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Abstract
Background—We aim to determine the economic and social impact of typical interventions
proposed by the public health officials and preventive behavioral changes adopted by the private
citizens in the event of a “flu-like” epidemic.

Method—We apply an individual-based simulation model to the New River Valley area of
Virginia for addressing this critical problem. The economic costs include not only the loss in
productivity due to sickness but also the indirect cost incurred through disease avoidance and
caring for dependents.

Results—The results show that the most important factor responsible for preventing income loss
is the modification of individual behavior; it drops the total income loss by 62% compared to the
base case. The next most important factor is the closure of schools which reduces the total income
loss by another 40%.

Conclusions—The preventive behavior of the private citizens is the most important factor in
controlling the epidemic.
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1 Introduction
The threat of a global disease outbreak, such as pandemic Influenza, is an important public
health problem facing the world. The current potential for a H1N1 or H5N1 pandemic
underscores the conspicuous risk to public health and global economy. In order to plan and
respond proportionately to such pandemics, public health officials need to have a systematic
assessment of the socio-economic and health impact of the disease, interventions and other
mitigation efforts [11,19,43]. Policy makers desire an understanding of intervention
possibilities and pitfalls for limiting pandemic risk and assisting vulnerable populations [24].
These interventions may include social distancing, a prioritized governmental distribution of
vaccines and antiviral medications, and pharmaceutical consumption in the private sector
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[50,14]. Individuals may possess strong private incentives to avoid the disease, and are
willing to self impose social distancing measures. Traditional models in epidemiology and
economics focus on the prevalence of the disease and the cost of treatment respectively but
the cost of disease avoidance should be considered as well [43]. With the help of
simulations, current research aims to fill this gap and capture the cost of the disease
avoidance caused by the modified behavior [42].

The focus of this research is to understand how individuals in various demographic classes
react to an outbreak given possible behavioral changes and how this modified behavior
affects the spread of the disease. It is well known that people adapt their behavior in
response to a threat posed by a potential epidemic, but a systematic study of this kind of
behavior has not been undertaken to date. Our previous work shows that certain behavioral
changes have potentially harmful side effects during outbreaks [4]. Personal behavior during
an epidemic depends on an individuals’ socio-economic status as well as their perception of
the epidemic in the community [25]. People maximize their well being by choosing levels of
prevention and strategies with respect to their own constraints. A national survey by the
Harvard School of Public Health Project was recently conducted to gauge public reaction to
social distancing and other non-pharmaceutical interventions that may be enforced during a
severe pandemic [11]. The survey highlights the fact that different demographics of people
will react differently to the interventions. This research undertakes the important task of
measuring the economic and social effects of different social distancing and pharmaceutical
interventions that are normally adopted by the public health officials and private citizens in
an effort to contain a “flu-like” epidemic. The importance and effects of school closures,
antiviral distributions, and private social distancing measures are specifically analyzed. It
looks into the fairness of different intervention strategies by examining their economic
impact within specific demographic classes. To understand the full impact of a disease, it is
important to calculate not only the cost of the disease but also the cost of disease avoidance.
The results identify population strata by demographics that are likely to win or lose under
such policies. A number of recent reports and Hurricane Katrina have underscored the
importance of this kind of work [40,10].

2 Methodology
We use an individual-based modeling environment called Simdemics [5] for simulating
epidemic outbreaks. Simdemics is a network-based epidemiological modeling framework
that simulates the spread of a phenomenon across a social contact network. Simdemics
builds upon individual-based mobility, activity, and disease transmission models, see Table
1. This type of model allows one to perform studies at an individual level to evaluate the
effects of public policy during an emerging infectious disease. See [3,27,21,22,23,38] for
recent results and discussion on disaggregate models. The simulation approach taken in this
study relies on three interacting models: Step 1. Statistical models for the creation of
synthetic populations, Step 2. Activity-based model for creating time varying social contact
networks, Step 3. Model of disease transmission. To maintain the readability of the paper,
these steps are described, in detail, in the Appendix as well as a conference version of this
paper [8].

3 The Experimental Design and Its Rationale
3.1 Demographic Classes and Intervention Strategies

This study estimates the differences in economic and social impact on demographic classes
caused by various public antiviral distribution and social distancing strategies as well as
private behavioral strategies. The study simulates a “flu-like” epidemic in the New River
Valley (NRV) region of Southwest Virginia, containing about 150,000 people, using an
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individual-based simulation model. The synthetic population is generated from US Census
data as provided in PUMA (Public Use Microdata Area) and SF3 files (www.census.gov).
Demographic classes are based on the three social factors, i.e., household income, family
size and the age of the individual. It has been shown that these factors are highly correlated
with most other demographic factors such as education, ethnicity, employment etc. and are
hence appropriate for stratification. Individuals are aggregated into demographic classes for
interpretation of outputs.

Income-based classes are low, medium and high and they correspond to families who make
less than $25,000, $25,000–$75,000, and more than $75,000 per year respectively. Similar
income thresholds have been used by other researchers [11]. Classes based on household
size are defined as those containing a single-member, two to three members, and more than
three members. Age-based categories are juveniles (0–18), working adults (19–64), and
retirees (65+). Demographic classes were formed through combinations of each of the three
factors resulting in a total of 27 different classes [47]. However, 3 of the 27 classes were
empty and hence are excluded from the tables. Table 2 displays the categories as well as the
proportion of people (in parentheses) in each demographic class. The results for the middle
groups (e.g., middle income, small families, and adults) are presented in the appendix
(Additional Analysis Section) to simplify the reporting of the more interesting groups on the
extremes of each demographic factor. In Table 3, the column “class” lists the classes with an
exact count of the individual’s in the class. If there are any adult children living in with their
parents, they are counted as adults and assumed to behave as adults.

3.1.1 Individual Strategies—People with different socio-economic background follow
different preventive strategies to accommodate their personal constraints. These strategies
are based on how people perceive the society is doing as well as how their own peer group/
demographic class is doing. We project that change in individual behavior is triggered by the
prevalence level of the virus in the overall society (global prevalence) as well as within
one’s own demographic class (local prevalence). To model that, thresholds for these two
factors were set for each class as shown in Table 3. The basic principles followed in setting
these thresholds are (i) the higher the income level, the lower is the overall tolerance for
disease risk and hence lower the global threshold, (ii) children have the lowest thresholds
since adults are protective of the children and monitor reports of widespread illnesses and
absenteeism among children, and (iii) adults have the highest thresholds since they are the
most healthy group. As the main income earners, adults have to take more risk with their
health although some individuals with a high risk of complications may take less risk with
their health. The private interventions are triggered as soon as the local or the global
prevalence threshold is met for the class. The threshold is reached based on the aggregated
number of new infections in a day exceeding a tolerable limit. Please note that only one set
of parameters has been considered here based on our best guess. In real life, there is likely to
be a variation in the application of these thresholds across people.

This threshold measure assumes active surveillance, monitoring, and reporting of infection
counts per day by public health officials. Three interventions available to the people are: buy
antivirals for prophylactic use1; eliminate unnecessary trips such as trips to shopping malls
and recreational facilities; and rely on protection resulting from other people taking
antivirals. The model assumes that when the threshold is crossed, all affluent household
members choose the first option, i.e., purchase over the counter antivirals with a low .3
efficacy for prophylactic use because (1) they can afford to spare resources for the antivirals,
and (2) this strategy is least intrusive to their lifestyle. Members of the middle income class

1A recent study [20] by NIH considered the scenario where private citizens could purchase antivirals in the open market for
prophylactic use.
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choose the second strategy and modify their daily activity schedule by eliminating
unnecessary trips. This social distancing technique reduces their potential contact with the
infected individuals in the society. The individuals from the poorest income class choose to
rely on protective steps being taken by the other members of the society. They find it too
expensive to purchase antivirals; and they already take very few unnecessary trips. We
assume that all individuals in their demographic classes strictly follow their respective
strategies. This may not be true in reality.

Table 3 tabulates the private strategies implemented by the different income classes and the
measurements used for global and local thresholds.

3.1.2 Public Strategies—We simulate two common strategies available to public health
officials; distribution of antivirals to individuals and school closures, see Table 4. The
trigger threshold for the public intervention is set at 1% of the total population becoming
infected. The public stockpile of antiviral courses is limited to 10,000.2 The antiviral courses
are distributed to the individuals based on the following four selection techniques; randomly
selected individuals, poorest individuals, first sick individuals, and those with the highest
simulation infection risk probability (high-risk).

The simulation infection probability of an individual is defined as the probability with which
the individual gets infected when the disease starts from a random person in the population
[6]. We empirically estimate the infection probability of all individuals in the population by
running one hundred simulation runs of the epidemic where each run starts from a different
random individual. To calculate the percentage, we determine the number of times an
individual gets sick and divide it by the total number of runs. For example, if an individual
got infected five times during the hundred runs, his simulation infection probability was
0.05. Under the high infection risk strategy, the antiviral courses were distributed to those
who had the highest risk value as calculated by the above procedure. This group is the
optimal group to work with, as it is the most likely set of individuals to become infected.
While identifying this group would not be implementable, it provides a benchmark for
strategy comparisons with less optimal groups. It is important to point out that this group
does not include people who are at high risk of complications such as obese, diabetics,
pregnant, HIV+ etc. The only demographic used to distribute public antivirals is the income
level. Note that under all the above strategies, the public stockpile of antivirals is distributed
only after the global threshold is met.

For the close school strategy, the trigger threshold is also set at 1% of the total population
becoming infected. The schools are kept closed for a period of two weeks. When the schools
are closed, at least one adult has to be home to care for young children, age 13 or less, who
do not remain alone at home. In the case of both parents working or all adults working, one
working parent/adult stays home. We assume that 75% of the children stay at home when
their schools are closed. The other 25% students follow their after school activities and
hence mix with other children outside the school environment. The 75/25 split is based on
the Activity Survey Data described in the Appendix. However it is possible that this split is
different when the schools close during the normal term.

Overall, there is a limited mixing of children during the school closure in comparison to the
regular school environment. We try various combinations of interventions including school
closure and distribution of public antiviral courses, resulting in nine distinct governmental

2To test the sensitivity of the number of antiviral courses available in the public stockpile, we repeated the entire experiment in which
the public antiviral stockpile was limited to only 1,000 courses. The results of that experiment were not statistically significantly
different from the results of 10,000 course experiment.
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strategies. Refer to Table 5 for previous work investigating these governmental strategies
and individual behaviors.

4 Results
In order to assess the economic impact of various intervention strategies by demographic
class, we develop seven distinctive scenarios based on individual and governmental actions.
Five of these scenarios involve private and public interventions. A base case is conducted to
determine the economic loss and the size of the epidemic in the absence of any
interventions. Finally, a scenario is developed where no government intervention takes place
and only private strategies are implemented. This scenario helps isolate the socioeconomic
effect of the private strategies. The economic costs for each strategy are derived from direct,
indirect, preventive and treatment costs. The direct costs are composed of income losses due
to an ill worker not reporting to work. This cost combines personal and corporate economic
losses for salaried, wage, and self-employed workers. It is true that all sick leaves do not
necessarily result in income loss to the individuals due to the availability of paid sick leave
for many individuals. However, sick leave still results in productivity loss which causes loss
of income to the society as a whole. Therefore we count all income losses in our calculation.
Direct costs also include the cost of treatment such as outpatient visits, prescription costs,
co-payments, hospitalization etc. The indirect costs are due to parents staying home to care
for ill children. The preventive costs are composed of the governmental actions of
distributing 10,000 antiviral kits and closing schools for a two week period. The costs of
closing schools is determined by the lost wages for parents staying home to provide child
care and workers associated with the school system. Costs for treating infected individuals
through hospitalizations and outpatient care are calculated based on [37] and provided as
health care costs. Also the rates of outpatient care and hospitalizations of the sick were
based on the fractions given in [37].

The costs for individuals in each strategy are aggregated and compared to the base case to
describe the economic benefits of each strategy to each demographic group as well as the
amount of money spent by the government per person in comparison to the base case
epidemic. In all of the scenarios, the interventions by the government and the modified
behavior of the private citizens greatly reduced the income loss and the number of infections
during the course of the epidemic. Even the least effective intervention diminished the total
size of the epidemic to less than half of the base epidemic. The prevalence of the disease at
its height was reduced by two thirds. It is important to note that the interventions not only
caused the peaks to drop significantly but also delayed the outbreak and reduced the
duration of the epidemic. The epidemic curves for each social class and for each strategy is
shown in the Appendix. Please note that all strategies reported here include behavior
modifications by the private citizens. The only exception is the base case.

4.1 Strategy Label Description
We now describe the strategies that are followed by the public health officials and private
citizens in this study. Under all scenarios except the base case, the private citizens follow
their respective strategies whenever their local or global thresholds are met. The entire
public stockpile of antivirals is distributed by the government to the following people:
poorest, highest risk, first sick, and randomly selected individuals. These are labeled as poor
(P), high risk (HR), sick(S) and random(R) strategies. CS Strategy closes schools for 14
consecutive days. CS+R strategy refers to closing schools as well as distributing the public
stockpile of antivirals to the population at random. Similarly, CS+P, CS+HR and CS+S refer
to closing schools plus giving public antivirals to the poorest, highest risk and sick people
respectively. NoGovt strategy implies that there is no intervention by the government, i.e.,
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no antivirals are distributed and the schools remain open. This strategy helps isolate the
effects of individual behavior.

4.2 Effect of Preventive Behavior
The results show that the most significant reduction in the income loss and the size of the
epidemic was caused by the preventive behavior undertaken by the individuals. This can be
seen by observing Table 6 where the NoGovt strategy performs 60% better in terms of the
total costs and 65% better in terms of attack rate compared to the base strategy. Under the
NoGovt strategy, only the private citizens modified their behavior once alerted to the fact
that a number of peers in their demographic class and in the society have been infected. In
the NoGovt strategy, there is no intervention by the government. The strategies with school
closures and antiviral distributions along with preventive behaviors only slightly outperform
NoGovt. This implies that the private behavior modification was the main factor in reducing
the income loss and the size of the epidemic in all these strategies.

The second best reduction in the size of the epidemic came from the government strategies
that included closing schools which dropped the total income loss and the attack rate by
another 40%. However, this strategy increased the preventive costs by about $18 million
dollars. Among the public antiviral distribution strategies, the distribution of the antivirals to
the highest infection risk individuals proved to be the most effective. Surprisingly, it
performed better than the sick strategy in which antivirals are distributed to the first sick
individuals. Compared to the sick strategy, the high risk strategy performed 25% better in
terms of the attack rate. We believe that this is due to the fact that sick individuals do not go
to school and work which reduces their exposure to individuals whereas the high risk people
still mingle in the society. Giving antivirals to the high risk group keeps them from being
inadvertently infected by the large number of individuals in the society. Strategies involving
school closures shifted the peak of the epidemic curves by several days, and the number of
infected individuals also tailed off earlier compared to the strategies without school closures.
The delay of the epidemic peak is important in real situations for preparing additional
responses and medical services. Figure 1, Figure 2, and Figure 3 show the cost of strategies
by demographic class.

4.3 Effect of Age
Comparing the performance of intervention strategies across demographic classes highlights
their strengths and weaknesses in controlling the epidemic and their usefulness in targeting a
particular strata of the population. Please see Figure 1. For example, closing schools for two
weeks had the best impact on reducing the children attack rate. although it created a large
economic burden on the society; a total of $25 million, of which almost $19 million is in
preventive costs. With this government intervention, the disease was almost eliminated
within the children segment as the attack rate dropped from 0.84 in the base case to 0.07 in
the children class. While closing schools was socially beneficial to the children, the elderly
witnessed a less significant improvement. For the elderly, the attack rate dropped from 0.66
in the base case to 0.18 in the CS scenarios. Although the total number of infections are less
when the schools are closed, the elderly suffered from increased infections immediately
following the opening of schools. This led to a spike in transmissions among all ages which
was then followed by a sharp decline in the epidemic curve. According to the base case, the
elderly portion of the population had a much lower risk of infection. The infection
prevalence in the base case among the elderly was at 66% whereas it was 84% for children.
The difference was likely caused by the isolation of the elderly from the rest of the
population. The overall population has a generally higher mixing rate compared to elderly.
When the schools were closed, the antivirals did not play as key of a role in determining the
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outcome of the epidemic. Among all the antiviral distribution strategies, distribution of
antivirals to the high risk group achieved the largest reduction in the attack rate.

4.4 Effect of Family Size
Family size is an important variable in determining a person’s chances of getting infected.
Single individuals are the least likely to become infected as they spend several hours being
alone at home without the extensive exposure to family members. Figure 2 shows the total
costs encountered by family class. The large families had to incur higher preventive costs for
strategies involving school closure. Closing school strategy is least beneficial to singles
since they have no exposure to children. Large families with four or more members almost
certainly have multiple children, and the impact of school closure is most significant for this
class. In general, school closures are very beneficial in reducing the epidemic among all
demographics regardless of the family size. The antiviral distribution strategy mixed with
the school closures had the most significant impact on reducing the size of the epidemic.

4.5 Effect of Income
As Figure 3 shows, individuals from different income classes were affected differently from
the various interventions. Costs from the low income class varied across strategies much
more than the costs from the high income class. In terms of net benefits, the low income
class gained the most under the CS+HR strategy and least under the NoGovt strategy. For
this class, all strategies involving school closure resulted in higher benefits than strategies
with no school closures. The government distribution of antivirals did little to reduce the
prevalence of the virus. In general, after antiviral interventions the attack rates turn out to be
almost the same in the low class and the high income class even though the low income
class had not taken any personal action whereas the high income class had modified its
behavior. Originally the high income class had a 6% higher attack rate than the low income
class but the parity after interventions suggests that higher income class’s ability to change
its own behavior had an immense effect on the attack rate. Government interventions did not
help reduce the prevalence of the virus in higher income individuals as much as the other
classes since they could afford their own medications. However, this class did benefit
indirectly by the closing of schools since the epidemic was reduced in the rest of the
population. Antiviral distribution to the high risk group had the greatest effect on the high
incomes but not on the poorest segment.

4.6 Key Findings
Table 6 outlines the direct and indirect income loss, private and public cost of disease
avoidance, attack rate, epidemic size and the total number of sick days by each intervention.
A brief summary of the results shown in Table 6 is provided below:

1. The strategy that results in the smallest attack rate and the least amount of direct
and indirect income loss is CS+HR. This strategy drops the attack rate by 87% and
the total income loss by 82% compared to the base case. The drop in lost income is
90% due to drop in illness and 10% due to reduced care-taking. Note that the CS
+HR strategy performs better than the CS+Sick strategy. Under the CS+Sick
strategy, the total income loss drops by 80% compared to the base case. This result
shows that a proactive strategy that targets the high risk group performs better
economically as well as in containing the epidemic than the reactive strategy in
which the sick people are targeted.

2. The private citizens can greatly influence the epidemic through behavior
modifications as shown by the results of the NoGovt strategy. Under this strategy
there is no intervention from the government such as school closures or antiviral
distribution; only the private strategies stated earlier, i.e., stopping all non-essential
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activities and taking antivirals prophylactically, are in place. This alone causes a
drop in total income loss by 62% and drop in attack rate by 64% compared to the
base case.

3. The performance of the NoGovt and random strategies are statistically
indistinguishable. This can be verified by comparing the attack rates, sick days, and
income loss columns of these strategies. A similar observation may be made for the
CS+R and CS+P strategies. Given the numerical variation in the outcomes of both
the strategies, they are practically the same in performance. Under the NoGovt
strategy, the government does not distribute any antivirals to people whereas in
random strategy the government gives antivirals randomly. However, under all
these strategies the private citizens follow their modified behavior. This implies
that the distribution of antivirals has only a marginal effect in improving the socio-
economic measures. The most significant contribution comes from the modified
behavior of the citizens.

4. The average total cost of saving a person is highest when schools are closed. This is
due to added preventive costs such as care-taking of (healthy) children.

5. The CS strategy in combination with the antiviral distribution to the high-risk class
results in the lowest income loss, number of sick days, epidemic size, and attack
rate.

Tables 7 and 8 show how different strategies affect people across demographic classes. A
summary of the results is as follows:

1. In the base case, the children and the large families face the highest attack rates.
The singles and elderly face the lowest attack rates.

2. Closing schools are the most effective strategies across all classes, although
children and large families benefit the most. For the children class, the total costs
go down by 88%, and for large families, the total income loss goes down by 84%
compared to the base case. However, for large families the preventive costs go up
by $10 million primarily due to increased care taking of children and lost wages as
a result of school closures. Compared to the base case, the attack rate for children,
drops from 84% to 8% on an average and for the large families, it drops from 81%
to 15%. The singles and the elderly classes benefit the least.

3. Closing schools combined with distribution of antivirals to the highest risk
individuals (i.e., CS+HR strategy) works the best across all demographic classes. It
results in the lowest attack rates, lowest number of absolute sick days, lowest
epidemic size and lowest income loss among all classes compared to any other
strategy. We believe that giving antivirals to the highest risk people fares better
than distributing them to the sick because the sick people stay home (from work
after falling sick) and stay out of public circulation whereas the high risk people
continue to mix in the society.

4. Under almost all strategies, the lowest income class faces the highest attack rates.

5. The cost of saving a person is by far the highest in the highest income class across
all strategies. For each class, it is calculated by dividing the total income loss for
the class by the difference between the base epidemic size and the class epidemic
size. Under the CS+HR strategy, this per capita cost of saving a life goes as high as
$502 for the high income class whereas it is only $65 for the low income class.
This difference is mainly due to the fact that high income families cause higher
losses in income and productivity for their sick days. The high income families also
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have higher preventive costs because their behavioral strategy requires them to buy
antivirals when their disease prevalence thresholds are met.

5 Summary and Conclusions
This research shows, in detail, the socio-economic impact of public and private mitigation
efforts on different population strata. Note that the results are based on specific thresholds,
strategies and assumptions made on behalf of each demographic class. These are unlikely to
play out exactly in this manner. However, the results still provide useful insights on the role
of behavioral adaptation. They show that the modification of behavior by the private citizens
is the most important factor in containing the epidemic. Behavior modification alone drops
the total income loss by 62% compared to the base case. Simply limiting the number of non-
essential trips and taking antivirals prophylactically can reduce the spread of the virus to
almost one third of its base size. These results signify the importance of actions by the
private citizens and have implications for their level of compliance to health officials’ calls
for social distancing and pharmaceutical measures. The closure of schools results in an
additional 10–15% drop in infections after individuals have modified their behavior. The
best and most effective strategy turns out to be CS+HR which requires school closures,
public distribution of antivirals to the highest risk individuals in the society, and behavior
modification by the private citizens.

In light of our results, we believe that activities such as governmental policies and media
campaigns that urge the public to modify their behavior in order to reduce exposure to an
infectious disease are likely to greatly reduce epidemic attack rates. We find that closing
schools mitigates an epidemic better than the provision of antiviral kits. The governmental
actions of school closure are more effective although less economically efficient in
preventing infections than the distribution of antiviral kits.
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Appendix

Assumptions
Below we provide a list of the assumptions used in performing these experiments:

1. The epidemic starts from five index cases, chosen randomly.

2. All simulations were performed 100 times by changing the random seed. The
economic and infection results are provided as the average cost and mean number
of infections per group over the 100 iterations.

3. School closure always occurs for a 14 day period.

4. Anti-viral prophylaxis course lasts for 10 days and treatment course lasts for 5
days.

5. Trigger thresholds for public and private intervention strategies are stated in Table
2. All global thresholds are based on total disease prevalence level in the society
and local/personal thresholds are based on people not reporting to work in a
person’s demographic class.

6. The private citizens take the following preventive actions to avoid getting the
disease. The high income households buy antivirals, the medium income
households stop their non-essential activities such as shopping and recreational
trips, and the lowest income households hope their contacts are taking adequate
preventative steps and hence take no action. When the high income households buy
antivirals for prophylactic use, it is bought for every member of the household.

7. The public interventions are based on only the global trigger which is set at 1% of
the total number of people being sick in the society. The public interventions
involve closing schools and distributing antivirals.

8. When a young child (age 13 or younger) is sick, a non-working older sibling or
parent stays home but if all adults are working, a working adult misses work to stay
home with a young child for the two week duration schools are closed. We assume
that the adult is able to take leave from work as needed.

9. Infected individuals do not go to work or school. This results in a schedule change
for infected workers, infected children, and the working parent of an infected child.

10. The income of the adult is calculated by dividing the household income by the total
number of working adults in the household.

11. Efficacy of the generic over the counter anti-viral is assumed to be 30%.

12. The private stockpile of antivirals (or the number of courses available from the
market) is unlimited but the public stockpile is limited to 10,000 courses.

Computational Epidemiology Models
Aggregate computational epidemiology models often assume that the population is
partitioned into a few sub-populations (e.g. by age) with a regular interaction structure
within and between sub-populations. The resulting uniform mixing model can typically be
expressed as a set of coupled ordinary differential equations. Such models focus on
estimating the number of infected individuals as a function of time and have been useful in
understanding population-wide interventions. For example, they can be used to determine
the level of immunization required to protect a population from an epidemic. See [3,2,31]
for more discussion on this class of models. The individual based modeling framework we
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use is Simdemics [5] which simulating epidemic outbreaks at the individual level of
granularity. Simdemics belongs to a new emerging class of models called network based
epidemiological models that use a detailed representation of social contact networks; such a
representation is crucial for studying the questions related to the role of individual behavior
and public policies. This disaggregated, agent based model can represent each interaction
between individuals and can thus be used to study critical pathways of the diseases. It can be
used to study the effect of public policies and individual behavior on the dynamics of
infectious diseases. Disaggregate models require neither partitions of the population nor
assumptions about large scale regularity of interactions. The three interacting models used
by Simdemics allow for the diffusion of an infectious disease across a network: Step 1.
Statistical models for the creation of synthetic populations, Step 2. Activity based model for
creating time varying social contact networks, Step 3. Model of disease transmission. More
discussion about Simdemics can be found in [3,21].

Statistical Models of Urban Populations
Step 1 generates a synthetic population by integrating a variety of databases from
commercial and public sources into a common architecture for data exchange. The process
preserves the confidentiality of the original individuals and produces synthetic agents with
realistic attributes and demographics. The population is a set of people and households
associated with a set of demographic variables drawn from the census. The population is
comprised of a collection of agent objects, each associated with a set of attributes. Each
individual is placed in a household with other people and each household is placed
geographically in such a way that a census of our modeled population is statistically
indistinguishable from the original census, if aggregated to the block group level. Thus, the
generated population used in simulations are statistically indistinguishable from the census
data. See [9,45,46] for additional details.

Activity Based Models of Social Contact Networks
In Step 2, a set of activity templates for households are determined based on several
thousand responses to an activity or time-use survey. The modeling methodology is called
activity based travel demand models and is now accepted as the de facto standard in
transportation science, see [13,12] for recent overviews. Our early work in this area [9]
played an important role in the development of this methodology. The activity templates
include the sort of activities each household member performs and the time of day they are
performed. Each synthetic household is then matched with one of the survey households
using a decision tree based on demographics such as the number of workers in the
household, number of children, their ages, etc. The synthetic household is assigned the
activity template of its matching survey household. For each household and each activity
performed by this household, a preliminary assignment of a location is made based on
observed land-use patterns, tax data, etc. For a city, demographic information for each
person and location, a minute-by-minute schedule of each person’s activities, and the
locations where these activities take place are generated by a combination of simulation and
data fusion techniques. These synthetic individuals interact, as real people do, with various
degrees of fidelity, with each other and the built infrastructure (shopping locations, offices,
work etc.) to produce a realistic social contact network based on the movements and the
activities of every individual in the population. The social contact network from the above
population is constructed as follows. We have a labeled dynamic bipartite graph GPL, where
P is the set of people and L is the set of locations. If a person p ∈ P visits a location l ∈ L,
there is an edge (p, l, label) ∈ E(GPL) between them, where label is a record of the type of
activity of the visit and its start and end times. Each vertex (person and location) can also
have labels. The person labels correspond to demographic attributes such as age, income,
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etc. The labels attached to locations specify the location’s attributes such as its x and y
coordinates, maximum capacity, etc. Note that, there can be multiple edges between a
person and a location recording different visits. This produces synthetic individuals that just
like real individuals can now carry out other activities like eating, socializing, shopping, etc.
An important point to note here is that such data is impossible to collect on this scale by
measurements or surveys.

Models of Disease Transmission
Step 3 consists of developing a computational model for representing the disease within
individuals and its transmission between them. The model can be viewed as a networked
probabilistic timed finite state machine. Each individual is associated with a timed
probabilistic finite state machine. Furthermore, the automata are connected to other
automata – this coupling is derived from the social contact network. The state transition is
probabilistic and is timed (e.g. may represent a distribution of incubation times). It may also
depend on the attributes of the people involved (age, income, health status, etc.) as well as
the type of contact (intimate, casual, etc.). Individual automata update their states in
responses to changes in internal state and state of its neighbors. For this study, a potentially-
pandemic disease model for H5N1v influenza was utilized for tracking an individual’s state
throughout the stages of disease progression. By combing the disease model with
information from the social network, contact timings with infected individuals, individual
susceptibility, and the potential use of antiviral medications, synthetic individuals may
become infected and follow a probabilistically determined disease path. This culminates in
returning to an uninfected state through the usage of antivirals or reaching the removed state
where the individual is no longer infectious or susceptible. Figure 4 displays the model used
in this study. Each node is a finite state an individual remains in until a certain duration has
elapsed. The duration distribution for intervals between 2 to 5 days and 3 to 6 days is
included in the figure. The next state is determined probabilistically by selecting one of the
outgoing edges to another state. Whether or not the agent has been treated with antiviral
medications affects the edge probabilities in the disease model. For simplicity, the edges
with a 1.0 probability are not labeled in the figure. This model has been calibrated through
and utilize by previous research [4,21,20,30].

Model Validation
Extensive efforts have been made to validate the overall approach and specific components
of the model. This includes structural validity of models, matching the data produced to field
data, and formal specifications of these models for software verification [9,30,21]. Results
on population mobility and social network construction were presented and reviewed
annually at [48]. Epidemiological simulations were also reviewed and discussed as a part of
a letter report by the National Academies and published in [30]. Simdemics has been used
in more than half a dozen user defined case studies; these case studies have further improved
and served to validate the various models [4,20,33]. This study illustrates, what we believe
is, the first use of high resolution simulation-based microeconomic analysis in the context of
public health epidemiology.

Additional Analysis
The results for the Poor, Sick, High Risk, and CS strategies are provided here to allow a
simpler comparison between the strategies that combine closing schools with antiviral
distributions in the main text. Under the poor, sick, and high risk strategies, the antiviral
courses are distributed by the government to the poor, first sick, and high risk respectively in
addition to the fact that the private citizens modified their behavior. It is interesting to note
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that these strategies performed only slightly better than the NoGovt strategy. Tables 9, 10,
11, and 12 complement the tables in the Results section. The tables primarily include
information concerning the middle income, small family, and adult classes as well as the
poor, sick, high risk, and close school strategies. The following findings involving these
classes and strategies were observed:

1. Closing schools (CS) is the second largest single factor in reducing the income loss
and epidemic size (modified individual behavior is the largest factor). Under the CS
strategy, the income loss due to care taking (of sick children) drops by 93% and the
income loss due to illness drops by 75% compared to the base case. The epidemic
size is lowered by 87,237 or 78% compared to the base case.

2. Closing schools results in fewer number of sick children and sick adults, and hence
lower productivity and income loss due to sickness. Our results show that more
children fall sick when schools are open, and more working adults have to stay
home to take care of the sick children. Keeping schools open results in more than
$4 million in indirect income loss whereas CS results in less than $1 million in
indirect income loss. However, closing schools, results in much higher cost of
disease avoidance ( $18 million) because many working adults have to forgo work
and stay home with children.

3. In the base case, the direct income loss is highest to the adults and small families.

4. In terms of the absolute numbers, the adults and the medium income class face the
highest epidemic size, sick days and income loss. This is due to the fact that a
higher proportion of the population belongs to these classes.

5. In case of high risk strategy, the cost of saving a life for the low income class goes
as low as $9.60.

6. The total income losses are the highest for the adult class and lowest for the singles
class across all strategies. This is due to the fact that 70% of the population belongs
to the adult class and only 11% population is single.

7. The absolute total cost benefit is highest for the adult class and lowest for the
singles and elderly class for the same reason. Benefits are difference between the
base cost and strategy cost.
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Figure 1.
Total costs include direct income loss, indirect income loss, preventive, and health care costs
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Figure 2.
Total costs include direct income loss, indirect income loss, preventive, and health care costs
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Figure 3.
Total costs include direct income loss, indirect income loss, preventive, and health care costs
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Figure 4.
The Disease Model
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Figure 5.
Total number of infected individuals by day
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Figure 6.
Number of infected individuals by day
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Figure 7.
Epidemic curves of the children class
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Figure 8.
Epidemic curves of the adult class
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Figure 9.
Epidemic curves of the elderly class
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Figure 10.
Epidemic curves of the singles class
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Figure 11.
Epidemic curves of the small families
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Figure 12.
Epidemic curves of the large families
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Figure 13.
Epidemic curves of the poor class
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Figure 14.
Epidemic curves of the medium income class
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Figure 15.
Epidemic curves of the high income class
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Table 1

Models and modeling approaches used in Simdemics.

Models References

Urban Population Mobility Models [7,12,48,49]

Natural Disease History [2,18,30,31,35]

Transmission Models [30,31,35]

Social Network Models [21,30,41]

Types of Interventions [22,23,29,30]
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Table 2

Demographic classes based on age, household income and size

HHIncome (population frac) HHSize (population frac) Age (population frac)

0–25K (0.32) Poor 1 (0.11) Single 0–18 (0.20) Child

25K–75K (0.52) Medium Inc. 2–3 (0.54) Sm. Family 19–64 (0.69) Adult

75K+ (0.16) High Inc. 4+ (0.35) Lg. Family 65+ (0.11) Elderly
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Table 3

Demographic classes and their respective thresholds to trigger public and private intervention strategies

Demographic Class (population) Global Threshold (% sick in the society) Local Threshold (% sick in class)

Low Income - No Action

All family sizes and ages (48,493) None None

High Income - Buy antivirals

Single, Elderly (131) 1 2

Lg.Fam., Child (4,430) .5 None

Lg.Fam., Elderly (275) 1.5 1

Governmental - Antivirals and close schools

Public 1 None

Epidemics. Author manuscript; available in PMC 2012 March 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Barrett et al. Page 34

Table 4

Government and Private Intervention Descriptions

Intervention Description

Poor Antivirals given to the 10,000 poorest individuals.

Random Antivirals given randomly to 10,000 individuals.

High Risk Antivirals given to the 10,000 most often infected in previous simulations.

Sick Antivirals given to the first 10,000 that fall sick.

CS Schools are closed for a period of two weeks.

Social Distancing Eliminate unnecessary trips and activities.
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Table 5

Related work on behavior and policy

Policies Reference

Behavior and demographics [11,17,39]

Social distancing and reducing trips [16,23,27,32,51]

Prophylaxis antivirals [1,16,23,27,34,36,44]

Treatment antivirals [1,16,27,44,36]

Close school duration [11,44,15,27,32,51]
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Table 9

Demographic classes and their respective thresholds to trigger public and private intervention strategies

Demographic Class (population) Global Threshold (% sick in the society) Local Threshold (% sick in class)

Medium Income - Stop non-essential activities

Single, Adult (4,635) 5 2

Single, Elderly (992) 2 1

Sm.Fam., Child (4,844) 5 None

Sm.Fam., Adult (32,095) 5 4

Sm.Fam., Elderly (5,494) 3 1

Lg.Fam., Child (13,573) 5 None

Lg.Fam., Adult (16,861) 5 4

Lg.Fam., Elderly (738) 3 1

High Income - Buy antivirals

Single, Adult (285) 2 5

Sm.Fam., Child (1,034) .5 None

Sm.Fam., Adult (10,132) 2 3

Sm.Fam., Elderly (1,552) 1.5 3

Lg.Fam., Adult (6,364) 2 2
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