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(ABSTRACT) 

The object of this study is to incorporate a nonlinear material law for wood in the 

finite element program ABAQUS to develop effective finite element models of 

glulam domes, and to investigate the buckling behavior of glulam domes using 

this finite element program. The material law is implimented with a FORTRAN 

subroutine. Results from thorough testing of the subroutine are presented. The 

dome is then modeled with I-DEAS and, analysed with ABAQUS. The modeling 

procedure is briefly discussed, and the results from the stability analysis of the 

dome are presented. Finally, conclusions and further research scope based on this 

study are presented.
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CHAPTER 1 

INTRODUCTION 

The purpose of the present study is to incorporate a nonlinear material law for 

wood in the finite element program ABAQUS to develop effective finite element 

models of glulam domes, and to investigate the nonlinear buckling behavior of 

glulam domes using this finite element program. 

A nonlinear material law of wood is incorporated by adding a user coded 

subroutine to ABAQUS. The subroutine is based on the mathematical model 

developed by Conners (1989) for the nonlinear constitutive behavior of wood. The 

mathematical model is obtained by simplifying the nonlinear stress-strain curve 

for wood by dividing it into several segments. Each segment is represented by a 

polynomial equation. In the discussion that follows, the term nonlinear behavior 

means the behavior of a structure with a nonlinear stress strain law. 

The user coding option, the nonlinear material modelling procedure, and the 
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factors affecting the nonlinear behavior of beams and columns in ABAQUS 

analysis have to be thoroughly tested prior to their use in the analyses of any 

complex structure. As there are few analytical studies on the nonlinear behavior of 

wooden structures, a more commonly studied nonlinear material law for steel is 

used to gain experience and confidence in using ABAQUS by comparing the 

analysis results with the published data. The four steps given below are used to 

evaluate the material modelling capabilities of ABAQUS: 

1. Testing of user subroutine option. 

This is tested to determine if the user-coding option models a given material law 

correctly. In order to accomplish this, the elastic-plastic material law of steel is 

modelled using (a) the plastic option from the library of material models in 

ABAQUS; and (b) by the user-coding option in ABAQUS. A cantilever beam is 

assigned the material law using the two options. The results from the two analyses 

are then compared to see if the user-coding option is identical to the plastic option 

in ABAQUS for a given material law. 

2. Testing of a cantilever in bending. 

Finite element analyses of steel cantilever beams with nonlinear material law are 

carried out. Analysis runs are made for different mesh sizes, number of integration 

points, and modifications of the stress-strain curve. The results are compared with 

the continuum solution (Smith and Sidebottom, 1965). 
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3. Testing a cantilever column under combined bending and axial force. 

Finite element analysis results for a pipe cantilever steel column are compared 

with experimental results presented by McGowan (1991). 

4. Testing the torsional behavior. 

A wooden cantilever beam with direct torsion, and a curved aluminum cantilever 

beam under bending and torsion are analysed to check the modelling of torsional 

properties in the user subroutine, and to evaluate the shear modulus computed by 

ABAQUS in the two cases. The results are compared with hand computations and 

with results by Jau (1985), respectively. The shear modulus used by ABAQUS in 

the analysis is thus evaluated and compared with the values assumed by Wu 

(1991), Tissaoui (1991), and Davalos (1989). 

On completing the testing of user subroutine, a triax dome built in Raleigh, North 

Carolina, is modelled to study the material nonlinear buckling behavior of domes. 

Prior studies of elastic buckling behavior of this dome model have been conducted 

by Davalos (1991), Wu (1991), and by Holzer, Wu, and Tissaoui (1991). It was 

found from the previous studies that the maximum stresses in the dome members 

at the limit point were beyond the ultimate stresses ( Wu, 1991; Tissaoui, 1991; 

Holzer, Wu, and Tissaoui, 1991), and hence the assumption of linear elastic 

behavior had to be revised to include the nonlinear material law of wood. 

Two types of dome models are created, based on the triax dome at Raliegh, N.C. 
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The first is of the dome cap model and the other is a complete dome model. The 

dome cap model consists of only the top ring of the complete dome. This model is 

created because it is much more economical to analyse in terms of computer time. 

Due to its smaller size, extensive testing of this model is possible. Also, since it is 

part of the complete dome, its behavior will be similar to that of the complete 

dome. Thus, potential modelling and analysis problems can be identified before 

analysis of the complete dome. 

The dome models are created graphically using I-DEAS, which is a finite element 

program with excellent graphical capabilities. I-DEAS has the option for writing 

an input file for ABAQUS from the graphical model. The input file as obtained 

from I-DEAS is modified to include beam orientations and the nonlinear material 

law. 

In the dome model, 2 noded straight beam elements are used. The tension ring, 

the purlins, and the bracing are modelled with truss elements. The truss bracing is 

used to model the bracing effect of the decking (Wu, 1991; Tissaoui, 1991; Holzer, 

Wu, and Tissaoui, 1991). The purlins are modelled as truss elements to minimize 

the degrees of freedom at the two ends and to represent the pinned connection of 

the beam-purlin joints (Wu, 1991). 

Two load cases are considered. One is the symmetric load case of dead load and 

snow load over the complete dome (Full snow load). The other is dead load and 
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snow load over only half the dome (Half snow load). Studies by Wu (1991) show 

that for the half snow load case, the stresses in the dome members at failure are 

beyond the ultimate stresses. Hence this load case would be ideal to test the 

nonlinear buckling behavior of the dome, as the maximum stresses in this case 

would be in the nonlinear region of the stress strain curve. Also, the full and half 

snow load cases would allow the study of nonlinear dome behavior under cyclically 

symmetric and cyclically unsymmetric loading respectively. The uniformly 

distributed loads are discretized to the nodal loads by using shell elements (Wu, 

1991; Tissaoui, 1991; Holzer, Wu, and Tissaoui, 1991). 

In all, 13 dome cap models and 8 complete dome models are analysed. These 

models are obtained by changing the loading, the material law, and the mesh 

configuration. The results from the analyses of these models are used to: 

1. compare the behavior of a dome with linear and nonlinear material laws. 

determine the effect of the shear modulus on the predicted dome behavior. 

determine the effect of two different loadings on the predicted dome behavior. 

~
~
 

determine the effect of mesh refinement on the predicted dome behavior. 

Equlibrium paths, critical loads, and maximum stresses at failure are presented in 

the study. Based on the present research, conclusions are presented and 

recommendations are made as to further study of glulam domes. 
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CHAPTER 2 

MATERIAL MODEL 

The studies conducted in the past on glulam triax domes (Holzer, Wu, and 

Tissaoui, 1991; Wu, 1991) indicate that the material properties of wood beyond 

the proportional limit must be incorporated in the model to determine the 

ultimate load capacity of the dome. In order to incorporate the material response 

of wood beyond the proportional limit, a segmented model suggested by Conners 

(1989) is chosen. 

In this chapter, an attempt is made to explain: 

ethe material behavior of wood; 

ethe mathematical representation of this behavior; 

ethe incorporation of this nonlinear material law in the finite element program 

ABAQUS. 
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2.1 Material Behavior of Wood 

Studies on the constitutive behavior of wood (Conners, 1989; Conners, 1985; 

Dietz, 1942) have indicated that wood has a nonlinear stress strain law, where the 

behavior in tension is considerably different from that in compression. This 

different behavior in tension and compression is explained on the basis of the 

cellular structure of wood (Davalos, 1989). 

Wood is a biological material; it is made up of bundles of wood cells forming 

cylindrical tubes parallel to the axis of the tree. These parallel oriented bundles of 

wood cells or wood fibers are also called the grain of the wood. When compressed 

along the grain, these cylindrical tubes can buckle and be crushed. Consequently, 

wood has lesser strength in compression than in tension. The buckling and 

crushing of the wood fibres is depicted by the horizontal portion in the 

compression stress-strain curve of wood. In tension, wood can withstand higher 

stresses along the grain, and it does not show a marked horizontal yielding zone in 

the stress-strain curve. 

The compressive strength parallel to the grain of wood is found to be about half of 

its tensile strength in a direction parallel to its grain, and the tensile strength



normal to the grain is about 1/20" of the tensile strength parallel to the grain 

(Davalos, 1989). Although wood is anisotropic in its behavior, it is modelled as 

transversely isotropic (Davalos, 1989). In this study, the material behavior in 

tension and compression parallel to grain is defined by a nonlinear uniaxial stress 

strain law, while the torsional behavior is described by a linear stress-strain law. 

The model proposed by Conners (1989) is used to model the nonlinear bending 

and axial behavior of wood. The discussion which follow is primarily based on the 

paper by Conners (1989). 

2.2 The Material Model 

The constitutive model proposed by Conners (1989) is represented by a curve 

composed of two segments for the tensile zone, and by three individual segments 

in the compression zone. Each segment is defined by a different mathematical 

equation. The mathematical equations which define the curve are based on 

nonlinear regression analyses of experimental stress strain data conducted by 

Conners (1989). The data is obtained for yellow poplar specimens with varying 

moisture contents and specific gravity. The mathematical equations and the 
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parameters used in these equations are described below in detail. 

2.2.1. Compression Zone 

The compression zone of the curve is modelled by three segments as shown in 

Fig.2.1. The first segment is linear from the origin to the strain point 

K 

K 

1(compression): The second segment is nonlinear in the strain range from 

» to K The third segment is linear and horizontal, 1(compression 2(compression)* 

implying a plastic behavior of the material beyond the strain value of 

K 2(compression) - Lhe equations for the three segments of the curve are given below 

(Conners, 1989): 

For the initial linear segment, 

o= Ble (2.1) 

B, is the longitudinal Young’s modulus in compression. 

For the second parabolic segment,
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g=a,t+ B,¢+ Be (2.2) 

For the third horizontal segment, 

o = a + B, € (2.3) 

By imposing continuity at Ky(compression) 224 Kocompression) and solving 

simultaneously Eqs. (2.1) through (2.3), the values for the constants are obtained: 

a, = Bz K,? (2.4) 

Ky (compression) = (81 - 82) / 283 (2.5) 

a, = Bz ( K,’ - K,” ) (2.6) 

Ky(compression) = (84 - 82) / 283 (2.7) 

The compression stress strain curve beyond the point K5(.ompression) 18 replaced by 

a straight horizontal line (zero slope). Therefore in Eq. (2.3), o must have a 

constant value, which is obtained by making 8, equal to zero. The values of 2, , 

8, and §, are obtained from equations given below (Conners, 1989): 

8, = 143900 + 441996(MC%) - 28997(MC%)? + 534(MC%)°> (2.8) 

By = 5719340 - 258850(MC%) + 4280(MC%)? (2.9) 

Bz = -1065588500 + 3449729(MC%) + 1540914880(SG) (2.10)



where 

MC% = Percentage moisture content 

SG = Specific garvity, based on ovendry weight and green volume 

2.2.2. Tension Zone 

The tension zone of the stress strain curve is modelled by two segments as shown 

in Fig.2.2. The stress strain curve is linear from the origin to a strain value 

K and is represented by the first segment. Beyond K the curve 1(tenston) ? 1(tenston)? 

is represented by the nonlinear second segment. The equations of the two 

segments of the curve are given below (Conners, 1989). Even though the 

nomenclature used here for the equations is the same as before, the values for the 

various constants are distinctly different than those used for the compression zone. 

For the first segment, 

c= 7 € (2.11) 

For the second segment, 
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o= a,? + Bo? e+ Bat é? (2.12) 

oe b oe . 

Ts. re PL re = bah? Bae 
6,” 1s the longitudinal Young’s modulus in tension. > €3 Pry. fio = Ky 

oO cane at Ky Se RyRy hp Ky fea 
ye ON a ik bok be kL ok x.) 

Cc ae ip a is aR) 2 ff ope pe mr Ky 

By imposing continuity at Ki(tension)) and solving simultaneously Eqs. (2.11) and 

(2.12), the values for the constants are obtained: 

a, = B,? K,? (2.13) 

Ki (tension) = (8,7 ~ B,") / 2 B3" (2.14) 

The values for 6,7 , 8,7, and 8,7 for the tension zone are obtained from the 

equations given below ( Conners, 1989): 

6,7 = 1822300 - 9.8(MC%)? (2.15) 

B,? = 1934700 (2.16) 

By! = 37045400 - 2204(MC%)? - 150737800(SG) (2.17) 

where 

MC% = Percentage moisture content 

SG = Specific garvity, based on ovendry weight and green volume 

The equations presented above give a stress strain curve which matches resonably 
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well with the experimental data (Conners, 1989). In the above equations, both the 

tension and the compression equations use positive values for stresses and strains. 

In order to implement these equations in a finite element program, the 

compression equations are slightly modified so that they can work for a negative 

values of stresses and strains. The resulting stress strain curve is presented in Fig. 

2.3. 

2.3 ABAQUS Material Library 

In ABAQUS, the material behavior of a structure can be defined by using one of 

the thirteen options available in the library of material models. Out of these 

thirteen model options, only three showed any potential for modelling the selected 

stress strain curve. The three options are: 

1. Plastic 

2. Hypoelastic 

3. User Material 

From the three options, the plastic and the hypoelastic options are the easiest to 

use. Although both of these options can be used to model a nonlinear material 
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law, they can not model a stress strain law which is different in tension and 

compression. While using these two options, only positive values for stresses and 

strains can be entered in the input file to define the curve. The program then uses 

the same values to define the curve in the tension and the compression regions. 

The only remaining option is the user material option, which allows one to model 

any material behavior through a user coded FORTRAN subroutine. Thus, this 

option is used for defining the segmented stress strain law adopted for this study. 

2.4 User Material Option 

The user material option is a powerful tool to model material behavior not 

supported by the existing material models in the ABAQUS library. The material 

model is defined through a FORTRAN subroutine written in the input file. The 

option is activated by using the following set of commands in the input file: 

*MATERIAL, NAME=WOOD 

«USER MATERIAL, CONSTANTS=3 

12, 0.52, 1.6E5 
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The value of the constants” parameter can be changed to the number of 

constants required in the FORTRAN program. In the present program, three 

constants are needed to define the stress strain curve. These are: 1) the moisture 

content; 2) the specific gravity; and 3) the shear modulus. These constants are 

entered in the given order after the user material command. 

The user coded FORTRAN subroutine is entered at the end of the input file. The 

last end step command in the input file is followed by the command *USER 

SUBROUTINE, and the fortran code for the user subroutine is entered after this 

command. A complete input file for a triax dome along with the user subroutine is 

given in Appendix B. 

When using beam and shell elements in combination with user material, the 

transverse shear stiffness for the section must also be provided. The value for the 

transverse shear stiffness is entered along with the other section properties of the 

beam section. The set of commands to describe the section properties and the 

transverse shear stiffness is given below: 

**Beam section dimensions are in inches. 

*BEAM SECTION, SECTION=RECT , ELSET=E1, MATERIAL=WOOD 

6.75, 11.0 

0.0993545, 0.9993732, -0.1324533 

*TRANSVERSE SHEAR STIFFNESS



10097800.54 , 10097800.54 

The line with two stars is a comment line. The following line defines the element 

set with number E1 to have a rectangular beam section, and the material property 

identified by the name wood. In the next line is given the cross section of the 

beam followed by the direction cosines. The transverse shear stiffness command is 

given immediately following the direction cosines, and it is followed by the values 

for transverse shear stiffnesses in the two directions of the beam cross section. For 

a beam section, both of these values must be the same. The transverse shear 

stiffness for a beam element are computed from the equations given below 

(ABAQUS, 1991): 

Transverse shear stiffness = f, Kg; 

where 

Ka3 =kGA 

fp = i 
P —~4, PA (1+ 0.25x10~4x Foy ) 

The value of k for a rectangular section is 0.85 and 

G = Shear modulus 

  

2(1+v) 

where 

E = Young’s Modulus 

vy = Poisson’s ratio 
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A = area of cross section 

1 = span of the beam 

I = minimum of the moment of inertia of the section 

in the two principal cross sectional directions of the beam 

The B33 beam used in the Triax dome does not model shear deformations, and 

thus does not require the value of transverse shear stiffness for any computational 

purpose. Even though this is the case, the ABAQUS run is terminated in the 

preprogram stage if this value is not provided. Hence a dummy value for the 

transverse shear stiffness must be provided if a B33 beam section is used along 

with user defined material property. 

2.5 The User Subroutine 

The fortran code for the material model is written in the subroutine UMAT. 

UMAT is called by ABAQUS at each material calculation point for which the 

material behavior is defined by the user material option. Each time the subroutine 

is called, it is provided with the state of the material in terms of stresses and 
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strains at the start of the increment. Using the values of stresses, strains and 

strain increments at the start of an increment, the subroutine has to perform the 

following two functions: 

e update the stresses to those at the end of an increment 

e provide the material Jacobian matrix for the constitutive model 

The Jacobian matrix of the constitutive model is denoted as Gee (ABAQUS 4.6 

Users Manual, 1990), where 60 are the stress increments and ée are the strain 

increments. This matrix defines the change in the stress due to an infinitesimal 

change in the strain at the begining of the time increment. The stresses at the end 

of an increment are determined by computing the stress increments from the 

strain increments, and adding those to the stresses at the begining of the 

increment. 

The B33 element is based on the Euler-Bernoulli beam theory, and as such is 

assumed to have axial (longitudinal) strains and torsional shear only (ABAQUS, 

1991). These elements are also assumed not to warp out of their plane. Due to 

these assumptions, the Jacobian for B33 element is a 2-dimensional, diagonal 

matrix. The Jacobian matrix can be represented as: 

J= (2.22)



The first component of the Jacobian matrix, Jj, is the change in axial stress with 

infinitesimal change in axial strain, or in other words, the slope of the incremental 

stress strain curve. The second component, J.., is the change in the torsional 

shear stress with infinitesimal change in torsional shear strain. In the present case, 

the torsional behavior of wood is linear. Hence the Jj. is a constant, and is the 

shear modulus for wood. The value for the shear modulus is 1.6x10° psi (Wu, 

1991, Tissaoui, 1991). 

The code for the subroutine UMAT which models the selected stress strain law of 

wood is presented in the Appendix B. The discription of the variables and used in 

the FORTRAN code can be readily obtained from the ABAQUS user’s manual 

(ABAQUS 4.6 User’s Manual, pp. 8.18.1-1 to 8.18.1-9). 

The user coded subroutine and the nonlinear material procedure has to be 

thoroughly tested prior to its use in the analyses of any complex structure. The 

results of this thorough and extensive testing are presented in the next chapter, 

along with recommendations on the finite element modelling of structures with 

material nonlinearity. 
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CHAPTER 3 

VERIFICATION OF THE MATERIAL MODEL 

The selection of a constitutive law for wood and its representation in ABAQUS as 

a material model was discussed in chapter 2. In this chapter, the results of 

materially nonlinear finite element analyses conducted on cantilever beams, and 

cantilever columns are presented. 

In order to verify the analysis results, a comparitive study has to be performed 

between the ABAQUS results and the numerical or continuum solutions found in 

the literature. As no numerical studies on the nonlinear material behavior of 

wooden structures are found in the literature, the ABAQUS material modelling 

capabilities are verified by modelling the nonlinear material law for steel. 

A two step approach is followed in the testing procedure. In the first step, the 

analysis results using the user subroutine option are compared with those using 

the plastic option. The plastic option is found in the ABAQUS library of material 

models. 
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In the second step, the factors affecting the analysis results for finite element 

analysis of simple structures with nonlinear material behavior are determined. 

Numerous ABAQUS runs are conducted on cantilever beams and columns which 

have nonlinear material behavior, with various mesh sizes, number of integration 

points, and the shape of the stress strain curves. Even though most of the analysis 

results discussed in this chapter are for steel beams and columns, they give a good 

background for understanding the factors influencing the accuracy of results for 

finite element analysis of wooden structures with nonlinear material behavior. The 

nonlinear Riks procedure in ABAQUS is used throughout the following analyses. 

3.1 Testing of User Subroutine Option 

A cantilever beam as shown in Fig.3.1 is analysed using ABAQUS. Two models of 

the beam are analysed. Both have the elastic-perfectly plastic material property of 

steel. In the first model, the material law is assigned to the cantilever beam by 

using the user material option, while in the second model it is assigned using the 

plastic option from the ABAQUS library of materials. 

The geometric and material properties of this beam are given below: 
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Span : 50 inches 

Cross-section : 1x1 inches 

Modulus of Elasticity : 2.9x10’ psi 

Proportional Limit : 36000 psi 

The beams are modelled using two node space beam elements, denoted as B33 in 

the ABAQUS library of elements. As the effect of mesh refinement is not studied 

here, only one element is used for modelling the cantilever beam. Loading is in the 

form of point load applied at the tip of the cantilever. 

The load factor versus the tip deflection curves of the beams are shown in Fig.3.2. 

It is observed that the curves for both the models are coincident. Thus, the user 

subroutine option gives exactly the same results as the plastic option. 

Assuming that the plastic option from the ABAQUS library of materials correctly 

models the nonlinear material behavior, it can be safely stated that the user 

material option also models correctly the nonlinear material behavior for a given 

material for which a constitutive law is given. These analyses thus confirm that 

the user subroutine option works correctly, and gives a sound basis for coding the 

more complicated stress-strain law for wood using the user subroutine option. 

3.2 Sensitivity Analyses and Accuracy Studies 
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A series of analysis runs are made with ABAQUS to study the sensitivity of the 

ABAQUS results to the following factors: 

e The mesh size 

e Selective mesh refinement, or the provision of hinge elements 

e The shape of the stress-strain curve 

e The magnitude of load increments in the Riks analysis 

e The number of integration points in the cross-section 

The study, taking into consideration the above points, is conducted in two parts. 

In the first part, a cantilever beam is analysed for the accuracy of its bending 

response under a point load applied at the tip. In the second part, a cantilever 

column is studied for the accuracy of its response under the action of a combined 

axial force and bending moment. For the cantilever column, the effect of 

imperfections is also included in the analysis. 

3.3 Tests on The Cantilever Beam 

The same cantilever beam used in Section 3.2 is analysed in these studies. The 

material properties for most of the beam models are also the same as those given 

in Section 3.2. The material properties that are modified are explained in detail 
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while discussing those tests or beam models. 

3.3.1. Effect of Uniform Mesh Refinement 

In the first set of analyses, three beam models with uniform mesh refinement are 

analysed. The response of the beams are compared with the continuum solution 

(Smith, and Sidebottom, 1965). The three beam models have meshes made up of 

1, 5, and 10 elements, respectively. Load factor versus the tip deflection curves are 

shown in Fig.3.3. 

The load deflection curve for the beam model with only one element shows a very 

stiff response, and it does not model accurately the nonlinear bending behavior of 

the cantilever. The model with 5 elements gives a much softer response which is 

closer to the contiuum solution (Smith, and Sidebottom, 1965). The plastic failure 

load in this case is 191.8 pounds as compared to 180 pounds in the contiuum 

analysis, an error of 6.5%. The beam model with a 10-element mesh gives the 

response closest to that of the continuum solution. The failure load in this case is 

186.8 pounds, giving an error of only 4%. 

From the above set of analyses, it can be concluded that successive refinement of 

Verification of the Material Model 29



  

  
  

          

25 Lemma se athe ete eects ESA O EOE mee eet ee TOSSES E OSES EO SESE EO En THe Eee Ee PO RESET ee ene te rHetanene : oe PTET EES PeT eT eee eee error rere ereye eee rere ere ree 

c , O 2 Poser 

5 / cece ec cece reeaeeeeseseres 

Po ~ = j 
& . 

ad 
< 
5 Psst scanreeswesasea eer sccenes Mier esnereesaeseenessn erase snes eensnenea eases een eee een ese eta ns tees eseeEe ese ner een ese esa eeneenete ase eet ee eraeeaesn eran tes 

= 1.5 

oc 
oO L 
ou 

O 
oc 
a. 1 CONTINUUM a Ln vcssssescesseee Pessessssesesessescseersseessesereesescssetessssseecseeereseetereeacereeeeeneseredt aces EMO ee cece 

< 
O 
- 1-ELEMENT 

5-ELEMENTS 

0.5 10-ELEMENTS 

0 L | | | | 

0 2 4 6 8 10 12 

TIP DEFLECTION (inches) 

Fig 3.3 LOAD DEFLECTION CURVES FOR THE 

FOR MESH REFINEMENT STUDIES 

Verification of the Material Model



the mesh would give more accurate results. Hence, the effect of mesh refinement 

on nonlinear material behavior of a structure is similar to that for elastic behavior. 

For obtaining accurate results, an alternative approach of nonuniform mesh 

refinement is also tried. As the cost of analysis increases when the mesh is made 

finer, this alternative method would be more economical because it would require 

the mesh to be refined only at selected locations. Economy in terms of cost and 

time can become a big issue when analysing large structures. Hence the approach 

of selective mesh refinement looks more attractive than that of general mesh 

refinement, as it would save considerable time and money when analyzing large 

structures. 

The method of selective mesh refinement is based on the plastic-hinge theory used 

in plastic analysis of steel structures. According to this theory, it is assumed that 

the structure behaves elastically untill the proportional limit, and thereafter, the 

stresses at the critical section increase until the stresses at all the points on the 

section becomes equal to the yield stress. At this point, constant plastic moment 

is reached. This is idealised by the formation of a hinge, known as plastic hinge 

(Kaliszky, 1989), at the location of the maximum stress. Therefore, the method of 

selective mesh refinement consists of refining the mesh only at the location of 

maximum stresses, where a theoretical plastic hinge would be formed. 

Two cantilever beam models are tested. Both beam models are made up of 2 

elements. An element, one inch in length, is provided at the base of the cantilever 
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and the remaining part of the cantilever is modelled by the other. In the forgoing 

discussion, the one inch long element at the base of the cantilever is referred to as 

the hinge element. 

In the first model, both elements are assigned the same elastic-plastic material 

property. In the second model, only the hinge element is assigned the elastic- 

plastic material property, whereas the other element is assigned a linear elastic 

material property. Out of these two runs, the second run is expected to be more 

efficient in terms of computing cost and time. This is because in the second model 

the program will have to conduct an iterative solution procedure for determining 

the material strength for only the hinge element, whereas in the first model, the 

iterative solution procedure will be required for both elements. 

The load proportionality factor versus the tip deflection response for the two 

analysis runs are presented in the Fig.3.4, along with those for the continuum 

solution and the 10-element mesh. The two analyses runs with the hinge elements 

show very similer load deformation behavior. For the first model, the load 

deflection curve is linear till the yield load, becoming horizontal to indicate the 

plastic failure. For the second model, the load deflection curve becomes nonlinear 

before yielding, and is closer to the continuum response. The response of the 

cantilever beams with selective mesh refinement are softer than that for the 10- 

element mesh. Hence the selective refinement of the mesh seems to give better 

results than the general refinement of the mesh. 
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The plastic failure load obtained for the beams with hinge elements are 181 

pounds, within 0.8% of the continuum solution (Smith, and Sidebottom, 1965). 

These failure load magnitudes are even better than the one obtained for the case 

of the 10-element mesh. Hence, providing hinge elements seems to be a very good 

method to obtain the most accurate as well as cost effective analysis results in a 

materially nonlinear analysis. 

The method of providing a hinge element, though being very advantageous, has a 

drawback. In a large structure, it is very difficult to determine the location of 

critical sections by observation alone. To solve this problem, an_ initial 

approximate analysis must be carried out to determine the location of the critical 

sections. The skill of the structural engineer in deciding these critical sections is 

also very important. Although, to determine all the critical sections in a large 

structure, and to generate extra nodes and elements at these points is a 

formidable task, it has to be weighed against the accuracy of the solution and the 

savings in the cost of computing. 

3.3.2. The Effect of Other Factors 

The sensitivity of ABAQUS solutions for its accuracy is further tested by varying 
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input parameters such as the smoothness of the stress strain curve, the number of 

integration points at a cross section, and the initial load increment in the Riks 

step. The results obtained by conducting a series of ABAQUS runs on the 

cantilever beam with a 5-element mesh are discussed below and are represented in 

graphical form for ease of comparison. 

For this series of tests, the first parameter to be varied is the shape of the stress 

strain curve. Three different stress-strain curves are considered for modelling the 

material property of the cantilever, and are shown in Fig.3.5. All three curves 

have the same initial elasticity modulus and the same yield strength. The only 

difference between them is the shape of the transition curve between the initial 

linear portion and the plastic region of curve. The three graphs in Fig.3.5 indicate 

the increasing degree of smoothness of this transition curve. 

The results obtained from the analyses of the cantilever beams with the three 

stress strain laws do not show any considerable effect of the smoothness on their 

ultimate load. The final failure loads obtained in all three cases are nearly the 

same as observed from Fig.3.6. The shape of the stress strain curve, though, does 

affect the shape of the load deformation curve. When curve III from Fig.3.5 is 

used for the material, the load deformation response of the cantilever beam is 

smooth like that of the continuum case, whereas for the other two beams, the 

response is stiffer and is closer to the idealised elastic plastic response of a 

cantilever beam. 
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The second parameter to be varyied is the number of integration points across the 

depth of the beam cross section. The B33 beam has five integration points for the 

computation of mechanical and material behavior along its depth . The effect on 

the magnitude of the ultimate load and the accuracy of the load deformation 

response of the beam is studied by increasing the number integration points. 

Two cantilever beam models are considered. The first model is same as before (5 

elements, 5 integration points, and elastic-perfectly plastic material property), 

while the second model has seven integration points. The load deformation 

response for the two cases are plotted in Fig.3.7. The ultimate load for the cases 

when using 5 and 7 integration points are 191.2 and 185.5 pounds respectively. 

The nature of the load deformation curve for the second model is also much closer 

to the continuum case. Hence, this method of increasing the integration points 

could also be employed to improve the accuracy of the results. The only draw 

back seems to be the computing time. The analysis of the beam model with 10 

element mesh and 5 integration points requires almost the same amount (30 

seconds) of time as the model with 5 element mesh and 7 integration points. 

Hence the practicality of increasing the number of integration points while 

analysing large structures seems to be limited. 

The third parameter to be changed was the initial load increment for the Riks 

analyses. This parameter was varied between 5 pounds to 30 pounds. It did not 

affect the accuracy of the ultimate load nor did it affect the nature of the load 

deformation curve. 
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3.4 Cantilever Column Loaded Through Its Base 

For testing the accuracy of ABAQUS analyses for the case of combined bending 

and axial loading along with a nonlinear material law, the solution is obtained for 

a steel cantilever column loaded through its base and as shown in Fig.3.8. This 

solution is compared with experimental tests conducted by McGowan on a similar 

cantilever column (McGowan, 1991 (pp.91-102)). 

In the actual experiment, the column consists of a large diameter outer pipe, with 

a smaller diameter pipe passing through it. The outer pipe is fixed at the base 

along the circumference, whereas the inner pipe is free at the base and is attached 

to the outer pipe at the top. A vertical load is applied to the inner pipe at the 

base, thus causing the outer pipe to be loaded by a vertical force through its base. 

In the experimental tests, the eccentricity of the applied load is caused by the 

imperfections in the specimen and in the experimental setup. Due to this, bending 

of the column takes place, which eventually leads to the contact of the inner 

column with the outer column. 

In the ABAQUS analyses, the outer pipe is modelled with ten two noded B23 

plane beam finite elements, whereas the inner pipe is modelled by a two node 

C1D2 plane truss element. The imperfections in the actual experimantal testing 

are modelled by applying the load at a certain eccentricity. The analysis of the 
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contact problem is not attempted in this study, and hence the analysis is 

terminated before a contact problem is developed. The material behavior of the 

column is modelled on the basis of the data from the actual expérimental tests. 

The stress-strain law used for the column material is shown in the Fig.3.9, while 

the geometric specifications of the outer pipe are given below: 

Outer diameter : 6.625 inches 

Thickness : 0.188 inches 

Length of Column : 182 inches 

As it is not possible to directly equate the imperfections in the actual column with 

a numerical value of the eccentricity, two ABAQUS runs are made with different 

values of eccentricities to study their effect on the response of the column. In the 

first run, the eccentricity of the applied load is 0.01 inches, while in the second 

run the eccentricity is 0.05 inches. 

The load deflection curves from the experimental tests and the ABAQUS analyses 

are presented in Fig.3.10. The analytical results for the model with eccentricity of 

0.05 inches is close to the experimental results. The difference between the 

ABAQUS and experimental results is due to the difficulty in correlating the 

imperfections in the actual column with a numerical value of the eccentricity. The 

experimental load deflection curve is softer than the analytical results, indicating 

possibly greater imperfections than those modelled with the eccentricity of 0.05 
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inches or the effect of a coarser mesh. The percentage difference in the limit loads 

for the experimental case and the analytical case with eccentricity of .05 inches is 

5% 

The test on the column thus indicates that the ABAQUS analyses results are 

consistant with the results in the experimental tests. This fact allows one to 

proceed with the materially: nonlinear analysis of complex structures which consist 

of members which are subjected to combined bending and axial forces. 

3.5 Torsion Tests on Cantilever Beam 

Two torsion tests are conducted on the cantilever beam elements. One of the tests 

is to verify that the torsional behavior modelled by the user subroutine is the 

same as modelled by the elastic or the plastic options from the library of material 

models available in ABAQUS. This is accomplished by analyzing a beam curved 

in plan, which is under combined bending and torsion. 

The other test is to determine the value of the shear modulus used in the analyses 

by Wu (1991), Holzer, Wu, and Tissaoui (1991), and by Tissaoui (1991). To 

specify the shear modulus while using the elastic or plastic options, a value for 
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Poisson’s ratio is entered in the input file) ABAQUS then computes the shear 

modulus, Eq.(2.21), from the values of the Young’s modulus and the Poisson’s 

ratio. A straight cantilever beam under pure torsion is thus analysed to verify if 

ABAQUS computes the correct shear modulus for any value of Poisson’s ratio. 

It should be noted that even though the nonlinear material law is used for wooden 

beams, their torsional behavior is still modelled as linearly elastic. This has 

already been stated in Chapter 2, and in the following analyses, only linear elastic 

torsional behavior is verified. 

3.5.1 Tests on Curved Cantilever Beam 

The model used is a tip loaded cantilever beam of 45° bend. This model has been 

analysed by Bathe and Bolourchi (1979) and by Jau (1985). The beam is modelled 

in the present studies by eight B33 two noded beam elements. The material law is 

modelled by first using the user material option and then by using the elastic 

option. Fig.3.11 shows the cantilever beam along with the values of the various 

parameters. The results of the analyses using the two material modelling options 

are compared. Also, values obtained from the load deflection graph in the 

dissertation by Jau (1985) are checked against the present analyses results. 
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The analysis results are shown in Fig.3.12. It is observed that the response 

obtained for the curved beam using the two material modelling options is exactly 

the same. The values obtained from the dissertation by Jau (1985) also agree with 

the present results. Therefore, the modelling of the torsional behavior as in the 

elastic or plastic option can be simulated correctly in the user subroutine. 

3.5.2 Tests on Cantilever Beam 

The objective of these tests is to determine if ABAQUS correctly computes the 

shear modulus from the values of Poisson’s ratio and the Young’s modulus (Eq. 

(2.21)). 

A straight cantilever beam made up of five B33 two node beam elements is 

subjected to pure torsion. The length of the beam is 50 inches. Three models 

having different cross sections are tested. A torque of 100 pound-inch is applied at 

the free end. The beams are considered to be made of wood, and are assigned the 

linear elastic material law using the elastic option in ABAQUS. 

The first model has a circular cross section of 1 in?. The shear stress obtained is 

509.3 psi, while the shear strain is 8.49x10~4 psi. The shear modulus used by 
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ABAQUS in these computations is obtained by dividing the shear stress by the 

shear strain. Thus, the shear modulus used is 6.00x10° psi. However, the value of 

shear modulus specified by Davalos (1989), Wu (1991), and Tissaoui (1991) is 

1.6x10° psi. 

The second model has a unit square cross section. The shear stress obtained from 

the analysis for this model is 424.3 psi and the corrosponding shear strain is 

7.07x10~ 4. Shear modulus of 6.00x10° psi is computed from these values. 

The third model has a rectangular cross section, 1 inch wide and 2 inches deep. 

The shear stress obtained from the analysis for this model is 134.2 psi and the 

shear strain is 2.24x10~*. The shear modulus in this case too is 6.00x10° psi. 

From these tests, it is observed that the correct shear modulus for wood is not 

used by ABAQUS. The Poisson’s ratio corresponding to a shear modulus of 

6.0x10° psi is 0.5. It is thus seen that ABAQUS limits the value of the Poisson’s 

ratio to 0.5. Even though ABAQUS disregards the Poisson’s ratio of 4.625 given in 

the input file and takes a default value of 0.5, it does not issue a warning or error 

message in the analyses results. Hence, in all the previous research conducted on 

elastic buckling behavior of domes by Wu (1991), by Tissaoui (1991), by Holzer, 

Wu, and Tissaoui (1991), and by Davalos (1989), the value of shear modulus used 

by ABAQUS is 6.0x10° psi, instead of the expected value of 1.6x10° psi. ee 

Based on the textbook by Bodig (1975), the range of shear moduli for wood with 
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Young’s modulus of 1.8x10° psi is between 1.14x10* psi and 1.36x10° psi. If the 

Young’s modulus is increased to 2.1x10° psi, the shear modulii range is between 

1.25x10* psi and 1.59x10° psi. Hence the shear modulus value used in the earlier 

studies of elastic buckling behavior of domes seems to be quite large. It may 

however be possible that certain species of wood might have higher shear 

modulus. 

The only way of specifying the shear modulus of 1.6x10° psi along with a Young’s 

modulus of 1.8x10° psi or 2.1x10° psi, is by using the user subroutine option. 

Hence for all the further studies, the material law for even the elastic material 

behavior will be specified by using the user subroutine option. 

Although there is a large difference between the possible range of shear moduli 

and the shear modulus used in the previous studies, the effect of this on the dome 

behavior is expected to be minimal because the previous studies by Wu (1991) 

and by Tissaoui (1991) show that the torsional stresses at failure are quite small. 
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CHAPTER 4 

MODELLING THE DOME 

In this chapter, the steps involved in creating the dome model and the subsequent 

writing of the ABAQUS input file is explained. In the first section, the geometry 

of the dome is defined. The model is created based on this geometry, and the 

steps involved in its creation are as follows: 

e Defining the mesh sizes, the member dimensions, and the finite elements used 

e Defining the boundary conditions used in the model 

e Defining the material laws used for the elements 

e Specifying the loading on the dome 

e Creating the model graphically in I-DEAS. 

e Writing an ABAQUS input file from the graphical model 

e Modifying this input file to include the required boundary constraints, loading, 

the beam orientations, and the material laws. 
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4.1. The Geometric Model 

The Crafts Pavilion Triax dome in Raleigh, North Carolina is modelled in the 

ongoing study. The members of the dome lie on the surface of a sphere with a 

radius of 1600 inches (133.33 feet). The dome has a span of 1595 inches ( 132.92 

feet) and a height of 212.35 inches (17.70 feet). The plan of the dome is shown in 

Fig.4.1. 

The finite element model of the dome is created by first defining its geometry on 

a horizontal plane which is 1387.66 inches (115.64 feet) above the center of the 

sphere. The geometry of the dome is a grid of equilateral triangles on this 

horizontal plane. The configuration of the dome is then obtained by projecting 

this triangular grid onto the surface of the sphere by rays originating from the 

sphere center. 

4.2 The Finite Element Model 

The finite element model of the dome is similar to that modelled by Wu (1991). 
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In the finite element model, each physical beam has been divided into two beam 

elements. The purlins are modelled as truss elements and the lateral bracing effect 

of the decking is modelled by using truss elements. The tension ring is also 

modelled as being made up of truss elements. 

The beams are divided into three catogaries based on their dimensions. The set of 

beams forming the first ring around the apex of the dome are denoted as Main 

Beam-I. The beams at the base or perimeter of the dome are denoted as the Edge 

Beams, and the remaining beams are labelled as Main Beam-II. All the different 

members are shown in Fig4.2 and their dimensions are given below (Holzer, Wu, 

and Tissaoui, 1991) : 

1. Main Beam-I : 6.75 inches x 12.0 inches 

2. Main Beam-II : 5.0 inches x 11.0 inches 

3. Edge Beam : 3.0 inches x 12.25 inches 

4, Purlins : 3.0 inches x 8.25 inches 

5. Steel Tension Ring: 1.0 inch x 12.0 inches 

6. Bracing : 0.3 inch? 

All the beams are modelled by B33 two noded Bernoulli-Euler elements, and the 

rest of the members are modelled with C1D2 two-node isoparametric truss 

elements (ABAQUS 4.6 User’s Manual, 1991). The choice of the elements is based 

on the studies conducted on various dome models by Wu (1991). 
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To study the effect of mesh refinement on the behavior of the dome, the above 

mensioned model is modified to obtain a refined mesh. In this model, each 

physical beam is modelled with four beam elements instead of two elements. The 

dome model so created is shown in Fig.4.3. 

Apart from the above mentioned dome model, several models consisting of only 

the top ring of the dome are analysed. These models consist of only the Main 

Beam-I and the corresponding truss elements, and are referred to as the Dome 

Cap model. The mesh refinement studies are conducted by modelling each beam 

by four elements or by providing connector elements to the beam elements in the 

original dome cap model. 

The connector elements are B33 beam elements with 6 inch length provided at 

each end of the beam element. As discussed in Chapter 3, the study on the 

nonlinear cantilever beam indicated that the selective refinement of the mesh gave 

a better response than a uniform refinement with the same number of elements. 

This idea is thus extended to the analyses of the Dome Cap. 

The Dome Cap model and the one with the refined mesh are shown in Fig.4.4 and 

Fig.4.5 respectively. 
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4.3. Boundary Conditions 

The boundary constraints used in the model are similar those used by Wu (1991) 

and Huang(1989). The selected constraints must eliminate the rigid body motion 

of the dome but at the same time must allow for the tension ring to move freely 

in the radial direction (Davalos, 1989). 

The boundary constraints are applied to the perimeter nodes. All the perimeter 

nodes are constrained in the Z-direction to eliminate the vertical rigid body 

motion. To remove the rigid body rotation of the dome about the Z-axis and the 

rigid body translation in X and Y-directions, constraints in the X-directon are 

applied to base nodes on the Y-axis (nodes 90 and 166 in the dome model without 

mesh refinement), and constraints in the Y-direction are applied to the base nodes 

on the X-axis (nodes 11 and 128). The boundary constraints are shown in Fig.4.6. 

For the dome models or dome cap models with refined meshes or with connector 

elements, extra nodes are created at the perimeter due the the mesh refinement. 

It is important to note that the boundary constraints in these models must be 

applied to the original nodes only. This is because the constraining of the extra 

nodes changes the boundary condition of the dome, and the model is then no 

longer similar to the one without the refined mesh. 
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4.4 Material Properties 

For studying the effect of variations of the material law on the dome behavior, 

three linear models and one nonlinear model are defined for wood. In all the dome 

models, the bracing, the purlins, and the steel tension ring are assigned a linear 

material law. Specifically, the bracings and the purlins have a Young’s modulus of 

1.8x10° psi and the tension ring has a Young’s modulus of 2.9x10" psi. The four 

dome models, based on the type of material law assigned to the beam elements, 

are given below while the shape of these stress strain curves are shown in Fig.4.7. 

1. The first linear model is the same as that used by Wu (1991). In this model the 

glulam beams have the following material properties: Youngs modulus E=1.8 x 10° 

psi and the shear modulus G=6.0 x 10° psi. 

2. The second linear model is created to determine the effect of changes in the 

shear modulus on the behavior of the dome. In this model the glulam beams have 

have a Young’s modulus E=1.8 x 10° psi and a shear modulus G=1.6 x 10° psi. 

3. The modelling of the nonlinear material law has been described in detail in 

Chapter 2. The mechanical property of wood in this nonlinear material law is 

based on the percentage moisture content and the specific gravity of the wood. In 

the ongoing study, the wood is considered to have a moisture content of 12% and 
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a specific gravity of 0.52 based on the ovendry weight and green volume. Based on 

these values, the initial longitudinal modulus of wood in_ tension 

Ettension)=2-81 x 10° psi and in compression E (compression) = 2-19 x 10° psi. The shear 

modulus is taken as G=1.6 x 10° psi. All the beams in the dome are modelled with 

this nonlinear material law. 

4. To get a reasonably good assessment of the effect of the nonlinear material 

model on the behavior of the dome, a bilinear elastic material law is developed. In 

this model, the longitudinal modulus of wood in tension is E(;.,,ion)=1-81 x 10° psi, 

and the longitudinal modulus in compression is E(compression)=2-19 x 10° psi. The 

shear modulus is again taken as G=1.6x10° psi. In this dome model, all the 

beams are assigned this bilinear elastic material law. 

4.5 Dome Loading 

The loading on the dome is divided into live loads and dead loads. The design 

dead load is 16 psf and the design live load is 20 psf. The dead load is due to the 

following self-weight of the structure.



The design dead load is obtained as followes (Wu, 1991; Davalos, 1989) : 

1. beams and purlins: 2.0 psf 

2. tongue and groove Decking: 5.0 psf 

3. connectors, roofing and insulation: 9.0 psf 

total dead load: 16.0 psf 

The design live load is considered to be due to the snow over the dome. The value 

for the snow load is the same as that used by Wu (1991). It should be noted that 

the snow load is considered to be distributed not on the surface area, but on the 

plan area of the dome. 

Two load cases are considered in the analyses of the dome. The first load case is 

the combined loading of dead load and uniform snow load over the complete 

dome. The second load case considered is the combined loading of dead load and 

uniform snow load over half of the dome. With these two load cases, the behavior 

of the dome under cyclically symmetrical and cyclically unsymmetrical loading 

can be studied. 

In the earlier studies by Wu (1991) and by Holzer, Wu, and Tissaoui (1991), it 

was found that the load case of dead load and uniform snow load over half the 

dome induced the maximum stresses in the dome members at failure. This is 

another reason for selecting the second load case as it will allow us to study the 

behavior of the dome when the stresses in its members are beyond the 
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proportional limit. 

4.6 Creation of the ABAQUS Input File 

The input file of the dome is created in three steps. In the first step, the dome 

model is generated graphically with I-DEAS (Integrated Design and Engineering 

Analyses Software), from which an initial ABAQUS input file is obtained. In the 

second step, nodal loads and beam orientations are computed and written to a file 

in the required ABAQUS input format. In the third step, the initial input file is 

modified by adding the boundary constraints, the beam orientations, the material 

model definition, the step definition, the nodal loadings, and the output request 

cards. The use of I-DEAS and the modifications of the input file is explained in 

the following sections. 

4.6.1. Pre-Processing Using -DEAS 

The dome graphics is generated in the model preparation task of I-DEAS. This 

task lies in the pre/post processing module which in turn lies in the engineering 
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analyses family in - DEAS. The task, module, and family represent a hierarchy of 

program regions where various pre/post processing operations can be conducted. 

In the model preparation task menu, the creation of the dome model requires 

three steps. These steps are described below: 

1. First, the nodes for one sector are defined. This can be done either by reading 

the nodes from an existing I-DEAS file, as was done in the present analyses, or 

they can be defined individually by entering the node numbers and their 

coordinates. 

The existing I-DEAS node file, as used by Wu (1991), was stored in a Universal 

file format. To read this, the Universal and Read options are picked. When 

prompted for the name of the file, the file name without the extension is entered. 

After the file is read, Auto Scale (AU) and Draw (DR) commands are issued to 

display the nodes on the screen. 

If the nodes are to be defined directly by entering them, then the Node , Create, 

and Single options have to be entered in the mentioned order. After this, the node 

number and its three coordinates have to be given. After defining all the nodes, 

the auto scale and draw commands have to be issued to view the drawing. 

2. After defining the nodes, the elements are generated. This is done by selecting 

the Element option from the menu. The Default option is then selected, and the 
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element type, and color is defined. Returning back to the Element menu, Create 

and Single options are selected. The elements are then generated by clicking on 

the nodes which define the element. In this way, all the elements for one sector 

are defined. 

3. In this step, the complete dome model is created by reflecting the first sector 

about the sector lines. This is achieved by selecting the Create and Reflect options 

from the Element menu. The Three Point Method is then selected and three 

points forming the reflecting plane are then entered. The sector is thus reflected 

about this plane to form another sector with all the elements and nodes. In this 

fashion, all the sectors of the dome are created. The dome is saved in the 

Universal file format by selecting Universal and Write from the menu. The file 

name is then provided, and the dome graphics and all the related data is saved in 

this file. 

After creating the complete dome model, the ABAQUS file is written. The 

writing of the ABAQUS input file is a two step process. In the first step, the node 

and element data is transferred into a database. I-DEAS then creates the 

ABAQUS input file by reading this database. 

The database is created by first selecting Pearl Data Transfer from the menu. The 

Create option is then selected and, when prompted, the name of the database is 

given. Then the Load and Model options are selected. After the model is 

successfully loaded, the database is closed and saved by selecting the Close option. 
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Once the database is created, the Manage Files (Man), Write, and ABAQUS 

(AB) options are selected. The program prompts for the name of the database and 

the ABAQUS input filename. After providing all the information, the ABAQUS 

input file is written, and a message as to its successful completion is provided at 

the end. 

4.6.2. Nodal Loads 

Shell elements are created in I-DEAS to discretize the uniformly distributed loads 

to the nodes. Three and four node thin shell elements are used for this purpose. 

The mesh is formed such that the shell elements form a symmetric pattern in 

each sector. 

For the dome models with and without the connector elements, only triangular 

shell elements are used. By using the triangular elements, the loads are discretised 

only to the original nodes of the model; i.e, no loads are assigned to the extra 

nodes generated for the connector elements. For the models with a refined mesh, 

the triangular as well as the quadrilateral elements are used. By using both of 

these elements, the loads are discretised to the original nodes as well as to the 

extra nodes created due to the mesh refinement. 
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A linear analyses is conducted on ABAQUS to obtain the nodal loads. For this 

purpose all the nodes of the dome are fixed, and distributed load due to the dead 

weight or snow load is applied in the positive Z-direction (vertical). 

Output requests are made for reaction forces at all the nodes. The reaction forces 

are the nodal loads on the dome. The nodal loads in the X and Y directions are 

relatively small as compared to those in the Z direction, and hence only the nodal 

loads in the Z direction are used for the loading on the dome. 

4.6.3. Beam Orientations and File Modifications 

The beams in the dome are oriented such that each beam lies in a plane passing 

through the center of the sphere (Fig.4.8). Only the edge beams are oriented 

differently, and are vertical. A FORTRAN program (Appendix A) is written to 

compute the beam orientations. This program writes the beam element definition 

cards, the beam cross section dimensions, and the beam orientations in the 

required format for the input file. 

After obtaining the beam orientations, the input file as obtained from I-DEAS is 
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modified. The various modifications carried out manually, in the order in which 

they are carried out, are listed below: 

—
 . Boundary nodes are grouped into a node set 

. Set names are assigned to the various dome members 

. Cards for the cross sectional areas for the truss elements are added 

. The output from the beam orientation program is inserted in the input file 

. A card for the boundary condition is added 

. Material definition cards are added 

. Step definition cards and the nodal loads are inserted in the input file 

. Node and element sets for the output are defined 

o
 

ao 
nN 

Dm 
Go
 

FSF 
WD
 

bb 

. Cards for the output requests are added 

10. The subroutine to define user material is added at the end of the input file 

After going through this procedure, an ABAQUS input file for the nonlinear 

analysis is obtained. A sample of this input file is provided in the Appendix B, 

and the analyses results are discussed in the next chapter. 
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CHAPTER 5 

DOME ANALYSES 

Nonlinear analysis of various dome and the dome cap models is conducted to 

study the effect of the change in material properties on the stability behavior of 

the domes. Both, material as well as geometric nonlinearities are considered in 

these analyses. Critical snow loads for the dome models are determined and the 

load deflection curves are presented. The maximum stresses in the beams at the 

critical load are compared with the ultimate stresses. 

5.1 Nonlinear Analysis Procedure 

The nonlinear analysis is conducted with ABAQUS using the Riks option 

(ABAQUS 4.6 User’s Manual, 1990). This option traces the equilibrium path 
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beyond the limit point. As this procedure uses automatic incrementation of the 

load, exact value of the limit load may not be obtained because the increment my 

jump over the limit load. In the following discussion, the limit point is assumed to 

be the highest point on the load deflection curve. 

The loading on the dome is applied incrementally in two steps, which are given 

below: 

1. The Newton-Raphson method is used in the first step to incrementally load the 

dome upto its full dead load (16 psf). 

2. The Riks method is used in the second step to apply incrementally the snow 

load (20 psf) upto and beyond the limit load. 

f 

The total load at any instant is thus given by 

where 

A = the load proportionality factor 

Pp = the dead load (16 psf) 

P, = the live load or snow load (20 psf) 

In the following discussion, the critical load factor is the load proportionality 

factor at the limit point. The load deflection curves for the dome models are



obtained by plotting the load proportionality factor versus the corresponding 

deflection at a given node. In the nonlinear analysis of all the dome and dome cap 

models, the critical load is at the limit point. 

Before embarking on the nonlinear analysis, linear analyses of the dome models 

are carried out to acertain that there are no major defects or imperfections in the 

finite element models. In the linear analysis, the dome models are subjected to 

cyclically symmetric loads, and the reactions at all the supports, and the 

displacements at symmetrically placed nodes are monitored. The results of the 

linear analysis for all the dome models with unformly applied dead load are found 

to be satisfactory. 

5.2 Proportional Limits and the Ultimate Stresses 

ps can 
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The proportional limit and the ultimate stresses are different for the linear and 

the nonlinear material laws. For the linear material law, these values are given in 

Table 5.1 (Wood Handbook (1974), Holzer, Wu, and Tissaoui (1991)). The values 

of proportional limit and the ultimate stresses for the bilinear stress strain law are 

assumed to be the same as those for the linear laws. In Table 5.1, the ultimate 

compressive stress represents the maximum crushing stress, while the ultimate 
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tensile stress is the modulus of rupture from static bending tests. 

TABLE 5.1 Proportional Limit and Ultimate stresses for linear material law 

  

  

PROPORTIONAL ULTIMATE ULTIMATE 

LIMIT COMPRESSIVE TENSILE 

STRESS STRESS 

5900 psi 8500 PSI 14500           

For the nonlinear material law, the proportional limits and the ultimate stresses 

are computed by using Eqs. (2.1) through Eqs. (2.17). The equations have 

parameters which depend on the values of the specific gravity and the moisture 

content of wood. For southen pine, the average values for the specific gravity is 
TO a cet ae (ta EON NONE, 

given as 0.52 and the moisture content is given as 12% (Timber Construction 
enema etTTNEHION 2 te Set enue niet 

Manual (1985)). The values for proportional limit and ultimate stresses for the 

nonlinear material law are computed from Eqs. (2.1) through Eqn. (2.17) for these 

values of specific gravity and moisture content, and are presented in table 5.2.



TABLE 5.2 Proportional Limit and Ultimate Stresses for nonlinear material law 

  

  

          
  

PROPORTIONAL] PROPORTIONAL ULTIMATE ULTIMATE 

LIMIT IN LIMIT IN COMPRESSIVE TENSILE 

COMPRESSION TENSION STRESS STRESS 

4873 psi 2578 psi 10496 psi ~ 14500 psi , 

Soou 26€¢6 Ais 9 
‘e 
Gee? 

5.3 Dome Cap Analysis ky t ful 

The dome cap models are created because they are much smaller than the 

complete dome models, and are cheaper to analyze in terms of computer cost and 

time. As the dome cap models are derived from the complete dome models, their 

behavior would be similar to the corresponding complete dome models from which 

they are derived. Thus, after analysing the dome cap models, potential modelling 

and analysis problems for the complete dome models can be identified. 

The dome cap models are analyzed for two different loading conditions. For the 

loading condition of dead load and snow over the complete dome (Full Snow load 

condition), four different models of the dome cap are considered. These models are 

obtained by varying the material law for the beam elements, as described in 

Section 4.4. For the load case of dead load and snow load over only half of the



dome (Half Snow load condition), four models of the dome cap are considered. 

These are again obtained by varying the material law for the beam elements, as 

described in Chapter 4. 

The mesh refinement studies are conducted on the dome cap for the case of half 

snow load only. Six different models of the dome cap are considered by varying 

the material laws and by refining the mesh. 

5.4 Effect of Shear Modulus on Dome Cap Behavior 

ABAQUS computes the shear modulus from the values of Young’s modulus and 

Poisson’s ratio by using Eq. 2.21. In the domes modelled by Wu (1991), Holzer, 

Wu, and Tissaoui (1991), and by Tissaoui (1991), the shear modulus to be 

specified was 1.6x10° psi and the Young’s modulus was 1.8x10° psi. However, as 

stated in Chapter 3, ABAQUS used a value of 6.0x10° psi instead of 1.6x10° psi 

for the shear modulus. It is thus important to determine the effect of this on the 

dome behavior, and to verify if the results from the previous research are within 

close proximity of those which are obtained when using the correct shear modulus. 

Since wood is produced under uncontrolled natural environmental conditions, it 

dn



has variable physical properties. It is thus essential to determine if the value of 

6.0x10° psi is a reasonable estimate of the shear modulus. An article by Bodig 

(1975), gives a method to compute the shear modulus of woods from the 

longitudinal modulus. In the nonlinear material model, the initial longitudinal 

modulus in tension E (tension) = !-8x10° psi and the initial longitudinal modulus in 

compression E (compression) =2-1X10° psi. From the Wood Handbook (1974), it is 

observed that the maximum value of Young’s modulus for any wood is 2.05x10°® 

psi. Hence, shear moduli computed from the elasticity moduli Evension) and 

E(compression) Tespectively, will give a good of estunate of the range of shear 

modulus for wood. The values of shear moduli computed from these longitudinal 

modulii values are given in Table 5.3. It is thus observed that the shear modulus 

value of 6.0x10° psi is nearly four times larger than the largest shear modulus 

value in Table 5.3. Hence, it is essential to study the effect the reduction in the 

shear modulus will have on the stability behavior of the dome. 

TABLE 5.3 Range of Values for the Shear Modulus 

  

  

  

  

  

LONGITUDINAL MAXIMUM VALUE MINIMUM VALUE 

TYPE OF WOOD 
MODULUS OF SHEAR MODULUS OF SHEAR MODULUS 

° 4 
6 SOFTWOOD 1.1x10 psi 1.2x10 ‘psi 

1.810 "psi 

HARDWOOD > 5 4 si 1.4x10 psi 32x10 psi 

SOFTWOOD 4. ; 1.2x10 “psi 13x10 psi 
2.1x10 psi 

5 4 HARDWOOD 1.6x10 “psi 3.8x10 psi            



Two dome cap models, one with shear modulus G=6.0x10° psi, and the other with 

a shear modulus G=1.6x10° psi are analysed. These models have the original mesh 

configuration, as given in Fig.4.4 and described in Section 4.2. To find the loading 

case under which the dome cap behavior will be more sensitive to the change in 

shear modulus, the full snow load and half snow load cases are considered. The 

nomenclature used for the dome models, and the analysis results are presented 

below. 

For the case of snow over the complete dome (full snow load case), the following 

models are analysed: 

1. Linear-1F with E=1.8x10° psi and G=6.0x10° psi. 

2. Linear-2F with E=1.8x10° psi and G=1.6x10° psi. 

And, for the case of snow over half the dome (half snow load case), the following 

models are analysed: 

1. Linear-1H with E=1.8x10° psi and G=6.0x10° psi. 

2. Linear-2H with E=1.8x10° psi and G=1.6x10° psi. 

The ’F’ at the end of each model name indicates the full snow load condition and 

the ’H’ indicates the half snow load condition. As stated earlier, the critical load 

factors for all the dome cap models are found to be the limit loads.



For the dome cap model Linear-1F, the critical snow load factor is 12.37. The load 

deflection path for the node 1 in the vertical direction is shown in Fig.5.1. The 

stress outputs are in the form of combined axial and bending stresses. It is 

observed that the maximum stresses at the critical load are between the 

proportional limit and the ultimate stress (Table 5.1). The maximum stresses at 

the limit point are as follows: 

Maximum tensile stress : 5665 psi, in element 5 at node 2 

Maximum compressive stress : 7001 psi, in element 2 at node 2 

For the dome cap model Linear-2F, the critical load factor is again 12.37. From 

Fig.5.1, it is seen that load deflection paths for Linear-1F and Linear-2F models 

coincide. This indicates that the shear modulus G is not an important parameter 

affecting the behavior of the dome under cyclically symmetric loading. The 

Maximum stresses at the limit point reinforce the fact that the shear modulus 

does not affect at all the behavior of these two domes. The stresses obtained are: 

Maximum tensile stress : 5662 psi, in element 5 at node 2 

Maximum compressive stress : 6999 psi, in element 2 at node 2 

The critical load factor for the dome cap model Linear-1H is 11.60. The load 

deflection path for node 4 in the vertical direction is shown in Fig.5.2. The 

maximum stresses at the limit point for this case are over 50% larger than the 

corresponding full snow load case. The maximum stress in tension is below the 

ultimate (Table 5.1) and the maximum stress in compression is beyond the 

ultimate stress. The values for the maximum stresses are: 
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Maximum tensile Stress : 13588 psi, in element 5 at node 2 

Maximum compressive Stress : 16571 psi, in element 1 at node 4 

The critical load factor for dome cap model Linear-2H is 11.14. The load 

deflection path in Fig.5.2 indicates that the change in the shear modulus affects 

the critical load factor as well as the nature of the load deflection path. The 

decrease in the shear modulus makes the response of this model softer as 

compared to dome cap model Linear-1H. Hence, in the case of cyclically 

unsymmetric loading, the shear modulus does affect the response of the dome cap. 

In the dome with half snow load, the beams undergo torsion and hence the shear 

modulus causes change in their response as the shear modulus affects the torsional 

stiffness of the beams. There is negligible torsion in the beams for the full snow 

load case, hence there is no effect of the change in the shear modulus on the dome 

response. 

The maximum stresses at limit point for the dome cap model Linear-2H are given 

below. It is again seen that the stresses are very large, but the tensile stress is 

below the ultimate where as the compressive stress is beyond the ultimate stress 

  

value (Table 5.1). The stresses in this case are higher than those in the previous 

case. The maximum stresses are: 

Maximum tensile stress : 14099 psi, in element 5 at node 2 

Maximum compressive stress : 17032 psi, in element 1 at node 4 
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The location of the nodes at which the maximum stresses occur are shown in 

Fig.5.3. 

5.5 Effect of Material Nonlinearity on the Dome Cap Behavior 

The effect of nonlinearity of the material law on the stability behavior is studied 

by analysing several models of the dome cap under the half snow and full snow 

loading. The dome cap models analysed here have the original mesh configuration, 

where each beam is modelled by two elements. The configuration of the model is 

shown in Fig.4.4, and described in Section 4.2. 

The nonlinearity of the stress strain law is expected to reduce the critical load for 

the dome cap models. It is also estimated that the dome cap models which have 

higher stresses at the critical load will be more influenced by the nonlinearity of 

the stress strain law. The justification of using the bilinear stress strain law is also 

verified in the following analyses. 

For the case of full snow load, three different models of the dome cap are 

analyzed. These models are based on the material law used for the beam elements, 

and are labelled as followed: 

Dome Analyses 87



1. Linear-2F with E=1.8x10° psi and G=1.6x10° psi. 

2. Linear-3F with E=2.1x10° psi and G=1.6x10° psi. 

3. Nonlinear-F 

The results for the Linear-2F model are already presented in Section 5.4. The load 

deflection path for this model is again presented in Fig.5.4 to compare it with 

those for the other two models. 

The critcal load factor for dome cap model Linear-3F is 14.73 and shows a much 

stiffer response than that of Linear-2F. Even though there is about 19% difference 

in the critical load factor between this and the Linear-2F, the effect on the stresses 

is negligible. The deflections seem to be more sensitive to the change in modulus 

of elasticity than the critical load factor. The vertical deflection at the limit point 

at the apex for the dome cap model Linear-2F is 12.5 inches, whereas that for 

dome cap model Linear-3F is just about 6 inches, a difference of about 50%. The 

maximum stresses at the limit point in dome cap model Linear-3F are: 

Maximum tensile stress : 6108 psi, in element 5 at node 2 

Maximum compressive stress : 7088 psi, in element 2 at node 2 

The load deflection curve for the dome cap model Nonlinear-F, in Fig.5.4, lies 

between those for Linear-1F and Linear-3F. It will thus be more appropriate to 

compare the response of the dome with nonlinear material law with a dome 

having a linear material law similar to the linear portion of the nonlinear material 

law. To check this fact, another model of the dome is created with bilinear
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material law for the beam elements. This model is tested for the case of half snow 

load to check if it is a better model for comparing the response of the dome cap 

with material nonlinearity. 

The critical load factor for the dome cap model Nonlinear-F is 14.25. The 

maximum stresses at failure are found to be lower than those with linear material 

law. The reason for the lower stresses in the inelastic domes despite the higher 

critical load factors is described in detail in section 5.7. The maximum stresses at 

the limit point for the dome cap model Nonlinear-F are, 

Maximum tensile stress : 5359 psi, in element 5 at node 2 

Maximum Compressive Stress : 6919 psi, in element 2 at node 2 

For the case of half snow load, two different models of the dome cap are analysed. 

These models are based on the material law used for the beam elements, and are 

labelled as : 

1. Bilinear-H, with E .o\=1.8x10® psi, E .\=2.1x10® psi and (tension) (compression) 

G=1.6x10° psi. 

2. Nonlinear-H 

The critical load factor for the dome cap model Bilinear-H is 12.68. The load 

deflection path is shown in Fig.5.5, and the maximum stresses at the limit point 

are presented below. It is seen that the tensile stress is lower than that for dome 

cap model Linear-2H (Section 5.4), whereas the compressive stress is higher than 
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before. Again, the tensile stress is below the ultimate while the compressive stress 

is above the ultimate stress value (Table 5.1). 

Maximum tensile stress : 12673 psi, in element 5 at node 2 

Maximum Compressive Stress : 17923 psi, in element 1 at node 4 

The bilinearity of the stress strain law seems to force the beams to undergo larger 

compressive stresses and smaller tensile stresses as compared to the model with 

linear material law. 

The critical load factor for the dome cap model Nonlinear-H is 11.53. The load 

deflection path in Fig.5.5 coincides for the initial linear range with that for the 

dome cap model Bilinear-H. After a certain load though, the load deflection path 

for the Nonlinear-H case shows a softer response, indicating the gradual yielding of 

the material. The maximum stresses at failure for the Nonlinear-H model are 

given below. 

Maximum tensile stress : 11457 psi, in element 5 at node 2 

Maximum Compressive Stress : 10496 psi, in element 4 at node 5 

The location of nodes where maximum stresses occur are shown in Fig.5.3.



5.6 Mesh Refinement Studies on the Dome Cap 

For the mesh refinement studies, only the half snow load condition is considered. 

Six dome cap models are analysed. Out of these, three models have nonlinear 

material law for the beams while the other three have the bilinear law. Three 

different mesh configurations make up the three models under each material law. 

The mesh configurations are discussed in Section 4.2 and the original mesh and 

the refined mesh configurations are shown in Fig.4.4 and Fig.4.5 respectively. The 

models with bilinear material law are labelled as follows: 

1. Bilinear-H, the model with the original mesh. 

2. Bilinear-HR, where the ’R’ stands for the refined mesh. 

3. Bilinear-HC, where the ’C’ stands for the connector elements. 

Similarly, the inelastic models are labelled as: 

1. Nonlinear-H, the model with the original mesh. 

2. Nonlinear-HR, where the ’R’ stands for the refined mesh. 
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3. Nonlinear-HC, where the ’C’ stands for the connector (or hinge) elements. 

The critical load factor for the dome cap model Bilinear-HR is 12.51 while that for 

the Bilinear-HC is 12.09. The load deflection curves for the dome cap with bilinear 

elastic material law are given in Fig.5.6. It can be seen that the mesh refinement 

softens the response of the dome. The model with connector elements show the 

softest response, followed by the model with refined mesh and then the original 

model. It is thus observed that sufficient refinement of the mesh would give 

results closest to the response of an ideal dome. It is also observed that the 

selective refinement of the mesh, i.e. inserting connector or hinge elements, gives a 

better response for the dome cap because the finite element solution converges to 

the continuum solution when the mesh is refined. 

The critical load factors for the dome cap model Nonlinear-HR is 11.29 and that 

for Nonlinear-HC is 11.07. The nature of the load deflection paths for the inelastic 

dome caps are similar to those for the bilinear dome caps. These are given in 

Fig.5.7. 

As the mesh is refined, the lengths of successive load increments past the limit 

point start decreasing. This indicates the increasing effort required to get a 

convergent solution. For the dome cap model Nonlinear-HC, the final few points 

are nearly coincident, indicating the beginning of convergence problems. 
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Of the six models analysed, the convergence problems occur only in the Nonlinear- 

HC model. Several analysis runs of the Nonlinear-HC models were attempted by 

relaxing the convergence tolerances for loads and moments. The load tolerances 

were gradually relaxed from 1% to 20% of the nodal load at the apex. The 

relaxing of the tolerances did not help in alleviating the convergence problems. 

Further relaxation of tolerances would be futile, as it would keep reducing the 

accuracy of the solution with no guarantee of solving the convergence problems. It 

can be inferred from the program runs that the convergence problems are not due 

to a very tight tolerance value. The cause for the convergence problems could be 

due to the combined effect of the inelastic material law and the size of the 

connector elements, effectively causing very stiff elements next to very soft ones. 

5.7 Analyses of the Dome 

A limited number of cases are analysed for the complete dome model. The 

comparative study of the dome is divided into three classes. In each of these 

classes the effect of only a specific group of properties on the dome behavior is 

studied. 

In two of the three groups, only one load condition of half snow load is considered.



In the remaining group, the dome models are analysed for both half and full snow 

load conditions. The different models in each group are obtained by varying the 

material law for the beam elements. 

Except in the case of mesh refinement studies, the dome models have the original 

configuration where each physical beam is modelled with two elements. The dome 

model is discussed in Section 4.2, and is illustrated in Fig.4.1. 

In the analysis of the complete dome models it is observed that the critical loads 

for the dome models correspond to the limit points, thus are also the limit loads. 

5.8 Effect of Shear Modulus on the Dome Behavior 

Tests are conducted on two dome models. The first model is similar to the model 

used by Wu (1991). It has elastic material law and has the shear modulus same as 

used by Wu (1991). The only difference is that Wu (1991) has used connector 

elements with variable stiffness to model the triax joints. The case with 100% 

joint stiffness would be the same as the model being analysed here. The second 

model is same as the first model except the shear modulus is reduced. The 

nomenclature used for the models, and the values for the moduli are given below:



10 

Lo
ad

 
Pr
op
or
ti
on
al
it
y 

Fa
ct
or
 

  

  
L LINEAR-1H LINEAR-2H     

a - as - 
| | | | | [ 

        
  

-35 -30 “25 -20 “15 -10 -5 0 

Z-Displacement (inches) 

FIG.5.8 DOME WITH HALF SNOW LOAD 
EFFECT OF CHANGE IN SHEAR MODULUS 

Load Proportionality Factor vs. Z-Displacement



AZ WAVAVIAVAY, AN 
AZ WAVAV AY, 

AKL WAVAVANANN 
wy TAvANG, 
ON, | \ XT PNY; NYO 

VAVAVAVAN Lv AAV AAV, 

  

      

  
  

    

  

  

FIG.5.9 DOME NODES, ORIGINAL MESH



1. Linear-1H with E=1.8x10° psi and G=6.0x10° psi. (Wu’s (1991) model ) 

2. Linear-2H with E=1.8x10° psi and G=1.6x10" psi. 

The ’H’ stands for half snow load. 

The critical load factor for the dome model Linear-1H is 7.72, which is the same 

as that obtained by Wu (1991). The load deflection path is shown in Fig.5.8. The 

maximum stresses at failure in the dome model Linear-1H are: 

Maximum tensile stress : 8099 psi, in element 11 at node 16 

Maximum compressive Stress : 17363 psi, in element 11 at node 16 

The critical load factor for the dome model Linear-2H is 7.08. It is observed that 

the change in the shear modulus has a considerable effect on the load deflection 

path and the critical load, Fig.5.8. The lowering of the shear modulus causes the 

dome response to be softer. The maximum stresses at failure for this dome model 

are much lower than those for the dome model Linear-1H. It is observed that the 

reduction in the shear modulus tends to reduce the critical load factor, and the 

maximum stresses at failure. The maximum stresses at failure are below the 

ultimate stress values (Table 5.1). 

Maximum tensile stress : 4971 psi, in element 10 at node 17 

Maximum Compressive Stress : 8811 psi, in element 11 at node 16 

The nodes where the maximum stresses occur are shown in Fig.5.9. 
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The buckling modes for both the models are similar. They show local buckling in 

the form of small dimples on the side of the applied snow load. 

5.9 Effect of Material Nonlinearity on the Behavior of the Dome Models 

Four models are tested to study the behavior of the complete dome with nonlinear 

material law. A model with bilinear material law and one with nonlinear material 

law are analysed for full snow and half snow load conditions. The nomenclature 

used for the dome models is given below. For the full snow load condition, the 

models are: 

1. Bilinear-F, with E(tension)=2-8x10° psi, E (compression) =2:LxL0° psi and G=1.6x10° 

psi. 

2. Nonlinear-F 

The ’F’ stands for the full snow load condition. For half snow load condition the 

extension ’H’ is used. The models with half snow load condition are: 

1. Bilinear-H, with E (tension) =1-8x10° psi, E (compression) =2-LX10° psi and 

G=1.6x10° psi. 
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2. Nonlinear-H 

The critical load factor for the dome model Bilinear-F is 9.99. The load deflection 

path is shown in Fig.5.10. The maximum stresses at the limit point are given 

below. The maximum compressive stress is beyond the proportional limit whereas 

the Maximum tensile stress is below the proportional limit (Table 5.1). 

Maximum tensile stress : 3747 psi, in element 201 at node 77 

Maximum compressive Stress : 11535 psi, in element 37 at node 7 

The critical load factor for the dome model Nonlinear-F is 9.94. From the load 

deflection path in Fig.5.10, it can be seen that for full snow load case, the inelastic 

behavior is not much different from the elastic behavior. The maximum 

compressive stress and the maximum tensile stress at the limit point are between 

the proportional limit and the ultimate stress (Table 5.2). The maximum stresses 

are: 

Maximum tensile stress : 3740 psi, in element 201 at node 77 

Maximum compressive Stress : 9985 psi, in element 37 at node 7 

The nodes at which the maximum stresses occur are shown in Fig.5.9. 

The buckling load is at the limit point, and the buckling mode is in the form of 

cyclically symmetric failure around the base of the dome with the formation of 

dimples at the location of failure. The failure modes for both the models are 

identical.
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The analysis results for dome models with half snow load and nonlinear material 

law are given below. 

The critical load factor for the dome model Bilinear-H is 8.63. The load deflection 

path for this model is shown in Fig.5.11. The maximum stresses at critical load, 

which is also the limit load, are given below. The maximum compressive stress is 

beyond the ultimate stress while the maximum tensile stress is between the 

proportional limit and the ultimate stress (Table 5.1). 

Maximum tensile stress : 5862 psi, in element 9 at node 17 

Maximum Compressive Stress : 16546 psi, in element 11 at node 16 

For the dome model Nonlinear-H, the critical load factor is 8.01. From the load 

deflection path shown in Fig.5.11, it can be observed that the materially nonlinear 

behavior of the dome with half snow load is thus softer than the elastic behavior. 

The stresses at failure are given below. The maximum compressive stress is at the 

plastic stress level. The maximum tensile stress lies between the proportional 

limit and the ultimate stress (Table 5.2). 

Maximum tensile stress : 7467 psi, in element 11 at node 16 

Maximum Compressive Stress : 10496 psi, in element 12 at node 6 

The nodes at which the maximum stresses occur are shown in Fig.5.9. 

The buckling mode for the dome models with half snow loads shows localised 

dimples on the side of the applied snow load, indicating local failure at the



location of these dimples. The buckling modes are the same for the dome models 

with linear and nonlinear material laws for the load case of half snow load. 

5.10 Mesh Refinement Studies of the Dome Model 

For the mesh refinement studies, only the half snow load condition is considered. 

Four models are analysed. Of these four, two have bilinear material laws, whereas 

the other two have nonlinear material laws. Two different mesh configurations 

make up the two models under each material law. The descriptions of the meshes 

are given in Section 4.1 and illustrated in Fig.4.1 and Fig.4.3. In the original 

mesh, each physical beam is modelled by two elements while in the refined mesh, 

four elements are used to model each physical beam. Hence the mesh in the 

refined mesh model is twice as fine as the dome model with the original mesh. 

The models with linear material law are labeled as: 

1. Bilinear-H, the model with the original mesh. 

2. Bilinear-HR, where the ’R’ stands for the refined mesh. 

Similarly, the inelastic models are labeled as: 

1. Nonlinear-H, the model with the original mesh.
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2. Nonlinear-HR, where the ’R’ stands for the refined mesh. 

The use of connector (hinge) elements in the dome models did not give good 

results, and are not presented here. The analysis of the dome model with 

connector elements and inelastic material law gave convergence problems. These 

convergence problems are attributed to the combined effect of the size of the 

connector elements and the inelastic material law. Further studies need to be done 

by using different sizes of connector elements and different element types. 

The critical load factor for the dome model Bilinear-H is 8.63 while that for the 

Bilinear-HR is 8.06. The load deflection curves for the dome with bilinear elastic 

material law are given in Fig.5.12. It can be seen that the mesh refinement softens 

the response of the dome. Although the difference in the critical loads for the two 

models is not very large, sufficient refinement of the mesh would give results 

closest to the response of an ideal dome. 

The critical load factors for the dome model Nonlinear-H is 8.01 and that for 

Nonlinear-HR is 7.74. The nature of the load deflection paths for the inelastic 

dome caps are similar to those for the bilinear dome caps. These are given in 

Fig.5.13. 

The buckling modes for the dome models with original and refined mesh 

configurations are very similar. The failure is in the form of local buckling of 

members on the side of the applied snow load. The failure is indicated by the 
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presence of dimples at the location of localised buckling. 

The stress and the corresponding strain at the limit point for the dome models 

with refined meshes and half snow load are plotted in Fig.5.14. These stresses and 

strains are superimposed on the plot of the bilinear and the nonlinear stress-strain 

curves for wood. From the figure it can be seen that the compressive strains at the 

limit point for both the models are nearly the same, while the stresses are 

markedly different. This difference arises due to the curvature of the nonlinear 

stress-strain law. Since the nonlinear stress-strain law curves and becomes 

horizontal, for the same strain, a smaller stress reading is obtained as compared to 

that for the linear stress strain law. 

The compressive strain at failure for the dome model Inelastic-HR is 6.07x10~? 

and the corrosponding stress is 10188 psi. Considering linear behavior, the stress 

for this strain value would be 12747 psi. As the inelastic stress strain curve levels 

off, the difference in the stresses at the same strain values for the inelastic and the 

elastic material laws would become greater. It is also seen that the strain value at 

failure for the dome model Bilinear Elastic-HR is 6.38x10~*. This value is very 

close to that for the inelastic case, but the corresponding stress at failure, 14011 

psi, is much higher. This explains the rather large difference between the stresses 

at failure for the elastic and the inelastic dome models. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

From the studies conducted in this research, it is found that: 

1. The nonlinear material law of wood can be successfully modelled and 

incorporated in the finite element program ABAQUS. 

2. The selective refinement of the mesh in inelastic analysis gives a softer 

response as compared to complete mesh refinement, although it gives convergence 

problems and does not work for the complete dome. 

3. Torsion studies on cantilever beams show that the shear modulus value used 
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by ABAQUS in the computations is different from those specified by Wu (1991), 

Tissaoui (1991), and by Davalos (1989) because ABAQUS defaults at Poisson’s 

ratio of 0.5, thus computing the corresponding shear modulus as 6.0x10° psi 

instead of as 1.6x10° psi. 

4. For full snow load cases (cyclically symmetric loading) the effect of variation 

in the shear modulus on the dome behavior is negligible, whereas considerable 

effect is seen for the half snow load cases ( cyclically unsymmetric loading). 

5. The materially nonlinear response of the dome is softer than the materially 

linear response. 

6. The mesh refinement causes a softer response, and lowers the critical load as 

compared to that for the dome model with a coarser mesh. 

8. The selective refinement of the mesh gave better results than the uniform 

mesh refinement in the dome cap models. But for the dome model, the selective 

mesh refinement, i.e., providing connector (hinge) elements caused convergence 

problems. 

9. The buckling modes for all the dome models with linear and nonlinear material 

law were the same, and the critical loads were at the limit points. 

10. For the elastic dome analyses, the compressive stresses at the limit load were 
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beyond the ultimate, while the tensile stresses were between the proportional limit 

and the ultimate stress. 

11. For the dome with nonlinear material law, the compressive stresses at the 

limit load were in the plastic region of the stress strain curve (plateau region) 

while the tensile stresses were between the proportional limits and the ultimate 

stress. 

6.2 Recommendations 

1. The nonlinear response of the cantilever beam must be compared with 

experimental results 

2. The material law modelled in this research is for small clear timber. 

Experimental tests must be conducted on glulam beams to find the differences, if 

any, in their nonlinear behavior. These differences must then be incorporated in 

the material model. 

3 The results of finite element analyses of the dome models should be verified by 

experimental tests of the dome models. 
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4. Dome models with different geometry and rise to span ratios should be 

analysed. Inelastic analyses of domes with different geometry would give a more 

clearer understanding of the behavior of domes with nonlinear stress-strain laws, 

and of the effect of the rise to span ratios on this behavior. 

5. Further studies should be conducted by modelling the connector (hinge) 

elements with B32 beam elements to determine the cause of the convergence 

problems in the complete dome model. 

6. Various other loading conditions should be used to study their effect on the 

nonlinear behavior of the domes. 

7. A more realistic model of decking should be used to study its effect on the 

dome behavior. 

8. The maximum stresses at failure occur at the beam joints. Hence, it is 

important to determine if the connectors would fail before the members. The 

connectors should thus be modelled and monitored in the future studies. 

10. The method of combined linear and nonlinear buckling prediction method 

(Wu, 1991; Tissaoui, 1991; Holzer, Wu, and Tissaoui, 1991) should be used to 

study its applicability and usefulness in the buckling analyses of domes with 

nonlinear material laws. 
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APPENDIX A 

PROGRAM TO COMPUTE THE DIRECTION COSINES OF THE BEAM ELEMENTS C 
AND TO WRITE THE SECTION PROPERTIES AND ELEMENT SETS QO

 

USER: NIKET M. TELANG.............cccscceseseeees 951 3071. 
PROGRAM WRITTEN SEPT 1991 

THE PROGRAM READS THE DATA FILES NAMED IN THE COMMENT 
STATEMENTS 

VARIABLES: 
N: NODE NUMBERS 
X, Y, Z: ELEMENT NUMBER 
R: RADIUS OF THE DOME 
XCOS, YCOS, ZCOS: ARRAY FOR THE NODES 
XNORM: MAGNITUDE OF THE 1 AXIS VECTOR 
XCC, YCC, ZCC: DIRECTION COSINES FOR THE BEAMS 

Q
A
Q
Q
Q
A
Q
A
A
I
A
A
A
A
A
A
N
A
N
 

DECLARE THE VARIABLES 

M
Q
I
M
Q
Q
A
Q
A
A
A
R
A
A
A
Q
A
A
A
A
A
N
A
A
A
N
A
A
A
N
 

REAL X, Y, Z 
REAL XCOS(800), YCOS(800), ZCOS(800) 
REAL XC(800), YC(800), ZC(800) 
REAL XCC(800), YCC(800), ZCC(800) 
REAL R 
R=1387.6 

C OPEN NODE COORDINATES AND BEAM CONNECTIVITY DATA FILES 

OPEN(UNIT=55,STATUS=’OLD’) 
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OPEN(UNIT=60,STATUS=’OLD’) 
OPEN(UNIT=65,STATUS=’0OLD’) 
OPEN(UNIT=70,STATUS=’OLD’) 

OPEN OUTPUT DATA FILES 

Q
a
Q
Q
 

OPEN(UNIT=88,STATUS=’UNKNOWN’) 
OPEN(UNIT=98,STATUS=’UNKNOWN’) 

READ NODES FROM NODES.DAT 

Q
a
0
a
 

DO 10 I=1,217 
READ (55,+) N, X, Y, Z 
XCOS(I) = X 
YCOS(I) = Y 
ZCOS(I) = Z + 1387.66 
ZCOS1(I) = Z+1387.66 

10 CONTINUE 
C 
C READ CONNECTIVITY FOR MAIN BEAMS-I FROM MBEAM1.DAT 
C 

WRITE(88,350) 
WRITE(98,350) 
DO 20 J=1,24 
READ (60,*) NE, N1, N2 
XC(NE) = YCOS(N1) * ZCOS(N2) - ZCOS(N1) * YCOS(N2) 
YC(NE) = -(XCOS(N1) # ZCOS(N2) - ZCOS(N1) # XCOS(N2)) 
ZC(NE) = XCOS(N1) + YCOS(N2) - YCOS(N1) * XCOS(N2) 
XNORM = (XC(NE)##2+YC(NE)*#*2+ZC(NE)*#+#2) *« 0.5 
XCC(NE) = XC(NE) / XNORM 
YCC(NE) = YC(NE) / XNORM 
ZCC(NE) = ZC(NE) / XNORM 
WRITE (88,200) NE 
WRITE (88,220) NE, N1, N2 
WRITE (98,230) NE 
WRITE (98,240) 
WRITE (98,300) XCC(NE), YCC(NE),ZCC(NE) 
WRITE (98,310) 
WRITE (98,320) 

20 CONTINUE 
C 
C READ CONNECTIVITY FOR MAIN BEAM-II FROM MBEAM?2.DAT 
C 

WRITE(88,360) 
WRITE(98,360) 
DO 30 11=1,240 
READ (65,+) NE, N1, N2 
XC(NE) = YCOS(N1) * ZCOS(N2) - ZCOS(N1) * YCOS(N2) 
YC(NE) = -(XCOS(N1) * ZCOS(N2) - ZCOS(N1) + XCOS(N2)) 
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30 
C 
C 
C 

40 
C 
C 
C 
200 
220 
230 

240 
245 
250 
300 
310 
320 
350 

ZC(NE) = XCOS(N1) * YCOS(N2) - YCOS(N1) * XCOS(N2) 
XNORM = (XC(NE)#*2+YC(NE)*+#2+ZC(NE)##2) ** 0.5 
XCC(NE) = XC(NE) / XNORM 
YCC(NE) = YC(NE) / XNORM 
ZCC(NE) = ZC(NE) / XNORM 
WRITE (88,200) NE 
WRITE (88,220) NE, N1, N2 
WRITE (98,230) NE 
WRITE (98,245) 
WRITE (98,300) XCC(NE), YCC(NE),ZCC(NE) 
WRITE (98,310) 
WRITE (98,320) 

CONTINUE 

READ CONNECTIVITY FOR EDGE (PERIMETER) BEAMS FROM EDBEAM.DAT 

WRITE(88,370) 
WRITE(98,370) 
DO 40 11=1,48 
READ (70,*) NE, N1, N2 
XC(NE) = YCOS(N1) * ZCOS(N2) - ZCOS(N1) + YCOS(N2) 
YC(NE) = -(XCOS(N1) * ZCOS(N2) - ZCOS(N1) * XCOS(N2)) 
ZC(NE) = XCOS(N1) * YCOS(N2) - YCOS(N1) + XCOS(N2) 
XNORM = (XC(NE)«#2+YC(NE)**2+ZC(NE)*«2) ** 0.5 
XCC(NE) = XC(NE) / XNORM 
YCC(NE) = YC(NE) / XNORM 
ZCC(NE) = ZC(NE) / XNORM 
WRITE (88,200) NE 
WRITE (88,220) NE, N1, N2 

WRITE (98,230) NE 
WRITE (98,250) 
WRITE (98,300) XCC(NE), YCC(NE),ZCC(NE) 
WRITE (98,310) 
WRITE (98,320) 

CONTINUE 

FORMAT STATEMENTS FOR WRITING THE OUTPUTS 

FORMAT (T1,’#ELEMENT,TYPE=B33,ELSET=E’,T26,14) 
FORMAT (1X,]4,’,’,14,’,’,14) 
FORMAT (T1,’*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E’ 

,T50,14) 
FORMAT (2X,’6.75, 11.0’) 
FORMAT (2X,’5.0, 11.0’) 
FORMAT (2X,712.25, 3.0’) 
FORMAT (1X,F8.4,’,’,F8.4,’,’,F8.4) 
FORMAT (’* TRANSVERSE SHEAR STIFFNESS’) 
FORMAT (2X,’9972128.26, 9972128.26’) 
FORMAT (?## MAIN BEAMS 1°)   
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  360 FORMAT («+ 
370 FORMAT («+ 

END 
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MAIN BEAMS 2”) 
EDGE BEAMS’) 
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APPENDIX B 

*HEADING, CORE=15000000 
SDRC DEAS ABAQUS FILE TRANSLATOR 10-OCT-91 22:26:18 
++ NIKET M. TELANG 9513071 INPUTFILE FOR DOME 
+* NONLINEAR RIKS ANALYSES/ HALF SNOW LOAD/ USER MATERIAL ALL BEAMS 
++ NONLINEAR MATERIAL LAW 
+ NODES 
«NODE, SYSTEM=R, NSET=ALL 

1, 0.0000E+00, 0.0000E+00, 2.1234E+02 
2, 2.6374E+02, 0.0000E+00, 1.9046E+02 
3, 1.3187E+02,-2.2840E+02, 1.9046E+02 
4, 5.0721E+02, 0.0000E+00, 1.2982E+02 
5, 2.5361E+02,-4.3926E+02, 1.2982E-+02 
6, 3.8528E+02,-2.2244E+02, 1.4925E+02 
7, 7.1710E+02, 0.0000E+00, 4.2643E+01 
8, 3.5855E+02,-6.2103E+02, 4.2644E+01 
9, 4.8911E+02,-4.2359E+02, 7.5678E+01 
10, 6.1139E+02,-2.1179E+02, 7.5677E+01 
11, 7.9650E+02, 0.0000E+00, 4.8828E-04 
12, 3.9825E+02,-6.8978E+02, 4.8828E-04 
13, 5.6321E+02,-5.6321E+02, 4.8828E-04 
14, 6.8978E+02,-3.9825E+02, 4.8828E-04 
15, 7.6936E+02,-2.0615E+02, 4.8828E-04 
16, 2.5941E+02,-2.2615E+02, 1.7490E+02 
17, 3.2556E+02,-1.1158E+02, 1.7489E+02 
18, 3.7243E+02,-4.3266E+02, 1.0704E+02 
19, 4.3841E+02,-3.2391E+02, 1.1663E+02 
20, 4.9972E+02,-2.1772E+02, 1.1663E+02 

  

Appendix B 125



200,-4.3841E+02,-3.2391E+02, 1.1663E+02 
201,-3.7243E+02,-4.3266E+02, 1.0704E+02 
202,-7.4494E+02,-1.0331E+02, 2.4569E+01 
203,-6.9140E+02,-2.0928E+02, 3.9982E+01 
204,-6.5207E+02,-3.0572E+02, 4.1096E+01 
205,-5.9079E+02,-4.1185E+02, 4.1096E+01 
206,-5.2695E+02,-4.9413E+02, 3.9982E+01 
207,-4.6194E+02,-5.9348E+02, 2.4569E+01 
208,-1.9848E+02,-1.1459E+02, 1.9584E-+02 
209,-4.4766E+02,-1.1157E+02, 1.4439E+02 
210,-3.2045E+02,-3.3190E+02, 1.4438E+02 
211,-6.6610E+02,-1.0619E+02, 6.3212E+01 
212,-5.5186E+02,-3.1862E+02, 7.9969E+01 
213,-4.2502E+02,-5.2377E402, 6.3212E+01 
214,-7.8968E+02,-1.0396E+02, 0.0000E+00 
215,-7.3587E+02,-3.0480E+02, 0.0000E+00 
216,-6.3190E+02,-4.8487E+02, 0.0000E+00 
217,-4.8488E+02,-6.3190E+02, 0.0000E-+00 
  

  

  

  

* BOUNDARY NODES 

+*NSET,NSET=SUPPORT 
12, 195, 15, 88, 89, 90 

91, 52, 53, 11, 127, 128 

129, 130, 165, 166, 167, 131 

13, 04, 55, 14, 193, 194 

78, 79, 80, 81, 186, 187 
188, 189, 158, 159, 160, 161 
214, 215, 216, 217, 114, 115 
116, 117, 42, 43, 44, 45 

eA ELEMENT INCIDENTS 
mr TRUSS ELEMENTS 

x TENSION RING 

*ELEMENT,TYPE=C1D2 ,ELSET=RING 
232 53 52 
231 54 53 

230 55 54 

229 11 «55 

893 88 195 

894 195 194 
895 194 193 
896 193 128 

61 11 15 

733 127 167 
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62 
576 
575 
574 
573 
734 
735 
736 
400 
399 
398 
397 
63 
64 

15 
129 
130 
131 
127 
167 
166 
165 
89 
90 
91 
88 
14 
13 

14 
128 
129 
130 
131 
166 
165 
52 
12 
89 
90 
91 
13 
12 
  x PURLINS 
*ELEMENT,TYPE=C1D2 ,ELSET=PURLIN 
242 
235 
234 
240 
75 
76 
739 
589 
588 
587 
72 
586 
738 
585 
584 
583 
582 
65 
66 

748 
401 
402 
403 
404 
405 
406 
407 
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67 
o7 
30 
59 
26 
25 
169 
140 
141 
142 
19 
143 
146 
134 
135 
136 
137 
28 
30 

177 
104 
105 
93 
92 
106 
97 
96 

66 
56 
57 
58 
25 
24 
168 
139 
140 
141 
18 
142 
169 
149 
134 
135 
136 
29 
17 

176 
29 
93 
92 
31 
97 
96 
95 

127



408 
409 
410 
411 
412 
413 
414 
749 
750 
909 
741 
590 
236 

* 

95 
94 
103 
102 
101 
100 
99 
176 
175 
204 
148 
139 
56 

94 
33 
102 
101 
100 
99 
98 
175 
174 
203 
173 
138 
69 
  TRUSS BRACING 
*ELEMENT,TYPE=C1D2 ,ELSET=BRACE 
417 
418 
419 
420 
421 
422 
423 
424 
765 
415 

610 
760 
612 
613 
614 
615 
616 
617 
618 
619 
620 
624 
622 
623 
176 

108 
108 
105 
93 
92 
31 
110 
110 
172 
104 

157 
182 
156 
155 
155 
143 
143 
143 
142 
141 
140 
138 
138 
138 
179 

93 
92 
110 
110 
109 
109 
97 
96 
184 
108 

142 
172 
140 
139 
138 
150 
127 
161 
160 
160 
159 
151 
158 
128 
127 
  *x 

* 

BEAM ELEMENTS 
MAIN BEAMS 1   

*ELEMENT,TYPE=B33,ELSET=E 1 

1, 
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*ELEMENT,TYPE=B33,ELSET=E 2 
2, 28, 2 

*ELEMENT,TYPE=B33,ELSET=E 3 
3, 1, 29 

*ELEMENT,TYPE=B33,ELSET=E 4 
4, 29, 3 

*ELEMENT,TYPE=B33,ELSET=E 5 

5, 2, 36 
*ELEMENT,TYPE=B33,ELSET=E 6 

6, 36, 3 
* ELEMENT,TYPE=B33,ELSET=E 178 

178, 68, 46 
*ELEMENT,TYPE=B33,ELSET=E 180 

180, 72, 46 
*ELEMENT,TYPE=B33,ELSET=E 850 
850, 208, 119 

*ELEMENT,TYPE=B33,ELSET=E 849 

849, 82, 208 
*ELEMENT,TYPE=B33,ELSET=E 345 
345, 1, 104 

*ELEMENT,TYPE=B33,ELSET=E 346 
346, 104, 82 

*ELEMENT,TYPE=B33,ELSET=E 347 
347, 82, 108 

*ELEMENT,TYPE=B33,ELSET=E 348 
348, 108, 3 

*ELEMENT,TYPE=B33,ELSET=E 513 
513, 1, 144 

*ELEMENT,TYPE=B33,ELSET=E 514 
514, 144, 118 

*ELEMENT,TYPE=B33,ELSET=E 515 
515, 1, 145 

* ELEMENT,TYPE=B33,ELSET=E 516 
516, 145, 119 

*ELEMENT,TYPE=B33,ELSET=E 517 
517, 118, 152 

*ELEMENT,TYPE=B33,ELSET=E 518 
518, 152, 119 

*ELEMENT,TYPE=B33,ELSET=E 690 
690, 180, 46 

*ELEMENT,TYPE=B33,ELSET=E 689 
689, 118, 180 

*ELEMENT,TYPE=B33,ELSET=E 177 
177, 1, 68 

*ELEMENT,TYPE=B33,ELSET=E 179 
179, 2, 72 

**   

*ELEMENT,TYPE=B33,ELSET=E 23 

23, 6, 20 
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*ELEMENT,TYPE=B33,ELSET=E 24 
24, 20, 10 

*ELEMENT,TYPE=B33,ELSET=E 25 
25, 6, 19 

+ELEMENT,TYPE=B33,ELSET=E 26 
26, 19, 9 

+ELEMENT,TYPE=B33,ELSET=E 27 
27, 5, 18 

*ELEMENT,TYPE=B33,ELSET=E 28 
28, 18, 9 

+ELEMENT,TYPE=B33,ELSET=E 29 
29, 5, 33 

+ELEMENT,TYPE=B33,ELSET=E 30 
30, 33, 8 

*ELEMENT,TYPE=B33,ELSET=E 31 
31, 7, 41 

*ELEMENT,TYPE=B33,ELSET=E 32 
32, 41, 10 

+ELEMENT,TYPE=B33,ELSET=E 33 
33, 10, 40 

+ELEMENT, TYPE=B33,ELSET=E 34 
34, 40, 9 

+ELEMENT, TYPE=B33,ELSET=E 363 
363, 84, 96 

*+ELEMENT, TYPE=B33,ELSET=E 364 
364, 96, 87 

*ELEMENT, TYPE=B33,ELSET=E 365 
365, 84, 95 

*ELEMENT, TYPE=B33,ELSET=E 366 
366, 95, 86 

«ELEMENT, TYPE=B33,ELSET=E 367 
367, 5, 94 

*ELEMENT,TYPE=B33,ELSET=E 368 
368, 94, 86 

*ELEMENT, TYPE=B33,ELSET=E 369 
369, 85, 113 

«ELEMENT, TYPE=B33,ELSET=E 370 
370, 113, 87 

«ELEMENT, TYPE=B33,ELSET=E 388 
388, 98, 89 

*ELEMENT, TYPE=B33,ELSET=E 387 
387, 8, 98 
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*ELEMENT,TYPE=B33,ELSET=E 386 
386, 99, 89 

*ELEMENT, TYPE=B33,ELSET=E 385 
385, 86, 99 

+ELEMENT,TYPE=B33,ELSET=E 371 
371, 87, 112 

*ELEMENT, TYPE=B33,ELSET=E 382 
382, 101, 90 

*ELEMENT, TYPE=B33,ELSET=E 379 
379, 87, 102 

*ELEMENT,TYPE=B33,ELSET=E 378 
378, 103, 91 

*ELEMENT,TYPE=B33,ELSET=E 377 
377, 85, 103 

«ELEMENT, TYPE=B33,ELSET=E 376 
376, 107, 88 

*ELEMENT,TYPE=B33,ELSET=E 375 
375, 85, 107 

*ELEMENT,TYPE=B33,ELSET=E 374 
374, 111, 8 

*ELEMENT, TYPE=B33,ELSET=E 373 
373, 86, 111 

*xELEMENT, TYPE=B33,ELSET=E 372 
372, 112, 86 

ek   

*ELEMENT,TYPE=B33,ELSET=E 891 
891, 193, 214 

* ELEMENT,TYPE=B33,ELSET=E 572 
572, 158, 128 

*ELEMENT,TYPE=B33,ELSET=E 221 
221, 11, 81 

*ELEMENT,TYPE=B33,ELSET=E 389 
389, 88, 117 

*ELEMENT,TYPE=B33,ELSET=E 390 
390, 117, 91 

*ELEMENT,TYPE=B33,ELSET=E 391 
391, 91, 116 

*ELEMENT,TYPE=B33,ELSET=E 392 
392, 116, 90 

*ELEMENT,TYPE=B33,ELSET=E 393 
393, 90, 115 

*ELEMENT,TYPE=B33,ELSET=E 394 
394, 115, 89 

+*ELEMENT,TYPE=B33,ELSET=E 56 
56, 44, 14 
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*ELEMENT,TY PE=B33,ELSET=E 888 
888, 216, 194 

+ELEMENT,TYPE=B33,ELSET=E 889 
889, 194, 215 

+ELEMENT, TYPE=B33,ELSET=E 890 
890, 215, 193 

*ELEMENT,TYPE=B33,ELSET=E 60 
60, 42, 12 

*+ELEMENT, TYPE=B33,ELSET=E 59 
59, 13, 42 

*ELEMENT, TYPE=B33,ELSET=E 58 
58, 43, 13 

*ELEMENT, TYPE=B33,ELSET=E 57 
57, 14, 43 

+ELEMENT, TYPE=B33,ELSET=E 565 
565, 127, 161 

*ELEMENT, TYPE=B33,ELSET=E 566 
566, 161, 131 

+ELEMENT, TYPE=B33,ELSET=E 567 
567, 131, 160 

*+ELEMENT, TYPE=B33,ELSET=E 568 
568, 160, 130 

+ELEMENT, TYPE=B33,ELSET=E 569 
569, 130, 159 

+ELEMENT,TYPE=B33,ELSET=E 570 
570, 159, 129 

*ELEMENT,TYPE=B33,ELSET=E 54 
54, 45, 15 

* SECTION PROPERTIES 
* TRUSS ELEMENTS 
+SOLID SECTION, ELSET=RING, MATERIAL=STEEL 
12. 
+SOLID SECTION, ELSET=PURLIN, MATERIAL=WOOD 

  

t
 

  

  

  

24.75 

*SOLID SECTION, ELSET=BRACE, MATERIAL=WOOD 

0.3 

ek BEAM ELEMENTS 

ok MAIN BEAMS 1 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 1 

6.75, 11.0 

0.0000, 1.0000, 0.0000 
*TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 
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*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 2 
6.75, 11.0 
0.0000, 1.0000, 0.0000 

xTRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 3 
6.75, 11.0 
0.8660, 0.5000, 0.0000 

*TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 4 
6.75, 11.0 
0.8660, 0.5000, 0.0000 

*TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

*BEAM SECTION, SECTION=RECT,MATERIAL=UWOOD,ELSET=E 5 
6.75, 11.0 
0.8571, -0.4948, -0.1432 

*TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 6 
6.75, 11.0 
0.8571, -0.4949, -0.1432 

*TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 178 
6.75, 11.0 
-0.8660, 0.5000, 0.0000 

*TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

#0 MAIN BEAMS 2 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 23 

5.0, 11.0 

0.0000, 0.9897, 0.1432 

*TRANSVERSE SHEAR STIFFNESS 

9972128.26, 9972128.26 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 24 

5.0, 11.0 

0.0000, 0.9897, 0.1432 

«TRANSVERSE SHEAR STIFFNESS 

9972128.26, 9972128.26 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 25 

5.0, 11.0 

  

Appendix B 133



0.8571, 0.4948, -0.1432 
*TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 26 
5.0, 11.0 
0.8571, 0.4948, -0.1433 

«TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

+BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 27 
5.0, 11.0 
0.0000, 0.9606, 0.2781 

*TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 28 
5.0, 11.0 
0.0001, 0.9606, 0.2780 

«TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 376 
5.0, 11.0 
0.8660, -0.5001, -0.0001 

+TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 375 
5.0, 11.0 
0.8660, -0.5000, 0.0000 

*TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

+*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 374 
5.0, 11.0 
0.0001, 0.9173, 0.3983 

«TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

+BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 373 
5.0, 11.0 
-0.0001, 0.9173, 0.3983 
«TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 372 
5.0, 11.0 
0.0000, 0.9173, 0.3983 

*TRANSVERSE SHEAR STIFFNESS 
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9972128.26, 9972128.26 
+ EDGE BEAMS 
*BEAM SECTION, ,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 891 

12.25, 3.0 
0.0000, 0.0000, -1.0000 

*TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 572 
12.25, 3.0 
0.0000, 0.0000, 1.0000 

*TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 221 
12.25, 3.0 
0.0000, 0.0000, 1.0000 

* TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 228 
12.25, 3.0 
0.0000, 0.0000, 1.0000 

*TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

*BEAM SECTION ,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 227 
12.25, 3.0 
0.0000, 0.0000, 1.0000 

*TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

  

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 569 
12.25, 3.0 
0.0000, 0.0000, 1.0000 

* TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 570 
12.25, 3.0 
0.0000, 0.0000, 1.0000 

*TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 54 
12.25, 3.0 
0.0000, 0.0000, -1.0000 

*TRANSVERSE SHEAR STIFFNESS 
9972128.26, 9972128.26 

+ MATERIAL PROPERTIES   
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«MATERIAL, NAME=WOOD 

*ELASTIC 

1.8E+06, 4.625 

*MATERIAL, NAME=UWOOD 

*USER MATERIAL, CONSTANT=3 

12.00, 0.52, 1.6E5 

*MATERIAL, NAME=STEEL 

*ELASTIC 

2.9E+07, 0.3 

ek BOUNDARY CONDITIONS 

*BOUNDARY 

SUPPORT, 3 

11, 2 

128, 2 

90, 1 

166, 1 

ek APPLICATION OF DEAD LOAD 

4k NEWTON RAP. STEP 

*STEP, NLGEOM, INC=100, CYCLE=12 

*STATIC, PTOL=100.0, MTOL=1000.0 

0.1, 1., 0.0, , 

*CLOAD 

1, 3, -0.1687E+04 

2, 3, -0.1622E+04 

3, 3, -0.1622E+04 

, -0.1448E+04 

, -0.1448E+04 

, -0.1502E+04 

, -0.9599E+03 

  

  

  

-0.9599E+03 
-0.1225E+04 

, -0.1225E+04 
-0.3694E+03 
-0.3695E+03 

, 3, -0.4273E+03 
14, 3, -0.5313E+03 
15, 3, -0.4273E+03 
16, 3, -0.1591E+04 

G
o
 

Go
 
G
o
 

OO
 
GO

 
&
 4, 

3, 
6, 
zy, 
8, 
9, 

o
o
 
O
o
 

&
 
O
S
 

~ 

e
e
t
 

w
r
e
 

&
 

100, 3, -0.1097E+04 
101, 3, -0.1097E+04 
102, 3, -0.9952E+03 
103, 3, -0.8781E+03 
104, 3, -0.1689E+04 
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105, 3, -0.1559E+04 
106, 3, -0.1344E+04 
107, 3, -0.3452E+03 
108, 3, -0.1656E+04 
109, 3, -0.1502E+04 
110, 3, -0.1502E+04 
111, 3, -0.1182E+04 
112, 3, -0.1303E+04 
113, 3, -0.1182E+04 

190, 3, -0.1502E+04 
191, 3, -0.1225E+04 
192, 3, -0.1225E+04 
193, 3, -0.4273E+03 
194, 3, -0.5313E+03 
195, 3, -0.4273E+03 
196, 3, -0.1591E+04 
197, 3, -0.1591E+04 
198, 3, -0.1394E+04 
199, 3, -0.1419E+04 
200, 3, -0.1419E+04 
201, 3, -0.1394E+04 
202, 3, -0.8781E+03 
203, 3, -0.9952E+03 
204, 3, -0.1097E+04 
205, 3, -0.1097E+04 
206, 3, -0.9952E+03 
207, 3, -0.8781E+03 
208, 3, -0.1656E+04 
209, 3, -0.1502E+04 
210, 3, -0.1502E+04 
211, 3, -0.1182E+04 
212, 3, -0.1303E+04 
213, 3, -0.1182E+04 
214, 3, -0.1957E+03 
215, 3, -0.4934E+03 
216, 3, -0.4934E+03 
217, 3, -0.1957E+03 
  ae 

*NSET, NSET=APEX1 
1 
*ELSET, ELSET=ELE1 
12 
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*PRINT, RESIDUAL=NO 
*NODE PRINT, NSET=APEX1, SUMMARY=NO, FREQUENCY=5 
U 
*NODE PRINT, NSET=APEX1, SUMMARY=NO, FREQUENCY=5 
CF 
*EL PRINT, ELSET=ELE1, SUMMARY=NO, FREQUENCY=20 
3, 23 

  

S 

*END STEP 

1k APPLICATION OF LIVE LOAD 

#4 RIKS STEP   

«STEP, NLGEOM, INC=20, CYCLE=16 
+STATIC, PTOL=100., MTOL=1000., RIKS 
0.1, 1., 0.0, ,20.0, 1, 3, -20.0 
x DEAD LOAD + HALF SNOW LOAD 
*CLOAD 

1, 3, -0.1687E+04 
2, 3, -0.1622E-+04 
3, 3, -0.1622E+04 
4, 3, -0.1448E+04 
5, 3, -0.1448E+04 
6, 3, -0.1502E+04 
7, 3, -0.9599E+03 
8, 3, -0.9599E+03 
9, 3, -0.1225E+04 
10, 3, -0.1225E+04 
11, 3, -0.3694E+03 
12, 3, -0.3695E+03 
13, 3, -0.4273E+03 
14, 3, -0.5313E+03 
15, 3, -0.4273E+03 
16, 3, -0.1591E+04 
17, 3, -0.1591E+04 

  

174, 3, -0.8781E+03 
175, 3, -0.9952E+03 
176, 3, -0.1097E+04 
177, 3, -0.1097E+04 
178, 3, -0.9952E+03 
179, 3, -0.8781E+03 
180, 3, -0.1656E+04 
181, 3, -0.1502E+04 
182, 3, -0.1502E+04 
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183, 3, -0.1182E+04 
184, 3, -0.1303E+04 
185, 3, -0.1182E+04 
186, 3, -0.1957E+03 
187, 3, -0.4934E+03 
188, 3, -0.4935E+03 
189, 3, -0.1957E+03 
190, 3, -0.1502E+04 
191, 3, -0.1225E+04 
192, 3, -0.1225E+04 
193, 3, -0.4273E+03 
194, 3, -0.5313E+03 
195, 3, -0.4273E+03 
196, 3, -0.1591E+04 
197, 3, -0.1591E+04 
198, 3, -0.1394E+04 
199, 3, -0.1419E+04 
200, 3, -0.1419E+04 
201, 3, -0.1394E+04 
202, 3, -0.8781E+03 
203, 3, -0.9952E+03 
204, 3, -0.1097E+04 
205, 3, -0.1097E+04 
206, 3, -0.9952E+03 
207, 3, -0.8781E+03 
208, 3, -0.1656E+04 
209, 3, -0.1502E+04 
210, 3, -0.1502E+04 
211, 3, -0.1182E+04 
212, 3, -0.1303E+04 
213, 3, -0.1182E+04 
214, 3, -0.1957E+03 
215, 3, -0.4934E+03 
216, 3, -0.4934E+03 
217, 3, -0.1957E+03 

1, 3, -0.1053E+04 
2, 3, -0.9986E+03 
3, 3, -0.1997E+04 
4, 3, -0.8582E+03 
5, 3, -0.1716E+04 
6, 3, -0.1803E+04 
7, 3, -0.5402E+03 
8, 3, -0.1080E+04 
9, 3, -0.1404E+04 
10, 3, -0.1404E+04 
11, 3, -0.2020E+03 
12, 3, -0.4040E+03 
13, 3, -0.4691E+03 
14, 3, -0.5844E+03 
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15, 3, -0.4691E+03 
16, 3, -0.1939E+04 
17, 3, -0.1939E+04 
18, 3, -0.1627E+04 
19, 3, -0.1665E+04 
20, 3, -0.1665E+04 

119, 3, -0.9986E+03 
121, 3, -0.8582E+03 
124, 3, -0.5402E+03 
128, 3, -0.2020E+03 
145, 3, -0.1051E+04 
147, 3, -0.9442E+03 
149, 3, -0.7745E+03 
151, 3, -0.1899E+03 
190, 3, -0.1803E+04 
191, 3, -0.1404E+04 
192, 3, -0.14045+04 
193, 3, -0.4690E+03 
194, 3, -0.5845E+03 
195, 3, -0.4691E+03 
196, 3, -0.1939E+04 
197, 3, -0.1939E+04 
198, 3, -0.1627E+04 
199, 3, -0.1666E+04 
200, 3, -0.1665E+04 
201, 3, -0.1627E+04 
202, 3, -0.9713E+03 
203, 3, -0.1108E+04 
204, 3, -0.1225E+04 
205, 3, -0.1225E+04 
206, 3, -0.1108E+-04 
207, 3, -0.9713E+03 
208, 3, -0.2046E+04 
209, 3, -0.1797E+04 
210, 3, -0.1797E+04 
211, 3, -0.1342E+04 
212, 3, -0.1495E+04 
213, 3, -0.1343E+04 
214, 3, -0.2139E+03 
215, 3, -0.5421E+03 
216, 3, -0.5421E+03 
217, 3, -0.2139E+03 
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+ NODE, ELEMENT SETS AND OUTPUTS 
*«NSET, NSET=APEX 
1 
*«NSET, NSET=NWATCH 
1, 17, 38, 6, 16 
*ELSET, ELSET=EWATCH 
37, 9, 10, 11, 12, 201 
ee OUTPUT REQUESTS 
*PRINT, RESIDUAL=NO 
*EL PRINT, ELSET=EWATCH, POSITION=NODES 

  

  

S 

*NODE PRINT, NSET=NWATCH 

U 

*NODE PRINT, NSET=APEX 

CF 

*NODE FILE, NSET=ALL 

U 

*END STEP 

*USER SUBROUTINE 

SEO GOO GGG GGG Ooi ia aa GGG IGIOK Ia a a a ak kak ak ak a a a a a a ak 

fe SUBROUTINE TO DEFINE USER MATERIAL ARK 

ok es RE 

sek NIKET M. TELANG ........... 10 APRIL’91 aes a a 

BRIO GG GGG GGG GR a ai aa Rk a ak ak 4 2 21 ak ok ak ak ak ok ai a a ak ak a 2k ak ak ak ak a ae 

C 

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

1 RPL,DDSDDT,DRPLDE,DRPLDT, 

2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT) 

C 

IMPLICIT REAL#8(A-H,O-Z) 

C 

C 

DIMENSION STRESS(NTENS),STATEV(NSTATV), 

1 DDSDDE(NTENS,NTENS), 

2 DDSDDT(NTENS),DRPLDE(NTENS), 

3 STRAN(NTENS),DSTRAN(NTENS),PREDEF(1),DPRED(1), 

4 PROPS(NPROPS),COORDS(3), DROT(3,3) 

C 

C INITIALIZE DDSDDE(I,J) 

C 

DO 20 I=1,NTENS 
DO 10 J=1,NTENS 
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10 
DDSDDE(I,J)=0.0 

CONTINUE 
20 CONTINUE 
C 
C 
Cc 

dQ
 

QA
AI

Qa
 

CC 
CC 
CC 
CC 
CC 

Qa
 

a
a
n
 

+*LONGITUDINAL STRESS+ 

TS=0.0 
TS=STRAN(1) + DSTRAN(1) 

*TENSION ZONE* 

IF(TS .GT. 0.0) THEN 

BETA1= 1822300. - 9.8+(PROPS(1)«+3) 
BETA2= 1934700.0 
BETA3= 37045400. - 2204.*+(PROPS(1)##3) - 150737800.+PROPS(2) 
AK1= (BETAI - BETA2)/(2.*BETA3) 
ALFA1= BETA3+#(AK1+#2) 

HAND COMPUTED VALUES FOR: SG=0.52, MC=12% 

BETA1=1805365.6 
BETA2=1934700.0 
BETA3=-45146768.0 
AK1=1.43237E-03 
ALFA1=-92.62689 

IF(TS .LT. AK1)THEN 
DDSDDE(1,1)=BETA1 
STRESS(1)=BETA1+TS 

ELSEIF(TS .GE. AK1)THEN 
DDSDDE(1,1)= BETA2 + (2.*BETA3*STRAN(1)) 
STRESS(1)=ALFA1 + BETA2«TS + BETA3+#(TS##2) 

ENDIF 

*COMPRESSION ZONEx 

ELSEIF(TS .LE. 0.0)THEN 

BETA1= 143900. + 441996*PROPS(1) - 28997.4(PROPS(1)+*+2) 
+ 534.4(PROPS(1)+*3) 

BETA2= 5719340. - 258850.*+PROPS(1) + 4280*(PROPS(1)++2) 
BETA3= -1065588500. + 3449729xPROPS(1) + 

1540914880.+PROPS(2) 
AK1= (BETA1 - BETA2)/(2.#BETA3) 
AK2= (-BETA2)/(2.*BETA3) 
ALFA1= BETA3+(AK1+#*2) 
ALFA2= BETA3+((AK1+#2)-(AK2+#2)) 
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C HAND COMPUTED VALUES FOR: SG=0.52, MC=12% 

CC BETA1=2195036.0 
CC BETA2=3229460.0 
CC BETA3=-222916014.1 
CC AK1=2.3202E-03 
CC AK2=7.24367E-03 
CC ALFA2=10496.5409 
CC ALFA1=-1200.03 

AK1C=-AK1 
AK2C=-AK2 
IF(TS .GE. AKIC)THEN 

DDSDDE(1,1)=BETA1 
STRESS(1)=-BETA1+ABS(TS) 

ELSEIF(TS .LT. AKIC .AND. TS .GE. AK2C)THEN 
DDSDDE(1,1)=BETA2 + 2.+BETA3+ABS(STRAN(1)) 
STRESS(1)=-(ALFA1 + BETA2*ABS(TS) + 

1 BETA3+((ABS(TS))*#2)) 
ELSEIF(TS .LT. AK2C)THEN 

DDSDDE(1,1)=0.0 
STRESS(1)=-ALFA2 

ENDIF 
ENDIF 

C 
C *TORSIONAL SHEAR STRESS+ 
C 

TT=0.0 
TT=STRAN(2) + DSTRAN(2) 

C 
DDSDDE(2,2)=PROPS(3) 
STRESS(2)=DDSDDE(2,2)*TT 

C 
C 

RETURN 
END 
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