TABLE OF CONTENTS

ABST	TRACTii			
DEDICATIONiv				
ACK	NOWLEDGMENTSv			
LIST	OF TABLESvii			
LIST	OF FIGURESxi			
CHAI	PTER			
1.	OBJECTIVES AND LITERATURE REVIEW1			
2.	MINERAL AND CHEMICAL MANAGEMENT OF TAKE-ALL IN A			
	VIRGINIA SOIL			
3.	EVALUATION OF CHEMICAL AND BIOLOGICAL SEED DRESSINGS			
	FOR THE SUPPRESSION OF TAKE-ALL OF			
	WHEAT44			
4.	CHARICTARIZATION OF VIRGINIA ISOLATES OF			
	GAEUMANNOMYCES GRAMINIS VAR TRITICI73			
APPE	ENDIX A133			
APPE	ENDIX B136			
APPE	ENDIX C139			
APPE	ENDIX D145			

W TWEET A	1	-
VITA		611
V I I A		1111

LIST OF TABLES

Table	Page
Chapt	ter 1
1.	Influence of soil conditions on take-all
Chapt	ter 2
1.	Selected chemical and physical properties of a Kempsville loam (fine-loamy, siliceous, thermic Typic Hapludult) soil utilized in greenhouse bioassassay. 38
2.	Nitrogen source and rate influence on the severity of take-all in a greenhouse experiment
3.	Nitrogen source and the influence of the presence or absence of Gaeumannomyces graminis var. tritici on severity of take-all in a greenhouse experiment
4.	Nitrogen source and the influence of manganese on the severity of take-all in a greenhouse experiment
5.	The influence of nitrogen source, manganese, and chemical seed dressings for the suppression of take-all in three field experiments
6.	The influence of chemical seed dressings on the suppression of take-all in three field experiments
Chapt	ter 3
1.	Selected chemical and physical properties of a Kempsville loam (fine-loamy, siliceous, thermic Typic Hapludult) soil utilized in greenhouse bioassassay.
2.	MON 65500 tested for suppression of take-all in the greenhouse64
3.	Influence of Difenoconazole and MON 65500 on the suppression of take-all in the greenhouse

4.	Influence of MON 65500 and difenoconazole on take-all severity in an annually artificially infested field over two seasons				
5.	Influence of USDA-maintained bacterial isolates on the suppression of take-all in the greenhouse and in the field (1996-1997)				
6.	Influence of Gustafson products on the suppression of take-all in the field; Season 1				
7.	Influence of Gustafson products on the suppression of take-all in the field; Season 2				
Chap	oter 4				
1.	Selected chemical and physical properties of a Kempsville loam (fine-loamy, siliceous, thermic Typic Hapludult) soil utilized in greenhouse bioassassay.				
2.	Gaeumannomyces graminis variety isolates used in this study111				
3.	Appearance of the underside of 2-week-old <i>Gaeumannomyces graminis</i> var. isolates in culture.				
4.	Relative plant damage in <i>Gaeumannomyces graminis</i> var-inoculated greenhouse-grown plants				
5.	Compilation of <i>Gaeumannomyces graminis</i> var. isolates relative virulence level, growth rate, and total growth.				
6.	Interaction between wildtype <i>Gaeumannomyces graminis</i> var. <i>tritici</i> isolates paired on PDA				
7.	Percent growth of single spored ascospores resulting from crosses between wildtype or benomyl resistant strains of Ggt on soybean pods plated onto PDA or benomyl-amended PDA				
8.	Percent growth of fragments of wildtype (WT) isolates and crossed chemical resistant strains of Gaeumannomyces graminis var tritici				

APPE	ENDIX B
1.	Bacillus isolate BII evaluated for the suppression of take-all caused by <i>Gaeumannomyces graminis</i> var. <i>tritici</i> which had been mixed into the soil as one month old millet seed inoculum (10 g/ Kg soil) with plant health measured by dry shoot weight, root weight, and a root necrosis rating after being grown in a greenhouse for one month
2.	Bacillus isolate 202-10B evaluated for the suppression of take-all caused by <i>Gaeumannomyces graminis</i> var. <i>tritici</i> which had been mixed into the soil as one month old millet seed inoculum (10 g/ Kg soil) with plant health measured by dry shoot weight, root weight, the shoot to root ratio, and a root necrosis rating after being grown in a greenhouse for one month
3.	fluorescent pseudomonad isolate 407-7 evaluated for the suppression of take-all caused by <i>Gaeumannomyces graminis</i> var. <i>tritici</i> which had been mixed into the soil as one month old millet seed inoculum (10 g/ Kg soil) with plant health measured by dry shoot weight, root weight, the shoot to root ratio, and a root necrosis rating after being grown in a greenhouse for one month
APPE	CDIX C
1.	General observations on the production of perithecia <i>in vitro</i> where an 8mm plug of Ggt mycelium was placed into a test tube containing a wheat seedling germinatingin 0.25 strength Sigma PDA
2.	Interaction between wildtype (WT) and chemical resistant strains of Gaeumannomyces graminis var tritici paired on PDA140
3.	Ggt isolates CB1, CD1, and M1 [wildtype (WT), nystatin resistant (Ny ^r), and banomyl resistant (Ben ^r)] grown on PDA containing 0.5 μ g/ ml or 0.7 μ g/ml cycloheximide for approximately 5-7 d
4.	Gaeumannomyces graminis var. isolates CD1 and M1 [nystatin resistant

on benomyl and propiconazole amended agar......117

(Ny ^r), an	nd banor	nyl resistant (Ben')] grow	n on PI	OA contain	ing 1.2 μg/ r	nl
and 0.7	μg/ml cy	cloheximide	for approxin	nately 1	3 d		144

LIST OF FIGURES

Figure Page

Capter 4

1.	Subjective grouping of Gaeumannomyces graminis varieties based on	
	their ability to cause damage to soft red winter wheat plants after one	
	month in the greenhouse bioassay based on the dated presented	
	in Table 4	118
2.	Interaction between putatively compatible (A) and incompatible (B)	
	strains of <i>Ggt</i> paired on Potato Dextrose Agar	119
3.	Hyphopodia "peppered" bare polystyrene Petri dish bottom from	
	mycelial growth of isolate CK1A. Note the dark central 4mm mycelial	
	plug located on the upper surface of the dilute V8 agar	120
4.	Aggregations of short hyphae produced by isolate CE2, typical of the	
	formation of simple hyphopodia.(100X)	121
5.	Aggregations of short hyphae produced by isolate CK1A, typical of the	
	formation of simple hyphopodia. (400X). Hyphopodia are approximately	
	10 μm in width.	122
6.	Lobed hyphopodia produced by Ggg isolate 2033. (400X). Hyphopodia	
	are approximately 32 X 26 μm	123
7.	Lobed hyphopodium produced by Ggg isolate FL-175.(400X).	
	Hyphopodium is approximately 28 X 24 μm	124

8.	Production of perithecia on sterile soybean pods and filter paper. Soybean		
	pods are approximately 3.0-4.0 cm in length	125	
9.	Perithecia formed on sterile soybean pods by Ggt isolate CB1. Bar		
	= 350μm.	126	
10.	Perithecia formed on a non-sterile soybean pod by Ggt isolate CD1. Bar		
	250μm	127	
11.	Young developing ascus with refractive apical pore typical of		
	Gaeumannomyces graminis.	128	
12.	Ascus with ascospores and refractive apical pore typical of		
	Gaumannomyces graminis. Typically eight, 60-110µm slightly curved		
	ascospores are formed.	129	
13.	Typical long (60-110 X 3-5 $\mu m)$ slightly curved ascospores, and small		
	curved conidia (approximately 5 X 2 µm) of Gaeumannomyces graminis		
	which are capable of forming on phialides, budding from ascospores, or		
	are found in the matrix exuded from the osteole of perithecia	130	
14.	Randomly amplified polymorphic DNA (RAPD) banding patterns		
	generated with Amersham Pharmacia Biotech primers 3		
	(5'-GTAGACCCGT-3') and 6 (5'-CCCGTCAGCA-3') from two		
	chemically marked Gaeumannomyces graminis var tritici parents and		
	their five progeny. The 100 base pair molecular marker is in lane M		
	where the DNA in the bright middle band is 800 base pairs. From left		
	to right, lanes 1-7 are M1p, CB1b, progeny 1, progeny 2, progeny 3,		

	progeny 4, and progeny 5 with primer 3. Lanes 8-14 are M1p, CB1b,			
	progeny 1, progeny 2, progeny 3, progeny 4, and progeny 5 with			
	primer 6			
15.	Randomly amplified polymorphic DNA (RAPD) banding patterns			
	generated with Repetative Extragenic Palindrome (REP) primers			
	(REP 1; 5'-IIIICGICGICATCIGGC-3', REP 2;			
	5'-ICGICTTATCIGGCCTAC-3') in combination from two chemically			
	marked Gaeumannomyces graminis var tritici parents and their five			
	progeny. The 50 base pair molecular marker is in lane M. From left to			
	right, lane 1 is no template (REP 1 and REP 2 primers only), lanes			
	2-8 are progeny 5, progeny 4, progeny 3, progeny 2, progeny 1, CB1b,			
	and M1p			
Appendix D				
1.	Linear and average daily growth of <i>Ggt</i> isolate M1143			

ix

Linear and average daily growth of *Ggt* isolate CB1144

Linear and average daily growth of *Ggt* isolate CD1145

Linear and average daily growth of *Ggt* isolate CE1......146

Linear and average daily growth of *Ggt* isolate CE2......147

2.

3.

4.

5.

6.

7.	Linear and average daily growth of <i>Ggt</i> isolateCK1A14	19
8.	Linear and average daily growth of <i>Ggt</i> isolate CK1B15	50
9.	Linear and average daily growth of <i>Ggt</i> isolate CO1	51
10.	Linear and average daily growth of <i>Ggt</i> isolate CS1	52
11.	Linear and average daily growth of <i>Gga</i> isolate 15419	53
12.	Linear and average daily growth of <i>Ggg</i> isolate 1276115	54