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Abstract 

 

Bardia Heidari Haratmeh 

 

The construction industry is one of the largest emitters of greenhouse gases and health-related 
pollutants. Monitoring and benchmarking emissions will provide practitioners with information 
to assess environmental impacts and improve the sustainability of construction. This research 
focuses on real-time measurement of emissions from non-road construction equipment and 
development of a monitoring-benchmarking tool for comparison of expected vs. actual 
emissions. First, exhaust emissions were measured using a Portable Emission Measurement 
System (PEMS) during the operation of 18 pieces of construction equipment at actual job sites. 
Second-by-second emission rates and emission factors for carbon dioxide, carbon monoxide, 
nitrogen oxides, and hydrocarbons were calculated for all equipment. Results were compared to 
those of other commonly used emission estimation models. Significant differences in emission 
factors associated with different activities were not observed, except for idling and hauling. 
Moreover, emission rates were up to 200 times lower than the values estimated using EPA and 
California Air Resources Board (CARB) guidelines. Second, the resulting database of emissions 
was used in an automated, real-time environmental assessment system. Based on videos of actual 
construction activities, this system enabled real-time action recognition of construction 
operations. From the resulting time-series of activities, emissions were estimated for each piece 
of equipment and differed by only 2% from those estimated by manual action recognition. Third, 
the actual emissions were compared to estimated ones using discrete event simulation, a 
computational model of construction activities. Actual emissions were 28% to 144% of those 
estimated by manual action recognition. Results of this research will aid practitioners in 
implementing strategies to measure, monitor, benchmark, and possibly reduce air pollutant 
emissions stemming from construction. 
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1 Introduction 
Concerns about the environmental impacts, and specifically atmospheric emissions, generated by 
construction equipment call for action to ensure the construction industry is advancing toward 
improved sustainability. This research aims to establish a framework by which real-time 
construction equipment emissions can be measured, monitored, and benchmarked through a 
combination of techniques: direct measurement of exhaust emissions from construction 
equipment, vision-based technology, and computational simulation of construction activities.   

1.1 Background 
There are over two million pieces of construction and mining equipment in the US that consume 
over 6 billion gallons of diesel fuel per year (EPA 2005). The main environmental concern 
surrounding the use of construction and mining equipment is emissions of air pollutants that 
impact climate change and human health. According to the US Environmental Protection 
Agency (EPA), the construction industry is the third largest contributor of gas emissions among 
all sectors (EPA 2010). Emissions of GHGs and health-related pollutants, such as nitrogen 
oxides and particulate matter, from construction equipment account for more than half of the 
total emissions that result from construction activities (Guggemos and Horvath 2006). Therefore, 
there is a need for a framework by which emissions from heavy-duty construction equipment can 
be measured, monitored and benchmarked accurately.  

The first requirement for such a framework is a comprehensive inventory of construction 
equipment emission rates. For this purpose it is necessary either to measure real-time 
construction equipment emissions or refer to emission estimation models. Several studies have 
been conducted in order to measure amounts of emissions from heavy-duty equipment (Gautan 
et al. 2002, May 2003, Lewis 2009). Some of these rely on a steady-state engine dynamometer 
test that may not be representative of real-world emissions during actual operation of the 
equipment (Charles and Springer 1973, Wang et al. 2000). Others lack quality assurance of data 
or are not available to the public (Gautan et al. 2002, May 2003). Because of these shortcomings, 
researchers have investigated other methods by which real-time emissions and duty cycles 
representing actual operating conditions can be measured (Kelly and Groblicki 1993, EPA 2002). 
The EPA has backed the development and use of Portable Emission Measurement Systems 
(PEMS), which are mounted on individual vehicles and measure concentrations of gases and 
particles in the exhaust (Fulper 2002). The EPA implemented this system to measure engine data 
and emissions from 50 pieces of construction equipment in 2002 (Constance et al. 2002). 
However that data is neither publicly available, nor quality assured. Therefore, there is a need for 
more efforts in this area in order to complete existing databases and propose new models by 
which real-time emissions can be estimated accurately (EPA 2002).  

Researchers at North Carolina State University have used PEMS in order to measure real-time 
emissions from construction equipment (Abolhasani et al. 2008, Lewis et al. 2010). Based on 
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these results, the researchers developed modal-based models (i.e., Modal Linear Regression 
(MLR)) to predict real-time emission rates (Lewis 2009). Furthermore, several different models 
for predicting emission rates from heavy-duty construction equipment have been proposed. One 
widely used approach to estimate emissions from non-road engines is the EPA’s NONROAD 
model, which is based on measurements from tests on a limited number of engines at steady-state 
conditions (EPA 1991, EPA 2004, EPA 2009). This model (EPA 2004, EPA 2009) has been 
implemented in many environmental assessment models for Nonroad equipment (Marr and 
Harley 2002, Zavala et al. 2006, Li and Lei 2010, Rasdorf et al. 2012, Hajji and Lewis 2013). 
The California Air Resources Board’s (CARB) guidelines for OFFROAD model are used to 
estimate emissions from individual pieces of equipment too (CARB 2010).  

The second component of the framework is a method by which real-time emissions can be 
monitored and benchmarked. Controlling emissions from the construction industry has become a 
concern due to new and impending regulations (AGC 2010, Heydarian et al. 2012). Because 
regulations emphasize tighter controls on the equipment instead of improvement in efficiency 
during construction activities, they have resulted in costly upgrades. Controlling and monitoring 
air pollutant emissions during the construction phase through reasonable policies and practical 
tools may also be effective for reducing emissions. Monitoring technologies and techniques are 
important because without them, excessive emissions cannot be detected and minimized. Cost 
and accessibility of these technologies and techniques are two important factors which should be 
considered (Golparvar-Fard et al. 2009).  

In recent years, various approaches have been introduced to estimate and monitor GHG 
emissions from construction operations. This information can be used to calculate the carbon 
footprint of the activity. Artenina et al. (2010) discussed using an intelligent and optimized GIS 
route planning system to reduce emissions from construction equipment. Shiftefar et al. 
(Shiftefar et al. 2010) introduced a system that enables visualization of construction emissions 
using a tree metaphor. In addition, Lewis et al. (2011) proposed a framework for quantifying the 
effect of operational efficiency on total emissions from construction. While these studies have 
advanced the idea of reducing emissions from construction activities, they have overlooked the 
possibility of automated monitoring and benchmarking of real-time emissions from construction 
equipment (Heydarian et al. 2012).  

Other researchers have focused on several other techniques for monitoring real-time earthmoving 
operations by using techniques like RFID tags, GPS, and accelerometers in addition to on-site 
video cameras (Torrent and Caldas 2009, Gong and Caldas 2010, Moon and Yang 2010, Brilakis 
et al. 2011, El-Omari and Moselhi 2011, Gong et al. 2011, Yang et al. 2011, Ahn et al. 2013). 
These techniques mostly maneuver on tracking construction equipment and not on action 
recognition of videos, except in the study by Gong et al. (2010). Among all these possible 
solutions, using networks of cameras and recording activities has great potential for improving 
the understanding of the relationship between emissions and operational efficiency. Gong et al. 
(2010) introduced a vision-based tracking model for detecting and monitoring a bucket in 
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construction operations; however, this model cannot detect location and action simultaneously. 
Zou and Kim (2007) also presented an image-processing approach that assesses idling time of an 
excavator based on image color space (hue, saturation, and value); however, this approach is 
susceptible to error due to change of scale and illumination (Heydarian et al. 2012). Recent 
developments have enabled researchers to overcome these deficiencies, resulting in accurate 
real-time emissions measurement. Timely and precise operational details empower researchers, 
managers, and practitioners to establish new corrective techniques, avoid delays, and minimize 
excessive environmental impacts (Golparvar-Fard et al. 2009). While embodied emissions, or 
those resulting from all activities associated with a construction project (e.g., production of 
building materials, transportation of crew and equipment to the site, heating sources on site) are 
important too, they fall outside the scope of the current study. 

If idling time during construction activities can be minimized, then fuel usage, emissions, and 
cost will be reduced (SKANsKA 2011). To achieve this goal, a technique is needed to gather 
actual real-time data on activities performed at a construction site. Then, this time series of 
activities can be combined with fuel usage rates and emission rates in order to estimate total fuel 
usage, emissions of various pollutants, and carbon footprint. Developing an automated technique 
which is accessible and cheap will facilitate estimation of productivity and emissions for project 
managers, contractors, regulators, and investigators.  Researchers can use the results from the 
monitoring system to determine the level of efficiency in construction activities and to propose 
new techniques to increase this efficiency. Practitioners can use the system to control the amount 
of resources being used and possibly reduce the amount that is wasted. Managers can use the 
system in support of sustainability certification, such as Leadership in Energy and Environmental 
Design (LEED), for a project. Currently, there are no available automatic measuring and 
monitoring techniques for real-time emissions assessment in the construction industry. 
Therefore, most certification organizations typically do not consider the construction phase in 
evaluation of environmental performance. 

One possible solution is to use networks of cameras on construction sites and record videos from 
each piece of equipment in action. Through a network of cameras and an internet connection on 
site, videos are transferred to a computer which is able to remotely and easily analyze emissions 
and productivity (Golparvar-Fard et al. 2009). The technology can automatically recognize 
actions performed by construction equipment by extracting spatio-temporal features from video 
streams of construction operations. It enables real-time productivity and emission monitoring of 
construction equipment in an inexpensive and relatively accurate manner, which is a unique 
achievement in the construction environmental assessment domain. Once time-series of activities 
are generated, emissions associated with all equipment can be estimated. Reporting the emissions 
is not beneficial by itself. Rather, comparing them to a value set in the pre-construction phase, a 
benchmarked value, or one set by regulations will help practitioners in decision making. For this 
comparison, emissions should be estimated using other credible methods to identify if emissions 
may exceed calculated thresholds. Several researchers have used Discrete Event Simulation 
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(DES) to quantify construction-related emissions and have validated this tool in estimating the 
actual amount of emissions (Ahn et al. 2009, Ahn et al. 2010, Li and Lei 2010). Likewise, 
computational simulation of construction activities will be used as a benchmarking tool in this 
study (Ahn et al. 2009, Ahn et al. 2010, Li and Lei 2010). Therefore, emissions estimation using 
DES helps verify applicability of the proposed technology in assessing environmental impacts 
from construction activities. The results can be used to assess effects of construction operation 
configuration (i.e., schedule, type and number of pieces of in-use equipment, etc.) on total 
construction-related emissions. It can also lead to more sustainable construction operations with 
lower environmental impacts. 

1.2 Objectives 
The overall goal of this study is to present a framework by which construction equipment 
emissions can be measured, monitored, and benchmarked. The first specific objective is to 
expand and update the existing database of real-time emissions from construction equipment, 
validate existing approaches for off-road equipment emission estimation, and assess the 
relationship between emission factors vs. engine horsepower and tier. The second specific 
objective is to demonstrate real-time monitoring of emissions using vision-based technology. 
These results are compared to benchmarked emissions that have been determined via DES.    

1.3 Thesis Outline 
Chapter 2 reports real-time emission rates that were measured for 18 pieces of construction 
equipment and compares them to values estimated by EPA, CARB, and Lewis’s MLR model. 
Differences in emission rates and emission factors by activity and engine size are also 
investigated. The database of emission rates is used in the monitoring and benchmarking 
emissions model presented in chapter 3.   

Chapter 3 describes an extension of prior accomplishments in automated video processing to the 
real-time monitoring of emissions (Heydarian et al. 2012). The entire concept is presented, and 
the technology is demonstrated through a series of case studies. Vision-based technology, 
including an action recognition algorithm, is applied to case studies. From the resulting time-
series of activities, productivity and amounts of emissions are assessed for each piece of 
equipment.  Additionally, emissions for some case studies are predicted through simulation of 
construction operations using DES. For those specific case studies, emissions estimated using 
computational simulation, benchmarked values, and action recognition are compared.   
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2 Comprehensive Study on Real-time Construction Equipment 
Emission: Using PEMS to Validate Existing Models 

 

2.1 Abstract 
The construction industry is one of the largest sources of greenhouse gases and health-related 
pollutants. Measuring and monitoring real-time emissions will provide practitioners with 
information to assess environmental impacts and improve the sustainability of construction. This 
research employed Portable Emission Measurement System (PEMS) for real-time measurement 
of emissions from non-road construction equipment to derive emission rates (mass of pollutant 
emitted per unit time) and emission factors (grams of pollutant emitted per unit volume of fuel 
consumed) from equipment under real operating conditions.  Measurements were compared to 
emissions predicted by commonly used models: NONROAD, OFFROAD, and a modal 
statistical model. Measured emission rates agreed with the model predictions for some pieces of 
equipment but were up to 200 times lower for others. Idling and moving had significantly 
different emission factors compared to those of other activities, while there were no significant 
differences in emission factors between specific types of moving activities, such as digging and 
hauling. There were no significant relationships between emission factors and engine size and 
power for the equipment tested. Results of this research will aid researchers and practitioners in 
improving current emission estimation techniques, frameworks, and databases.  

2.2 Introduction  
There are over two million pieces of construction and mining equipment in the US that consume 
over 6 billion gallons of diesel fuel per year (EPA 2005). The main environmental concern 
surrounding the use of construction and mining equipment is emissions of air pollutants that 
impact climate change and human health. According to the US Environmental Protection 
Agency (EPA), the construction industry is the third largest contributor of greenhouse gas 
emissions among all sectors (EPA 2010). Therefore, there is a need to assess, monitor, and 
estimate emissions from heavy-duty construction equipment accurately.  

Several studies have been conducted in order to quantify and predict amounts of emissions from 
heavy-duty equipment (Gautan et al. 2002, May 2003, Lewis 2009). Some of these rely on a 
steady-state engine dynamometer test that may not be representative of real-world emissions 
during actual operation of the equipment (Charles and Springer 1973, Wang et al. 2000). Others 
lack quality assurance of data or are not available to the public (Gautan et al. 2002, May 2003). 
One widely used model to estimate emissions from non-road engines is the EPA’s NONROAD 
model (EPA 2004, EPA 2009). This model is based on measurements from tests on a limited 
number of engines at steady-state conditions (EPA 1991, EPA 2004). Because of these 
shortcomings, researchers have investigated other methods by which real-time emissions and 
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duty cycles representing actual operating conditions can be measured (Kelly and Groblicki 1993, 
EPA 2002). 

The EPA has backed the development and use of Portable Emission Measurement Systems 
(PEMS), which are mounted on individual vehicles and measure concentrations of gases and 
particles in the exhaust (Fulper 2002). Researchers have proved that this method can be practical 
and efficient in assessing real-time emissions from both light- and heavy-duty vehicles (Frey et 
al. 2003, Armos et al. 2009). Furthermore, Durbin et al. (2007), using PEMS, have shown that 
carbon dioxide (CO2) and nitrogen oxides (NOx) emissions measured from back-up generators 
agreed relatively well with values determined by the Federal Reference Method (FRM). The 
EPA implemented this system to measure engine data and emissions from 50 pieces of 
construction equipment in 2002 (Constance et al. 2002). However that data is neither publicly 
available, nor quality assured. Therefore, there is a need for more efforts in this area in order to 
complete existing databases and propose new models by which emissions can be estimated 
accurately (EPA 2002).  

Researchers at North Carolina State University have used PEMS in order to measure real time 
emissions from construction equipment (Abolhasani et al. 2008, Lewis et al. 2010). Based on 
these results, the researchers developed a modal-based model (i.e., Modal Linear Regression 
(MLR)) to predict real-time emission rates (Lewis 2009). They also assessed dependency of 
emission rates on the type of fuel used for each piece of equipment (Frey et al. 2008). This 
approach has the advantages of better representing real-world conditions compared to an engine 
dynamometer test (Lewis et al. 2009) and providing sufficient data to support fleet management 
decision making (Lewis et al. 2009). Along the same lines, Fu et al. (2012) have applied PEMS 
to measure real-time emission from construction equipment in China and found that emissions 
were higher compared to other studies. Other approaches have also been used to measure real-
time emissions from heavy-duty on-road vehicles (Yanowitz et al. 1999, Yanowitz et al. 2000, 
Yanowitz et al. 2002), and some studies have focused on idle emissions (Khan et al. 2006, Lewis 
et al. 2012), which differ considerably from non-idle emissions.  

Several different models for predicting emission rates from heavy-duty construction equipment 
have been proposed. The NONROAD model (EPA 2004, EPA 2009) has been implemented in 
many environmental assessment models (Marr and Harley 2002, Zavala et al. 2006, Li and Lei 
2010, Rasdorf et al. 2012, Hajji and Lewis 2013). The California Air Resources Board’s (CARB) 
OFFROAD model is used to estimate emissions from individual pieces of equipment (CARB 
2010). Melanta et al. (Melanta et al. 2013) have summarized tools by which emissions can be 
estimated from the scale of a single piece of equipment to nationwide.  

Although several studies have focused on quantifying and estimating emissions from 
construction equipment, there is still a need to expand and update the database of emissions, to 
validate current models used to predict real-time emissions, and to assess the variability of 
emission factors with activity in order to improve environmental assessment models. In this 
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study, we measured real-time emissions from 18 pieces of construction equipment and compared 
them to the values estimated by EPA, OFFROAD, and Lewis’s MLR model. We also 
investigated differences in emission factors by activity and engine size. Results will enable more 
accurate estimation of emissions through environmental monitoring and assessment frameworks. 

2.3 Methodology 
We have measured emissions of carbon dioxide, the principal greenhouse gas, and health-related 
pollutants from excavators, backhoes, and loaders during actual operation at various construction 
sites. We tested 18 different pieces of equipment involved in earthmoving activities on Virginia 
Tech’s campus and at other sites in Montgomery County, Virginia. Table 2-1 lists their engine 
specifications, and Table 2-2 describes the conditions during each test.  

We measured concentrations of carbon dioxide (CO2), carbon monoxide (CO), hydrocarbons 
(HC), and nitrogen oxides (NOx) in the exhaust using a PEMS (AxionGO, GlobalMRV, Buffalo, 
New York). This system uses non-dispersive infrared (NDIR) absorption to measure CO2, CO, 
and HC concentrations and an electrochemical cell to measure NO concentrations. We mounted 
the suitcase-sized device securely on the construction equipment and installed a probe inside the 
tailpipe to sample the exhaust. The PEMS recorded gaseous concentrations second by second 
and sent them remotely to a tablet which recorded and saved the data.  

Engine data, such as speed in revolutions per minute (RPM) and intake air temperature, can be 
measured via sensor arrays installed around the engine or via the on-board diagnostic (OBD) 
system. Unfortunately, neither option was available in this study, nor was it possible to measure 
the fuel consumed during a test. Therefore, we estimated engine speed based on information 
from manufacturers. Emission factors (mass of pollutant emitted per mass of fuel consumed) 
could be calculated directly from exhaust gas concentrations, but emission rates (mass of 
pollutant emitted per unit time) required an estimate of engine speed or the rate of fuel 
consumption. We recorded a video of construction activities during each test to enable the 
assignment of emissions at any given time to a specific type of activity.  

2.3.1 Quality assurance and quality control 
We calibrated the PEMS against BAR 97 calibration standards and zero air according to the 
manufacturer’s instructions within 2 days of each test. Before the actual construction activity 
began, we mounted the PEMS securely on a foam pad over the hood in order to minimize 
vibration and warmed it up for 15-30 min. We covered it with plastic to protect it from water and 
dust. Each test lasted between 15 and 120 min. After each test, we cleaned the probe.  

We applied quality assurance and control measures to the data. After removal of data points 
when there were connection, power, or overheating problems or poor quality video, 16 hours of 
data remained for analysis. We also removed periods showing unnatural shifts or offsets in 
concentrations, and shifted the concentrations in time to synchronize the measurements with the 
video recordings.  
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2.3.2 Emission rates 
The PEMS reported exhaust concentrations as volumetric mixing ratios (e.g., percent or parts per 
million). Given the estimated engine speed, ambient temperature, and ambient pressure, we 
calculated emission rates, or the mass of pollutant emitted per unit time, according to eq 2-1.  
 

∗ ∗ ∗
2

∗
1
60

∗
∗

∗ 1000 

 

(Eq. 2-1)

Y= Volumetric concentration of the pollutant of interest in the exhaust (unitless) 
ER = Emission rate (g s-1) 
MW= Molecular weight of pollutant (g mol-1) 
D= Engine displacement (L) 
RPM= Engine speed in revolutions per minute (min-1) 
P= Ambient pressure (atm) [0.93 atm for Blacksburg] 

R= Ideal gas constant (82.0510-6 mol atm m-3 K-1  
T= Temperature inside tailpipe (K) 
2= Accounting for the fact that exhaust emissions are vented during every other revolution in a 
4-stroke engine 
60= Conversion factor between minutes and seconds 
1000= Conversion factor between cubic meters and liters  
 
We assumed an engine speed equal to that reported by the manufacturer for the rated horsepower 
while the engine was in non-idle mode (Table 2-1) and an engine speed of 1000 RPM while the 
engine was in idle mode (Abolhasani et al. 2008). As the probe sampled at the exit of the 
tailpipe, we assumed pressure was equal to that of the ambient environment (Table 2-2). We 
assumed an exhaust temperature of 402˚C or 213˚C at the exit of the tailpipe depending on 
whether equipment is equipped with a diesel particulate filter or not (Gonzales 2008). All the 
sites were 594-655 m above sea level.   

2.3.3 Emission factors 
We calculated emission factors in terms of the grams of pollutant emitted per liter of diesel fuel 
consumed on the basis of carbon balance using eq 2-2 (Singer and Harley 2000). The equation 
assumes that all carbon in the fuel is emitted as CO2, CO, or HC. 

	
1 	 3 ∗

∗ ∗ 840 ∗
0.87
12

 

 

(Eq. 2-2)

EF = emission factor (g L-1) 
Y= Volumetric concentration of the pollutant of interest in the exhaust (unitless) 
YCO2= Volumetric concentration of CO2 in the exhaust (unitless) 
MW= Molecular weight of the pollutant of interest (g mol-1) 
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840= Density of diesel fuel (g L-1) 
0.87= Carbon content of diesel fuel (g C g-1 diesel fuel)  
12= Atomic weight of carbon (g mol-1) 
3= Adjustment for use of propane with three carbons as a calibration gas (unitless) 
 

Table  2-1. Engine Specifications of Each Piece of Equipment Tested 

Type Make Gross Power 
(hp) 

Tier Engine 
Displacement (L) 

Model Year Assumed Engine 
Speed (RPM) 

Bulldozer Komatsu-D31E 70 I 3.9 1993 2350 

Loader Komatsu-WA180 110 I 5.9 1998 2200 

Excavator John Deere-120C 89 II 4.5 2004 2200 

Excavator Kobelco-135SR 94 II 4.3 2002 2200 

Backhoe John Deere-410G 98 II 4.52 2004 2200 

Excavator Komatsu-PC228 110 II 6.69 2003 2000 

Excavator Caterpillar-320CL 138 II 6.37 2001 2000 

Excavator Hitachi-EX270LC 168 II 6.7 1997 2050 

Excavator Kobelco-SK250LC 176 II 5.9 2004 2100 

Loader John Deere-755C 177 II 10 2004 1800 

Excavator Volvo-EC240 180 II 7.1 2005 2000 

Excavator Kobelco-SK330LC 238 II 7.5 2008 2200 

Excavator Komatsu-PC300LC 242 II 8.3 2005 1900 

Excavator Komatsu-PC160-6 113 III 3.9 2009 2100 

Excavator Sany-SY215CLC 155 III 5.86 2012 2000 

Excavator Komatsu-PC200-8 155 III 6.7 2009 2000 

Excavator Caterpillar-308D 56 IV 2.83 2009 2000 

Excavator Volvo-EC250D 202 IV 7.8 2012 1800 
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Table  2-2. Conditions During Each Test 

Test Date Time Equipment Activity Temperature1 
(˚C) 

Humidity 
(%) 

Operational 
Productivity 

(%) 

5/17/2013 9:50 AM Komatsu Bulldozer Surface grading 22 78 98 

10/4/2013 7:30 AM Komatsu Loader Equipment hauling 12 100 49 

6/4/2013 1:15 PM John Deere Excavator Soil excavation 23 65 41 

5/16/2013 9:15 AM Kobelco Excavator Soil excavation 22 60 87 

8/20/2013 12:15 PM John Deere Backhoe Pipe laying 23 88 88 

5/3/2013 9:45 AM Komatsu Excavator Soil excavation 35 77 84 

10/1/2013 7:30 AM Caterpillar Excavator Soil excavation 12 100 90 

9/19/2013 7:30 AM Hitachi Excavator Soil excavation 14 100 91 

8/21/2013 11:40 AM Kobelco Excavator Soil excavation 23 88 99 

9/4/2013 7:50 AM John Deere Loader Surface grading 14 100 71 

8/1/2013 12:30 PM Volvo Excavator Soil excavation 23 88 97 

9/11/2013 7:30 AM Kobelco Excavator Soil excavation 18 100 74 

8/14/2013 11:50 AM Komatsu Excavator Soil excavation 19 60 97 

9/16/2013 7:30 AM Komatsu Excavator Soil excavation 13 100 81 

10/3/2013 7:30 AM Sany Excavator Soil excavation 12 100 75 

9/5/2013 7:30 AM Komatsu Excavator Soil excavation 14 100 88 

7/10/2013 12:45 PM Caterpillar Excavator Landscaping 29 74 85 

9/10/2013 7:30 AM Volvo Excavator Soil excavation 18 100 38 

1: temperature at beginning of each test  
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2.3.4  Emissions predicted by EPA guidelines 
We compared our estimates of emission rates to those predicted by EPA guidelines for 
NONROAD (EPA 2004), which specify that emission rates for HC, CO, and NOx can be 
calculated according to eq 2-3. 

 
	 ∗ ∗  

 
(Eq. 2-3)

ERadjusted = Final, emission rate after adjustment to account for transient operation and 
deterioration (g hp-1 hr-1) 
ERsteady-state= Zero-hour (when the engine is brand new), steady-state emission factor (g hp-1 hr-1) 
TAF = Transient adjustment factor (unitless) 
DF= Deterioration factor (unitless) 
 
The deterioration factor is a function of age of the equipment, as shown by eq 2-4.  

1 ∗
∗

,
 

 

(Eq. 2-4) 

A= relative deterioration factor for a given pollutant and control technology (unitless) 
b= constant for a given pollutant and control technology (equal to 1 for diesel engines) 

  
The CO2 emission rate is calculated according to eq 2-5. 
 

∗ 453.6 ∗ 0.87 ∗ 44
12  

 

(Eq. 2-5)

ERCO2= adjusted emission rate for CO2 (g hp-1 hr-1) 
BSFC= Brake Specific Fuel Consumption or in-use adjusted fuel consumption  
(lb hp-1 hr-1) 
ERHC= adjusted emission rate for HC (g hp-1 hr-1) calculated using eq 2-3.  
 
We used gross horsepower reported by the manufacturer to calculate emission rates in grams per 
hour. Since gross horsepower is much greater than actual horsepower while equipment is idling, 
we excluded idle emission rates from this comparison. Input values used to predict emission 
rates according to EPA guidelines for all equipment are shown in Table 2-3 (Lindhjem and 
Beardsley 1998, EPA 2004).  
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Table  2-3. Steady-state emission rates, transient adjustment times, relative deterioration factors, load factors and 
cumulative hours of the equipment tested, based on EPA guidelines 

Make BSFC 
(Ib hp-

1hr-1) 

Steady-State 
Emission Factor 

(g hp-1 hr-1) 

Transiet 
Adjustment 

Factor 

Relative 
Deterioration 

Factor 

Load 
Factor 

Cumulative Hours 

CO 
 

HC  
 

NOx  CO HC NOx CO HC NOx Hours 
Per 

Year 

Years Median 
Life (hr)

Komatsu- 
D31E 

0.41 2.37 0.52 5.9 1.53 1.05 0.95 0.10 0.036 0.024 0.58 936 20 4000 

Komatsu- 
WA180 

0.37 0.87 0.34 5.65 2.57 2.29 1.1 0.10 0.036 0.024 0.21 1135 15 4000 

John Deere-
120C 

0.41 2.37 0.37 4.7 2.57 2.29 1.1 0.10 0.034 0.009 0.21 1135 9 4000 

Kobelco-
135SR 

0.38 0.75 0.31 4 1.53 1.05 0.95 1.53 1.05 0.95 0.53 859 11 4000 

John Deere- 
410G 

0.41 2.37 0.37 4.7 2.57 2.29 1.1 0.10 0.034 0.009 0.21 1135 8 4000 

Komatsu- 
PC228 

0.37 0.87 0.34 4.1 1.53 1.05 0.95 0.10 0.036 0.024 0.53 859 10 4000 

Caterpillar- 
320CL 

0.37 0.87 0.34 4.1 1.53 1.05 0.95 0.10 0.034 0.009 0.53 859 11 4000 

Hitachi- 
EX270LC 

0.37 0.87 0.34 5.65 1.53 1.05 0.95 0.10 0.034 0.009 0.53 859 17 4000 

Kobelco- 
SK250LC 

0.37 0.75 0.31 4 1.53 1.05 0.95 0.10 0.034 0.009 0.530 859 9 4000 

John Deere- 
755C 

0.37 0.75 0.31 4 2.57 2.29 1.1 0.10 0.034 0.009 0.21 1135 8 4000 

Volvo- 
EC240 

0.37 0.75 0.31 5.58 1.53 1.05 0.95 0.10 0.034 0.009 0.53 859 9 4000 

Kobelco- 
SK330LC 

0.37 0.75 0.31 4 1.53 1.05 0.95 0.10 0.034 0.009 0.530 859 5 4000 

Komatsu- 
PC300LC 

0.37 0.75 0.31 4 1.53 1.05 0.95 0.10 0.034 0.009 0.530 859 8 4000 

Komatsu- 
PC160-6 

0.37 0.87 0.18 2.5 1.53 1.05 1.04 0.15 0.027 0.008 0.530 859 4 4000 

Sany- 
SY215CLC 

0.37 0.87 0.18 2.5 1.53 1.05 1.04 0.15 0.027 0.008 0.53 859 1 4000 

Komatsu- 
PC200-8 

0.37 0.87 0.18 2.5 1.53 1.05 1.04 0.10 0.034 0.009 0.530 859 4 4000 

Caterpillar- 
308D 

0.41 2.37 0.18 3 1.53 1.05 1.04 0.15 0.027 0.008 0.530 859 4 4000 

Volvo- 
EC250D 

0.38 0.75 0.18 2.5 1.53 1.05 1.04 0.15 0.027 0.008 0.53 859 1 4000 
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2.3.5 Emissions predicted by CARB guidelines 
According to CARB guidelines as a part of OFFROAD for emission estimation from a single 
piece of equipment, emission rates can be estimated according to eq 2-6(CARB 2007).  

∗  (Eq. 2-6) 

 
EF= emission factor, in grams per horsepower-hour (gr bhp-1hr-1) 
Zh= Zero-hour emission rate or when the vehicle is new (g bhp-1hr-1) 
Dr= deterioration rate or the increase in zero-hour emissions as the vehicle is used (g hp-1 hr-2) 
CHrs= Cumulative hours or total number of hours accumulated on the vehicle, maximum value 
is equal to 12,000 hours (hr) 
 
Zero-hour and deterioration rates for different models and horsepower are available as part of 
CARB’s emission estimation documentation (CARB 2007).   

2.3.6 Emissions predicted by the MLR model 
Modal Linear Regression (MLR) is a statistical model developed by Lewis (Lewis 2009) to 
predict fuel consumption and emissions based on the normalized manifold absolute pressure 
(MAP) in the engine, as shown in eq 2-7. 

	  (Eq. 2-7) 

 
MAPnorm = Normalized MAP 
MAPmax = Maximum MAP for a specific item of equipment 
MAPmin = Minimum MAP for a specific item of equipment 
MAP = Measured MAP 
 
Normalized MAPs, ranging from 0 to 1, are categorized into 10 equal-sized subcategories, 
modes 1 to 10. In this classification, mode 1 represents idling and mode 10 represents the highest 
possible engine pressure during a working cycle. For each mode, a specific formula enables 
estimation of fuel usage and emissions. In this approach fuel consumption is a function of engine 
mode, horsepower, and tier, as shown in eq 2-8 (Lewis 2009). 

 
	 ⁄ 	 _0

(Eq. 2-8) 

 
a, b, c= constants depending on engine mode and tier 
HP= net horsepower rating of the engine (hp) 
TIER_0= 0 if engine does not meet any tier regulations; otherwise 1 
 
Fuel consumption and emission rates are calculated using eq 2-9 and 2-10. 
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(Eq. 2-9) 

Fuel wt. avg. = weighted-average fuel consumption rate (gal hr-1) for a duty cycle with n engine 
modes 
Ftime(i) = fraction of time spent in engine mode i 
Ai = estimated fuel use rate for mode i (g s-1) 
CF = factor (1.132) to convert (g s-1) to (gal hr-1) 
 

	 . . 	 . . ∗ ∗  
(Eq. 2-10) 

 
Ej wt. avg. = weighted-average emission rate (g hr-1) of pollutant j for a duty cycle with n engine 
modes 
Fuel wt. avg. = weighted-average fuel use rate (gal hr-1) for a duty cycle with n engine modes 
Ffuel(i) = fraction of fuel used in engine mode i 
Bij = emission factor (g gal-1) for pollutant j and engine mode i 
 
By analyzing real-time data from the engine control unit (ECU), one can calculate the time spent 
in each mode. Consequently, fuel consumption and emission rates for each mode and for the 
whole cycle can be estimated. As engine data were not available in this study, we used the same 
fractions of time spent in each mode as recommended in the original formulation of the model  to 
calculate emission rates for moving materials, fine grading, and excavating soil (Lewis 2009).  

2.3.7 Activity-based emission factors  
We examined videos of each test manually to identify activities, such as idling, scooping, and 
dumping, second by second. In addition, we aggregated some of the specific activities into five 
more general categories and reported results according to these. Table 2-4 shows the types of 
specific activities detected as well as the general category to which they were assigned. We 
compared emission factors associated with each activity to determine whether they were 
significantly different by the Tukey test. If the emission factors were not normally distributed, 
we transformed them (i.e., log, log-log or inverse transformation depending on the dataset) in 
order to satisfy the assumption of normality for the Tukey Test. If the emission factors remained 
non-normally distributed, even after transformation, they were excluded from further analysis. 
We calculated a p-value for each comparison and defined the level of significance at 0.05. If 
emission factors from two different sets of activities were not significantly different from each 
other, we merged them together into a single category of activity. To investigate the relationship 
between emission factors and engine parameters, we plotted emission factors for a single 
category for engines meeting the same tier against engine horsepower and displacement and 
calculated the least-squares linear regression line. 
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Table  2-4. Types of activities detected 

Specific activity General activity 

Idling Idling 

Scooping Digging 

Empty bucket in air Idling 

Empty bucket moving in air Swinging 

Full bucket in air Idling 

Full bucket moving in air Swinging 

Full bucket lifting Swinging 

Dumping Dumping 

Vehicle moving with empty bucket Hauling 

Vehicle moving with full bucket Hauling 

2.4 Results and Discussion 

2.4.1 Emission rates 
Tables 2-5 and 2-6 show emission rates and emission factors, respectively, for each piece of 
equipment averaged over all valid data points. Because the duty cycle, including operational 
efficiency (ratio of non-idle time to total time), and environmental conditions differed between 
tests, we expected considerable variability in emission factors (Bishop et al. 2001, Clark et al. 
2002, Ahn and Lee 2013). On the other hand, parameters like site altitude, humidity, grade of 
terrain, and temperature can affect emissions from a single engine. Generally all equipment 
emitted relatively low amounts of CO and HC, as is expected for diesel engines. In some cases, 
the standard deviations of CO emission rates were larger than the mean value, implying that 
there were many instances in which the CO concentration was zero. Emission factors of CO2 
were much higher than for other pollutants, of course, as the majority of the fuel is oxidized to 
this product. The tier indicates the emissions standards that the engine must meet, with higher 
tiers having more stringent requirements; and in general, emissions of CO, HC, and NOx 
decreased with higher tier number. 

Standard deviations of emission factors were generally smaller than those of emission rates, 
indicating larger variability among emission rates, as has been found in other studies (Lewis et 
al. 2010). Generally, second-by-second emission factors, especially CO2, were not normally 
distributed. The Hitachi-EX-270LC excavator and the Komatsu-PC200-8 excavator both had the 
same horsepower and met the same standards (tier), but their emission factors were significantly 
different from each other, meaning that emissions control technologies, differences in 
manufacturing technologies, engine duty cycle, and/or environmental conditions had a large 
effect on emissions. 
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As expected, CO2 emission rates were orders of magnitude higher than those of health-related 
pollutants. Among the health-related pollutants, NOx was emitted in the largest amounts, and CO 
and HC emissions were low, as expected for diesel-powered engines.  In general, emission tier 
standards are effective in reducing emissions from construction equipment. For instance, health-
related emission rates associated with engines meeting tighter emission tiers (III and IV) were 
lower than those from equivalent-size engines of lower tiers. Based on the assumptions made in 
this study, emission rates are not proportional to engine horsepower.  

Table 2-6 shows measured emission factors for the 18 pieces of equipment. Among all emission 
factors, CO2 was the least variable. NOx emission factors for engines meeting tiers III and IV 
were generally lower than those of engines meeting tiers I and II. 

 

Table  2-5. Estimated emission rates 

Make Gross 
Horsepower 

Engine 
Tier 

Estimated Emission Rates (g s-1) 

CO2  CO  HC  NOx  

Komatsu-D31E 70 I 2.9±0.7 0.022±0.006 0.0042±0.0011 0.032±0.011 

Komatsu-WA180 110 I 2.0±1.2 0.013±0.010 0.0021±0.0008 0.044±0.029 

John Deere-120C 89 II 5.8±0.5 0.001±0.002 0.0053±0.0035 0.052±0.005 

Kobelco-135SR 94 II 4.7±1.6 0.003±0.003 0.0029±0.0016 0.035±0.012 

John Deere-410G 98 II 1.8±0.7 0.011±0.023 0.0013±0.0003 0.023±0.007 

Komatsu-PC228 110 II 4.5±2.5 0.010±0.005 0.0049±0.0024 0.056±0.023 

Caterpillar-320CL 138 II 4.3±1.4 0.005±0.013 0.0013±0.0003 0.021±0.008 

Hitachi-EX270LC 168 II 6.4±3.4 0.029±0.059 0.0028±0.0008 0.067±0.037 

Kobelco-SK250LC 176 II 3.3±1.3 0.006±0.012 0.0014±0.0010 0.020±0.007 

John Deere-755C 177 II 2.1±1.3 0.010±0.010 0.0013±0.0004 0.023±0.012 

Volvo-EC240 180 II 5.7±1.0 0.002±0.002 0.0036±0.0020 0.041±0.010 

Kobelco-SK330LC 238 II 1.7± 1.6 0.005± 0.006 0.0013± 0.0006 0.013±0.007 

Komatsu-PC300LC 242 II 5.4± 1.3 0.009±0.004 0.0015±0.0003 0.027±0.007 

Komatsu-PC160-6 113 III 1.4±0.7 0.006±0.003 0.0009±0.0004 0.010±0.010 

Sany-SY215CLC 155 III 1.1±1.0 0.004±0.002 0.0007±0.0002 0.005±0.004 

Komatsu-PC200-8 155 III 1.7±0.8 0.003±0.001 0.0007±0.0003 0.005±0.002 

Caterpillar-308D 56 IV 1.6±0.6 0.002±0.004 0.0003±0.0003 0.007±0.003 

Volvo-EC250D 202 IV 1.3±1.5 0.001±0.002 0.0005±0.0003 0.006±0.004 
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Table  2-6. Measured emission factors 

Make Gross Horsepower 
(hp) 

Engine 
Tier 

Measured Emission Factors (g L-1) 

CO2  CO  HC  NOx  

Komatsu- D31E 70 I 2628±74 23.0±24.0 5.2±12.3 30.1±13.6

Komatsu- WA180 110 I 2608±159 54.3±124.5 3.7±8.5 63.1±55.6

John Deere-120C 89 II 2671.5± 6 0.4±2.2 2.5±1.8 24.1±2.4 

Kobelco- 135SR 94 II 2668±44 3.0±8.4 2.4±10.6 21.7±26.9

John Deere- 410G 98 II 2643±85 17.7±39.8 3.0±9.8 41.9±51.0

Komatsu- PC228 110 II 2654±16 9.5±7.1 3.8±2.9 36.4±8.7 

Caterpillar- 320CL 138 II 2670±16 4.0±9.1 1.0±1.0 14.9±4.5 

Hitachi- EX270LC 168 II 2650±43 15.9±26.4 1.5±1.0 23.7±7.1 

Kobelco- SK250LC 176 II 2667±36 5.8±22.5 1.3±1.3 16.7±4.7 

John Deere- 755C 177 II 2647±46 30.1±4.6 16.3±47.9 27.6±8.1 

Volvo- EC240 180 II 2672±5 4.6±3.6 1.7±0.9 19.2±3.8 

Kobelco- SK330LC 238 II 2669± 22 4.2±11.5 2.2±1.6 19.7±9.9 

Komatsu- PC300LC 242 II 2669±11 5.2±5.3 0.9±1.0 14.1±9.6 

Komatsu- PC160-6 113 III 2652±20 13.7±12.1 2.0±1.0 12.3±4.1 

Sany- SY215CLC 155 III 2649±13 15.2±7.1 2.4±1.0 3.5±1.4 

Komatsu- PC200-8 155 III 2667±8 5.7±4.5 1.3±0.7 8.6±2.6 

Caterpillar- 308D 56 IV 2672±13 4.2±7.7 0.5±0.6 10.6±3.2 

Volvo- EC250D 202 IV 2664±23 2.9±9.2 3.6±4.4 17.5±9.6 

  

Figure 2-1 shows ratios of CO2 emission rates estimated from our measurements to those 
calculated using EPA guidelines and the MLR model. A comparison to OFFROAD (CARB 
guidelines) is not shown because this model does not predict CO2 emissions. A value of 100% 
means that the two values agree perfectly. The ratios associated with EPA’s emission rates 
varied between 20% and 39%, meaning that the estimated emission rates were much lower than 
those predicted by EPA’s methods in every case; while those for the MLR values varied between 
16% and 180%. Emission rates were highly variable depending on the method used to estimate 
them. For engines meeting higher emission tiers, ratios for the two methods converged, except 
for the 56-hp Cat excavator. Both of the ratios associated with more recent engines were 
considerably less than 100%. Differences between our emission rates and modeled ones may be 
due to the relatively old database used to construct both models (EPA 1991, Lewis 2009). 
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Discrepancies associated with estimation of CO, HC, and NOx emission rates were larger than 
for those of CO2. Ratios fell well below 100% for engines meeting tighter emission standards 
(tier III and IV). All CO emission rates in this study were lower than those predicted by 
OFFROAD and EPA guidelines; the ratios varied from 0% to 31%. For HC, ratios associated 
with EPA’s and OFFROAD’s approaches varied between 5% and 59%, while those associated 
with the MLR model varied between 5% and 121%. Generally for same pieces of equipment, the 
largest and smallest discrepancies between different approaches were associated with CO and 
CO2, respectively. As tier increased, discrepancies between the emission rates estimated in this 
study and those predicted by other approaches grew. It is possible that factors considered in 
existing emission estimation approaches are not sufficient to predict emissions accurately under 
actual operating conditions. It is likely that improved consideration of emission control 
technologies implemented in engines meeting tiers III and IV—particulate filters, selective 
catalytic reduction, exhaust gas recirculation—is needed. The MLR model is based on PEMS 
data (Lewis 2009), yet there are large discrepancies between its predictions and our 
measurements, which were also collected using PEMS, especially for tier III and IV engines. 
Differences may be due to the fact that the MLR model was based on measurements from older 
excavators which only met tier I standards. 
Figures 2-2, 2-3, and 2-4 show ratios of emission rates estimated from our measurements to 
those calculated using EPA guidelines, the MLR, and OFFROAD for CO, HC, and NOx, 
respectively. Ratios for these three pollutants were lower than those for CO2, meaning that 
discrepancies between health-related emission by these estimation approaches are larger than 
those for CO2. 

 

Figure  2-1. Ratio of CO2 emission rates to those calculated using other methods 
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Figure  2-2. Ratio of CO emission rates to those calculated using other methods 

 

 

Figure  2-3. Ratio of HC emission rates to those calculated using other methods 
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Figure  2-4. Ratio of NOx emission rates to those calculated using other methods 

We conducted a sensitivity analysis in order to quantify the possible error associated with the 
engine speed, pressure, temperature, and ambient conditions used to calculate the emission rates 
(Eq. 1). We consulted several practitioners who stated that the engine speed typically ranged 
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was not parameterized here. In order to combine effects of these independent factors, we 
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factors for NOx emission rates based on ambient relative humidity for different tests. We 
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Table 2-7 shows the resulting ratios of emission rates, corrected emission rates to those of 
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predicted by widely used models. This sensitivity analysis may not represent actual real-world 
conditions.  

Table  2-7. Ratio of measured, non-idle emission rates to those calculated according to EPA's and CARB’s approaches (%) 
after changing engine data assumptions 

EPA (%) 

CO2 CO HC NOx 

83 ± 32 39 ± 31 60 ± 38 73 ± 38 

CARB (%) 

NA 25 ± 22 50 ± 42 57 ± 23 
 

Emission factors at idling were also of interest because they differ from those under working 
modes and can have a large impact on average emission factors, which depend on the time spent 
in each mode. Table 2-8 shows the ratio of measured idling emission factors to those 
recommended by the MLR model for all 18 pieces of equipment. The MLR model assigns a 
constant emission factor that is independent of engine size, horsepower, and tier for mode 1, 
which represents idling. In contrast to ratios for emission rates (Figures 2-1 to 2-4), the values 
were larger than 100% in some cases. There were large differences for bulldozers and loaders, 
even though the testing procedure for both studies was similar.  The ratios shown in Table 2-8 
suggest that using a single idling emission factor for all construction equipment may not be ideal, 
especially for CO, NOx and HC. Factors other than engine mode must also affect idling emission.  

2.4.2 Differences between activity emission factors 
Based on the videos of each piece of construction equipment’s actions, we assigned emission 
factors to one of the specific activities in Table 2-3 on a second-by-second basis. Table 2-9 
shows the number of tests for which a significant difference was observed in the emission factors 
between each combination of activities. For example, a value of 5/16 in Table 2-9 for CO means 
that in 5 out of 16 tests, there was a significant difference between digging and dumping in terms 
of their emission factors. Since emission rates were not directly measured (i.e., they required 
assumptions about engine speed and exhaust parameters), they were excluded from this analysis. 
Although there were 18 different pieces of equipment, not all of them performed all categories of 
activities defined in Table 2-4, nor were their emission factors normally distributed, and thus the 
total numbers of comparisons for a pair of activities was not the same for each combination. 
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Table  2-8. Ratio of idling emission factors to those recommended by MLR 

 CO2 (%) CO (%) HC (%) NOx (%) 

Komatsu Bulldozer- 70 hp- tier I 82 1486 1481 250 

Komatsu Loader- 110 hp- tier I 98 761 104 161 

John Deere Excavator- 89 hp- tier II 102 4 45 59 

Kobelco Excavator- 94 hp- tier II 101 87 137 79 

John Deere Backhoe- 98 hp- tier II 101 145 71 115 

Komatsu Excavator- 110 hp- tier II 102 28 43 77 

Caterpillar Excavator- 138 hp- tier II 101 102 36 59 

Hitachi Excavator- 168 hp- tier II 100 288 45 60 

Kobelco Excavator- 176 hp- tier II 102 38 30 41 

John Deere Loader- 177 hp- tier II 102 46 173 41 

Volvo Excavator- 180 hp- tier II 102 42 38 46 

Kobelco Excavator- 238 hp- tier II 101 145 67 71 

Komtasu Excavator- 242 hp- tier II 101 118 45 72 

Komatsu Excavator- 113 hp- tier III 101 155 44 38 

Sany Excavator- 155 hp- tier III 101 148 49 10 

Komatsu Excavator- 155 hp- tier III 102 82 33 27 

Caterpillar Excavator- 56 hp- tier IV 102 44 8 26 

Volvo Excavator- 202 hp- tier IV 102 29 84 49 

Average 100 208 141 71 

In general, there were significant differences between idling and other working modes. 
Differences in emission factors by activity were not consistent by pollutant. Table 2-9 suggests 
that using different emission factors for certain activities, as well as using fuel consumption 
specific to that activity, can help practitioners to estimate actual emission rates more accurately. 
Since fuel usage was estimated in this study—based on engine speed, pressure, and 
temperature—we can conclude that activity-specific emission rates follow the same trend. In 
other words, idling emission rates were different from non-idling emission rates. 

Table 2-10 shows the results of linear regression of emission factors against engine 
characteristics, namely horsepower and displacement, separately for idling and non-idling 
modes. Only engines meeting tier II were considered because there were 10 of these and not 
enough meeting the other tiers for this analysis. For all pollutants, there was not a significant 
linear relationship between displacement, engine horsepower, and emission factors (p > 0.05). 
Under actual operating conditions, emission factors must have also been affected by factors other 
than engine size and power and tier, such as duty cycle, other engine parameters, and 
environmental conditions. Thus, these factors must be taken into account when predicting 
emissions from construction equipment activity.  
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Table  2-9. Numbers of significant statistical differences observed between activity-based emission factors 

CO2 emission factors 

 Idling Digging Swinging Dumping Hauling 

Idling – 2/4 4/4 3/4 4/4 

Digging – – 3/4 2/4 2/4 

Swinging – – – 4/4 4/4 

Dumping – – – – 4/4 

Hauling – – – – – 

CO emission factors 

Idling – 15/17 12/17 13/16 16/18 

Digging – – 8/16 5/16 14/17 

Swinging – – – 8/16 12/17 

Dumping – – – – 10/16 

Hauling – – – – – 

HC emission factors 

Idling – 15/17 14/17 12/16 15/18 

Digging – – 11/16 4/16 11/17 

Swinging – – – 11/16 14/17 

Dumping – – – – 7/16 

Hauling – – – – – 

NOx emission factors 

Idling – 9/11 10/11 7/10 8/12 

Digging – – 5/10 1/10 7/11 

Swinging – – – 5/10 7/11 

Dumping – – – – 6/10 

Hauling – – – – – 
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Table  2-10. Analysis of linear relationships between emission factors for engines meeting tier II 

Non-idling Emission Factor (g L-1) vs. Horsepower Idling Emission Factor (g L-1) vs. Horsepower 

 CO2 CO  HC  NOx   CO2  CO  HC  NOx  

Slope 
(m) 

0.020 0.009 -0.001 -0.090 Slope 
(m) 

-0.002 0.033 -0.008 -0.066 

R2 0.07 0.03 0.00 0.44 R2 0.00 0.03 0.03 0.14 

p-value 0.07 0.14 0.94 0.02 p-value 0.98 0.56 0.61 0.26 

Non-idling Emission Factor (g L-1) vs. Engine 
Displacement 

Idling Emission Factor (g L-1) vs. Engine Displacement 

 CO2  CO  HC  NOx   CO2  CO  HC  NOx  

Slope 
(m) 

0.359 0.825 0.757 -2.210 Slope 
(m) 

1.76 0.30 0.43 -2.36 

R2 0.02 0.25 0.26 0.25 R2 0.03 0.03 0.08 0.18 

p-value 0.65 0.12 0.12 0.12 p-value 0.61 0.87 0.40 0.19 

 

2.5 Conclusion 
Due to the substantial contribution of the construction industry to emissions of GHGs and health-
related pollutants, there has been an on-going need to quantify and predict emissions at scales 
ranging from a single piece of equipment scale to nationwide. The goals of this study were to 
augment the limited database of emission rates and emission factors for construction equipment, 
evaluate the ability of widely used models (EPA NONROAD, CARB OFFROAD, and MLR) to 
predict emissions, and investigate effects of activity and engine characteristics on emission 
factors under actual operating conditions. 
 
Real-time emission rates varied more than did emission factors, confirming previous findings. 
Measured emission rates in this study were lower, from 0.5% to 59% and from 0.5% to 58%, 
than those predicted by EPA and CARB, respectively, and ranged from 2% to 284% of values 
predicted by the MLR approach. Differences in the two approaches—actual on-site emission 
measurement and those recommended by regulatory approaches—suggest that using a single 
emission factor for different engines, even for the same activity within each engine duty cycle, 
will result in noticeable discrepancies, from 4% to 1500%. Thus, depending solely on equipment, 
engine horsepower, and engine tier may not enable accurate prediction of emissions. Other 
factors may also influence emissions; MAP has been proposed to account for these, but it is not 
easily monitored. Emission control technology and time spent in each duty cycle may contribute 
greatly to overall emission rate and factor. 
 
Emission factors associated with idling and hauling were significantly different from those for 
digging, swinging, and dumping. Therefore these two activities—idling and hauling—should be 
treated uniquely rather than lumped together under the umbrella of an overall emission factor. 
On the other hand, idling emission rates may vary between high-idle and low-idle modes. In the 
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real-world conditions of this study, emission factors were not linearly proportional to engine 
horsepower and size. This outcome calls for future studies on the duty cycle and fuel usage of 
engines used in construction equipment. Since emission factors are less variable than emission 
rates, a thorough understanding of fuel usage by activity and duty cycle can enable more accurate 
estimation of emissions.  
 
We found significant differences between emissions measured under real-world conditions and 
those predicted by widely used models. Results from this study might contribute to improving 
the accuracy of the models. There was a considerable difference between measured and modeled 
emission factors particularly for engines meeting higher tier standards. Thus, emissions 
databases and estimation models should be updated to account for advances in emission control 
and manufacturing technologies. 
        

2.6 Recommendations and Future Work  
The lack of real-time engine data was a limitation of this study, as we had to assume an engine 
speed in order to estimate emission rates from the measured exhaust gas concentrations. 
Development of a database on RPM, MAP, and temperature during equipment operation would 
be very useful. Doing so would require access to the ECU via an OBD port, which currently is 
not available on most construction equipment. Therefore, we encourage equipment 
manufacturers to install such ports.  
 
The relationship between emissions and site and operational characteristics (e.g., type of soil 
hauled and traveled on, terrain grade, etc.) should be investigated further. This will help 
researchers to develop models to benchmark real-time construction emissions in the pre-
construction phase and compare real-time performance to expected benchmarked values.  
 
Although there have been recommendations on application of PEMS for construction emissions 
measurement, few studies have used this technique. Therefore there is a need for more work in 
this domain to measure real-time emissions. Calibration and validation of steady-state emission-
related studies with real-time emission-related studies will possibly lead to better understanding 
of actual off-road diesel engine emissions.  
 
Future research should focus on emissions of particulate matter (PM) because of its strong link to 
health effects and impact on climate change. 
 
Since engine data and MAPs for each model of equipment are not usually available, emissions 
models should account for uncertainty and variability in emission factors by activity. 
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Finally, incorporation of results of studies such as this one should be incorporated into the 
development and refinement of emissions models, including the successor to NONROAD, 
MOVES (EPA 2010, Koupal et al.).  
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3 Benchmarking and Real-time Monitoring of Construction 
Equipment Emission Using Discrete Event Simulation and 
Automated Vision-based Action Recognition 

3.1 Abstract 
This study reports recent advancements in vision-based technology for monitoring and predicting 
environmental impacts, specifically atmospheric emissions of greenhouse gases and health-
related pollutants, resulting from construction operations. The technology can automatically 
recognize actions performed by construction equipment by extracting spatio-temporal features 
from video streams of construction operations. It enables real-time productivity and emissions 
monitoring of construction equipment in an inexpensive and relatively accurate manner, which is 
a unique achievement in the construction environmental assessment domain. In this study, 
vision-based technology and an action recognition algorithm have been applied to case studies. 
From the resulting time-series of activities, productivity and amounts of emissions were assessed 
for each piece of equipment. The automated technique produced results that were, on average, 
98% of those estimated by manual recognition. Emissions from the total operations were very 
sensitive to in-use emission rates used in the model. Additionally, emissions for some case 
studies were predicted through simulation of construction operations using Discrete Event 
Simulation (DES). For those specific case studies, emissions estimated using computational 
simulation and action recognition agreed to within 14%. Emissions estimated using 
computational simulation were treated as a benchmark and were compared to actual values 
measured on-site. Actual emissions ranged from 28% to 144% of those predicted by DES, due to 
discrepancies between real-world practice and computational simulations. Results of this 
research will aid practitioners in implementing strategies to increase productivity and 
simultaneously reduce environmental emissions by using an inexpensive, robust, and user-
friendly approach. 

3.2 Introduction 
The construction industry is the third highest emitter of GHGs among all industry sectors (EPA 
2008). Emissions of GHGs and health-related pollutants, such as nitrogen oxides and particulate 
matter, account for more than half of the total environmental impacts that result from 
construction activities (Guggemos and Horvath 2006). The United Nations, many European 
countries, and the state of California are trying to reduce GHG emissions by 80% by the year 
2050 (Luers et al. 2007, ENR 2010), and reductions from the construction industry will be 
required to meet this goal. 

As a result of new and impending regulations, controlling emissions from the construction 
industry is a growing concern (AGC 2010, Heydarian et al. 2012). The often competing 
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objectives of compliance with regulations and minimization of cost present a challenge for the 
industry. Because regulations emphasize tighter controls on the equipment instead of 
improvement in efficiency during construction activities, they have resulted in costly upgrades. 
Controlling and monitoring air pollutant emissions during the construction phase through 
reasonable policies and practical tools may also be effective for reducing emissions. Monitoring 
technologies and techniques are important because without them, excessive emissions cannot be 
detected and minimized. Cost and accessibility of these technologies and techniques are two 
important factors which should be considered (Golparvar-Fard et al. 2009).  

In recent years, various approaches have been introduced to estimate and monitor GHG 
emissions from construction operations. This information can be used to calculate the carbon 
footprint of the activity. Several researchers have used Discrete Event Simulation (DES) to 
quantify construction-related emissions and have validated this tool in estimating the actual 
amount of emissions (Ahn et al. 2009, Ahn et al. 2010, Li and Lei 2010). Pena-Mora et al. (2010) 
presented a framework for managing emissions from construction activities and suggested using 
a Portable Emission Measurement System (PEMS) along with simulation tools to visualize 
construction operations. A PEMS is connected to the tailpipe to enable real-time measurement of 
emissions of certain gases, and sometimes particles, from any vehicle. However, because of cost 
and installation time, it is not feasible to implement this technology for all pieces of construction 
equipment on site (Ahn et al. 2013). Artenina et al. (2010) discussed using an intelligent and 
optimized GIS route planning system to reduce emissions from construction equipment. Shiftefar 
et al. (Shiftefar et al. 2010) introduced a system that enables visualization of construction 
emissions using a tree metaphor. In addition, Lewis et al. (2011) proposed a framework for 
quantifying the effect of operational efficiency on total emissions from construction. While these 
studies have advanced the idea of reducing emissions from construction activities, they have 
overlooked the possibility of automated monitoring and benchmarking of real-time emissions 
from construction equipment (Heydarian et al. 2012).  

Other researchers have focused on several other techniques for monitoring real-time earthmoving 
operations by using techniques like RFID tags, GPS, and accelerometers in addition to on-site 
video cameras (Torrent and Caldas 2009, Gong and Caldas 2010, Moon and Yang 2010, Brilakis 
et al. 2011, El-Omari and Moselhi 2011, Gong et al. 2011, Yang et al. 2011, Ahn et al. 2013). 
These techniques mostly focus on tracking construction equipment and not on action recognition 
of videos, except in the study by Gong et al (Gong and Caldas 2010). Another innovative 
approach in practice since 2010 is telematics, which uses telecommunication tools in order to 
report location, action, and other useful pieces of information remotely (Sutton 2010, Zagoudis 
2011). Although this technique has many useful applications, it is not able to monitor emissions 
and compare them to benchmarked values. 

Among all these possible solutions, using networks of cameras and recording activities has great 
potential for improving the understanding of the relationship between emissions and operational 
efficiency. Gong et al. (Gong and Caldas 2010) introduced a vision-based tracking model for 
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detecting and monitoring a bucket in construction operations; however, this model cannot detect 
location and action simultaneously. Zou and Kim (Zou and Hyoungkwan 2007) also presented an 
image-processing approach that assesses idling time of an excavator based on image color space 
(hue, saturation, and value); however, this approach is susceptible to error due to change of scale 
and illumination (Heydarian et al. 2012). Recent developments have enabled researchers to 
overcome these deficiencies, resulting in accurate real-time emissions measurement. Timely and 
precise operational details empower researchers, managers, and practitioners to establish new 
corrective techniques, avoid delays, and minimize excessive environmental impacts (Golparvar-
Fard et al. 2009). Table 3-1 summarizes current techniques in emissions assessment and 
monitoring as well as strengths and limitations of each one.  

While embodied emissions, or those resulting from all activities associated with a construction 
project (e.g., production of building materials, transportation of crew and equipment to the site, 
heating sources on site) are important too, they fall outside the scope of the current study. If 
idling time during construction activities can be minimized, then fuel usage, emissions, and cost 
will be reduced (SKANSKA 2011). To achieve this goal, a technique is needed to gather actual 
real-time data on activities performed at a construction site. Then, this time series of activities 
can be combined with fuel usage rates and emission rates in order to estimate total fuel usage, 
emissions of various pollutants, and carbon footprint. Developing an automated technique which 
is accessible and cheap will facilitate estimation of productivity and emissions for project 
managers, contractors, regulators, and investigators.  Researchers can use the results from the 
monitoring system to determine the level of efficiency in construction activities and to propose 
new techniques to increase this efficiency. Practitioners can use the system to control the amount 
of resources being used and possibly reduce the amount that is wasted. Managers can use the 
system in support of sustainability certification, such as Leadership in Energy and Environmental 
Design (LEED) for a project. Currently, there are no available automatic measuring and 
monitoring techniques for real-time productivity and emissions assessment in the construction 
industry. Therefore, most certification organizations typically do not consider the construction 
phase in evaluation of environmental performance. 

One possible solution is to use networks of cameras on construction sites and record videos from 
each piece of equipment in action. Through a network of cameras and an internet connection on 
site, videos are transferred to a computer which is able to remotely and easily analyze emissions 
and productivity (Golparvar-Fard et al. 2009). Once time-series of activities are generated, 
emissions associated with all equipment can be estimated.  Reporting the emissions is not 
beneficial by itself. Rather, comparing them to a value set in the pre-construction phase, a 
benchmarked value, or one set by regulations will help practitioners in decision making. For this 
comparison, emissions should be estimated using other credible methods to determine if 
emissions may exceed calculated thresholds. 
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Table  3-1. Summary of Emission Assessment Techniques 

Name Characteristics Deficiencies 

EPA NONROAD / CARB 
OFFROAD model 

•  Widely used for emission 
estimation in pre-
construction planning 

•  Easy to be use 

• Need to verify, and possibly, 
modify model outputs  

• Not able to monitor real-
time emissions 

Portable Emission 
Measurement System (PEMS) 

•  Real-time emission 
measurement 

•  A portable laboratory needs 
to be installed on each 
equipment 

• Expensive  
• Can monitor a limited 

number of pieces of 
equipment 

• Hard to install 
Intelligent and optimized GIS 
routing  

•  Wide application of GIS 
•  Easy to implement 
•  Used for tracking equipment 

• Not monitoring real-time 
emissions automatically 

• Not to detect activities and 
productivity 

Tree metaphor •  Visualization of emissions in 
lay terms 

•  Good for communicating 
environmental impact 

• Not monitoring real-time 
emissions automatically 

• Not able to benchmark 
emissions 

Radio Frequency 
Identification (RFID) tags 

•  Tracks equipment in real-
time 

•  Accurate 

• Not able to detect activities 
• Not able to benchmark 

emissions 
Electromechanical 
accelerometer  

•  Tracks equipment in real-
time 

•  Easy to implement 
•  Accurate  

• Not able to detect activities 
• Not able to assess 

productivity 

Vision-based tracking model •  Tracks equipment in real-
time 

• Not able to detect actions, 
emissions, and productivity 
simultaneously 

Vision-based approach using 
image processing 

•  Able to monitor and detect 
real-time actions 

• Susceptible to errors due to 
illumination and scale 
change 

Vision-based approach using 
spatio-temporal feature 
extraction 

• Able to monitor real-time 
productivity and emissions 

• Able to handle noisy features 
arisen from dynamic 
background of construction 

• Not applicable to horizontal 
construction activities 

• Need for comprehensive 
emission factor  inventory  

Telematics • Telecommunicating engine 
and equipment data 
 

• Not able to detect emissions 
• Not able to distinguish 

discrepancy between 
monitored and benchmarked 
emissions. 
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construction site (Heydarian et al. 2012). This algorithm is based on extraction of spatio-
temporal features from video frames. Space-time interest points, which have been proven to be 
useful for human action recognition, are extracted using Gaussian and Gabor filters. Gaussian 
and 2D Gabor filters are linear filters used for edge detection in image processing. They are 
proven to be useful in texture representation and discrimination (Mehrotra et al. 1992).  

Then, each feature is described with a Histogram of Oriented Gradients (HOG) using K-mean 
clustering, which results in each video frame representing a set of spatio-temporal features 
(Heydarian et al. 2012). Histograms of Oriented Gradients are feature descriptors used in image 
processing in order to detect objects. This technique is based on counts of gradient orientations 
occurrences in localized sections of an image. K-mean clustering is a method in data mining used 
for vector quantization in cluster analysis. It partitions observations into clusters in which each 
observation belongs to the cluster with the nearest mean (Kanungo et al. 2002).  

By clustering HOG descriptors, the probability distribution of the features in this algorithm is 
learned automatically. Therefore, histograms of spatio-temporal features are generated, and 
through application of a multiple binary Support Vector Machine (SVM) classifier, actions are 
recognized and located in 2D frames. SVM is a discriminative learning methodology founded on 
principles of structural risk minimization. It can analyze and recognize patterns for classification 
and regression analysis (Heydarian et al. 2012).  

Videos are analyzed further in order to spatially recognize and locate equipment in 3D and 
register their location in D4AR, a 4-dimensional augmented reality environment (Golparvar-Fard 
et al. 2009). D4AR is a computational live view of physical, real-world construction site whose 
elements are augmented by images taken on-site. It enables the site to be monitored from long 
distances and managed in real-time.  

Next, actions are recognized by an action recognition technique, which has to be applied to a 
long sequence of videos. For automatic recognition of the starting and ending point and duration 
of each activity, such as digging or dumping, a new temporal sliding window algorithm is 
introduced. Distributions of durations for all activities are calculated using a training dataset. 
Each temporal sliding window is divided into separate time frames. For each frame, the spatio-
temporal features are extracted, and the probability of their distribution is learned by clustering 
their HOG descriptors. The histograms are placed into the classifier, and for each frame the 
action categories are stored. Durations of activities, and consequently starting points of the next 
subsequent activity in each video stream, are calculated based on using time frame stored 
previously in the video stream as the one with the highest score. For all the video frames within 
target video stream this process will be repeated (Heydarian et al. 2012). 

Through integration of 4D building information models for each construction activity, measured 
productivity as well as operational emissions can be assessed (Golparvar-Fard et al. 2009). The 
output of this methodology is a time-series of activities performed by each piece of equipment. 
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The approach can handle noisy feature points that arise from typical dynamic backgrounds of 
construction sites.  

Together with information about engine power, emission rates, and load factors, as well as site 
and weather conditions, emission rates can then be calculated. Multiplying the duration of each 
activity by the emission rate associated with the activity and adjusting for weather, site, and 
engine conditions enables estimation of total emissions via Equation 3-1. 

∗  

 

(Eq. 3-1)

where  is the emission rate for activity  (e.g., digging, hauling, dumping, swinging or idling) 
(kg s-1),  is the duration of activity  (sec), and  is the total amount of emissions of gas  

while the equipment is working (kg).  

Emission rates for construction equipment can be derived from various resources, such as the 
NONROAD model (EPA 2004) or Lewis’s modal linear regression (MLR) model (Ahn et al. 
2009, Ahn et al. 2010, Li and Lei 2010). Because none of these provide emission rates specific to 
all the activities identified by vision-based technology, field measurements were conducted to 
obtain these data (Heidari and Marr 2014). Briefly, emissions of carbon dioxide (CO2), carbon 
monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOX) from different pieces of 
equipment were measured using a PEMS (Axion Go, GlobalMRV) during earthmoving 
operations. Videos of the construction activities were recorded, and time series of five 
activities— digging, dumping, hauling, swinging, and idling— were generated by vision-based 
technology using the automated approach outlined above or by manual analysis. Action 
recognition by both automated means and manual analysis were applied to six videos 
representing two excavators (Caterpillar-320CL or Kobelco-SK330LC). Real-time emissions 
were calculated according to Eq. 3-1 using either EPA’s emission rates (EPA 2004), which are 
not specific to the type of activity, or measured emission rates (Heidari and Marr 2014).   

For prediction of emissions in the pre-construction phase, Discrete Event Simulation (DES) was 
used to model and simulate construction operations and develop an emissions benchmark. The 
STROBOSCOPE program (Martinez 1996) was used to implement DES for the six previously 
mentioned case studies (i.e., videos of two excavators) as well as three additional case studies: 
videos of a Volvo-EC250D, Sany-SY215CLC, and Komatsu-PC228. All the videos examined in 
this comparison were recorded from earthmoving activities in which excavators were dumping 
soils into trucks. Inputs to the model included details about the equipment and test 
characteristics, such as the number of pieces of equipment actually used on-site and their 
capacity, emission rates specific to the type of equipment, the duration of each activity, and the 
amount of work to be done (i.e., the volume of soil to be moved). Idling time was computed as 
part of the simulation. The code for the case study with the Sany excavator is presented in 
Appendix I. Model output was compared to emissions calculated according to manually 
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generated time-series of activities and real-time emission measurements on-site. The comparison 
served two purposes: (1) validation of the model and (2) demonstration of case studies with the 
model output as the benchmark and results of the calculations described above as the actual 
project emissions. Analyzing deviations between the benchmark and actual emissions will enable 
real-time assessment of construction performance and possibly adjustment of operations to bring 
emissions more closely in line with pre-planned values. 

3.4 Results and Discussion 
Prior work has shown that vision-based technology is 86% accurate in recognizing activities 
(Heydarian et al. 2012). Using automated action recognition, a prior study produced time series 
of activities for excavators appearing in six videos (Heydarian et al. 2012). Figure 3-2 shows 
emissions of CO2, CO, NOx and HC estimated from the time series of activities in one video, 
which recorded an excavator (Caterpillar-320CL) digging soil and dumping it into a truck.  CO2 

was emitted in much larger amounts than the other pollutants, as it is the main product of 
combustion. While emissions of the other pollutants were much lower, these have direct health 
effects at low concentrations, and dispersion modeling could be used to predict a worker’s 
exposure to them (Turner 1994). 

 

Figure  3-2. Emissions for a single video recorded during excavating and dumping activities over 283 s 

Figure 3-3 shows CO2 emissions, based on emission rates suggested by EPA guidelines, for 
different activities performed by the excavator along with the duration of each activity for the 
same video. Emissions were correlated with the duration of each activity. EPA recommends a 
single emission factor per horsepower for each pollutant. Since horsepower used in the emission 
rate calculation is the same regardless of the pollutant, ratios of emission rates between different 
activities are the same for all emitted gases. 
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Figure  3-3. CO2 emissions by activity and duration of each activity for an excavator working over 283 s 

Table 3-2 shows ratios of estimated emissions using the action recognition approach to actual 
measured values for six videos. Actual measured values are sums over all activities of the 
activity-based emission rate times the duration of activity, assessed through manual action 
recognition. Estimated emissions using vision-based technology use activity durations 
determined by automated action recognition. Emissions estimated by vision-based technology 
were on average 98% of actual measured emissions. In all of these videos, which were not longer 
than 10 min, excavators were mostly active rather than idling and easily detectable for the entire 
video stream. The duration of each activity detected in a single video was independent of the 
pollutant, so differences in the ratio between different pollutants were due to differences in 
emission rates by activity. For example, CO2 emission rates varied more by activity than did HC 
emission rates. These results are specific to excavators digging soil, swinging, and dumping it 
into trucks, and the outcome may differ for other types of equipment and activities. 
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Table  3-2. Ratio (%) of estimated emission to actual values for six different videos 

Video Model 

Ratio of estimated emissions using vision-
based technology to measured emissions 

(%) 

Mean of ratio for each 
case study between 
different pollutants 

CO2 CO HC NOx 

1 
Caterpillar-

320CL 
92 95 94 94 94 

2 
Caterpillar-

320CL 
91 100 79 91 90 

3 
Kobelco- 
SK330LC 

98 111 95 97 100 

4 
Kobelco- 
SK330LC 

100 100 100 100 100 

5 
Kobelco- 
SK330LC 

97 102 98 98 99 

6 
Kobelco- 
SK330LC 

103 118 104 103 107 

Mean of ratio for each 
pollutant between case 

studies 
97 104 95 97 98 

 

As a complement to vision-based technology, earthmoving operations were modeled using DES 
in order to estimate and benchmark emissions during pre-construction planning. The modeling 
focused on earthmoving for nine cases studies involving five different types of excavator. Figure 
3-4 shows conceptual design of the earthmoving simulation. The boxes represent activities and 
the arrows show the flow of resources, including excavated soil or haulers. Ovals represent the 
queues in which resources accumulate until the activity’s starting condition is satisfied. For 
instance, excavators wait in the queue “Excavator idling” until the condition for starting the 
activity “Excavator loading” is satisfied. This condition is having at least one truck waiting in the 
queue “Trucks idling” and soil remaining that needs to be dumped by the truck. The simulation 
runs until the number of truck trips exceeds the number required to move the total volume of 
soil. In this simple case, the durations of various activities that the excavator performs 
determines the total amount of emissions, as well as the emissions per unit of soil moved. 
Emissions from the truck were not included in the results. 
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Table  3-4. Non-idle and idle emission rates for excavators 

Make and 
model 

Tier Gross 
power 
(hp) 

Non-idle emission rate (g s-1) Idle emission rate (g s-1) 

CO2 CO HC NOx CO2 CO HC NOx 

Caterpillar- 
320CL 

II 138 3.6 0.0031 0.0009 0.016 0.9 0.006 0.0006 0.002

Kobelco- 
SK330LC 

II 238 2.3 0.0027 0.0010 0.011 0.5 0.005 0.0007 0.005

Sany- 
SY215CLC 

III 155 2.8 0.0056 0.0008 0.012 0.6 0.004 0.0006 0.003

Komatsu- 
PC228 

I 110 4.4 0.0057 0.0038 0.052 2.0 0.009 0.0033 0.028

Volvo- 
EC250D 

IV 202 3.4 0.0012 0.0005 0.007 0.6 0.0002 0.0005 0.005

 

Simulation results were reported as the amount of emissions per unit productivity, where the 
productivity is quantified in terms of the volume of soil moved. Emissions from trucks were not 
included in this study. Table 3-5 shows the emissions, normalized by the amount of soil moved, 
predicted by DES and the ratio of monitored to predicted emissions. The monitored emissions 
were determined by manual recognition of activities and emission factors for idle or non-idle 
conditions. In practice, the ratios would represent how close actual emissions monitored by 
vision-based technology came to the benchmark (i.e., emissions predicted by DES). Differences 
would show the level of alignment between planned and actual operations. 

Discrepancies in simulated vs. monitored emissions varied by case. The ratios were generally 
greater than 100% for all pollutants for the Caterpillar-320CL and less than 100% for all 
pollutants for the Sany-SY215CLC and Komatsu-PC228. Differences between excavators were 
mainly due to differences in emission rates, the configuration of earthmoving operations (number 
of pieces of equipment), and cycle duration. The latter two factors affect idling time and 
operational efficiency. For instance, the lower the ratio of excavators to trucks, the higher the 
idling time for excavators, and consequently there were higher emissions per volume of soil 
moved. Since ratios of idle to non-idle emission rates for different pollutants were not equal, the 
ratios reported in Table 3-5 differed by pollutant. 

For case 1 listed in Table 3-5, the video lasted less than 5 min, and the excavator was active 
during the entire period, except for a few seconds. Therefore, reported emissions from different 
approaches agreed well. For case 2, operational efficiency was slightly higher (i.e., there was less 
idling). Thus, most of ratios associated with this case study converged to 100% even though it 
was the same type of excavator as in the first case study. In case 3, the excavator was idling 
while the model expected the equipment to operate, and therefore all ratios exceeded 100%. In 
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case 4, the actual operational efficiency is higher than predicted by the computational simulation. 
Therefore, the ratio fell below 100%. For case 5 and 6, the simulation predicted the sequence to 
be over faster than actual operational time. As a result, monitored emissions exceeded simulated 
values. For case 7, 8, and 9, which lasted considerably longer than first six case studies, there 
were larger discrepancies between actual and planned operations. Thus ratios fell noticeably 
below 100%.  For case 7, emissions per unit of soil moved were higher than for the cases 1 and 2 
due to long idling times. Ratios for case 8 were significantly lower than for the other types of 
excavators mainly due to the fact that excavator was turned off while it was waiting for trucks to 
come to the site. However, emissions per unit of soil moved were much higher than for the other 
excavators due to higher emission rates. This excavator met less stringent tier I emissions 
standards. For case 9, CO emission rates dropped significantly during idling. This was possibly 
due to this excavator meeting more stringent emission standards (tier IV) and control 
technologies. However, this discrepancy was not observed for HC and NOx. In real-world 
operations, excavators will perform different tasks while they are waiting, ranging from moving 
to turning off the engine completely. This variability will result in deviation of actual emissions 
from those expected through simulation. 
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Table  3-5. Excavator emissions predicted by DES compared to those monitored by vision-based technology 

Case 
study 

number 

Make and 
model 

Amount 
of soil to 

move (m3) 

Number 
of trucks

Predicted emissions per volume of soil moved (g 
m-3) 

Monitored emissions per 
volume of soil moved       

(g m-3) 

Ratio of monitored to 
predicted emissions 

(%) 

 CO2 CO HC NOx CO2 CO HC NOx CO2 CO HC NOx 

1 Caterpillar- 
320CL 

13 1 100±3 0.087± 0.003 0.026± 0.001 0.47± 0.01 107 0.094 0.028 0.51 107 110 107 107 

2 Caterpillar- 
320CL 

26 2 91± 2 0.097± 0.002 0.025± 0.000 0.42± 0.01 94 0.095 0.030 0.44 104 98 122 105 

3 Kobelco- 
SK330LC 

9.8 1 36± 2 0.049± 0.002 0.017± 0.001 0.18± 0.01 39 0.051 0.019 0.20 107 97 114 111 

4 Kobelco- 
SK330LC 

9.8 1 32± 1 0.037± 0.001 0.014± 0.000 0.16± 0.01 29 0.035 0.013 0.15 94 93 93 94 

5 Kobelco- 
SK330LC 

10 1 28± 2 0.049± 0.002 0.014± 0.001 0.14± 0.04 39 0.046 0.017 0.20 140 81 115 136 

6 Kobelco- 
SK330LC 

18.2 2 52± 3 0.081± 0.003 0.025± 0.001 0.27± 0.01 65 0.078 0.029 0.33 122 87 112 118 

7 Sany- 
SY215CLC 

15 1 252±82 1.476± 0.565 0.211± 0.082 1.35± 0.46 221 1.322 0.153 1.10 88 69 72 82 

8 Komatsu- 
PC228 

76 2 1772±269 7.813± 1.325 2.74± 0.467 24.49± 3.82 815 1.503 0.947 10.3 46 28 35 42 

9 Volvo EC 
250 

22 2 80±13 0.026± 0.004 0.039± 0.009 0.42± 0.10 115 0.004 0.032 0.44 144 18 81 105 
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Figure 3-5 to 3-9 show the time series of simulated vs. monitored emissions via automated action 
recognition for the case studies 1, 2, 3, 5, and 6 involving Caterpillar-320CL and Kobleco-
SK330LC. Two different sets of emissions rates, measured emission rates (Heidari and Marr 
2014) and those recommended by EPA (EPA 2004), were combined with the time series of 
activities. The purpose of this comparison was to demonstrate the sensitivity of the predictions to 
emission rates, for which large uncertainties and variability still exist (Abolhasani et al. 2008, 
Lewis et al. 2010). The simulated emission rates for cases 1 and 6 were constant because the 
excavators were working and not idling for nearly the entire simulation duration of these videos, 
and all non-idling activities had the same emission rate in the simulation. Since EPA does not 
recommend an emission rate for idling, the emission rates using EPA’s data are all constant in 
time. Measured emission rates were approximately four times lower than those recommended by 
EPA.  

 

Figure  3-5. CO2 emissions estimated for case 1 using different approaches 
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Figure  3-6. CO2 emissions estimated for case 2 using different approaches 

 

Figure  3-7. CO2 emissions estimated for case 3 using different approaches 
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Figure  3-8. CO2 emissions estimated for case 5 using different approaches 

 

Figure  3-9. CO2 emissions estimated for case 6 using different approaches 
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non-idling modes. Second, according to the simulation, after 258 s the soil was dumped into the 
truck and the excavator stopped while in actuality the activity lasted for 283 s. 

This work examines a small set of case studies, and additional analysis of more videos with a 
higher number of activity classes will improve the accuracy of the technique. Discrepancies 
between actual and simulated emission have two main causes. First, actual operations are not as 
productive as expected by computational simulation. Second, actual operations are active, either 
productively or non-productively, while simulation results expect operations to be idle. Vision-
based technology can be used to help identify the reason for missing the benchmark.   

 

Figure  3-10. Cumulative CO2 emissions for case 1 

3.5 Conclusions 
Concerns over environmental impacts from the construction industry have resulted in extensive 
research efforts to quantify, monitor, benchmark, and possibly control pollutant emissions. This 
research has introduced a framework employing automated visual action recognition using a 
network of cameras at a construction site. In this technique, real-time actions from construction 
activities and operations are recognized automatically from video streams by extracting spatio-
temporal features from a sequence of video frames. Then, by integrating activity-based emission 
rates with the duration of activities, real-time emissions can be quantified. Furthermore, DES can 
be used to generate a benchmark for emissions, and then real-time emissions and productivity 
can be compared to expected values. 
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from earthmoving operation in a case study lasting 283 s were over four times higher with EPA’s 
emission rates instead of on-site, measured emission rates. 
 
Emissions and productivity were also predicted by DES. The ratio of actual emissions, which 
were measured on-site by PEMS for five different types of excavators, to those predicted by DES 
varied from 28% to 144% depending on the type of equipment, operational variables and  
emitted pollutant. Discrepancies may be due to the following factors: inconsistencies between 
actual and planned construction activities, errors in estimation of emission rates, recent control 
technologies applied to some pieces of construction equipment under which the equipment is 
turned off automatically after idling for a while, uniformity of construction simulations while 
actual construction operations are so dynamic and unpredictable in some cases, large fluctuations 
in real-time emission rates due to inter-engine or inter-equipment emissions control mechanisms 
(e.g., emission control technologies, fuel burning efficiency, and manifold absolute pressure 
within engine). If this discrepancy is due to inconsistency between actual and expected 
operations, whether the equipment was less productive or more active, vision-based technology 
can help identify the reason. 

Therefore, this methodology appears to be promising for real-time monitoring and assessment of 
emissions. It also enables practitioners to assess the reason for the observed discrepancy between 
simulated and actual emissions. However, more research is needed in order to minimize the 
limitations of, as well as further develop, this real-time emission assessment technology.    

3.6 Recommendations 
The proposed technology, like all evolving technologies, is still in the completion process. Thus, 
there are still some technical limitations which must be overcome in future research efforts. The 
camera’s power supply and location are should be considered in the pre-construction phase. An 
improved database of emission rates from construction equipment is needed in order to monitor 
and benchmark emissions more accurately. More detailed characterization of activities will 
probably result in more precise estimation of emissions. Defining different types of idling (low 
vs. high) is especially needed. 

Combination of this technology with other techniques that can report engine MAP remotely and 
other sensing techniques in case equipment is not in the cameras’ range of sight will be 
beneficial. For some activities, cameras are not able to detect activities due to their limited range 
of sight. In these cases, technologies such as an accelerometer, RFID, or Telematics will enable 
tracking of the equipment. However, detecting the specific activity in that case will become 
another challenge. Real-time measurement of engine data (speed, pressure, and temperature) will 
enable improved estimate of real-time emission rates. 

One big benefit of using this technique is that it does not require technical training and is easy to 
use. Furthermore, it is cost effective. It can monitor and possibly help reduce unnecessary costs 
in an inexpensive manner. Therefore, by installing cameras and connecting them to the main 
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server, operators can easily see the amount of emissions, compare them to the benchmarked 
values estimated in the pre-construction phase, and assess the reason for possible differences. 

Furthermore, integration of emission database into fleet management tools, which can report 
real-time performance, can be of future practice and research. 
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and compared to those of other widely used models. Real-time emission rates varied more than 
did emission factors, confirming similar previous findings. Measured emission rates in this study 
were lower, from 0.5% to 59% and from 0.5% to 58%, than those predicted by EPA and CARB, 
respectively, and ranged from 2% to 284% of values predicted by the MLR approach. 
Differences in the two approaches — actual on-site emission measurement and those 
recommended by regulatory approaches— suggest that using a single emission factor for 
different engines, even for the same activity within each engine duty cycle, will result in 
noticeable discrepancies, from 4% to 1500%. Thus, solely depending on equipment, engine 
horsepower and engine tier may not enable us to predict engine emission accurately. Other 
factors may contribute to emissions, of which some have been introduced as MAP. However, 
emission control technology and time spent in each duty cycle may contribute greatly to overall 
emission rate and factor. The database collected from emissions in this study might contribute to 
improving the accuracy of the models. There was a considerable difference between measured 
and modeled emission factors, particularly for engines meeting higher tier standards. Thus, 
emissions databases and estimation models should be updated to account for advances in 
emission control and manufacturing technologies. 
Idling and hauling should be treated uniquely rather than lumped together under the umbrella of 
overall emission factors. On the other hand, idling emission rates may vary noticeably, resulting 
in a considerable difference between high-idle and low-idle emission factors. The same 
differences between activity–based emission rates can be claimed based on the assumptions 
made in this study. In the real-world conditions of this study, emission factors were not linearly 
proportional to engine horsepower and size.  
As the next step, real-time measured emission rates were applied into the monitoring technique 
focused on in this study. In this technique, real-time actions from construction activities and 
operations were recognized automatically from video streams by extracting spatio-temporal 
features from a sequence of video frames. Then, by integrating activity-based emission rates with 
the duration of activities, real-time emissions were quantified. Furthermore, DES was used to 
generate a benchmark for emissions, and then real-time emissions and productivity can be 
compared to expected values. 
Emissions predicted using automated action recognition were on average 98% of those estimated 
by manual action recognition. On the other hand, total predicted construction emissions were 
very sensitive to emission rates used in the model. For instance, total CO2 emissions estimated 
from a earthmoving operation in a case study lasting 283 s were over four times higher using 
EPA’s emission rates instead of on-site measured emission rates. 
Emissions and productivity were also predicted by DES. The ratio of monitored emissions, 
which were measured manually by detecting actual activities from videos for nine different types 
of excavators, to those predicted by DES varied from 28% to 144% depending on the type of 
equipment, operational variables and emitted pollutant. The following factors may potentially 
contribute to these differences: inconsistencies between actual and planned construction 
activities, errors in estimation of emission rates, recent emission control technologies applied to 
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some pieces of construction equipment under which the equipment is turned off automatically 
after idling for a while, uniformity of construction simulations while actual construction 
operations are so dynamic and unpredictable in some cases, and large fluctuations in real-time 
emission rates due to inter-engine or inter-equipment emissions control mechanisms (e.g., 
emission control technologies, fuel burning efficiency, and manifold absolute pressure within 
engine). If this discrepancy is due to inconsistency between actual and expected operations, 
either excavator was less productive or more active, vision-based technology helps investigate 
the reason. 

The vision-based methodology appears to be promising for real-time monitoring and assessment 
of emissions. However, more research is needed in order to minimize the limitations of, as well 
as further develop, this cost-effective real-time emission assessment technology.  

4.2 Discussion, Recommendations and Future Work 
The lack of real-time engine data was a limitation of this study, as we had to assume an engine 
speed in order to estimate emission rates from the measured exhaust gas concentrations. 
Development of a database on RPM, MAP, and temperature during equipment operation would 
be very useful. Doing so would require access to the ECU via an OBD port, which currently is 
not available on most construction equipment. Therefore, we encourage equipment 
manufacturers to install such ports.  
 
The relationship between emissions and site and operational characteristics (e.g., type of soil 
hauled and traveled on, terrain grade, etc.) should be investigated further. This will help 
researchers to develop models to benchmark real-time construction emissions in the pre-
construction phase and compare real-time performance to expected benchmarked values.  
 
Although there have been recommendations on application of PEMS for construction emissions 
measurement, few studies have used this technique. Therefore there is a need for more work in 
this domain to measure real-time emission factors. Calibration and validation of steady-state 
emission-related studies with real-time emission-related studies will possibly lead to better 
understanding of actual off-road diesel engine emissions. Using this technique, it is impractical 
to measure real-time emissions from all of the equipment on-site. Therefore, new technologies 
which can measure emissions in an inexpensive and practical manner have to be proposed.  
 
Future research should focus on emissions of particulate matter (PM) because of its strong link to 
health effects and impact on climate change. 
 
The inventory of emission factors needs to be completed in order to monitor and benchmark 
emission more accurately. In order to complete and modify the current inventory, environmental 
agencies have to invest more to come up with a framework in which real-time emission factors 
can be estimated by specifying site and equipment characteristics.  
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Since engine data and MAPs for each model of equipment are not usually available, emission 
models should account for uncertainty and variability in emission factors by activity. 
 
Finally, results of studies such as this one should be incorporated into the development and 
refinement of emission models, including the successor to NONROAD, MOVES. 
 
Vision-based technology, like all evolving technologies, is still in the completion process. Thus, 
there are still some technical limitations which have to be overcome in future research efforts. 
One big benefit of using this technique is that it does not require technical training and is easy to 
use. Therefore, by installing cameras and connecting them to the main server, operators can 
easily see the amount of emissions and compare it to the benchmarked values estimated in the 
pre-construction phase. 
 
This technology is able to detect durations of specific pre-defined activities performed by 
construction equipment and consequently report the operational productivity and environmental 
emissions. It is capable of handling noisy features arisen from background, which are typical in 
construction sites. It can also handle blurry frames and camera movements to some extent.  
As far as researchers who are involved in this project realized, there is still some work that needs 
to be done. Below are some areas which have to be worked on in future efforts. 
  
Defining a higher number of activities will probably result in a more precise estimation of 
emissions. If activities are categorized further, estimations would become more realistic. 
Defining different types of idling activity (low vs. high) is especially needed.  
 
This technology needs to be combined with other techniques that can report the pressure exerted 
on the engine remotely. This will help us distinguish between the activities that video processing 
is not able to discern. For some horizontal activities, cameras are not able to detect activities due 
to the limited range of sight they have. In these cases, tracking techniques, like accelerometers, 
RFIDs or Telematics will help in tracking the equipment. Thus, merging this technique with 
other sensing technologies will be beneficial in case of equipment going out of the cameras’ 
range of sight. However, detecting their specific activity in that case will become another 
challenge. 
 
Battery charging and replacement while cameras are set in construction sites has to be taken into 
account. Since supplying constant power for the cameras is a challenge, different ways to sustain 
battery energy become crucial. In addition, there should be communication between cameras and 
a main server by which cameras can inform mangers of the level of power they have used.  
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Placing the cameras, especially in complex construction sites, have to be considered in pre-
construction phases. In addition, their locations have to be changed according to on-going 
progress in construction projects. Limited and non-blocked range of sight is a decisive factor for 
location planning. There is a possibility of a camera’s range of sight being blocked while 
construction activities are under operation. This fact magnifies the importance of laborer training 
in order not to impede monitoring process.  
 
If the networks of cameras are connected together and can simultaneously work with each other, 
possible errors will be minimized and possibility of videos being blocked will be decreased. This 
way energy consumption for cameras can be reduced as well. Therefore, the algorithm associated 
with this technology needs to be improved to the point in which if a piece of equipment goes off 
from a camera’s sight, another camera can focus on the missed equipment and detect emissions 
from it.  
 
Another interesting research area in this domain is to develop a neural network algorithm in 
which if the same piece of equipment appears in the sight of two different cameras, the 
interference will be realized. This way, one of the cameras will save energy by not detecting 
activities and emissions from the equipment.  
 
The decisive factors for putting the technology into the market, cost and ease of use, have to be 
maneuvered on. Each camera will cost from $500-1000 initially and can monitor several pieces 
of equipment on a construction site. Depending on the scale of a project, the number of required 
cameras would vary. Assuming that 3 excavators are working simultaneously, 3 cameras are 
needed to monitor their activities. So it will cost $3000 to purchase the cameras at maximum. 
Assuming that 25% of idling activity can be shifted to non-idling using this technique, reduced 
cost associated with saved gasoline will be $9650 annually. On the other hand, it will increase 
productivity and possibly reduce the duration of a project.   
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Appendix I: Model for Earthmoving Operation of Sany 
Excavator  

 

DISPLAY "Emissions from Exacavtor in earth Moving operation including excavator and 
trucks"; 

VARIABLE Numberofexcavators 1; 

VARIABLE Numberoftrucks 1; 

VARIABLE Volumeofsoiltomove 14.9; 

VARIABLE Truckcapacity 7.5; 

VARIABLE Excavatorcapacity 0.93; 

VARIABLE ExcavatorCO2idleEmissionfactor 36.41; 

VARIABLE ExcavatorCO2nonidleEmissionfactor 171; 

VARIABLE ExcavatorCOidleEmissionfactor 0.25; 

VARIABLE ExcavatorCOnonidleEmissionfactor 0.334; 

VARIABLE ExcavatorHCidleEmissionfactor 0.0367; 

VARIABLE ExcavatorHCnonidleEmissionfactor 0.0464; 

VARIABLE ExcavatorNOxidleEmissionfactor 0.206; 

VARIABLE ExcavatorNOxnonidleEmissionfactor 0.708; 

VARIABLE Pessimisticloadtime 0.34; 

VARIABLE Likelyloadtime 0.3; 

VARIABLE Optimumloadtime 0.22; 

VARIABLE Expectedhaultime 23.6; 

VARIABLE Haultimevariability 1.05; 

VARIABLE Dumptime 0.5; 

VARIABLE Expectedreturntime 19.3; 

VARIABLE Returntimevariability 1.05; 
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DISPLAY; 

DISPLAY "Number of excavators           :" 

Numberofexcavators; 

DISPLAY "Number of trucks           :" 

Numberoftrucks; 

DISPLAY; 

DISPLAY "Amount of soil to move      :" 

Volumeofsoiltomove; 

DISPLAY "Capacity of excavators         :" 

Excavatorcapacity; 

DISPLAY "Capacity of trucks         :" 

Truckcapacity; 

DISPLAY "Number of scoops per trucks :" 

Truckcapacity/Excavatorcapacity; 

DISPLAY; 

DISPLAY; 

DISPLAY "Duration of each scoop      : Normal[" 

Optimumloadtime "," 

Likelyloadtime "," 

Pessimisticloadtime "]min."; 

DISPLAY "Duration of haul            : Normal[" 

Expectedhaultime  "," 

Expectedhaultime*Haultimevariability 

"] min."; 

DISPLAY "Duration of dump            :" 
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Dumptime 

"min."; 

DISPLAY "Duration of return          :Normal[" 

Expectedreturntime "," 

Expectedreturntime*Returntimevariability 

"]min."; 

DISPLAY; 

GENTYPE Excavator; 

GENTYPE Truck; 

QUEUE Excavatorswait Excavator; 

QUEUE Truckswait Truck; 

COMBI Load; 

NORMAL Haul; 

NORMAL Dump; 

NORMAL Return; 

LINK LD1 Excavatorswait Load; 

LINK LD2 Load Excavatorswait; 

LINK HL1 Truckswait Load; 

LINK HL2 Load Haul Truck; 

LINK HL3 Haul Dump Truck; 

LINK HL4 Dump Return Truck; 

LINK HL5 Return Truckswait; 

LINK HL6 Truckswait Load; 

VARIABLE Scoopesrequiredperload Truckcapacity/Excavatorcapacity; 

VARIABLE Truckloadsrequired Volumeofsoiltomove/Truckcapacity; 



65 
 

VARIABLE Truckloadsdumped Dump.TotInst-Dump.CurInst; 

VARIABLE Dayssimulated SimTime/60/8; 

VARIABLE Idletime Excavatorswait.AveWait; 

VARIABLE Countexcavator Excavatorswait.TotCount; 

VARIABLE TotalidleCO2emission 
Idletime*Countexcavator*ExcavatorCO2idleEmissionfactor; 

VARIABLE TotalnonidleCO2emission ((SimTime*Numberofexcavators)-
(Idletime*Countexcavator))*ExcavatorCO2nonidleEmissionfactor; 

VARIABLE TotalCO2emission TotalidleCO2emission+TotalnonidleCO2emission; 

VARIABLE UnitCO2emission TotalCO2emission/Volumeofsoiltomove; 

VARIABLE TotalidleCOemission 
TotalidleCO2emission*ExcavatorCOidleEmissionfactor/ExcavatorCO2idleEmissionfactor; 

VARIABLE TotalnonidleCOemission 
TotalnonidleCO2emission*ExcavatorCOnonidleEmissionfactor/ExcavatorCO2nonidleEmissionf
actor; 

VARIABLE TotalCOemission TotalidleCOemission+TotalnonidleCOemission; 

VARIABLE UnitCOemission TotalCOemission/Volumeofsoiltomove; 

VARIABLE TotalidleHCemission 
TotalidleCO2emission*ExcavatorHCidleEmissionfactor/ExcavatorCO2idleEmissionfactor; 

VARIABLE TotalnonidleHCemission 
TotalnonidleCO2emission*ExcavatorHCnonidleEmissionfactor/ExcavatorCO2nonidleEmissionf
actor; 

VARIABLE TotalHCemission TotalidleHCemission+TotalnonidleHCemission; 

VARIABLE UnitHCemission TotalHCemission/Volumeofsoiltomove; 

VARIABLE TotalidleNOxemission 
TotalidleCO2emission*ExcavatorNOxidleEmissionfactor/ExcavatorCO2idleEmissionfactor; 

VARIABLE TotalnonidleNOxemission 
TotalnonidleCO2emission*ExcavatorNOxnonidleEmissionfactor/ExcavatorCO2nonidleEmissio
nfactor; 
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VARIABLE TotalNOxemission TotalidleNOxemission+TotalnonidleNOxemission; 

VARIABLE UnitNOxemission TotalNOxemission/Volumeofsoiltomove; 

DURATION Load 
'Scoopesrequiredperload*Pert[Optimumloadtime,Likelyloadtime,Pessimisticloadtime]'; 

DURATION Haul Expectedhaultime*Normal[1,Haultimevariability]; 

DURATION Return Expectedreturntime*Normal[1,Returntimevariability]; 

INIT Excavatorswait Numberofexcavators; 

INIT Truckswait Numberoftrucks; 

SIMULATEUNTIL 'Truckloadsdumped>=Truckloadsrequired'; 

DISPLAY  

"************************************************** 

       Emission Results from Simulation 

"; 

DISPLAY "Idle Time  :" 

Idletime 

"minutes"; 

DISPLAY "Time required to move soil   :" 

SimTime 

"minutes"; 

DISPLAY "idle CO2 Emissions                  :" 

TotalidleCO2emission 

"g"; 

DISPLAY "non-idle CO2 Emissions                  :" 

TotalnonidleCO2emission 

"g"; 
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DISPLAY "CO2 Emissions                  :" 

TotalCO2emission 

"g"; 

DISPLAY "CO2 Emissions per unit of soil hauled      :" 

UnitCO2emission 

"g/m3"; 

DISPLAY "idle CO Emissions                  :" 

TotalidleCOemission 

"g"; 

DISPLAY "non-idle CO Emissions                  :" 

TotalnonidleCOemission 

"g"; 

DISPLAY "CO Emissions                  :" 

TotalCOemission 

"g"; 

DISPLAY "CO Emissions per unit of soil hauled      :" 

UnitCOemission 

"g/m3"; 

DISPLAY "idle HC Emissions                  :" 

TotalidleHCemission 

"g"; 

DISPLAY "non-idle HC Emissions                  :" 

TotalnonidleHCemission 

"g"; 

DISPLAY "HC Emissions                  :" 
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TotalHCemission 

"g"; 

DISPLAY "HC Emissions per unit of soil hauled      :" 

UnitHCemission 

"g/m3"; 

DISPLAY "idle NOx Emissions                  :" 

TotalidleNOxemission 

"g"; 

DISPLAY "non-idle NOx Emissions                  :" 

TotalnonidleNOxemission 

"g"; 

DISPLAY "NOx Emissions                  :" 

TotalNOxemission 

"g"; 

DISPLAY "NOx Emissions per unit of soil hauled      :" 

UnitNOxemission 

"g/m3"; 


