearation for the variable
RIPARIAN, for example, is almost 100% explained by the first canonical variate, whereas
NOX is practically evenly explained across each of the three canonical variates. For these
data, we conclude that AMM, POOL, RIPARIAN, SUBSTRAT, ZN, RIPSS, and COVER
are mainly in agreement with the mean profile of the first canonical variate. Variables NOX
and PHO are essentially an even match with each of the canonical variate group mean
profiles.

Figure 3.1: Canonical Group Means: CAN1 -vs- CAN2

Figure 3.3 shows the magnitudes of the pooled within-class standardized canonical coeffi-
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Figure 3.2: Squared Between Canonical Structure Coefficients

cients (PWCSCC). From this plot, one may conclude that AMM and RIPARIAN are im-
portant to the construction first canonical variate, AMM, NOX, and RIPSS contribute most
heavily to the second canonical variate, and finally that POOL, RIPARIAN, ZN, PHO, and
RIPSS are most important to the third canonical variate. This leaves SUBSTRAT and
COVER as unassigned in terms of how each contributes to mean separation.

When comparing two possible conclusions drawn from either the BCSC or when using the
PWCSCC, we see there is not much agreement for this data set. Also, since there is no
measure of variablity what constitutes a large magnitude value is made based on a point
estimate alone and is risky and the cutoff value for important versus unimportant somewhat
arbitrary.

3.8.2 BMA analysis

The analysis will be approached in two different ways using BMA methodology. The goal of
the first approach is variable assessment. In the variable assessment phase of the analysis,
the posterior probability that a given variable is active in a model is estimated and these
values are used to aid in the interpretation of the group separation. The second approach
evaluates the magnitude of the model uncertainty variance component of the BCSC and the
PWCSCC.
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Figure 3.3: Pooled Within-Class Standardized Canonical Coefficient Magnitudes

Variable assessment

The contribution of each variable to group separation is made by the estimation of the proba-
bility that any given variable is present in the model. For each modelMi ∈M∗∗ we have the
estimated posterior probability of the model, P (Mi|Y ), and the vector of indicator variables,
δi, that represents which variables are present (1) and which are absent (0). The estimated
posterior probability that a variable, Yi, contributes significantly to group separation is given
by

P (Yi is active) = P (δ·i = 1) =
X

Mj∈M∗∗
δjiP (Mj|Y )

When P (Yi is active) > 0.5 it is more likely than not that variable Yi contributes significantly
to group separation.

One of the criticisms of using the between canonical structure coefficients is that they re-
flect only univariate information and not the joint contribution since they ignore the other
variables in the model [59, 60]. We feel that another problem with this measure is that the
amount of separation is not reflected by the measure. Rather it simply indicates how the
information about separation for the variable is divided amongst the variates.

As previously defined, the loading associated with variable i with canonical variate j is
denoted by rB(Yi, Vj). As a correlation, each loading has a range between -1 and 1. This
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value measures how correlated the shape of the mean profile of the variable is with the mean
profile of the canonical variate in question, but does not the reflect the magnitude of group
separation. Let

r∗B(Yi, Vj) = rB(Yi, Vj)P (Yi is active)

be a scaled correlation. In the interpretation phase of an analysis, we look for large magnitude
loadings hence in order for |r∗B(Yi, Vj)| to be large, both the amount of agreement and the
degree to which a variable discriminates must be large. Also, this criteria uses the posterior
probability that a variable is active in a model and is made in the multivariate context since
the probability takes into account the other variables in the model.

Table 3.1: Activation Probabilities

Variable Prob Std. Err. Variable Prob Std. Err.
RIPARIAN 1.0000 0.0000 GRADIENT 0.6080 0.0022
AMM 1.0000 0.0000 ZN 0.5169 0.0036
POOL 0.9970 0.0006 PHO 0.3827 0.0025
COVER 0.9858 0.0009 RIPSS 0.2883 0.0027
SUBSTRAT 0.9439 0.0023 COD 0.2766 0.0025
PB 0.8947 0.0025 EMBSS 0.1741 0.0023
NOX 0.8729 0.0033 SILTSS 0.0631 0.0016
BOD 0.8705 0.0018 FE 0.0367 0.0017
TSS 0.7766 0.0035 RIFFLE 0.0190 0.0013
CHANNEL 0.7644 0.0026 RIFEMSS 0.0116 0.0007

Ten runs of 10000 iterations each were run using the modified MC3 algorithm. The activation
probabilities are shown in table 3.1 in decreasing order of importance. RIPSS and PHO were
selected by the stepwise method but have low posterior probabilities of being active (i.e. less
than 0.5). The variables PB, BOD, TSS, CHANNEL, and GRADIENT each had high
posterior probabilities and were not selected by the stepwise model.

Figure 3.4 shows the BCSC for the first two canonical variates. Each variable is represented
by a dot and a ray. The dot represents the scaled loading value along each of the first
two canonical variate axis and is located at coordinate (r∗B(Yi, V1), r

∗
B(Yi, V2)). The ray ex-

tends from the scaled loading and terminates at the unscaled loading value at coordinate
(rB(Yi, V1), rB(Yi, V2)). This graph emphasizes three major points of interest. Firstly, it
shows how the individual variables are aligned along the first two canonical axis. For exam-
ple, we could classify each variable as either primarily aligned with the first canonical variate
(RIPARIAN, PB, CHANNEL, GRADIENT, and ZN), mainly aligned with the second canon-
ical variate (TSS), or a mix of the two variates (AMM, POOL, COVER, SUBSTRAT, NOX,
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Figure 3.4: Scaled Between Canonical Loadings for CAN 1 and CAN 2

and BOD). Next, the plot identifies variables that provide poor discrimination as the scaled
loading coordinate will be closer to the origin when compared to a variable that provides
stronger mean separation. For example, BOD is further from the origin than TSS so it
provides a greater degree of mean separation. Finally, the coordinate value where the ray
terminates indicates how much mean separation for a given variable is accounted for in the
first two canonical variates. For example, the ray for ZN terminates closer to the outer circle
(best possible separation) than the ray for NOX hence ZN is more in line with the first two
canonical variates, but since the scaled loading for NOX is farther from the origin than the
scaled loading for ZN then we conclude that NOX still provides stronger group separation.
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Model uncertainty

Recall that the BMA estimated value of any quantity of interest, ∆, is the plug in estimate
obtained from the estimated expected value

∆̂ = Ê(∆)

=
X

Mi∈M∗∗
Ê(∆|Mi)P (Mi|Y )

The BMA estimate of the BCSC along with the model uncertainty variance component
estimates are shown for the three canonical variates in table 3.2. The average magnitude
loading over the 20 variables and three canonical variates is 0.24698 and the underlined
estimates in table 3.2 denote loadings with above average magnitudes. An interpretation
that may be made from these values is that the variables with large magnitudes show which
variables are important with respect to group separation and which canonical variate they
are most closely identified with. For example, CHANNEL, RIPARIAN, GRADIENT, PB,
and AMM are associated with CAN 1 only, COVER, POOL, SUBSTRAT, BOD, and NOX
with CAN 1 and 2, and TSS with each of CAN 1—3.

Table 3.3 shows the BMA estimates of the PWCSCC. As with the BCSC, the overall average
magnitude was computed and each score larger than 0.1532 is interpreted as important to
the construction of the variate and is identified as such by being underlined in the table.
We see that the most important variables based on this criterion are CHANNEL, COVER,
RIPARIAN, POOL, SUBSTRAT, GRADIENT, TSS, AMM, PB, and NOX.

We see that there are only minor differences in the sets of variables selected as most important
based on these two criteria. BOD was selected when the BCSC criteria was used but not
when PWCSCC was used, but TSS was identified when using PWCSCC but not when the
BCSC was used. Both BOD and TSS were identified as important when using the activation
probabilities.

The means of the first two canonical variates are shown in figure 3.5. With the exception
of the eigenvector for the second canonical variate switching signs, the overall mean pattern
matches that shown in figure 3.1. This occurs because eigenvector identification is unique
up to a scalar multiplier so the magnitude is generally scaled to unity, but in any given
determination from a random sample, the signs may flip. The major difference between
the two plots is that sample variability and the model uncertainty variance component have
been added to the graph in figure 3.5. The sample variability for each group mean and
canonical variate was estimated using 1000 bootstrap samples of the data set. The ellipses
represent ±2 standard deviations of the sampling variability. The plotted crosses show the
model uncertainty in the means as 1000 independent draws were made from the posterior
model space. From the estimated values of the variance components, shown in table 3.4,
we see that sampling variability is between 1.2 and 2.5 orders of magnitude larger than the
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Table 3.2: BMA Estimated Between Canonical Structure Coefficients

CAN 1 CAN 2 CAN 3
Variable Est. S.D. Est. S.D. Est. S.D.
CHANNEL 0.7430 0.0261 0.0254 0.0037 -0.0880 0.0177
COVER 0.7793 0.0061 0.5654 0.0104 0.1182 0.0080
RIPSS 0.2298 0.0278 0.0008 0.0012 -0.0205 0.0067
RIPARIAN 0.9851 0.0003 0.0251 0.0020 0.0919 0.0094
POOL 0.7955 0.0028 0.4681 0.0097 -0.1036 0.0225
EMBSS 0.1758 0.0248 0.0473 0.0067 0.0204 0.0045
RIFEMSS 0.0123 0.0073 -0.0020 0.0012 -0.0011 0.0007
RIFFLE 0.0173 0.0086 0.0035 0.0018 -0.0003 0.0006
SILTSS 0.0336 0.0081 0.0618 0.0149 -0.0017 0.0037
SUBSTRAT 0.8146 0.0147 0.3950 0.0109 -0.0345 0.0130
GRADIENT 0.5930 0.0326 0.0788 0.0047 0.0210 0.0020
FE -0.0254 0.0087 0.0267 0.0091 0.0029 0.0018
TSS -0.2792 0.0105 0.5566 0.0228 0.2637 0.0276
BOD -0.5354 0.0136 0.6884 0.0174 0.0610 0.0047
COD -0.2209 0.0232 0.1837 0.0196 0.0120 0.0031
AMM 0.9132 0.0008 -0.3840 0.0074 0.0123 0.0052
PB 0.8881 0.0206 -0.0395 0.0022 0.0504 0.0044
AN -0.4568 0.0304 -0.1224 0.0090 -0.0111 0.0160
NOX -0.5194 0.0129 -0.4651 0.0162 0.2445 0.0329
PHO 0.2024 0.0178 -0.2183 0.0219 0.0706 0.0211

variance due to model uncertainty for these data, but these size differences are data and
model dependent and will not hold true in general.

Group 4 (IBI scores less than 30) appears to have the greatest degree of separation from
the other groups whereas groups 2 and 3 have the most overlap implying they may be most
similar with respect to the variables measured. Finally, as CAN 1 decreases IBI also tends to
decrease. The interpretation of CAN 2 is less clear but since the mean profile has a quadratic
shape it may be related to the square of CAN 1.

3.9 Conclusion

The classical approach to model building selects a single model which is equivalent to letting
the posterior probability of that model be equal to one while all other models in the space
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Table 3.3: BMA Estimated Pooled Within-Class Standardized Canonical Coefficients

CAN 1 CAN 2 CAN 3
Variable Est. S.D. Est. S.D. Est. S.D.
CHANNEL -0.0298 0.0037 -0.4106 0.0159 -0.2673 0.0356
COVER -0.2107 0.0038 0.5485 0.0117 0.3630 0.0360
RIPSS -0.0802 0.0098 -0.0811 0.0127 -0.0727 0.0204
RIPARIAN 0.5359 0.0067 -0.0614 0.0066 0.2699 0.0318
POOL 0.3839 0.0019 0.2441 0.0065 -0.2087 0.0328
EMBSS 0.0546 0.0081 0.0334 0.0053 0.0001 0.0024
RIFEMSS -0.0012 0.0011 -0.0029 0.0020 -0.0012 0.0008
RIFFLE 0.0022 0.0011 -0.0024 0.0013 0.0006 0.0009
SILTSS -0.0080 0.0023 0.0185 0.0045 -0.0024 0.0027
SUBSTRAT 0.3326 0.0065 0.3216 0.0099 -0.0129 0.0105
GRADIENT 0.0956 0.0058 0.2625 0.0148 0.0297 0.0085
FE 0.0101 0.0038 0.0018 0.0012 0.0010 0.0018
TSS 0.3444 0.0130 -0.0271 0.0058 0.1002 0.0121
BOD -0.0311 0.0095 0.5966 0.0159 0.2524 0.0159
COD -0.0756 0.0080 -0.0106 0.0041 -0.0060 0.0064
AMM 0.6526 0.0023 -0.3258 0.0095 0.0855 0.0133
PB 0.4044 0.0099 0.1082 0.0049 0.1439 0.0096
ZN -0.0780 0.0063 -0.1127 0.0089 0.0140 0.0217
NOX -0.1552 0.0044 -0.1780 0.0098 0.3002 0.0294
PHO -0.0493 0.0047 -0.0875 0.0102 0.0865 0.0191

are excluded since they have probability zero. A direct result of selecting a single model is
that the variance due to uncertainty is zero which does not accuratly reflect reality since the
selected model was not chosen as such a priori. Bayesian model averaging provides a way to
estimate and incorporate the previously ignored model uncertainty variance component or
used for variable assessment.

When a model is developed empirically via some variable selection scheme, any variances
that are estimated are overly optimistic since they are estimated based on the assumption
that the model selected is correct. The model uncertainty variance component adjusts any
variance estimate to reflect the fact that whatever the true model is, it is unknown and there
may be several competitive models that adequately reflect what is happening with the data.
The information from each good model is weighted based on its posterior probability, and
estimates of desired quantities are formed with more appropriate variance estimates.

The joint contribution of each variable can be measured using BMA in the context of variable
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Figure 3.5: Canonical Variate Means for CAN 1 and CAN 2

assessment. The posterior model space is summarized by computing the expected posterior
probability that any given variable is active. The activation probabilities can then be used
in conjuction with the standard tools that are used such as the structural loadings and
standardized coefficients. The addition of the variable assessment information enhances and
clarifies the interpretion thus adding value to the analysis.
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Table 3.4: Estimated Sampling Variability and Model Uncertainty Variance Components for
Canonical Group Means

Variate Group Sampling Model Uncertainty Order
Variance Variance of Magnitude

1 1 0.11337 0.00352 1.51
1 2 0.19739 0.00114 2.24
1 3 0.13013 0.00086 2.18
1 4 0.06739 0.00327 1.31
2 1 0.17344 0.00535 1.51
2 2 0.25494 0.00927 1.44
2 3 0.08254 0.00458 1.26
2 4 0.22200 0.00166 2.12
3 1 0.33912 0.00301 2.05
3 2 0.29511 0.00091 2.51
3 3 0.43431 0.00669 1.81
3 4 0.16220 0.00472 1.54

Note: Order of magnitude = log10

µ
Sampling Variance

Model Uncertainty Variance

¶
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Chapter 4

Canonical Correlation Analysis
(CCA)

4.1 Introduction

Situations exist in multivariate systems where measured variables are divided into two sets
a priori and each set relates to a separate component of a system and some measure of
linear association between the components is desired [34]. The data suitable for this type of
analysis consists of n observations in (p+q) numeric measurement variables and the division
of the data into sets of p and q variables is made based on some external considerations.
Canonical correlation analysis (CCA) is used to identify and quantify the linear association
between the two sets of variables [26].

CCA creates s = min(p, q) new pairs of variables using linear combinations of the original
variables from each set. The new variables, called canonical variates, are formed so that
the first pair has the largest correlation of any linear combination of the original variables.
Subsequent pairs also have maximized correlation subject to the constraint that they are
uncorrelated with each previous pair [26]. Symbolically, given X1, · · · , Xp and Y1, · · · , Yq
then

Ui = Xai
Vi = Y bi

for i = 1, · · · , s where
Corr(Ui, Vj) = 0 if i 6= j
Corr(Ui, Uj) = 0 if i 6= j
Corr(Vi, Vj) = 0 if i 6= j
Corr(Ui, Vi) = ρi
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The vector of coefficients that make up ai and bi are the i
th eigenvectors of

Mp = S−1xx SxyS
−1
yy Syx and

Mq = S−1yy SyxS
−1
xx Sxy

respectively where Sxx, Syy, Syx and Sxy are the sums of squares and cross product matrices
[34]. The canonical correlations are derived from the first s eigenvalues of either Mp or Mq

by

ρi =

s
λi

1+ λi

The main hypothesis tested in a CCA model is H0 : ρ1 = · · · = ρs = 0. The likelihood
ratio is used as the test statistic and thsi results in the same test in multivariate regression,
H0 : β = 0, and also that used in canonical variate analysis H0 : µ1 = · · · = µg.
The four most commonly used statistics to test the hypothesis that the s canonical correla-
tions are equal zero are Wilks’ Λ, Roy’s greatest root, Pillai’s test, and the Lawley-Hotelling
test. The test statistics can each be written in terms of the eigenvalues of Mp or Mq where
λ1 > λ2 > · · · > λs, and s = min(p, q) as shown below [60].

Wilks’ lambda Λ =
Qs
i=1

1
1+λi

Roy’s θ = λ1
Pillai’s V =

Pk
i=s

λi
1+λi

Lawley-Hotelling U =
Ps
i=1 λi

While inferences made are similar to those of multivariate regression and canonical variate
analysis, CCA is fundamentally different since the variable sets are treated symmetrically
because neither set is treated as dependent on the other [60].

4.2 The Model

The goal in model building is to identify subsets of variables that best contribute to the linear
association between the sets of variables. CCA is a multivariate dimension reduction method
where it is hoped that the linear association between two sets of variables may be summarized
by a few pairs of optimally constructed variables. The procedure is not as straightforward as
computing simple correlations since the correlation between sets is determined by adjusting
for the within set correlation structure [35]. After the canonical variates are formed, some
interpretation of their meaning is often desired.
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Each model, Mi, is represented by vector δi where

δij =

(
0 if the jth variable is not in Mi

1 if the jth variable is in Mi

where j = 1, · · · , (p+ q), and the jth variable is defined as

Vj =

(
Xj if the j ≤ p
Yj−p if the j > p

The models are numbered by the index “i” and is obtained by

i =
p+qX
j=1

δij2
j−1

There are 2p+q − 3 models in the model space that can be analyzed since three models are
not analyzable; the model with no variables, the model with no X variables, and the model
with no Y variables. The likelihood ratio is not defined for these models so we set Wilks’
lambda equal to one so that these three models may be included in order complete to the
model space.

4.2.1 Computations

The calculation of the eigenvalues of Mp or Mq was shown to have value in the previous
subsection. In general, the matrix Mp and Mq are not symmetric and many algorithms for
computing eigenvalues accept only symmetric matrices. It can be shown [60] that

S−1/2yy SyxS
−1
xx SxyS

−1/2
yy and

S−1/2xx SxyS
−1
yy SyxS

−1/2
xx

are symmetric and that the first s = min(p, q) eigenvalues of each are the squared canonical
correlations that relate the linear combinations of X and Y variables.

4.3 Model selection

Currently there has been little research devoted to model selection and CCA [2]. A stepwise
method of model selection, which is a quite popular method of model building regression
and canonical variate models, is easily adapted to accommodate the CCA framework. When
the number of variables is large, sequential procedures have generally been the only practical
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way to construct a reasonable model. The stepwise method is an extension of the forward
procedure and makes use of Wilks’ lambda statistic and partial F -tests.

Recall that the data consists of n observations of variables X1, · · · , Xp, Y1, · · · , Yq. The first
step of the stepwise procedure is to choose Xi, Yj from all possible p×q variable combinations
so that the squared correlation is maximized. Wilks’ lambda is equal to 1−r2ij and the exact
F−test can be performed to check for significance. If the best combination fails to be
significant then the procedure stops.

In the second step, the variable from either X or Y yielding the smallest partial Λ for each
variable adjusted for the first two variables in the model is considered for entry into the
model. The partial Λ-statistic is based on the full and reduced model test for a subset [60]:

Λ(•|xi, yj) =
Λ(•, xi, yj)
Λ(xi, yj)

for each • 6= xi, yj , and the variable that minimizes Λ(•|xi, yj) is the candidate to enter the
model next. If the partial F -test is significant then the third variable is added, if not, then
the procedure stops. At this point, when there are more than two variables in the model, a
partial F -test is performed to see if any variables may be removed. The process continues
alternating between testing to add the best possible of the remaining variables and testing
whether the weakest already present in the model should be deleted. When no variables can
be added or removed, the process stops.

Since one variable is either being added or removed one at a time, there is an exact F test
where

F =
1− Λ
Λ

n− p∗ − q∗
w

(4.1)

follows an F distribution with w and n− p∗ − q∗ degrees of freedom where

w =

(
p∗ if an X variable is being tested and
q∗ if a Y variable is being tested

and p∗ and q∗ are the number of variables currently in the model from X and Y respectively.
Note that if either p∗ or q∗ is zero then the configuration would result in an Wilks’ lambda
equal to one and an F−statistic of zero so this condition would not occur during the variable
elimination portion of the procedure.

Though each test can be conducted at the α level of significance, the overall level of signif-
icance of the model is unknown since the number of tests to be performed before hand is
unknown. As such, all p-values obtained from various tests of interest do not have the usual
interpretation.

While a stepwise method has been outlined above, no currently available statistical package
allows for any form of model building in a CCA analysis. In practice, all variables from
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both sets X and Y are generally kept in the model and no formal testing is done to remove
variables that may not be contributing to existing linear associations.

4.4 Bayesian Model Averaging (BMA)

When a model selection method such as an all possible subsets or stepwise procedure is
used, the single model obtained is assumed to be the correct model. All future inferences
and predictions that are made with the model do not account for the uncertainty involved
in the selection process. Alternatively, the model obtained using BMA does incorporate the
variance component associated with the uncertainty of model building.

There is a standard Bayesian solution to the problem of accounting for model uncertainty. If
the model space isM = {M1, · · · ,MT} then the posterior probability of Mi given the data
is

P (Mi|data) =
P (data|Mi)P (Mi)P

Mj∈M P (data|Mj)P (Mj)
(4.2)

where P (Mi) denotes the prior probability of each model and P (data|Mi) is the marginal
likelihood of the data. Generally, each model has been assumed to be equally likely a priori,
so equation 4.2 simplifies to

P (Mi|data) =
P (data|Mi)P

Mj∈M P (data|Mj)

Now, the marginal likelihood of the data is

P (data|Mi) =
Z
P (data|Mi, θi)π(θi)dθi (4.3)

where θi is the unknown model parameters with joint prior density π(θi). Hoeting [21] shows
for univariate multiple regression that the marginal likelihood follows an n-dimensional non-
central Student’s t-distribution when proper conjugate priors are used. This result can
be used if hyperparameters are chosen so that the prior density it calibrated to the data.
Raftery [55] approximates equation 4.3 using the Bayes Information Criterion (BIC) which
is a penalized likelihood measure. For the case of linear regression Raftery shows that

P (data|Mi) ∝ exp (−0.5BICi)
= exp

³
−0.5(n ln(1− r2i ) + pi lnn)

´
(4.4)

where r2i is the model r-square, pi is the number of independent variables in model Mi, and
n is the number of observations. Using Raftery’s approximation requires no calibration to
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the data and is composed of readily available regression information. By normalizing we get
the posterior probability of model Mi given the data is

P (Mi|data) ≈ exp (−0.5BICi)P
Mj∈M exp (−0.5BICj)

(4.5)

4.4.1 Specification on Measure of Association

In order to use the BIC approximation we must supply an r-square like measure of associ-
ation. Cramer and Nicewander [7] showed how the four multivariate measures discussed in
section 4.1 may be converted into invariant measures of multivariate association.

Wilk’s lambda η2Λ = 1− Λ = 1−
Qk
i=1(1− r2i )

Roy’s η2θ = θ = r
2
1

Pillai’s η2V = k
−1V = k−1

Pk
i=1 r

2
i

Lawley-Hotelling η2U =
k−1U
1+k−1U =

k−1
Pk

i=1
r2i (1−r2i )−1

1+k−1
Pk

i=1
r2i (1−r2i )−1

Even though none of the four multivariate tests statistics is uniformly most powerful, as
previously stated, the measure of associations listed above provide ordered values so that
η2Λ ≥ η2θ ≥ η2U ≥ η2V (proof shown in A.3).
The BIC penalizes heavily for parsimony so it makes sense to use a measure of based on η2Λ as
the r-square in the likelihood portion since it is the least conservative measure of association
of those considered and using one of the weaker measures of association would only serve to
amplify the penalization. However, there is a potential problem associated with inflation of
this measure due to sample size and total number of variables since it is not uncommon for
data sets where CCA is used to have large values of p and q relative to n. When no linear
association exists the expected value [58] of the measure is

E[η2Λ] = 1−
p−1Y
i=0

µ
1− q

n− i
¶

To illustrate, suppose that p = 30, q = 30, and n = 500, then the expected value of
η2Λ = 0.8525 assuming no association.

We propose a measure of association, η2∗, where

η2∗ = 1− Λ

E[Λ]

This measure of association is formed using the likelihood ratio but is adjusted for the p, q
and n. From the above scenario posed where p = q = 30 and n = 500, three scenarios were
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simulated 100 times using Monte Carlo methods. In each simulation, the data were normal
iid with either no linear associations specified, the linear relationship Corr2(Y1, X1) = 0.5,
or the linear relationship Corr2(Y1, X1) = 0.8 with the results shown below.

No relationship Corr2(Y1, X1) = 0.5 Corr2(Y1, X1) = 0.8

Ê(η2∗) 0.00175 0.49300 0.79736

Ê(η2Λ) 0.85402 0.92586 0.97037

It is easily seen that the estimated expected values of η2∗ are more reasonable for the scenarios
posed than those values obtained from η2Λ.

4.4.2 Prior Specification on Model Space

The selection of what prior should be used on the model space is an open problem for BMA
in general [6]. In many published applications of BMA, only a uniform prior on the model
space has assumed (see Clyde [6], Hoeting [21, 22], Madigan [38] and Raftery [55, 56] for
example). The uniform prior on the model space is equivalent to assuming that each of p+q
variables independently has a probability of 0.5 to be included in any randomly selected
model since

P (Mi) =
p+qY
i=1

0.5

= 0.5p+q

= 2−(p+q)

for all Mi ∈M.

A more informative prior can be obtained by assuming each variable independently has a
probability of θ to be included in any model, so the prior takes on the form

P (Mi) = θk(1− θ)p+q−k

where k is the number of variables in Mi for all Mi ∈ M. Using this prior is equivalent
to assuming a uniform prior on the model space and approximating the marginal likelihood
with a generalized information criteria (GIC) [48]

P (data|Mi) ≈ exp(−0.5GICi)P
Mj∈M exp(GICj)

where

GICi = n ln(1− r2i ) + ki
Ã
lnn− 2 ln θ

1− θ
!
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where ki is the number of variables inMi (proof in section A.2). This prior will be referred to
as the “size” prior since all models with the same number of variables are equally probable.

If it is assumed that each variable has a separate probability, θi, of being in a randomly
selected model, then the prior probability for any model is given by

P (Mj) =
Y
δij=1

θi
Y
δij=0

(1− θi)

where

δij =

(
0 if variable i is not in Mj

1 if variable i is in Mj

A variable that is believed to be more important would be assigned a higher probability of
inclusion than one that is considered to be less important. This prior will be referred to as
the “variable” prior since the variables have separate probabilities of being active.

Another prior that could be considered would be the totally informed prior such that

P (Mi) = πi ≥ 0 ∀Mi ∈M
hence each model is individually assigned a prior probability πi. This prior will be referred
to as the “individual” prior since each model is dealt with individually.

The distribution of models under the uniform and size priors follows a binomial distribution
with parameters p+q and θ (where θ = 0.5 for uniform prior). As such, the a priori number
of variables that are expected to be important in the model is θ(p + q). Under the uniform
prior this translates to the belief that half the variables are important, so if there is some
reason to believe that this is not reasonable or desirable, then the size prior may be more
appropriate. If it is believed before hand that certain variables are more or less important
than others, then the variable prior may be more appropriate to use. Since the model space
will usually be too large to assign individual probabilities to models then the individual prior
may not be practical. Also, without expert knowledge, the values assigned to models using
this prior may be meaningless.

The four priors described require different knowledge and expectations of the model space.
The order in which the priors were presented represents the need for an increasing amount of
knowledge about the model space. In a situation where there may be only a few candidate
models, the individual prior may be appropriate if expert opinion or empirical results drive
the assignment of the prior probabilities for each model. In applications such as multiple
regression or canonical variate analysis, the variable prior may be appropriate if expert
opinion or information from pilot studies is available on the relative contributions of each
variable. For situations where the probability of inclusion for individual variables does
not have such a straight-forward interpretation, such as principal components analysis and
canonical correlation analysis, then the size or uniform priors may be more appropriate.
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4.5 Stochastic search of model space

Stepwise methods are often used when it is not practical to evaluate a large number of
possible models. While this algorithm is convienient, it is deterministic for a given data set.
Slight perturbations in the data can result in a very different “best” model. By adopting a
stochastic search of the model space we are able to identify the models best supported by
the data almost surely [64, 49, 20]. Madigan and York [39] implemented the Markov chain
Monte Carlo model composition (MC3) procedure on graphical models. Hoeting [21], and
Hoeting, Madigan, and Raftery [22] applied the method to univariate multiple regression.
One advantage in using the MC3 approach is that the model selection process is stochastic,
and each model will be visited during the simulation in proportion to how well it is supported
by the data. Therefore, all good models will be visited more often than those that are not
supported by the data, so we get a summary of all the best models and not just a single
snapshot that is obtained using a stepwise procedure.

The stochastic search of the model space is made necessary by the potentially enormous
number of models in the denominator of equation 4.5. The MC3 method is used to reduce
the number of terms in this sum by focusing on the most probable models and eliminating
those models that are not supported by the data.

The states of the Markov chain to be sampled from are the individual models inM hence
the chain is discrete and finite. In order to insure the proper stationary distribution we
must specify how to move from one model to another. This task is accomplished by forming
neighborhoods around each model [39]. The neighborhood, centered at an arbitrary model
Mi, denoted by nbd(Mi), consists of model Mi and every other model that can be obtained
by either adding a single variable to Mi or removing a single variable from Mj.

The transition from one neighborhood to another is accomplished using Hasting’s [20] method.
Given that the current state of the Markov chain is nbd(Mi), the models in nbd(Mi) are sam-
pled with equal probability. Suppose Mk ∈ nbd(Mi) is proposed, then the move to nbd(Mk)
is accepted with probability

Pacc = min

(
1,
P (Mk|data)
P (Mi|data)

)
(4.6)

Since the transition matrix is finite and irreducible, then by applying the ergodic theorem
for Markov chains, any function g(Mi) defined onM, E(g(M)) can be estimated by drawing
from the Markov chain for t = 1, 2, . . . , N , and

Ĝ =
1

N

NX
i=1

g(M(t))

which is a simulation-consistent estimate of E(g(M)) (i.e. Ĝ → E(g(M)) almost surely)
[64, 39, 49]. In other words, the posterior probability of model Mi given Rj is approximated
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by the proportion of iterations that the Markov chain spends in nbd(Mi) and as the number of
iterations goes to infinity then the estimate goes to P (Mi|Y ) almost surely. The primary goal
of using the MC3 process in this particular application is not convergence to the stationary
distribution, but rather to identify a subset of models that are most supported by the data.
LetM∗ ⊂M denote the models that are actually visited during the simulation. Any model
Mi ∈ M and Mi 6∈ M∗ has an estimated posterior probability of zero and is therefore
eliminated from the sum in the denominator of equation 4.5.

The posterior probability of any Mi ∈ M∗ can be estimated by the number of times the
Markov chain was in state nbd(Mj) divided by the total number of draws from the chain which
is only appropriate when convergence it attained. Alternatively, the posterior probability
for the models can also be estimated by replacingM withM∗ in equation 4.5 since the BIC
must be computed for each model visited during the simulation of the chain.

To further reduce the number of models in the denominator of equation 4.5 we use the
principle of Occam’s razor that holds that models which perform much less well than their
competitors should be discarded [38]. The MC3 algorithm eliminates most of the poor models
by not visiting them, but there may be models inM∗ that still are much less likely than the
most probable model visited and are effectively discredited and should be eliminated. The
reduced class of models is then defined by

M∗∗ =

(
Mk :Mi,Mk ∈M∗,

maxi P (Mi|data)
P (Mk|data) < C

)

Madigan and Raftery [38] adopted C = 20, but values from 10 to 1000 have been suggested
with respect to the particular application. As a result, equation 4.5 can essentially be
replaced by

P (Mi|data) ≈ exp (−0.5BICi)P
Mk∈M∗∗ exp (−0.5BICk) (4.7)

4.6 Implementation

Suppose we have n measurements on each of the variables Y1, · · · , Yp on g known populations
and wish to identify the most important variables that contribute to mean separation. In
order to construct a set of the most likely modelsM∗∗ ⊂M we use the following algorithm.

1. Randomly choose Mi ∈M as a starting point. Let all Mi ∈M be equally likely and

M∗ set= ∅
2. Record current neighborhood indexM∗ set=M∗ ∪Mi
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3. Let V = [X Y ] be the matrix such that the columns represent the variables present
in Mi

4. Compute the s = min(p, q) non-zero eigenvalues of S−1/2yy SyxS
−1
xx SxyS

−1/2
yy and represent

them by r21 > · · · > r2s
5. Compute BICi

6. Randomly choose Mk ∈ nbd(Mi) where each model in nbd(Mi) is equally likely.

7. Compute BICk for model Mk.

8. Move to nbd(Mk) with probability Pacc = min (1, exp {−0.5(BICi − BICk)}) or stay
in nbd(Mi) with probability 1− Pacc

9. Let u ∼ U(0, 1). If u < pjump then choose some Mi ∈M at random where all Mi are
equally likely

10. Iterate steps 2—10 N times

11. ConstructM∗∗ = {Mi : BICi ≤ minMk∈M∗ BICk + 2 lnC}
12. Compute P (Mi|Y ) = exp(−0.5BICi)P

Mk∈M∗∗ exp(−0.5BICk) for all Mi ∈M∗∗

13. Compute E[δ] =
P
Mi∈M∗∗ δiP (Mi|data)

4.6.1 Algorithm details

In step 1 a model is chosen at random fromM where all models are equally likely. The initial
starting point for the Markov chain is accomplished by generating δ1, · · · , δp+q ∼ Bern(0.5).
If δi = 1 then Vi is in the model alternatively, if δi = 0 then Vi is excluded where

V = [X1 · · · Xp Y1 · · · Yq]

Step 2 records the iteration history (i.e. models visited) throughout the simulation in set
M∗.

The pi+qi variables that are present in the current model make up the n×(pi+qi) dimensional
matrix V in step 3.

In step 4 the s = min(pi, qi) squared canonical correlations obtained from model Mi are
computed.
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In step 5 the BIC for model Mi is calculated by

BICi = n ln(1− η2∗i) + (pi + qi) ln(n)
= n ln

Ã
Λi
E[Λi]

!
+ (pi + qi) ln(n)

A model is chosen at random from nbd(Mi) where all models are equally likely in step 6.
The model Mj is selected by generating U ∼ U(0, 1) and defining W = bpUc+ 1 then

δW
set
= 1− δW

which causes VW to be added to the model if it was previously excluded or removed if
VW ∈Mi.

The BIC for the proposed model, Mj , is computed in step 7 and the process moves to
nbd(Mj) with probability

Pacc = min

(
1,
P (Mj|data)
P (Mi|data)

)

= min

(
1,
exp(−.5BICj)
exp(−.5BICi)

)
= min {1, exp(−.5(BICj − BICi))} (4.8)

or stays in the neighborhood of Mi with probability 1− Pacc which is shown if step 8.
We define the distance between any two models, Mi and Mj to be the number of variables
unique to either model

dij = (δi − δj)0(δi − δj)
Throughout the MC3 simulation, each step through the model space amounts to a jump of
one unit of distance when a proposed move is accepted. As sampling from the chain con-
tinues, by the nature of the process there is an emphasis on spending more iterations in the
neighborhoods of the best models. If there are groups of neighborhoods containing good mod-
els that are far apart from one another it may take many iterations to achieve convergence.
One method of assessing convergence is the use of multiple sequences using overdispersed
starting points [16]. By choosing random starting points for multiple sequences, the expected
distance between any two start points is 0.5(p+q) since the distance between any two models
chosen at random fromM is a binomial random variable with parameters (p + q) and 0.5.
We propose starting new sequences at random with probability pjump (we use pjump = 0.01)
with the starting point of the new sequence being some model chosen at random. Therefore
when a new sequence is triggered, the initial model in the new chain is some model in M
as shown in step 9 and the MC3 starts anew. Recall that our goal in sampling from the
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chain is model identification and not convergence. While the process cycles within a group
of good models we randomly start the process over in a randomly determined spot in the
model space in the hopes of finding other groups of likely models if they exist.

The purpose of step 10 is to insure that the best models are visited. Usually, in MCMC sim-
ulations, the number of iterations is chosen to achieve convergence to the proper stationary
distribution and suggested values of N are on the order of 30000 [21]. In this particular ap-
plication we are only interested in the neighborhoods that were actually visited throughout
the simulation which make up the set M∗ hence model identification is of greater impor-
tance than convergence so N maybe be as small as 5000 to attain the desired result. The
justification for this is that the posterior probability of a model will not be estimated by the
proportion of time the Markov chain spent in the neighborhood of the model, but instead
will be approximated using the observed BIC for each model that is visited during the sim-
ulation. The assumption inherent in this approach is that all models that are most likely in
M will be visited at least one time in 5000 iterations with the aid of the random restarts of
the sequence from the previous step.

Occam’s razor is performed in step 11 which states that models inM∗ that are C or more
times less likely than the most likely model in the set have been essentially discredited and
should be eliminated. Madigan and Raftery [38] adopted the value of C = 20 to eliminate
models that were far less likely than the best model. We then have

M∗∗ =

(
Mi :

maxMk∈M∗ P (Mk|data)
P (Mi|data) ≤ C

)

=

(
Mi :

maxMk∈M∗ exp(−0.5BICk)
exp(−0.5BICi) ≤ C

)

=
½
Mi : max

Mk∈M∗ exp(−0.5(BICk − BICi)) ≤ C
¾

=
½
Mi : max

Mk∈M∗−0.5(BICk − BICi) ≤ lnC
¾

=
½
Mi : min

Mk∈M∗BICk − BICi ≥ −2 lnC
¾

=
½
Mi : BICi ≤ 2 lnC + min

Mk∈M∗BICk

¾
This is the step in the algorithm where models that were identified during the simulation
but deemed unlikely in comparison to the best model are removed.

In step 12 the potentially greatly reduced setM∗∗ ⊆M∗ ⊆M is then used to estimate the
posterior probabilities of the most likely models. All models not inM∗∗ have an estimated
posterior probability of zero and are therefore eliminated from the denominator of equation
4.5.

Any variable that is in a given model has its corresponding position in the vector δ set to one
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or it is set to zero of the variable is not present. The probability that a variable is a significant
contributor to any linear relationships can be assessed by estimating the probability that
the variable in question should be present by

Ê[δ] =
X

Mi∈M∗∗
δiP (Mi|data)

so if the estimated probability that any given variable should be in the model is greater
than 0.5, it is more likely than not that the variable in question is a significant contributor
to intra-set correlation. The elements of Ê[δ] are interpreted as the probability that the
corresponding variable is active or contributes significantly to the model.

4.7 Interpretation

Canonical correlation analysis is a descriptive tool used to help understand the nature of
the linear association between two groups of variables. The most commonly used interpreta-
tion method involves examining the correlation between the original variables and canonical
variates formed. Construction of the canonical variates was shown in section 4.1 and were
denoted as

Ui = Xai
Vi = Y bi

for i = 1, · · · ,min(p, q). For the purposes of interpretation, we are concerned with the cor-
relations between pairs (Xj , Ui) for j = 1, · · · , p, and (Yk, Vi) for k = 1, · · · , q. The rational
for this method of interpretation is that variables that are highly correlated with a partic-
ular canonical variate can be considered important with respect to the construction of that
variate. Rencher [59] criticizes this method since he claims it does not take into account the
joint contribution of each variable but Al-Kandari and Jolliffe [2] dispute Rencher’s conclu-
sions and claim that the method does have value. The confusion and difficulty in deciding
what measures constitute an appropriate interpretation tool in the context of multivariate
methods is not unique to CCA and is more the rule rather than the exception.

The contribution that variable Xi makes to the canonical variate Uj can be estimated by
the squared correlation, corr2(Xi, Uj) (and similarly for Yi and Vj pairs). This quantity
represents the proportion of the variable explained by a particular variate since

min(p,q)X
j=1

corr2(Xi, Uj) = 1 for i = 1, · · · , p
min(p,q)X
j=1

corr2(Yi, Vj) = 1 for i = 1, · · · , q
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Levine [37] and others suggest using these correlations to interpret the variates. Since the
variates are not directly observable, they are considered latent abstract constructs and can be
interpreted by investigating what measurable variables are related to them. Rencher [59, 60]
says that this method of interpretation does not take into account the joint contribution of
each variable and therefore does not recommend it.

The contribution of each canonical variate pair (Ui, Vi) to the overall linear relationships that
exist between X and Y can be measured by

PCTj =
λiPmin(p,q)

j=1 λj
for i = 1, · · · ,min(p, q)

where λi = r
2
i (1− r2i )−1 and ri is the ith canonical correlation. This quantity represents the

percent of the total linear relationship that is accounted for by each variate pair.

Using BMA methodology, the most promising variable configurations are identified and
models that do not adequately capture the linear associations between the two groups of
variables are eliminated by assigning them posterior probabilities of zero. Two ways that
BMA results may aid in the interpretation of CCA results are through Bayesian variable
assessment and evaluation of model uncertainty.

Individual variables can be assessed by estimation of the posterior probability that they
are in randomly selected model in the model space. This is accomplished using the model
indicator vector δ, and the probability of each variable being active that is estimated by

Ê[δ] =
X

Mi∈M∗∗
δiP (Mi|data)

Any variable with an estimated probability of 0.5 of being included in a randomly selected
model may be eliminated since it is not significantly contributing to the linear associations
between X and Y . Conversely, any variable with a high posterior probability (greater than
0.5) of being in a randomly selected model should be retained since it is significantly con-
tributing to the linear associations between X and Y . The cutoff of 0.5 was selected because
a probability greater than 0.5 can be interpreted as the variable is more likely to be included
than excluded. Variable assessment takes into account the other variables in the model since
each model has a posterior probability and if a variable is important jointly with the other
variables then it should be present in models with high posterior probability.

The variance due to model uncertainty of any quantity of interest, ∆ is

Var(∆) = E[∆2]− E[∆]2

=
X
M∈M

E[∆2|M ]P (M)−
Ã X
M∈M

E[∆|M ]P (M)
!2

=
X
M∈M

(E[∆2|M ]− E[∆|M ]2 + E[∆|M ]2)P (M)−
Ã X
M∈M

E[∆|M ]P (M)
!2
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=
X
M∈M

(E[∆2|M ]− E[∆|M ]2)P (M) + X
M∈M

E[∆|M ]2P (M)−
Ã X
M∈M

E[∆|M ]P (M)
!2

=
X
M∈M

Var(∆|M)P (M) + EM
h
E[∆|M ]2

i
−EM[E[∆|M ]]2

= EM[Var(∆|M)] + VarM(E[∆|M ])

These two pieces may be described as the “within” and “between” variance components. The
“within” component is the sample variance pooled over the model space. It can be estimated
for any given model using exact distribution theory, asymptotic distribution theory, or via
some simulation technique such as bootstrapping depending on the parameter of interest.
The overall estimate of this component is then obtained as the weighted average of the indi-
vidual model sample variance estimates. The “between” variance component represents the
variance associated model uncertainty. If the various models are in general agreement with
each other this component will be small but if the estimated quantity takes on very different
values, this component may be large. These ideas are illustrated on the environmental data
from the state of Ohio.

4.8 Application

Biological data were gathered from 1988 to 1994 by the Ohio Environmental protection
Agency (EPA) over the Eastern Corn Belt Plains ecoregion of Ohio [50]. The X matrix for
this application consists of 20 variables identified as biological “stressor” variables. Nine of
the variables are characterized as pertaining to water chemistry and the remaining eleven
variables are classified as habitat variables. The Y matrix is made up of 20 variables known
as Benthic macroinvertebrate variables. In the original analysis of this set of data, various
transformations were applied to individual variables to attain approximate univariate nor-
mality of the data [50]. Sections C.2, C.3, and C.4 show the names, brief descriptions, and
transformations used for the variables analyzed in this illustration.

4.8.1 Standard analysis

The first four canonical variates were significant at the 0.05 level of significance. The test for
a significant canonical correlation for the fifth variate and beyond gave a p-value of 0.0536.
Arguably, there are either four or five significant linear relationships that can be interpreted,
and since adding the fifth pair brings the total percent explained from 64% to 71% it will
be included.

For this data, min(p, q) = min(20, 20) = 20, hence there are 20 canonical variate pairs
formed. We are interested in determining which variables are most related to the first five
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Table 4.1: Variables most strongly related to the significant canonical variates

Variable Rx Variable Ry

AMM . . + + − PERCAD . + . + .
BOD . + − . + PERCR . . . . .
COD − . . . + PERD . . . . .
FE + . − . + PERDIPT . . . . .
NOX . . . . . PERE + . . . .
PB . − . + . PCFILTE + + . . .
PHO . . . . − PCGATH − . . − .
TSS + . . . + PERGL . + . . .
ZN . . . . . INSNODI + . . + .
CHANNEL . . + . . PERTOLN . . . . .
COVER . . . . . PERMAY . . . . .
EMBSS + . . − . NUMQUAL . . + + −
GRADIENT . − . . . NUMTAXA . . . + .
POOL . . + . . PEROL . . . . .
RIFEMSS + . . . . PEROTS . . . . .
RIFFLE . . . . . PEROTHDI − − . . .
RIPARIAN . . . . . QUALEPT + + + + −
RIPSS . + . . . PCSHRED . . . . .
SILTSS . . + − . PERTANY . . . . .
SUBSTRAT . . + . . PERTTS − . . . .

variate pairs. In the standard analysis, there is no uniformly used method to determine which
correlations are large and which are small. The method used here identifies all correlations
larger in magnitude than the largest correlation in the non-signignifant canonical variates.
To help summarize results, let

Rxij =


+ if corr2(Xi, Uj) > maxk=6,···,20 corr2(Xi, Uk) and corr(Xi, Uj) > 0
− if corr2(Xi, Uj) > maxk=6,···,20 corr2(Xi, Uk) and corr(Xi, Uj) < 0
· if corr2(Xi, Uj) < maxk=6,···,20 corr2(Xi, Uk)

Ryij =


+ if corr2(Yi, Vj) > maxk=6,···,20 corr2(Yi, Vk) and corr(Yi, Vj) > 0
− if corr2(Yi, Vj) > maxk=6,···,20 corr2(Yi, Vk) and corr(Yi, Vj) < 0
· if corr2(Yi, Vj) < maxk=6,···,20 corr2(Yi, Vk)

for i = 1, · · · , 20, j = 1, · · · , 5. This identifies any correlation in the first five variates that
is larger in magnitude than the largest magnitude correlation of the remaining variates for
each variable.

Interpretations can be made from the summarization shown in table 4.1. For example, the
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first canonical variate can be characterized as the linear relationship between negative chem-
ical oxygen demand (-COD), iron (FE), total suspended solids (TSS), the embeddedness
subscore (EMBSS), and riffle embeddedness subscore (RIFEMSS) with percent that are ero-
sional taxa (PERE), percent that are filter feeding insect taxa (PCFILTE), the negative of the
percent that are gatering insect taxa (-PCGATH), number of insect taxa excluding dipterans
(INSNODI), the negative of the percent that are dipterans and non-insects (-PEROTHDI),
number of Ephemeroptera, Plecoptera, and Tricoptera taxa in qualitative dipnet sample
(QUALEPT) and the negative of the percent that are toxic tolerant (-PERTTS). It is the
hope that the relationship has meaning to the researcher in this area so that a more succinct
interpretation can be reported.

4.8.2 BMA analysis

The analysis will be approached in two different ways using BMA methodology. The goal
of the first approach is variable assessment. In the variable assessment phase of the analy-
sis, the posterior probability that a given variable is active in a model is estimated and
these values are used to aid in the interpretation of the intra-set correlation. The second
approach evaluates the magnitude of the model uncertainty variance component associated
with various qantities of interest.

Variable assessment

The contribution of each variable to the linear associations between the variables in X with
those in Y is assessed by estimation of the probability that any given variable is present
in a randomly chosen model. For each model Mi ∈ M∗∗ we have the estimated posterior
probability of the model, P (Mi|data), and the vector of indicator variables, δi, that represents
which variables are present (1) and which are absent (0). The estimated posterior probability
that a variable, Yi for example, is active is given by

P (Yi is active) = P (δ·i = 1) =
X

Mj∈M∗∗
δjiP (Mj|data)

When P (Yi is active) > 0.5 it is more likely than not that variable Yi contributes substan-
tally to the linear relationship. We conclude that a variable is important if its activation
probability is at least 0.5.

The “size” prior was assumed on the model space which has the form

P (Mi) = θk(1− θ)p+q−k

where model Mi has k variables. Four values of θ were investigated: 0.2, 0.3, 0.4, and 0.5
(recall that θ = 0.5 is the uniform prior). For each prior, 20 MC3 simulations were run with

88



Table 4.2: Estimated activation probabilities and standard errors with θ = 0.2

Variable Prob SE Variable Prob SE
AMM 1.000 (0.000) PERCAD 1.000 (0.000)
BOD 0.631 (0.074) PERCR 0.448 (0.076)
COD 1.000 (0.000) PERD 0.999 (0.001)
FE 0.878 (0.054) PERDIPT 0.008 (0.004)
NOX 0.686 (0.050) PERE 0.633 (0.050)
PB 0.385 (0.077) PCFILTE 0.501 (0.076)
PHO 0.000 (0.000) PCGATH 0.408 (0.077)
TSS 0.174 (0.057) PERGL 1.000 (0.000)
ZN 0.578 (0.075) INSNODI 0.259 (0.056)
CHANNEL 0.019 (0.015) PERTOLN 0.290 (0.065)
COVER 0.762 (0.043) PERMAY 0.647 (0.077)
EMBSS 0.327 (0.073) NUMQUAL 0.958 (0.017)
GRADIENT 1.000 (0.000) NUMTAXA 0.405 (0.051)
POOL 0.426 (0.076) PEROL 0.028 (0.018)
RIFEMSS 0.713 (0.062) PEROTS 0.969 (0.018)
RIFFLE 0.890 (0.043) PEROTHDI 1.000 (0.000)
RIPARIAN 0.000 (0.000) QUALEPT 1.000 (0.000)
RIPSS 0.965 (0.026) PCSHRED 0.000 (0.000)
SILTSS 0.140 (0.048) PERTANY 0.631 (0.075)
SUBSTRAT 0.081 (0.023) PERTTS 0.002 (0.002)

5000 iterations in each. The estimated activation probabilites along with standard errors are
shown in tables 4.2—4.5. The determination of importance for each variable over the range of
priors investigated was generally the same. Differences in interpretation came about when
θ = 0.2. Embeddedness subscore (EMBSS), pool QHEI metrics (POOL), percent that are
Crictopus (PERCR), percent that are gatering insect taxa (PCGATH), and total number
of quantitative taxa (NUMTAX) would be interpreted as not important whereas for larger
values of θ they would be retained.

The choice of θ does not appear to be very important for this particular data since the
conclusion remains the same over a relatively wide range. The change in the activation
probability over the range of 0.3 ≤ θ ≤ 0.5 ranged from 0.328 for PERTOLN to 0.000 for
AMM, COD, FE, PHO, GRADIENT, PERCAD, PERD, PERGL, PEROTS, PEROTHDI,
QUALEPT, and PCSHRED, and the median change on the activation probability for the
40 variables was 0.027.

Figures 4.1 and 4.2 show the scaled correlation values for the first two canonical variates
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Table 4.3: Estimated activation probabilities and standard errors with θ = 0.3

Variable Prob SE Variable Prob SE
AMM 1.000 (0.000) PERCAD 1.000 (0.000)
BOD 0.987 (0.006) PERCR 0.972 (0.013)
COD 1.000 (0.000) PERD 1.000 (0.000)
FE 1.000 (0.000) PERDIPT 0.013 (0.010)
NOX 0.789 (0.053) PERE 0.756 (0.044)
PB 0.032 (0.026) PCFILTE 0.975 (0.020)
PHO 0.000 (0.000) PCGATH 0.942 (0.037)
TSS 0.020 (0.010) PERGL 1.000 (0.000)
ZN 0.993 (0.003) INSNODI 0.578 (0.068)
CHANNEL 0.092 (0.049) PERTOLN 0.130 (0.045)
COVER 0.889 (0.045) PERMAY 0.996 (0.002)
EMBSS 0.865 (0.046) NUMQUAL 0.947 (0.018)
GRADIENT 1.000 (0.000) NUMTAXA 0.499 (0.069)
POOL 0.952 (0.017) PEROL 0.012 (0.005)
RIFEMSS 0.739 (0.045) PEROTS 1.000 (0.000)
RIFFLE 0.942 (0.019) PEROTHDI 1.000 (0.000)
RIPARIAN 0.000 (0.000) QUALEPT 1.000 (0.000)
RIPSS 0.908 (0.051) PCSHRED 0.000 (0.000)
SILTSS 0.102 (0.032) PERTANY 0.983 (0.009)
SUBSTRAT 0.037 (0.016) PERTTS 0.000 (0.000)
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Table 4.4: Estimated activation probabilities and standard errors with θ = 0.4

Variable Prob SE Variable Prob SE
AMM 1.000 (0.000) PERCAD 1.000 (0.000)
BOD 1.000 (0.000) PERCR 1.000 (0.000)
COD 1.000 (0.000) PERD 1.000 (0.000)
FE 1.000 (0.000) PERDIPT 0.021 (0.015)
NOX 0.963 (0.011) PERE 0.897 (0.020)
PB 0.003 (0.003) PCFILTE 1.000 (0.000)
PHO 0.000 (0.000) PCGATH 0.997 (0.003)
TSS 0.058 (0.036) PERGL 1.000 (0.000)
ZN 1.000 (0.000) INSNODI 0.546 (0.059)
CHANNEL 0.017 (0.008) PERTOLN 0.310 (0.045)
COVER 0.982 (0.007) PERMAY 1.000 (0.000)
EMBSS 0.892 (0.039) NUMQUAL 0.986 (0.006)
GRADIENT 1.000 (0.000) NUMTAXA 0.557 (0.054)
POOL 0.997 (0.003) PEROL 0.097 (0.053)
RIFEMSS 0.899 (0.030) PEROTS 1.000 (0.000)
RIFFLE 0.994 (0.004) PEROTHDI 1.000 (0.000)
RIPARIAN 0.000 (0.000) QUALEPT 1.000 (0.000)
RIPSS 0.985 (0.008) PCSHRED 0.000 (0.000)
SILTSS 0.146 (0.045) PERTANY 0.996 (0.003)
SUBSTRAT 0.093 (0.017) PERTTS 0.001 (0.001)
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Table 4.5: Estimated activation probabilities and standard errors with θ = 0.5

Variable Prob SE Variable Prob SE
AMM 1.000 (0.000) PERCAD 1.000 (0.000)
BOD 1.000 (0.000) PERCR 1.000 (0.000)
COD 1.000 (0.000) PERD 1.000 (0.000)
FE 1.000 (0.000) PERDIPT 0.036 (0.013)
NOX 0.988 (0.004) PERE 0.960 (0.012)
PB 0.072 (0.022) PCFILTE 1.000 (0.000)
PHO 0.000 (0.000) PCGATH 1.000 (0.000)
TSS 0.128 (0.026) PERGL 1.000 (0.000)
ZN 1.000 (0.000) INSNODI 0.525 (0.045)
CHANNEL 0.011 (0.004) PERTOLN 0.458 (0.023)
COVER 0.999 (0.001) PERMAY 1.000 (0.000)
EMBSS 0.838 (0.038) NUMQUAL 0.983 (0.007)
GRADIENT 1.000 (0.000) NUMTAXA 0.700 (0.041)
POOL 0.994 (0.003) PEROL 0.116 (0.026)
RIFEMSS 0.932 (0.013) PEROTS 1.000 (0.000)
RIFFLE 0.997 (0.002) PEROTHDI 1.000 (0.000)
RIPARIAN 0.015 (0.005) QUALEPT 1.000 (0.000)
RIPSS 0.990 (0.003) PCSHRED 0.000 (0.000)
SILTSS 0.267 (0.054) PERTANY 0.999 (0.001)
SUBSTRAT 0.090 (0.020) PERTTS 0.000 (0.000)
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Figure 4.1: Scaled Correlation plot for Habitat and Chemical Variables for first two variates
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Figure 4.2: Scaled Correlation plot for Benthic Macroinvertebrate Variables for first two
variates
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when θ = 0.5. Each variable is represented by a dot and a ray. The dot represents the scaled
correlation value along each of the first two canonical variate axes. We define the scaled
correlation to be the the full model correlation between a variable and the canonical variate
multiplied by the probability that the variable is active, symbolically as

P (Yi is active)Corr(Yi, Vj) and

P (Xi is active)Corr(Xi, Uj) and

The ray extends from the scaled correlation and terminates at the unscaled correlation. This
graph emphasizes three major points of interest. Firstly, it shows how the individual variables
are aligned along the first two canonical axis. For example, we could classify each variable
as either primarily aligned with the first canonical variate (FE, EMBSS, RIFEMSS, COD,
PERE, and PEROTHI), mainly aligned with the second canonical variate (BOD, RIPSS,
GRADIENT, PERCAD, and PERD), or a mix of the two variates (RIFFLE, PERMAY,
QUALEPT, PCFILTE, and PERGL). Next, the plot identifies variables that provide poor
linear association as the scaled correlation coordinate will be closer to the origin when com-
pared to a variable that provides stronger linear associations. This means that variables with
long rays are being excluded since they have a low posterior probability of being included.
Finally, the coordinate value where the ray terminates indicates how much linear association
for a given variable is accounted for in the first two canonical variates. In this example, most
activation probabilites are close to either one or zero so the rays for the active variables have
no length or are very short. Since RIFFLE is closest of all habitat and chemical variables
to the outer circle, then it contributes more to the first two variates than any of the other
variables.

Model uncertainty

Recall that the BMA estimated value of any quantity of interest, ∆, is the plug-in estimate
obtained from the estimated expected value

∆̂ = Ê(∆)

=
X

Mi∈M∗∗
Ê(∆|Mi)P (Mi|Y )

and that the variability is estimated by

dV ar(∆) = dEM(dV ar(∆|M)) + dV arM( bE(∆|M))
= Sampling Variation +Model Uncertainty Variation

These estimated variance components of the correlation coefficients associated with the first
variate pair are shown in table 4.6. The sampling variability was estimated by obtaining
the correlation coefficients from 10000 bootstrap samples of the observations using the full
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model. The model uncertainty variance component was computed using the modified MC3

algorithm and Occam’s razor to obtain a subset of models,M∗∗. The “Order” column listed
in the table shows the order of maganitude difference between variation due to sampling and
that due to model uncertainty by

Order = log10
Sampling Variance

Model Uncertainty Variance

For the variables percent “shredding” insect taxa (PCSHRED), percent toxic tolerant (PERTTS),
and total phosphorus (PHO), the estimated variance due to uncertainty is zero so no order
can be esitmated. Of the remaining 37 variables, only number of insect taxa excluding
dipterans (INSNODI) had more uncertainty variation than sampling variation. For the
other variables, sampling variability was larger with the largest order estimate being 3.11
for percent dipterans and non-insects (PEROTHDI).

Table 4.6: Estimated variablity due to model uncertainty and sampling variation of the
correlation coeffient of the first canonical variate

Variable Uncert. Samp. Order Variable Uncert. Samp. Order
Name StdDev StdDev Name StdDev StdDev
PERCAD 0.0268 0.2430 1.92 AMM 0.0134 0.2276 2.46
PERCR 0.0235 0.1959 1.84 BOD 0.0325 0.3057 1.95
PERD 0.0431 0.2770 1.62 COD 0.0187 0.2887 2.38
PERDIPT 0.0205 0.1849 1.91 FE 0.0119 0.3524 2.94
PERE 0.1373 0.3082 0.70 NOX 0.0170 0.1535 1.91
PCFILTE 0.0181 0.2455 2.26 PB 0.0383 0.2627 1.67
PCGATH 0.0153 0.1880 2.18 PHO 0.0000 0.2293 ∞
PERGL 0.0433 0.3456 1.80 TSS 0.2288 0.3163 0.28
INSNODI 0.2680 0.2304 -0.13 ZN 0.0150 0.1856 2.19
PERTOLN 0.1988 0.2127 0.06 CHANNEL 0.0508 0.2060 1.22
PERMAY 0.0142 0.1760 2.19 COVER 0.0158 0.1904 2.16
NUMQUAL 0.0120 0.1977 2.43 EMBSS 0.1828 0.2614 0.31
NUMTAXA 0.0562 0.2328 1.23 GRADIENT 0.0334 0.2822 1.85
PEROL 0.0091 0.1420 2.38 POOL 0.0339 0.2090 1.58
PEROTS 0.0123 0.1769 2.32 RIFEMSS 0.1449 0.2749 0.56
PEROTHDI 0.0085 0.3042 3.11 RIFFLE 0.0645 0.2490 1.17
QUALEPT 0.0152 0.2269 2.35 RIPARIAN 0.0247 0.2049 1.84
PCSHRED 0.0000 0.1977 ∞ RIPSS 0.0488 0.2638 1.47
PERTANY 0.0251 0.2997 2.15 SILTSS 0.1223 0.2062 0.45
PERTTS 0.0000 0.2290 ∞ SUBSTRAT 0.0756 0.2098 0.89
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4.9 Conclusion

The classical approach to model building selects a single model which is equivalent to letting
the posterior probability of that model be equal to one while all other models in the space
are excluded since they have probability zero. A direct result of selecting a single model is
that the variance due to uncertainty is zero which does not accurately reflect reality since
the selected model was not chosen as such a priori. Bayesian model averaging provides a way
to estimate and incorporate the previously ignored model uncertainty variance component
or used for variable assessment.

When a model is developed empirically via some variable selection scheme, any variances
that are estimated are overly optimistic since they are estimated based on the assumption
that the model selected is correct. The model uncertainty variance component adjusts any
variance estimate to reflect the fact that whatever the true model is, it is unknown and there
may be several competitive models that adequately reflect what is happening with the data.
The information from each good model is weighted based on its posterior probability, and
estimates of desired quantities are formed with more appropriate variance estimates.

The joint contribution of each variable can be measured using BMA in the context of variable
assessment. The posterior model space is summarized by computing the expected posterior
probability that any given variable is active. The activation probabilities can then be used
in conjuction with the standard tools that are used such as the structural loadings and
standardized coefficients. The addition of the variable assessment information enhances and
clarifies the interpretation thus adding value to the analysis.
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Chapter 5

Future Research

The primary goal of this research was to use BMA methodology to make interpretation of
the output from the multivariate methods of principal components, canonical variate and
canonical correlation analysis easier. By assigning posterior probabilities to the various
models based on how well each is supported by the data, patterns may be found that would
that would not be detected by examining a single model obtained by standard methods.

The BMA methodology allows for estimation of the variance due to the uncertainty of which
model is correct. Standard model building practices have focused on the selection of a single
model and ignores model uncertainty by then assuming the correct model has been found.
In multivariate methods such as canonical correlation and principal components analysis,
for example, no formal model selection is generally performed, but user interpretation of the
output decides which variables are important based on the practitioners personal experience.

BMA can also be used as a variable assessment tool. The probability that a given variable is
present in a randomly selected model is estimated by the sum of the posterior probabilities
of the models where it is present. A high probability of a particular variable being present
is interpreted to mean that the variable in question is important.

Kass and Wasserman [32] show that BIC is an especially accurate approximation to a Bayes
factor where the prior on the unknown parameters is elliptically symmetric with density

πψ(ψ) = |Σψ|−1/2f
³
(ψ − ψ0)0Σ−1ψ (ψ − ψ0)

´
where |Σψ|−1 is a block diagonal Fisher information matrix. They point out that while
these results do not strictly apply to linear models where the sampling is not iid, they are
“confident that a rigorous extension is possible in such situations”. In this current research,
each multivariate method is a special case of multivariate regression so the accuracy and
limitations of the BIC is of interest as is still an open area of research.

The BIC is the basis for approximating the posterior model probabilities and it is composed
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of a likelihood term and a penalty term. Within the likelihood term, some measure of
association must be specified. For univariate regression the choice is the usual r-square, but
a single measure of association does not exist in the multivariate context. It was shown
in section A.3 that the measure of association based on Wilks’ lambda is uniformly larger
than those proposed based on Lawley-Hotelling, Pillai, and Roy. Even though the measure
based on Wilks’ lambda has desirable properties and is heuristically appealing since it is
the likelihood ratio, it cannot be used capriciously. As min(p, q) grows for a fixed n, the
asymptotic expected value of Wilks’ lambda decreases under the hypothesis of no structure
or relationships. To correct for this artifical inflation of the measure of association, a measure
based on Wilks’ lambda adjusted for sample size and number of variables was introduced.
Rencher [60, 61] points out that the various multivariate measures of association do not
appear to be measuring the the same level of association. This statement is based on the
fact that in practice the commonly used measures usually cover a wide range of values
over the interval [0, 1]. In this research, some progress was made in understanding how the
commonly used measures relate to one another, but more is required to fully investigate the
properties and limitations of these statistics.

In the current BMA literature, a uniform prior on the model space has been assumed through-
out. This research has defined four general forms, and all priors on the model space may be
classified as either uniform, size, variable, or individual. The form chosen will most likely
be made based on the level of prior knowledge the pratitioner is willing to assume. Future
research in this area may take the size class of priors and assign a prior distribution on
the activation parameter, θ, creating a hierarchical model. The effect of the hierarchical
structure would be to enable a more flexible prior on the model space without necessarily
having a precise value of θ in mind. This idea can then be easily extended to priors on the
individual θi for the variable class of priors.

Convergence to the posterior distribution is the goal of MCMC methods. In this research
the goal was changed to model identification rather than convergence. A modification of
the procedure allowed for random hops to other parts of the model space in order to more
easily identify all good models in a fewer number of iterations. Future research in this area
may compare the convergence rate of the standard MCMC to that of the modified MCMC
in order to quantify the improvement.
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Appendix A

Proofs and Derivations

A.1 Information criteria and prior specification: Du-

ality Theorem

Posterior model probabilities obtained from a marginal likelihood approximated using a
generalized information criteria (GIC) assuming a uniform prior on the model space is
equivalent to posterior model probabilities obtained using the Bayes information criteria
(BIC) where the prior assumed for the model space is defined by

P (Mi) =
exp(−0.5pi(a− lnn))Pp

j=0
p!

j!(p−j)! exp(−0.5j(a− lnn))
where a is the penalty term multiplier in the GIC, pi is the number of variables in model
Mi, and n denotes the sample size.

Proof
From Bayes rule we have that posterior probability of Mi is

P (Mi|data) =
P (data|Mi)P (Mi)P

Mj∈M P (data|Mj)P (Mj)
(A.1)

Raftery [55] shows that

P (data|Mi) ≈ exp(−0.5BICi)P
Mj∈M exp(−0.5BICj)

(A.2)

and we assume the prior distribution on the model space to be

P (Mi) =
exp(−0.5pi(a− lnn))Pp

j=0
p!

j!(p−j)! exp(−0.5j(a− lnn))
(A.3)
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Substituting equations A.2 and A.3 into A.1 we get

P (Mi|data) ≈
exp(−0.5BICi)P

Mj∈M
exp(−0.5BICj)

exp(−0.5pi(a−lnn))Pp

k=0
p!

k!(p−k)! exp(−0.5k(a−lnn))P
Mj∈M

µ
exp(−0.5BICj)P

Mk∈M
exp(−0.5BICk)

exp(−0.5pi(a−lnn))Pp

k=0
p!

k!(p−k)! exp(−0.5k(a−lnn))

¶
=

exp(−0.5BICi) exp(−0.5pi(a− lnn))P
Mj∈M exp(−0.5BICj) exp(−0.5pj(a− lnn))

=
exp(−0.5BICi − 0.5pi(a− lnn))P

Mj∈M exp(−0.5BICj − 0.5pj(a− lnn))
(A.4)

Since BICi = n ln(1− r2i ) + pi lnn, then by substitution into A.4 we get

P (Mi|data) ≈ exp(−0.5(n ln(1− r2i ) + pi lnn)− 0.5pi(a− lnn))P
Mj∈M exp(−0.5(n ln(1− r2j ) + pj lnn)− 0.5pj(a− lnn))

=
exp(−0.5(n ln(1− r2i ) + pi lnn+ api − pi lnn))P

Mj∈M exp(−0.5(n ln(1− r2i ) + pj lnn+ apj − pj lnn))

=
exp(−0.5(n ln(1− r2i ) + api))P

Mj∈M exp(−0.5(n ln(1− r2i ) + apj))
(A.5)

Nishii [48] defines the GIC to be

GICi = n ln(1− r2i ) + api
where limn→∞ n−1a = 0, and substitution into A.5 gets

P (Mi|data) ≈ exp(−0.5GICi)P
Mj∈M exp(−0.5GICj)

=
P (data|Mi)P

Mj∈M P (data|Mj)

=
P (data|Mi)P (M)P

Mj∈M P (data|Mj)P (M)

Hence P (Mi) = P (M) = 2
−p ∀Mi ∈M.
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A.2 A priori probability of model inclusion for indi-

vidual variables and choice of information crite-

rion

If the prior on model spaceM is defined so that variable Xj is in a randomly selected model
with probability θ for j = 1, · · · , p then the equivalent posterior model space is obtained by
approximating the marginal likelihood using a generalized information criterion (GIC) with
penalty multiplier a and uniform prior on the model space if

a = lnn− 2 ln
Ã

θ

1− θ
!

Proof: Suppose P (Mi|data) ∝ exp(−0.5BICi) and let π1 and π2 denote two priors on the
model spaceM such that

π1(Mi) = θk(1− θ)p−k

π2(Mi) =
exp(−0.5k(a− lnn))Pp

j=0
p!

j!(p−j)! exp(−0.5j(a− lnn))

where k represents the number of variables in model Mi.

Let the vector δi be defined as

δij =

(
0 if Xj ∈Mi

1 if Xj 6∈Mi

hence δ0iδi is the number of variables in model Mi. There are C
p
k models with k variables so

P1(δ
0δ = k)

P1(δ
0δ = k − 1) = k

θ

1− θ
P2(δ

0δ = k)
P2(δ

0δ = k − 1) = k exp(−0.5(a− lnn))

and if

P1(δ
0δ = k)

P1(δ
0δ = k − 1)

set
=

P2(δ
0δ = k)

P2(δ
0δ = k − 1)

for k = 1, · · · , p, then

a = lnn− 2 ln
Ã

θ

1− θ
!
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or equivalently

θ = 1− 1

1+ exp(−0.5(a− lnn))

Choose any Mi ∈M and

π2(Mi) =
exp(−0.5k(a− lnn))Pp

j=0
p!

j!(p−j)! exp(−0.5j(a− lnn))

=
exp

³
−0.5k

³
lnn− 2 ln

³
θ
1−θ

´
− lnn

´´
Pp
j=0

p!
j!(p−j)! exp

³
−0.5j

³
lnn− 2 ln

³
θ
1−θ

´
− lnn

´´
=

exp
³
k ln

³
θ
1−θ

´´
Pp
j=0

p!
j!(p−j)! exp

³
j ln

³
θ
1−θ

´´
=

θk(1− θ)−kPp
j=0

p!
j!(p−j)!

³
θ
1−θ

´j
=

θk(1− θ)−k³
1+ θ

1−θ
´p

=
θk(1− θ)−k
(1− θ)−p

= θk(1− θ)p−k
= π1(Mi)

From the result proven in section A.1, if aGIC is used to approximate the marginal likelihood
then using

P (Mi|data) ∝ exp(−0.5GICi)
= exp

Ã
−0.5

Ã
n ln(1− r2i ) + pi

Ã
lnn− 2 ln

Ã
θ

1− θ
!!!!

with a uniform prior on M is equivalent to using the BIC to approximate the marginal
likelihood and using a prior of the form

P (Mi) = θpi(1− θ)p−pi

for all Mi ∈M.

103



A.3 Ordering of multivariate measures of association

The following multivariate measures of association

Wilk’s lambda η2Λ = 1− Λ = 1−
Qk
i=1(1− r2i )

Roy’s η2θ =
θ
1+θ

= r21
Pillai’s η2V = k

−1V = k−1
Pk
i=1 r

2
i

Lawley-Hotelling η2U =
k−1U
1+k−1U =

k−1
Pk

i=1
r2i (1−r2i )−1

1+k−1
Pk

i=1
r2i (1−r2i )−1

are ordered values so that η2Λ ≥ η2θ ≥ η2U ≥ η2V .
Proof: Let the squared canonical correlations be denoted by r21 ≥ · · · ≥ r2k.
Case 1: Wilks’ versus Roy’s

0 ≤ r2i ≤ 1 for i = 1, · · · , k
⇒ 0 ≤ 1− r2i ≤ 1

⇒ 0 ≤
kY
i=2

(1− r2i ) ≤ 1

⇒ 0 ≤
kY
i=1

(1− r2i ) ≤ 1− r21

⇒ r21 ≤ 1−
kY
i=1

(1− r2i )

⇒ η2θ ≤ η2Λ
Case 2: Roy’s versus Lawley-Hotelling’s

r21 ≥ r2i for i = 2, · · · , k
⇒ r21

1− r21
≥ r2i
1− r2i

⇒ (k − 1) r21
1− r21

≥
kX
i=2

r2i
1− r2i

⇒ k
r21

1− r21
≥

kX
i=1

r2i
1− r2i

⇒ r21
1− r21

≥ k−1
kX
i=1

r2i
1− r2i

⇒
r21
1−r21

1+
r21
1−r21

≥
k−1

Pk
i=1

r2i
1−r2i

1+ k−1
Pk
i=1

r2i
1−r2i
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⇒ r21 =

r21
1−r21

1+
r21
1−r21

≥
k−1

Pk
i=1

r2i
1−r2i

1+ k−1
Pk
i=1

r2i
1−r2i

⇒ η2θ ≥ η2U
Case 3: Lawley-Hotelling’s versus Pillai’s
The function ϕ(r2) = r2

1−r2 is convex for r
2 ∈ (0, 1) since ϕ00(r2) > 0. Using Jensen’s

inequality for convex functions [62] we have that

k−1ϕ(r21) + · · ·+ k−1ϕ(r2k) ≥ ϕ
Ã
k−1

kX
i=1

r2i

!

⇒ k−1
kX
i=1

r2i
1− r2i

≥ k−1
Pk
i=1 r

2
i

1− k−1Pk
i=1 r

2
i

⇒ 1

k−1
Pk
i=1

r2i
1−r2i

≤ 1− k−1Pk
i=1 r

2
i

k−1
Pk
i=1 r

2
i

⇒ 1

k−1
Pk
i=1

r2i
1−r2i

≤ 1

k−1
Pk
i=1 r

2
i

− 1

⇒ 1+
1

k−1
Pk
i=1

r2i
1−r2i

≤ 1

k−1
Pk
i=1 r

2
i

⇒
1+ k−1

Pk
i=1

r2i
1−r2i

k−1
Pk
i=1

r2i
1−r2i

≤ 1

k−1
Pk
i=1 r

2
i

⇒
k−1

Pk
i=1

r2i
1−r2i

1+ k−1
Pk
i=1

r2i
1−r2i

≥ k−1
kX
i=1

r2i

⇒ η2U ≥ η2V

Hence η2Λ ≥ η2θ ≥ η2U ≥ η2V . Note that η2Λ = η2θ iff r2 = · · · = rk = 0, and η2θ = η2U = η2V iff
r1 = · · · = rk, so in practice strict inequality will always be observed.
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A.4 Asymptotic properties of BIC∗ using adjustedWilks’

Lambda

The information criterion defined as

BIC∗ = n ln

Ã
Λ

E[Λ]

!
+ (p+ q) lnn

has same asymptotic properties as the standard BIC defined by

BIC = n lnΛ+ (p+ q) lnn

Proof
Nishii [48] shows that any information criteria defined as

GIC = n lnΛ+ (p+ q)an

where limn→∞ an = ∞ and limn→∞ n−1an = 0 share the same asymptotic properties.
Swartz’s criterion (BIC) formed using the likelihood ratio is

BIC = n lnΛ+ (p+ q) lnn

and has the same asymptotic properties as those in the class of generalized information
criteria since

lim
n→∞ lnn = ∞

lim
n→∞n

−1 lnn = 0

Since

BIC∗ = n ln

Ã
Λ

E[Λ]

!
+ (p+ q) lnn

= n ln(Λ)− n ln(E[Λ]) + (p+ q) lnn
= n ln(Λ) + (p+ q)

Ã −n
p+ q

ln(E[Λ]) + lnn

!
= n ln(Λ) + (p+ q)an

then we must now show that

lim
n→∞ an =∞

lim
n→∞n

−1an = 0
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where

an =
−n
p+ q

ln(E[Λ]) + lnn

Now,

lnE[Λ] =
p−1X
i=0

ln
µ
1− q

n− i
¶

hence

lim
n→∞ an = lim

n→∞

Ã −n
p+ q

ln(E[Λ]) + lnn

!

= lim
n→∞

 −n
p+ q

p−1X
i=0

ln
µ
1− q

n− i
¶
+ lnn


=

1

p+ q

p−1X
i=0

lim
n→∞ ln

µ
1− q

n− i
¶−n

+ lim
n→∞ lnn

=
pq

p+ q
+ lim
n→∞ lnn

= ∞

Also,

lim
n→∞n

−1an = lim
n→∞

1

n

Ã −n
p+ q

ln(E[Λ]) + lnn

!

= lim
n→∞

Ã −1
p+ q

ln(E[Λ]) +
lnn

n

!

=
−1
p+ q

lim
n→∞ ln(E[Λ]) + lim

n→∞
lnn

n

=
−1
p+ q

lim
n→∞

p−1X
i=0

ln
µ
1− q

n− i
¶
+ 0

=
−1
p+ q

p−1X
i=0

lim
n→∞ ln

µ
1− q

n− i
¶

= 0

therefore BIC∗ is in the class of generalized information criteria and has the same asymptotic
properties as BIC.
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Appendix B

SAS Code

B.1 Principal Components Analysis

The PCABMA SAS macro analyzes data suitable to a standard principal components analy-
sis. The data to be analyzed will be a SAS data set whose name is stored in parameter
datin. The list of variables is stored in parameter varlist. The component number to be
modeled is stored in parameter comp. The Occam’s razor parameter, occ, which specifies
the maximum ratio of the most probable model to the least probable model retained. The
its parameter contains the desired number of iterations the MC3 algorithm is to execute.
The datout parameter is the name of the SAS data set where the retained models along
with their posterior probability.

/*-----------------------------------------------------------+

| MACRO PCABMA |

| |

| Paramaters |

| datin = SAS dataset containing data to be analyzed |

| varlist = List of variable names to be analyzed |

| comp = Component number to be investigated |

| occ = Occam’s razor number |

| datout = SAS dataset for models visited to be stored |

| its = number of iterations in MC^3 |

+-----------------------------------------------------------*/

%macro pcabma(datin=,varlist=,comp=,occ=,datout=,its=);

%let code = %str(
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/* construct Rj */

rj = diag(delta)*r*diag(delta);

/* compute eigen-info for model */

l = eigval(rj);

e = eigvec(rj);

/* identify best component */

corr = 0;

do i = 1 to ncol(e);

v = abs(e[,1]‘*te);

if v>corr then do; corr=v; c=i; end;

end;

rsq = l[c,1]/d;

/* calculate TIC */

tic = n*log(1-rsq)+a*sum(delta);

);

proc iml;

/* read in data */

use &datin;

read all var {&varlist} into x;

/* p = # of variables, n = # of obs, u = n*1 vector of 1’s */

p = ncol(x);

n = nrow(x);

u = j(n,1,1);

/* center data */

c = x-u*inv(u‘*u)*u‘*x;

/* calculate correlation matrix */

r = j(p,p,0);

do i = 1 to p;

do j = 1 to p;

r[i,j] = (c[,i]‘*c[,j])/sqrt(c[,i]‘*c[,i]*c[,j]‘*c[,j]);

end;

end;
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/* spectral decomposition of correlation matrix */

e = eigvec(r);

l = eigval(r);

r = j(p,p,0);

do i = &comp to p;

r = r + e[,i]*l[i,1]*e[,i]‘;

end;

/* eigen-info for Rj */

e = eigvec(r);

l = eigval(r);

d = sum(l);

/* full model r-sq */

rsq = l[1,1]/d;

/* penalty term */

a = min(log(n),-(n/p)*log(1-rsq));

/* first eigenvector for full model */

te = e[,1];

/* pick random starting point in model space */

delta = j(1,p,0);

do i = 1 to p;

if rannor(0)<.5 then delta[1,i]=1;

end;

/* store iteration history */

hist = j(1,p+1,.);

/* MC^3 */

do its = 1 to &its;

/* random jump to a new spot in model space */

if ranuni(0) < 0.01 then do;

delta = j(1,p,0);

do i = 1 to p;

if rannor(0)<.5 then delta[1,i]=1; else delta[1,i]=0;

end;

end;
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/* TIC of neighborhood center */

&code;

tic0 = tic;

/* proposal model in neighborhgood */

modnum = int(ranuni(0)*p)+1;

delta[1,modnum] = 1-delta[1,modnum];

/* TIC for proposed model */

&code;

tic1 = tic;

/* either accpet proposal or try again */

pacc = min(1,exp(-.5*(tic1-tic0)));

tic=tic1;

if ranuni(0)>pacc then delta[1,modnum] = 1-delta[1,modnum];

else hist = hist//(delta||tic);

end;

/* output models visited */

hist = hist[2:nrow(hist),];

create temp var {&varlist tic};

append from hist;

/* sort by TIC */

proc sort data=temp;

by tic;

run;

proc iml;

/* read in iteration history */

use temp;

read all var {&varlist tic} into m0;

p = ncol(m0)-1;

/* remove redundant model info */

m1 = m0[1,];

do i = 2 to nrow(m0);

v = sum(abs(m0[i-1,1:p]-m0[i,1:p]));

if v>.5 then m1 = m1//m0[i,];
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end;

/* occam’s razor */

lim = min(m1[1,p+1])+2*log(&occ);

m2 = m1[1,];

do i = 2 to nrow(m1);

if m1[i,p+1] < lim then m2 = m2//m1[i,];

end;

/* compute posterior probabilities */

tic = m2[,p+1];

prob = exp(-.5*(tic-max(tic)));

prob = prob/sum(prob);

m = m2[,1:p]||prob;

create &datout var {&varlist postprob};

append from m;

/* variable assessment using E(delta) */

proc means data=&datout mean;

var &varlist;

weight postprob;

run;

%mend;
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B.2 Canonical Variate Analysis

The CVABMA SAS macro analyzes data suitable to a canonical variate analysis. The data
to be analyzed will be a SAS data set whose name is stored in parameter datin. The list of
possible discriminator variables is stored in parameter x and the set if g− 1 group indicator
variables are stored in parameter y. If the “size” prior is desired, then parameter theta can
be set to some value between 0 and 1, or set to 0.5 if the “uniform” is desired. The Occam’s
razor parameter, occ, which specifies the maximum ratio of the most probable model to the
least probable model retained. The its parameter contains the desired number of iterations
the MC3 algorithm is to execute. The datout parameter is the name of the SAS data set
where the retained models along with their posterior probability.

/*-----------------------------------------------+

| Macro: CVABMA |

| |

| Parameters |

| datain = SAS dataset to be analyzed |

| datout = SAS dataset with results |

| y = group indicator variables (g-1) |

| x = list of discriminator variables |

| theta = prior prob of variable inclusion |

| occ = occam’s razor parameter |

| its = number of iterations in MC^3 |

| |

| Output |

| SAS dataset containing posterior model |

| space with BIC values and posterior |

| model probability |

+-----------------------------------------------*/

%macro cvabma(datin=,datout=,y=,x=,theta=,occ=,its=);

%let code = %str(

/* build model from delta vector info */

x = u;

do i = 1 to k;

if delta[1,i]=1 then x=x||d[,i];

end;

/* sums of squares and cross product matrices */
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sxx = x‘*x;

syy = y‘*y;

sxy = x‘*y;

syx = sxy‘;

/* number of variables in model matrix */

p = ncol(x);

q = ncol(y);

/* squared canonical correlations */

if p<q then do;

r = inv(eigvec(sxx)*diag(sqrt(abs(eigval(sxx))))*eigvec(sxx)‘);

cc = eigval(r*sxy*inv(syy)*syx*r);

end; else do;

r = inv(eigvec(syy)*diag(sqrt(abs(eigval(syy))))*eigvec(syy)‘);

cc = eigval(r*syx*inv(sxx)*sxy*r);

end;

/* wilks’ lambda */

wilks = exp(sum(log(1-cc)));

/* expected value of wilks’ lambda */

ewilks = j(p,1,.);

do i = 0 to p-1;

ewilks[i+1,1] = log(1-q/(n-i));

end;

ewilks = exp(sum(ewilks));

/* log(Prob(data|M_i)Prob(M_i)) */

lnp = -.5*(n*log(wilks/ewilks)+(p-1)*pen);

);

proc iml;

/* read in data */

use &datin;

read all var {&y} into y;

read all var {&x} into d;

/* number of observations */

n = nrow(y);
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/* column vector of 1’s */

u = j(n,1,1);

/* center data */

y = y - u*inv(u‘*u)*u‘*y;

d = d - u*inv(u‘*u)*u‘*d;

/* total number of explanatory variables */

k = ncol(d);

/* model indicator vector */

delta = j(1,k,0);

/* iteration history */

hist = delta||0;

/* select a random model */

do i = 1 to k;

if ranuni(0)<.5 then delta[1,i]=1;

end;

/* penaly term for BIC with theta prior on variables */

pen = log(n) - 2*log( &theta / (1 - &theta));

/*--- MC^3 ---*/

do its = 1 to &its;

/* compute -0.5BIC_0 */

&code;

lnp0 = lnp;

/* propose jump to new neighborhood */

m = int(ranuni(0)*k)+1;

delta[1,m] = 1-delta[1,m];

/* compute -0.5BIC_1 */

&code;

lnp1 = lnp;

/* probability to accept move */

p = lnp0//lnp1;
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p = exp(p-max(p));

p = p/sum(p);

pacc = min(1,p[2,1]/p[1,1]);

/* accept proposed move? */

lnp = lnp1;

if ranuni(0)>pacc then do;

delta[1,m] = 1-delta[1,m];

lnp=lnp0;

end;

/* update iteration history */

hist = hist//(delta||lnp);

/* random hop to some other part of model space */

if ranuni(0)<.01 then do;

do i = 1 to k;

if ranuni(0)<.5 then delta[1,i]=1; else delta[1,i]=0;

end;

end;

end;

/* output iteration history */

hist = hist[2:nrow(hist),];

create temp0 var {&x lnp};

append from hist;

/* sort history so that best models are first in list */

proc sort data=temp0;

by descending lnp;

run;

proc iml;

/* read in sorted history */

use temp0;

read all var {&x lnp} into m0;

/* keep most probable model */

m1 = m0[1,];

/* remove redundant model info */
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v = ncol(m0)-1;

do i = 2 to nrow(m0);

t = sum(abs(m0[i,1:v]-m0[i-1,1:v]));

if t>0 then m1=m1//m0[i,];

end;

/*--- remove unlikly models using occam’s razor ---*/

v = ncol(m1);

m2 = m1[1,];

do i = 2 to nrow(m1);

t = m1[1,v]-m1[i,v]-log(&occ);

if t<0 then m2=m2//m1[i,];

end;

/* compute BIC for models in posterior space */

bic = -2*m2[,v];

do i = 1 to nrow(m2);

bic[i,1] = bic[i,1]+2*sum(m2[i,1:(v-1)])*log(&theta/(1-&theta));

end;

/* compute posterior probabilities of remaining models */

prob = exp(m2[,v]-max(m2[,v]));

prob = prob/sum(prob);

/* output posterior model space */

m2 = m2[,1:(v-1)]||bic||prob;

create &datout var {&x bic prob};

append from m2;

/* variable assessment via E(delta) */

proc means data=&datout mean;

var &x;

weight prob;

run;

%mend;
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B.3 Canonical Correlation Analysis

The CCABMA SAS macro analyzes data suitable to a canonical correlation analysis. The
data to be analyzed will be a SAS data set whose name is stored in parameter datin. The
list of one set of variable names is stored in parameter x and the other set of variable names
is stored in parameter y. If the “size” prior is desired, then parameter theta can be set to
some value between 0 and 1, or set to 0.5 if the “uniform” is desired. The Occam’s razor
parameter, occ, which specifies the maximum ratio of the most probable model to the least
probable model retained. The its parameter contains the desired number of iterations the
MC3 algorithm is to execute. The datout parameter is the name of the SAS data set where
the retained models along with their posterior probability.

/*-----------------------------------------------+

| Macro: CCABMA |

| |

| Parameters |

| datain = SAS dataset to be analyzed |

| datout = SAS dataset with results |

| y = list of variables |

| x = list of variables |

| theta = prior prob of variable inclusion |

| occ = occam’s razor parameter |

| its = number of iterations in MC^3 |

| |

| Output |

| SAS dataset containing posterior model |

| space with BIC values and posterior |

| model probability |

+-----------------------------------------------*/

%macro ccabma(datin=,datout=,y=,x=,theta=,occ=,its=);

%let code = %str(

/* build X from delta vector info */

x = u;

do i = 1 to pt;

if delta[1,i]=1 then x=x||xd[,i];

end;

/* build Y from delta vector info */

y = u;

do i = 1 to qt;
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if delta[1,i+pt]=1 then y=y||yd[,i];

end;

/* sums of squares and cross product matrices */

sxx = x‘*x;

syy = y‘*y;

sxy = x‘*y;

syx = sxy‘;

/* number of variables in model matrix */

pi= ncol(x)-1;

qi= ncol(y)-1;

/* squared canonical correlations */

if pi<qi then do;

r = inv(eigvec(sxx)*diag(sqrt(abs(eigval(sxx))))*eigvec(sxx)‘);

cc = eigval(r*sxy*inv(syy)*syx*r);

end; else do;

r = inv(eigvec(syy)*diag(sqrt(abs(eigval(syy))))*eigvec(syy)‘);

cc = eigval(r*syx*inv(sxx)*sxy*r);

end;

/* wilks’ lambda */

if nrow(cc)>1 then cc = cc[2:nrow(cc),1];

else cc=0;

wilks = exp(sum(log(1-cc)));

/* expected value of wilks’ lambda */

ewilks = j(pi,1,.);

do i = 0 to pi-1;

ewilks[i+1,1] = log(1-qi/(n-i));

end;

ewilks = exp(sum(ewilks));

/* log(Prob(data|M_i)Prob(M_i)) */

lnp = -.5*(n*log(wilks/ewilks)+(pi+qi)*pen);

);

proc iml;

/* read in data */

use &datin;
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read all var {&y} into yd;

read all var {&x} into xd;

/* number of observations and column vector of 1’s */

n = nrow(yd);

u = j(n,1,1);

/* center data */

yd = yd - u*inv(u‘*u)*u‘*yd;

xd = xd - u*inv(u‘*u)*u‘*xd;

/* total number of variables in X and Y */

pt= ncol(xd);

qt= ncol(yd);

pq= pt+qt;

/* model indicator vector and iteration history matrix */

delta = j(1,pq,0);

hist = delta||0;

/* select a random model */

do i = 1 to pq;

if ranuni(0)<.5 then delta[1,i]=1;

end;

/* penaly term for BIC with theta prior on variables */

pen = log(n) - 2*log( &theta / (1 - &theta));

/*--- MC^3 ---*/

do its = 1 to &its;

/* compute -0.5BIC_0 */

&code;

lnp0 = lnp;

/* propose jump to new neighborhood */

m = int(ranuni(0)*pq)+1;

delta[1,m] = 1-delta[1,m];

/* compute -0.5BIC_1 */

&code;
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lnp1 = lnp;

/* probability to accept move */

p = lnp0//lnp1;

p = exp(p-max(p));

p = p/sum(p);

pacc = min(1,p[2,1]/p[1,1]);

/* accept proposed move? */

lnp = lnp1;

if ranuni(0)>pacc then do;

delta[1,m] = 1-delta[1,m];

lnp=lnp0;

end;

/* update iteration history */

hist = hist//(delta||lnp);

/* random hop to some other part of model space */

if ranuni(0)<.01 then do;

do i = 1 to pq;

if ranuni(0)<.5 then delta[1,i]=1; else delta[1,i]=0;

end;

end;

end;

/* output iteration history */

hist = hist[2:nrow(hist),];

create temp0 var {&x &y lnp};

append from hist;

/* sort history so that best models are first in list */

proc sort data=temp0;

by descending lnp;

run;

proc iml;

/* read in sorted history */

use temp0;

read all var {&x &y lnp} into m0;
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/* remove redundant model info */

v = ncol(m0)-1;

m1 = m0[1,];

do i = 2 to nrow(m0);

t = sum(abs(m0[i,1:v]-m0[i-1,1:v]));

if t>0 then m1=m1//m0[i,];

end;

/*--- remove unlikly models using occam’s razor ---*/

v = ncol(m1);

m2 = m1[1,];

do i = 2 to nrow(m1);

t = m1[1,v]-m1[i,v]-log(&occ);

if t<0 then m2=m2//m1[i,];

end;

/*--- remove models less likely than null ---*/

m3 = j(1,v,0);

do i = 1 to nrow(m2);

if m2[i,v]>0 then m3 = m3//m2[i,];

end;

if nrow(m3)>1 then m3=m3[2:nrow(m3),];

/* compute BIC for models in posterior space */

bic = -2*m3[,v];

do i = 1 to nrow(m3);

bic[i,1] = bic[i,1]+2*sum(m3[i,1:(v-1)])*log(&theta/(1-&theta));

end;

/* compute posterior probabilities of remaining models */

prob = exp(m3[,v]-max(m3[,v]));

prob = prob/sum(prob);

/* output posterior model space */

m3 = m3[,1:(v-1)]||bic||prob;

create &datout var {&x &y bic prob};

append from m3;

/* variable assessment via E(delta) */

proc means data=&datout mean;

var &x &y;
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weight prob;

run;

%mend;
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Appendix C

Variable Descriptions

C.1 Transformations

Any transformation of the variables used are those proposed by Norton [51] to achieve
approximate univariate normality.

C.2 Chemical Variables

Variable Description Transformation
AMM NH3 and NH4 conc. x−0.25

BOD 5-d biological oxygen demand Log
COD chemical oxygen demand Log
FE Iron conc. Log
NOX NO2 and NO3 conc. Log
PB Lead conc. Inverse
PHO Total phosphorus x−0.25

TSS Total suspended solids (residue) Log
ZN Total zinc Log
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C.3 Habitat Variables

Variable Description Transformation
CHANNEL QHEI score for channel metric None
COVER QHEI instream cover score None
EMBSS Embeddedness subscore None
GRADIENT Stream gradient Log
POOL Pool QHEI metrics None
RIFEMSS Riffle embeddedness subscore None
RIFFLE Riffle QHEI metric None
RIPARIAN Riparian QHEI metric None
RIPSS Riaparian width subscore None
SILTSS Silt subscore None
SUBSTRAT QHEI substrate metric None

Note: Qualitative Habitat Evaluation Index (QHEI) measurements made using Ohio EPA’s
protocol [52]
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C.4 Benthic Macroinvertebrate Variables

Variable Description Transformation
PERCAD Percent that are caddisfly taxa x0.5

PERCR Percent that are Crictopus x0.25

PERD Percent that are depositional taxa x0.25

PERDIPT Percent that are dipteran taxa None
PERE Percent that are erosional taxa arcsin

√
x

PCFILTE Percent that are filter feeding insext taxa None
PCGATH Percent that are gatering insect taxa None
PERGL Percent that are Glyptotendipes x0.25

INSNODI Number of insect taxa excluding dipterans None
PERTOLN Percent that are tolerant organisms log
PERMAY Percent that are mayfly taxa x0.5

NUMQUAL Total number of taxa collected in the qualitative sample1 None
NUMTAXA Total number of quantitative taxa None
PEROL Percent that are oligochaetes x0.25

PEROTS Percent that are organic tolerant x0.25

PEROTHDI Percent that are dipterans and non-insects log
QUALEPT Number of special taxa2 in qualitative dipnet sample None
PCSHRED Percent that are “shredding” insect taxa x0.25

PERTANY Percent that are tanytarsini midges x0.5

PERTTS Percent that are toxic tolerant x0.25

Notes

1. NUMQUAL and QUALEPT are from data collected using a combination of dipnet and
hand-picking. All other variables are from data collected in Hester-Dendry artificual
substrate samples.

2. Special: Ephemeroptera, Plecoptera, and Tricoptera taxa.
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