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(ABSTRACT)

The object of this study is to incorporate a nonlinear material law for wood in the
finite element program ABAQUS to develop effective finite element models of
glulam domes, and to investigate the buckling behavior of glulam domes using
this finite element program. The material law is implimented with a FORTRAN
subroutine. Results from thorough testing of the subroutine are presented. The
dome is then modeled with I-DEAS and, analysed with ABAQUS. The modeling
procedure is briefly discussed, and the results from the stability analysis of the
dome are presented. Finally, conclusions and further research scope based on this

study are presented.
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CHAPTER 1

INTRODUCTION

The purpose of the present study is to incorporate a nonlinear material law for
wood in the finite element program ABAQUS to develop effective finite element
models of glulam domes, and to investigate the nonlinear buckling behavior of

glulam domes using this finite element program.

A nonlinear material law of wood is incorporated by adding a user coded
subroutine to ABAQUS. The subroutine is based on the mathematical model
developed by Conners (1989) for the nonlinear constitutive behavior of wood. The
mathematical model is obtained by simplifying the nonlinear stress-strain curve
for wood by dividing it into several segments. Each segment is represented by a
polynomial equation. In the discussion that follows, the term nonlinear behavior

means the behavior of a structure with a nonlinear stress strain law.

The user coding option, the nonlinear material modelling procedure, and the
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factors affecting the nonlinear behavior of beams and columns in ABAQUS
analysis have to be thoroughly tested prior to their use in the analyses of any
complex structure. As there are few analytical studies on the nonlinear behavior of
wooden structures, a more commonly studied nonlinear material law for steel is
used to gain experience and confidence in using ABAQUS by comparing the
analysis results with the published data. The four steps given below are used to

evaluate the material modelling capabilities of ABAQUS:

1. Testing of user subroutine option.

This is tested to determine if the user-coding option models a given material law
correctly. In order to accomplish this, the elastic-plastic material law of steel is
modelled using (a) the plastic option from the library of material models in
ABAQUS; and (b) by the user-coding option in ABAQUS. A cantilever beam is
assigned the material law using the two options. The results from the two analyses
are then compared to see if the user-coding option is identical to the plastic option

in ABAQUS for a given material law.

2. Testing of a cantilever in bending.

Finite element analyses of steel cantilever beams with nonlinear material law are
carried out. Analysis runs are made for different mesh sizes, number of integration
points, and modifications of the stress-strain curve. The results are compared with

the continuum solution (Smith and Sidebottom, 1965).
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3. Testing a cantilever column under combined bending and axial force.
Finite element analysis results for a pipe cantilever steel column are compared

with experimental results presented by McGowan (1991).

4. Testing the torsional behavior.

A wooden cantilever beam with direct torsion, and a curved aluminum cantilever
beam under bending and torsion are analysed to check the modelling of torsional
properties in the user subroutine, and to evaluate the shear modulus computed by
ABAQUS in the two cases. The results are compared with hand computations and
with results by Jau (1985), respectively. The shear modulus used by ABAQUS in
the analysis is thus evaluated and compared with the values assumed by Wu

(1991), Tissaoui (1991), and Davalos (1989).

On completing the testing of user subroutine, a triax dome built in Raleigh, North
Carolina, is modelled to study the material nonlinear buckling behavior of domes.
Prior studies of elastic buckling behavior of this dome model have been conducted
by Davalos (1991), Wu (1991), and by Holzer, Wu, and Tissaoui (1991). It was
found from the previous studies that the maximum stresses in the dome members
at the limit point were beyond the ultimate stresses ( Wu, 1991; Tissaoui, 1991;
Holzer, Wu, and Tissaoui, 1991), and hence the assumption of linear elastic

behavior had to be revised to include the nonlinear material law of wood.

Two types of dome models are created, based on the triax dome at Raliegh, N.C.
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The first is of the dome cap model and the other is a complete dome model. The
dome cap model consists of only the top ring of the complete dome. This model is
created because it is much more economical to analyse in terms of computer time.
Due to its smaller size, extensive testing of this model is possible. Also, since it is
part of the complete dome, its behavior will be similar to that of the complete
dome. Thus, potential modelling and analysis problems can be identified before

analysis of the complete dome.

The dome models are created graphically using I-DEAS, which is a finite element
program with excellent graphical capabilities. I-DEAS has the option for writing
an input file for ABAQUS from the graphical model. The input file as obtained
from I-DEAS is modified to include beam orientations and the nonlinear material

law.

In the dome model, 2 noded straight beam elements are used. The tension ring,
the purlins, and the bracing are modelled with truss elements. The truss bracing is
used to model the bracing effect of the decking (Wu, 1991; Tissaoui, 1991; Holzer,
Wu, and Tissaoui, 1991). The purlins are modelled as truss elements to minimize
the degrees of freedom at the two ends and to represent the pinned connection of

the beam-purlin joints (Wu, 1991).

Two load cases are considered. One is the symmetric load case of dead load and

snow load over the complete dome (Full snow load). The other is dead load and

Introduction 4



snow load over only half the dome (Half snow load). Studies by Wu (1991) show
that for the half snow load case, the stresses in the dome members at failure are
beyond the ultimate stresses. Hence this load case would be ideal to test the
nonlinear buckling behavior of the dome, as the maximum stresses in this case
would be in the nonlinear region of the stress strain curve. Also, the full and half
snow load cases would allow the study of nonlinear dome behavior under cyclically
symmetric and cyclically unsymmetric loading respectively. The uniformly
distributed loads are discretized to the nodal loads by using shell elements (Wu,
1991; Tissaoui, 1991; Holzer, Wu, and Tissaoui, 1991).

In all, 13 dome cap models and 8 complete dome models are analysed. These
models are obtained by changing the loading, the material law, and the mesh

configuration. The results from the analyses of these models are used to:

1. compare the behavior of a dome with linear and nonlinear material laws.
determine the effect of the shear modulus on the predicted dome behavior.

determine the effect of two different loadings on the predicted dome behavior.

Lol T

determine the effect of mesh refinement on the predicted dome behavior.
Equlibrium paths, critical loads, and maximum stresses at failure are presented in

the study. Based on the present research, conclusions are presented and

recommendations are made as to further study of glulam domes.
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CHAPTER 2

MATERIAL MODEL

The studies conducted in the past on glulam triax domes (Holzer, Wu, and
Tissaoui, 1991; Wu, 1991) indicate that the material properties of wood beyond
the proportional limit must be incorporated in the model to determine the
ultimate load capacity of the dome. In order to incorporate the material response

of wood beyond the proportional limit, a segmented model suggested by Conners

(1989) is chosen.

In this chapter, an attempt is made to explain:

o the material behavior of wood;

e the mathematical representation of this behavior;

e the incorporation of this nonlinear material law in the finite element program

ABAQUS.
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2.1 Matenial Behavior of Wood

Studies on the constitutive behavior of wood (Conners, 1989; Conners, 1985;
Dietz, 1942) have indicated that wood has a nonlinear stress strain law, where the
behavior in tension is considerably different from that in compression. This
different behavior in tension and compression is explained on the basis of the

cellular structure of wood (Davalos, 1989).

Wood is a biological material; it is made up of bundles of wood cells forming
cylindrical tubes parallel to the axis of the tree. These parallel oriented bundles of
wood cells or wood fibers are also called the grain of the wood. When compressed
along the grain, these cylindrical tubes can buckle and be crushed. Consequently,
wood has lesser strength in compression than in tension. The buckling and
crushing of the wood fibres is depicted by the horizontal portion in the
compression stress-strain curve of wood. In tension, wood can withstand higher
stresses along the grain, and it does not show a marked horizontal yielding zone in

the stress-strain curve.

The compressive strength parallel to the grain of wood is found to be about half of

its tensile strength in a direction parallel to its grain, and the tensile strength
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normal to the grain is about 1/20'® of the tensile strength parallel to the grain
(Davalos, 1989). Although wood is anisotropic in its behavior, it is modelled as
transversely isotropic (Davalos, 1989). In this study, the material behavior in
tension and compression parallel to grain is defined by a nonlinear uniaxial stress

strain law, while the torsional behavior is described by a linear stress-strain law.

The model proposed by Conners (1989) is used to model the nonlinear bending
and axial behavior of wood. The discussion which follow is primarily based on the

paper by Conners (1989).

2.2 The Material Model

The constitutive model proposed by Conners (1989) is represented by a curve
composed of two segments for the tensile zone, and by three individual segments
in the compression zone. Each segment is defined by a different mathematical
equation. The mathematical equations which define the curve are based on
nonlinear regression analyses of experimental stress strain data conducted by
Conners (1989). The data is obtained for yellow poplar specimens with varying

moisture contents and specific gravity. The mathematical equations and the
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parameters used in these equations are described below in detail.

2.2.1. Compression Zone

The compression zone of the curve is modelled by three segments as shown in
Fig.2.1. The first segment 1is linear from the origin to the strain point
K
K

I(compression)- Lhe second segment is nonlinear in the strain range from

1(compression) 0 Ka(compression): Lhe third segment is linear and horizontal,

implying a plastic behavior of the material beyond the strain value of

K

3(compression) - L D€ equations for the three segments of the curve are given below

(Conners, 1989):

For the initial linear segment,

c=p ¢ (2.1)

B, is the longitudinal Young’s modulus in compression.

For the second parabolic segment,
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12,000
—

101000 O OO N OO

Segment 3
8’000 S PPN
\-> Segment 2
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D 0 o e e e - i’
X» Segment 1
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0 D I l-'—IJ 1 | |
0 0.005 0.01 0.015 0.02 0.025

STRAIN
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c=a + ,326+,3362 (2.2)

For the third horizontal segment,

a=a2+ﬂ4€ (23)

By imposing continuity at K ompression) 3Bd Kj(compression)y and solving

simultaneously Egs. (2.1) through (2.3), the values for the constants are obtained:

o, = B3 K2 (2.4)
K1 (compression) = (B1 = B2) [ 283 (2.5)
a, = B5 (K2-Ky?) (2.6)
K(compression) = (B4 - B2) [ 283 (2.7)

The compression stress strain curve beyond the point K replaced by

2(compression) 1
a straight horizontal line (zero slope). Therefore in Eq. (2.3), ¢ must have a
constant value, which is obtained by making 8, equal to zero. The values of 3, ,

B,, and B, are obtained from equations given below (Conners, 1989):

By = 143900 + 441996(MC%) - 28997(MC%)? + 534(MC%)> (2.8)
By = 5719340 - 258850(MC%) + 4280(MC%)2 (2.9)
B3 = -1065588500 + 3449729(MC%) + 1540914880(SG) (2.10)
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where
MC% = Percentage moisture content

SG = Specific garvity, based on ovendry weight and green volume

2.2.2. Tension Zone

The tension zone of the stress strain curve is modelled by two segments as shown
in Fig.2.2. The stress strain curve is linear from the origin to a strain value

K and is represented by the first segment. Beyond K the curve

1(tension) 1(tension)’

is represented by the nonlinear second segment. The equations of the two
segments of the curve are given below (Conners, 1989). Even though the
nomenclature used here for the equations is the same as before, the values for the

various constants are distinctly different than those used for the compression zone.

For the first segment,

o= ﬂlT € (2.11)

For the second segment,
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o= alT + ﬁzT €+ ,6'3T €2 (2.12)

I 2
' ;;: = #I *»f. = ;M + 2 b&t
8,7 is the longitudinal Young’s modulus in tension. s & Brba)) NN
:}'j: ‘K carce ot KoI P FJ’ K " ;4 j 2 Ky [’ wy,
¥ E oy = Tk b ik = b kL T et s
(‘ .\'j”\} {20 i AL S B K_[ =i .'.f..;fay;r«,i-‘)((, N
By imposing C_qntlmgty at Kl(,e,,,,-on), and solving simultaneously Egs. (2.11) and | ELN s
= 1'7‘,;:. X;«‘ , 5 :
(2.12), the values for the constants are obtained: ' r
o = B3 Ky (2.13)
Kl(tenaion) = (ﬁlT - ﬁ2T) / 2 ﬂ3T (214)

The values for 8,7 , 8,7, and 8,7 for the tension zone are obtained from the

equations given below ( Conners, 1989):

8,7 = 1822300 - 9.8(MC%)? (2.15)
B,T = 1934700 (2.16)
BsT = 37045400 - 2204(MC%)® - 150737800(SG) (2.17)

where
MC% = Percentage moisture content

SG = Specific garvity, based on ovendry weight and green volume

The equations presented above give a stress strain curve which matches resonably
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well with the experimental data (Conners, 1989). In the above equations, both the
tension and the compression equations use positive values for stresses and strains.
In order to implement these equations in a finite element program, the
compression equations are slightly modified so that they can work for a negative
values of stresses and strains. The resulting stress strain curve is presented in Fig.

2.3.

2.3 ABAQUS Material Library

In ABAQUS, the material behavior of a structure can be defined by using one of
the thirteen options available in the library of material models. Out of these
thirteen model options, only three showed any potential for modelling the selected

stress strain curve. The three options are:

1. Plastic
2. Hypoelastic
3. User Material

From the three options, the plastic and the hypoelastic options are the easiest to

use. Although both of these options can be used to model a nonlinear material
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law, they can not model a stress strain law which is different in tension and
compression. While using these two options, only positive values for stresses and
strains can be entered in the input file to define the curve. The program then uses

the same values to define the curve in the tension and the compression regions.

The only remaining option is the user material option, which allows one to model
any material behavior through a user coded FORTRAN subroutine. Thus, this

option is used for defining the segmented stress strain law adopted for this study.

2.4 User Material Option

The user material option is a powerful tool to model material behavior not
supported by the existing material models in the ABAQUS library. The material
model is defined through a FORTRAN subroutine written in the input file. The

option is activated by using the following set of commands in the input file:
*MATERIAL, NAME=WOOD

*USER MATERIAL, CONSTANTS=3
12, 0.52, 1.6E5
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The value of the ”constants” parameter can be changed to the number of
constants required in the FORTRAN program. In the present program, three
constants are needed to define the stress strain curve. These are: 1) the moisture
content; 2) the specific gravity; and 3) the shear modulus. These constants are

entered in the given order after the user material command.

The user coded FORTRAN subroutine is entered at the end of the input file. The
last end step command in the input file is followed by the command *USER
SUBROUTINE, and the fortran code for the user subroutine is entered after this
command. A complete input file for a triax dome along with the user subroutine is

given in Appendix B.

When using beam and shell elements in combination with user material, the
transverse shear stiffness for the section must also be provided. The value for the
transverse shear stiffness is entered along with the other section properties of the
beam section. The set of commands to describe the section properties and the

transverse shear stiffness is given below:

xxBeam section dimensions are in inches.

*BEAM SECTION, SECTION=RECT , ELSET=E1, MATERIAL=WOOD
6.75, 11.0

0.0993545, 0.9993732, -0.1324533

*TRANSVERSE SHEAR STIFFNESS



10097800.54 , 10097800.54

The line with two stars is a comment line. The following line defines the element
set with number E1 to have a rectangular beam section, and the material property
identified by the name wood. In the next line is given the cross section of the
beam followed by the direction cosines. The transverse shear stiffness command is
given immediately following the direction cosines, and it is followed by the values
for transverse shear stiffnesses in the two directions of the beam cross section. For
a beam section, both of these values must be the same. The transverse shear

stiffness for a beam element are computed from the equations given below

(ABAQUS, 1991):

Transverse shear stiffness = f, Kq3 (2.18)
where
Kas=kGA (2.19)
f, = 1 (2.20)
P —
(1+ 025x10~*x LA

The value of k for a rectangular section is 0.85 and

G = Shear modulus

__E
= 51253 (2.21)

where
E = Young’s Modulus

v = Poisson’s ratio
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A = area of cross section
| = span of the beam
I = minimum of the moment of inertia of the section

in the two principal cross sectional directions of the beam

The B33 beam used in the Triax dome does not model shear deformations, and
thus does not require the value of transverse shear stiffness for any computational
purpose. Even though this is the case, the ABAQUS run is terminated in the
preprogram stage if this value is not provided. Hence a dummy value for the
transverse shear stiffness must be provided if a B33 beam section is used along

with user defined material property.

2.5 The User Subroutine

The fortran code for the material model is written in the subroutine UMAT.
UMAT is called by ABAQUS at each material calculation point for which the
material behavior is defined by the user material option. Each time the subroutine

is called, it is provided with the state of the material in terms of stresses and
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strains at the start of the increment. Using the values of stresses, strains and
strain increments at the start of an increment, the subroutine has to perform the

following two functions:

e update the stresses to those at the end of an increment

e provide the material Jacobian matrix for the constitutive model

The Jacobian matrix of the constitutive model is denoted as g% (ABAQUS 4.6
Users Manual, 1990), where éo are the stress increments and é¢ are the strain
increments. This matrix defines the change in the stress due to an infinitesimal
change in the strain at the begining of the time increment. The stresses at the end
of an increment are determined by computing the stress increments from the
strain increments, and adding those to the stresses at the begining of the

increment.

The B33 element is based on the Euler-Bernoulli beam theory, and as such is
assumed to have axial (longitudinal) strains and torsional shear only (ABAQUS,
1991). These elements are also assumed not to warp out of their plane. Due to
these assumptions, the Jacobian for B33 element is a 2-dimensional, diagonal

matrix. The Jacobian matrix can be represented as:

I= (2.22)
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The first component of the Jacobian matrix, Jy; is the change in axial stress with
infinitesimal change in axial strain, or in other words, the slope of the incremental
stress strain curve. The second component, J,,, is the change in the torsional
shear stress with infinitesimal change in torsional shear strain. In the present case,
the torsional behavior of wood is linear. Hence the J,, is a constant, and is the
shear modulus for wood. The value for the shear modulus is 1.6x10° psi (Wu,

1991, Tissaoui, 1991).

The code for the subroutine UMAT which models the selected stress strain law of

wood is presented in the Appendix B. The discription of the variables and used in
the FORTRAN code can be readily obtained from the ABAQUS user’s manual
(ABAQUS 4.6 User’s Manual, pp. 8.18.1-1 to 8.18.1-9).

The user coded subroutine and the nonlinear material procedure has to be
thoroughly tested prior to its use in the analyses of any complex structure. The
results of this thorough and extensive testing are presented in the next chapter,
along with recommendations on the finite element modelling of structures with

material nonlinearity.



CHAPTER 3

VERIFICATION OF THE MATERIAL MODEL

The selection of a constitutive law for wood and its representation in ABAQUS as
a material model was discussed in chapter 2. In this chapter, the results of
materially nonlinear finite element analyses conducted on cantilever beams, and

cantilever columns are presented.

In order to verify the analysis results, a comparitive study has to be performed
between the ABAQUS results and the numerical or continuum solutions found in
the literature. As no numerical studies on the nonlinear material behavior of
wooden structures are found in the literature, the ABAQUS material modelling

capabilities are verified by modelling the nonlinear material law for steel.

A two step approach is followed in the testing procedure. In the first step, the
analysis results using the user subroutine option are compared with those using
the plastic option. The plastic option is found in the ABAQUS library of material

models.
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In the second step, the factors affecting the analysis results for finite element
analysis of simple structures with nonlinear material behavior are determined.
Numerous ABAQUS runs are conducted on cantilever beams and columns which
have nonlinear material behavior, with various mesh sizes, number of integration
points, and the shape of the stress strain curves. Even though most of the analysis
results discussed in this chapter are for steel beams and columns, they give a good
background for understanding the factors influencing the accuracy of results for
finite element analysis of wooden structures with nonlinear material behavior. The

nonlinear Riks procedure in ABAQUS is used throughout the following analyses.

3.1 Testing of User Subroutine Option

A cantilever beam as shown in Fig.3.1 is analysed using ABAQUS. Two models of
the beam are analysed. Both have the elastic-perfectly plastic material property of
steel. In the first model, the material law is assigned to the cantilever beam by
using the user material option, while in the second model it is assigned using the

plastic option from the ABAQUS library of materials.

The geometric and material properties of this beam are given below:
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Span : 50 inches
Cross-section : 1x1 inches
Modulus of Elasticity : 2.9x107 psi

Proportional Limit : 36000 psi

The beams are modelled using two node space beam elements, denoted as B33 in
the ABAQUS library of elements. As the effect of mesh refinement is not studied
here, only one element is used for modelling the cantilever beam. Loading is in the

form of point load applied at the tip of the cantilever.

The load factor versus the tip deflection curves of the beams are shown in Fig.3.2.
It is observed that the curves for both the models are coincident. Thus, the user

subroutine option gives exactly the same results as the plastic option.

Assuming that the plastic option from the ABAQUS library of materials correctly
models the nonlinear material behavior, it can be safely stated that the user
material option also models correctly the nonlinear material behavior for a given
material for which a constitutive law is given. These analyses thus confirm that
the user subroutine option works correctly, and gives a sound basis for coding the

more complicated stress-strain law for wood using the user subroutine option.

3.2 Sensitivity Analyses and Accuracy Studies
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A series of analysis runs are made with ABAQUS to study the sensitivity of the
ABAQUS results to the following factors:

o The mesh size

e Selective mesh refinement, or the provision of hinge elements
e The shape of the stress-strain curve

e The magnitude of load increments in the Riks analysis

e The number of integration points in the cross-section

The study, taking into consideration the above points, is conducted in two parts.
In the first part, a cantilever beam is analysed for the accuracy of its bending
response under a point load applied at the tip. In the second part, a cantilever
column is studied for the accuracy of its response under the action of a combined
axial force and bending moment. For the cantilever column, the effect of

imperfections is also included in the analysis.

3.3 Tests on The Cantilever Beam

The same cantilever beam used in Section 3.2 is analysed in these studies. The
material properties for most of the beam models are also the same as those given

in Section 3.2. The material properties that are modified are explained in detail
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while discussing those tests or beam models.

3.3.1. Effect of Uniforn Mesh Refinement

In the first set of analyses, three beam models with uniform mesh refinement are
analysed. The response of the beams are compared with the continuum solution
(Smith, and Sidebottom, 1965). The three beam models have meshes made up of
1, 5, and 10 elements, respectively. Load factor versus the tip deflection curves are

shown in Fig.3.3.

The load deflection curve for the beam model with only one element shows a very
stiff response, and it does not model accurately the nonlinear bending behavior of
the cantilever. The model with 5 elements gives a much softer response which is
closer to the contiuum solution (Smith, and Sidebottom, 1965). The plastic failure
load in this case is 191.8 pounds as compared to 180 pounds in the contiuum
analysis, an error of 6.5%. The beam model with a 10-element mesh gives the
response closest to that of the continuum solution. The failure load in this case is

186.8 pounds, giving an error of only 4%.

From the above set of analyses, it can be concluded that successive refinement of
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the mesh would give more accurate results. Hence, the effect of mesh refinement

on nonlinear material behavior of a structure is similar to that for elastic behavior.

For obtaining accurate results, an alternative approach of nonuniform mesh
refinement is also tried. As the cost of analysis increases when the mesh is made
finer, this alternative method would be more economical because it would require
the mesh to be refined only at selected locations. Economy in terms of cost and
time can become a big issue when analysing large structures. Hence the approach
of selective mesh refinement looks more attractive than that of general mesh
refinement, as it would save considerable time and money when analyzing large

structures.

The method of selective mesh refinement is based on the plastic-hinge theory used
in plastic analysis of steel structures. According to this theory, it is assumed that
the structure behaves elastically untill the proportional limit, and thereafter, the
stresses at the critical section increase until the stresses at all the points on the
section becomes equal to the yield stress. At this point, constant plastic moment
is reached. This is idealised by the formation of a hinge, known as plastic hinge
(Kaliszky, 1989), at the location of the maximum stress. Therefore, the method of
selective mesh refinement consists of refining the mesh only at the location of

maximum stresses, where a theoretical plastic hinge would be formed.

Two cantilever beam models are tested. Both beam models are made up of 2

elements. An element, one inch in length, is provided at the base of the cantilever
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and the remaining part of the cantilever is modelled by the other. In the forgoing
discussion, the one inch long element at the base of the cantilever is referred to as

the hinge element.

In the first model, both elements are assigned the same elastic-plastic material
property. In the second model, only the hinge element is assigned the elastic-
plastic material property, whereas the other element is assigned a linear elastic
material property. Out of these two runs, the second run is expected to bé more
efficient in terms of computing cost and time. This is because in the second ﬁlodel
the program will have to conduct an iterative solution procedure for determining
the material strength for only the hinge element, whereas in the first model, the

iterative solution procedure will be required for both elements.

The load proportionality factor versus the tip deflection response for the two
analysis runs are presented in the Fig.3.4, along with those for the continuum
solution and the 10-element mesh. The two analyses runs with the hinge elements
show very similer load deformation behavior. For the first model, the load
deflection curve is linear till the yield load, becomiﬁg horizontal to indicate the
plastic failure. For the second model, the load deflection curve becomes nonlinear
before yielding, and is closer to the continuum response. The response of the
cantilever beams with selective mesh refinement are softer than that for the 10-
element mesh. Hence the selective refinement of the mesh seems to give better

results than the general refinement of the mesh.
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The plastic failure load obtained for the beams with hinge elements are 181
pounds, within 0.8% of the continuum solution (Smith, and Sidebottom, 1965).
These failure load magnitudes are even better than the one obtained for the case
of the 10-element mesh. Hence, providing hinge elements seems to be a very good
method to obtain the most accurate as well as cost effective analysis results in a

materially nonlinear analysis.

The method of providing a hinge element, though being very advantageous, has a
drawback. In a large structure, it is very difficult to determine the location of
critical sections by observation alone. To solve this problem, an initial
approximate analysis must be carried out to determine the location of the critical
sections. The skill of the structural engineer in deciding these critical sections is
also very important. Although, to determine all the critical sections in a large
structure, and to generate extra nodes and elements at these points is a
formidable task, it has to be weighed against the accuracy of the solution and the

savings in the cost of computing.

3.3.2. The Effect of Other Factors

The sensitivity of ABAQUS solutions for its accuracy is further tested by varying
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input parameters such as the smoothness of the stress strain curve, the number of
integration points at a cross section, and the initial load increment in the Riks
step. The results obtained by conducting a series of ABAQUS runs on the
cantilever beam with a 5-element mesh are discussed below and are represented in

graphical form for ease of comparison.

For this series of tests, the first parameter to be varied is the shape of the stress
strain curve. Three different stress-strain curves are considered for modelling the
material property of the cantilever, and are shown in Fig.3.5. All three curves
have the same initial elasticity modulus and the same yield strength. The only
difference between them is the shape of the transition curve between the initial
linear portion and the plastic region of curve. The three graphs in Fig.3.5 indicate

the increasing degree of smoothness of this transition curve.

The results obtained from the analyses of the cantilever beams with the three
stress strain laws do not show any considerable effect of the smoothness on their
ultimate load. The final failure loads obtained in all three cases are nearly the
same as observed from Fig.3.6. The shape of the stress strain curve, though, does
affect the shape of the load deformation curve. When curve III from Fig.3.5 is
used for the material, the load deformation response of the cantilever beam is
smooth like that of the continuum case, whereas for the other two beams, the
response is stiffer and is closer to the idealised elastic plastic response of a

cantilever beam.
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The second parameter to be varyied is the number of integration points across the
depth of the beam cross section. The B33 beam has five integration points for the
computation of mechanical and material behavior along its depth . The effect on
the magnitude of the ultimate load and the accuracy of the load deformation

respouse of the beam is studied by increasing the number integration points.

Two cantilever beam models are considered. The first model is same as before (5
elements, 5 integration points, and elastic-perfectly plastic material property),
while the second model has seven integration points. The load deformation
response for the two cases are plotted in Fig.3.7. The ultimate load for the cases
when using 5 and 7 integration points are 191.2 and 185.5 pounds respectively.
The nature of the load deformation curve for the second model is also much closer
to the continuum case. Hence, this method of increasing the integration points
could also be employed to improve the accuracy of the results. The only draw
back seems to be the computing time. The analysis of the beam model with 10
element mesh and 5 integration points requires almost the same amount (30
seconds) of time as the model with 5 element mesh and 7 integration points.
Hence the practicality of increasing the number of integration points while

analysing large structures seems to be limited.

The third parameter to be changed was the initial load increment for the Riks
analyses. This parameter was varied between 5 pounds to 30 pounds. It did not
affect the accuracy of the ultimate load nor did it affect the nature of the load

deformation curve.
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3.4 Cantilever Column Loaded Through Its Base

For testing the accuracy of ABAQUS analyses for the case of combined bending
and axial loading along with a nonlinear material law, the solution is obtained for
a steel cantilever column loaded through its base and as shown in Fig.3.8. This
solution is compared with experimental tests conducted by McGowan on a similar

cantilever column (McGowan, 1991 (pp.91-102)).

In the actual experiment, the column consists of a large diameter outer pipe, with
a smaller diameter pipe passing through it. The outer pipe is fixed at the base
along the circumference, whereas the inner pipe is free at the base and is attached
to the outer pipe at the top. A vertical load is applied to the inner pipe at the
base, thus causing the outer pipe to be loaded by a vertical force through its base.
In the experimental tests, the eccentricity of the applied load is caused by the
imperfections in the specimen and in the experimental setup. Due to this, bending
of the column takes place, which eventually leads to the contact of the inner

column with the outer column.

In the ABAQUS analyses, the outer pipe is modelled with ten two noded B23
plane beam finite elements, whereas the inner pipe is modelled by a two node
C1D2 plane truss element. The imperfections in the actual experimantal testing

are modelled by applying the load at a certain eccentricity. The analysis of the

Verification of the Material Model 40



eccentricity

(NOT TO SCALE)

seyoul ‘HIONT

Fig.3.8 HOLLOW CANTILEVER COLUMN

41

Verification of the Material Model



contact problem is not attempted in this study, and hence the analysis is
terminated before a contact problem is developed. The material behavior of the

column is modelled on the basis of the data from the actual experimental tests.

The stress-strain law used for the column material is shown in the Fig.3.9, while

the geometric specifications of the outer pipe are given below:

Outer diameter : 6.625 inches
Thickness : 0.188 inches
Length of Column : 182 inches

As it is not possible to directly equate the imperfections in the actual column with
a numerical value of the eccentricity, two ABAQUS runs are made with different
values of eccentricities to study their effect on the response of the column. In the
first run, the eccentricity of the applied load is 0.01 inches, while in the second

run the eccentricity is 0.05 inches.

The load deflection curves from the experimental tests and the ABAQUS analyses
are presented in Fig.3.10. The analytical results for the model with eccentricity of
0.05 inches is close to the experimental results. The difference between the
ABAQUS and experimental results is due to the difficulty in correlating the
imperfections in the actual column with a numerical value of the eccentricity. The
experimental load deflection curve is softer than the analytical results, indicating

possibly greater imperfections than those modelled with the eccentricity of 0.05
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inches or the effect of a coarser mesh. The percentage difference in the limit loads

for the experimental case and the analytical case with eccentricity of .05 inches is

5%

The test on the column thus indicates that the ABAQUS analyses results are
consistant with the results in the experimental tests. This fact allows one to
proceed with the materially-nonlinear analysis of complex structures which consist

of members which are subjected to combined bending and axial forces.

3.5 Torsion Tests on Cantilever Beam

Two torsion tests are conducted on the cantilever beam elements. One of the tests
is to verify that the torsional behavior modelled by the user subroutine is the
same as modelled by the elastic or the plastic options from the library of material
models available in ABAQUS. This is accomplished by analyzing a beam curved

in plan, which is under combined bending and torsion.
The other test is to determine the value of the shear modulus used in the analyses

by Wu (1991), Holzer, Wu, and Tissaoui (1991), and by Tissaoui (1991). To

specify the shear modulus while using the elastic or plastic options, a value for
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Poisson’s ratio is entered in the input filee. ABAQUS then computes the shear
modulus, Eq.(2.21), from the values of the Young’s modulus and the Poisson’s
ratio. A straight cantilever beam under pure torsion is thus analysed to verify if

ABAQUS computes the correct shear modulus for any value of Poisson’s ratio.

It should be noted that even though the nonlinear material law is used for wooden
beams, their torsional behavior is still modelled as linearly elastic. This has
already been stated in Chapter 2, and in the following analyses, only linear elastic

torsional behavior is verified.

3.5.1 Tests on Curved Cantilever Beam

The model used is a tip loaded cantilever beam of 45° bend. This model has been
analysed by Bathe and Bolourchi (1979) and by Jau (1985). The beam is modelled
in the present studies by eight B33 two noded beam elements. The material law is
modelled by first using the user material option and then by using the elastic
option. Fig.3.11 shows the cantilever beam along with the values of the various
parameters. The results of the analyses using the two material modelling options
are compared. Also, values obtained from the load deflection graph in the

dissertation by Jau (1985) are checked against the present analyses results.
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The analysis results are shown in Fig.3.12. It is observed that the response
obtained for the curved beam using the two material modelling options is exactly
the same. The values obtained from the dissertation by Jau (1985) also agree with
the present results. Therefore, the modelling of the torsional behavior as in the

elastic or plastic option can be simulated correctly in the user subroutine.

3.5.2 Tests on Cantilever Beam

The objective of these tests is to determine if ABAQUS correctly computes the
shear modulus from the values of Poisson’s ratio and the Young’s modulus (Eq.

(2.21)).

A straight cantilever beam made up of five B33 two node beam elements is
subjected to pure torsion. The length of the beam is 50 inches. Three models
having different cross sections are tested. A torque of 100 pound-inch is applied at
the free end. The beams are considered to be made of wood, and are assigned the

linear elastic material law using the elastic option in ABAQUS.

The first model has a circular cross section of 1 in?. The shear stress obtained is

509.3 psi, while the shear strain is 8.49x10~* psi. The shear modulus used by
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ABAQUS in these computations is obtained by dividing the shear stress by the
shear strain. Thus, the shear modulus used is 6.00x10° psi. However, the value of
shear modulus specified by Davalos (1989), Wu (1991), and Tissaoui (1991) is
1.6x10° psi.

The second model has a unit square cross section. The shear stress obtained from
the analysis for this model is 424.3 psi and the corrosponding shear strain is

7.07x10 ~*. Shear modulus of 6.00x10° psi is computed from these values.

The third model has a rectangular cross section, 1 inch wide and 2 inches deep.
The shear stress obtained from the analysis for this model is 134.2 psi and the

shear strain is 2.24x10 ~*. The shear modulus in this case too is 6.00x10° psi.

From these tests, it is observed that the correct shear modulus for wood is not
used by ABAQUS. The Poisson’s ratio corresponding to a shear modulus of
6.0x10° psi is 0.5. It is thus seen that ABAQUS limits the value of the Poisson’s
ratio to 0.5. Even though ABAQUS disregards the Poisson’s ratio of 4.625 given in
the input file and takes a default value of 0.5, it does not issue a warning or error
message in the analyses results. Hence, in all the previous research co;}fiqgged on
elastic buclgling behavior of domes by Wu (1991), bf Tissaoui (1991), by Holzer,
Wu, and Tissaoui‘ (1991)., and by Davalos (1989), the value ofvsh.ea;r rﬁodulﬁé used

by \A"BA/Q’US’ i‘s~6.0x105 psi,‘ instead of the expécted v4ali1ed of 16:(105 i)si. -
Based on the textbook by Bodig (1975), the range of shear moduli for wood with
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Young’s modulus of 1.8x10° psi is between 1.14x10* psi and 1.36x10° psi. If the
Young’s modulus is increased to 2.1x10°® psi, the shear modulii range is between
1.25x10* psi and 1.59x10° psi. Hence the shear modulus value used in the earlier
studies of elastic buckling behavior of domes seems to be quite large. It may
however be possible that certain species of wood might have higher shear

modulus.

The only way of specifying the shear modulus of 1.6x10° psi along with a Young’s
modulus of 1.8x10® psi or 2.1x10° psi, is by using the user subroutine option.
Hence for all the further studies, the material law for even the elastic material

behavior will be specified by using the user subroutine option.

Although there is a large difference between the possible range of shear moduli
and the shear modulus used in the previous studies, the effect of this on the dome
behavior is expected to be minimal because the previous studies by Wu (1991)

and by Tissaoui (1991) show that the torsional stresses at failure are quite small.
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CHAPTER 4

MODELLING THE DOME

In this chapter, the steps involved in creating the dome model and the subsequent
writing of the ABAQUS input file is explained. In the first section, the geometry
of the dome is defined. The model is created based on this geometry, and the
steps involved in its creation are as follows:

e Defining the mesh sizes, the member dimensions, and the finite elements used

e Defining the boundary conditions used in the model

e Defining the material laws used for the elements

e Specifying the loading on the dome

e Creating the model graphically in I-DEAS.

e Writing an ABAQUS input file from the graphical model

e Modifying this input file to include the required boundary constraints, loading,

the beam orientations, and the material laws.
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4.1. The Geometric Model

The Crafts Pavilion Triax dome in Raleigh, North Carolina is modelled in the
ongoing study. The members of the dome lie on the surface of a sphere with a
radius of 1600 inches (133.33 feet). The dome has a span of 1595 inches ( 132.92
feet) and a height of 212.35 inches (17.70 feet). The plan of the dome is shown in
Fig.4.1.

The finite element model of the dome is created by first defining its geometry on
a horizontal plane which is 1387.66 inches (115.64 feet) above the center of the
sphere. The geometry of the dome is a grid of equilateral triangles on this
horizontal plane. The configuration of the dome is then obtained by projecting
this triangular grid onto the surface of the sphere by rays originating from the

sphere center.

4.2 The Finite Element Model

The finite element model of the dome is similar to that modelled by Wu (1991).
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In the finite element model, each physical beam has been divided into two beam
elements. The purlins are modelled as truss elements and the lateral bracing effect
of the decking is modelled by using truss elements. The tension ring is also

modelled as being made up of truss elements.

The beams are divided into three catogaries based on their dimensions. The set of
beams forming the first ring around the apex of the dome are denoted as Main
Beam-I. The beams at the base or perimeter of the dome are denoted as the Edge
Beams, and the remaining beams are labelled as Main Beam-II. All the different
members are shown in Fig4.2 and their dimensions are given below (Holzer, Wu,

and Tissaoui, 1991) :

1. Main Beam-I : 6.75 inches x 12.0 inches
2. Main Beam-II : 5.0 inches x 11.0 inches
3. Edge Beam : 3.0 inches x 12.25 inches
4. Purlins : 3.0 inches x 8.25 inches
5. Steel Tension Ring : 1.0 inch x12.0 inches

6. Bracing : 0.3 inch?

All the beams are modelled by B33 two noded Bernoulli-Euler elements, and the
rest 6f the members are modelled with C1D2 two-node isoparametric truss
elements (ABAQUS 4.6 User’s Manual, 1991). The choice of the elements is based

on the studies conducted on various dome models by Wu (1991).
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To study the effect of mesh refinement on the behavior of the dome, the above
mensioned model is modified to obtain a refined mesh. In this model, each
physical beam is modelled with four beam elements instead of two elements. The

dome model so created is shown in Fig.4.3.

Apart from the above mentioned dome model, several models consisting of only
the top ring of the dome are analysed. These models consist of only the Main
Beam-I and the corresponding truss elements, and are referred to as the Dome
Cap model. The mesh refinement studies are conducted by modelling each beam
by four elements or by providing connector elements to the beam elements in the

original dome cap model.

The connector elements are B33 beam elements with 6 inch length provided at
each end of the beam element. As discussed in Chapter 3, the study on the
nonlinear cantilever beam indicated that the selective refinement of the mesh gave
a better response than a uniform refinement with the same number of elements.

This idea is thus extended to the analyses of the Dome Cap.

The Dome Cap model and the one with the refined mesh are shown in Fig.4.4 and

Fig.4.5 respectively.
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FIG.4.5 DOME CAP MODEL WITH REFINED MESH

Modelling the Dome



4.3 Boundary Conditions

The boundary constraints used in the model are similar those used by Wu (1991)
and Huang(1989). The selected constraints must eliminate the rigid body motion

of the dome but at the same time must allow for the tension ring to move freely

in the radial direction (Davalos, 1989).

The boundary constraints are applied to the perimeter nodes. All the perimeter
nodes are constrained in the Z-direction to eliminate the vertical rigid body
motion. To remove the rigid body rotation of the dome about the Z-axis and the
rigid body translation in X and Y-directions, constraints in the X-directon are
applied to base nodes on the Y-axis (nodes 90 and 166 in the dome model without
mesh refinement), and constraints in the Y-direction are applied to the base nodes

on the X-axis (nodes 11 and 128). The boundary constraints are shown in Fig.4.6.

For the dome models or dome cap models with refined meshes or with connector
elements, extra nodes are created at the perimeter due the the mesh refinement.
It is important to note that the boundary constraints in these models must be
applied to the original nodes only. This is because the constraining of the extra
nodes changes the boundary condition of the dome, and the model is then no

longer similar to the one without the refined mesh.
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4.4 Material Properties

For studying the effect of variations of the material law on the dome behavior,
three linear models and one nonlinear model are defined for wood. In all the dome
models, the bracing, the purlins, and the steel tension ring are assigned a linear
material law. Specifically, the bracings and the purlins have a Young’s modulus of
1.8x10° psi and the tension ring has a Young’s modulus of 2.9x107 psi. The four
dome models, based on the type of material law assigned to the beam elements,

are given below while the shape of these stress strain curves are shown in Fig.4.7.

1. The first linear model is the same as that used by Wu (1991). In this model the
glulam beams have the following material properties: Youngs modulus E=1.8 x 10°

psi and the shear modulus G=6.0 x 10° psi.

2. The second linear model is created to determine the effect of changes in the
shear modulus on the behavior of the dome. In this model the glulam beams have

have a Young’s modulus E=1.8 x10® psi and a shear modulus G=1.6 x 10° psi.

3. The modelling of the nonlinear material law has been described in detail in
Chapter 2. The mechanical property of wood in this nonlinear material law is
based on the percentage moisture content and the specific gravity of the wood. In

the ongoing study, the wood is considered to have a moisture content of 12% and
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a specific gravity of 0.52 based on the ovendry weight and green volume. Based on
these values, the initial longitudinal modulus of wood in tension
E(tension)=1.81 x 10 psi and in compression E(compression)=2-19 10° psi. The shear
modulus is taken as G=1.6x 10° psi. All the beams in the dome are modelled with

this nonlinear material law.

4. To get a reasonably good assessment of the effect of the nonlinear material
model on the behavior of the dome, a bilinear elastic material law is developed. In
this model, the longitudinal modulus of wood in tension is E,.p,ion)=1-81x 10° psi,
and the longitudinal modulus in compression is E(mmpmm-m)=2.19x106 psi. The
shear modulus is again taken as G=1.6x10° psi. In this dome model, all the

beams are assigned this bilinear elastic material law.

4.5 Dome Loading

The loading on the dome is divided into live loads and dead loads. The design
dead load is 16 psf and the design live load is 20 psf. The dead load is due to the

following self-weight of the structure.
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The design dead load is obtained as followes (Wu, 1991; Davalos, 1989) :

1. beams and purlins: 2.0 psf
2. tongue and groove Decking: 5.0 psf
3. connectors, roofing and insulation: 9.0 psf

total dead load: 16.0 psf

The design live load is considered to be due to the snow over the dome. The value
for the snow load is the same as that used by Wu (1991). It should be noted that
the snow load is considered to be distributed not on the surface area, but on the

plan area of the dome.

Two load cases are considered in the analyses of the dome. The first load case is
the combined loading of dead load and uniform snow load over the complete
dome. The second load case considered is the combined loading of dead load and
uniform snow load over half of the dome. With these two load cases, the behavior
of the dome under cyclically symmetrical and cyclically unsymmetrical loading

can be studied.

In the earlier studies by Wu (1991) and by Holzer, Wu, and Tissaoui (1991), it
was found that the load case of dead load and uniform snow load over half the
dome induced the maximum stresses in the dome members at failure. This is
another reason for selecting the second load case as it will allow us to study the

behavior of the dome when the stresses in its members are beyond the
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proportional limit.

4.6 Creation of the ABAQUS Input File

The input file of the dome is created in three steps. In the first step, the dome
model is generated graphically with I-DEAS (Integrated Design and Engineering
Analyses Software), from which an initial ABAQUS input file is obtained. In the
second step, nodal loads and beam orientations are computed and written to a file
in the required ABAQUS input format. In the third step, the initial input file is
modified by adding the boundary constraints, the beam orientations, the material
model definition, the step definition, the nodal loadings, and the output request
cards. The use of I-DEAS and the modifications of the input file is explained in

the following sections.

4.6.1. Pre-Processing Using I DEAS

The dome graphics is generated in the model preparation task of I-DEAS. This

task lies in the pre/post processing module which in turn lies in the engineering
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analyses family in I-DEAS. The task, module, and family represent a hierarchy of

program regions where various pre/post processing operations can be conducted.

In the model preparation task menu, the creation of the dome model requires

three steps. These steps are described below:

1. First, the nodes for one sector are defined. This can be done either by reading
the nodes from an existing I-DEAS file, as was done in the present analyses, or
they can be defined individually by entering the node numbers and their

coordinates.

The existing I-DEAS node file, as used by Wu (1991), was stored in a Universal
file format. To read this, the Universal and Read options are picked. When
prompted for the name of the file, the file name without the extension is entered.
After the file is read, Auto Scale (AU) and Draw (DR) commands are issued to

display the nodes on the screen.

If the nodes are to be defined directly by entering them, then the Node , Create,
and Single options have to be entered in the mentioned order. After this, the node
number and its three coordinates have to be given. After defining all the nodes,

the auto scale and draw commands have to be issued to view the drawing.

2. After defining the nodes, the elements are generated. This is done by selecting

the Element option from the menu. The Default option is then selected, and the
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element type, and color is defined. Returning back to the Element menu, Create
and Single options are selected. The elements are then generated by clicking on
the nodes which define the element. In this way, all the elements for one sector

are defined.

3. In this step, the complete dome model is created by reflecting the first sector
about the sector lines. This is achieved by selecting the Create and Reflect options
from the Element menu. The Three Point Method is then selected and three
points forming the reflecting plane are then entered. The sector is thus reflected
about this plane to form another sector with all the elements and nodes. In this
fashion, all the sectors of the dome are created. The dome is saved in the
Universal file format by selecting Universal and Write from the menu. The file

name is then provided, and the dome graphics and all the related data is saved in

this file.

After creating the complete dome model, the ABAQUS file is written. The
writing of the ABAQUS input file is a two step process. In the first step, the node

and element data is transferred into a database. I-DEAS then creates the

ABAQUS input file by reading this database.

The database is created by first selecting Pearl Data Transfer from the menu. The
Create option is then selected and, when prompted, the name of the database is
given. Then the Load and Model options are selected. After the model is

successfully loaded, the database is closed and saved by selecting the Close option.
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Once the database is created, the Manage Files (Man), Write, and ABAQUS
(AB) options are selected. The program prompts for the name of the database and
the ABAQUS input filename. After providing all the information, the ABAQUS
input file is written, and a message as to its successful completion is provided at

the end.

4.6.2. Nodal Loads

Shell elements are created in I-DEAS to discretize the uniformly distributed loads
to the nodes. Three and four node thin shell elements are used for this purpose.
The mesh is formed such that the shell elements form a symmetric pattern in

each sector.

For the dome models with and without the connector elements, only triangular
shell elements are used. By using the triangular elements, the loads are discretised
only to the original nodes of the model; i.e, no loads are assigned to the extra
nodes generated for the connector elements. For the models with a refined mesh,
the triangular as well as the quadrilateral elements are used. By using both of
these elements, the loads are discretised to the original nodes as well as to the

extra nodes created due to the mesh refinement.
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A linear analyses is conducted on ABAQUS to obtain the nodal loads. For this
purpose all the nodes of the dome are fixed, and distributed load due to the dead

weight or snow load is applied in the positive Z-direction (vertical).

Output requests are made for reaction forces at all the nodes. The reaction forces
are the nodal loads on the dome. The nodal loads in the X and Y directions are
relatively small as compared to those in the Z direction, and hence only the nodal

loads in the Z direction are used for the loading on the dome.

4.6.3. Beam Orientations and File Modifications

The beams in the dome are oriented such that each beam lies in a plane passing
through the center of the sphere (Fig.4.8). Only the edge beams are onented
dlfferently, and are vertlca,l A FORTRAN program (Appendlx A) is written to
compute the beam orientations. This program writes the beam element deﬁnlt;on

cards, the beam cross section dimensions, and the beam orientations in the

required format for the input file.

After obtaining the beam orientations, the input file as obtained from I-DEAS is

Modelling the Dome 71



BEAM ORIENTATIONS /— DOME MODEL

m )
@ -
ORIGIN OF THE FRAME

OF REFERENCE

o
CENTER OF THE SPHERE

FIG.4.8 BEAM ORIENTATIONS WITH RESPECT TO
THE SPHERICAL CENTER

Modelling the Dome



modified. The various modifications carried out manually, in the order in which

they are carried out, are listed below:

—

. Boundary nodes are grouped into a node set

. Set names are assigned to the various dome members

. Cards for the cross sectional areas for the truss elements are added

. The output from the beam orientation program is inserted in the input file
. A card for the boundary condition is added

. Material definition cards are added

. Step definition cards and the nodal loads are inserted in the input file

. Node and element sets for the output are defined

© 00 I O v W N

. Cards for the output requests are added

10. The subroutine to define user material is added at the end of the input file
After going through this procedure, an ABAQUS input file for the nonlinear

analysis is obtained. A sample of this input file is provided in the Appendix B,

and the analyses results are discussed in the next chapter.
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CHAPTER 5

DOME ANALYSES

Nonlinear analysis of various dome and the dome cap models is conducted to
study the effect of the change in material properties on the stability behavior of
the domes. Both, material as well as geometric nonlinearities are considered in
these analyses. Critical snow loads for the dome models are determined and the
load deflection curves are presented. The maximum stresses in the beams at the

critical load are compared with the ultimate stresses.

5.1 Nonlinear Analysis Procedure

The nonlinear analysis is conducted with ABAQUS wusing the Riks option
(ABAQUS 4.6 User’s Manual, 1990). This option traces the equilibrium path



beyond the limit point. As this procedure uses automatic incrementation of the
load, exact value of the limit load may not be obtained because the increment my
jump over the limit load. In the following discussion, the limit point is assumed to

be the highest point on the load deflection curve.

The loading on the dome is applied incrementally in two steps, which are given

below:

1. The Newton-Raphson method is used in the first step to incrementally load the
dome upto its full dead load (16 psf).

2. The Riks method is used in the second step to apply incrementally the snow
load (20 psf) upto and beyond the limit load.

S
The total load at any instant is thus given by

where
A = the load proportionality factor
Pp = the dead load (16 psf)

P, = the live load or snow load (20 psf)

In the following discussion, the critical load factor is the load proportionality

factor at the limit point. The load deflection curves for the dome models are



obtained by plotting the load proportionality factor versus the corresponding
deflection at a given node. In the nonlinear analysis of all the dome and dome cap

models, the critical load is at the limit point.

Before embarking on the nonlinear analysis, linear analyses of the dome models
are carried out to acertain that there are no major defects or imperfections in the
finite element models. In the linear analysis, the dome models are subjected to
cyclically symmetric loads, and the reactions at all the supports, and the
displacements at symmetrically placed nodes are monitored. The results of the
linear analysis for all the dome models with unformly applied dead load are found

to be satisfactory.

5.2 Proportional Limits and the Ultimate Stresses

= houelbof 1750
Cwed TR

The proportional limit and the ultimate stresses are different for the linear and
the nonlinear ma.terialj/i;iws. For the linear material law, these values are given in
Table 5.1 (Wood Ha.ni:lbook (1974), Holzer, Wu, and Tissaoui (1991)). The values
of proportional limit and the ultimate stresses for the bilinear stress strain law are
assumed to be the same as those for the linear laws. In Table 5.1, the ultimate

compressive stress represents the maximum crushing stress, while the ultimate

Dome Analyses 76



tensile stress is the modulus of rupture from static bending tests.

TABLE 5.1 Proportional Limit and Ultimate stresses for linear material law

PROPORTIONAL ULTIMATE ULTIMATE
LIMIT COMPRESSIVE TENSILE
STRESS STRESS
5900 psi 8500 PSI 14500

For the nonlinear material law, the proportional limits and the ultimate stresses
are computed by using Eqs. (2.1) through Egs. (2.17). The equations have
parameters which depend on the values of the specific gravity and the moisture

given as 0.52 and the moisture content is given as 12% (Timber Construction

Manual (1985)). The values for proportional limit and ultimate stresses for the
nonlinear material law are computed from Eqgs. (2.1) through Eqn. (2.17) for these

values of specific gravity and moisture content, and are presented in table 5.2.
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TABLE 5.2 Proportional Limit and Ultimate Stresses for nonlinear material law

PROPORTIONAL| PROPORTIONAL | ULTIMATE ULTIMATE
LIMIT IN LIMIT IN COMPRESSIVE TENSILE
COMPRESSION | TENSION STRESS STRESS
4873 psi 2578 psi 10496 psi | ' 14500 psi
St 2624 1N N o
g
SRR
5.3 Dome Cap Analysis Ly = s i<

The dome cap models are created because they are much smaller than the
complete dome models, and are cheaper to analyze in terms of computer cost and
time. As the dome cap models are derived from the complete dome models, their
behavior would be similar to the corresponding complete dome models from which
they are derived. Thus, after analysing the dome cap models, potential modelling

and analysis problems for the complete dome models can be identified.

The dome cap models are analyzed for two different loading conditions. For the
loading condition of dead load and snow over the complete dome (Full Snow load
condition), four different models of the dome cap are considered. These models are
obtained by varying the material law for the beam elements, as described in

Section 4.4. For the load case of dead load and snow load over only half of the



dome (Half Snow load condition), four models of the dome cap are considered.
These are again obtained by varying the material law for the beam elements, as

described in Chapter 4.

The mesh refinement studies are conducted on the dome cap for the case of half
snow load only. Six different models of the dome cap are considered by varying

the material laws and by refining the mesh.

54 Effect of Shear Modulus on Dome Cap Behavior

ABAQUS computes the shear modulus from the values of Young’s modulus and
Poisson’s ratio by using Eq. 2.21. In the domes modelled by Wu (1991), Holzer,
Wu, and Tissaoui (1991), and by Tissaoui (1991), the shear modulus to be
spec1ﬁed was 1. 6x105 psi and the Young’s modulus was 1.8x10% psi. However, as‘4
stated in Chapter 3, ABAQUS used a value of 6 0x10° p51 mstead of 1.6x10° psi
for the shear modulus. It is thus important to determine the effect of this on the
dome behavior, and to verify if the results from the previous research are within

close proximity of those which are obtained when using the correct shear modulus.

Since wood is produced under uncontrolled natural environmental conditions, it



has variable physical properties. It is thus essential to determine if the value of
6.0x10° psi is a reasonable estimate of the shear modulus. An article by Bodig
(1975), gives a method to compute the shear modulus of woods from the
longitudinal modulus. In the nonlinear material model, the initial longitudinal
modulus in tension Ii‘;(wm,-on)=1.8)(106 psi and the initial longitudinal modulus in
compression E(cm,”m,m-o")=2.lxl[)6 psi. From the Wood Handbook (1974), it is
observed that the maximum value of Young’s modulus for any wood is 2.05x10¢
psi. Hence, shear moduli computed from the elasticity moduli E.,,;,, and
E(compression) Tespectively, will give a good of estimate of the range of shear
modulus for wood. The values of shear moduli computed from these longitudinal
modulii values are given in Table 5.3. It is thus observed that the shear modulus
value of 6.0x10° psi is nearly four times larger than the largest shear modulus
value in Table 5.3. Hence, it is essential to study the effect the reduction in the

shear modulus will have on the stability behavior of the dome.

TABLE 5.3 Range of Values for the Shear Modulus

LONGITUDINAL MAXIMUM VALUE MINIMUM VALUE
TYPE OF WOOD
MODULUS OF SHEAR MODULUS OF SHEAR MODULUS
5 | 4
6 SOFTWOOD 1.1x10 psi 1.2x10 psi
1.8x10 psi
HARDWOOD S si i
1.4x10 psi 3210 psi
SOFTWOOD 4
. 1.2¢10 5psi 1.3x10 psi
21x10 psi
5
HARDWOOD 1.6x10 “psi 3.8x10 “psi




Two dome cap models, one with shear modulus G=6.0x10° psi, and the other with
a shear modulus G=1.6x10° psi are analysed. These models have the original mesh
configuration, as given in Fig.4.4 and described in Section 4.2. To find the loading
case under which the dome cap behavior will be more sensitive to the change in
shear modulus, the full snow load and half snow load cases are considered. The
nomenclature used for the dome models, and the analysis results are presented

below.

For the case of snow over the complete dome (full snow load case), the following

models are analysed:

1. Linear-1F with E=1.8x10° psi and G=6.0x10° psi.
2. Linear-2F with E=1.8x10° psi and G=1.6x10° psi.

And, for the case of snow over half the dome (half snow load case), the following

models are analysed:

1. Linear-1H with E=1.8x10° psi and G=6.0x10° psi.
2. Linear-2H with E=1.8x10° psi and G=1.6x10° psi.

The ’F’ at the end of each model name indicates the full snow load condition and
the "H’ indicates the half snow load condition. As stated earlier, the critical load

factors for all the dome cap models are found to be the limit loads.



For the dome cap model Linear-1F, the critical snow load factor is 12.37. The load
deflection path for the node 1 in the vertical direction is shown in Fig.5.1. The
stress outputs are in the form of combined axial and bending stresses. It is
observed that the maximum stresses at the critical load are between the
proportional limit and the ultimate stress (Table 5.1). The maximum stresses at
the limit point are as follows:

Maximum tensile stress : 5665 psi, in element 5 at node 2

Maximum compressive stress : 7001 psi, in element 2 at node 2

For the dome cap model Linear-2F, the critical load factor is again 12.37. From
Fig.5.1, it is seen that load deflection paths for Linear-1F and Linear-2F models
coincide. This indicates that the shear modulus G is not an important parameter
affecting the behavior of the dome under cyclically symmetric loading. The
maximum stresses at the limit point reinforce the fact that the shear modulus
does not affect at all the behavior of these two domes. The stresses obtained are:
Maximum tensile stress : 5662 psi, in element 5 at node 2

Maximum compressive stress : 6999 psi, in element 2 at node 2

The critical load factor for the dome cap model Linear-1H is 11.60. The load
deflection path for node 4 in the vertical direction is shown in Fig.5.2. The
maximum stresses at the limit point for this case are over 50% larger than the
corresponding full snow load case. The maximum stress in tension is below the
ultimate (Table 5.1) and the maximum stress in compression is beyond the

ultimate stress. The values for the maximum stresses are:
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Maximum tensile Stress : 13588 psi, in element 5 at node 2

Maximum compressive Stress : 16571 psi, in element 1 at node 4

The critical load factor for dome cap model Linear-2H is 11.14. The load
deflection path in Fig.5.2 indicates that the change in the shear modulus affects
the critical load factor as well as the nature of the load deflection path. The
decrease in the shear modulus makes the response of this model softer as
compared to dome cap model Linear-1H. Hence, in the case of cyclically
unsymmetric loading, the shear modulus does affect the response of the dome cap.
In the dome with half snow load, the beams undergo torsion and hence the shear
modulus causes change in their response as the shear modulus affects the torsional
stiffness of the beams. There is negligible torsion in the beams for the full snow
load case, hence there is no effect of the change in the shear modulus on the dome

response.

The maximum stresses at limit point for the dome cap model Linear-2H are given
below. It is again seen that the stresses are very large, but the tensile stress is
value (Table 5.1). The stresses in this case are higher than those in the previous
case. The maximum stresses are:

Maximum tensile stress : 14099 psi, in element 5 at node 2

Maximum compressive stress : 17032 psi, in element 1 at node 4
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The location of the nodes at which the maximum stresses occur are shown in

Fig.5.3.

5.5 Effect of Material Nonlinearity on the Dome Cap Behavior

The effect of nonlinearity of the material law on the stability behavior is studied
by analysing several models of the dome cap under the half snow and full snow
loading. The dome cap models analysed here have the original mesh configuration,
where each beam is modelled by two elements. The configuration of the model is

shown in Fig.4.4, and described in Section 4.2.

The nonlinearity of the stress strain law is expected to reduce the critical load for
the dome cap models. It is also estimated that the dome cap models which have
higher stresses at the critical load will be more influenced by the nonlinearity of
the stress strain law. The justification of using the bilinear stress strain law is also

verified in the following analyses.
For the case of full snow load, three different models of the dome cap are

analyzed. These models are based on the material law used for the beam elements,

and are labelled as followed:
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1. Linear-2F with E=1.8x10° psi and G=1.6x10° psi.
2. Linear-3F with E=2.1x10° psi and G=1.6x10° psi.

3. Nonlinear-F

The results for the Linear-2F model are already presented in Section 5.4. The load
deflection path for this model is again presented in Fig.5.4 to compare it with

those for the other two models.

The critcal load factor for dome cap model Linear-3F is 14.73 and shows a much
stiffer response than that of Linear-2F. Even though there is about 19% difference
in the critical load factor between this and the Linear-2F, the effect on the stresses
is negligible. The deflections seem to be more sensitive to the change in modulus
of elasticity than the critical load factor. The vertical deflection at the limit point
at the apex for the dome cap model Linear-2F is 12.5 inches, whereas that for
dome cap model Linear-3F is just about 6 inches, a difference of about 50%. The
maximum stresses at the limit point in dome cap model Linear-3F are:

Maximum tensile stress : 6108 psi, in element 5 at node 2

Maximum compressive stress : 7088 psi, in element 2 at node 2

The load deflection curve for the dome cap model Nonlinear-F, in Fig.5.4, lies
between those for Linear-1F and Linear-3F. It will thus be more appropriate to
compare the response of the dome with nonlinear material law with a dome
having a linear material law similar to the linear portion of the nonlinear material

law. To check this fact, another model of the dome is created with bilinear
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material law for the beam elements. This model is tested for the case of half snow
load to check if it is a better model for comparing the response of the dome cap

with material nonlinearity.

The critical load factor for the dome cap model Nonlinear-F is 14.25. The
maximum stresses at failure are found to be lower than those with linear material
law. The reason for the lower stresses in the inelastic domes despite the higher
critical load factors is described in detail in section 5.7. The maximum stresses at
the limit point for the dome cap model Nonlinear-F are,

Maximum tensile stress : 5359 psi, in element 5 at node 2

Maximum Compressive Stress : 6919 psi, in element 2 at node 2

For the case of half snow load, two different models of the dome cap are analysed.

These models are based on the material law used for the beam elements, and are

labelled as :

1. Bilinear-H, with E(te,m.on)=1.8x106 psi, E(wmpmm-o")-—--2.1x106 psi and
G=1.6x105 psi.
2. Nonlinear-H

The critical load factor for the dome cap model Bilinear-H is 12.68. The load
deflection path is shown in Fig.5.5, and the maximum stresses at the limit point
are presented below. It is seen that the tensile stress is lower than that for dome

cap model Linear-2H (Section 5.4), whereas the compressive stress is higher than
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before. Again, the tensile stress is below the ultimate while the compressive stress
is above the ultimate stress value (Table 5.1).
Maximum tensile stress : 12673 psi, in element 5 at node 2

Maximum Compressive Stress : 17923 psi, in element 1 at node 4

The bilinearity of the stress strain law seems to force the beams to undergo larger
compressive stresses and smaller tensile stresses as compared to the model with

linear material law.

The critical load factor for the dome cap model Nonlinear-H is 11.53. The load
deflection path in Fig.5.5 coincides for the initial linear range with that for the
dome cap model Bilinear-H. After a certain load though, the load deflection path
for the Nonlinear-H case shows a softer response, indicating the gradual yielding of
the material. The maximum stresses at failure for the Nonlinear-H model are
given below.

Maximum tensile stress : 11457 psi, in element 5 at node 2

Maximum Compressive Stress : 10496 psi, in element 4 at node 5

The location of nodes where maximum stresses occur are shown in Fig.5.3.



56  Mesh Refinement Studies on the Dome Cap

For the mesh refinement studies, only the half snow load condition is considered.
Six dome cap models are analysed. Out of these, three models have nonlinear
material law for the beams while the other three have the bilinear law. Three
different mesh configurations make up the three models under each material law.
The mesh configurations are discussed in Section 4.2 and the original mesh and
the refined mesh configurations are shown in Fig.4.4 and Fig.4.5 respectively. The

models with bilinear material law are labelled as follows:

1. Bilinear-H, the model with the original mesh.

2. Bilinear-HR, where the 'R’ stands for the refined mesh.

3. Bilinear-HC, where the ’C’ stands for the connector elements.

Similarly, the inelastic models are labelled as:

1. Nonlinear-H, the model with the original mesh.

2. Nonlinear-HR, where the 'R’ stands for the refined mesh.
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3. Nonlinear-HC, where the ’C’ stands for the connector (or hinge) elements.

The critical load factor for the dome cap model Bilinear-HR is 12.51 while that for
the Bilinear-HC is 12.09. The load deflection curves for the dome cap with bilinear

elastic material law are given in Fig.5.6. It can be seen that the mesh refinement

softens the response of the dome. The model with connector elements show the
softest response, foliowed by the model with refined mesh and then the original
model. It is thus observed that sufficient refinement of the mesh would give
results closest to the response of an ideal dome. It is also observed that the
selective refinement of the mesh, i.e. inserting connector or hinge elements, gives a
better response for the dome cap because the finite element solution converges to

the continuum solution when the mesh is refined.

The critical load factors for the dome cap model Nonlinear-HR is 11.29 and that
for Nonlinear-HC is 11.07. The nature of the load deflection paths for the inelastic

dome caps are similar to those for the bilinear dome caps. These are given in

Fig.5.7.

As the mesh is refined, the lengths of successive load increments past the limit
point start decreasing. This indicates the increasing effort required to get a
convergent solution. For the dome cap model Nonlinear-HC, the final few points

are nearly coincident, indicating the beginning of convergence problems.
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Of the six models analysed, the convergence problems occur only in the Nonlinear-
HC model. Several analysis runs of the Nonlinear-HC models were attempted by
relaxing the convergence tolerances for loads and moments. The load tolerances
were gradually relaxed from 1% to 20% of the nodal load at the apex. The
relaxing of the tolerances did not help in alleviating the convergence problems.
Further relaxation of tolerances would be futile, as it would keep reducing the
accuracy of the solution with no guarantee of solving the convergence problems. It
can be inferred from the program runs that the convergence problems are not due
to a very tight tolerance value. The cause for the convergence problems could be
due to the combined effect of the inelastic material law and the size of the

connector elements, effectively causing very stiff elements next to very soft ones.

5.7  Analyses of the Dome

A limited number of cases are analysed for the complete dome model. The
comparative study of the dome is divided into three classes. In each of these
classes the effect of only a specific group of properties on the dome behavior is

studied.

In two of the three groups, only one load condition of half snow load is considered.
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In the remaining group, the dome models are analysed for both half and full snow
load conditions. The different models in each group are obtained by varying the

material law for the beam elements.

Except in the case of mesh refinement studies, the dome models have the original
configuration where each physical beam is modelled with two elements. The dome

model is discussed in Section 4.2, and is illustrated in Fig.4.1.

In the analysis of the complete dome models it is observed that the critical loads

for the dome models correspond to the limit points, thus are also the limit loads.

5.8 Effect of Shear Modulus on the Dome Behavior

Tests are conducted on two dome models. The first model is similar to the model
used by Wu (1991). It has elastic material law and has the shear modulus same as
used by Wu (1991). The only difference is that Wu (1991) has used connector
elements with variable stiffness to model the triax joints. The case with 100%
joint stiffness would be the same as the model being analysed here. The second
model is same as the first model except the shear modulus is reduced. The

nomenclature used for the models, and the values for the moduli are given below:
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1. Linear-1H with E=1.8x10° psi and G=6.0x10° psi. (Wu’s (1991) model )
2. Linear-2H with E=1.8x10° psi and G=1.6x10° psi.

The 'H’ stands for half snow load.

The critical load factor for the dome model Linear-1H is 7.72, which is the same
as that obtained by Wu (1991). The load deflection path is shown in Fig.5.8. The
maximuim stresses at failure in the dome model Linear-1H are:

Maximum tensile stress : 8099 psi, in element 11 at node 16

Maximum compressive Stress : 17363 psi, in element 11 at node 16

The critical load factor for the dome model Linear-2H is 7.08. It is observed that
the change in the shear modulus has a considerable effect on the load deflection
path and the critical load, Fig.5.8. The lowering of the shear modulus causes the
dome response to be softer. The maximum stresses at failure for this dome model
are much lower than those for the dome model Linear-1H. It is observed that the
reduction in the shear modulus tends to reduce the critical load factor, and the
maximum stresses at failure. The maximum stresses at failure are below the
ultimate stress values (Table 5.1).

Maximum tensile stress : 4971 psi, in element 10 at node 17

Maximum Compressive Stress : 8811 psi, in element 11 at node 16

The nodes where the maximum stresses occur are shown in Fig.5.9.
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The buckling modes for both the models are similar. They show local buckling in

the form of small dimples on the side of the applied snow load.

5.9 Effect of Material Nonlinearity on the Behavior of the Dome Models

Four models are tested to study the behavior of the complete dome with nonlinear
material law. A model with bilinear material law and one with nonlinear material
law are analysed for full snow and half snow load conditions. The nomenclature
used for the dome models is given below. For the full snow load condition, the

models are:

1. Bilinear-F, with E,.,,;,n)=1.8%10° psi, E ., 0 ession)=2-1x10° psi and G=1.6x10°
psi.

2. Nonlinear-F

The ’F’ stands for the full snow load condition. For half snow load condition the

extension 'H’ is used. The models with half snow load condition are:

1. Bilinear-H, with E(pnion=1-8%10° psi, E(ompressiony=2-1x10° psi and
G=1.6x10° psi.

Dome Analyses 102



12

Load Proportionality Factor

BILINEAR-F NONLINEAR-F

—5— AT
0 L | L | |

-12 -10 -8 -6 -4 -2 0]
Z-Displacement (inches)

FIG.5.10 DOME WITH FULL SNOW LOAD
DOME BEHAVIOR FOR BILINEAR AND NONLINEAR MATERIAL
Load Proportionality Factor vs. Z-Displacement

Dome Analyses



2. Nonlinear-H

The critical load factor for the dome model Bilinear-F is 9.99. The load deflection
path is shown in Fig.5.10. The maximum stresses at the limit point are given
below. The maximum compressive stress is beyond the proportional limit whereas
the Maximum tensile stress is below the proportional limit (Table 5.1).

Maximum tensile stress : 3747 psi, in element 201 at node 77

Maximum compressive Stress : 11535 psi, in element 37 at node 7

The critical load factor for the dome model Nonlinear-F is 9.94. From the load
deflection path in Fig.5.10, it can be seen that for full snow load case, the inelastic
behavior is not much different from the elastic behavior. The maximum
compressive stress and the maximum tensile stress at the limit point are between
the proportional limit and the ultimate stress (Table 5.2). The maximum stresses
are:

Maximum tensile stress : 3740 psi, in element 201 at node 77

Maximum compressive Stress : 9985 psi, in element 37 at node 7

The nodes at which the maximum stresses occur are shown in Fig.5.9.

The buckling load is at the limit point, and the buckling mode is in the form of
cyclically symmetric failure around the base of the dome with the formation of
dimples at the location of failure. The failure modes for both the models are

identical.
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The analysis results for dome models with half snow load and nonlinear material

law are given below.

The critical load factor for the dome model Bilinear-H is 8.63. The load deflection
path for this model is shown in Fig.5.11. The maximum stresses at critical load,
which is also the limit load, are given below. The maximum compressive stress is
beyond the ultimate stress while the maximum tensile stress is between the
proportional limit and the ultimate stress (Table 5.1).

Maximum tensile stress : 5862 psi, in element 9 at node 17

Maximum Compressive Stress : 16546 psi, in element 11 at node 16

For the dome model Nonlinear-H, the critical load factor is 8.01. From the load
deflection path shown in Fig.5.11, it can be observed that the materially nonlinear
behavior of the dome with half snow load is thus softer than the elastic behavior.
The stresses at failure are given below. The maximum compressive stress is at the
plastic stress level. The maximum tensile stress lies between the proportional
limit and the ultimate stress (Table 5.2).

Maximum tensile stress : 7467 psi, in element 11 at node 16

Maximum Compressive Stress : 10496 psi, in element 12 at node 6

The nodes at which the maximum stresses occur are shown in Fig.5.9.

The buckling mode for the dome models with half snow loads shows localised

dimples on the side of the applied snow load, indicating local failure at the



location of these dimples. The buckling modes are the same for the dome models

with linear and nonlinear material laws for the load case of half snow load.

5.10 Mesh Refinement Studies of the Dome Model

For the mesh refinement studies, only the half snow load condition is considered.
Four models are analysed. Of these four, two have bilinear material laws, whereas
the other two have nonlinear material laws. Two different mesh configurations
make up the two models under each material law. The descriptions of the meshes
are given in Section 4.1 and illustrated in Fig.4.1 and Fig.4.3. In the original
mesh, each physical beam is modelled by two elements while in the refined mesh,
four elements are used to model each physical beam. Hence the mesh in the
refined mesh model is twice as fine as the dome model with the original mesh.

The models with linear material law are labeled as:

1. Bilinear-H, the model with the original mesh.

2. Bilinear-HR, where the 'R’ stands for the refined mesh.

Similarly, the inelastic models are labeled as:

1. Nonlinear-H, the model with the original mesh.
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2. Nonlinear-HR, where the 'R’ stands for the refined mesh.

The use of connector (hinge) elements in the dome models did not give good
results, and are not presented here. The analysis of the dome model with
connector elements and inelastic material law gave convergence problems. These
convergence problems are attributed to the combined effect of the size of the
connector elements and the inelastic material law. Further studies need to be done

by using different sizes of connector elements and different element types.

The critical load factor for the dome model Bilinear-H is 8.63 while that for the
Bilinear-HR is 8.06. The load deflection curves for the dome with bilinear elastic
material law are given in Fig.5.12. It can be seen that the mesh refinement softens
the response of the dome. Although the difference in the critical loads for the two
models is not very large, sufficient refinement of the mesh would give results

closest to the response of an ideal dome.

The critical load factors for the dome model Nonlinear-H is 8.01 and that for
Nonlinear-HR is 7.74. The nature of the load deflection paths for the inelastic

dome caps are similar to those for the bilinear dome caps. These are given in

Fig.5.13.

The buckling modes for the dome models with original and refined mesh
configurations are very similar. The failure is in the form of local buckling of

members on the side of the applied snow load. The failure is indicated by the
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presence of dimples at the location of localised buckling.

The stress and the corresponding strain at the limit point for the dome models
with refined meshes and half snow load are plotted in Fig.5.14. These stresses and
strains are superimposed on the plot of the bilinear and the nonlinear stress-strain
curves for wood. From the figure it can be seen that the compressive strains at the
limit point for both the models are nearly the same, while the stresses are
markedly different. This difference arises due to the curvature of the nonlinear
stress-strain law. Since the nonlinear stress-strain law curves and becomes
horizontal, for the same strain, a smaller stress reading is obtained as compared to

that for the linear stress strain law.

The compressive strain at failure for the dome model Inelastic-HR is 6.07x10 ~3
and the corrosponding stress is 10188 psi. Considering linear behavior, the stress
for this strain value would be 12747 psi. As the inelastic stress strain curve levels
off, the difference in the stresses at the same strain values for the inelastic and the
elastic material laws would become greater. It is also seen that the strain value at
failure for the dome model Bilinear Elastic-HR is 6.38x10 ~3. This value is very
close to that for the inelastic case, but the corresponding stress at failure, 14011
psi, is much higher. This explains the rather large difference between the stresses

at failure for the elastic and the inelastic dome models.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

From the studies conducted in this research, it is found that:

1. The nonlinear material law of wood can be successfully modelled and

incorporated in the finite element program ABAQUS.
2. The selective refinement of the mesh in inelastic analysis gives a softer
response as compared to complete mesh refinement, although it gives convergence

problems and does not work for the complete dome.

3. Torsion studies on cantilever beams show that the shear modulus value used
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by ABAQUS in the computations is different from those specified by Wu (1991),
Tissaoui (1991), and by Davalos (1989) because ABAQUS defaults at Poisson’s
ratio of 0.5, thus computing the corresponding shear modulus as 6.0x10° psi

instead of as 1.6x10° psi.

4. For full snow load cases (cyclically symmetric loading) the effect of variation
in the shear modulus on the dome behavior is negligible, whereas considerable

effect is seen for the half snow load cases ( cyclically unsymmetric loading).

5. The materially nonlinear response of the dome is softer than the materially

linear response.

6. The mesh refinement causes a softer response, and lowers the critical load as

compared to that for the dome model with a coarser mesh.

8. The selective refinement of the mesh gave better results than the uniform
mesh refinement in the dome cap models. But for the dome model, the selective
mesh refinement, i.e., providing connector (hinge) elements caused convergence

problems.

9. The buckling modes for all the dome models with linear and nonlinear material

law were the same, and the critical loads were at the limit points.

10. For the elastic dome analyses, the compressive stresses at the limit load were
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beyond the ultimate, while the tensile stresses were between the proportional limit

and the ultimate stress.

11. For the dome with nonlinear material law, the compressive stresses at the
limit load were in the plastic region of the stress strain curve (plateau region)
while the tensile stresses were between the proportional limits and the ultimate

stress.

6.2 Recommendations

1. The nonlinear response of the cantilever beam must be compared with

experimental results

2. The material law modelled in this research is for small clear timber.
Experimental tests must be conducted on glulam beams to find the differences, if
any, in their nonlinear behavior. These differences must then be incorporated in

the material model.

3 The results of finite element analyses of the dome models should be verified by

experimental tests of the dome models.
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4. Dome models with different geometry and rise to span ratios should be
analysed. Inelastic analyses of domes with different geometry would give a more
clearer understanding of the behavior of domes with nonlinear stress-strain laws,

and of the effect of the rise to span ratios on this behavior.

5. Further studies should be conducted by modelling the connector (hinge)
elements with B32 beam elements to determine the cause of the convergence

problems in the complete dome model.

6. Various other loading conditions should be used to study their effect on the

nonlinear behavior of the domes.

7. A more realistic model of decking should be used to study its effect on the

dome behavior.

8. The maximum stresses at failure occur at the beam joints. Hence, it is
important to determine if the connectors would fail before the members. The

connectors should thus be modelled and monitored in the future studies.

10. The method of combined linear and nonlinear buckling prediction method
(Wu, 1991; Tissaoui, 1991; Holzer, Wu, and Tissaoui, 1991) should be used to
study its applicability and usefulness in the buckling analyses of domes with

nonlinear material laws.
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APPENDIX A

PROGRAM TO COMPUTE THE DIRECTION COSINES OF THE BEAM ELEMENTS C
AND TO WRITE THE SECTION PROPERTIES AND ELEMENT SETS

QQ

USER: NIKET M. TELANG......ccccccvevinnnrnnen. 951 3071.
PROGRAM WRITTEN SEPT 1991

THE PROGRAM READS THE DATA FILES NAMED IN THE COMMENT
STATEMENTS

VARIABLES:

N: NODE NUMBERS

X, Y, Z ELEMENT NUMBER

R: RADIUS OF THE DOME

XCOS, YCOS, ZCOS: ARRAY FOR THE NODES

XNORM: MAGNITUDE OF THE 1 AXIS VECTOR
XCC, YCC, ZCC: DIRECTION COSINES FOR THE BEAMS

oNoNoloRoNoloXoNoRoloNoNoXo!

DECLARE THE VARIABLES

oloNoNoNololoNoRoloNoNoNoRoRoRoNoNoNoN oK)

REAL X, Y, Z
REAL XCOS(800), YCOS(800), ZCOS(800)
REAL XC(800), YC(800), ZC(800)

REAL XCC(800), YCC(800), ZCC(800)
REAL R

R=1387.6

OPEN NODE COORDINATES AND BEAM CONNECTIVITY DATA FILES

aaQ

OPEN(UNIT=55,STATUS="OLD’)
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OPEN(UNIT=60,STATUS="0LD")
OPEN(UNIT=65,STATUS="0LD")
OPEN(UNIT=70,STATUS="OLD")

OPEN OUTPUT DATA FILES

aQaa

OPEN(UNIT=88,STATUS="UNKNOWN?’)
OPEN(UNIT=98,STATUS="UNKNOWN’)

READ NODES FROM NODES.DAT

oNo N

DO 10 1=1,217
READ (55,+) N, X, Y, Z
XCOS(I) = X
YCOS(I) = Y
ZCOS(I) = Z + 1387.66
ZCOS1(I) = Z+1387.66
10 CONTINUE

C
C READ CONNECTIVITY FOR MAIN BEAMS-I FROM MBEAM1.DAT
C

WRITE(88,350)

WRITE(98,350)

DO 20 J=1,24
READ (60,%) NE, N1, N2
XC(NE) = YCOS(N1) «x ZCOS(N2) - ZCOS(N1) * YCOS(N2)
YC(NE) = -(XCOS(N1) * ZCOS(N2) - ZCOS(N1) * XCOS(N2))
ZC(NE) = XCOS(N1) * YCOS(N2) - YCOS(N1) * XCOS(N2)
XNORM = (XC(NE)**2+YC(NE)*%2+ZC(NE)*%2) ** 0.5
XCC(NE) = XC(NE) / XNORM
YCC(NE) = YC(NE) / XNORM
ZCC(NE) = ZC(NE) / XNORM
WRITE (88,200) NE
WRITE (88,220) NE, N1, N2
WRITE (98,230) NE
WRITE (98,240)
WRITE (98,300) XCC(NE),YCC(NE),ZCC(NE)
WRITE (98,310)
WRITE (98,320)

20 CONTINUE

C
C READ CONNECTIVITY FOR MAIN BEAM-II FROM MBEAM2.DAT
C

WRITE(88,360)

WRITE(98,360)

DO 30 II=1,240
READ (65,%) NE, N1, N2
XC(NE) = YCOS(N1) * ZCOS(N2) - ZCOS(N1) * YCOS(N2)
YC(NE) = -(XCOS(N1) + ZCOS(N2) - ZCOS(N1) + XCOS(N2))
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ZC(NE) = XCOS(N1) * YCOS(N2) - YCOS(N1) * XCOS(N2)
XNORM = (XC(NE)*+2+YC(NE)**2+ZC(NE)*+2) * 0.5
XCC(NE) = XC(NE) / XNORM
YCC(NE) = YC(NE) / XNORM
ZCC(NE) = ZC(NE) / XNORM
WRITE (88,200) NE
WRITE (88,220) NE, N1, N2
WRITE (98,230) NE
WRITE (98,245)
WRITE (98,300) XCC(NE),YCC(NE),ZCC(NE)
WRITE (98,310)
WRITE (98,320)
30 CONTINUE
C
C READ CONNECTIVITY FOR EDGE (PERIMETER) BEAMS FROM EDBEAM.DAT
C
WRITE(88,370)
WRITE(98,370)
DO 40 I1=1,48
READ (70,%) NE, N1, N2
XC(NE) = YCOS(N1) « ZCOS(N2) - ZCOS(N1) * YCOS(N2)
YC(NE) = -(XCOS(N1) x ZCOS(N2) - ZCOS(N1) » XCOS(N2))
ZC(NE) = XCOS(N1) * YCOS(N2) - YCOS(N1) * XCOS(N2)
XNORM = (XC(NE)**2+YC(NE)**2+ZC(NE)*%2) ** 0.5
XCC(NE) = XC(NE) / XNORM
YCC(NE) = YC(NE) / XNORM
ZCC(NE) = ZC(NE) / XNORM
WRITE (88,200) NE
WRITE (88,220) NE, N1, N2
WRITE (98,230) NE
WRITE (98,250)
WRITE (98,300) XCC(NE),YCC(NE),ZCC(NE)
WRITE (98,310)
WRITE (98,320)
40 CONTINUE
C
C FORMAT STATEMENTS FOR WRITING THE OUTPUTS
C
200 FORMAT (T1,*ELEMENT, TYPE=B33,ELSET=E’,T26,14)
220 FORMAT (1X,14,’,,14,,,14)
230 FORMAT (T1,’*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=FE’
$ /T50,14)
240 FORMAT (2X,%.75, 11.0°)
245 FORMAT (2X,’5.0, 11.0%)
250 FORMAT (2X,’12.25, 3.0%)
300 FORMAT (1X,F8.4,’,F8.4,,F8.4)
310 FORMAT (*TRANSVERSE SHEAR STIFFNESS’)
320 FORMAT (2X,’9972128.26, 9972128.26")
350 FORMAT (’+= MAIN BEAMS 1%)
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360 FORMAT (’*+

370  FORMAT (*=

END
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APPENDIX B

+HEADING, CORE=15000000
SDRC I-DEAS ABAQUS FILE TRANSLATOR 10-OCT-91 22:26:18
++ NIKET M. TELANG 9513071 INPUTFILE FOR DOME
++ NONLINEAR RIKS ANALYSES/ HALF SNOW LOAD/ USER MATERIAL ALL BEAMS
*+ NONLINEAR MATERIAL LAW
4 NODES
+NODE, SYSTEM=R, NSET=ALL
1, 0.0000E+00, 0.0000E+00, 2.1234E+02
2, 2.6374E+02, 0.0000E+00, 1.9046E+02
3, 1.3187E+02,-2.2840E+02, 1.9046E+02
4, 5.0721E+02, 0.0000E+00, 1.2982E+02
5, 2.5361E+02,-4.3926E+02, 1.2982E+02
6, 3.8528E+02,-2.2244E+02, 1.4925E+02
7, 7.1710E+02, 0.0000E+00, 4.2643E+01
8, 3.5855E402,-6.2103E-+02, 4.2644E+01
9, 4.8911E+02,-4.2359E+02, 7.5678E+01
10, 6.1139E+02,-2.1179E+02, 7.5677E+01
11, 7.9650E+02, 0.0000E-+00, 4.8828E-04
12, 3.9825E+02,-6.8978E+02, 4.8828E-04
13, 5.6321E+02,-5.6321E+02, 4.8828E-04
14, 6.8978E+02,-3.9825E+02, 4.8828E-04
15, 7.6936E+02,-2.0615E+02, 4.8828E-04
16, 2.5941E+02,-2.2615E+02, 1.7490E+02
17, 3.2556E+02,-1.1158E+02, 1.7489E+02
18, 3.7243E+02,-4.3266E+02, 1.0704E+02
19, 4.3841E+02,-3.2391E+02, 1.1663E+02
20, 4.9972E+02,-2.1772E+02, 1.1663E+02
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200,-4.3841E+02,-3.2391E+02, 1.1663E+02
201,-3.7243E+02,-4.3266E-+02, 1.0704E+02
202,-7.4494E+02,-1.0331E+02, 2.4569E+01
203,-6.9140E+02,-2.0928E+02, 3.9982E+01
204,-6.5207E+02,-3.0572E+02, 4.1096E+01
205,-5.9079E+02,-4.1185E+02, 4.1096E+01
206,-5.2695E+02,-4.9413E+02, 3.9982E+01
207,-4.6194E+02,-5.9348E+02, 2.4569E+01
208,-1.9848E+02,-1.1459E+02, 1.9584E+02
209,-4.4766E+02,-1.1157E+02, 1.4439E+02
210,-3.2045E+02,-3.3190E+02, 1.4438E+02
211,-6.6610E+02,-1.0619E+02, 6.3212E+01
212,-5.5186E+02,-3.1862E+02, 7.9969E+01
213,-4.2502E+02,-5.2377E+02, 6.3212E-+01
214,-7.8968E+02,-1.0396 E+02, 0.0000E+00
215,-7.3587E+02,-3.0480E+02, 0.0000E+00
216,-6.3190E+02,-4.8487E+02, 0.0000E+00
217,-4.8488E+02,-6.3190E+02, 0.0000E-+00
* BOUNDARY NODES
*NSET,NSET=SUPPORT

12, 195, 15, 88, 89, 90
91, 52, 53, 11, 127, 128
129, 130, 165, 166, 167, 131
13, 54, 55, 14, 193, 194
78, 79, 80, 81, 186, 187
188, 189, 158, 159, 160, 161
214, 215, 216, 217, 114, 115
116, 117, 42, 43, 44, 45

*

*
R

ELEMENT INCIDENTS
TRUSS ELEMENTS
*k TENSION RING
*ELEMENT, TYPE=C1D2 ,ELSET=RING

232 53 52

231 54 53

230 55 54

229 11 55

893 88 195

894 195 194

895 194 193

896 193 128

61 11 15

733 127 167
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62
576
575
574
573
734
735
736
400
399
398
397

63

64

15
129
130
131
127
167
166
165
89
90
91
88
14
13

14
128
129
130
131
166
165
52
12
89
90
91
13
12

%k

PURLINS

*ELEMENT, TYPE=C1D2 ,ELSET=PURLIN

242
235
234
240
75
76
739
589
588
587
72
586
738
585
584
583
582
65
66

748
401
402
403
404
405
406
407

67
57
30
59
26
25
169
140
141
142
19
143
146
134
135
136
137
28
30

177
104
105
93
92
106
97
96
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25
24
168
139
140
141
18
142
169
149
134
135
136
29
17

176
29
93
92
31
97
96
95
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408
409
410
411
412
413
414
749
750
909
741
590
236

% %k

95
94
103
102
101
100
99
176
175
204
148
139
56

94
33
102
101
100
99
98
175
174
203
173
138
69

TRUSS BRACING

*ELEMENT, TYPE=C1D2 ,ELSET=BRACE

417
418
419
420
421
422
423
424
765
415

610
760
612
613
614
615
616
617
618
619
620
624
622
623
776

% sk
x*x

108
108
105

93

92

31
110
110
172
104

157
182
156
155
155
143
143
143
142
141
140
138
138
138
179

93
92
110
110
109
109
97
96
184
108

142
172
140
139
138
150
127
161
160
160
159
151
158
128
127

BEAM ELEMENTS

*%

MAIN BEAMS 1

*ELEMENT, TYPE=B33,ELSET=E 1

1,
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+ELEMENT,TYPE=B33,ELSET=E 2
2, 28, 2

+ELEMENT,TYPE=B33,ELSET=E 3
3, 1, 29

+ELEMENT,TYPE=B33,ELSET=E 4
4, 29, 3

+ELEMENT,TYPE=B33,ELSET=E 5
5 2, 36

+ELEMENT,TYPE=B33,ELSET=E 6
6, 36, 3

*ELEMENT,TYPE=B33,ELSET=E 178
178, 68, 46

+ELEMENT,TYPE=B33,ELSET=E 180
180, 72, 46

+ELEMENT, TYPE=B33,ELSET=E 850
850, 208, 119

*ELEMENT, TYPE=B33,ELSET=E 849
849, 82, 208

+ELEMENT, TYPE=B33,ELSET=E 345
345, 1, 104

*ELEMENT, TYPE=B33,ELSET=E 346
346, 104, 82

+ELEMENT, TYPE=B33,ELSET=E 347
347, 82, 108

+ELEMENT, TYPE=B33,ELSET=E 348
348,108, 3

+ELEMENT, TYPE=B33,ELSET=E 513
513, 1,144

+ELEMENT, TYPE=B33,ELSET=E 514
514, 144, 118

+ELEMENT, TYPE=B33,ELSET=E 515
515, 1, 145

+ELEMENT, TYPE=B33,ELSET=E 516
516, 145, 119

+ELEMENT, TYPE=B33,ELSET=E 517
517, 118, 152

+ELEMENT, TYPE=B33,ELSET=E 518
518, 152, 119

+ELEMENT, TYPE=B33,ELSET=E 690
690, 180, 46

+ELEMENT, TYPE=B33,ELSET=E 689
689, 118, 180

+ELEMENT, TYPE=B33,ELSET=E 177
177, 1, 68

+ELEMENT, TYPE=B33,ELSET=E 179
179, 2, 72

* %k
xx

«ELEMENT, TYPE=B33,ELSET=E 23
23, 6, 20
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+ELEMENT,TYPE=B33,ELSET=E 24
24, 20, 10

+ELEMENT, TYPE=B33,ELSET=E 25
25, 6, 19

+ELEMENT,TYPE=B33,ELSET=E 26
26, 19, 9

+ELEMENT, TYPE=B33,ELSET=E 27
27, 5, 18

+*ELEMENT,TYPE=B33,ELSET=E 28
28, 18, 9

+ELEMENT,TYPE=B33,ELSET=E 29
29, 5, 33

+ELEMENT,TYPE=B33,ELSET=E 30
30, 33, 8

+ELEMENT,TYPE=B33,ELSET=E 31
31, 7, 41

+ELEMENT,TYPE=B33,ELSET=E 32
32, 41, 10

+ELEMENT,TYPE=B33,ELSET=E 33
33, 10, 40

+ELEMENT, TYPE=B33,ELSET=E 34
34, 40, 9

*ELEMENT, TYPE=B33,ELSET=E 363
363, 84, 96

*ELEMENT, TYPE=B33,ELSET=E 364
364, 96, 87

*ELEMENT, TYPE=B33,ELSET=E 365
365, 84, 95

*ELEMENT, TYPE=B33,ELSET=E 366
366, 95, 86

*ELEMENT, TYPE=B33,ELSET=E 367
367, 5, 94

*ELEMENT, TYPE=B33,ELSET=E 368
368, 94, 86

*ELEMENT, TYPE=B33,ELSET=E 369
369, 85, 113

*ELEMENT, TYPE=B33,ELSET=E 370
370, 113, 87

*ELEMENT, TYPE=B33,ELSET=E 388
388, 98, 89

*ELEMENT, TYPE=B33,ELSET=E 387
387, 8, 98
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+ELEMENT,TYPE=B33,ELSET=E 386
386, 99, 89

+ELEMENT, TYPE=B33,ELSET=E 385
385, 86, 99

+ELEMENT,TYPE=B33,ELSET=E 371
371, 87, 112

+ELEMENT,TYPE=B33,ELSET=E 382
382, 101, 90

*ELEMENT,TYPE=B33,ELSET=E 379
379, 87, 102

+ELEMENT, TYPE=B33,ELSET=E 378
378, 103, 91

+ELEMENT, TYPE=B33,ELSET=E 377
377, 85, 103

+ELEMENT, TYPE=B33,ELSET=E 376
376, 107, 88

+ELEMENT,TYPE=B33,ELSET=E 375
375, 85, 107

+ELEMENT,TYPE=B33,ELSET=E 374
374, 111, 8

+ELEMENT,TYPE=B33,ELSET=E 373
373, 86, 111

+ELEMENT, TYPE=B33,ELSET=E 372
372, 112, 86

*xk

*ELEMENT, TYPE=B33,ELSET=E 891
891, 193, 214

*ELEMENT, TYPE=B33,ELSET=E 572
572, 158, 128

*ELEMENT, TYPE=B33,ELSET=E 221
221, 11, 81

*ELEMENT, TYPE=B33,ELSET=E 389
389, 88, 117

+*ELEMENT, TYPE=B33,ELSET=E 390
390, 117, 91

*ELEMENT, TYPE=B33,ELSET=E 391
391, 91, 116

*ELEMENT, TYPE=B33,ELSET=E 392
392, 116, 90

*ELEMENT, TYPE=B33,ELSET=E 393
393, 90, 115

*ELEMENT, TYPE=B33,ELSET=E 394
394, 115, 89

«+ELEMENT, TYPE=B33,ELSET=E 56
56, 44, 14
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*ELEMENT, TYPE=B33,ELSET=E 888
888, 216, 194
*ELEMENT, TYPE=B33,ELSET=E 889
889, 194, 215
*ELEMENT, TYPE=B33,ELSET=E 890
890, 215, 193
*ELEMENT, TYPE=B33,ELSET=E 60
60, 42, 12
+*ELEMENT, TYPE=B33,ELSET=E 59
59, 13, 42
*ELEMENT, TYPE=B33,ELSET=E 58
58, 43, 13
*ELEMENT, TYPE=B33,ELSET=E 57
57, 14, 43
*ELEMENT, TYPE=B33,ELSET=E 565
565, 127, 161
*ELEMENT, TYPE=B33,ELSET=E 566
566, 161, 131
*ELEMENT, TYPE=B33,ELSET=E 567
567, 131, 160
«*ELEMENT, TYPE=B33,ELSET=E 568
568, 160, 130
*ELEMENT, TYPE=B33,ELSET=E 569
569, 130, 159
*ELEMENT, TYPE=B33,ELSET=E 570
570, 159, 129
*ELEMENT, TYPE=B33,ELSET=E 54
54, 45, 15
* SECTION PROPERTIES
*k TRUSS ELEMENTS
*SOLID SECTION, ELSET=RING, MATERIAL=STEEL
12.
*SOLID SECTION, ELSET=PURLIN, MATERIAL=WOOD

.

24.75

*SOLID SECTION, ELSET=BRACE, MATERIAL=WOOD

0.3

*k BEAM ELEMENTS

*% MAIN BEAMS 1

*BEAM SECTION,SECTION=RECT ,MATERIAL=UWOOD,ELSET=E 1
6.75, 11.0

0.0000, 1.0000, 0.0000
*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26
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*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 2
6.75, 11.0
0.0000, 1.0000, 0.0000

*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 3
6.75, 11.0
0.8660, 0.5000, 0.0000

*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 4
6.75, 11.0
0.8660, 0.5000, 0.0000

*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

+*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 5
6.75, 11.0
0.8571, -0.4948, -0.1432

*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 6
6.75, 11.0
0.8571, -0.4949, -0.1432

*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 178
6.75, 11.0
-0.8660, 0.5000, 0.0000

*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*ok MAIN BEAMS 2

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 23
5.0, 11.0
0.0000, 0.9897, 0.1432

*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 24
5.0, 11.0
0.0000, 0.9897, 0.1432

*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 25
5.0, 11.0
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0.8571, 0.4948, -0.1432
*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26
*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 26
5.0, 11.0
0.8571, 0.4948, -0.1433
*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26
*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 27
5.0, 11.0
0.0000, 0.9606, 0.2781
+*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26
«*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 28
5.0, 11.0
0.0001, 0.9606, 0.2780
+*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 376
5.0, 11.0
0.8660, -0.5001, -0.0001

+*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 375
5.0, 11.0
0.8660, -0.5000, 0.0000

*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 374
5.0, 11.0
0.0001, 0.9173, 0.3983

*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 373
5.0, 11.0
-0.0001, 0.9173, 0.3983

*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 372
5.0, 11.0
0.0000, 0.9173, 0.3983

«*TRANSVERSE SHEAR STIFFNESS
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9972128.26, 9972128.26

ok EDGE BEAMS

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 891
12.25, 3.0
0.0000, 0.0000, -1.0000

+*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 572
12.25, 3.0
0.0000, 0.0000, 1.0000

+*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

+BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 221
12.25, 3.0
0.0000, 0.0000, 1.0000

*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 228
12.25, 3.0
0.0000, 0.0000, 1.0000

+*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 227
12.25, 3.0
0.0000, 0.0000, 1.0000

*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 569
12.25, 3.0
0.0000, 0.0000, 1.0000

+*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 570
12.25, 3.0
0.0000, 0.0000, 1.0000

*TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*BEAM SECTION,SECTION=RECT,MATERIAL=UWOOD,ELSET=E 54
12.25, 3.0
0.0000, 0.0000, -1.0000

+TRANSVERSE SHEAR STIFFNESS
9972128.26, 9972128.26

*k MATERIAL PROPERTIES
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*MATERIAL, NAME=WOOD
*ELASTIC
1.8E+06, 4.625
*MATERIAL, NAME=UWOOD
*USER MATERIAL, CONSTANT=3
12.00, 0.52, 1.6E5
*MATERIAL, NAME=STEEL
*ELASTIC
2.9E4+07, 0.3
** BOUNDARY CONDITIONS
+*BOUNDARY
SUPPORT, 3
11, 2
128, 2
90, 1
166, 1
*k APPLICATION OF DEAD LOAD
*ok NEWTON RAP. STEP
*STEP, NLGEOM, INC=100, CYCLE=12
*STATIC, PTOL=100.0, MTOL=1000.0
0.1, 1., 0.0, ,
*CLOAD
1, 3, -0.1687E+04
2,3, -0.1622E+04
3, 3, -0.1622E+04
4, 3, -0.1448E4-04
5, 3, -0.1448E4-04
6, 3, -0.1502E+04
7, 3, -0.9599E+-03
8, 3, -0.9599E4-03
9, 3, -0.1225E+04
10, 3, -0.1225E+04
11, 3, -0.3694E4-03
12, 3, -0.3695E+03
13, 3, -0.4273E+03
14, 3, -0.5313E+03
15, 3, -0.4273E403
16, 3, -0.1591E+04

100, 3, -0.1097E+04
101, 3, -0.1097E+04
102, 3, -0.9952E+03
103, 3, -0.8781E+03
104, 3, -0.1689E+04
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105, 3,
106, 3,
107, 3,
108, 3,
109, 3,
110, 3,
111, 3,
112, 3,
113, 3,

190, 3,
191, 3,
192, 3,
193, 3,
194, 3,
195, 3,
196, 3,
197, 3,
198, 3,
199, 3,
200, 3,
201, 3,
202, 3,
203, 3,
204, 3,
205, 3,
206, 3,
207, 3,
208, 3,
209, 3,
210, 3,
211, 3,
212, 3,
213, 3,
214, 3,
215, 3,
216, 3,
217, 3,

*k

-0.1559E+-04
-0.1344E+04
-0.3452E+03
-0.1656E+4-04
-0.1502E+-04
-0.1502E+-04
-0.1182E+04
-0.1303E+4-04
-0.1182E+4-04

-0.1502E+-04
-0.1225E4-04
-0.1225E404
-0.4273E403
-0.5313E+03
-0.4273E403
-0.1591E4-04
-0.1591E4-04
-0.1394E4-04
-0.1419E+04
-0.1419E+04
-0.1394E4-04
-0.8781E+03
-0.9952E+03
-0.1097E+404
-0.1097E+4-04
-0.9952E+03
-0.8781E+03
-0.1656E+4-04
-0.1502E4-04
-0.1502E4-04
-0.1182E+04
-0.1303E4-04
-0.1182E+04
-0.1957E+03
-0.4934E4-03
-0.4934E4-03
-0.1957E4-03

*NSET, NSET=APEX1

1

*ELSET, ELSET=ELE1

12
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*PRINT, RESIDUAL=NO

*NODE PRINT, NSET=APEX1, SUMMARY=NO, FREQUENCY=5)
U

*NODE PRINT, NSET=APEX1, SUMMARY=NO, FREQUENCY=5
CF

*EL PRINT, ELSET=ELE1, SUMMARY=NO, FREQUENCY=20
3,23

S

«*END STEP

*k APPLICATION OF LIVE LOAD
*k RIKS STEP

*STEP, NLGEOM, INC=20, CYCLE=16
*STATIC, PTOL=100., MTOL=1000., RIKS
0.1, 1., 0.0, ,20.0, 1, 3, -20.0
*k DEAD LOAD + HALF SNOW LOAD
*CLOAD
1, 3, -0.1687E+4-04
2, 3, -0.1622E+04
3, 3, -0.1622E+4-04
4, 3, -0.1448E+4-04
5, 3, -0.1448E4-04
6, 3, -0.1502E4-04
7, 3, -0.9599E+403
8, 3, -0.9599E4-03
9, 3, -0.1225E+04
10, 3, -0.1225E+4-04
11, 3, -0.3694E+03
12, 3, -0.3695E+03
13, 3, -0.4273E+03
14, 3, -0.5313E+03
15, 3, -0.4273E4+03
16, 3, -0.1591E+-04
17, 3, -0.1591E4-04

174, 3, -0.8781E+03
175, 3, -0.9952E+03
176, 3, -0.1097E+04
177, 3, -0.1097E+04
178, 3, -0.9952E+03
179, 3, -0.8781E+03
180, 3, -0.1656E+04
181, 3, -0.1502E+04
182, 3, -0.1502E+04
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183, 3, -0.1182E+04
184, 3, -0.1303E+04
185, 3, -0.1182E+04
186, 3, -0.1957E+03
187, 3, -0.4934E+03
188, 3, -0.4935E+03
189, 3, -0.1957E+03
190, 3, -0.1502E+04
191, 3, -0.1225E+04
192, 3, -0.1225E+04
193, 3, -0.4273E+03
194, 3, -0.5313E+03
195, 3, -0.4273E+03
196, 3, -0.1591E+04
197, 3, -0.1591E+04
198, 3, -0.1394E+04
199, 3, -0.1419E+04
200, 3, -0.1419E+04
201, 3, -0.1394E+04
202, 3, -0.8781E+03
203, 3, -0.9952E+03
204, 3, -0.1097E+04
205, 3, -0.1097E+04
206, 3, -0.9952E+03
207, 3, -0.8781E+03
208, 3, -0.1656E+04
209, 3, -0.1502E+04
210, 3, -0.1502E+04
211, 3, -0.1182E+04
212, 3, -0.1303E+04
213, 3, -0.1182E+04
214, 3, -0.1957E+03
215, 3, -0.4934E+03
216, 3, -0.4934E+03
217, 3, -0.1957E+03

1, 3, -0.1053E+04

2, 3, -0.9986E+03

3, 3, -0.1997E+04

4, 3, -0.8582E+03

5, 3, -0.1716E+04

6, 3, -0.1803E+04

7, 3, -0.5402E+03

8, 3, -0.1080E+04

9, 3, -0.1404E+04
10, 3, -0.1404E+04
11, 3, -0.2020E+03
12, 3, -0.4040E+03
13, 3, -0.4691E+03
14, 3, -0.5844E+03
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15, 3, -0.4691E+03
16, 3, -0.1939E+04
17, 3, -0.1939E4-04
18, 3, -0.1627E+-04
19, 3, -0.1665E+4-04
20, 3, -0.1665E+04

119, 3, -0.9986E+03
121, 3, -0.8582E+03
124, 3, -0.5402E+03
128, 3, -0.2020E+03
145, 3, -0.1051E+04
147, 3, -0.9442E+03
149, 3, -0.7745E+03
151, 3, -0.1899E+03
190, 3, -0.1803E+04
191, 3, -0.1404E+04
192, 3, -0.1404E+04
193, 3, -0.4690E+03
194, 3, -0.5845E+03
195, 3, -0.4691E+03
196, 3, -0.1939E+04
197, 3, -0.1939E+04
198, 3, -0.1627E+04
199, 3, -0.1666E-+04
200, 3, -0.1665E+04
201, 3, -0.1627E+04
202, 3, -0.9713E+03
203, 3, -0.1108E+04
204, 3, -0.1225E+04
205, 3, -0.1225E+04
206, 3, -0.1108E+04
207, 3, -0.9713E+03
208, 3, -0.2046E+04
209, 3, -0.1797E+04
210, 3, -0.1797E+04
211, 3, -0.1342E+04
212, 3, -0.1495E+04
213, 3, -0.1343E+04
214, 3, -0.2139E+03
215, 3, -0.5421E+03
216, 3, -0.5421E+03
217, 3, -0.2139E+03
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*% NODE, ELEMENT SETS AND OUTPUTS
*NSET, NSET=APEX

1

*NSET, NSET=NWATCH

1, 17, 38, 6, 16

*ELSET, ELSET=EWATCH

37, 9, 10, 11, 12, 201

*ok OUTPUT REQUESTS
*PRINT, RESIDUAL=NO

*EL PRINT, ELSET=EWATCH, POSITION=NODES

S

*NODE PRINT, NSET=NWATCH

U

*NODE PRINT, NSET=APEX

CF

*NODE FILE, NSET=ALL

U

*END STEP

*USER SUBROUTINE

e 3 e ok 3 3 e e ok 3k ok 3 3k 3 ok e 3 o ke e 3 3k 3k ok 3k ok 3k 3 3k ok ks 3k Sk 3k k3 ok e ok 3k ks ok ok ok 3k ok ok 3k ok ok 3k 3k k3 ok K ok e 3 3k ok 3k ok ok ok Sk ok ko ok e 3k ok ok ok ok ok ok kK ok ok k

Hkokkokk SUBROUTINE TO DEFINE USER MATERIAL -
ek ok kK sk dkokkkk
*kkkkk NIKET M. TELANG ........... 10 APRIL’91 $okdokok Rk k

Aok sk ok sk ok ok ok ok ok ok ks sk ok okl ok ok ko sk ok sk ok ok ok ok Aok ok sk ok ok ook ok Aok R ok sk sk sk kR ok Kk
C

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,

1 RPL,DDSDDT,DRPLDE,DRPLDT,

2 STRAN,DSTRAN, TIME,DTIME, TEMP,DTEMP,PREDEF,DPRED,CMNAME,
3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT)

IMPLICIT REAL#*8(A-H,0-Z)

aQaQ

DIMENSION STRESS(NTENS),STATEV(NSTATV),
1 DDSDDE(NTENS,NTENS),
2 DDSDDT(NTENS),DRPLDE(NTENS),
3 STRAN(NTENS),DSTRAN(NTENS),PREDEF(1),DPRED(1),
4 PROPS(NPROPS),COORDS(3),DROT(3,3)
C
C  INITIALIZE DDSDDE(I,J)
C
DO 20 I=1,NTENS
DO 10 J=1,NTENS
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10

DDSDDE(I,J)=0.0
CONTINUE

20 CONTINUE

C
C
C

aQ aaaQ

CC
CC
CC
CcC
CcC

Q Qaa

*LONGITUDINAL STRESS*

TS=0.0
TS=STRAN(1) + DSTRAN(1)

*TENSION ZONE*

IF(TS .GT. 0.0)THEN

BETAl= 1822300. - 9.8+(PROPS(1)#+3)

BETA2= 1934700.0

BETA3= 37045400. - 2204.x(PROPS(1)#+3) - 150737800.+PROPS(2)
AK1= (BETA1 - BETA2)/(2.BETA3)

ALFAl= BETA3+(AK1%x2)

HAND COMPUTED VALUES FOR: SG=0.52, MC=12%

BETA1=1805365.6
BETA2=1934700.0
BETA3=-45146768.0
AK1=1.43237E-03
ALFA1=-92.62689

IF(TS .LT. AK1)THEN
DDSDDE(1,1)=BETA1
STRESS(1)=BETA1+TS
ELSEIF(TS .GE. AK1)THEN
DDSDDE(1,1)= BETA2 + (2.«xBETA3+STRAN(1))
STRESS(1)=ALFA1 + BETA2+TS + BETA3+(TS#+2)
ENDIF

*COMPRESSION ZONEx

ELSEIF(TS .LE. 0.0)THEN

BETA1= 143900. + 441996xPROPS(1) - 28997.+(PROPS(1)**2)
+ 534.#(PROPS(1)*+3)

BETA2= 5719340. - 258850.+PROPS(1) + 4280+(PROPS(1)++2)

BETA3= -1065588500. + 3449729+«+PROPS(1) +
1540914880.+PROPS(2)

AKl= (BETA1 - BETA2)/(2.+BETA3)

AK2= (-BETA2)/(2.+BETA3)

ALFAl= BETA3+(AK1%%2)

ALFA2= BETA3x((AK1*%2)-(AK2%%2))
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C

CC
CC
CC
CC
CcC
CC
CC

QaaQ

HAND COMPUTED VALUES FOR: $G=0.52, MC=12%

BETA1=2195036.0
BETA2=3229460.0
BETA3=-222916014.1
AK1=2.3202E-03
AK2=7.24367E-03
ALFA2=10496.5409
ALFA1=-1200.03

AK1C=-AK1

AK2C=-AK2

IF(TS .GE. AK1C)THEN
DDSDDE(1,1)=BETAI
STRESS(1)=-BETA1+ABS(TS)

ELSEIF(TS .LT. AK1C .AND. TS .GE. AK2C)THEN
DDSDDE(1,1)=BETA2 + 2.+BETA3+*ABS(STRAN(1))
STRESS(1)=-(ALFA1 + BETA2*ABS(TS) +

1 BETAS3+((ABS(TS))#+2))

ELSEIF(TS .LT. AK2C)THEN
DDSDDE(1,1)=0.0
STRESS(1)=-ALFA2

ENDIF

ENDIF

*TORSIONAL SHEAR STRESS#

TT=0.0
TT=STRAN(2) + DSTRAN(2)

DDSDDE(2,2)=PROPS(3)
STRESS(2)=DDSDDE(2,2)«TT

RETURN
END
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