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Abstarct 

 
The transportation sector has a significant impact on the environment both nationally and globally 

since it is a major vehicle fuel consumption and emissions contributor. These emissions are 

considered a major environmental threat. Consequently, decision makers desperately need tools 

that can estimate vehicle emissions accurately to quantify the impact of transportation operational 

projects on the environment. Microscopic fuel consumption and emission models should be 

capable of computing vehicle emissions reliably to assist decision makers in developing emission 

mitigation strategies. However, the majority of current state-of-the-art models suffer from two 

major shortcomings, namely; they either produce a bang-bang control system because they use a 

linear fuel consumption versus power model or they cannot be calibrated using publicly available 

data and thus require expensive laboratory or field data collection.  Consequently, this dissertation 

attempts to fill this gap in state-of-the-art emission modeling through a framework based on the 

Virginia Tech Comprehensive Power-Based Fuel consumption Model (VT-CPFM), which 

overcomes the above mentioned drawbacks. Specifically, VT-CPFM does not result in a bang-

bang control and can be calibrated using publicly available vehicle and road pavement parameters. 

The main emphasis of this dissertation is to develop a simple and reliable emission model that is 

able to compute instantaneous emission rates of carbon monoxide (CO), hydrocarbons (HC) and 

nitrogen oxides (NOx) for the light-duty vehicles (LDVs) and heavy-duty diesel trucks (HDDTs). 

The proposed extension is entitled Virginia Tech Comprehensive Power-Based Fuel consumption 

and Emission Model (VT-CPFEM). The study proposes two square root models where the first 

model structure is a cubic polynomial function that depends on fuel estimates derived solely from 

VT-CPFM fuel estimates, which enhances the simplicity of the model. The second modeling 

framework combines the cubic function of the VT-CPFM fuel estimates with a linear speed term. 

The additional speed term improves the accuracy of the model and can be used as a reference for 

the driving condition of the vehicle. Moreover, the model is tested and compared with existing 

models to demonstrate the robustness of the model. Furthermore, the performance of the model 

was further investigated by applying the model on driving cycles based on real-world driving 

conditions. The results demonstrate the efficacy of the model in replicating empirical observations 

reliably and simply with only two parameters. 
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General audience abstract 

 
The transportation sector places a huge burden on our environment and is one of the major emitters 

of pollutants. The resulting emissions have a negative impact on human health and could be a 

concern for national security. Therefore, policymakers are keen to develop models that accurately 

estimate the emissions from on-road vehicles. Microscopic emission models are capable of 

estimating the instantaneous vehicle emissions from operational-level projects, and policymakers 

can use them to evaluate their emission reduction plans and the environmental impact of 

transportation projects. However, the majority of the current existing models indicate that to 

achieve the optimum fuel economy, the driver should accelerate at full throttle and full braking for 

deceleration to minimize the acceleration and deceleration times. This assumption is obviously 

incorrect since it requires aggressive driving which will result in increasing the fuel consumption 

rate. Also, the models cannot use publicly accessible and available data to estimate the emissions 

which require expensive laboratory or field data collection. Consequently, this dissertation 

attempts to fill this gap in emission modeling through a framework based on the Virginia Tech 

Comprehensive Power-Based Fuel consumption Model (VT-CPFM), which overcomes the above 

mentioned drawbacks. Specifically, VT-CPFM does not follow the mentioned assumption of 

aggressive driving to minimize the fuel consumption as previously explained and can use publicly 

available vehicle and road pavement variables to estimate the emissions. Also, it utilizes US 

Environmental Protection Agency (EPA) city and highway the fuel economy ratings to calibrate 

its parameters. The main emphasis of this dissertation is to develop a simple and reliable emission 

model that is able to compute instantaneous emission rates of carbon monoxide (CO), 

hydrocarbons (HC) and nitrogen oxides (NOx) for the light-duty vehicles (LDVs) and heavy-duty 

diesel trucks (HDDTs). The proposed extension is entitled Virginia Tech Comprehensive Power-

Based Fuel consumption and Emission Model (VT-CPFEM). The study proposes two models 

where the first model structure that depends on fuel estimates derived solely from VT-CPFM fuel 

estimates, which enhances the simplicity of the model. The second modeling framework combines 

the VT-CPFM fuel estimates with the speed parameter. The additional speed term improves the 

accuracy of the model and can be used as a reference for the driving condition of the vehicle. The 

model framework is consistent in estimating the three emissions for LDVs and HDDTs. Moreover, 

the performance of the model was investigated in comparison with existing models to demonstrate 

the reliability of the model. Furthermore, the performance of the model was further evaluated by 

applying the model on driving cycles based on real-world driving conditions. The results 

demonstrate the capability of the model in generating accurate and reliable estimates based on the 

goodness of fit and error values for the three types of emissions.
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1.1 INTRODUCTION 

The transportation sector plays a vital role all over the world in meeting travel demands, which is 

a key necessity for human civilization. The resulting emissions have a negative impact on human 

health and could be a concern for national security. The growing population and increasing car 

ownership represent a burden as increases in vehicles will result in higher emission rates. The 

annual rate of vehicles miles traveled (VMT) increased at an average of 3.4 percent between 1985 

and 2005 (M.J. Bradley & Associates LLC, 2015). 

The transportation sector accounts for approximately 70 percent of petroleum use and 30 percent 

of greenhouse gas emissions in the United States (US) (Knittel, 2012). The U.S. produces 7.5 

million barrels of petroleum per day (M bpd) and consumes 19.15 M bpd (Davis et al., 2011). 

Additionally, transportation energy use accounts for 28.1% of total U.S. energy use (Davis et al., 

2011). In 2012 in the United States, 232 million registered light-duty vehicles traveled 2.7 trillion 

miles and consumed 124 billion gallons of gasoline. Eleven million heavy trucks registered in the 

U.S traveled 268 billion miles, burning 42 billion gallons of diesel fuel. From 1973 to 2007, yearly 

highway fuel consumption, which consisted almost entirely of petroleum-based fuels, rose 59%, 

from 110.5 to 176 billion gallons (Davis et al., 2009). 

Carbon monoxide (CO), hydrocarbons (HC) and oxides of nitrogen (NOx) are the main hazard 

pollutants that have adverse effects on public health when emitted from vehicles. They could cause 

severe diseases, including cardiovascular diseases, cancer, respiratory irritation and other hazards. 

The transportation sector is responsible for producing nearly 70 percent of CO, 45 percent of HC 

and 45 percent of NOx emissions (Knittel, 2012). Consequently, public concern has increased and 

governments are taking action to combat increasing pollution. The Clean Air Act Amendment of 

1990 imposed air regulations and emission standards to reduce emission levels and improve air 

quality. Furthermore, fuel consumption and emission modelling is a noteworthy and primary tool 

in evaluating the performance of traffic operations projects to sustain the environment. Also, 

decision and policy makers need the fuel consumption and emission models to estimate emissions 

resulting from new plans and transportation projects.  In this way, they can compare the differences 

in emission levels before and after implementing plans to evaluate their impact. 

1.2 PROBLEM STATEMENT 

Microscopic fuel consumption and emission models have been widely used as a reliable method 

to estimate the instantaneous emission rates using second by second explanatory variables (e.g. 

speed, acceleration, power, etc.) in order to evaluate the impact of transportation operational-level 

projects on the environment. Moreover, to estimate the fuel consumption and emission rates, the 

required instantaneous data consider vehicle characteristics and dynamics, roadway conditions and 

environmental conditions.  Fuel consumption and emissions modelling plays a key role in the 

evaluation of emissions reduction plans through the accurate estimation of motor vehicle 

emissions. Decision makers can rely on these results to evaluate the consequences of their plans 

and act accordingly. 

Current state-of-the-practice models have experienced two major limitations: the majority of 

models produce a bang-bang control system and they cannot use publicly available data to calibrate 

the model parameters. These two shortcomings make these models not ideal for the design of 

vehicle control systems. The majority of these models utilize extensive and complex data, which 
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costs time and money. Also, data needed to calibrate the parameters and calculate emission rates 

are collected using special devices that are not widely available.  

The Virginia Tech Comprehensive Power-Based Fuel consumption Model (VT-CPFM) is a 

microscopic fuel consumption model based on instantaneous vehicle power. VT-CPFM meets the 

requirements of the predictive eco-cruise control systems because it overcomes two of the major 

shortcomings of existing state-of-the-art models: it does not produce a bang-bang control system, 

and it utilizes publicly available data to estimate emission levels. VT-CPFM can estimate the 

vehicle fuel consumption rate (l/s) accurately; however, it does not estimate vehicle emission rates.  

1.3 RESEARCH OBJECTIVES 

According to the above discussion and in light of the mentioned limitations, the research effort 

presented in this dissertation attempts to extend the VT-CPFM model to capture CO, HC, and NOx 

emissions accurately and in a simple framework that could be utilized easily. In order to achieve 

this goal, the main emphasis of this research is to develop a mathematical model that considers 

different traffic conditions for vehicles, with acceleration or deceleration incorporated into one 

scenario for the model. The model should be capable of estimating emissions for light-duty 

vehicles (LDVs) and Heavy-duty diesel trucks (HDDTs) accurately and in a simple manner to be 

applied easily. The model will be compared with current state-of-the-art models to evaluate its 

applicability and accuracy. 

1.4 RESEARCH CONTRIBUTIONS 

This dissertation develops a microscopic emission model that uses the estimated fuel from VT-

CPFM and instantaneous speed as explanatory variables to predict instantaneous emissions. 

Although, the model can estimate LDV emissions using fuel estimates only, the speed term 

enhances the model accuracy and can be used as a reference of the driving condition of the car at 

high or low speed. The model is based on the square root formula, which consists of a cubic 

polynomial function of fuel and linear speed term. The heavy-duty diesel truck emission model 

consists only of instantaneous fuel and speed variables to estimate the emissions. The structure of 

the model incorporates the vehicle acceleration and deceleration rates in one equation. The model 

was validated on different driving cycles to test the model under various ranges of speed and 

acceleration. Specifically, this research has contributed in: 

 Developing a simple and reliable microscopic emission model which overcomes the 

deficiencies in existing models. 

 The mathematical model depends on only two parameters which can be easily calculated 

or collected.  

 The model estimates the emission levels whether the vehicle power is positive or negative 

in one framework. 

 The model is capable of estimating instantaneous emission rates for light-duty vehicles and 

heavy-duty trucks with two fuel types: gasoline and diesel. 

 The model was compared against existing models to evaluate its performance. 

 The model was implemented on different driving cycles to ensure its validity on various 

driving scenarios and behavior. 



4 
 

 Developing a generalized model to save time from calibrating the parameters for each 

vehicle individually. The coefficients of the model can be generated by inserting the 

publicly available vehicle parameters only. 

1.5 DISSERTATION LAYOUT 

After the introduction, which describes the problem statement and dissertation objectives, an 

extensive review of the literature relevant to topics covered in the dissertation is presented in 

Chapter 2. Thereafter, Chapter 3 includes the light-duty vehicles emission modelling chapter, 

which describes the data and methodology used to develop the proposed model. Chapter 4 provides 

the detailed techniques and methods used in the adopted analysis approach to develop the emission 

model for heavy-duty diesel trucks. Chapter 5 demonstrates the light-duty vehicles emission 

modeling based on MOVES data to ensure the validity of the model. Finally, the sixth chapter 

consists of a summary of the dissertation conclusions and recommendations for further research. 

REFERENCES 

 

Davis, S. C., Diegel, S. W., & Boundy, R. G. (2009). Transportation Energy Data Book: Edition 

28, US Department of Energy. ORNL, 6984. 
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National Bureau of Economic Research, available at 

http://web.mit.edu/ceepr/www/publications/reprints/Reprint_238_WC.pdf, accessed 24 April, 

2016 

M.J. Bradley & Assoc. LLC (2015), American Lung Association Energy Policy Development: 

Transportation Background Document, available at 

http://www.lung.org/assets/documents/healthy-air/transportation-backgrounder.pdf, accessed 25, 

April, 2016 
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SUMMARY 

This chapter discusses the main topics related to motor vehicle fuel consumption and emission 

modelling. The first section summarizes the environmental standards and regulations imposed by 

the government on motor vehicle transportation to reduce vehicle emissions. The second section 

categorizes the factors affecting emissions levels. The third section demonstrates the hazards of 

vehicle exhaust pollutants, which this research effort intends to reduce. The fourth section reviews 

the current state-of-the-art and state-of-practice fuel consumption and emission models. The 

literature examines the applicability of these models and their limitations in estimating fuel and 

emission rates. The chapter provides the background of fuel consumption and emission modeling 

to the significance of the proposed model. 

2.1 EMISSION STANDARDS AND REGULATIONS 

The first state to implement the statewide pollution control act was California.  In 1947, the 

California Air Pollution Control Act (CAPCA) was created to reduce air pollution. Public concern 

toward air pollution had increased, and the US government decided to act regarding this concern. 

Therefore, the first federal legislation regarding air pollution in 1955 was the Air Pollution Control 

Act of 1955 (APCA). All following clean air legislation and other acts evolved from the 1955 Act, 

which provided funds and technical assistance in air pollution control research (Forswall & 

Higgins, 2005). 

The Clean Air Act (CAA) of 1963 was signed to fund research efforts by state and local 

governments to decrease air pollution problems. The Act also recognized the impact of motor 

vehicle exhaust and encouraged the development of emissions standards, as well as standards for 

stationary sources. There were several amendments to the Act in the following years until 1970. 

This year witnessed the first major legislation to confront the hazards of air pollution on public 

health. CAA in 1970 initiated four regulatory programs: National Ambient Air Quality Standards 

(NAAQS), New Source Performance Standards (NSPS), State Implementation Plans (SIPs), and 

National Emission Standards for hazardous Air Pollutants (NESHAPs). The Environmental 

Protection Agency (EPA) was founded in 1971 to implement the CAA (Forswall & Higgins, 

2005). 

The EPA set NAAQS for six pollutants to protect the public health and welfare. These six 

pollutants, known as criteria pollutants, are ozone (O3), particulate matter (PM), carbon monoxide 

(CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), and lead (Pb). This 1970 amendment was 

intended to achieve clean air by setting standards to be accomplished in 1975. These standards 

were 3.4 grams per mile of CO and 0.41 grams per mile of HC (EPA, 1994a). However, these 

standards were not achieved and were thus postponed by the government to be reached in 1980 for 

HC standard and CO standard was achieved in 1981 according to Clean Air Act of 1977.  

The Clean Air Act Amendments of 1990 (CAAA) revolutionized air regulations across the 

country. Congress executed these amendments to reduce HC, CO, NOx, and particulate emissions. 

The amendments consisted of mobile source provisions including tighter tailpipe standards, more 

stringent emission testing procedures, expanded inspection and maintenance (I/M) programs; new 

vehicle technologies and clean fuels programs, and transportation management provisions (EPA, 

1994b). 

The CAAA in 1990 defined the geographic areas in the US that did not comply with NAAQS 

criteria and were classified as nonattainment areas. The severity of air quality conditions compared 

https://www3.epa.gov/otaq/consumer/milestones.htm
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to NAAQS were classified into marginal, moderate, serious, severe and extreme. The 

nonattainment areas had to take certain actions within a set time frame to attain NAAQS.  

Areas of moderate or worse ozone classifications were required to submit revisions via State 

Implementation Plans (SIPs). The ozone needed to be reduced by at least 15 percent, with these 

areas achieving a 3 percent reduction every year until they reached the required level. In addition, 

severe and extreme areas had to adopt transportation control measures (TCMs). TCMs aim to 

decrease motor travel, which will consequently reduce vehicle emissions (NRC, 1995). 

The SIP has to be approved by the EPA to be included in the Code of Federal Regulations (Title 

40, Part 52) and become federally enforceable. Failure to submit SIP to meet the requirements 

could result in sanctions, such as withholding federal highway funding. Furthermore, the 

department of transportation (DOT) could only approve single-vehicle trips (NRC, 1995). 

2.2 FACTORS AFFECTING EMISSION LEVELS 

The emission levels produced by motor vehicles are affected by several factors grouped (NRC, 

1995) under four main categories: travel-related factors, driver behavior, highway network 

characteristics, and vehicle characteristics.  

Travel-related factors 

The distance traveled by the vehicle is directly related to the emitted pollutants. Emissions vary, 

depending on the trip, according to vehicle operating modes (exhaust emissions and evaporative 

emissions). Also, emissions are a function of speed, acceleration and engine load of the vehicle. 

Emission rates are highest in low-speed, congested driving conditions. Emissions fall in 

intermediate-speed, low density traffic conditions. Then, they rise again at higher speeds but do 

not reach the initial levels. However, NOx emissions do not follow the same trend, as they rise at 

relatively low speeds and reach the highest levels at high speeds. 

Driving behavior 

Driving behavior has a significant impact on emissions. Driving at sharp accelerations for passing 

or changing lanes or other similar scenarios imposes heavy loads on the engine that result in high 

emission rates. Emissions produced from vehicle accelerations are due to power enrichment, which 

is an engine operating strategy. 

Highway related factors 

The geometric design is another main factor that has a direct influence on emission levels. Physical 

characteristics of highways, such as signalized intersections, freeway ramps, weaving sections, 

rough pavement and other facilities that require engine enrichment from accelerations, increase 

emission rates. 

Vehicle-related and other factors 

Vehicle characteristics, including weight, engine size, horse power and age, have an effect on 

emissions. Small engine sizes emit less pollutants than large engine sizes grouped (NRC, 1995). 

Also, older vehicles emit more pollutants than newer vehicles. 

Moreover, temperature is another parameter that affects vehicle conditions and which will result 

in a variance of emission levels. At cold temperatures, the engine takes longer to warm up, which 

http://www.nap.edu/read/9676/chapter/1
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will increase cold-start emissions. On the other hand, when the temperature increases, evaporative 

emissions increase. 

2.3 POLLUTANTS 

Exhaust emissions threaten the environment and deteriorate human health. Studying and 

recognizing these emission levels will be essential to sustain the planning and management of 

transportaion projects and the environment. The three main pollutants emitted from motor vehicles 

are carbon monoxide, hydrocarbons and oxides of nitrogen. 

Carbon monoxide is a colorless and odorless gas. It is produced by the incomplete combustion of 

fuel. Carbon monoxide reduces the oxygen carried in the blood because it combines with 

hemoglobin, resulting in carboxyhemoglobin. In addition, it causes headaches and fatigue (Wark 

et al. 1998).  

Hydrocarbons also result from the incomplete combustion of fuel. It reacts with oxides of nitrogen 

in the presence of sunlight to form the ozone, which has adverse effects on human health. 

Hydrocarbons cause respiratory irritation due to lung tissue damage and eye irritation. 

Furthermore, cancer may be caused by exposure to hydrocarbons (Wark et al. 1998).  

Oxides of nitrogen are formed by high temperature chemical processes during the combustion 

process. As mentioned previously, they react with hydrocarbons to form the ozone. This has a 

hazardous effect on the respiratory system and forms acid rain (Wark et al. 1998). 

The air/fuel (A/F) ratio is the main factor affecting the efficiency of catalytic converters and, 

consequently, the level of emissions (Johnson, 1988). CO and HC are highest under fuel-rich 

conditions, and NOx is highest under fuel-lean conditions. 

2.4 MICROSCOPIC EMISSION MODELING 

Microscopic fuel consumption models and emission models have been widely used to estimate 

instantaneous fuel consumption and emission rates to study the impact of traffic on the 

environment. This section categorizes the microscopic models into regression-based models, 

power (load)-based models, emission maps and MOVES to demonstrate their applicability and 

shortcomings. 

2.4.1 Regression-based Models 

VT-Micro 

VT-Micro is a regression based model that mainly depends on the instantaneous velocity and 

acceleration of the vehicle. Rakha et al. developed the model in 2004 based on polynomial 

combinations of linear, quadratic and cubic terms of acceleration and speed that were collected at 

the Oak Ridge National Laboratory (ORNL). The fuel consumption and emission models were 

developed using data that were collected on a chassis dynamometer at ORNL, data gathered by 

the Environmental Protection Agency (EPA). The ORNL data consisted of nine normal emitting 

vehicles, including six light-duty automobiles and three light-duty trucks, which resulted in a third-

order polynomial regression instantaneous model. Emission rates were estimated at high accuracy 

with a good fit (R2 in excess of 0.92 for all measures of effectiveness (MOE)). Vehicle speeds 

ranged from 0-121 km/h (0 to 110 ft/s) at increments of 1 km/h, and vehicle acceleration 
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measurements ranged from -1.5 to 3.7 m/s2 (-5 to 12 ft/s2) at increments of 0.3 m/s2 (Rakha et al., 

2004). 

The model is expressed mathematically as (Rakha et al., 2004): 

 

𝑀𝑂𝐸𝑒 = { 𝑒∑ ∑ (𝐿𝑖𝑗
𝑒3

𝑗=0 ×3
𝑖=0 𝑢𝑖×𝑎𝑗)   𝑓𝑜𝑟  𝑎≥0

𝑒∑ ∑ (𝑀𝑖𝑗
𝑒3

𝑗=0 ×3
𝑖=0 𝑢𝑖×𝑎𝑗)    𝑓𝑜𝑟  𝑎<0 

                                                                              (2-1) 

Where, 

𝑀𝑂𝐸𝑒: Instantaneous fuel consumption or emission rate (CO or HC or NOx) (l/s or mg/s) at e 

𝐿𝑖𝑗
𝑒 : Model regression coefficient for MOE"e" at speed power"i" and acceleration power "j" for 

positive accelerations 

𝑀𝑖𝑗
𝑒 : Model regression coefficient for MOE "e" at speed power "i" and acceleration power "j" for 

negative accelerations. 

𝑢: Instantaneous Speed (km/h) 

𝑎: Instantaneous acceleration (m/s2) 

 

The logarithmic transformation has been applied to prevent the estimation of any resulted negative 

values for MOEe. The model evolved into two scenarios, where one accounts for the positive 

values of acceleration when the vehicle exerts power, while the other estimates the emissions and 

fuel consumption for the negative acceleration values when there is no power exerted by the 

vehicle (Rakha et al., 2004).   

On the other hand, the models require the calibration of 32 coefficients, including the intercepts, 

which may overfit the data and be misleading in the results. Moreover, VT-Micro may 

underestimate the resulted emissions from a malfunctioning engine since it is not capable of 

considering the vehicle operating conditions.  

POLY 

Similarly, POLY is another regression model that categorized vehicles into 41 classes. The model 

accounts for instantaneous speed and acceleration and historical values for speed and acceleration 

(Teng et al., 2002).  

                          (2-2) 

Where e accounts for the emission rate for species i, which depends on vehicle category c and time 

t. v(t)  is the speed at time  t. T'(t) and T''(t) are the corresponding acceleration and deceleration 

times since their inception up to the current time t. A(t) and A(t-9) are combined acceleration or 

deceleration at time t and t−(1,...9), which indicates the emitter type. W(t)  is the product of  v(t)  

and A(t). β is the parameter calibrated for each vehicle category c (Teng et al., 2002).  

Nevertheless, the models indicate that acceleration and deceleration of previous time periods have 

more impact on emissions than the current time does (Teng et al., 2002). Also, the model requires 

a large number of explanatory variables, which indicates overfitting with the data.  
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2.4.2 Power based Models 

CMEM 

CMEM (Comprehensive Modal Emissions Model) is a power-based model that was developed at 

the University of California at Riverside and the University of Michigan by using the National 

Cooperative Highway Research Program (NCHRP) vehicle emissions database (Barth et al., 

2000). The database consists of the chassis dynamometer of second-by-second speed, and engine-

out and tailpipe emission rates data which were collected from 300 automobiles and light trucks 

in 26 vehicle categories. They were tested with three driving cycles: FTP, US06 and Modal 

Emission Cycle (MEC) (Barth et al., 2000). The second-by-second tailpipe emissions are estimated 

as the product of fuel rate (FR), engine-out emission index (gemission/gfuel), and catalyst pass fraction 

(CPF),according to the following equation (Barth et al., 2000): 

𝑇𝑎𝑖𝑙𝑝𝑖𝑝𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝐹𝑅 × (
𝑔𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛

𝑔𝑓𝑢𝑒𝑙
) × 𝐶𝑃𝐹                                                                     (2-3) 

Where, FR is the fuel rate (g/s) which evolves from the power demand, engine speed and air/fuel 

equivalence ratio. The engine-out emission index (gemission/gfuel) is engine out emissions divided by 

fuel consumption. CPF is the catalyst pass fraction, which is the ratio of tailpipe to engine-out 

emissions. 

The CMEM model is based on a parameterized physical approach that is related to the physical 

conditions of vehicle operation and emission productions. It is composed of six modules, which 

are engine power, engine speed, air/fuel ratio, fuel use, engine-out emissions, and catalyst pass 

fraction. The model estimates emission rates under different vehicle operating conditions 

(stoichiometric, cold-start, enrichment, and enleanment conditions) (Barth et al., 2000). 

Engine power is expressed as: 

𝑃𝑡𝑟𝑎𝑐𝑡 = 𝐴. 𝑣 + 𝐵. 𝑣2 + 𝐶. 𝑣3 + 𝑀. 𝑎. 𝑣 + 𝑀. 𝑔. 𝑣. 𝑠𝑖𝑛𝜃                                                           (2-4) 

Where, 

𝑃𝑡𝑟𝑎𝑐𝑡: Total tractive power (kW), 

𝑣: Vehicle speed (m/s), 

𝑎: Vehicle acceleration (m/s2), 

𝐴: Rolling resistance coefficient (kW/m/s), 

𝐵: Speed correction to rolling resistance coefficient (kW/(m/s)2), 

𝐶: Air drag resistance coefficient (kW/(m/s)3), 

𝑀: Vehicle mass (kg), 

𝑔: Gravitational constant (9.81 m/s2), 

𝜃: road grade (degrees). 
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The fuel rate is estimated by CMEM as expressed in Equation (2-5): 

 

𝐹𝑅 = (𝐾. 𝑁. 𝑉 +
𝑃

𝜂
)

1

43.2
. [1 + 𝑏1. (𝑁 − 𝑁0)2]                                                                (2-5) 

 

Where, 𝐹𝑅 is the fuel use rate (g/s), 𝑃 is the engine power output (kW), 𝐾 is the engine friction 

factor, 𝑁 is the engine Speed (revolutions per second),𝑉 is the engine displacement (L), 𝜂 is 

measure of indicated efficiency for diesel engines (0.45), 𝑏1 is 10-4, 𝑁0is a constant related to 

engine displacement and 43.2 kJ/g is the lower heating value of typical diesel fuel. 

𝐸𝑂𝑖 = 𝑎. 𝐹𝑅 + 𝑟                                                                                                                          (2-6) 

𝐸𝑂𝑖: Engine-out emission species of CO, HC and NOx, 

𝑎 𝑎𝑛𝑑 𝑟: Equation coefficients, 

𝐹𝑅: fuel use rate (g/s). 

However, the physical approach of the model increases the complexity and may not be simple. In 

addition, the model is data intensive, which requires physical variables to be collected and/or 

measured. Also, the data is not publicly available, which increases the difficulty to incorporate the 

data from many sources and requires recalibration for each data set (Scora and Barth, 2006). 

Moreover, CMEM may produce a bang-bang type control system, which occurs because the partial 

derivative of the fuel consumption rate with respect to the engine torque is not a function of torque 

(Saerens et al., 2010). The bang-bang control system involves accelerating at full throttle to reduce 

acceleration time and deceleration using full braking to achieve the optimum fuel economy control, 

which is obviously incorrect, since it requires aggressive driving, in order to minimize fuel 

consumption rates (Rakha et al., 2011). Furthermore, as long as the same amount of power is 

applied, CMEM will estimate the same emission levels regardless of whether the vehicle is at a 

high or low speed, or driving on a flat or steep road, respectively. 

EMIT 

Additionally, EMIT has been developed based on CMEM but developed in simplified concepts 

for light-duty vehicles. The model integrates two emissions modelling approaches (regression-

based and load-based) which incorporates their main advantages. The model captures a satisfactory 

and reliable estimation level for carbon monoxide and nitrogen oxides but not as high as fuel and 

carbon dioxide. However, the results for hydrocarbons reached non-desirable levels (Cappiello, 

2002). 

The model is divided into two parts: engine-out (EO) and tailpipe emission (TP) modules for gas 

species i. The first module estimates the engine-out emissions based on instantaneous speed (v) 

and acceleration (a), which is expressed as follows (Cappiello et al., 2002): 

 

𝐸𝑂𝑖 = {
𝛼𝑖 + 𝛽𝑖𝑣 + 𝛾𝑖𝑣 + 𝛿𝑣 + ζ𝑖𝑎𝑣              𝑖𝑓 𝑃𝑡𝑟𝑎𝑐𝑡 > 0

𝛼𝑖
′                                                                         𝑖𝑓 𝑃𝑡𝑟𝑎𝑐𝑡 = 0              

                                 (2-7)                                         
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Where αi,  βi, γi, δi and ζi are the model coefficients and Ptract is the tractive power. Where, the 

tractive power is calculate by Equation (2-4). 

Then, EO is used to estimate tailpipe emissions in the second module and multiplied by CPFi which 

is the catalyst pass fraction of gas species i to produce TP, which is expressed as: 

𝑇𝑃𝑖 = 𝐸𝑂𝑖 . 𝐶𝑃𝐹𝑖                                                                                                                          (2-8) 

 

The model should take into consideration other vehicle categories, which means that other 

databases should be used for model calibration. The model does not represent historical effects, 

such as cold-start emissions and hydrocarbon enleanment puffs (Cappiello, 2002). 

Virginia Tech Comprehensive Power-based Fuel consumption Model (VT-CPFM) 

 

VT-CPFM is a power-based model that overcomes the limitations of state-of-the-practice models.  

Namely, they produce a bang-bang control system and cannot be calibrated using publicly 

available data. VT-CPFM satisfies the requirements of the predictive eco-cruise control systems. 

The power at instant t is developed: 

 

𝑃(𝑡) = (
𝑅(𝑡)+1.04 𝑚𝑎(𝑡)

3600𝜂𝑑
) 𝑣(𝑡)                                                                                                     (2-9) 

 

Here P(t) is the power exerted by the vehicle driveline (kW) at time t, R(t) is the resistance force 

(N) at time t, m is the vehicle mass(kg), a(t) is the vehicle acceleration (m/s2) at time t, v(t) is the 

vehicle speed (km/h) at time t, and ηd is the driveline efficiency. 

The resistance force is computed through combining aerodynamic, rolling, and grade 

resistance forces using the following formula: 

 

𝑅(𝑡) =  
𝜌

25.92
 𝐶𝐷𝐶ℎ𝐴𝑓𝑣(𝑡)2 + 9.8066 𝑚 

𝐶𝑟

1000
(𝑐1𝑣(𝑡) + 𝑐2) + 9.8066𝑚𝐺(𝑡)           (2-10)  

 

Where 𝜌 is the density of air at sea level at temperature 15oC (59oF) (equal to 1.2256 kg/m3), 𝐶𝐷 

is the vehicle drag coefficient (unitless); 𝐶ℎ is a correction factor for altitude (unitless) and 

calculated as 1-0.085 H where H is the altitude (km);  𝐴𝑓 is the vehicle frontal area (m2); and 𝐶𝑟 , 

𝑐1 and 𝑐2 are rolling resistance parameters that depend on the road surface type, road condition 

and vehicle tire type.  

The VT-CPFM framework is a dual regime model to estimate instantaneous fuel, whether power 

is greater or equal to zero or at negative power. The structure of the model is expressed as: 

𝐹𝐶(𝑡) = {
𝛼0 + 𝛼1𝑃(𝑡) + 𝛼2𝑃(𝑡)2     ∀ 𝑃(𝑡) ≥ 0

 𝛼0                                             ∀ 𝑃(𝑡) < 0 
                                                            (2-11) 

Where FC (t) is the instantaneous estimated fuel consumption (l/s), and 𝛼0, 𝛼1 and 𝛼2 are the 

calibrated coefficients for each specific vehicle. 

PΔP 

The PΔP is one of the most recently developed models. The model utilizes engine power and 

change in engine power as the main model variables as shown in equation (2-12) expressed by 
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(Smit, 2013). The model estimates second-by-second fuel consumption, CO2 and NOx (Smit, 

2013).  

𝑒𝑡 = {
𝛼                                                                                                                        𝑓𝑜𝑟  𝑣𝑡 = 0

𝛽0 + 𝛽1𝑃𝑡 + 𝛽2∆𝑃𝑡 + 𝛽3𝑃𝑡
2 + 𝛽4∆𝑃𝑡

2 + 𝛽5𝑃𝑡∆𝑃𝑡 + 𝜀                         𝑓𝑜𝑟  𝑣𝑡 > 0
                    (2-12) 

where et is the emission or fuel rate at time t, α is the emission rate at idle, β0, β1, β2, β3, β4, β5 are 

the model coefficients, ε is the error term, Pt is the engine power at time t, and ∆Pt is the change in 

engine power at time t. 

The performance of the model was evaluated by Smit through calculating the average coefficient 

of determination for NOx and CO2/fuel which had R2 values of 0.65 and 0.93, respectively. 

However, the model only predicts NOx neglecting the other emissions (HC and CO). The hazards 

and adverse effects of HC and CO will not be evaluated due to the estimation of NOx only. 

2.4.3 Emission maps 

Emission maps are look-up tables in the form of matrices. They consist of one dimension for speed 

ranges and another dimension representing acceleration or power values. For each emission 

species and vehicle category, instantaneous emission values are assigned to one cell of the matrix 

according to the corresponding instantaneous speed and acceleration. Emission maps have been 

used widely due to their simplicity (Cappiello, 2002). 

MODEM 

The MODEM microscopic emission database was developed as a part of the European 

Comission`s Drive II research program (Jost et al., 1992). The database is derived from testing 150 

vehicles on 14 driving cycles based on different operating conditions in urban areas across Europe. 

The speed ranges were 0-90 km/h, and the product of vehicle and acceleration ranges between -15 

and +15 (m2/s3). 

On the other hand, the reliability of the models is affected by the sensitivity of the used driving 

cycles, which would lead to non-desirable results. Also, these maps are usually not flexible enough 

to incorporate factors such as road grade, accessory use, or historical effects (Cappiello, 2002). 

 

2.4.4 MOVES 

In 2010, the U.S. Environmental Protection Agency (EPA) released the MOtor Vehicle Emissions 

Simulator (MOVES) as its official automobile emissions model (Koupal et al., 2003). The 

MOVES model estimates vehicle emissions for mobile sources, covers a broad range of pollutants, 

and allows multiple scale analysis, including project levels. The latest version of MOVES is 

MOVES2014, which includes the benefits of the Tier 3 rule and NONROAD2008 model, which 

can estimate both on-road and non-road mobile sources within the MOVES platform. The 

framework of MOVES is established through four main functions, consisting of an activity 

generator, a source bin distribution generator, an operating mode distribution generator, and an 

emissions calculator. These steps are formulated mathematically by (EPA, 2012) as: 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑈𝑠𝑒𝑇𝑦𝑝𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑈𝑠𝑒𝑇𝑦𝑝𝑒 ×

∑ 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝑈𝑠𝑒𝑇𝑦𝑝𝑒,𝐵𝑖𝑛 × 𝐵𝑖𝑛𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑟𝑈𝑠𝑒𝑇𝑦𝑝𝑒,𝐵𝑖𝑛
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑠
𝑛=1   (2-13) 
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However, MOVES requires intensive data regarding the geometry of the road and the vehicle 

parameters which increases its complexity and make it not simple to be used. In addition, running 

the project level feature of MOVES is too slow for real-time emission modeling. Moreover, it 

requires an extensive database which needs time and money (Ahn et al., 2015). 

2.5 SUMMARY 

Microscopic Emission Models proved to be significant methods to evaluate the transportation 

operational-level projects’ impact on the environment, which would achieve sustainable 

development within society. Some of the emission models are similar in concept, like POLY and 

VT-Micro, and others have evolved from each other, such as CMEM and EMIT. Also, as vehicle 

technology improves, the models could improve and diminish their shortcomings. However, all 

the models had both limitations and advantages, which would allow the user to choose among 

them regarding the compromises between the models and the availability of explanatory variables. 
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ABSTRACT 

 

The Virginia Tech Comprehensive Power-based Fuel consumption Model (VT-CPFM) was 

designed with the intent of overcoming the limitations of state-of-the-practice models, which 

produce a bang-bang control system and cannot be calibrated using publicly available data. This 

paper extends the VT-CPFM to estimate vehicle emissions of hydrocarbons (HC), carbon 

monoxide (CO), and oxides of nitrogen (NOx) using the estimated fuel consumption level as the 

sole explanatory variable. A cross validation method was implemented through calibration of the 

model for nine vehicles, including three light duty trucks and six light duty cars. The quality of fit 

for the HC and CO emissions was very good, with a coefficient of determination exceeding 0.92 

on average for both emissions; however, the quality of fit for NOx emissions was lower, with a 

coefficient of determination of 0.80 on average. The proposed emission model produces 

approximately similar estimates compared to the VT-Micro model, but offers a simplified model, 

with a reduction in 32 required parameters for the former down to four for the latter. In addition, 

the model’s parameters can be easily calibrated from publicly available data (e.g., speed and 

acceleration levels can be measured using non-engine instrumentation such as a global positioning 

system) and do not require any engine data to be collected by special devices. The simplicity of 

this newly designed model will save time and money. 
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3.1 INTRODUCTION 

Air pollution is one of the biggest environmental challenges in the United States and is considered 

a major environmental threat. The transportation sector is a key player in this area as a result of 

the increase of cars on the road due to population growth and the correlated increase in car 

ownership. Specifically, transportation accounts for 67% of the total U.S. petroleum use, and, 

light-duty vehicles (LDVs) consume 59% of the U.S.’s transportation energy (Davis et al., 2014). 

Though the figures in for the U.S. are notable, obviously the problem is also global, since 

transportation plays a significant role all over the world. The incomplete combustion of fuel from 

the transportation sector accounts for 70% to 90% of the total carbon monoxide (CO) emissions 

and results in 40% to 50% of total emissions of hydrocarbons (HC). In addition, of all oxides of 

nitrogen (NOx) emissions, which are also a by-product of combustion, 45% to 50% are produced 

by the transportation sector (Rodrigue et al., 2013).  

The Virginia Tech Transportation Institute (VTTI) designed the VT-CPFM as an instantaneous 

power based-model to estimate fuel consumption on the microscopic level (Rakha et al., 2011). 

VT-CPFM satisfies the requirements of predictive eco-cruise control systems, as it overcomes two 

major flaws of existing models—use of a bang-bang control system, and an inability to use publicly 

available data for calibration. Since it does not produce bang-bang control system which occurs 

because the partial derivative of the fuel consumption rate with respect to the engine torque is not 

a function of torque (Saerens et al., 2010). The bang-bang control system indicates that upon 

accelerating at full throttle to reduce acceleration time and deceleration using full braking will 

achieve the optimum fuel economy control. Which is obviously incorrect, since it requires 

aggressive driving, in-order to minimize fuel consumption rates (Rakha et al., 2011). Also, the 

VT-CPFM can be simply calibrated through use of accessible public data from vehicle 

manufacturers, unlike existing models (Rakha et al., 2011).  

Although the VT-CPFM is capable of estimating vehicle fuel consumption levels accurately, prior 

to this study, it had not been used to estimate vehicle emissions, which is a critical part of studying 

climate change and environmental impacts of transportation systems. The estimation of emissions 

using this model could be of a higher level of accuracy compared to other state-of-the-practice 

models given the advantages of the VT-CPFM mentioned earlier. As such, this paper extends the 

VT-CPFM to model vehicle emissions of hydrocarbons (HC), carbon monoxide (CO) and oxides 

of nitrogen (NOx). The developed model uses the VT-CPFM to estimate fuel rates and then uses 

those findings to estimates the resulting vehicle emissions.  

This paper consists of five sections. The first section is a brief introduction to the project described 

herein. Section two describes the previously used models along with the VT-CPFM model, which 

overcomes previous shortcomings and was utilized to develop the proposed modeling approach. 

The third section describes the data used in constructing the proposed models and highlights how 

the proposed models were developed and why they were chosen from among other models. The 

fourth section demonstrates the results of estimated emissions along with validation results. This 

fourth section also compares the Virginia Tech microscopic energy and emission (VT-Micro) 

model for estimating emissions with the proposed approach in order to further validate and support 

the proposed method and to explore the differences between the two models. Finally, a summary 

of the paper’s findings and the paper’s conclusions are presented in the fifth section. 
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3.2 BACKGROUND 

The proposed emission model described in this paper evolved from the VT-CPFM model, which 

estimates fuel consumption based on power, and overcomes two main deficiencies of current 

models: the use of bang-bang control and the inability to use public data for calibration (Rakha et 

al., 2011). The VT-CPFM estimates fuel consumption level depends on instantaneous power, 

which is based on the public data for the road and the vehicle to be calibrated. Although the model 

has been proven to predict accurate fuel level estimates, it has not previously been used to predict 

vehicle emissions. 

The VT-Micro model was developed as a statistical model from experimentation using numerous 

polynomial combinations of speed and acceleration levels to construct a dual-regime model as 

expressed by equation (3-1) in (Rakha et al., 2004). These fuel consumption and emission models 

were developed using data that were collected on a chassis dynamometer at the Oak Ridge National 

Laboratory (ORNL), data gathered by the Environmental Protection Agency (EPA), and data 

gathered using an onboard emission measurement device (OBD). These data included fuel 

consumption and emission rate measurements (CO, HC, and NOx) as a function of the vehicle’s 

instantaneous speed and acceleration levels. The VT-Micro fuel consumption and emission rates 

were found to be highly accurate compared with the ORNL data, with coefficients of determination 

(R2) ranging from 0.92 to 0.99 (Rakha et al., 2004). 

𝑀𝑂𝐸𝑒 { 𝑒∑ ∑ (𝐿𝑖𝑗
𝑒3

𝑗=0 ×3
𝑖=0 𝑢𝑖×𝑎𝑗)   𝑓𝑜𝑟  𝑎≥0

𝑒∑ ∑ (𝑀𝑖𝑗
𝑒3

𝑗=0 ×3
𝑖=0 𝑢𝑖×𝑎𝑗)    𝑓𝑜𝑟  𝑎<0 

                                                                                 (3-1) 

 

𝑀𝑂𝐸𝑒: Measure of effectiveness for nstantaneous fuel consumption or emission rate (CO 

or HC or NOx) (l/s or mg/s) 

𝐿𝑖𝑗
𝑒 : Model regression coefficient for MOE "e" at speed power "i" and acceleration power 

"j" for positive accelerations 

𝑀𝑖𝑗
𝑒 : Model regression coefficient for MOE "e" at speed power "i" and acceleration power 

"j" for negative  

𝑢: Instantaneous Speed (km/h) 

𝑎: Instantaneous acceleration (m/s2) 

 

Despite these capabilities, the VT-Micro requires the calibration of 32 coefficients, including the 

intercepts, which may overfit the data and be misleading in the results. Also, VT-Micro may 

underestimate the resulting emissions from a malfunctioning engine since it is not capable of 

considering a vehicle’s operating conditions.  

The Comprehensive Modal Emission Model (CMEM) is a power-demand based emission model 

that was developed at the University of California, Riverside. CMEM estimates the emissions of 

Light Duty Vehicles (LDVs) and Light Duty Trucks (LDTs) based on the vehicle’s operating 

mode. Chassis dynamometer data were used to develop the model by measuring instantaneous 

engine out and tailpipe emissions for more than 300 vehicles (automobiles and light trucks) that 

were tested on three driving cycles: FTP, US06 and Modal Emission Cycle (MEC) (Barth et al., 

2000). The CMEM model is based on a parameterized physical approach that is related to the 

physical conditions of vehicle operation and emission productions. It is composed of six modules: 

engine power, engine speed, air/fuel ratio, fuel use, engine-out emissions, and catalyst pass fraction 
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(Barth et al., 2000). Inputs to the model are related to the vehicle and operation variables of the 

environment, including, for instance, the vehicle speed, acceleration and grade that should be 

entered at a second-by-second level (Barth et al., 2000).  

The drawback of this model’s physical approach is its increased complexity. In addition, the model 

is data intensive, which means that physical variables must be collected and/or measured. Also, 

the data is not publicly available, which increases the difficulty of incorporating the data from 

many sources and requires recalibration for each data set (Scora et al., 2006). Moreover, CMEM 

may produce a bang-bang type control system. 

In 2010, the U.S. Environmental Protection Agency (EPA) released the Motor Vehicle Emissions 

Simulator (MOVES) as its official automobile emission model (Koupal et al., 2003). The MOVES 

model estimates vehicle emissions for mobile sources, covers a broad range of pollutants, and 

allows multiple scale analysis, including project levels. The latest version of MOVES is 

MOVES2014 which includes the benefits of the Tier 3 rule and the NONROAD2008 model, which 

can estimate both on-road and non-road mobile sources within the MOVES platform. The 

framework of MOVES is established through four main functions consisting of an activity 

generator, a source bin distribution generator, an operating mode distribution generator, and an 

emissions calculator. These steps are formulated mathematically by (EPA, 2012) in equation (3-

2) as: 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑈𝑠𝑒𝑇𝑦𝑝𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑈𝑠𝑒𝑇𝑦𝑝𝑒 ×

∑ 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝑈𝑠𝑒𝑇𝑦𝑝𝑒,𝐵𝑖𝑛 × 𝐵𝑖𝑛𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑟𝑈𝑠𝑒𝑇𝑦𝑝𝑒,𝐵𝑖𝑛
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑠
𝑛=1     (3-2) 

However, technical difficulties prevent MOVES from generating a result that provides second-by-

second energy and emission rates for all individual vehicles within large transportation networks, 

and running the project level feature of MOVES is too slow for real-time emission modeling. 

Moreover, it requires an extensive database to run (Ahn et al., 2015). 

VT-CPFM is a microscopic fuel consumption model based on instantaneous vehicle power, which 

Rakha et al. developed to overcome the major defect for most of the models, which is the bang-

bang control through quadratic function of power. Also, the model uses publicly available data for 

calibration, eliminating the need for extensive data collection (Rakha et al., 2011). 

The power at instant t is developed by (Wong, 2001) in equation (3-3): 

 

𝑃(𝑡) = (
𝑅(𝑡)+1.04 𝑚𝑎(𝑡)

3600𝜂𝑑
) 𝑣(𝑡)                                                                                                    (3-3) 

 

Here P(t) is the power exerted by the vehicle driveline (kW) at time t, R(t) is the resistance force 

(N) at time t, m is the vehicle mass(kg), a(t) is the vehicle acceleration (m/s2) at time t, v(t) is the 

vehicle speed (km/h) at time t and ηd is the driveline efficiency. 

The resistance force is computed through combining aerodynamic, rolling, and grade resistance 

forces using equation (3-4): 

𝑅(𝑡) =  
𝜌

25.92
 𝐶𝐷𝐶ℎ𝐴𝑓𝑣(𝑡)2 + 9.8066 𝑚 

𝐶𝑟

1000
(𝑐1𝑣(𝑡) + 𝑐2) + 9.8066𝑚𝐺(𝑡)            (3-4) 
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Where 𝜌 is the density of air at sea level at temperature 15oC (59oF) (equal to 1.2256 kg/m3); 𝐶𝐷 

is the vehicle drag coefficient (unitless); 𝐶ℎ is a correction factor for altitude (unitless) and 

calculated as 1-0.085 H where H is the altitude (km); 𝐴𝑓 is the vehicle frontal area (m2); and 𝐶𝑟 , 

𝑐1 and 𝑐2 are rolling resistance parameters that depend on the road surface type, road condition, 

and vehicle tire type.  

The VT-CPFM framework is a dual regime model to estimate instantaneous fuel whether power 

is greater or equal to zero or at negative power. The structure of the model is formulated by (Rakha 

et al., 2011) as expressed in equation (3-5): 

𝐹𝐶(𝑡) = {
𝛼0 + 𝛼1𝑃(𝑡) + 𝛼2𝑃(𝑡)2     ∀ 𝑃(𝑡) ≥ 0

 𝛼0                                             ∀ 𝑃(𝑡) < 0 
                                                              (3-5) 

Where FC (t) is the instantaneous estimated fuel consumption (l/s) and 𝛼0, 𝛼1 and 𝛼2 are the 

calibrated coefficients for each specific vehicle. 

3.3 MATERIAL AND METHODS 

3.3.1 Data 

The emission models were generated from the regression analysis of data from nine normally 

emitting vehicles. Data were collected at Oak Ridge National Laboratory (ORNL) from six LDVs 

and three LDTs. Table 3-1 represents these vehicles in terms of engine displacement, vehicle curb 

weight, and vehicle type (West et al., 1997). In addition, the average engine size was 3.1 L, the 

average number of cylinders was 5.6, and the average curb weight was 3,219 lbs. (1,460 kg) (West 

et al., 1997). 

The data were gathered from the tested vehicles driven in the field in two opposite directions on 

the same road, in order to verify their maximum operating boundaries and minimize the grade and 

wind effects if they were present. Moreover, the testing was never performed under windy, rainy, 

or snowy conditions (West et al., 1997). 

A chassis dynamometer was used to model the vehicle loadings for the measurement of vehicle 

emission rates for each vehicle in the laboratory within the attainable speed and acceleration range 

of each vehicle (West et al., 1997). The gathered emission data were hydrocarbon (HC), carbon 

monoxide (CO) and oxides of nitrogen (NOx). Data sets of speed, acceleration, emission rates, and 

fuel consumption were generated. 

For each vehicle there were between 1,300 and 1,600 individual measurements, where vehicle 

speeds ranged from 0-121 km/h (0 to 110 ft/s) at increments of 1 km/h, and vehicle acceleration 

measurements ranged from -1.5 to 3.7 m/s2 (-5 to 12 ft/s2) at increments of 0.3 m/s2. Emissions g/s 

(mg/s) and fuel consumption l/s (gal/h) for each acceleration and speed measurement were also 

collected (Ahn, et al., 2002). 
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TABLE 3-1 ORNL Test Vehicle Characteristics 

Year Make/Model 

Engine PFI= Port Fuel 

Injection  TBI= Throttle 

Body Injection 

Transmission M= 

Manual, L= 

Automatic with 

Lockup 

Curb Weight 

kg 

1988 Chevrolet Corsica 2.8 L pushrod V6, PFI M5 1209 

1994 Oldsmobile Cutlass Supreme 3.4 L DOHC V6, PFI L4 1492 

1994 Oldsmobile Eighty Eight 3.8 L pushrod V6, PFI L4 1524 

1995 Geo Prizm 1.6 L OHC 14, PFI L3 1116 

1993 Subaru Legacy 2.2 L DOHC flat 4, PFI L4 1270 

1997 Toyota Celica 1.8 L DOHC 14, PFI L4 1143 

1994 Mercury Villager Van 3.0 L pushrod V6, PFI L4 1823 

1994 Jeep Grand Cherokee 4.0 L pushrod 16, PFI L4 1733 

1994 Chevrolet Silverado 5.7 L pushrod V8, TBI L4 1823 

3.3.2 Proposed Models 

This paper describes an enhanced VT-CPFM model to estimate emission levels produced from 

LDVs. The main emphasis is the development of a reliable and simple emissions estimation model, 

evolved from the VT-CPFM, which uses publicly available data to calibrate parameters and does 

not result in a bang-bang control system.  

A variety of proposed models underwent calibration and validation procedures before we settled 

on the final model. The models varied between linear, quadratic, cubic, logarithm and exponential 

functions. The main intention was to develop a robust model that does not generate negative 

emissions. Accordingly, the broad spectrum of proposed models was quickly narrowed to only 

five model options: linear, Gaussian, squared root, log, and power. 

 

Model 1: Linear  

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝑎. 𝐹(𝑡) 
Model 2: Log  

𝐿𝑜𝑔 (𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑡)) =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝐹(𝑡) + 𝐹(𝑡)2 + 𝐹(𝑡)3 
 

Model 3: Gaussian  

𝐸(𝑡) =  𝑎. 𝑒𝑥𝑝 − (
(𝐹(𝑡) − 𝑏)

𝑐
)

2

  

 

Model 4: Power  

𝐸(𝑡) =  𝑎𝐹(𝑡)𝑏 
 

Model 5: Square Root  

√𝐸(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑎. 𝐹(𝑡) + 𝑏. 𝐹(𝑡)2 + 𝐹(𝑡)3 
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√𝐸(𝑡) =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑣(𝑡) + 𝐹(𝑡) + 𝑣(𝑡). 𝐹(𝑡) + 𝐹(𝑡)2 + 𝐹(𝑡)3 + 𝑣(𝑡). 𝐹(𝑡)2 + 𝑣(𝑡). 𝐹(𝑡)3 

𝑣(𝑡)= speed of the vehicle at time t. 

𝐹(𝑡)= estimated fuel from VT-CPFM model at time t. 

𝐸(𝑡)= CO or HC or NOx at time t. 

𝑎, 𝑏 𝑎𝑛𝑑 𝑐: Model regression coefficients. 

 

The square root model was ultimately chosen as the best option to satisfy the criteria and the main 

objective. The square root model is simple due to the low number of coefficients and the 

straightforward framework. The coefficient of determination was used to test the reliability of the 

model and the estimated emissions were highly correlated with ORNL in-field measurements. 

Moreover, the model did not result in any negative emissions, which ensures its reliability. The 

model also consists of only one scenario to capture various operating conditions by incorporating 

the positive and negative acceleration and power terms, which highlights its simplicity and 

simultaneous ability to maintain the robustness of the model implied by the R2 of each emission.  

Statistical tools, including stepwise regression, were applied to verify the selected parameters in 

the model. Power-based and statistical models were integrated, allowing the model to take 

advantage of the benefits of both. Results showed that VT-CPFM fuel estimates were highly 

significant in calculating the emission levels. Including the speed parameter slightly elevated the 

R2 of the model, albeit only at a barely noticeable rate, ranging between 2–2.5%. The benefit of 

excluding this parameter is that it will allow the model to maintain a greater simplicity and assist 

in future model generalization. Furthermore, including acceleration and speed parameters may 

result in multicollinearity between the independent variables. Similarly, inclusion of other 

parameters may result in a large increase of coefficients, making the model more complex or 

slightly increasing collinearity, resulting in regression overfitting.  

The ORNL data underwent calibration and validation procedures via the k-fold cross validation 

method. The k-fold cross validation method divides the dataset into k subsets. At each iteration, 

one of the k subsets serves as the test set and the rest of the subsets execute the training procedure. 

This method was applied to CO, HC and NOx data for each vehicle where the average coefficients 

and coefficient of determination were calculated. 

The estimated fuel consumption results from VT-CPFM were first tested against the measured fuel 

to find the coefficient of determination. Subsequently, the instantaneous estimated fuel 

consumption result was introduced in each model as the main parameter. 

The resulting slope and R2 for each vehicle were generated from linear regression between 

measured fuel and estimated fuel. All the vehicles had very good fit, with R2 above 0.9 as shown 

in Table 3-2. The predicted emission levels were processed by utilizing the estimated fuel from 

the VT-CPFM model after the calibration for each vehicle. 
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TABLE 3-2 Results of Estimated Fuel from VT-CPFM 

Make/Model Slope R2 

Chevrolet Corsica 1.2 0.95 

Oldsmobile Cutlass Supreme 0.92 0.93 

Oldsmobile Eighty Eight 1.2 0.91 

Geo Prizm 1.4 0.89 

Subaru Legacy 1.3 0.9 

Toyota Celica 1.2 0.95 

Mercury Villager Van 1.29 0.9 

Jeep Grand Cherokee 1.5 0.94 

Chevrolet Silverado 1.6 0.95 

 

3.4 RESULTS 

Figure 3-1 illustrates the significant relationship between fuel consumption and emissions, 

showing that emissions follow the same behavior as fuel consumption. HC and CO emissions have 

a direct relationship with fuel consumption—as fuel consumption increases, emissions increase 

accordingly. This relationship is explained by the fact that HC and CO are the main components 

of gasoline, which consists of approximately 85% carbon and 15% hydrogen by mass. The 

proposed model strongly fits the dataset for CO, HC and NOx relatively. As expected, the highest 

levels of fuel consumption correspond to the highest levels of HC and CO emissions; this is a result 

of fuel enrichment at these high levels. Furthermore, NOx emissions follow a general trend of 

increasing as they move towards a stoichiometric ratio where they reach a peak level then decrease 

afterwards during fuel enrichment. The aforementioned results make it evident that vehicle 

emissions directly relate to fuel consumption levels. Also notable is the significant relation of the 

fitted model to the emissions data. In addition, the model is consistent with CO, HC and NOx since 

it maintains the same structure, using the same number of parameters and coefficients. 
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Figure 3-1 Fitting the Model to Oldsmobile Eighty Eight Emission Data 

 

Regression analysis was implemented on the nine vehicles in the study to investigate the model’s 

performance in estimating emissions. Table 3-3 demonstrates the coefficient of determination (R2) 

for each vehicle’s emissions. The model showed a good fit for CO and HC, both when using the 

speed parameter and when excluding it. NOx also had a relatively good fit for the model both with 

and without the speed parameters (R2=0.802 and 0.828 respectively), as shown in Table 3-4. Table 

3-4 also summarizes the average R2 for CO and HC values, showing that including speed 

parameters (R2 = 0.923 and 0.921 respectively) resulted in a slightly better fit than not using the 

speed parameters (R2= 0.944 and 0.942 respectively). As these results show, there is only a slight 

increase in R2 between the simpler model, which does not use the speed parameter, and the model 

that includes the speed parameter, indicating the negligible effect of speed on the model. Table 3-

5 and Table 3-6 summarize sample model coefficients for estimating CO, HC and NOx rates for 

the Oldsmobile Eighty-Eight. 
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TABLE 3-3 Coefficient of determination according to adding or excluding speed variable 

Make/Model 
Without Speed parameter With Speed parameter 

CO HC NOx CO HC NOx 

Toyota Celica 0.917 0.913 0.538 0.929 0.931 0.591 

Geo Prizm 0.936 0.933 0.886 0.960 0.961 0.890 

Subaru Legacy 0.939 0.939 0.837 0.957 0.960 0.841 

Chevrolet Corsica 0.924 0.904 0.627 0.957 0.935 0.677 

Oldsmobile Eighty Eight 0.950 0.922 0.895 0.958 0.936 0.902 

Oldsmobile Cutlass Supreme 0.941 0.949 0.808 0.956 0.955 0.863 

Mercury Villager Van 0.867 0.878 0.737 0.914 0.916 0.762 

Jeep Grand Cherokee 0.942 0.956 0.930 0.952 0.963 0.951 

Chevrolet Silverado 0.889 0.897 0.962 0.910 0.921 0.973 

 

TABLE 3-4 Regression Model Comparison 

Model CO HC NOx 

With Speed 0.923 0.921 0.802 

Without Speed 0.944 0.942 0.828 

 

The performance of the model was further evaluated by comparing the instantaneous emission 

estimates to in-field measurements to examine their relationship and behavior. Figure 3-2 

illustrates the fitted regression to the scattered data points used to estimate R2. The predicted 

emission levels were highly correlated with the in-field measured data. Moreover, the R2 values 

were approximately the same when the speed parameter was added and when only the fuel 

parameter was used. The two models follow similar trends for each emission, which implies that 

introducing the speed parameter into the model will produce approximately the same emission 

estimates based on fuel consumption.  

 

TABLE 3-5 Sample Coefficients for Oldsmobile Eighty Eight Emissions (with speed 

parameters) 

Old Constant v F v.F F 2 v. F 2 F 3 v.F3 

CO 0.092 0.003 -70.712 -1.888 42790.00 141.752 -1.80E+06 -1727.70 

HC 0.014 0.001 4.008 -0.549 3505.80 74.384 -1.55E+05 -2205.30 

NOx -0.0505 2.20E-04 89.4688 -0.2207 -7661.00 21.5654 1.50E+05 -282.71 

 

TABLE 3-6 Sample Coefficients for Oldsmobile Eighty Eight Emissions (without speed 

parameters) 

Old Constant F F 2 F 3 

CO 0.234 -150.551 45499.00 -1.65E+06 

HC 0.053 -25.599 7430.80 -2.56E+05 

NOx -0.040 80.696 -7237.90 1.77E+05 
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   (a) Model without Speed variable.                                               (b) Model with Speed variable.                                                                                                                                                                     

 
(c) Model without Speed variable.                                               (d) Model with Speed variable. 

 
(e) Model without Speed variable.                                               (f) Model with Speed variable. 

Figure 3-2 Correlation between Measured estimated emission rates (Oldsmobile Eighty Eight) 
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FIGURE 3-3 VT-Micro Vs. VT-CPFM 
 

Moreover, the performance of the model was further evaluated by comparing its estimates to the 

VT-Micro model. Figure 3-3 demonstrates the correlation between a sample of the Oldsmobile 

Eighty-Eight’s instantaneous in-field measurements and estimated emissions from VT-Micro and 

VT-CPFM models. Figure 3-3 shows, the VT-CPFM emission model follows the same trend in 

predicting the emissions. The fitted regression lines for both models reveal the goodness of fit of 

the resulting estimates. VT-CPFM had a better fit for CO compared to VT-Micro for the 

Oldsmobile Eighty-Eight (R2 = 0.945 and 0.82 respectively) as well as better estimates for HC (R2 

= 0.882 and 0.84 respectively). However, VT-Micro estimated NOx with a higher R2 of 0.922 

compared to the VT-CPFM model’s R2 of 0.85. Note, though, that VT-Micro utilizes 32 

coefficients incorporated within two boundary conditions to predict emission levels as compared 

to the VT-CPFM model, which uses only four calibrated coefficients at approximately the same 

level of accuracy. From these results, we can conclude that, overall, VT-CPFM returns good 

regression fit results for HC and CO over NOx, which affirms the applicability of the VT-CPFM 

model to estimate emissions alongside fuel consumption.  
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The performance of the model was further investigated by calculating the mean absolute 

percentage error (MAPE) for the 9 vehicles for 16 driving cycles. Table 3-7 illustrates the error 

in trip emissions across 16 driving cycles for CO, HC and NOx. Specifically, the error did not 

exceed 16.5% for almost the 16 driving cycles. 

 

Table 3-7 Error in Trip Emissions 

Driving Cycle 
Error (%) 

CO HC NOx 

The City Test (LA04) 9.80% 10.35% 10.76% 

Arterial LOS A (ARTA) 6.55% 8.90% 14.44% 

Arterial LOS C (ARTC) 10.28% 10.33% 12.70% 

Arterial LOS E (ARTE) 13.49% 11.35% 15.14% 

Freeway High Speed (FWYSP) 8.57% 8.51% 20.23% 

Freeway LOS A (FWYA) 9.15% 7.48% 16.50% 

Freeway LOS D (FWYD) 7.04% 6.27% 16.46% 

Freeway LOS E (FWYE) 5.17% 6.70% 11.20% 

Freeway LOS F (FWYF) 5.25% 9.54% 9.00% 

Freeway LOS G (FWYG) 13.73% 11.94% 10.26% 

Local (LOCL) 12.26% 10.10% 11.19% 

RAMP 5.17% 2.41% 8.68% 

ST01 6.42% 8.50% 10.95% 

AREA 7.54% 7.35% 11.49% 

LA92 4.23% 4.06% 8.19% 

New York Cycle (NYC) 5.55% 6.61% 15.65% 

Average 8.14% 8.15% 12.68% 

 

3.5 CONCLUSIONS 

This paper discusses the enhancement of the VT-CPFM model to capture CO, HC and NOx 

emissions based on instantaneous fuel estimates as an explanatory variable. The model was applied 

to nine light duty vehicles consisting of three light duty trucks and six light duty cars. Regression 

analysis was implemented to evaluate the performance of the model. HC and CO had very good 

fit with an R2 value exceeding 0.92, and were highly correlated against the in-field measured data. 

The model estimated NOx with a lower accuracy than HC and CO, but still had a relatively good 
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fit at R2 = 0.802. The performance of the model was further validated by comparing its estimation 

results to VT-Micro estimates, with results showing approximately similar fits.  

The proposed model is advantageous in that it can be easily calibrated using publicly available 

data, obviating the need for extensive data use and reducing complexity. Furthermore VT-CPFM 

will be a valuable addition to exiting emissions models as a result of its reliability and simplicity, 

which will save time and money when predicting emissions.  
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ABSTRACT 

Heavy-duty vehicles (HDVs) are the second largest source of greenhouse gas (GHG) emissions 

and energy use within the transportation sector even though they represent only a small portion 

of on-road vehicles. Heavy-duty diesel vehicles (HDDVs) emit around half of on-road nitrogen 

oxide (NOx) emissions. However, due to the limited amount of HDDV emissions data, research 

has focused on light-duty vehicle (LDV) emissions. The majority of these microscopic models 

suffer from two major limitations: they result in a bang-bang control system and the calibration 

of the model parameters is not possible using publicly available data. This paper proposes to 

extend the Virginia Tech Comprehensive Power-Based Fuel consumption Model (VT-CPFM) to 

overcome the two shortcomings in state-of-the-practice HDDV emission models of carbon 

monoxide (CO), hydrocarbons (HCs), and nitrogen oxides (NOx). The University of California 

Riverside heavy-duty diesel truck (HDDT) data were used for the calibration and validation 

processes. The results were satisfying, especially for NOx, which is the main concern in HDDV 

emissions. Model validity and performance were evaluated by comparing the correlation of 

measured field data and estimated emissions between VT-CPFM and the Comprehensive Modal 

Emissions Model (CMEM). The results demonstrate the efficacy of VT-CPFM in replicating 

empirical observations producing better accuracy compared to other state-of-the-practice models 

(e.g. CMEM). Moreover, unlike CMEM, which requires extensive data collection for calibration 

purposes, the VT-CPFM only needs Global Positioning System (GPS) and publically accessible 

data for calibration. 

 

Keywords: Diesel engine, microscopic emission modeling, Virginia Tech Comprehensive Power 

Based Fuel Consumption Model (VT-CPFM) 

  



36 
 

4.1 INTRODUCTION 

In 2011, NHTSA and the EPA jointly declared federal regulations and standards to reduce the fuel 

consumption and greenhouse gas (GHG) emissions of heavy-duty vehicles (HDVs) (The white 

House, 2016). Although HDVs were only 4% of registered vehicles in 2010, they accounted for 

approximately 25% of on-road energy use and GHG emissions (The white House, 2016) and 

approximately 6% of total U.S. GHG emissions (EPA, 2011). More narrowly, heavy duty diesel 

vehicles (HDDVs) produce around 50 percent of on-road NOx emissions (Yanowitz et al., 2000). 

HDVs are the second largest source for GHG emissions and energy use within the transportation 

sector and are expected to exceed the level of emissions from passenger vehicles by 2030 globally 

(EPA, 2015). Moreover, an average passenger car’s original purchase price is similar to the 

lifetime fuel cost for this vehicle, but the lifetime fuel of HDVs costs are around five times that of 

the original purchase price for the vehicle (EPA, 2009). 

Transportation consumes about 72% of the total U.S. domestic oil use. HDVs are responsible for 

17% of the transportation oil use and 12% of all U.S. oil consumption (EPA, 2011). In 2013, 2.7 

million barrels of oil-derived fuels per day were consumed by the on-road truck fleet, which 

emitted 530 million metric tons of carbon pollution (NRDC, 2014).  

Despite the extent of HDV emissions, because light-duty vehicles (LDVs) greatly outnumber 

HDVs, transportation researchers and engineers have focused more on modeling fuel consumption 

and emissions for LDVs. Consequently, HDV vehicle emission models are less developed than 

their LDV counterparts due to the limited amount of HDDV emissions data available compared 

with LDVs (Barth et al., 2004). 

Fuel consumption and emission models play a vital role in evaluating GHG reduction plans 

because they inform the actions of decision makers, and accurate estimations of HDV emissions 

are needed. This paper addresses that need by extending the Virginia Tech Comprehensive Power-

Based Fuel Consumption Model (VT-CPFM) to estimate HDDV emissions for nitrogen oxides 

(NOx), carbon monoxide (CO), and hydrocarbons (HC) using readily available data. 

4.2 BACKGROUND 

Various microscopic models have been developed to estimate the fuel consumption and emissions 

of HDVs. One of the models that is considered to be reliable in its estimates is MOVES (EPA, 

2009). MOVES covers a broad range of pollutants for mobile sources and allows multiple scale 

analysis (Koupal et al., 2003). However, MOVES is too slow for real-time emission modeling for 

a project-level feature and requires an extensive database to run (Ahn and Rakha, 2015).  

The Comprehensive Modal Emissions Model (CMEM) is based on a parameterized physical 

approach that is related to the physical conditions of vehicle operation and emission production. It 

is composed of six modules: engine power, engine speed, air/fuel ratio, fuel use, engine-out 

emissions, and catalyst pass fraction. The model estimates emission rates under different vehicle 

operating conditions (stoichiometric, cold-start, enrichment, and enleanment conditions) (Barth et 

al., 2000). 
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CMEM estimates second-by-second tailpipe emissions as the product of fuel rate (FR), engine-out 

emission index (gemission/gfuel), and catalyst pass fraction (CPF) using Equation (4-1) (Barth et al., 

2000): 

𝑇𝑎𝑖𝑙𝑝𝑖𝑝𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝐹𝑅 × (
𝑔𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛

𝑔𝑓𝑢𝑒𝑙
) × 𝐶𝑃𝐹                                                          (4-1) 

The CPF for all heavy-duty diesel trucks (HDDTs) is considered to be 100% (Barth et al., 2004). 

FR is estimated as shown in Equation (4-2): 

𝐹𝑅 = (𝐾. 𝑁. 𝑉 +
𝑃

𝜂
)

1

43.2
. [1 + 𝑏1. (𝑁 − 𝑁0)2]                                                                (4-2) 

where 

𝐹𝑅 is the fuel use rate (g/s),  

𝑃 is the engine power output (kW),  

𝐾 is the engine friction factor,  

𝑁 is the engine speed (revolutions per second), 

𝑉 is the engine displacement (L),  

𝜂 is measure of indicated efficiency for diesel engines (0.45),  

𝑏1 is 10-4, and  

43.2 kJ/g is the lower heating value of typical diesel fuel. 

The engine out emissions for CO, HC, and NOx are modeled according to the following linear 

equation as shown in Equation (4-3), with 𝑎 and 𝑟 as equation coefficients: 

𝐸𝑛𝑔𝑖𝑛𝑒 𝑜𝑢𝑡 = 𝑎. 𝐹𝑅 + 𝑟                                                                                               (4-3) 

However, the physical approach used by CMEM increases its complexity and may not be simple. 

The model is data intensive and requires physical variables to be collected and measured. The data 

required are not publicly available, which increases the difficulty of incorporating data from many 

sources and requires recalibration for each data set, which costs time and money (Scora and Barth, 

2006). Furthermore, as long as the same amount of power is applied, CMEM will estimate the 

same emission level regardless of whether the vehicle is driving at a high or low speed or on a flat 

or steep road. CMEM may also produce a bang-bang type control system, which occurs because 

the partial derivative of the fuel consumption rate with respect to the engine torque is not a function 

of torque (Saerens et al., 2010). The bang-bang control system relies upon accelerating at full-

throttle to reduce acceleration time and braking at full deceleration to achieve optimum fuel 

economy control, which is obviously incorrect since it requires aggressive driving in order to 

minimize fuel consumption rates (Rakha et al., 2011).  
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VT-Micro is a regression-based model that mainly depends on the instantaneous velocity and 

acceleration of the vehicle (Rakha et al., 2004). It overcomes the bang-bang control problem but 

requires the calibration of 32 coefficients, including the intercepts, which costs time. Also, it may 

overfit the data and be misleading in its estimates.  

VT-CPFM is a microscopic fuel consumption model based on instantaneous vehicle power, which 

Rakha et al. developed to overcome the major defect for most models, which is the bang-bang 

control system resulting from the quadratic function of power. The model uses publicly accessible 

data for calibration (Rakha et al., 2011). 

The power at instant t is shown in Equation (4-4) (Wong, 2001): 

𝑃(𝑡) = (
𝑅(𝑡)+1.04 𝑚𝑎(𝑡)

3600𝜂𝑑
) 𝑣(𝑡)                                                                                                 (4-4) 

where 

P(t) is the power exerted by the vehicle driveline (kW) at time t,  

R(t) is the resistance force (N) at time t,  

m is the vehicle mass (kg),  

a(t) is the vehicle acceleration (m/s2) at time t,  

v(t) is the vehicle speed (km/h) at time t, and  

ηd is the driveline efficiency. 

The resistance force is computed by combining aerodynamic, rolling, and grade resistance 

forces:  

𝑅(𝑡) =  
𝜌

25.92
 𝐶𝐷𝐶ℎ𝐴𝑓𝑣(𝑡)2 + 9.8066 𝑚 

𝐶𝑟

1000
(𝑐1𝑣(𝑡) + 𝑐2) + 9.8066𝑚𝐺(𝑡)            (4-5)   

Where  

𝜌 is the density of air at sea level at temperature 15oC (59oF) (equal to 1.2256 kg/m3),  

𝐶𝐷 is the vehicle drag coefficient (unitless),  

𝐶ℎ is a correction factor for altitude (unitless) and calculated as 1 − 0.085H, where H is the 

altitude (km), 

𝐴𝑓 is the vehicle frontal area (m2), and  

𝐶𝑟 , 𝑐1, and 𝑐2 are rolling resistance parameters that depend on the road surface type, road 

condition, and vehicle tire type. Vehicle coefficient values can be retrieved from (Rakha et al., 

2001). 

The VT-CPFM framework as shown in Equation 6 is a dual regime model to estimate 

instantaneous fuel consumption based on whether power is greater than or equal to zero or 

negative. The structure of the model is expressed in Equation (4-6) (Rakha et al., 2011): 

𝐹𝐶(𝑡) =  {
𝛼0 + 𝛼1𝑃(𝑡) + 𝛼2𝑃(𝑡)2     ∀ 𝑃(𝑡) ≥ 0

 𝛼0                                             ∀ 𝑃(𝑡) < 0 
                                                                           (4-6) 
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Where FC(t) is the instantaneous estimated fuel consumption (L/s) and 𝛼0, 𝛼1, and 𝛼2 are 

the calibrated coefficients for each specific vehicle. 

Given the complexities of MOVES, CMEM, and VT-Micro, this paper applies the VT-

CPFM model to capture the instantaneous HDDT vehicle emissions for CO, HC, and NOx. The 

advantages of VT-CPFM for this purpose are that it overcomes the bang-bang control problem and 

that publicly available data can be used for model calibration. Because VT-CPFM requires only 

eight coefficients and two primary inputs, speed and fuel, it is also easier to implement.  

4.3 DATA 

The data used to calibrate and validate the proposed extension to the VT-CPFM model were 

provided by The University of California, Riverside (Barth et al., 2004). Data from eight HDDVs 

were used in this study (Table 4-1). Vehicles were recruited randomly within test categories by 

engine and model year. A balance between different horsepower and between manufacturers was 

attempted (Barth et al., 2004).  
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TABLE 4-1 University of California, Riverside, Test Vehicle Characteristics 

Test 

Vehicle ID 

Number 

Make/ Model 
Truck 

Year 

Odometer 

(mi) 

Engine 

Make 

Engine 

Model 

Engine 

Year 

Rated 

Power 

(hp) 

Engine 

Size 

(L) 

HDDT 1 
Freightliner/FLD 

120 
2001 8,000 CAT C-15 2000 475 14.6 

HDDT 2 
International/ 

9800 SBA 
1997 442,674 Cummins 

M11-

330 
1997 330 10.8 

HDDT 3 
Freightliner/ 

D120 
1997 545,700 DDC C-60 1996 360/400 12.7 

HDDT 4 
Freightliner/ 

D120 
1997 512,786 Cummins N14 1997 370/435 14 

HDDT 5 
Freightliner/ 

C-120 
1997 353,953 Cummins N14 1997 370/435 14 

HDDT 6 
Freightliner/ 

C-120 
1998 449,404 DDC C-60 1997 370/430 12.7 

HDDT 7 
Freightliner/ 

FDL 120 
1999 489,310 DDC C-60 1998 470 12.7 

HDDT 8 
Freightliner/ 

FDL 120 
1999 469,801 DDC C-60 1998 360 12.7 

 

The University of California, Riverside, Center for Environmental Research and Technology 

tested the recruited vehicles using their Mobile Emissions Research Laboratory (MERL). MERL 

was developed to measure on-road, real-world emissions accurately and reliably (Barth et al., 

2004). The laboratory weighs approximately 45,000 lb and serves as the truck’s load. It contains 

all the instrumentation normally found in a conventional vehicle emissions laboratory.  

The tested vehicles used fuel from the same source to ensure consistency. The testing was 

conducted on long and uninterrupted stretches of roadways in California’s Coachella Valley at 

zero grade, approximately at sea level (Barth et al., 2004). The testing procedure for each truck 

measured the fuel rate, CO, HC, NOx, velocity, engine speed, and elevation. A total of 238,893 

seconds of data were collected and recorded at a 1-Hz frequency.  

The scattering of emissions data was the primary check to reveal if any of the data were invalid. 

CO data for Vehicle 5 were out of the normal range of the other vehicles by more than 10 times 

the normal value. The HC data for Vehicle 8 had too many negative values, which prevented the 
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model from undergoing the calibration and validation processes for this vehicle due to the 

insufficient remaining data points. 

However, the model does not estimate particulate matter (PM) because PM data were not available 

to develop models. PM is dependent on vehicle operating conditions. Also, it can be a function of 

vehicle parameters and emission rates of CO and HC. 

4.4 METHODOLOGY 

This study proposes to extend the VT-CPFM to estimate emission levels for HDDVs. The main 

focus is to develop a simple and accurate model to overcome the limitations of other models. The 

proposed model parameters could be generated from publicly available data on websites or 

manufacturer and Global Positioning System (GPS) data. 

The fuel estimates were generated from the calibrated coefficients of the VT-CPFM model for 

HDDVs using Wang and Rakha’s convex model (Wang & Rakha, 2016) due to the lack of fuel 

economy data. Then, the VT-CPFM model was applied to generate the instantaneous estimated 

fuel consumption along with the other data. HDDT 1 generated coefficients 𝛼0, 𝛼1 and 𝛼2 are 

1.56E-03, 8.10E-05 and 1.00E-08, respectively. These coefficients vary according to the 

characteristics of each vehicle. The correlation between the estimated and measured fuel data 

provides a measure for the performance of the model in estimating vehicle emissions. 

Different models were tested to determine which parameters would be used. Stepwise regression 

was applied to choose the proposed model that would meet the required criteria. The square root 

model uses fuel estimates and speed along with coefficients as shown in Table 4-2 to generate the 

emissions of the vehicles as expressed in Equation (4-7): 

√𝐸(𝑡) = 𝑎 + 𝑏. 𝑣(𝑡) + 𝑐. 𝐹(𝑡) + 𝑑. 𝑣(𝑡). 𝐹(𝑡) + 𝑒. 𝐹(𝑡)2 + 𝑓. 𝐹(𝑡)3 + 𝑔. 𝑣(𝑡). 𝐹(𝑡)2 +

ℎ. 𝑣(𝑡). 𝐹(𝑡)3                                                                                                        (4-7) 

where 

𝑣(𝑡)= speed of the vehicle at time t, 

𝐹(𝑡)= estimated fuel from VT-CPFM model at time t, and 

𝐸(𝑡)= CO or HC or NOx at time t. 

𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ= regression model coefficients. 

 

TABLE 4-2 Sample Model Coefficients for HDDT 1 

Emission a b c d e f g h 

CO -0.023 0.003 58.967 -1.089 -3201.70 70.879 47595 -1209.50 

HC 0.035 0.001 11.219 -0.216 -796.41 16.847 22888 -456.31 

NOx 0.049 0.002 100.098 -1.017 -10536.00 161.68 339250 -5640.50 
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This polynomial formula combines the cubic function of VT-CPFM fuel with the linear speed 

term. The square root model guarantees that the emission results will always be positive. Fuel is 

an essential parameter because vehicle emissions result from the combustion of fuel. Furthermore, 

speed can be used as a reference for the driving condition of the car, whether it is at a high or low 

speed or even idling at zero speed. Moreover, these parameters will not result in multicollinearity. 

These two parameters; estimated fuel and instantaneous speed had better results than other vehicle 

parameters while maintaining the simplicity of the model. Addition of other parameters did not 

produce significant improvements in the results and may cause regression overfitting. The 

generated coefficients vary from one vehicle to another according to the collected data and vehicle 

parameters.  

The hold-out method was applied, where a random portion of the data was split into a training set 

and a testing set. For each vehicle, 70% of the data were used for the training set and 30% for the 

testing. This process was applied for each vehicle and for each emission, and the average 

coefficients and a coefficient of determination (R2) were calculated. 

The calibrated coefficients were applied to the model to predict CO, HC, and NOx emissions. 

Results were compared with field-measured data to ensure the validity of the model. In addition, 

the model was compared with the CMEM model structure in Equation (4-3) to ensure its accuracy. 

Where, the coefficients in CMEM were calibrated from the same dataset that was used for the 

calibration of the developed model. Then, the coefficients were applied on the testing sets to 

generate the results. 

Randomization of data was performed, and the data split was executed to separate the training data 

from the testing data. The same randomized training and testing data sets were applied to the 

CMEM and VT-CPFM emissions models. The removal of outliers was implemented based on each 

model to ensure impartiality in comparing the two models. 

4.5 RESULTS AND DISCUSSION 

The HDDT 1 data set is illustrated in Figure 1 to represent the behavior of emissions as a function 

of VT-CPFM fuel consumption and speed. 
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FIGURE 4-1 Sample of the randomized emission data with speed and VT-CPFM fuel 

consumption (HDDT 1). 
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Figure 4-1 clearly demonstrates that the highest emission levels occur at the highest level of fuel 

estimates; as fuel consumption increases, emissions increase. NOx has the highest level of 

emissions and is the most well-distributed emission compared with CO and HC. NOx makes up 

the largest portion of diesel emissions at more than 50% because diesel engines are lean 

combustion engines and the concentration of CO and HC is lower (Reşitoğlu, 2015).  

The VT-CPFM emission model maintains consistency by using the same model to predict the three 

emissions. The accuracy of the model was evaluated by estimating the coefficient of determination 

(R2) of CO, HC, and NOx for the eight trucks. Table 4-3 shows R2 values for each truck across the 

three emissions and the average values for each emission. NOx has the highest R2 values, followed 

by CO then HC, which has the lowest R2 values. Figure 1 illustrates this by showing the well-

distributed data for NOx, which were measured more easily and captured more accurately than CO 

and HC for some trucks. Diesel engines emit low levels of HC (Reşitoğlu, 2015), making it more 

difficult to predict accurately compared with NOx. Consequently, NOx has the highest average R2 

of 0.857, followed by CO then HC (0.749 and 0.582, respectively). 

TABLE 4-3 Coefficient of Determination for Each Vehicle 

Vehicle ID CO HC NOx 

HDDT 1 0.821 0.626 0.929 

HDDT 2 0.752 0.753 0.898 

HDDT 3 0.749 0.226 0.821 

HDDT 4 0.710 0.583 0.897 

HDDT 5 NA 0.651 0.915 

HDDT 6 0.721 0.440 0.676 

HDDT 7 0.752 0.796 0.858 

HDDT 8 0.739 NA 0.862 

Average 0.751 0.582 0.856 

 

The performance of the VT-CPFM emission model was further evaluated and validated by 

comparing it with CMEM’s model structure (Table 4-4). The predicted emission values were 

plotted against measured field data to fit the regression line to estimate R2 for each model (Figures 

4-2, 4-3, and 4-4; Table 4-4). Table 4-4 summarizes the individual and average R2 values, revealing 

the robustness of the model based on its goodness of fit. It is evident that the average R2 values of 

the VT-CPFM emission model are higher than those for the CMEM model, demonstrating the 

superior performance of the model. In general, the VT-CPFM model has higher R2 values for 

almost all the vehicles compared to CMEM. 
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TABLE 4-4  R2 Values for Emission Field Data vs. Estimates for CMEM and VT-CPFM 

Vehicle 

ID 

VT-CPFM 

(CO) 

CMEM 

(CO) 

VT-CPFM 

(HC) 

CMEM 

(HC) 

VT-CPFM 

(NOx) 

CMEM 

(NOx) 

HDDT 1 0.836 0.613 0.578 0.392 0.955 0.939 

HDDT 2 0.728 0.586 0.745 0.695 0.924 0.904 

HDDT 3 0.779 0.708 0.172 0.148 0.832 0.820 

HDDT 4 0.665 0.487 0.566 0.525 0.925 0.951 

HDDT 5 NA NA 0.658 0.512 0.934 0.938 

HDDT 6 0.707 0.594 0.423 0.404 0.700 0.661 

HDDT 7 0.789 0.645 0.162 0.107 0.880 0.866 

HDDT 8 0.743 0.510 NA NA 0.896 0.824 

Average 0.750 0.592 0.472 0.397 0.881 0.863 

 

The two models are similar in terms of the order of goodness of fit for NOx emissions. Table 4-4 

shows that the average coefficient of determination (R2) NOx emission values for the two models 

are the highest. Alternatively, the coefficient of determination is the lowest for HC emission 

estimates. The values imply that NOx has the best fit. VT-CPFM has a slightly higher R2 value 

than CMEM (0.881 versus 0.863). On the other hand, the average R2 values for HC demonstrate 

the relatively poor fit between the predicted and measured field data, which is due to the low HC 

emission levels as mentioned before. Nevertheless, VT-CPFM has better HC estimates than 

CMEM as expressed in the average R2 values (0.472 versus 0.397). Finally, the VT-CPFM model 

has a relatively average fit of R2 = 0.750 compared to CMEM with a relatively poor fit of R2 = 

0.592 for CO emissions. 

The VT-CPFM model is simple, with only eight coefficients and two main parameters, speed and 

fuel. CMEM requires extensive and complicated data to estimate emissions. For instance, CMEM 

requires engine speed data, which would require installation of onboard diagnostics to measure. 

On the other hand, the data used by VT-CPFM are publicly available except for the speed data, 

which can be collected using a GPS device. 
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(a) CMEM 

 

 

(b) VT-CPFM 

FIGURE 4-2 Comparison between (a) CMEM and (b) VT-CPFM of CO estimates for 

HDDT 1. 
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(a) CMEM 

 

 

 

(b) VT-CPFM 

FIGURE 4-3 Comparison between (a) CMEM and (b) VT-CPFM of HC estimates for 

HDDT 1. 
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(a) CMEM 

 

 

(b) VT-CPFM 

FIGURE 4-4 Comparison between (a) CMEM and (b) VT-CPFM of NOx estimates for 

HDDT 1. 
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Figures 4-2, 4-3, and 4-4 illustrate the correlation of estimated emissions from CMEM and VT-

CPFM with in-field measurements from HDDT 1. NOx, the key target emission and the main 

concern in HDDT emissions, is highly correlated compared with CO and HC emissions. Moreover, 

VT-CPFM had better estimates for NOx, CO, and HC compared to CMEM based on the R2 values. 

The VT-CPFM estimated emissions are uniformly scattered and have better distribution around 

the regression line than CMEM. This is additional evidence that VT-CPFM provides better fuel 

estimates than CMEM. In addition, VT-CPFM offers the two additional benefits, namely: it does 

not produce a bang-bang control system and it can be calibrated and run much easier given that it 

is a simpler model. 

TABLE 4-5  Average MAE and SMAPE for CMEM and VT-CPFM 

Emissions 
CMEM VT-CPFM 

MAE SMAPE MAE SMAPE 

CO 0.021786 0.54016 0.017014 0.455586 

HC 0.000888 0.21699 0.000732 0.193229 

NOx 0.023443 0.24979 0.022614 0.246200 

 

The performance of the model was further investigated and analyzed by estimating mean absolute 

error (MAE) and symmetric mean absolute percentage error (SMAPE) for CO, HC, and NOx 

estimates (Table 4-5). MAE and SMAPE were calculated for vehicle trips estimated by the VT-

CPFM and CMEM model structure to compute the difference in estimates against in-field 

measured data. SMAPE can be used as an alternative to mean absolute percentage error (MAPE) 

when there are zero or near-zero values in the data, which could result in infinitely high error rates 

that will increase the average error rate and will not represent the correct value (Makridakis, 1993). 

SMAPE was used as benchmark for the two models since some of the emissions values were near-

zero. SMAPE yields higher error rates than usual due to the near-zero values but it limits the error 

to 200% as shown in Equation 4-8: 

𝑆𝑀𝐴𝑃𝐸 = |
𝐴𝑡−𝐹𝑡

(𝐴𝑡+𝐹𝑡)/2
|  (4-8) 

where 𝐴𝑡 is the actual value and 𝐹𝑡 is the forecast value at time 𝑡. 

NOx had an approximately similar SMAPE for both models, although SMAPE and MAE for 

CMEM were slightly higher than for VT-CPFM. The HC and CO error rates were higher for 

CMEM than for VT-CPFM, which corroborates the evident goodness of fit of VT-CPFM over 

CMEM.  
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Figure 4-5 Model validation and comparison of VT-CPFM with CMEM for CO. 

 

 

Figure 4-6 Model validation and comparison of VT-CPFM with CMEM for HC. 
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Figure 4-7 Model validation and comparison of VT-CPFM with CMEM for NOx. 

Figures 4-5, 4-6, and 4-7 show sample estimated trip emissions of the two models along with in-

field measured data. The figures illustrate the ability of the models to capture the transient behavior 

of the three pollutants. The high error rates, which correspond to near-zero values are interpreted 

by the figures showing the large drops in empirical data. For NOx, the two models were similar 

and fit the measured data well. The VT-CPFM model had better estimates for CO and HC, 

especially at lower values, where CMEM overestimates the emissions at these values. The VT-

CPFM estimates were more consistent with in-field measured data for the three pollutants, 

specifically for HC and CO, which was expected from the demonstrated goodness of fit of the VT-

CPFM model in previous tables and figures. 

Table 4-6 MAPE of emissions for VT-CPFM and CMEM 

Model VT-CPFM CMEM 

Emission CO HC NOx CO HC NOx 

HDDT 1 0.16% 0.99% 0.29% 5.65% 1.51% 6.52% 

HDDT 2 3.44% 2.11% 0.99% 1.31% 1.09% 3.17% 

HDDT 3 1.00% 0.53% 0.73% 3.72% 1.32% 2.02% 

HDDT 4 NA 2.02% 0.87% NA 0.20% 2.29% 

HDDT 5 5.01% 3.14% 3.11% 2.60% 4.41% 4.34% 

HDDT 6 5.50% 3.46% 0.28% 3.42% 5.91% 6.92% 

HDDT 7 3.67% NA 1.37% 6.99% NA 3.15% 

HDDT 8 1.97% 2.26% 0.57% 3.29% 1.06% 0.70% 

Average 1.97% 2.26% 0.57% 3.29% 1.06% 0.70% 
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Moreover, the mean absolute percentage error (MAPE) was calculated over the trip for each truck 

to evaluate the performance of the model over the whole trip. Table 4-6 represents the calculated 

MAPE of CO, HC and NOx for each truck based on each model. VT-CPFM had lower error rates 

than CMEM for CO and HC for the majority of the tested trucks. However, VT-CPFM had lower 

MAPE for NOx which is the key target emission for all the trucks. VT-CPFM will generate better 

estimates based on the goodness of fit and the error rates. 

4.6 CONCLUSIONS AND FUTURE RESEARCH 

The research presented in this paper extends the VT-CPFM model to capture HDDT emissions 

using calibrated model parameters. An additional advantage of this model is that it does not result 

in a bang-bang control system. The proposed VT-CPFM emission model is consistent in its 

structure for CO, HC, and NOx estimation using only two parameters: speed and fuel consumption. 

Results show good estimates of NOx—the key target of HDDVs—which have the best fit 

compared to CO and HC. The model was tested against CMEM’s model structure to evaluate its 

performance and robustness. The models’ estimated emission rates were compared with in-field 

measurements. The results demonstrate that VT-CPFM estimates are more accurate than those 

from CMEM based on the coefficient of determination. Moreover, the VT-CPFM model is simpler 

and more cost-effective, requiring vehicle parameters and the collection of instantaneous GPS 

data. 

With regards to future work, emission models should be developed for later HDDV models to 

capture the impact of emerging technologies, including after treatment devices such as selective 

catalytic reduction (SCR) on vehicle emissions. Given that VT-CPFM models the tailpipe 

emissions directly, the specifics of the engine and the exhaust system is not needed to develop the 

model. Consequently, there do not appear to be any foreseeable problems in calibrating VT-CPFM 

to different truck technology platforms. 
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ABSTRACT 

The current state-of-practice fuel consumption and emission models suffer from two limitations:  

they produce a bang-bang control system and cannot be calibrated using publicly available data. 

The Virginia Tech Comprehensive Power Based Fuel Consumption Model (VT-CPFM) was 

developed to overcome those two shortcomings. It does not result in bang-bang control and can 

be calibrated by using U.S. Environmental Protection Agency (EPA) city and highway fuel 

economy ratings. This research focuses on developing a simple and reliable microscopic 

emission model based on VT-CPFM. The proposed model was calibrated and validated using the 

MOtor Vehicle Emissions Simulator (MOVES) data to estimate the carbon monoxide (CO), 

hydrocarbon (HC), and oxides of nitrogen (NOx) emissions of light-duty vehicles (LDVs). The 

model framework is consistent in estimating the three emissions using instantaneous estimated 

fuel using VT-CPFM and instantaneous speed measurements. The model was calibrated and 

validated against MOVES data. The coefficient of determination was a measure of performance 

for the model, and exceeded 0.9 for all the emissions. NOx had the best fit at over 0.95. 

Furthermore, the model was implemented on 16 driving cycles to evaluate its performance. The 

prediction errors varied between approximately 1% and 18% according to the Mean Absolute 

Percent Error (MAPE). The model’s simplicity in estimating the emissions reliably may save 

time and money compared with other existing models. 

 

Keywords: microscopic emission modeling, Virginia Tech Comprehensive Power Based Fuel 

Consumption Model (VT-CPFM), MOtor Vehicle Emissions Simulator (MOVES) 
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5.1. INTRODUCTION 

The transportation sector places a huge burden on our environment and is one of the major emitters 

of pollutants. In particular, transportation is considered to be one of the largest sources of 

greenhouse gases (GHGs), which increase the level of pollution and have an impact on climate 

change. Therefore, policymakers are keen to develop models that accurately estimate the emissions 

from on-road vehicles. Microscopic emission models are capable of estimating the instantaneous 

vehicle emissions from operational-level projects, and policymakers can use them to evaluate their 

emission reduction plans and the environmental impact of transportation projects. 

Nevertheless, the majority of the existing fuel consumption and emission models suffer from two 

major deficiencies. They produce a bang-bang control system and require extensive calibration 

through in-field or laboratory data, which costs time and money. Models that result in bang-bang 

control systems suggest that optimum fuel economy is achieved by accelerating at full throttle or 

decelerating at full braking to reach a desired speed. These models imply that using full throttle 

will reduce the acceleration time, which will reduce the fuel consumption rate. However, this is 

obviously incorrect since it means that aggressive driving is required to minimize the fuel 

consumption rate (Rakha et al., 2011). 

The Virginia Tech Comprehensive Power Based Fuel Consumption Model (VT-CPFM) 

overcomes those two shortcomings: it does not result in a bang-bang control system and can be 

easily calibrated by using publicly available data to calculate fuel consumption. However, VT-

CPFM does not capture vehicle emissions levels. Consequently, the objective of this paper is to 

extend the VT-CPFM model to estimate emission rates for CO, HC, and NOx. This study outlines 

the development of a simple and reliable emission model evolved from VT-CPFM. The model was 

implemented on recent light-duty vehicle (LDV) models, and calibrated and validated for 12 best-

selling vehicles. Sixteen different driving cycles with various speed and acceleration ranges were 

used to evaluate the model’s capability in estimating the emissions. 

5.2. LITERATURE REVIEW 

VT-Micro is a regression-based model that estimates fuel rate, CO, HC, and NOx (Rakha et al., 

2004). VT-Micro is a dual regime model that consists of polynomial combinations of 

instantaneous speed and acceleration (Rakha et al., 2004). The model predicts emission and fuel 

rates based on whether the vehicle is accelerating or decelerating, as shown in Equation (5-1): 

𝑀𝑂𝐸𝑒 { 𝑒∑ ∑ (𝐿𝑖𝑗
𝑒3

𝑗=0 ×3
𝑖=0 𝑢𝑖×𝑎𝑗)   𝑓𝑜𝑟  𝑎≥0

𝑒∑ ∑ (𝑀𝑖𝑗
𝑒3

𝑗=0 ×3
𝑖=0 𝑢𝑖×𝑎𝑗)    𝑓𝑜𝑟  𝑎<0 

                                                                             (5-1) 

 

where 

𝑀𝑂𝐸𝑒 is instantaneous fuel consumption or emission rate (l/s or mg/s); 

𝐿𝑖𝑗
𝑒  is the model regression coefficient for MOE e at speed power i and acceleration power 

j for positive accelerations; 

𝑀𝑖𝑗
𝑒  is the model regression coefficient for MOE e at speed power i and acceleration power 

j for negative accelerations; 

𝑢 is instantaneous speed (km/h); and 

𝑎 is instantaneous acceleration (m/s2). 
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The results from VT-Micro were verified by comparing the fuel and emission estimates to 

measured data from the chassis dynamometer at the Oak Ridge National Laboratory (ORNL), 

resulting in coefficient of determination (R2) ranges from 0.92 to 0.99. However, the model 

requires 32 coefficients to be calibrated, which may over fit the data.  

One recently developed microscopic fuel consumption and emission model is PΔP (Smit, 2013), 

which utilizes power and engine power as the main model variables. The model estimates second-

by-second fuel and emission rates based on whether the vehicle is at idle or moving, as shown in 

Equation (5-2): 

𝑒𝑡 = {
𝛼                                                                                                                        𝑓𝑜𝑟  𝑣𝑡 = 0

𝛽0 + 𝛽1𝑃𝑡 + 𝛽2∆𝑃𝑡 + 𝛽3𝑃𝑡
2 + 𝛽4∆𝑃𝑡

2 + 𝛽5𝑃𝑡∆𝑃𝑡 + 𝜀                         𝑓𝑜𝑟  𝑣𝑡 > 0
  (5-2) 

 

where et is the emission or fuel rate at time t; α is the emission rate at idle; β0, β1, β2, β3, 

β4, and β5 are the model coefficients; ε is the error term; Pt is the engine power at time t; and ∆Pt 

is the change in engine power at time t. 

The PΔP model estimates instantaneous fuel consumption, CO2, and NOx. Smit used the 

coefficient of determination  to evaluate the model’s performance in estimating fuel/CO2 and NOx, 

resulting in R2 values of 0.93 and 0.65, respectively. However, the model neglects the other main 

emissions, HC and CO, which precludes studying the hazards of HC and CO and evaluating their 

impacts on the environment. 

The Comprehensive Modal Emissions Model (CMEM) was developed at the University of 

California to estimate on-road vehicle emissions based on the vehicle’s operating mode. CMEM 

consists of six modules: engine power, engine speed, air/fuel ratio, fuel use, engine-out emissions, 

and catalyst pass fraction (Barth et al., 2000). 

CMEM estimates second-by-second tailpipe emissions as the product of fuel rate (FR), the 

engine-out emission index (gemission/gfuel), and catalyst pass fraction (CPF), as shown in Equation 

(5-3): 

𝑇𝑎𝑖𝑙𝑝𝑖𝑝𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝐹𝑅 × (
𝑔𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛

𝑔𝑓𝑢𝑒𝑙
) × 𝐶𝑃𝐹                                                       (5-3) 

The CMEM model first estimates the power demand to calculate FR as expressed in Equation (5-

4), then applies Equation (5-3) to estimate the tailpipe emissions. 

𝐹𝑅 = (𝐾. 𝑁. 𝑉 +
𝑃

𝜂
)

1

44
                                                                                                              (5-4) 

where 

𝐹𝑅 is the fuel use rate (g/s),  

𝑃 is the engine power output (kW),  

𝐾 is the engine friction factor,  
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𝑁 is the engine speed (revolutions per second), 

𝑉 is the engine displacement (L),  

𝜂 is measure of indicated efficiency (0.44).                             

However, CMEM is not simple to use due to its physical approach. Massive and detailed data 

inputs are required, which consume time and money to be collected and measured. The lack of 

publicly available data also increases the difficulty of calibrating each data set since many sources 

are needed. In addition, the CMEM model may result in a bang-bang control system. 

The MOtor Vehicle Emissions Simulator (MOVES), developed by the U.S. Environmental 

Protection Agency (EPA), covers a broad range of pollutants from mobile sources. MOVES 

estimates GHG emissions, criteria pollutants, and energy consumption (EPA, 2016). The model 

assigns emission factors to each specific combination of instantaneous speed and acceleration 

rates. MOVES relates vehicle operation to emission behavior based on vehicle specific power 

(VSP), and deploys a binning approach with 23 operating mode bins representing the operating 

conditions listed in Table 5-1 (EPA, 2009). The bins include scenarios of vehicle dynamics data 

assimilated into speed and VSP data. Therefore, vehicles in the same operating mode bin based on 

instantaneous speed and VSP data will have the same emission rate (Liu et al., 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 
 

Table 5-1 

Definition of MOVES operating modes for running energy consumption. 

Operating Mode Bin 

ID 

Operating Mode 

Description 
VSP 

Speed (v) 

(mph) 

Acceleratio

n (a) 

(mph/s) 

0 
Deceleration/Brakin

g 
  

(a ≤ −2) or 

(a ≤ −1 and 

a − 1 ≤ −1  

and a − 2 ≤ 

−1) 

1 Idling  −1 ≤ v < 1  

11 Coast VSP < 0 1 ≤ v < 25  

12 Cruise/Acceleration 0 ≤ VSP < 3 1 ≤ v < 25  

13 Cruise/Acceleration 3 ≤ VSP < 6 1 ≤ v < 25  

14 Cruise/Acceleration 6 ≤ VSP < 9 1 ≤ v < 25  

15 Cruise/Acceleration 9 ≤ VSP < 12 1 ≤ v < 25  

16 Cruise/Acceleration 12 ≤ VSP 1 ≤ v < 25  

21 Coast VSP < 0 25 ≤ v < 50  

22 Cruise/Acceleration 0 ≤ VSP < 3 25 ≤ v < 50  

23 Cruise/Acceleration 3 ≤ VSP < 6 25 ≤ v < 50  

24 Cruise/Acceleration 6 ≤ VSP < 9 25 ≤ v < 50  

25 Cruise/Acceleration 9 ≤ VSP < 12 25 ≤ v < 50  

27 Cruise/Acceleration 12 ≤ VSP < 18 25 ≤ v < 50  

28 Cruise/Acceleration 18 ≤ VSP < 24 25 ≤ v < 50  

29 Cruise/Acceleration 24 ≤ VSP < 30 25 ≤ v < 50  

30 Cruise/Acceleration 30 ≤ VSP 25 ≤ v < 50  

33 Cruise/Acceleration VSP < 6 50 ≤ v  

35 Cruise/Acceleration 6 ≤ VSP < 12 50 ≤ v  

37 Cruise/Acceleration 12 ≤ VSP < 18 50 ≤ v  

38 Cruise/Acceleration 18 ≤ VSP < 24 50 ≤ v  

39 Cruise/Acceleration 24 ≤ VSP < 30 50 ≤ v  

40 Cruise/Acceleration 30 ≤ VSP 50 ≤ v  

 

MOVES requires extensive data regarding vehicle operation and road parameters, which are not 

always available and cost time and money to collect. Averaging the data over many vehicles may 

also lead to errors in emission estimation (Alkafoury et al., 2013). The detailed data and 

information required increase the complexity of MOVES, making it less easy to use. 

As previously mentioned, Rakha et al. developed VT-CPFM to overcome the two main 

shortcomings of the majority of current state-of-the-art models. VT-CPFM does not produce a 

bang-bang control system and can be calibrated by using publicly accessible data (Rakha et al., 

2011). The model estimates fuel consumption using instantaneous vehicle power, based on 

Equation (5-5) (Wong, 2001).  

𝑃(𝑡) = (
𝑅(𝑡)+1.04 𝑚𝑎(𝑡)

3600𝜂𝑑
) 𝑣(𝑡)                                                                                                                (5-5)   
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Here, P(t) is the power exerted by the vehicle driveline (kW) at time t, R(t) is the resistance force 

(N) at time t, m is the vehicle mass (kg), a(t) is the vehicle acceleration (m/s2) at time t, v(t) is the 

vehicle speed (km/h) at time t, and ηd is the driveline efficiency. 

The model does not require calibration through laboratory or field testing. The vehicle parameters 

can be retrieved from the manufacturer’s website and used as the inputs to a Matlab script that 

calibrates the coefficients of the model. VT-CPFM is a dual regime model that estimates second-

by-second fuel consumption based on whether vehicle power is negative or non-negative, as 

expressed in Equation (5-6): 

𝐹𝐶(𝑡) = {
𝛼0 + 𝛼1𝑃(𝑡) + 𝛼2𝑃(𝑡)2     ∀ 𝑃(𝑡) ≥ 0

 𝛼0                                             ∀ 𝑃(𝑡) < 0 
                                                      (5-6) 

where FC(t) is the instantaneous estimated fuel consumption (l/s), and 𝛼0, 𝛼1 and 𝛼2 are the 

calibrated coefficients for each specific vehicle. 

The same proposed model in this study was used to estimate the emissions for heavy-duty 

diesel trucks (Abdelmegeed and Rakha, 2017). Also, Abdelmegeed et al. developed an emission 

model based on VT-CPFM in 2016 to estimate CO, HC and NOx which had relatively good fit 

compared with in-field data. However the vehicles were manufactured from 1988 to 1997 which 

represented a concern if the model can capture the emerging technologies and if it can be applied 

on recent models. Therefore, this paper expands VT-CPFM to capture the emissions of recent 

vehicles models while overcoming the limitations of existing models. Moreover, the developed 

model will be implemented on various driving conditions to test it’s capability in estimating the 

emissions reliably. 

5.3 DATA 

The EPA has approved the use of MOVES to validate emissions. Consequently, this study 

used MOVES data as the basis of comparison for emission profiles generated by the proposed 

model for a list of the best-selling cars in 2011. Table 5-2 lists the selected vehicle models and 

each vehicle’s characteristics, including curb weight, engine size, and horsepower. 
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Table 5-2  

Test vehicle characteristics. 

Class Make/Model 
Curb Weight 

(Kg) 

Engine Size 

(L) 

Rated Power 

(hp) 

Compact 

Honda Civic 1212 1.8 140 

Ford Focus 1341 2.0 160 

Toyota Corolla 1270 1.8 132 

`Mazda 3 1329 2.0 148 

Mid-Size 

Toyota Camry 1447 2.5 178 

Nissan Altima 1442 2.5 175 

Ford Fusion 1490 2.5 175 

Chevrolet Cruze 1435 1.8 138 

Chevrolet Malibu 1557 2.4 169 

Full-Size 

Honda Accord 1487 2.4 177 

Hyundai Sonata 1451 2.4 198 

Chrysler 300 1814 3.6 292 

 

Sixteen different driving cycles were used to compare the VT-CPFM estimates with 

MOVES data based on the mean absolute percentage error (MAPE) of the model. Some of these 

cycles were developed by the EPA based on real-world driving studies. These driving cycles were 

also used in the development of the MOBILE6 model (Brzezinski et al., 1999) and VT-Micro 

(Rakha et al., 2004). The cycles consist of various speed-acceleration profiles with different ranges 

based on various roadway types to incorporate various driving behavior scenarios. The cycles 

include four roadway types: freeways, arterials, freeway ramps, and local roadways. These roads 

were classified based on level of service (LOS) from A to G. Four EPA vehicle emission testing 

cycles were also used: the Urban Dynamometer Driving Schedule (UDDS) cycle or LA-4, the 

California Air Resources Board (CARB) area-wide unified cycle (LA92), the New York City 

(NYC) cycle, and the ST01 cycle. Table 5-3 provides the characteristics of each cycle that were 

used in the validation process.  
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Table 5-3  

EPA driving cycle characteristics. 

Cycle 
Avg. speed 

(km/h) 
Max speed (km/h) 

Max acc. 

(km/h/s) 

Duration 

(s) 

Length 

(km) 

Freeway, High Speed 

(FWYSP) 
101.12 119.52 4.32 610 17.15 

Freeway, LOS A–C 

(FWYA) 
95.52 116.96 5.44 516 13.68 

Freeway, LOS D 

(FWYD) 
84.64 112.96 3.68 406 9.54 

Freeway, LOS E 

(FWYE) 
48.8 100.8 8.48 456 6.18 

Freeway, LOS F 

(FWYF) 
29.76 79.84 11.04 442 3.66 

Freeway, LOS G 

(FWYG) 
20.96 57.12 6.08 390 2.27 

Freeway Ramps 55.36 96.32 9.12 266 4.1 

Arterial/Collectors LOS 

A–B (ARTA) 
39.68 94.24 8 737 8.11 

Arterial/Collectors LOS 

C–D (ARTC) 
30.72 79.2 9.12 629 5.38 

Arterial/Collectors LOS 

E–F (ARTE) 
18.56 63.84 9.28 504 2.59 

Local Roadways 20.64 61.28 5.92 525 2.99 

Non-Freeway-Area-

Wide Urban Travel 
31.04 83.68 10.24 1348 11.6 

UDDS 31.36 90.72 5.28 1368 11.92 

LA 92 39.36 107.52 11.04 1435 15.7 

ST01 32.32 65.6 8.16 248 2.224 

NYC 11.36 44.32 9.6 600 1.888 

 

5.4 METHODOLOGY 

The main purpose of this study was to develop a simple and reliable emission model that can be 

easily implemented based on VT-CPFM to overcome previous shortcomings. Various models with 

polynomial functions were tested with assorted parameters to select the final model structure. 

Statistical tools were used to test the significance of the parameters and the validity of the model 

in estimating the emissions. Eventually, it was found that the square root model satisfied the 

criteria of simplicity and reliability, in addition to guaranteeing that the results would always be 

positive. The model combines the cubic function of instantaneous VT-CPFM fuel estimates and a 

linear speed term as expressed in Equation (5-7): 

 

√𝐸(𝑡) = 𝑎 + 𝑏. 𝑣(𝑡) + 𝑐. 𝐹(𝑡) + 𝑑. 𝑣(𝑡). 𝐹(𝑡) + 𝑒. 𝐹(𝑡)2 + 𝑓. 𝐹(𝑡)3 + 𝑔. 𝑣(𝑡). 𝐹(𝑡)2 +

ℎ. 𝑣(𝑡). 𝐹(𝑡)3                                                                                                                          (5-7) 

where 
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𝑣(𝑡) is the speed of the vehicle at time t; 

𝐹(𝑡) is the estimated fuel from VT-CPFM model at time t;  

𝐸(𝑡) is the  CO or HC or NOx at time t; and 

𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ are regression model coefficients. 

 

The fuel consumption was calculated based on each vehicle’s characteristics, which were the 

inputs to a Matlab script that calibrated the model coefficients. For example, the Honda Accord’s 

coefficients 𝛼0, 𝛼1, and 𝛼2 are 1.56E-03, 8.10E-05, and 1.00E-08, respectively. These coefficients 

were calibrated for each vehicle and thus could vary based on each vehicle’s specific 

characteristics. Unsurprisingly, fuel was highly significant since vehicle emissions result from the 

combustion of fuel. Also, speed can be used as a reference for the driving condition of the car, 

whether it is at a high or low speed or even idling. The model preserves the same structure for all 

the emissions, which maintains the consistency and simplicity of the model, which has only eight 

coefficients and the two main variables, fuel and speed.  

Table 5-4  

MOVES mean base rate of CO based on the operating mode ID. 

 

Op Mode ID Mean Base Rate 

0 1.97892 

1 0.341669 

11 6.80345 

12 11.1072 

13 10.2406 

14 14.6935 

15 21.3068 

16 35.9513 

21 8.86745 

22 11.7489 

23 15.1095 

24 22.0873 

25 25.0671 

27 37.6451 

28 126.328 

29 267.543 

30 939.666 

33 6.65783 

35 11.3684 

37 16.7341 

38 115.788 

39 122.175 

40 359.069 
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MOVES assigns the emission factors to the operating mode based on the vehicle dynamics data in 

each bin. Each bin has specific scenario combines VSP, speed and acceleration based on the 

operating mode. MOVES generates emission tables for CO, HC and NOx which consist of the 

mean base rate for the emission based on the operating mode bin (ID). Table 5-4 lists the operating 

mode ID and emission mean base rate for CO. For instance, if the vehicle speed is more than or 

equal to 1 mph and less than 25 mph and the VSP is more than or equal to 0 and less than 3 

kW/tonne then, the operating mode ID will be 12, therefore the emission mean base rate will be 

11.1072. 

MOVES data were applied to the LA92 driving cycle to generate second-by-second emission 

profiles and VSP, which are connected with operating mode bins as previously discussed. LA92 

was used since it covers a wide range of speeds, allowing the model to be tested under low-, 

average-, and high-speed values to ensure its applicability to different scenarios. The model 

underwent calibration and validation processes to estimate R2 values, which indicate the goodness 

of fit of estimated emissions compared with MOVES data. Furthermore, the same calibrated 

coefficients were used to test the model on the 16 driving cycles to measure the trips’ MAPE to 

further evaluate the model’s validity. Table 5-5 shows a sample of calibrated coefficients that were 

used with each driving cycle. 

 

Table 5-5  
Sample model coefficients for Honda Accord. 

Emission 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 

CO −0.40332 0.009843 1150.500 −16.196 −613890 9845.700 109680000 −1531600 

HC −0.01302 0.000951 44.252 −1.364 −18956 783.120 3955400 −109690 

NOx −0.02749 0.000849 67.514 −0.418 −12241 441.820 1468800 −53244 

 

5.5 RESULTS AND DISCUSSION 

The data were randomly split into training and testing sets to determine the goodness of fit of the 

emissions for each vehicle. The coefficients were calibrated from the training set and then applied 

to the testing set to analyze the performance of the model. Figure 5-1 illustrates the correlation 

between the estimated emissions from VT-CPFM and MOVES data. The emission estimates were 

plotted against measured data to fit a regression line to estimate R2 values for each emission. All 

the emissions had a very good fit compared to measured data. However NOx, had the best fit, 

followed by HC and CO, respectively. Figure 5-2 shows the correspondence of the estimated 

emission rates with MOVES data. The emission levels from MOVES and VT-CPFM were highly 

correlated and correspondent to each other.   
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Figure 5-1 Correlation of estimated emissions with MOVES data. 
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Figure 5-2 Correspondence of VT-CPFM emissions with MOVES. 

 

Table 5-6 lists all the R2 values of the emissions for each vehicle. The coefficients of 

determination for CO, HC, and NOx were higher than 0.9, which implies the robustness of the 

model in estimating the emission rates. NOx had the highest average R2 of 0.9595, followed by HC 

then CO (0.9118 and 0.9002, respectively). 
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Table 5-6 

Coefficient of determination of the emissions for each vehicle. 

Make/Model R2 (CO) R2 (HC) R2 (NOx) 

Honda Accord 0.9000 0.9135 0.9590 

Nissan Altima 0.9004 0.9117 0.9601 

Toyota Camry 0.9002 0.9097 0.9603 

Chrysler 300 0.9000 0.9143 0.9616 

Honda Civic 0.9006 0.9104 0.9589 

Ford Focus 0.9009 0.9101 0.9571 

Ford Fusion 0.8995 0.9133 0.9608 

Chevrolet Malibu 0.9005 0.9145 0.9605 

Mazda 3 0.9001 0.9097 0.9580 

Hyundai Sonata 0.9014 0.9101 0.9588 

Chevrolet Cruze 0.8990 0.9123 0.9591 

Toyota Corolla 0.9007 0.9089 0.9587 

Average 0.9003 0.9115 0.9594 
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Table 5-7 

MAPE of driving cycles. 

 

Driving Cycle MAPE (CO) MAPE (HC) MAPE (NOx) 

LA04 9.50% 9.12% 8.49% 

ARTA 15.56% 16.54% 10.15% 

ARTC 15.56% 14.31% 6.15% 

ARTE 5.91% 6.11% 0.77% 

FWYSP 11.96% 10.51% 0.74% 

FWYA 18.02% 14.22% 5.53% 

FWYD 0.86% 0.33% 2.04% 

FWYE 8.53% 3.25% 3.16% 

FWYF 15.86% 9.16% 2.48% 

FWYG 16.97% 3.80% 3.67% 

LOCL 10.58% 10.45% 8.20% 

RAMP 18.05% 24.4% 16.14% 

ST01 15.91% 15.23% 10.05% 

AREA 15.36% 10.45% 4.37% 

LA92 4.05% 7.31% 5.09% 

NYC 5.28% 12.12% 6.99% 

 

The model’s performance was further investigated by applying it to the 16 driving cycles 

listed in Table 5-3 and calculating the MAPE of the trips for each vehicle. MAPE was used to 

forecast the error in estimating the emissions as a measure of performance. Table 5-7 presents the 

average MAPE of the vehicles for CO, HC, and NOx for each driving cycle. The MAPE did not 

exceed approximately 18% for any of the emissions on any of the driving cycles except for HC on 

RAMP. These cycles provide a good test of the model since they represent different combinations 

of speed and acceleration values, including aggressive driving behavior, similar to real-world 

driving conditions. The tests indicate that the model can be applied to different scenarios and 

capture different ranges and driving conditions. 

Figure 5-3 illustrates the capability of VT-CPFM to capture the transient behavior of the 

emissions in the NYC driving cycle. Figure 5-3 demonstrates the correspondence of the emission 

estimates with MOVES data. The model had the best fit and highly correlated with NOx, which 

was expected from the goodness of fit and MAPE values. However, all the emissions were 

consistent with the measured data and nearly within the same range, which reflects the reliability 

of the model. Although, VT-CPFM overestimated the emissions over MOVES, this could be 

because MOVES averages the emission rates over LDVs, whereas VT-CPFM focuses on each 

vehicle’s parameters individually to estimate the emissions based on the each vehicle’s specific 
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characteristics. Overall, the estimates and measured data behave similarly based on the resulting 

engine load from driving conditions. 

Figure 5-3 Honda Accord estimated emissions on NYC cycle. 

A general LDV model was also developed to capture the emissions of any LDV without 

the need to calibrate its coefficients. The general LDV model summarizes the tested LDVs’ 

parameters based on model year to generalize the model for any LDV in the same year, thus 

requiring less time for the calibration process. Table 5-8 presents the LDV average model’s MAPE 

for CO, HC, and NOx for the 16 driving cycles. This model provides an approximate estimate of 

the emissions of each tested vehicle, which can be used as a reference or to sketch out the emission 

profile of a vehicle. It can also be used to interpret the relationship between driving conditions and 

emissions rates, but for more-accurate estimates the model should be calibrated for each vehicle 

individually. Figure 5-4 shows the correspondence of the average model and MOVES data, where 

they were consistent.  
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Table 5-8  
MAPE of driving cycles for LDV average model. 

 

Driving Cycle MAPE (CO) MAPE (HC) MAPE (NOx) 

LA04 7.85% 7.73% 6.38% 

ARTA 13.28% 14.45% 7.87% 

ARTC 12.67% 12.11% 3.82% 

ARTE 3.29% 3.74% 1.73% 

FWYSP 15.92% 15.38% 2.45% 

FWYA 21.97% 16.74% 8.29% 

FWYD 2.31% 2.51% 0.52% 

FWYE 6.39% 1.85% 0.87% 

FWYF 13.64% 6.90% 0.01% 

FWYG 16.28% 3.22% 1.66% 

LOCL 9.37% 9.27% 6.12% 

RAMP 14.15% 22.11% 13.89% 

ST01 13.48% 13.29% 7.87% 

AREA 12.94% 8.23% 2.00% 

LA92 0.45% 4.81% 2.63% 

NYC 6.44% 13.57% 9.45% 
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Figure 5-4 Average LDV estimated emissions on NYC cycle. 

The emission model was tested on the vehicles to develop a generalized model. The purpose of 

the generalized model is to allow for the calibration of the model coefficients using publicly 

available vehicle parameters as input to acquire the coefficients automatically through a Matlab 

script similar to the concept of the VT-CPFM. The vehicle parameters were tested to examine 

their significance on the model to select the most significant parameters among them. The city 

and highway fuel economy ratings were the most significant parameters in estimating the model 

coefficients. Figure 5-5 illustrates the correlation between the calculated coefficients from fuel 

economy ratings and the coefficients calibrated from each vehicle individually. Table 5-9 lists 

the fuel economy ratings used in developing the generalized model. Each coefficient from the 

listed vehicles was the dependent variable, where the fuel economy ratings were the explanatory 

variables.  
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Figure 5-5 Significance of the fuel economy ratings on model coefficients 

 

Table 5-9  
Fuel economy ratings of the tested LDVs 

 

Vehicle City Hwy 

Honda Accord 23 34 

Honda Civic 28 39 

Ford Focus 28 38 

Mazda 3 24 33 

Toyota Camry 25 35 

Nissan Altima 23 32 

Ford Fusion 23 33 

Chevrolet Cruze 26 38 

Chevrolet Malibu 22 33 

Hyundai Sonata 24 35 

Chrysler 300 18 27 

Toyota Corolla 27 34 

 

The model will use the fuel economy ratings to generate the confidents for each emission 

automatically through Matlab graphical user interface (GUI). Figure 5-6 demonstrates the dodge 

charger fuel economy ratings input to generate the table of the 8 coefficients for each emission. 
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Figure 5-6 Generalized model emissions calibration tool 

 

The generated coefficents from the generalized model were applied on the emission model to 

compute the estimated emissions. These estimates were plotted with the second-by-second 

MOVES data on NYC cycle to genrate the to illustrate the correspondence between the estimates 

and the measured MOVES data. Figure 5-7 demonstartes the vehicle emission behavior of the 

MOVES data was similar the estimated emissions. Overall, the etsimates followed the same 

trend of the measured data. 

 
Figure 5-7 Instantaneous generalized model emissions validation (Dodge Charger) 
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5.6 CONCLUSIONS AND FUTURE RESEARCH 

This study extended the VT-CPFM model to capture LDV emissions (CO, HC, and NOx) to 

overcome the shortcomings of the majority of existing models. The research focused on 

developing a reliable emission model that is simple in its structure, which in this case consists of 

eight coefficients and two main variables, the instantaneous fuel estimate and speed.  

The model’s estimates were compared against MOVES to assess its validity. Also, the model was 

implemented on 16 driving cycles representing real-world driving conditions. The average 

coefficient of determination (R2) for the emissions exceeded 0.9 for all the vehicles, and the 

maximum MAPE was approximately 18%. In addition, an LDV average model was developed for 

the same model year of the tested vehicles to provide approximate estimates for any other tested 

vehicle to save calibration time. The LDV average model provides an emission profile of a trip, 

but the prediction accuracy may be affected compared to calibrating each vehicle individually. 

For future research, testing the model against real-world data from vehicles would provide an 

additional measure of performance to assess validity. Although the model was tested in a previous 

study against real-world data from ORNL gathered by the EPA and had satisfying results, the 

vehicles were older models manufactured from 1988 to 1997 (Abdelmegeed et al., 2015). Also, 

the generalized model generated promising results, however the model should include other 

vehicle categories as SUVs and minivans. 
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6.1 CONCLUSIONS 

This research presented an effort to enhance the VT-CPFM model, which can be used to enhance 

the current state-of-practice vehicle emissions estimation. The research focused on constructing a 

simple and reliable model that could be easily calibrated and applied to estimate CO, HC and NOx 

emissions. Although, the model depends on fuel as the sole explanatory variable for light-duty 

vehicles, it can estimate the emissions more accurately by adding the speed parameter. The model 

maintains its consistency by utilizing instantaneous fuel estimates and speed to predict heavy-duty 

diesel truck emissions. The model overcomes two major shortcomings that most existing models 

suffer from, namely; it does not produce a bang-bang control system and uses publicly available 

data to calibrate model parameters. The model for the two classifications of vehicles was calibrated 

and validated using cross validation methods. Furthermore, the performance of the model was 

further investigated and validated against other current state-of-the-practice models. Although the 

model does not use extensive data to calibrate the model parameters and does not require special 

devices to measure required data, it resulted in approximately better estimates than current state-

of-the-art models. The applicability of the model was tested on various vehicles to show 

consistency in results. The same model can be used to estimate the three types of emissions. In 

addition, the simplicity of the model will save time and money.  

6.1.1 Developing VT-CPFM to estimate LDVs emissions 

 The model includes instantaneous fuel estimates and speed to simplify the model 

utilization. 

 The estimated emission rates were highly correlated to in-field data. In addition, the model 

performance was evaluated by comparing the model against VT-Micro estimates, which 

had a good fit for CO, HC and NOx.  

 The model was tested and compared with MOVES data developed by EPA, which revealed 

the model robustness. 

 The recent data were used to demonstrate the applicability of the proposed model on newer 

vehicle technologies. 

 The model was tested on older and recent vehicle models to reveal the consistency in 

results. 

 The model was implemented on 16 driving cycles to ensure the validity of the model.  

 The developed average model provides emission profiles for the trip to save calibration 

time. However to improve the accuracy of the estimates, the model should be calibrated 

individually on each vehicle. 

6.1.2 Heavy-duty diesel trucks emission model based on VT-CPFM 

 The same model structure of LDVs was used to ensure its reliability and applicability on 

different vehicles classifications and characteristics. 

 The model was calibrated and validated based from data provided by the University of 

California, Riverside. The eight HDDTs had accurate estimates based on NOx good fit 

which is the key target emission. 

 The performance of the model was further investigated by comparing the estimates against 

CMEM model structure. The average R2 values of CO, HC and NOx were higher than 



80 
 

CMEM revealing the robustness of the model. Also, the SMAPE and MAPE of the model 

were lower than CMEM. 

6.2 FURTHER RESEARCH 

The following recommendations can be pursued to expand and enhance the current research work: 

 With regards to future work, recent HDDT data should be utilized to demonstrate the 

applicability of the proposed model on newer vehicle technologies such as such as selective 

catalytic reduction (SCR) on vehicle emissions. Given that the VT-CPFM focuses on 

developing tailpipe emissions directly, where the specifics of the engine and the exhaust 

system is not needed to develop the model, it is anticipated that this should not be 

challenging.  

 It would be better if EPA recommends that truck manufacturers provide the fuel economy 

ratings of trucks to save time in calibrating the VT-CPFM model coefficients. 

 Also, real-world data for later LDVs should be used to capture the impact of emerging 

technologies since MOVES data were only used for recent models. Although, it was not 

easy to acquire these data by contacting different organizations, the data were either not 

complete or there were errors in collecting them which resulted in inconsistency in their 

estimation. Moreover, there were attempts to collect the emission data over 8 months with 

AxionGO which is a portable emissions measurement system (PEMS). However, the 

device could not estimate the mass of the emissions due to errors in the sensors. 

 Further research may be conducted to generalize the model on any light-duty vehicle model 

where the parameters do not have to be calibrated manually for each dataset. Other vehicle 

categories such as: minivans and light-duty trucks (LDTs) should be tested and included in 

the modeling procedure. However, preliminary analysis revealed that the model 

coefficients can be estimated directly from EPA city and highway fuel economy ratings 

only.  
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Matlab code to calibrate the model  

Simplified code to generate the model coefficients with or without another dataset to validate the 

model 
%% Subaru Data  

Subaru_Data=xlsread('ORNL_Data.xlsx','Subaru','H2:M1478'); 

Subaru_speed=Subaru_Data(:,1); 

Subaru_acc=Subaru_Data(:,2);    

Subaru_fuel=Subaru_Data(:,3); 

Subaru_CO=Subaru_Data(:,4); 

Subaru_HC=Subaru_Data(:,5); 

Subaru_NOx=Subaru_Data(:,6); 

% Power and Resistance calculation 

H=0; 

rho=1.2256; 

Cd=0.35; 

Ch=1-0.085.*H; 

Af=1.8362; 

m=1350; 

Cr=1.75; 

c1=0.0328; 

c2=4.575; 

% resistance formula 

R_Subaru=(rho/25.92)*Cd*Ch*Af.*((Subaru_speed).^2)+9.8066*m*(Cr/1000)*

(c1.*(Subaru_speed)+c2)+9.8066*m*0; 

% Power on  formula 

P_Subaru=(((R_Subaru+m.*(1.04.*Subaru_acc))./(3600.*0.92))).*(Subaru_s

peed); 

  

%fuel consumption rate from VT-CPFM 

F_Subaru=zeros(length(P_Subaru),1); 

for i=1:length(P_Subaru) 

    if(P_Subaru(i)>=0) 

F_Subaru(i)=0.00033831+(0.00013049)*P_Subaru(i)+(1e-6)*P_Subaru(i)^2; 

    else 

    

F_Subaru(i)=0.00033831; 

    end 

end 

 

% Calibration and validation of the model 

HCE=[] 

for i=1:100 % number of simulation (cross validation) 

    t_fuel=F_Subaru; % save your orginal data (predictrors) 

    t_velocity=Subaru_speed; 

    t_HC=(sqrt(Subaru_HC)); %save our orignal response 

   t_ones=ones(length(Civic_emission),1); 

ind=randsample(length(Civic_emission),floor(length(Civic_emission)*0.3

)); % choose the raws randomly into 70/30 

    Fuel_test=t_fuel(ind); % get the test (predictor) 

   V_test=t_velocity(ind); 
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    t_fuel(ind)=[];% get the training data (predictor) 

    t_velocity(ind)=[]; 

    HC_test=t_HC(ind);% get the test (response) 

    t_HC(ind)=[];% get the training (response) 

    test=t_ones(ind); 

    t_ones(ind)=[]; 

     

   % x=[t_ones t_fuel t_fuel.^2 t_fuel.^3]; % Construct your x matrix 

without speed  

       x=[t_ones t_velocity t_fuel t_velocity.*t_fuel t_fuel.^2 

t_velocity.*t_fuel.^2 t_fuel.^3 t_velocity.*t_fuel.^3]; % Construct 

your x matrix with speed paramter 

   % BETA=inv(x'*x)*x'*t_HC;% Estimae the model Coeficients 

   BETA=inv(x'*x)*x'*t_HC; 

    HCE=[HCE BETA]; % save the HCeficients 

    estimates=mean(HCE');  %get the mean of Coeficients 

   % pred=[test Fuel_test Fuel_test.^2 Fuel_test.^3]*BETA; 

    pred=[test V_test Fuel_test V_test.*Fuel_test Fuel_test.^2  

V_test.*Fuel_test.^2 Fuel_test.^3  V_test.*Fuel_test.^3]*BETA; 

    

    SST=sum((HC_test-mean(HC_test)).^2); 

    SSE=sum(((HC_test-pred).^2)); 

    R2(i)=1-(SSE/SST); %  

       

    estimates=mean(HCE');             %resulted coefficients 

    SMAPE(i)=mean((abs(HC_test-pred))./((HC_test+pred)./2)); 

    MAPE_HC(i)=(abs(sum(HC_test)-sum(pred)))./sum(HC_test); 

end 

R2=mean(R2) 

 

Calibration of the model without dividing the data, if there is another dataset  
 

Subaru_emission=sqrt(Subaru_HC); 

tbl=table(Subaru_emission,Subaru_speed,F_Subaru,'VariableNames',{'Suba

ru_emission','Subaru_speed','F_Subaru'}); 

 modelspec='Subaru_emission~Subaru_speed*F_Subaru^3'; 

 md1=fitlm(tbl,modelspec) 
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The environmental Protection Agency and the National Highway Traffic Safety Administration 

(NHTSA), DOT have developed greenhouse gas (GHG) emissions and fuel efficiency standards 

for heavy and medium-duty vehicles (DieselNet, 2017). 

The GHG emissions and fuel efficiency standards were developed based on two phases: 

1. Phase 1 regulation: it covers model years (MY) 2014-2018. 

2. Phase 2 regulation: it applies to MY 2021-2027 vehicles and was published on August 

16, 2016. 

The combination tractors standards were adopted based on three categories: weight class, cab 

height and roof height as represented in table B-1 (DieselNet, 2017). 

 

Table B-1 Final Phase 1 (2017) and Phase 2 (2027) combination tractor standards 

 

 

Table B-2 lists the engine-based standards must be met by heavy-heavy-duty (HHD) and 

medium-heavy-duty (MHD) diesel engines used in tractors (DieselNet, 2017). 
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Table B-2 Engine standards for engines installed in tractors (SET cycle) 

 

 

Table B-3 demonstrates the emission standards of commercial trailers based on phase 2 

(DieselNet, 2017). 

Table B-3 Final (MY 2027) standards for full-aero box vans 

 

Table B-4 Phase 1 final (MY 2017) vocational vehicle standards 
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Table B-5 Phase 2 final (MY 2027) vocational vehicle standards 

 

 

Table B-6 represents the Engine standards for light heavy-duty (LHD), medium heavy-duty 

(MHD), heavy heavy-duty (HHD) diesel engines and for heavy-duty gasoline engines 

(DieselNet, 2017). 
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Table B-6 Engine standards for engines installed in vocational vehicles (FTP cycle) 

 

 

REFRENCES 

Diesel Net. 2017, “Heavy-Duty Vehicles: GHG Emissions & Fuel Economy”. Available online at: 

https://www.dieselnet.com/standards/us/fe_hd.php#co2. Accessed 8 April, 2017 

 

 

 

 

 



89 
 

 

 

 

 

 

 

 

 

 

Appendix C 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



90 
 

The coefficents of the developed model based on MOVES data listed in the following tables: 

Table C-1 HC Model Coefficients 

Vehicle 𝑎  𝑏   𝑐  𝑑 𝑒  𝑓  𝑔  ℎ  

Honda Accord -0.01302 0.000951 44.252 -1.364 -18956 783.120 3955400 -109690 

Honda Civic -0.00673 0.000808 38.527 -1.288 -17800 860.610 4605900 -134070 

Ford Focus -0.00474 0.000730 34.848 -1.091 -15170 715.120 3721600 -106840 

Mazda 3 -0.00478 0.000750 28.035 -0.937 -10035 504.250 2114900 -61927 

Toyota Camry -0.00641 0.000776 33.039 -1.035 -12918 590.910 2742300 -78216 

Nissan Altima -0.00754 0.000817 32.830 -1.054 -12417 569.990 2525200 -72352 

Ford Fusion -0.01098 0.000897 40.174 -1.245 -16563 702.750 3417500 -95527 

Chevrolet Cruze -0.01139 0.000899 46.507 -1.412 -21773 903.430 5033400 -139350 

Chevrolet Malibu -0.01289 0.000941 41.495 -1.263 -16646 681.370 3242500 -89492 

Hyundai Sonata -0.01019 0.000880 39.853 -1.247 -16734 723.050 3569800 -100420 

Chrysler 300 -0.01343 0.000935 34.251 -1.003 -11018 434.420 1688500 -45783 

Toyota Corolla -0.00761 0.000769 38.755 -0.174 -1052 254.050 -89464 -21917 

 

Table C-2 NOx Model Coefficients 

Vehicle 𝑎  𝑏   𝑐  𝑑 𝑒  𝑓  𝑔  ℎ  

Honda Accord -0.02749 0.000849 67.514 -0.418 -12241 441.820 1468800 -53244 

Honda Civic -0.01578 0.000807 56.197 -0.347 -5189 467.370 432040 -55373 

Ford Focus -0.01330 0.000787 55.028 -0.266 -6679 397.690 725250 -47150 

Mazda 3 -0.01263 0.000792 41.541 -0.235 -2209 272.480 77200 -24513 

Toyota Camry -0.01612 0.000799 51.532 -0.269 -6278 329.410 641430 -35323 

Nissan Altima -0.01769 0.000810 49.676 -0.288 -5513 315.470 523320 -32168 

Ford Fusion -0.02399 0.000833 61.636 -0.366 -10042 395.240 1150000 -45582 

Chevrolet Cruze -0.02505 0.000833 72.556 -0.416 -14416 511.450 1905000 -67872 

Chevrolet Malibu -0.02754 0.000846 64.087 -0.384 -11214 385.820 1269200 -43854 

Hyundai Sonata -0.02250 0.000828 60.827 -0.362 -9514 405.070 1094200 -47189 

Chrysler 300 -0.02924 0.000844 54.600 -0.304 -8439 248.760 777100 -23142 

Toyota Corolla -0.00165 0.000654 24.984 -0.819 -8804 471.550 2011200 -59242 
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Table C-3 CO Model Coefficients 

Vehicle 𝑎  𝑏   𝑐  𝑑 𝑒  𝑓  𝑔  ℎ  

Honda Accord -0.40332 0.009843 1150.500 -16.196 -613890 9845.700 109680000 -1531600 

Honda Civic -0.27270 0.008100 1090.500 -15.248 -694070 11048.000 149260000 -1995600 

Ford Focus -0.20828 0.007191 928.000 -12.785 -560190 9046.400 114050000 -1552000 

Mazda 3 -0.22990 0.007411 796.760 -11.046 -407830 6488.700 70695000 -935110 

Toyota Camry -0.24885 0.007743 878.260 -12.179 -463120 7467.700 82224000 -1125900 

Nissan Altima -0.28227 0.008215 891.000 -12.447 -450910 7236.800 76858000 -1048000 

Ford Fusion -0.35610 0.009201 1051.100 -14.744 -550520 8846.000 96674000 -1343900 

Chevrolet Cruze -0.35997 0.009230 1195.300 -16.714 -704420 11330.000 139000000 -1942800 

Chevrolet Malibu -0.39652 0.009733 1067.700 -14.988 -532520 8548.300 88877000 -1244200 

Hyundai Sonata -0.34013 0.008991 1052.900 -14.765 -567650 9120.400 102730000 -1422100 

Chrysler 300 -0.39745 0.009691 853.790 -11.894 -337310 5417.800 44483000 -627540 

Toyota Corolla -0.13990 0.006269 703.210 -9.565 -380980 6073.300 70187000 -913590 

 


