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Abstract We develop here a computationally effective approach for pro-
ducing high-quality H∞-approximations to large scale linear dynamical sys-
tems having multiple inputs and multiple outputs (MIMO). We extend
an approach for H∞ model reduction introduced by Flagg, Beattie, and
Gugercin [1] for the single-input/single-output (SISO) setting, which com-
bined ideas originating in interpolatory H2-optimal model reduction with
complex Chebyshev approximation. Retaining this framework, our approach
to the MIMO problem has its principal computational cost dominated by
(sparse) linear solves, and so it can remain an effective strategy in many large-
scale settings. We are able to avoid computationally demanding H∞ norm
calculations that are normally required to monitor progress within each opti-
mization cycle through the use of “data-driven” rational approximations that
are built upon previously computed function samples. Numerical examples
are included that illustrate our approach. We produce high fidelity reduced
models having consistently better H∞ performance than models produced
via balanced truncation; these models often are as good as (and occasionally
better than) models produced using optimal Hankel norm approximation as
well. In all cases considered, the method described here produces reduced
models at far lower cost than is possible with either balanced truncation or
optimal Hankel norm approximation.
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1 Introduction

The accurate modeling of dynamical systems often requires that a large num-
ber of differential equations describing the evolution of a large number of state
variables be integrated over time to predict system behavior. The number of
state variables and differential equations involved can be especially large and
forbidding when these models arise, say, from a modified nodal analysis of
integrated electronic circuits, or more broadly, from a spatial discretization
of partial differential equations over a fine grid. Most dynamical systems aris-
ing in practice can be represented at least locally around an operating point,
with a state-space representation having the form

E ẋ = Ax+B u,

y = C x+Du,
(1)

where E ∈ RN ×N is the descriptor matrix, A ∈ RN ×N is the system
matrix and x ∈ RN , u ∈ Rm, and y ∈ Rp (p,m � N) represent the state,
input, and output of the system, respectively. A static feed-through relation
from the control input u to the control output y is modeled through the
matrix D ∈ Rp×m. Most practical systems involve several actuators (input
variables) and several quantities of interest (output variables), motivating our
focus here on systems having multiple inputs and multiple outputs (MIMO).

In many application settings, the state dimension N (which typically
matches the order of the model) can grow quite large as greater model fi-
delity is pursued, and in some cases it can reach magnitudes of 106 and
more. Simulation, optimization, and control design based on such large-scale
models becomes computationally very expensive, at times even intractable.
This motivates consideration of reduced order models (ROMs), which are
comparatively low-order models that in spite of having significantly smaller
order, n� N , are designed so as to reproduce the input-output response of
the full-order model (FOM) accurately while preserving certain fundamen-
tal structural properties, that may include stability and passivity. For state
space models such as (1), reduced models are obtained generally through
Petrov-Galerkin projections having the form:

Er︷ ︸︸ ︷
W>E V ẋr =

Ar︷ ︸︸ ︷
W>AV xr +

Br︷ ︸︸ ︷
W>B u,

yr = C V︸︷︷︸
Cr

xr + Dr u.
(2)

The projection matrices V,W ∈ RN ×n become the primary objects of
scrutiny in the model reduction enterprise, since how they are chosen has
a great impact on the quality of the ROM. For truly large-scale systems,
interpolatory model reduction, which includes approaches known variously as
moment matching methods and Krylov subspace methods, has drawn signif-
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icant interest due to its flexibility and comparatively low computational cost
[2, 3, 4]. Indeed, these methods typically require only the solution of large
(generally sparse) linear systems of equations, for which several optimized
methods are available. Through the appropriate selection of V and W , it is
possible to match the action of the transfer function

G(s) = C (sE −A)
−1
B +D (3)

along arbitrarily selected input and output tangent directions at arbitrar-
ily selected (driving) frequencies. The capacity to do this is central to our
approach and is stated briefly here as:

Theorem 1 ([5, 6]). Let G(s) be the transfer function matrix (3) of the
FOM (1) and let Gr(s) be the transfer function matrix of an associated ROM
obtained through Petrov-Galerkin projection as in (2). Suppose σ, µ ∈ C are
complex scalars (“shifts”) that do not coincide with any eigenvalues of the
matrix pencil (E,A) but otherwise are arbitrary. Let also r ∈ Cm and l ∈ Cp
be arbitrary nontrivial tangent directions. Then

G(σ) · r = Gr(σ) · r if (A− σE)
−1
Br ∈ Ran(V ), (4a)

l> ·G(µ) = l> ·Gr(µ) if (A− µE)
−>

C>l ∈ Ran(W ), (4b)

l> ·G′(σ) · r = l> ·G′r(σ) · r if, additionally, σ = µ. (4c)

A set of complex shifts, {σi}ni=1, {µi}ni=1, with corresponding tangent direc-
tions, {ri}ni=1, {li}ni=1, will be collectively referred to as interpolation data in
our present context. We define primitive projection matrices as

Ṽ :=
[
(A− σ1E)−1Br1, . . . , (A− σnE)−1Brn

]
(5a)

W̃ :=
[
(A− µ1E)−>C>l1, . . . , (A− µnE)−>C>ln

]
(5b)

Note that Ṽ and W̃ satisfy Sylvester equations having the form:

A Ṽ − E Ṽ Sσ = BR̃ and A>W̃ − E>W̃ S>µ = C>L̃, (6)

where Sσ = diag (σ1, .., σn) ∈ Cn×n, Sµ = diag (µ1, .., µn) ∈ Cn×n, R̃ =

[r1, .., rn] ∈ Cm×n and L̃ = [l1, . . . , ln] ∈ Cp×n [7]. In this way, the Petrov-
Galerkin projection of (2) is parameterized by interpolation data and the
principal task in defining interpolatory models then becomes the judicious
choice of shifts and tangent directions.

Procedures have been developed over the past decade for choosing in-
terpolation data that yield reduced models, Gr(s), that minimize, at least
locally the approximation error, G(s) − Gr(s), as measured with respect to
the H2-norm:
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‖G−Gr‖H2
:=

√
1

2π

∫ ∞
−∞
‖G(jω)−Gr(jω)‖2F dω (7)

(see [2]). Minimizing the H2-error, ‖G−Gr‖H2
, is of interest through the

immediate relationship this quantity bears with the induced system response
error:

‖y − yr‖L∞ ≤ ‖G−Gr‖H2
‖u(t)‖L2

, (8)

A well-known approach to accomplish this that has become popular at least
in part due to its simplicity and effectiveness is the Iterative Rational Krylov
Algorithm (IRKA) [8], which, in effect, runs a simple fixed point iteration
aimed at producing interpolation data that satisfy first-order H2-optimality
conditions, i.e.,

G(−λi) · b̂i = Gr(−λi) · b̂i, ĉ>i ·G(−λi) = ĉ>i ·Gr(−λi), (9a)

and ĉ>i ·G′(−λi) · b̂i = ĉ>i ·G′r(−λi) · b̂i. (9b)

for i = 1, . . . , n. The data λi, b̂i and ĉi are reduced poles and right/left vector
residues corresponding to the pole-residue expansion of the ROM:

Gr(s) =

n∑
i=1

ĉi b̂
>
i

s− λi
. (10)

Despite the relative ease with which H2-optimal reduced models can be
obtained, there are several circumstances in which it might be preferable to
obtain a ROM which produces a small error as measured in the H∞-norm:

‖G−Gr‖H∞ := max
ω

ςmax(G(jω)−Gr(jω)), (11)

where ςmax(M) denotes the largest singular value of a matrix M (see [2]).
ROMs having small H∞-error produce an output response with a uniformly
bounded “energy” error:

‖y − yr‖L2
≤ ‖G−Gr‖H∞ ‖u‖L2

. (12)

The H∞-error is also used as a robustness measure for closed-loop control
systems and is therefore of central importance in robust control. It finds
frequent use in aerospace applications, among others, where the L2 energy of
the system response is of critical interest in design and optimization.

Strategies for producing reduced models that give good H∞ performance
has long been an active area of research [9]. Analogous to the H∞-control
design problem, the optimal H∞ reduction problem can be formulated in
terms of linear matrix inequalities, although advantageous features such as
linearity and convexity are lost in this case [10, 11]. Due to the high cost
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related to solving these matrix inequalities, this approach is generally not
feasible in large-scale settings.

Another family of methods for the H∞ reduction problem relates it to
the problem of finding an optimal Hankel norm approximation (OHNA)
[12, 13, 14]. Along these lines the balanced truncation (BT) algorithm yields
rigorous upper bounds on the H∞ error and often produces small approxi-
mation error, especially for higher reduced order approximants [2, 15]. Each
of these procedures is generally feasible only for mid-size problems since ei-
ther an all-pass dilation requiring large-scale eigenvalue decomposition (for
OHNA) or the solution of generalized Lyapunov equations (for BT) is re-
quired. Extensions to large-scale models are available, however – e.g., in
[16, 17, 18, 19, 20, 21].

A wholly different approach to the H∞ model reduction problem for SISO
models was proposed by Flagg, Beattie, and Gugercin in [1]. A locally H2-
optimal reduced model is taken as a starting point and adjusted through the
variation of rank-one modifications parameterized by the scalar feed-through
term, D. Minimization of the H∞-error with respect to this parameterization
available through D produces ROMs that are observed to have generally very
good H∞-performance, often exceeding what could be attained with OHNA.

In this work, we extend these earlier interpolatory methods to MIMO sys-
tems. We introduce a strategy that reduces the computational expense of
the intermediate optimization steps by means of data-driven MOR methods
(we use vector fitting [22, 23] ). Stability of the reduced model is guaranteed
through appropriate constraints in the resulting multivariate optimization
problem. Numerical examples show effective reduction of approximation er-
ror, often outperforming both OHNA and BT.

2 MIMO Interpolatory H∞-approximation (MIHA)

In this section we first characterize the H∞-optimal reduced order models
from the perspective of rational interpolation. This motivates the usage of
H2-optimal reduction as a starting point for the model reduction algorithm
we propose for the H∞ approximation problem.

2.1 Characterization of H∞-approximants via rational
interpolation

In the SISO case, Trefethen [14] has characterized best H∞ approximations
within a broader context of rational interpolation:
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Theorem 2 (Trefethen [14]). Suppose G(s) is a (scalar-valued) transfer

function associated with a SISO dynamical system as in (3). Let Ĝr(s) be
an optimal H∞ approximation to G(s) and let Gr be any nth order stable
approximation to G(s) that interpolates G(s) at 2n + 1 points in the open
right half-plane. Then

min
ω∈R
|G(jω)−Gr(jω)| ≤ ‖G− Ĝr‖H∞ ≤ ‖G−Gr‖H∞

In particular, if |G(jω)−Gr(jω)| = const for all ω ∈ R then Gr is itself an
optimal H∞-approximation to G(s).

For the SISO case, a good H∞ approximation will be obtained when the
modulus of the error, |G(s)−Gr(s)|, is nearly constant as s = jω runs along
the imaginary axis. In the MIMO case, the analogous argument becomes
more technically involved as the maximum singular value of matrix-valued
function G(s) − Gr(s) will not generally be analytic in the neighborhood of
the imaginary axis (e.g., where multiple singular values occur). Nonetheless,
the intuition of the SISO case carries over to the MIMO case, as the follow-
ing Gedankenexperiment might suggest: Suppose that Ĝr is an H∞-optimal
interpolatory approximation to G but ςmax(G(jω)−Gr(jω)) is not constant
with respect to ω ∈ R. Then there exist frequencies ω̂ and ω̃ ∈ R and ε > 0
such that

‖G− Ĝr‖H∞ = ςmax(G(jω̂)− Ĝr(jω̂)) ≥ ε+ min
ω
ςmax(G(jω)− Ĝr(jω))

= ε+ ςmax(G(jω̃)− Ĝr(jω̃)).

By nudging interpolation data away from the vicinity of ω̃ and toward ω̂
while simultaneously nudging the poles of Ĝr away from the vicinity of ω̂
and toward ω̃, one may decrease the value of ςmax(G(jω̂) − Ĝr(jω̂)) while

increasing the value of ςmax(G(jω̃) − Ĝr(jω̃)). This will (incrementally) de-

crease the H∞ norm and bring the values of ςmax(G(jω̂) − Ĝr(jω̂)) and

ςmax(G(jω̃)− Ĝr(jω̃)) closer together toward a common value.
Of course, the nudging process described above contains insufficient detail

to suggest an algorithm, and indeed, our approach to this problem follows a
somewhat different path, a path that nonetheless uses the guiding heuristic
for (near) H∞-optimality:

ςmax(G(jω)− G̃r(jω)) ≈ const for all ω ∈ R. (13)

Approximations with good H∞ performance should have an advantageous
configuration of poles and interpolation data that locates them symmetrically
about the imaginary axis, thus balancing regions where ςmax(G(s) − G̃r(s))
is big (e.g., pole locations) symmetrically against regions reflected across

the imaginary axis where ςmax(G(s) − G̃r(s)) is small (e.g., interpolation
locations). This configuration of poles and interpolation data, we note, is
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precisely the outcome of optimal H2 approximation as well, and this will
provide us with an easily computable approximation that is likely to have
good H∞ performance.

2.2 H∞ approximation with interpolatory H2-optimal
initialization

Local H2-optimal ROMs are often observed to give good H∞ performance –
this is in addition to the expected good H2 performance. This H∞ behaviour
is illustrated in Figure 1, where the H∞ approximation errors of local H2-
optimal ROMs produced by IRKA are compared to ROMs of the same order
obtained through BT for the CD player MIMO benchmark model [24].

2 4 6 8 10 12 14

1

1.5

2

2.5

Reduced order

‖G
−
G

r
,I

R
K

A
‖ H
∞

‖G
−
G

r
,B

T
‖ H
∞

Ratio of H∞-error of IRKA over BT

Fig. 1: Numerical investigations indicate that IRKA models are often good
also in terms of the H∞-error.

The frequently favourable H∞ behaviour of IRKA models has particular
significance in this context, since they are computationally cheap to obtain
even in large-scale settings, indeed often they are much cheaper than com-
parable BT computations. The resulting locally H2-optimal ROMs can be
further improved (with respect to H∞ error) by relaxing the (implicit) in-
terpolation constraint at ∞ while preserving the H2-optimal interpolation
conditions (which is the most important link the H2-optimal ROM has with
the original model).

Consider the partial fraction expansion

Gr(s) =

N∑
i=1

ĉib̂
>
i

s− λi
+Dr. (14)



8 Alessandro Castagnotto, Christopher Beattie, and Serkan Gugercin

For ease of exposition, we assume the poles, λi, to be simple, although the
results we develop here can be extended to the case of higher multiplicity.
The input/output behavior is determined by n scalar parameters λi, n pairs

of input/output residuals b̂i, ĉi and the p×m-dimensional feed-through Dr.
Considering that a constant scaling factor can be arbitrarily defined in the
product of the residuals, this leaves us a total of n (p+m)+p ·m parameters,
n (p+m) of which can be described in terms of two-sided tangential inter-
polation conditions (4). This interpolation data is established for the original
H2-optimal ROM and we wish it to remain invariant over subsequent adjust-
ments, so the only remaining degrees-of-freedom are the p ·m entries in the
feed-through matrix Dr.

In the typical context of H2-optimal model reduction, Dr is chosen to
match the feed-through term D of the original model, thus guaranteeing
that the error G − G̃r remains in H2. Note that D remains untouched by
the state-space projections in (2), moreover since typically p,m � N , the
feed-through term need not be involved in the reduction process and may be
retained from the FOM. Indeed, retaining the original feed-through term is a
necessary condition forH2 optimality, forcing interpolation at s =∞ and as a
consequence, small error at higher frequencies. Contrasting significantly with
H2-based model reduction, good H∞ performance does not require Dr = D,
and in this work we exploit this flexibility in a crucial way. A key observa-
tion playing a significant role in what follows was made in [25, 26] that the
feed-through term Dr induces a parametrization of all reduced order models
satisfying the two-sided tangential interpolation conditions.

This result is summarized by following theorem taken from [25, Thm. 4.1]
and [26, Thm. 3]

Theorem 3. Let R̃, L̃ be defined through the Sylvester equations in (6). As-
sume, without loss of generality, that the full order model satisfies D = 0
and let the nominal reduced model G0

r(s) = Cr (sEr −Ar)−1Br be obtained
through Petrov-Galerkin projection using the primitive projection matrices
(5). Then, for any Dr ∈ Cp×m, the perturbed reduced order model

G̃Dr (s,Dr) =
(
C̃r +DrR̃

) [
sẼr −

(
Ãr + L̃>DrR̃

)]−1 (
B̃r + L̃>Dr

)
+Dr

(15)
also satisfies the tangential interpolation conditions (4).

Note that for D 6= 0, the results of Theorem 3 can be trivially extended
by adding D to the right-hand side in (15). Even though for theoretical

consideration the use of primitive Krylov bases Ṽ , W̃ introduced in (5) is often
convenient, from a numerical standpoint there are several reason why one may
choose a different basis for the projection matrices. This next result shows
that the interpolation conditions are preserved also for arbitrary bases—
in particular also real and orthonormal bases—provided that the shifting
matrices R and L are appropriately chosen.
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Corollary 1. Let Tv, Tw ∈ Cn×n be invertible matrices used to transform
the primitive bases Ṽ , W̃ of the Krylov subspace to new bases V = Ṽ Tv
and W = W̃Tw. Let the same transformation be applied to the matrices of
tangential directions, resulting in R = R̃Tv and L = L̃Tw. Then, for any Dr,
the ROM GDr is given by

GDr (s,Dr) = (Cr +DrR)︸ ︷︷ ︸
CD

r

sEr − (Ar + L>DrR
)︸ ︷︷ ︸

AD
r


−1 (

Br + L>Dr

)︸ ︷︷ ︸
BD

r

+Dr

(16)

Proof. The proof amounts to showing that the transfer function matrix GDr
of the ROM is invariant to a change of basis from Ṽ and W̃ as long as R̃ and

L̃ are adapted accordingly.

GD
r −Dr = CD

r

(
sE −AD

r

)−1
BD

r

= (CV +DrR)
[
sW>EV −W>AV − L>DrR

>]−1 (
W>B + L>Dr

)
=
(
CṼ +DrR̃

)
Tv

[
T>w

(
sW̃>EṼ − W̃>AṼ − L̃>DrR̃

>
)
Tv

]−1
T>w

(
W̃>B + L̃>Dr

)
=
(
CṼ +DrR̃

) [
sW̃>EṼ − W̃>AṼ − L̃>DrR̃

>
]−1 (

W̃>B + L̃>Dr

)
= G̃D

r −Dr .

The results of Theorem 3 generalize to the case of arbitrary bases. Following
the notation from [25, Definition 2.1], the state-space models resulting from

Petrov-Galerkin projections with V,W and Ṽ , W̃ respectively are restricted
system equivalent. As a consequence, they share the same transfer function
matrix.

Using the Sherman-Morrison-Woodbury formula [27] for the inverse of
rank k perturbations of a matrix, we are able to decompose the transfer
function of the shifted reduced model into the original reduced model and an
additional term.

Corollary 2. Define the auxiliary variable Kr := sEr − Ar. The transfer
function of the shifted reduced model GDr can be given as

GDr (s) = G0
r(s) +∆GDr (s,Dr), (17)

where G0
r is the transfer function of the unperturbed model and ∆GDr is de-

fined as

∆GDr = ∆1+∆2 +∆3 · (∆4)
−1 ·∆2 +Dr

given

∆1 := CrK−1r L>Dr

∆3 := (Cr +DrR)K−1r L>

∆2 := DrRK−1r
(
Br + L>Dr

)
∆4 := I −DrRK−1r L>

(18)
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Proof. Note that by the Sherman-Morrison-Woodbury formula, following
equality holds:(
Kr − L>DrR

)−1
= K−1r +K−1r L>

(
I −DrRK−1r L>

)−1
DrRK−1r . (19)

Using this relation in the definition of GDr , the proof is completed by straight-
forward algebraic manipulations.

We proceed by attempting to exploit the additional degrees-of-freedom
available inDr to trade off excessive accuracy at high frequencies for improved
approximation in lower frequency ranges, as measured with the H∞-norm.
We first obtain an H2-optimal ROM by means of IRKA and subsequently
minimize the H∞-error norm with respect to the constant feed-through ma-
trix Dr while preserving tangential interpolation and guaranteeing stability.
The resulting ROM G∗r will represent a local optimum out of the set of
all stable ROMs satisfying the tangential interpolation conditions. The out-
line of our proposed reduction procedure, called MIMO interpolatory H∞-
approximation (MIHA), is given in Algorithm 1.

Algorithm 1 MIMO Interpolatory H∞-Approximation (MIHA)

Input: G(s), n

Output: Stable, locally optimal reduced oder model G∗r , approximation error e∗H∞
1: G0

r ← IRKA(G(s), n)

2: D∗r ← arg minDr

∥∥G(s)−GD
r (s,Dr)

∥∥
H∞

s.t. GD
r (s,D∗r ) is stable

3: G∗r ← GD
r (s,D∗r )

4: e∗H∞ ← ‖G(s)−G∗r(s)‖H∞

Numerical results in Section 3 will show the effectiveness of this procedure
in further reducing the H∞-error for a given IRKA model. However, at this
stage the optimization in Step 2 appears problematic, for it requires both
the computation of the H∞-norm of a large-scale model and a constrained
multivariate optimization of a non-convex, non-smooth function. It turns out
that both of these issues can be resolved effectively, as it will be discussed in
the following sections.

2.3 Efficient implementation

As we have noted, the main computational burden of the algorithm described
above resides mainly in Step 2. We are able to lighten this burden somewhat
through judicious use of (17) and by taking advantage of previously computed
transfer function evaluations.
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2.3.1 A “free” surrogate model for the approximation error
G−G0

r

Step 1 of Algorithm 1 requires performing H2-optimal reduction using IRKA.
This is a fixed point iteration involving a number of steps k before conver-
gence is achieved. At every step j, Hermite tangential interpolation about
some complex frequencies {σi}ni=1 and tangential directions {ri}ni=1, {li}ni=1

is performed. For this purpose, the projection matrices in (5) are computed,
and it is easy to see that for all i = 1, . . . , n it holds

C · Ṽ ei = C (A− σiE)
−1
Bri = G(σi)ri (20a)

e>i W̃
> ·B = l>i C (A− σiE)

−1
B = l>i G(σi) (20b)

e>i W̃
>EṼ ei = l>i (A− σiE)

−1
E (A− σiE)

−1
ri = l>i G

′(σi)ri (20c)

Observe that, at basically no additional cost, we can gather information
about the FOM while performing IRKA. Figure 2a illustrates this point by
showing the development of the shifts during the IRKA iterations reducing
the CDplayer benchmark model to a reduced order n = 10. For all complex
frequencies indicated by a marker, tangent data for the full order model is
collected.

0 100 200 300 400
−400

−200

0

200

400

real

im
a
g
in

a
ry

Shift development over IRKA iterations

start

intermediate

final

(a) Points at which data of the FOM is col-
lected during IRKA.

0 10 20 30
10−20

10−10

100

i

ς i
/
ς 1

Singular value decay

(b) Decay of singular values of the matrix
[L, σL] for the data collected during IRKA.

Fig. 2: Data collecting during IRKA can be used to generate data-driven
surrogates.

To use this “free” data, there are various choices for “data-driven” proce-
dures that produce useful rational approximations. Loewner methods [25, 28,
29, 30] are effective and are already integrated into IRKA iteration strategies
[31]. We adopt here a vector fitting strategy [22, 32, 33, 23, 34] instead. This
allows us to produce stable low-order approximations of the reduction error
after IRKA
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G̃0
e ≈ G0

e := G−G0
r. (21)

An appropriate choice of order for the surrogate model can be obtained by
forming the Loewner L and shifted Loewner σL matrices from G and G′

evaluations that were generated in the course of the IRKA iteration and
then observing the singular value decay of the matrix [L, σL], as indicated in
Figure 2b.

Using the decomposition in (17), theH∞-norm evaluations required during
the optimization will be feasible even for large-scale full order models. In ad-
dition, it will allow us to obtain a cheap estimate ẽH∞ for the approximation
error

eH∞ :=
∥∥G−GDr ∥∥H∞ ≈ ∥∥∥G̃0

e −∆GDr
∥∥∥
H∞

= ẽH∞ (22)

2.3.2 Constrained multivariate optimization with respect to Dr

The focus of this work lies in the development of new model reduction strate-
gies. Our intent is not directed toward making a contribution to either the
theory or practice of numerical optimization and we are content in this work
to use standard optimization approaches. In the results of section 3, we rely on
state-of-the-art algorithms that are widespread and available, e.g., in mat-
lab. With that caveat understood, we do note that the constrained mul-
tivariate optimization over the reduced feed-through, Dr, is a challenging
optimization problem, so we will explain briefly the setting that seems to
work best in our case. The computation and optimization of H∞-norms for
large-scale models remains an active area of research, as demonstrated by
[35, 36, 37].

The problem we need to solve in step 2 of Algorithm 1 is

min
Dr∈Rp×m

max
ω

ςmax
(
G(jω)−GDr (jω,Dr)

)
s.t. GDr (s,Dr) is stable

(23)

which represents a non-smooth, non-convex multivariate optimization prob-
lem in a p×m-dimensional search space. In our experience, the best strategy
considering both optimization time and optimal solution is given by a combi-
nation of coordinate descent (CD) [38] and subsequent multivariate optimiza-
tion (MV). We refer to this combined strategy as CV+MV. The coordinate
descent strategy is used in this setting somewhat like an initialization pro-
cedure to find a better starting point than D0

r = 0. This initialization is
based on reducing the search space from p ·m dimensions to just one, hence
performing a much simpler univariate optimization in each step. Once one
cycle has been conducted for all elements in the feed-through matrix, the re-
sulting feed-through is used to initialize a nonlinear constrained optimization
solver that minimizes the error with respect to the whole Dr matrix. We have
used a sequential quadratic programming (SQP) method as implemented in
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matlab’s fmincon, although acceptable options for this final step abound.
Further information about optimization strategies can be found in [39].

The suitability of CD+MV is motivated by extensive simulations con-
ducted comparing different strategies, such as direct multivariate optimiza-
tion, global search (GS) [40], and genetic algorithms (GA) (cp. Figure 3).
Ultimately, we rely on the results of Section 3 to show that this procedure is
effective.
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Fig. 3: Comparison of different solvers shows the effectiveness of coordinate
descent followed by multivariate optimization.

3 Numerical results

In the following we demonstrate the effectiveness of the proposed procedure
by showing reduction results with different MIMO models. The reduction
code is based on the sssMOR toolbox2 [41]. For generation of vector fitting
surrogates, we use the vectfit3 function3 [22, 32, 33]. Note that more
recent implementation of MIMO vector fitting introduced in [23] could be
used instead, especially for improved robustness.

3.1 Heat model

Our proposed procedure is demonstrated through numerical examples con-
ducted on a MIMO benchmark model representing a discretized heat equation
of order N = 197 with p = 2 outputs and m = 2 inputs [42].

2 Available at www.rt.mw.tum.de/?sssMOR.
3 Available at www.sintef.no/projectweb/vectfit/downloads/vfut3/.

www.rt.mw.tum.de/?sssMOR
www.sintef.no/projectweb/vectfit/downloads/vfut3/
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Model reduction for this model was conducted for a range of reduced
orders; the results are summarized in Table 1. The table shows the reduced

order n, the order nm of the error surrogate G̃0
e, and the relative H∞ error

of the proposed ROM GDr , as well as the percentage improvement over the
initial IRKA model. Our proposed method improves significantly on the H∞
performance of IRKA, in some cases by more than 50%.

Table 1: Results for the heat model problem

n 1 2 3 4 5 6 7 8 9 10

nm 14 24 20 22 24 30 32 36 36 36
‖G−GD

r ‖
‖G‖ 8.7e-02 7.6e-03 1.2e-02 1.2e-03 6.5e-04 5.7e-04 4.1e-04 1.6e-04 4.4e-05 8.6e-06

1− ‖G−GD
r ‖

‖G−G0
r‖

50.8% 39.0% 27.0% 36.7% 36.0% 44.8% 52.0% 44.6% 49.5% 42.6%

Figure 4 gives a graphical representation of the reduction results. The
plots compare the approximation error achieved after applying MIHA, with
a vector fitting surrogate as described in Section 2.3.1, to other reduction
strategies. These include the direct reduction with IRKA, balanced trunca-
tion (BT), Optimal Hankel Norm Approximation (OHNA) as well as the
optimization with respect to the actual error G0

e (MIHA without surrogate).
For a better graphical comparison throughout the reduced orders studied,
the errors are related to the theoretical lower bound given by

eH∞ := ςHn+1, (24)

with which we denote the Hankel singular value of order n+ 1.
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‖G
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G

r
‖ H
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e
H
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MIHA (VF surr.)

MIHA (no surr.)

IRKA

OHNA

BT

Fig. 4: Plot of the approximation error relative to the theoretical error bound.

Notice how effectively the ROMs resulting from the Dr-optimization re-
duce the H∞-error beyond what is produced by the IRKA ROMs and that
they often, (here, in 9 out of 10 cases) yield better results than BT and
sometimes (here, in 3 out of 10 cases) yield better results even than OHNA.
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Note also that the optimization with respect to the vector-fitting surrogate
produces as good a result as optimization with respect to the true error. For
reduced order n = 8, optimization with respect to the surrogate yields even
a better result. This is not expected and may be due to the different cost
functions involved, causing optimization of the true error to converge to a
worse solution.

The plot also confirms our initial motivation in using IRKA models as
starting points, since their approximation in terms of the H∞ norm is often
not far from BT. Finally, note how in several cases the resulting ROM is very
close to the theoretical lower bound, which implies that the respective ROMs
are not far from being the global optimum.

Figure 5a shows the approximation error before and after the feed-through
optimization for a selected reduced order of 2. The largest singular value
is drastically reduced (ca. 40%) by lifting up the value at high frequencies.
This confirms our intuition that the H∞-optimal reduced order model should
have a nearly constant error modulus over all frequencies. Finally, Figure
5b demonstrates the validity of the error estimate ẽH∞ obtained using the
surrogate model.

10−2 100 102 104
10−6

10−3

100

frequency /rad/s

si
n

g
u

la
r

v
a
lu

es

before Dr opt.

after Dr opt.

(a) Singular value plot of the error before
and after optimization.
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0.95
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reduced order

e
H
∞

ẽ
H
∞

(b) Comparison of error estimate ẽH∞ ver-
sus true errror eH∞ .

Fig. 5: Optimization with the surrogate effectively reduces and provides an
accurate estimate of the true error.

3.2 ISS model

Similar simulations were conducted on a MIMO model with m = 3 inputs
and p = 3 outputs of order N = 270, representing the 1r component of the
International Space Station (ISS) [24]. The results are summarized in Table
2 and Figure 6. Note that the H∞-error after IRKA is comparable to that
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Table 2: Results for the ISS problem

n 2 4 6 8 10 12 14 16 18 20

nm 12 18 12 18 18 15 42 48 30 30
‖G−GD

r ‖
‖G‖ 2.7e-01 9.4e-02 8.4e-02 7.9e-02 3.6e-02 3.4e-02 2.2e-02 2.2e-02 1.0e-02 7.7e-03

1− ‖G−GD
r ‖

‖G−G0
r‖

7.5 % 9.9% 8.8% 4.9% 9.5% 13.8% 23.3% 15.7% 3.5% 25.8%

of BT and the proposed procedure is effective in further reducing the error,
outperforming BT in all cases investigated. Finally, note also in this case

0 5 10 15 20
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∞

Error norms with respect to the theoretical lower bound

MIHA (VF surr.)

IRKA

BT

Fig. 6: Plot of the approximation error relative to the theoretical error bound
(ISS).

that the modulus of the error due to this H∞-approximation procedure is
nearly constant, as anticipated. This is demonstrated in Figure 7, where the
error plots for the reduction order n = 10 are compared.
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Fig. 7: Singular value plot of the error before and after optimization (ISS).
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