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Semi-Parametric Techniques for Multi-Response Optimization

Wen Wan

(ABSTRACT)

The multi-response optimization (MRO) problem in response surface methodology (RSM)
is quite common in industry and in many other areas of science. During the optimization
stage in MRO, the desirability function method, one of the most flexible and popular MRO
approaches and which has been utilized in this research, is a highly nonlinear function.
Therefore, we have proposed use of a genetic algorithm (GA), a global optimization tool,
to help solve the MRO problem. Although a GA is a very powerful optimization tool, it
has a computational efficiency problem. To deal with this problem, we have developed an
improved GA by incorporating a local directional search into a GA process.

In real life, practitioners usually prefer to identify all of the near-optimal solutions, or all
feasible regions, for the desirability function, not just a single or several optimal solutions,
because some feasible regions may be more desirable than others based on practical consid-
erations. We have presented a procedure using our improved GA to approximately construct
all feasible regions for the desirability function. This method is not limited by the number
of factors in the design space.

Before the optimization stage in MRO, appropriate fitted models for each response are re-
quired. The parametric approach, a traditional RSM regression technique, which is inflexible
and heavily relies on the assumption of well-estimated models for the response of interests,
can lead to highly biased estimates and result in miscalculating optimal solutions when
the user’s model is incorrectly specified. Nonparametric methods have been suggested as
an alternative, yet they often result in highly variable estimates, especially for sparse data
with a small sample size which are the typical properties of traditional RSM experiments.
Therefore, in this research, we have proposed use of model robust regression 2 (MRR2),
a semi-parametric method, which combines parametric and nonparametric methods. This
combination does combine the advantages from each of the parametric and nonparametric
methods and, at the same time, reduces some of the disadvantages inherent in each.
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Chapter 1

Introduction

1.1 Multi-Response Problem

In industry and in many other areas of science, data collected often contain several responses

(or dependent variables) of interest for a single set of explanatory variables (also called

independent variables, controllable variables, factors, regressors, or input variables). It is

relatively straightforward to find a setting of the explanatory variables that optimizes a

single response. However, it is often hard to find a setting that optimizes multiple responses

simultaneously. Thus, a common objective is to find an optimal setting or several feasible

settings of the explanatory variables that provides the best compromise of the multiple

responses simultaneously. This is called the multiple response problem (Khuri, 1996 and

Kim and Lin, 2006). The multiple response problem consists of three stages: data collection

(related to experimental design), model building (related to regression techniques), and

optimization, specifically called multi-response optimization (MRO). In this research, we

assume that the data have been collected and we will focus on the latter two stages—model

building techniques and MRO techniques.

1.2 Modeling Techniques in RSM

In response surface methodology (RSM), parametric regression methods are traditionally

used to model the data for the response(s), typically, using a low-order polynomial model.
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However, in many situations, the parametric model may not adequately represent the true

relationship between the explanatory variables and the response(s). This does not mean that

the parametric method may not be good for applications, as it does provide the foundation

for data modeling in many cases. The problem is that the parametric method may not

model well some portions of the mean structure, resulting in the problems caused by model

misspecification such as biased estimates of the mean response functions.

An example of model misspecification associated with the parametric method is illustrated

by the tensile strength data in Mays, Birch and Starnes (2001), presented in Figure 1.1.

Figure 1.1 shows that the raw data reveals a strong peak, a peak of interest to the subject-

matter scientist. The data also exhibits a strong quadratic trend and researchers may be

satisfied with a second-order polynomial model. However, the second-order polynomial model

clearly underfits at the peak of the data so as to suggest that the quadratic model has been

misspecified. Consequently, inference from a misspecified parametric regression model may

be misleading and the optimization solution(s) may be highly biased.
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Figure 1.1: Plot of the tensile data with model misspecification by quadratic OLS fits. [• • •

Raw data and −−− OLS]

When modeling the data parametrically, certain assumptions about the relationship between

the explanatory variables and the response(s) must be made. For simplification and ease of

interpretation of coefficients, researchers tend to assume the relationship is not very complex

and that lower polynomial models provide an appropriate approximation of the true under-

lying function (or relationship). However, in practical applications, this relationship is not
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always so well behaved.

Recently, nonparametric regression techniques have been investigated to address the model

misspecification problem associated with the use of parametric regression in the RSM frame-

work. See, for example, papers by Vining and Bohn (1998), Anderson-Cook and Prewitt

(2005), Pickle (2006), and Pickle et al. (2006). Nonparametric regression approaches make

no assumptions about the parametric relationship between variables. Kernel-based methods

use the philosophy that observations closest to the point of interest, x0, have the most in-

formation about the mean response at x0 while observations farthest from x0 have the least

information, and assign local weights to the observations accordingly. Nonparametric meth-

ods can provide superior fits by capturing the structure in the data unable to be captured

by a misspecified parametric model.

However, in general, nonparametric approaches depend completely on the data itself without

the underling stability of the specified form from the parametric model. Therefore, nonpara-

metric approaches tend to identify mean structure where no structure exists and their fits

may be more variable than a parametric fit. Additionally, the successful application of the

nonparametric approaches in regression has been limited to those cases with fairly large

sample sizes and space-filling designs. But the typical properties of traditional RSM exper-

iments, such as small sample size, typically sparse data, and most of the design points on

the edge of design space, may restrict the applications of nonparametric regression in RSM.

Another alternative methodology is to use a semiparametric method which combines the

parametric method with the nonparametric methods. One semiparametric method, model

robust regression 2 (MRR2) proposed by Mays, Birch and Starnes (2001), was originally

developed for situations when there is partial knowledge about the underlying model, a

situation very common in applications. MRR2 essentially combines the advantages from the

parametric and nonparametric methods and avoids their disadvantages. For the case of a

single response, Pickle (2006) and Pickle et al. (2006) have demonstrated that the MRR2

technique can be successfully applied to model the mean response for data from designed

experiments. We wish to extend the MRR2 method to the multiple response problem. More

details on MRR2 will be discussed in Chapter 2.

One goal of our research is to adapt the MRR2 to the MRO problem in order to reduce both

the bias in estimation of mean response due to model misspecification of the user’s parametric
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model and the high variability in estimation of mean response due to use of nonparametric

methods. We will apply the MRR2 to the elementary MRO situation where the random error

variance is constant across all responses. We will compare optimal solutions obtained by the

parametric, nonparametric, and semiparametric methods to the true optimal solutions.

1.3 Multi-Response Optimization Problems

After the model building stage is completed, where each regression model built for each

response is assumed to be appropriate, the optimization stage begins. Several multi-response

optimization (MRO) techniques are available that may be used to find an optimal setting or

several feasible settings with the best compromise of the multiple responses. The simple and

intuitive approach to MRO is to overlay the response contour plots and find the appropriate

set of operating conditions for the process by a visual inspection. This method, however,

is limited to two or three dimensional domains of explanatory variables. Another method,

called the constrained optimization method, is essentially a single response optimization,

i.e., the optimization is of the most primary response among the multiple responses with

the constraints on the other responses. This method does not directly optimize the multiple

responses simultaneously.

One of the most popular and formal approaches is to use some specific function (an ob-

jective function) to combine the responses so that the multiple dimensional problem can

be transformed into one dimensional problem. There are several popular methods, such as

the desirability function method by Derringer and Suich (1980), the generalized distance

measure method by Khuri and Conlon (1981), and the weighted squared error loss method

by Vining (1998). The desirability function method is one of the most flexible and popular

MRO approaches. The generalized distance measure method may be considered as a special

case of the square error loss method (Vining, 1998). These two methods take correlation

among responses into account. More details on the MRO techniques will be discussed in

Chapter 3.

Another problem in the MRO, as mentioned in Montgomery (1999), for a single overall

objective function (such as the desirability function) is that there are often multiple optimal

solutions. Some of the MRO procedures currently used in practice and implemented in
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widely-used computer software do not deal with it very effectively.

Myers et al. (2004) also stated that there may exist several disjoint feasible operating regions

for the simultaneous operating process of the multiple responses, resulting in multiple local

optima. In applications, practitioners usually prefer to find all of the optimal solutions

because some solutions may be more desirable than others based on practical considerations.

For example, some of the feasible operating regions which come from the corresponding

optimal solutions may be larger than other feasible regions. Large feasible operating regions

are desirable as they represent more robust operating conditions found for the process.

In this research, we will investigate the number of available multiple optimal solutions, as

determined by the desirability function method. In addition, we will explore use of the

genetic algorithm in finding all possible feasible operating regions in high dimensions.

1.4 Genetic Algorithm and Modified Genetic Algorithm

Once the multiple response surfaces have been modelled and once one of the MRO methods

has been selected for use, such as the desirability function method, the goal becomes finding

the optimal setting(s) of the regressors, based on the MRO method chosen. There are many

optimization routines available to use for the MRO problem. For the constrained optimiza-

tion method with parametric models, some local optimization algorithms are mentioned in

Myers et al. (2004), such as the direct search method, the Nelder-Mead simplex method,

and the generalized reduced gradient (GRG) method. But these local optimization meth-

ods are no longer useful for those highly nonlinear and multi-modal functions such as the

desirability function, the generalized distance measure function, and the weighted squared

error loss function. Myers et al. (2004) and Carlyle, Montgomery and Runger (2000) recom-

mended use of a heuristic search procedure such as a genetic algorithm to find global optima.

Therefore, we will use the genetic algorithm for optimization.

The genetic algorithm (GA), originally developed by Holland (1975), is a stochastic optimiza-

tion tool whose search technique is based on the Darwinian survival of the fittest principles

from biological genetics. Many papers have applied the GA to a broad variety of fields,

including ecology, psychology, artificial intelligence and computational mathematics. The
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reason that a GA is so popular and useful is that a GA has some attractive features and

properties, such as employing multiple concurrent search points (not a single point), not

requiring the derivatives of the objective function, using probabilistic transition rules (not

deterministic rules), and being able to find a global or near-global optimum from a very

complex surface of an objective function, even with very high-dimensional domains of the

function. Details on GA will be discussed in Chapter 6.

However, a GA has several disadvantages. One is that the GA is a heuristic search technique

and is not theoretically guaranteed to find an optimum or near-optimum. The second is that

the efficiency of the GA greatly depends on the choice of selected settings/levels of GA

operations from an extremely large set of possibilities. The third one is a computational

issue, in that typically the GA, in order to find the optimum, must evaluate an objective

function a large number of times. The computational cost is the biggest disadvantage among

the three, in that the other two may be ameliorated by increasing the search space and the

number of evaluations and by proper choice of levels for each GA operations.

To deal with the computational problem, we will propose and evaluate four versions of a

more computationally efficient GA based on modifying a traditional GA. The main idea

of each version of the modified GAs (MGAs) is to gather numerical information from the

GA itself so that a local directional search may be incorporated into a GA process to make

computational improvements. Details on MGAs will be presented in Chapter 5

1.5 Outline of Dissertation

This dissertation is organized as follows. Chapter 2 gives an overview of the current model-

ing techniques in RSM, including parametric, nonparametric and semiparametric methods.

Chapter 3 summarizes the current MRO techniques in RSM. Chapter 4 introduces a genetic

algorithm and its basic features. Chapter 5 proposes four different versions of a modified GA

and presents results from Monte Carlo simulation studies on comparisons of GA and MGAs.

In Chapter 6, based on the stochastic property of the GA/MGA, we use one MGA to find

all possible feasible region(s) of the desirability function method, one of the most popular

MRO techniques. Chapter 7 extends estimation results from the modeling techniques in the

univariate case to the multivariate case. In Chapter 8, our semiparametric approach will be
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applied to the MRO problem. Examples from the RSM literature and simulation studies will

be used to compare the performance of the modeling techniques. Finally, Chapter 9 gives a

summary of our completed work and possibilities for extended future work.
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Chapter 2

Current Modeling Techniques in RSM

2.1 Introduction

Many industrial statisticians, engineers, and other researchers use the techniques of RSM.

RSM, as described in Myers (1999), is usually viewed in the context of design of experiments

(DOE), model fitting, and process optimization. Obviously, model fitting is one of the most

important components in RSM.

For the multiple response problem, we may use multivariate regression techniques (which is

an extension of multiple linear regression for a single response) to model the relationships

between the explanatory variables and the multiple responses simultaneously. But actually,

the fits by the regression techniques in the univariate case are equivalent to the fits by the

multivariate regression techniques, as discussed in Chapter 7. Therefore, for the multiple

response problem considered in this research, we will model each response separately using

the modeling techniques for a single response. Details on modeling a single response will be

presented in the following sections.

Once the data are collected, our goal is to fit a model to estimate the relationship between

the explanatory variables and each response. Suppose the true relationship between the k

explanatory variables, x1i, x2i, ...xki, and the response, yi, is

yi = f(x1i, x2i, ...xki) + εi, i = 1, ..., n, (2.1)

where the function f represents the true relationship, n is the sample size, and εi represents a
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random error term from the process assumed to be independent, identically distributed, with

mean zero and constant variance σ2. Consequently, E(yi|x1i, ..., xki) = µi = f(x1i, ..., xki).

That is, f(x1i, ..., xki) is the mean response function.

Usually, the true relationship f is unknown and must be estimated, based on the collected

data. The function must be well estimated, otherwise misspecification of the fitted model

may have serious implications in process optimization. As mentioned in Chapter 1, the cur-

rent modeling techniques include the parametric, nonparametric and semiparametric meth-

ods. In many situations, the parametric method does not adequately estimate this true

relationship, while the nonparametric method is more variable due to completely depending

on the data itself. We propose the model robust regression technique (MRR), a semipara-

metric method, which can improve the estimates of mean response by combining both the

parametric and nonparametric results into one set of estimates, simultaneously reducing

both bias and variance of estimation. In next section we give details concerning these three

modeling methods in RSM.

2.2 Parametric Approach

As stated in Chapter 1, the parametric approach to estimate the relationship between the

explanatory variables and the response(s) is to assume that the response surface is relative

smooth in a relatively small region of those explanatory variables so that the true mean

function f in equation (2.1) can be adequately approximated by a low-order polynomial. In

practice, either a first-order or second-order polynomial is widely used in RSM.

A second-order model is given by

yi = β0 +
k
∑

j=1

βjxji +
k
∑

j=1

βjjx
2
ji +

∑

j<l

βjlxjixli + εi, (2.2)

where the β’s are the unknown regression coefficients and j and l = 1, ..., k. If the βjj’s are

all zero, then the second-order model becomes a first-order model with interactions. If the

βjj’s and βjl’s are all zero, then the second-order model becomes a first-order model. Given

n observations in the data, the second-order model in (2.2) may be expressed in matrix

notation as:

y = Xβ + ε, (2.3)
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where y is a n × 1 vector of responses, X is a n ×



1 + 2k +





k

2







 matrix of regressor

data, β is a



1 + 2k +





k

2







×1 vector of unknown parameters, and ε is the n×1 vector

of random errors.

2.2.1 Ordinary Least Squares

Under the assumption that the random error εi’s have constant variance σ2, the ordinary

least squares method (OLS) is used to obtain the best linear unbiased estimator (BLUE),

β̂, for β. That is, the OLS estimator has component-wise minimum variance among all

linear unbiased estimators. OLS is utilized to seek the estimator for β such that the sum of

squared errors (SSE) , given as

SSE =

n
∑

i=1

(yi − ŷOLS
i )2, (2.4)

is minimized, where ŷOLS
i = x′

iβ̂ and x′

i is the ith row of X.

If it is also assumed that the random errors, εi’s, follow a normal distribution, then the

OLS estimator is equivalent to the maximum likelihood estimator (MLE). In addition, the

elements of β̂ under normality have minimum variance among all unbiased estimators. That

is, β̂ is the uniform minimum variance unbiased estimate (UMVUE).

The OLS estimator β̂ is obtained as:

β̂ = (X′X)
−1

X′y. (2.5)

The estimated responses can be further obtained as:

ŷ = Xβ̂ = X(X′X)
−1

X′y = H(OLS)y, (2.6)

where the n × n matrix H(OLS) is known as the “HAT” matrix, since the observed y values

are transformed into the ŷ values through the HAT matrix.

From equation (2.6), the fitted value ŷi at location xi can be written as:

ŷ
(OLS)
i =

n
∑

j=1

h
(OLS)
ij yj = h′(OLS)

i y, (2.7)
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where the h
(OLS)
ij is the i, jth element of the H(OLS) and the h′(OLS)

i is the ith row of the

H(OLS). Equation (2.7) shows that the fit ŷ
(OLS)
i at location xi is a weighted average of the

observed yj’s where the weights are the elements of the ith row of the H(OLS). For more

details on the OLS, MLE and the HAT matrix, see Myers (1990) and Rencher (2000).

2.2.2 Weighted Least Squares

The weighted least squares (WLS) method may be used to obtain the BLUE for β, when

the observed y’s are uncorrelated with different variances. That is, cov(y) = cov(ε) = V =

diag(σ2
1, ..., σ

2
n) 6= σ2I, where the n × n matrix V is a positive definite diagonal matrix.

The idea of WLS is to use the inverse of the variance-covariance matrix, V−1, as weights

to give more weight to those observations which have small variability and give less weight

to those which have large variability. In RSM, for example, Vining and Bohn (1998) use

WLS to estimate a parametric model for a response, due to the nonconstant variance of the

response.

The WLS estimator of the β is

β̂
(WLS)

= (X′V
−1

X)−1X′V
−1

y= (X′WX)−1X′Wy, (2.8)

where W = V−1 and the estimated response can be obtained as

ŷ(WLS)= Xβ̂
(WLS)

= X(X′WX)−1X′Wy = H(WLS)y, (2.9)

where the n× n matrix H(WLS) = X(X′WX)−1X′W, called the “WLS HAT” matrix. This

formula (2.9) essentially shows that W represents a “global” weight matrix since the weights

are unchanged cross all values of x1, ..., xk, locations where the estimated response is derived.

These global weights are different from “local” weights, which are changed at different values

of x1, ..., xk locations. More details on local weights will be discussed in Section 2.3.

In practice, the variance-covariance matrix V is usually unknown and a possible method

to obtain the estimators for β is to estimate the variance-covariance matrix V from the

observed data, V̂, first and then compute the estimated weighted least squares (EWLS)

estimates of β by replacing W in equation (2.8) and (2.9) by Ŵ = V̂
−1

. For more details

on WLS and EWLS, see Rencher (2000).
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2.3 Nonparametric Approach

A parametric function with unknown parameters in the parametric approach has to be

assumed correct first before the parameters can be estimated by methods such as the OLS

and WLS. If the parametric function is not correct in practice, then the parametric approach

becomes inappropriate and the nonparametric approach may be an alternative choice due

to flexibility.

Myers (1999) suggests the use of nonparametric RSM (NPRSM) in the following three sce-

narios:

(i) The main focus of the experiment is on optimization and not on parameter interpretation.

(ii) There is less interest in an interpretive function and more interest in the shape of a
response surface.

(iii) The functional form of the relationship between the explanatory variables and the re-
sponse is highly nonlinear and not well behaved.

Vining and Bohn (1998), Anderson-Cook and Prewitt (2005), Pickle (2006), and Pickle et al.

(2006) are some examples of nonparametric applications in RSM. Vining and Bohn (1998)

use a nonparametric technique to estimate the process variance. Anderson-Cook and Prewitt

(2005) explore several nonparametric techniques such as kernel regression and local linear

regression applied in RSM and give recommendations for their use. Both kernel regression

and local linear regression will be discussed later. Pickle (2006) and Pickle et al. (2006)

compare parametric, nonparametric and semiparametric methods in the traditional RSM

setting.

Recall the true underlying but unknown function f in equation (2.1), the mean response

function. An estimated function f̂ is usually considered effective if it can adequately capture

the structure in the data. Typically, f̂ is a smooth function. Since there is no assumed

relationship between the factors and the response, the nonparametric methods have to rely

on the data itself for estimation of the mean response. To estimate f(x0) at location x0,

(assuming that f is smooth), is to assume that those responses which are close to x0 should

contain more information about f(x0) than those responses which are far away from x0. To

obtain a smooth function f̂ , some nonparametric methods use the local weighted averaging

philosophy such that responses closest to the point of interest, x0, have more information
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about the mean response at x0 and are therefore assigned higher weight while observations

further away from x0 have less information and are therefore assigned smaller weight. Thus,

as stated in Hardle (1990), the basic idea of local averaging is equivalent to the procedure

of finding a local weighted least squares estimator.

In the nonparametric regression literature, there are several popular smoothing fitting tech-

niques such as kernel regression (also called Nadaraya-Watson estimator), local polynomial

regression, and spline-based regression. For details, see Hardle (1990) and Takezawa (2006).

Essentially, the local polynomial regression is an extension of kernel regression but with

better properties than kernel regression. Both can be regarded as members of the local poly-

nomial regression family which employs a simple and effective weighting scheme. Details

on both kernel regression and local polynomial regression will be presented in the next two

subsections.

2.3.1 Kernel Regression

Kernel regression (KER) is designed to fit local constants (or a 0-order polynomial) with a

distance-based weighting scheme to obtain estimates. Like a global parametric method with

only an intercept in a model, the model matrix (essentially a vector in this special case) may

be defined as the n × 1 vector 1′ = (1, 1, ...1). By the local weighted least squares method,

the KER fit at the point of interest x0 is given by

ŷ
(KER)
0 = (1′W01)−11′W0y =

n
∑

i=1

h
(KER)
0i yi

n
∑

i=1

h
(KER)
0i

=
n
∑

i=1

h
(KER)
0i yi = h

(KER)′
0 y, (2.10)

where the n × n diagonal matrix W0, known as the local weight matrix at location x0, is

given by W0 =
〈

h
(KER)
0i

〉

, and h
(KER)′
0 = (h

(KER)
01 h

(KER)
02 ... h

(KER)
0n ), and h

(KER)
0i represents

a kernel weight assigned to yi in the estimation of ŷ
(KER)
0 . For more details on the local

weighted least squares method, see Hardle (1990) and Takezawa (2006).

In Equation 2.10, the kernel weight h
(KER)
0i , originally proposed by Nadaraya (1964) and

Watson (1964), is given by:

h
(KER)
0i =

K
(

x0−xi

b

)

n
∑

i=1

K
(

x0−xi

b

)

(2.11)
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where K is a univariate kernel function, utilized to give a weight to yi based on the distance

from xi to the location where the fit is desired, x0, and b is a specific bandwidth (sometimes

called the smoothing parameter) utilized to determine the smoothness of the estimates. The

choice of the bandwidth is critical and will be discussed in Section 2.4.1.

The kernel function is a decreasing function in the distance between xi and x0. The kernel

function takes a larger value when xi is close to x0 while it takes a smaller value when xi

is far away from x0. The kernel function is typically chosen to be symmetric about zero,

nonnegative and continuous. There are several choices for the kernel function such as the

Gaussian kernel, the uniform kernel, and the Epanechnikov kernel. For more details on types

of kernel functions, see Hardle (1990). Since the choice of the kernel function has been shown

to be not critical to the performance of the kernel regression estimator (Simonoff (1996)),

we will use the simplified Gaussian kernel function given by

K

(

x0 − xi

b

)

= e−(x0−xi
b )

2

. (2.12)

The kernel function presented above in equation (2.11) is for the univariate case. For the

multivariate case with k regressors, at the point of interest x′

0 = (x10, x20, ..., xk0), the

Gaussian kernel function is given by

K(x0,xi) ∝ K

(∥

∥

∥

∥

x0 − xi

b

∥

∥

∥

∥

)

or
k
∏

j=1

K
(x0j−xij

b

)

, (2.13)

where x′

i = (x1i, x2i, ..., xki) and ‖‖ stands for the standard L2 (Euclidean) norm. The two

forms of the multivariate kernel function in equation (2.13) are equivalent when the Gaussian

kernel function is utilized. For more details on the multivariate kernel function, see Scott

(1992).

In terms of a HAT matrix, the kernel fits in matrix notation may be expressed as

ŷ(KER) = H(KER)y, (2.14)

where H(KER) is the kernel HAT matrix, defined as

H(KER) =















h
(KER)′
1

h
(KER)′
2

...

h
(KER)′
n















(2.15)
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and h
(KER)′
i = (h

(KER)
i1 h

(KER)
i2 ... h

(KER)
in ) and h

(KER)
ij =

K(xi,xj)
n
∑

j=1

K(xi,xj)
. The kernel HAT matrix

H(KER) is also called “the kernel smoother matrix”, due to its involving the bandwidth b,

which determines the smoothness of the fitted function (or model), the estimate of the mean

function of y.

2.3.2 Local Polynomial Regression

Kernel regression is the simplest nonparametric method and suitable for many cases (Hardle

(1990)), however, it has a problem, called “boundary bias”, when a symmetric kernel func-

tion, such as the Gaussian, is utilized. This problem can be alleviated by the use of local

polynomial regression (LPR), originally introduced by Cleveland (1979). For more details

on the boundary bias problem, see Takezawa (2006, pp. 146-148).

LPR can be regarded as a general form of kernel regression. Kernel regression may be

considered as a method of fitting constants locally, while LPR may be considered as a

method of fitting a polynomial locally. Thus, LPR can be generalized from the kernel

regression simply replacing the local constants (or “0-order” polynomials) with the nonzero

local polynomials. The local polynomial may be 1st- or higher-order. In our study, we focus

on the 1st-order, which is commonly referred to the local linear regression (LLR).

The LLR fit at x′

0 = (x10, x20, ..., xk0) is given by

ŷ
(LLR)
0 = x̃′

0(X̃
′W0X̃)

−1
X̃′W0y, (2.16)

where the n × n diagonal matrix W0 =
〈

h
(KER)
0j

〉

and h
(KER)
0j is a kernel weight associated

with the distance of x′

j to x′

0, j = 1, ..., n, and x̃′

0 = (1 x10 ... xk0). Similarly, the LLR

model matrix, X̃, is defined as

X̃ =















x̃′

1

x̃′

2

...

x̃′

n















, (2.17)

where x̃′

i = (1 x1i ... xki). In matrix notation, the LLR estimated fits may be expressed as

ŷ(LLR) = H(LLR)y, (2.18)
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where H(LLR), known as the LLR HAT matrix, is given by

H(LLR) =















h
(LLR)′
1

h
(LLR)′
2

...

h
(LLR)′
n















, (2.19)

where h
(LLR)′
i = x̃′

i(X̃
′WiX̃)

−1
X̃′Wi. It is easy to see from the formula above that estimation

of mean response at any location, either x′

i (an observed data location) or x′

0 (an unobserved

data location) is associated with its special weight matrix, due to the local weighting scheme.

Since the LLR fits involve the kernel weight function which depends on the size of the

smoothing parameter (the bandwidth), b, as mentioned earlier, the choice of bandwidth is

critical and will be discussed in Section 2.4.1. For more details on LLR, see, for example,

Fan and Gijbels (1996) and Fan and Gijbels (2000).

2.4 Semiparametric Approach: MRR2

As mentioned earlier, both parametric and nonparametric methods have shortcomings. Para-

metric methods are inflexible in that a parametric function must be specified before fitting

and if this model is incorrect, the resulting fits are subject to the consequence of model

misspecification error such as bias in estimating mean response. Nonparametric methods

are too flexible in that the resulting estimates of mean response completely depend on the

observed data itself and these fits are subject to high variance. In addition, the successful

application of the nonparametric approach has usually been limited to fairly large sample

sizes and space-filling designs. However, the typical characteristics of traditional RSM ex-

periments, such as small sample size, sparse data, with most of the design points on the edge

of design space, all restrict the application of the nonparametric approach.

Semiparametric approaches combine a parametric method with a nonparametric method.

One semiparametric method, model robust regression 2 (MRR2) proposed by Mays, Birch

and Starnes (2001), was originally developed for situations when there is partial knowledge

about the underlying model, a situation very common in practical applications. Mays,

Birch and Starnes (2001) compare MRR2 with OLS, LLR, and some other semiparametric
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methods and their examples and simulations results show that MRR2 performs the best

among these methods in terms of model comparison criteria such as dfmodel, SSE, PRESS,

PRESS**, AVEMSE and INTMSE. (PRESS and PRESS** will be discussed in Section

2.4.1 on bandwidth selection. AVEMSE and INTMSE will be discussed in our section on

simulation studies.) Unlike the nonparametric method, MRR2 does not require a large

sample and tends to work very well when the sample size is small. For examples of MRR2

with small sample sizes, see Mays, Birch and Starnes (2001), Mays and Birch (2002) and

Pickle et al. (2006).

MRR2 can improve estimates of mean response by combining both the parametric and non-

parametric estimates into one estimate, simultaneously reducing both bias and variance of

estimation. MRR2 essentially combines the advantages from the parametric and nonpara-

metric methods and avoids their disadvantages. Pickle (2006) and Pickle et al. (2006) have

demonstrated that the MRR2 technique can be successfully applied to model mean response

for data from designed experiments for the case of a single response. In this research, we will

extend the MRR2 method to the MRO problem. Details concerning the MRR2 technique

are presented in the reminder of this section.

MRR2 combines the parametric fit to the raw data with a nonparametric fit to the residuals

from the parametric fit via a mixing parameter, λ. The MRR2 approach allows one to

specify any other type of parametric and nonparametric methods for some special situations

and conditions. In this research, for simplification, as in Mays, Birch and Starnes (2001)

and Pickle (2006), our MRR2 combines the parametric fit by the OLS method with the

nonparametric fit by the LLR method.

Our final MRR2 fit is given by

ŷ(MRR2)= ŷ(OLS)+λr̂(LLR), (2.20)

where λ ∈ [0, 1], r̂(LLR) = H
(LLR)
r r, r = y − ŷ(OLS) and H

(LLR)
r is the LLR HAT matrix for

fitting the residuals r from the parametric fit ŷ(OLS). In terms of HAT matrices, the equation

above may be expressed as

ŷ(MRR2) = H(OLS)y + λH(LLR)
r r =

[

H(OLS) + λH(LLR)
r (I − H(OLS))

]

y = H(MRR2)y. (2.21)

Essentially, MRR2 is a semiparametric method in that the MRR2 fits are a combination of

parametric and nonparametric fits through the mixing parameter, λ. If the parametric fit is
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adequate, then λ should be chosen close to zero by some appropriate λ selector (which will

be discussed later). If the parametric fit is inadequate, then λ will be chosen large enough

(close to one) so that the nonparametric fit to the OLS residuals can be used to make up

for the parametric fit’s inadequacy. Thus, as stated in Mays, Birch and Starnes (2001), the

amount of misspecification of the parametric model, and the amount of correction needed

from the residual fit, is reflected in the size of λ. In practical applications, the user does not

know the true underlying function and, consequently, does not know the amount of model

misspecification. Thus, the MRR2 method provides an alternative method that is robust

to the model misspecification that may be present in the user’s proposed model and to the

variability that may be present in a nonparametric method.

Obviously, from the equations (2.20 and 2.21), the MRR2 fit involves the choice of bandwidth

b, and the mixing parameter, λ. As discussed in Mays, Birch and Starnes (2001), Mays and

Birch (2002) and Pickle et al. (2006), λ and b will be chosen separately. The bandwidth b

will be chosen first by a data-driven method (which will be discussed later) to enable the

smoothing the residuals from the parametric fit. Then based on this selected bandwidth, the

MRR2 fit can be calculated and λ chosen by the same data-driven method as the bandwidth,

or by an asymptotically optimal data driven method, introduced by Mays, Birch and Starnes

(2001). Details on the choice of an optimal λ will be discussed in Section 2.4.2.

2.4.1 Choice of the Smoothing Parameter b

The nonparametric methods require the choice of smoothing parameter b. In addition, the

MRR2 also requires the selection of b to be used by the nonparametric method, which is

utilized to fit the residuals from the parametric fit. In this research, since LLR is used as

the nonparametric method or as part of the semiparametric method to fit the residuals, the

following discussion on the choice of the bandwidth will be related to LLR. It is easy to

extend the data-driven method for the choice of bandwidth to the nonparametric part of

MRR2 by considering residuals as response values.

As mentioned earlier, the smoothness of the estimated function f̂ by a LPR method is

controlled by the bandwidth b. A smaller bandwidth value gives less weight to points which

are further from the point of interest x0, resulting in the estimation fit, f̂0, based on fewer
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data points and therefore resulting in a less-smooth function. On the other hand, a larger

bandwidth value gives more weights to those points further away, resulting in a smoother

function. As the value of b goes to infinity, all of the data points have equal weights and

essentially, the LLR fit becomes a first-order parametric regression fit (that is, a single line

regression fit in the single regressor case or a plane in the multiple regressor case), resulting in

fits with low variance but possibly high bias, especially if the first-order model is misspecified.

On the other hand, when the b goes to zero, the only response receiving a non-zero weight

of xi in the estimation of fi is yi. Therefore, the f̂ becomes the “connect-the-dots” function,

resulting in a rougher fit with low bias but high variance. Thus, an appropriate choice of b

for smoothing achieves a suitable balance of bias and variance of the fitted function.

The choice of bandwidth is crucial in obtaining a “proper” estimate of function f (Mays and

Birch, 2002). Any suitable criterion to deal with the trade-off between bias and variance

such as the mean squared error(MSE) may be used here to select an appropriate bandwidth.

The literature on the bandwidth selection is rich and for a thorough discussion of bandwidth

selectors, see Hardle (1990) and Hardle, Muller, Sperlich, and Werwatz (2004). A bandwidth

selected by minimizing the traditional MSE has been shown to tend to be too small. The

reason is that the criterion relies too much on the individual data points, using them for

both fitting and validation (Mays and Birch, 2002). The “leave one out” criterion of Cross-

Validation (CV), which is the PRESS statistic (prediction error sum of squares), is introduced

to alleviate this problem. The prediction error sum of squares, PRESS, is given by PRESS =
n
∑

i=1

(yi − ŷi,−i)
2, where ŷi,−i is the fit at xi with the ith observation left out. But, it has been

shown that b chosen by the PRESS is still too small on the average, and the resulting fit is

biased toward overfitting, resulting in a fit that is too rough (or under smoothed). Einsporn

(1987) introduces a penalized PRESS bandwidth selector called “PRESS*”, given by

PRESS∗ =
PRESS

n − tr(H)
. (2.22)

It is essentially the PRESS adjusted by the error degrees of freedom, DFerror, (Pickle, 2006;

Einsporn, 1987) in the denominator, which is given by

DFerror = n − tr(H). (2.23)

It arises from its penalty for a fit that is too rough (high bias, relatively too small bandwidth).
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However, Mays and Birch (2002) show that PRESS* was found to choose b too large, on the

average, and results in a fit that tends to be too smooth. Based on PRESS*, Mays and Birch

(1998) and (2002) introduce a new penalized PRESS bandwidth selector called “PRESS**”

to counter the shortcoming of PRESS*. The PRESS** is given by

PRESS∗∗(b) =

∑

(y − ŷi,−i(b))
2

n − trace(H(LLR)(b)) + (n − k − 1)SSEmax−SSEb

SSEmax

(2.24)

=
PRESS(b)

n − trace(H(LLR)(b)) + (n − k − 1)SSEmax−SSEb

SSEmax

, (2.25)

where SSEmax is the largest sum of square error over all possible bandwidth values (essen-

tially, SSEmax is the parametric SSE by OLS that results when b goes to infinity) and SSEb

is the sum of square error associated with a specific bandwidth value b. The term added

into the denominator, (n− k − 1)SSEmax−SSEb

SSEmax
, provides protection against a fit which is too

smooth (high variance, relatively too large bandwidth).

Mays and Birch (1998) and (2002) also compare PRESS** with other popular bandwidth

selectors such as the generalized cross-validation (GCV) and Akaike’s Information criterion

(AIC). Their examples and simulation results show that PRESS** is the best choice in terms

of minimizing integrated mean squared error of fit across a broad variety of data scenarios.

Consequently, we will use PRESS** as a bandwidth selector in this research.

2.4.2 Choice of the Mixing Parameter λ in MRR2

After the bandwidth, b∗, is obtained by the data-driven method (PRESS**), a value of the

mixing parameter λ, which is utilized to combine the parametric fits on the raw data with the

nonparametric fits on the parametric residuals from the raw data, is required. As mentioned

earlier and discussed in Mays, Birch and Starnes (2001), two methods may be utilized to

obtain λ. One is a data-driven method, which is the same as the one for the bandwidth

selection, and the other is an asymptotically optimal data driven method.

One data-driven method is to chose λ̂ so that PRESS**(λ) is minimized overall λ ∈ [0, 1].

Here, PRESS**(λ) is defined as
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PRESS∗∗(λ) =

∑

(y − ŷi,−i(b
∗, λ))2

n − trace(H(MMR2)(b∗, λ)) + (n − k − 1)SSEmax−SSEb∗

SSEmax

(2.26)

=
PRESS(b∗, λ)

n − trace(H(MRR2)(b∗, λ)) + (n − k − 1)SSEmax−SSEb∗

SSEmax

. (2.27)

As a second data-driven method, pick λ̂ as the estimated asymptotically optimal value of

the mixing parameter for MRR2, given by

λ̂opt =

〈

r̂,y − ŷ(OLS)
〉

‖r̂‖2 , (2.28)

where 〈〉 represents the inner product and ‖‖ represents the standard L2 (Euclidean) norm.

The examples in Mays, Birch and Starnes (2001) show that the results by the data-driven

method and asymptotic method are quite similar even though the sample sizes they consid-

ered are not large (e.g., n = 15 for the one regressor case). In this research, we will compare

the data-driven method using PRESS** to the estimated asymptotic optimal data driven

method to see if the results found by Mays, Birch and Starnes (2001) extend to the MRO

problem.
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Chapter 3

Overview of Multi-Response
Optimization Techniques in RSM

After the model building stage is completed where each regression model built for each

response is assumed to be appropriate, the MRO techniques can then be utilized. That is,

the ith predicted response value at location x, ŷi(x), i = 1, 2, ..., m, (where m is the number

of the responses), is assumed to be an appropriate approximation of the true underlying

relationship between the factors and the ith response. Otherwise, the model for the ith

response would be misspecified and this misspecification would likely result in misleading

optimization solutions. The choice of modeling technique to build an appropriate model is

presented in Chapter 2.

As mentioned in Chapter 1, a graphical approach to MRO is to superimpose the response

contour plots, originally proposed by Lind et al. (1960), and then determine an ”optimal”

solution or some feasible regions by visual inspection. This approach is very simple and easy

to understand. But it is limited to two or three dimensions of experimental domains. That

is, the number of factors are limited to only two or three.

The second approach is a constrained optimization method. The idea of this approach is to

formulate the MRO problem into a single response optimization problem with some appropri-

ate constraints on each of the other responses. This approach is desirable when one response

is much more important than the other responses and the appropriate constraints are easily

determined for each of the other responses. Obviously, the constrained optimization method

is not suitable for those situations where the responses are of equfal importance or those
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situations where it is not possible to place constraints on less important responses. For more

details on the constrained optimization method see, for example, Myers and Montgomery

(2002).

The third approach, which is more general, flexible and popular than the two approaches

mentioned above is to transform the multiple dimensional problem into a single dimensional

problem in terms of some objective function. There are many methods having such objec-

tive functions including the desirability function method, the generalized distance measure

method, and the weighted squared error loss method. All of these methods can ”optimize”

all the responses simultaneously with different weights among the responses. Details on these

three methods will be discussed in the next three sections.

3.1 Desirability Function Method

The desirability function method, proposed by Derringer and Suich (1980), transforms each

response into a dimensionless individual desirability scale and then combines these individual

desirabilities into one whole desirability using a geometric mean. That is, a fitted value of

the ith response at location x, ŷi(x), i = 1, 2, ..., m, is transformed into a desirability value

di(x) or di, where 0 ≤ di ≤ 1. The overall desirability (denoted by ”D(x)” or ”D”) (which

is an objective function) is the geometric mean of all the transformed responses, given by

D = (d1 × d2 × · · · × dm)1/m. (3.1)

The value of di increases as the ”desirability” of the corresponding response increases. The

single value of D gives the overall assessment of the entire desirability of the combined m

responses levels. Obviously, the range of the value of D is from zero to one. If the value

of D is close to zero or equal to zero, then at least one of the individual desirabilities is

close to zero or equal to zero. In other words, the corresponding setting for the explanatory

variables would be not acceptable. If the value of D is close to one, then all of the individual

desirabilities are simultaneously close to one. In other words, the corresponding setting

would be a good compromise or trade-off among the m responses. The optimization goal in

this method is to find the maximum of the overall desirability D and its associated optimal

location(s).
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To transform ŷi(x) to di, there are two cases to consider: one-sided and two-sided trans-

formations. One-sided transformations are used when the goal is to either maximize the

response or minimize the response. Two-sided transformations are used when the goal is for

the response to achieve some specified target value. When the goal is to maximize the ith

response, the individual desirability is given by the one-sided transformation

di =



















0 ŷi(x) < L
[

ŷi(x)−L
T−L

]r

L ≤ ŷi(x) ≤ T

1 ŷi(x) > T

, (3.2)

where T represents an acceptable maximum value, L represents the acceptable minimum

value and r is known as a ”weight”, specified by the user. Similarly, when the goal is to

minimize the ith response, the corresponding individual desirability is written as the one-

sided transformation

di =



















1 ŷi(x) < T
[

U−ŷi(x)
U−T

]r

T ≤ ŷi(x) ≤ U

0 ŷi(x) > U

, (3.3)

where T is an acceptable minimum value and U is the acceptable maximum value.

When the goal is to obtain a target value, the individual desirability is given by the two-sided

transformation

di =































0 ŷi(x) < L
[

ŷi(x)−L
T−L

]r1

L ≤ ŷi(x) ≤ T
[

U−ŷi(x)
U−T

]r2

T ≤ ŷi(x) ≤ U

0 ŷi(x) > U

, (3.4)

where T is the target value, and L and U are the acceptable minimum and maximum values

respectively, and r1 and r2 are weights, specified by the users.

This desirability function D offers the user great flexibility in the setting of the desirabilities

due to allowing users to chose appropriate values of L, U, and T, and of r, r1, and r2, for their

different specific situations. For more details on the desirability function, see, for example,

Derringer and Suich (1980) and Myers and Montgomery (2002).

Derringer (1994) propose an extended and general form of D, using a weighted geometric
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mean, given by

D = (dw1

1 , dw2

2 ...dwm

m )1/
∑

wi, (3.5)

where wi is the ith weight on the ith response, specified by users. A larger weight is given to a

response determined to be more important. There are some other versions of the desirability

function D, such as the method, proposed by Kim and Lin (2000), which finds the largest

value of the smallest individual desirability, instead of the maximum value of D. For details

on other versions of the desirability function including the Kim and Lin method, see Park

and Kim (2005). In this research, we will focus on the conventional desirability function in

equation (3.1), since it is still the most commonly used method in MRO problems.

3.2 Generalized Distance Method and Weighted Squared

Error Loss Method

The generalized distance method, originally proposed by Khuri and Conlon (1981), measures

the distance between the overall closeness of the response functions to their respective optima

at the same set of conditions (or factors). The objective function is given by

(ŷ(x) − θ)′Σ
−1
ŷ(x)(ŷ(x) − θ), (3.6)

where ŷ(x) is the m × 1 vector of estimated responses at location x, Σŷ(x) is the variance-

covariance matrix for the estimated responses at this location, and θ is the vector of target

values or ideal optimal values. Obviously, the optimization goal is to find the minimum of

the distance function and its associated optimal location(s).

The weighted squared error loss method (proposed by, for example, Pignatiello (1993), Ames

et al. (1997) and Vining (1998)) can be considered as a general form of the generalized

distance method. In Vining’s method (1998), the weighted squared error loss function is

given by

L = (ŷ(x) − θ)′C(ŷ(x) − θ),

where C is an appropriate positive definite matrix of weights or costs. The expected loss

function is given by E(L) = {E[ŷ(x)]−θ}′C{E[ŷ(x)]−θ}+trace(CΣŷ(x)). Since the E[ŷ(x)]

is unknown and ŷ(x) is an unbiased estimator of E[ŷ(x)], a reasonable estimate of E(L) is

Ê(L) = (ŷ(x)−θ)′C(ŷ(x)−θ) + trace(CΣŷ(x)). (3.7)
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Here we shall assume that the variance-covariance structure for the responses, Σ, is known,

implying that the variance-covariance matrix at location x, Σŷ(x), is known. When Σ is

unknown, Vining (1998) estimates it using the maximum likelihood method.

The optimization goal is to find the minimum of the estimated expected loss function. Vining

discusses several possible choices for C. When C = Σ−1
ŷ(x), then minimizing the estimated

expected loss function is essentially equivalent to minimizing the generalized distance func-

tion.

Both the generalized distance method and the squared error loss method take the correlation

among the responses into account. Actually, the variance-covariance matrix Σŷ(x) is a weight

matrix (which is similar to the nonconstant variance-covariance matrix V in WLS in Chapter

2, but weighted on X). When there are no correlation among the responses, the Σŷ(x)

becomes a diagonal matrix. In this case, larger variance of some responses would imply less

weight on these responses while smaller variance of some responses would imply more weight

on these corresponding responses. See Kros and Mastrangelo (2001) for more discussion on

this concept.

3.3 Some Other Studies

Achieving high-quality of products or processes is an important issue in MRO. High-quality is

usually related to small variances of the responses. The desirability function method does not

take into consideration the variances of the responses and thus it ignores an important aspect

of quality. Although the generalized distance method and the weighted squared error loss

method both consider the variance-covariance of the responses, their underlying assumption

is that each response has their own constant variances. This assumption may not always be

true. To achieve the high-quality of products, some researchers apply techniques utilized in

a single response into the MRO problem, by considering the simultaneous optimization of

both mean and variance of each response, the so-called dual response problem.

For example, Kim and Lin (2006) apply the dual response approach to the MRO problem

with the lower-ordered polynomial regression technique for both mean and variance mod-

els. Usually, however, lower-ordered polynomial modeling is not appropriate for a variance
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process (Pickle, 2006). Ch’ng, Quah and Low (2005) introduce the index C∗

pm, a new op-

timization criterion, to the MRO problem, which is also originally proposed in the dual

response surface. The index C∗

pm which can be regarded as an extension of the MSE, allows

experimenters to find an optimal setting with the mean responses close to their respective

target values while the variance of the responses are kept small. But with this method one

does not take the relationship among the responses into account and assumes that there are

constant variances for each response.
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Chapter 4

A Genetic Algorithm

As mentioned in Chapter 1, a genetic algorithm (GA) is a powerful stochastic optimiza-

tion tool. It is an iterative optimization procedure that repeatedly applies GA operation

components (such as selection, crossover and mutation) to a group of solutions until some

convergence criterion has been satisfied. In a GA, a search point, a setting in the search

space, is coded into a string which is analogous to a chromosome in biological systems. The

string/chromosome is composed of characters which are analogous to genes. In a response

surface application, the chromosome corresponds to a particular setting of k factors (or re-

gressors), denoted by x = [x1, x2, ..., xk]
′, in the design space and ith gene in the chromosome

corresponds to a xi, the value of the ith regressor. A set of concurrent search points or a

set of chromosomes (or individuals) is called a population. Each iterative step where a new

population is obtained is called a generation.

Figure 4.1 illustrates a basic GA procedure. The process begins by randomly generating an

initial population of size M and evaluating each chromosome or individual in the population

in terms of an objective function. An offspring population is then generated from the ini-

tial population, which becomes a parent population, using GA operations such as selection,

crossover and mutation. The objective function is evaluated for each individual in the off-

spring population. M individuals among the offspring and/or current parent population are

selected into the next generation by some strategy such as the ranking or the tournament

methods (for more details on ranking and tournament, see Section 4.7). Notice that this

step is called “replacement” in that the current parent population is “replaced” by a new

population, whose individuals come from the offspring and/or current parent population.
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After the replacement step, the process is terminated if some stopping rule is satisfied or

continued to another generation where the new population will become a parent population

to generate an offspring population by GA operations. The GA process is continued until

the stopping criterion is satisfied.

GAs are a large family of algorithms that have the same basic structure and differ from one

another with respect to several strategies and operations which control the search process.

Although the overall performance of the various GA operations remains likely to be problem-

dependent (Mayer et al., 2001 and Goldberg, 1989), there are general rules that govern their

use. The following sections give more details concerning each GA operation.

4.1 Continuous versus Binary GA

If each chromosome consists of an encoded binary string and a GA works directly with

these binary strings/chromosoms, then the GA is a binary GA. However, if each chro-

mosome consists of a real-valued string and a GA works directly with these real-valued

strings/chromosomes, then the GA is a continuous GA.

Which type of GA, a binary or continuous GA, is better? Davis (1991) has found that the GA

using real number representations has out-performed one with purely binary representations.

A similar opinion was given in Haupt and Haupt (2004). In addition, the real-valued coding

of chromosomes is simple, convenient, and easy to manipulate. Hamada et al. (2001), Mayer

el al. (2001), Heredia-Langner et al. (2003), Borkowski (2003), Heredia-Langner et al. (2004)

have successfully utilized continuous GAs. Therefore, in our study, we utilize a continuous

GA.

4.2 Parent Population Size

The current population usually refers to a parent population as one that is utilized to generate

an offspring population. The size of a parent population, denoted by M, affects both quality

of the solution and efficiency of a GA. If the size is too small, not enough information about

the entire search space is obtained. Therefore, the GA may fail to find a global or near-global
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Figure 4.1: A basic GA flowchart
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optimum. However, if the size is too large, a large number of evaluations in each generation

is required and the GA may become inefficient.

Mayer et al. (2001) suggested that the parent population size depends on the dimensionality

of the domain of an objective function. They prefer to use a population size equal to twice

the number of factors. For more details, see Peck and Dhawan (1995), Mayer et al. (1996,

1999a, b). In our study, we utilize M equal to 2*k, where k is the number of factors.

4.3 Offspring Population Size

Typically, there are three main choices to determine the size of an offspring population.

First, the offspring population size may be chosen to be much smaller than the parent

population size, as in the steady-state GA (SSGA) proposed by Wu and Chow (1995). In

the SSGA, only the best two individuals are selected to reproduce two new individuals. Then

the two offspring replace the worst two individuals in that current population. Thus, a very

small percentage of the population is replaced in each generation. Wu and Chow (1995)

show that a SSGA can converge faster and more efficiently than a traditional GA. However,

all of the examples they provide only utilize discrete searching spaces, not continuous ones.

Our work has checked the SSGA for the continuous case and found that the SSGA offered

fast convergence often to a local solution far away from the global optimum. The related

results are not presented in the dissertation.

Second, the size of offspring population may be chosen much larger than the size of parent

population in each generation. For example, the parent-to-offspring ratio is 1:7 in Heredia-

Langner (2003), Ortiz et al. (2004) and Herdia-Langner (2004), and 1:2 in Hamada (2001)

and Borkowski (2003). We believe that more offspring generated in each generation can

maintain diversity in populations. However, a much larger number of evaluations in each

generation is required and the GA may become computationally expensive and inefficient.

Third, the size of offspring population may be chosen the same as the parent population. This

suggestion is followed by Goldberg (1989), Holland (1992), and Haupt and Haupt (2004).

We utilize this suggestion in our study.
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4.4 Selection

Two chromosomes are selected from a mating pool (which could be the current parent

population) to be a pair of parents to be utilized to produce two new offspring. Actually,

there are several types of selection for mating, including (1) pairing from top to bottom;

(2) random pairing; (3) weighted random pairing which includes rank weighting and cost

weighting; and (4) tournament selection. For more details, see Haupt and Haupt (2004). In

our study, the random pairing is utilized. In the random pairing operation, each individual

has an equal chance of being selected for reproducing without replacement, i.e., random

partition into sets of two. The reason for choosing this type of selection scheme is that some

“bad” individuals may have some “good” components or subregions. Although together they

perform badly in terms of an objective function, the “good” components may be beneficial

when the “bad” individuals are mated with each other or another individual. The random

pairing method also has been used in many papers, such as Hamada et al. (2001), Borkowski

(2003), Heredia-Langner et al. (2003), Heredia-Langner et al. (2004) and Ortiz et al. (2004).

4.5 Crossover

Goldberg (1989) and Holland (1992) both believe that the crossover operation is the most

important operation in a GA through the concept of schemata and schemata theorem. For

more details on schemata, see Goldberg (1989). Crossover allows the exchange of some

information from a pair of parents and its transmission to next generation. If the length of a

chromosome is k, then the number of crossover points could be m, called “m-point discrete

crossover”, where 0 < m < k. Crossover rate is usually high. A crossover rate of 100%

(i.e., to make sure to have the crossover operation at each step) is recommended by many

researchers including Heredia-Langner et al. (2003), Hamada et al. (2001), Cieniawski et al.

(1995), Brokowski (2003), Heredia-Langner et al. (2004) and Wu and Chow (1995).

There are two types of crossover (Haupt and Haupt, 2004): uniform crossover and blend-

ing. The uniform crossover is usually used in a binary GA, while the blending crossover,

introduced by Radcliff (1991), is primarily used in a continuous GA. The uniform crossover

operation, the traditional method, randomly generates positions of crossover points, splits a
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pair of chromosomes/individuals at the same positions, and creates two offspring by combin-

ing the alternate portions of the parent individuals. If the uniform crossover is utilized in the

continuous GA, a problem is that no new information is introduced: each continuous value

that was randomly initiated in the initial population is propagated to the next generation,

only in different combinations. Although this type of crossover works fine for binary strings,

it does not work well in the continuous case as the uniform crossover is merely interchanging

two sets of data points and, as such, limits the number of offspring possibilities in the design

space.

The blending crossover remedies the problem via a blending parameter β, (which is a value

randomly generated within [0, 1]), to combine variable values (or genes) from the two parents

into new variable values (or genes) in the offspring. Actually, the blending crossover used in a

continuous GA is equivalent to the uniform crossover in a binary GA, by doing encoding and

decoding in the binary GA. The blending method has been successfully utilized in Borkowski

(2003).

Another important issue on crossover is the number of crossover points. In genetics, the

number of crossover points depends on the length of a chromosome. In a continuous GA,

the number of crossover points would depend on the number of dimensions of the domain

of an objective function. Wu and Chow (1995) conclude that in binary GAs, there is no

difference between two-, three- and four-point crossovers, while all of them perform better

than one-point crossover. However, Eshelman, Caruna, and Schaffer (1989) point out that

eight-point crossover is empirically optimal. In our study, blending crossover with 100% rate

is utilized and several different numbers of crossover points are compared.

4.6 Mutation

The mutation operation is used to alter a very small number of the “genetic material” in

a random fashion, enhancing the diversity of the population and expanding the volume of

the current search space. Generally and naturally, the mutation rate may be very small in

a population. Holland (1992) and Goldberg (1989) believe that the role of mutation is not

as important as the crossover operation and it is primarily used as a complement to the

crossover.
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There are two types of mutation operations: random uniform mutation and Gaussian muta-

tion (for more details, see Heredia-Langner et al. (2003)). Haupt and Haupt (2004) suggest

use of the random uniform mutation because a good value for σ in Gaussian mutation must

be chosen. We will utilize random uniform mutation in our study.

Mutation type is not as an important issue as mutation rate, the probability that a mutation

will occur on each population. Back (1996) investigates that an optimal mutation rate

depends on the length of an individual chromosome. If the length is l, then the optimal

mutation rate is approximately close to 1/l. Although the results obtained by Back were

based on binary GAs, the examples in Ortiz et al. (2004) and Haupt and Haupt (2004)

show that in continuous GAs, the optimal mutation rate seems close to 1/k (where k is the

number of genes). In this paper, several mutation rate levels around or equal to 1/k are

chosen and compared.

4.7 Replacement

After evaluations of an offspring population, the replacement operation seeks to replace

a current parent population by a new population whose individuals are selected from the

offspring and/or the current parent population. Heredia-Langner et al. (2003) point out

that replacement is an entirely deterministic step and that this operator is to transform the

volume-oriented search into a path-oriented exploitation of promising regions.

In an initial GA proposed by Holland (1992) and Goldberg (1989), an offspring popula-

tion completely replaces a parent population and is involved into next generation. This

method has been found to be inefficient. There are several attractive types of replacement:

(1) ranking replacement; (2) proportional replacement; (3) tournament replacement with a

tournament size of a small number; and (4) extinctive replacement. For more details, see

Back (1996), Heredia-Langner et al. (2003), (2004) and Mayer et al. (2001). The most

two popular ones, ranking and tournament with size two, are utilized and compared in this

study.

In the ranking replacement operation, all individuals in the offspring and current parent

population are sorted from best to worst, only the top M individuals replace the parent
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population and are involved into next generation. The size of the current parent population,

M, is constant in each generation. In the tournament with size two, two individuals are

randomly selected, and the best one of the two is moved into next generation. This procedure

is repeated until the number of individuals, M, is reached.

4.8 Stopping Rules

The stopping rule operation is important, especially when considering the efficiency of the

GA. If the stopping rule stops a GA too early, the GA fails to find an acceptable solution.

If the stopping rule stops a GA too late, the GA may be computationally inefficient. There

are two rules utilized in this study.

(1) If the global optimum is unknown and a near-global optimum is impossible to know,

then the stopping rule could be to simply and arbitrarily choose a pre-selected generation

number based on previous experience. This number would be problem-dependent, due to

both the complexity of the problem itself and the number of dimensions of the problem.

There are many papers utilizing this rule such as Hamada et al. (2001), Cieniawski et al.

(1995), Heredia-Langner et al. (2004), Wu and Chow (1995) and Meyer (2003).

(2) If the global optimum is known and it would be easy to select an acceptable value, which

is a near-global optimum, then a possible stopping rule stops a GA when the acceptable

value is achieved. The reason for an acceptable value is to reduce computational cost. It has

been observed that the GA process quickly converges to a region close to the optimum and

then slows down in finding the optimum.

If one wants to find the exact global optimum, rather than a near-global optimum, then a

hybrid GA would be a better choice than a GA. A hybrid GA procedure is one where a GA

helps a local optimization method by finding a good starting point, which is a near-global

optimum. Then, the local method is used to find an exact global optimum. For more details

on a hybrid GA, see Haupt and Haupt (2004).
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4.9 GA Operations Settings or Rules in Our Examples

Our GA operations/parameters settings are chosen, based on the rules above. Table 4.1 is

the summary on these settings used in our study.

Table 4.1: Summary on a Continuous Genetic Algorithm Operations Settings or Rules Used
in Our Examples

Parameters description Size or Rule

The number of dimensions k
The size of parent population 2k or 3k
The size of offspring population 2k or 3k
Selection Random pairing
Blending crossover m-point, m ∈ {0, 1, 2, 3, 4, 8}, and m < k
Random uniform mutation Rate is around or equal to 1/k
Replacement over parent and offspring Ranking and tournament
Stopping rules 2 rules used

As mentioned in Chapter 1, a modified GA (MGA) is proposed in Chapter 5. To compare

the GA with the MGA, various combinations of several levels of the three main factors

(replacement type, crossover points, and mutation rates) are considered through a split-plot

design. Details on the comparisons are also discussed in Chapter 5.
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Chapter 5

An Improved Genetic Algorithm
Using a Directional Search

The genetic algorithm (GA), a very powerful tool used in optimization, has been applied

in various fields including statistics. However, the general GA is usually computationally

intensive, often having to perform a large number of evaluations of an objective function.

This study presents four different versions of computationally efficient genetic algorithms

by implementing several different local directional searches into the GA process. These

local searches are based on using the method of steepest descent (SD), the Newton-Raphson

method (NR), a derivative-free directional search method (denoted by “DFDS”), and a

method that combines SD with DFDS. Some benchmark functions (Araujo and Assis, 2000),

such as a low-dimensional function versus a high-dimensional function, and a relatively

bumpy function versus a very bumpy function, are employed to illustrate the improvement

of these proposed methods through a Monte Carlo (MC) simulation study using a split-

plot design. A real problem (Myers and Montgomery, 2002) related to the multi-response

optimization problem is also used to illustrate the improvement of these proposed methods

over the traditional GA and over the method implemented in the Design-Expert statistical

software package used by Myers and Montgomery (2002). Our results show that the GA can

be improved both in accuracy and in computational efficiency in most cases by implementing

a local directional search into the GA process.
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5.1 Introduction

A genetic algorithm (GA) is a stochastic optimization tool whose search technique is based on

the principals of Darwinian survival of the fittest in biological genetics. The GA, originally

developed by Holland (1975), simulates an evolutionary process of a living species, using

typical biological genetics operations such as “selection”, “mutation” and “crossover”. GAs

have been applied to a broad variety of fields, including ecology, psychology, biochemistry,

biology, computational mathematics, and statistics (e.g., Haupt and Haupt, 2004; Heredia-

Langner et al., 2003).

The reason that a GA is so popular and useful is that a GA has some attractive features and

advantages (Holland, 1992; Haupt and Haupt, 2004), such as employing multiple concurrent

search points (not a single point), not requiring the derivative of an objective function,

and being able to find a global or near-global optimum of an objective function with a very

complex surface and/or in very high-dimensional domains of the function. A disadvantage of

the GA, however, is that it is computationally intensive (Haupt and Haupt, 2004). Typically

a GA, in order to find the optimum, must evaluate an objective function a large number of

times. For example, if taking 12 hours for only a single evaluation of a complex objective

function (which is not unusual in applications), then it could be imagined that the GA would

become very time-consuming.

To deal with the computational problem, we proposes and evaluates four versions of a more

computationally efficient GA based on modifying a traditional GA in this chapter. The main

idea of each version of the modified GAs (MGAs) is to gather numerical information from the

GA itself so that a local directional search may be used to make computational improvements

to the traditional GA. Four local directional searches used in our MGAs include the method

of steepest descent (SD), the Newton-Raphson method (NR), a derivative-free directional

search method (DFDS), and a method that combines SD with DFDS.

The remainder of this chapter is organized as follows. Section 5.2 is a brief introduction to

a traditional GA and its operations. Section 5.3 gives a brief description of the four local

directional search methods. Section 5.4 is focused on the four MGAs. Section 5.5 shows some

results for several objective functions giving paired comparisons of the GA and the MGAs

across a variety of level combinations of the GA operations and two different stopping rules.
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A real case study where the GA is compared to the MGAs is also illustrated. Section 5.6

lists a summary and conclusions, and suggestions for future work.

5.2 The Genetic Algorithm

Genetic algorithms are iterative optimization procedures that repeatedly apply GA opera-

tions (such as selection, crossover and mutation) to a group of solutions until some criterion

of convergence has been satisfied.

A basic GA procedure has the following steps:

1. Define an objective/fitness function, and its variables. Set GA operations (such as
population size, parent/offspring ratio, selection method, number of crossovers and
mutation rate).

2. Randomly generate initial population.

3. Evaluate each individual (or chromosome) in the initial population by the objective
function.

4. Generate an offspring population, by GA operations (such as selection/mating, crossover,
and mutation).

5. Evaluate each individual in the offspring population by the objective function.

6. Decide which individuals to include in the next population. This step is referred to as
“replacement” in that individuals from the current parent population are “replaced” by
a new population, whose individuals come from the offspring and/or parent population.

7. If a stopping criterion is satisfied, then the procedure is halted. Otherwise, go to Step
4.

GAs are a large family of algorithms that have the same basic structure but differ from

one another with respect to several strategies such as stopping rules and operations which

control the search process. Based on previous experiences, in this study, we use a continuous

GA where chromosomes are coded as continuous measurement variables. We also make

the following assumptions. The (parent) population size is 2k and the offspring population

size is also 2k. The type of selection we utilize is random pairing. The blending crossover
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is utilized and the number of crossover points depends on the number of dimensions of a

specific objective function. Random uniform mutation is utilized and the mutation rate is set

around or equal to 1/k. The type of replacement over both parent and offspring population

is ranking or tournament. There are two stopping rules used in this study. Stopping rule

1 is that the GA is halted at the pre-selected number of generations. Stopping rule 2 is

that the GA is halted when a cutoff value (which is pre-selected and considered as a near-

global value) is achieved. For details on the setting of the GA operations, see, for example,

Goldberg (1989), Hamada et al.(2001), Mayer, Belward and Burrage (2001), Francisco Ortiz

et al.(2004) and Haupt and Haupt (2004).

5.3 Local Directional Search Methods

The GA itself does not utilize a directional search explicitly. In order to improve the com-

putational efficiency of the GA, we modify the GA by incorporating a directional search

into the GA process. As mentioned in the introduction, we use four different methods of a

local directional search to develop the four MGAs: the method of steepest descent (SD), the

Newton-Raphson method (NR), the method of a derivative-free directional search (DFDS),

and the method that combines SD and DFDS. SD, NR, and DFDS will be discussed in the

next three subsections, respectively.

5.3.1 The Method of Steepest Descent

The method of the steepest descent (SD) was originally introduced by Cauchy in 1874.

It starts at an arbitrary point on the surface of an objective function, f(x), where f is

the objective function and x is the arbitrary point, and minimizes along the direction of

the gradient. The simple formula for the (n + 1)th iteration at location xn (where xn =

[xn1, ..., xnk]
′) is given by

xn+1 = xn − ρn∇f(xn), (5.1)

where ρn is a non-negative scalar and ∇f(xn) = [∂f/∂xn1, ..., ∂f/∂xnk]
′ is the gradient-based

vector. Obviously, each step by SD requires the first derivative of f to calculate a specialized

gradient based on that particular location. Note that if one wants to find a maximum of
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f and to maximize along the direction of the gradient, then the ρn should be non-positive.

More details on SD can be seen in Haupt and Haupt (2004).

5.3.2 Newton-Raphson Method

Newton-Raphson method (NR), a second directional search procedure, is based on a first-

order Taylor series expansion of the function about the point xn given by

f(x) ≈ f(xn) + (x − xn)′∇f(xn), (5.2)

where x is some point near xn. To find an optimal value of f , taking the gradient of both

sides of (5.2) and setting it equal to zero yields

∇f(x) ≈ ∇f(xn) + Hn(x − xn) ≡ 0,

where Hn is the Hessian matrix with elements given by hnjl = ∂2f/∂xnj∂xnl, j and l =

1, ..., k. Thus the next point, xn+1, can be found by

xn+1 ≈ xn − H−1
n ∇f(xn). (5.3)

More details on NR can be seen in Haupt and Haupt (2004).

Compared to SD in (5.1), NR requires calculating the Hessian matrix (which involves the

second derivative of f) and its inverse and thus it usually takes more time than SD for each

function evaluation. However, NR does not require the adjustment to the moving step (ρn

in formula (5.1)) as SD does, since −H−1
n takes the amount of the moving step into account.

In practice, the NR method often requires fewer steps than the SD method to converge to

an optimal solution.

5.3.3 A Derivative-free Directional Search Method

The SD and NR methods both require the partial derivatives of an objective function f . It

is not expected that SD or NR can always find a proper direction from the current point,

since an objective function usually is not simple and unimodal, but very complicated, locally

rough and unsmoothed. Thus, we developed a new local directional search method which is

derivative-free and denoted by “DFDS.”
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The goal of DFDS is to find an appropriate direction so as to build the path without requiring

the gradient, ∇f(xn). Here we build three potential directions associated with the best

offspring in a GA process. When the best offspring is also the best in the current parent

population, there is an improvement from its parents to the best offspring in terms of the

objective function. It may be possible to make continuous improvements by moving along

the directions/paths from its parents to the best offspring. That is, some data points are

“collected” along the paths until no further improvement can be found.

When the best offspring among both the offspring and parent populations is found, we can

trace back to find its parents. These parents then can be considered as two different starting

points. Both of their first steps from the two starting points go to the same point: the

best offspring. So two directions are established: one is from one of the parents to the best

offspring; the other is from the second of the parents to the offspring. Both directions have

obtained improvement, since the best offspring of interest is an improvement over both its

parents in terms of values of an objective function.

For example, consider a 2-dimensional (k = 2) problem along with the contours of a response

(or values of an objective function) as illustrated in Figure 5.1. In general, the best offspring

among the offspring and the current parent population is denoted by O (expressed as xO =

[xO1, ..., xOk]
′) and its parents are denoted by P1 (xP1 = [xP11, ..., xP1k]

′) and P2 (xP2 =

[xP21, ..., xP2k]
′). Obviously, there are two directions: one is from P1 to O, expressed as

δP1O = xO − xP1 = [δ11, δ12, ..., δ1k]
′ and the other is from P2 to O, expressed as δP2O =

xO − xP2 = [δ21, δ22, ..., δ2k]
′. We refer to these two directions as the Parent 1 and Parent 2

directions.

The third direction is the “common” direction, expressed as δ = [δ31, δ32, ..., δ3k]
′, and based

on the two parent directions. If δ1i and δ2i, for i = 1, ..., k, are both positive (negative), then

δ3i is positive (negative). That is, if both the parent directions are in common, say, both

positive (negative) along the Xi axis, then the third direction is positive (negative) along

the Xi axis. If δ1i and δ2i are opposite in direction, then δ3i is set to 0. That is, if the parent

directions are not in common on the Xi axis, then the third direction has no movement along

the Xi axis. For more details on the three directions and determining their moving distances

for each moving step, see Appendix A.1.

Figure 5.1 illustrates the three defined directions. The optimal point is denoted by “Θ”. It
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is easy to see the two parents directions, expressed as δP1O = [δ11, δ12]
′ and δP2O = [δ21, δ22]

′

respectively. The third direction δ = [δ31, δ32]
′. Obviously, δ31 > 0 since both δ11 > 0 and

δ21 > 0. That is, the common direction in this case is positive along the X1 axis. And

δ32 = 0 since δ12 > 0 and δ22 < 0. That is, the common direction has no relative movement

along the the X2 axis.

Figure 5.1: A contour plot of a 2-dimensional problem with the three directions indicated:
Parent 1 direction is from P1 to O; Parent 2 direction is from P2 to O; the common direction
is a horizontal dotted line, starting at O towards the positive values on the X1 axis. The three
“stars” represent the three points stopped on the three paths with no further improvement.

Once the three directions are defined, starting at O, the DFDS method moves along the

three directions/paths, with some appropriate moving distance for each moving step until

no improvement is found in terms of an objective function. In Figure 5.1, the three “stars”

on the paths denote that the three best points found on each path and the processes of

moving along the paths will be stopped at their next points due to no further improvement.

5.3.4 A Method Based on Combining SD and DFDS

Unlike the SD, NR, DFDS methods, the fourth method we used in this study is a “combined”

method that combines SD, a derivative-base search method with one direction generated,

with, DFDS, a derivative-free search method with three directions generated. This method

provides a total of four directions to search for the best point.
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5.3.5 A Summary of the Methods of a Local Directional Search

In summary, the four local directional search methods used in our four MGAs in this study

are SD, NR, DFDS, and the method that combines SD with DFDS. There are many other

MGAs that may be considered by using other derivative-based directional searches combined

with other derivative-free directions.

We choose these four local directional search methods for our four MGAs because we have

the following concerns: (1) SD is quite simple, efficient, but requires the first derivative of f .

(2) NR is a very popular optimization tool but requires calculating the Hessian matrix and

its inverse matrix. Thus, it may take much more time than SD for each function evaluation.

(3) DFDS with the three directions generated is intuitive, reasonable, and derivative-free. (4)

For the method that combines SD with DFDS, we want to determine if such a combination

performs better than either the SD or the DFDS, separately.

5.4 Modified Genetic Algorithms

We developed four versions of a modified genetic algorithm (MGA). These MGAs are listed

as follows: (1) if a directional search by SD is utilized by the GA process, then the MGA is

denoted by “MGASD;” (2) if a directional search by NR is utilized, then the MGA is denoted

by “MGANR;” (3) if a directional search with the three directions, described in 5.3.3, the

DFDS method, is utilized, then the MGA is denoted by “MGA3;” (4) if a directional search

with a total of four directions combined by SD and DFDS, then the MGA is denoted by

“MGA4.”

These MGAs have the same main idea: utilizing numerical information from a GA process

itself to find some appropriate local directions by only requiring a few extra function evalua-

tions so that the GA process may be guided to further possible improvement. The numerical

information we utilized in our study is focused on the best offspring among both the current

parent and offspring populations.

The general procedure for each MGA is the same as that of GA, except that in the ith

generation we add Step D between Step 5 and 6 in the original GA procedure in Section 5.2

as follows:
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D. Is the best offspring in the offspring population also the best over the current parent
population?

D-1. If no, directly go to Step 6.

D-2. If yes, then define and implement a local direction. Collect data points along the
paths with some appropriate moving distance until no improvement is observed
in the objective function. Find the best point and replace the best offspring by
the best point. Then go to Step 6.

The choice of the size of an appropriate moving distance, d, depends on how bumpy the

surface of an objective function is. If the surface is very bumpy relative to the region of

the domain, then the appropriate d should be relatively small. Otherwise, the appropriate

d should be relatively large to make the MGAs more efficient.

Actually, the general MGA process is a special GA process with an extra “branch” (illus-

trated in Step D) (i.e. requiring only a few extra function evaluations), where the best

offspring which is also the best over the current parent population is found. Within the

branch, a local direction can be defined by SD, NR, DFDS, or the method that combines

SD and DFDS. Along the direction(s)/path(s), data points are collected (i.e. evaluated in

terms of an objective function) with an appropriate moving distance for each moving step in

a manner similar to the method of steepest ascent/descent until no further improvement is

found. The best offspring from the parent population is replaced by the best point found on

the paths. Then the branch is ended with possible improvement for the MGA by replacing

the best offspring with the new best point found and the MGA process is continued like a

GA process until a new extra “branch” is found and generated. That is, a new best offspring,

which is also the best in a new current parent population, is found. The whole process is

iterated until some appropriate stopping rule is satisfied.

Each MGA is essentially a modification to a GA. Thus, if the GA can jump out of a local

optimum, so can the MGAs. In addition, each MGA will more likely produce an improved

solution than that obtained by the GA with the same setting of the GA operations. An

improved solution results when, under the same situation and the same stopping rule, the

best solution found by each MGA is closer to the true global solution (in accuracy) and/or

converges faster to a global optimum than by the GA (in computational efficiency).

Computational details for implementation of a directional search into a GA process by the
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SD, NR, and DFDS methods are found in Appendixes A.2, A.3 and A.1, respectively. Details

for implementation by the method that combines SD and DFDS are straightforward from

the details of implementation by SD and DFDS.

5.5 A Simulation Study

In our examples, the main goal is to compare the four MGAs with the GA in computational

efficiency and in accuracy for different objective functions under a variety of combinations

using different levels of GA operations. At the same time, our sub-goal is to find optimal

levels for each operation among a variety of levels of interest for each MGA and the GA.

To make the comparisons more fairly comparable, whenever possible, the same random

numbers generated within the GA are also used within each version of the MGAs. Therefore,

an experiment is conducted through a split-plot design (Hinkelmann and Kempthorne, 1994)

so that paired comparisons can be made under the same settings of the operations and using

the same random numbers.

The three whole-plot factors are the three main GA operations: replacement type (denoted

by “type” in subsequent references), crossover points (denoted by “crossover”), and mutation

rates (denoted by “mutation”). The factor type has two levels: ranking (0) and tournament

(1). The factor crossover and the factor mutation have two or three levels, depending on

the number of variables used in the objective function. Essentially, these combinations of

the three factors correspond to the settings of the three main GA operations. The sub-plot

factor is “method” which has five levels: one is the GA (denoted by method = 0) and the

other four are MGASD, MGANR, MGA3, and MGA4 (denoted by method = SD, NR, 3, and

4, respectively).

Under the same setting of the GA operations, the GA and the four MGAs may obtain a

different optimum value for different random seeds. Therefore, a Monte Carlo experiment is

performed for each specific combination of levels of these three GA operations and repeated

500 times using different random seeds.
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5.5.1 Two Stopping Rules

Two different stopping rules are utilized in the experiment. Under rule 1, the algorithm will

be halted at a pre-selected number of generations. Thus, this stopping rule can be used

to compare the five algorithms for accuracy in finding the optimal value of the objective

function. Our MGAs all require extra evaluations of the objective function, f , and MGA4

usually requires the most evaluations of f among the four MGAs found in our studies.

Thus, under the same random seed and the same settings of the GA operations, we let the

traditional GA run the number of evaluations equal to the number of the extra evaluations

of MGA4 added to the pre-selected number of evaluations (which is equal to the number of

generations times the population size).

Under the rule 2, the algorithm will be halted when the cut-off value, which is close to the

optimal value and beyond all-possible local optima, is achieved. In our examples except for

the case study, the optimal values are known. Thus, the second rule can be used to compare

the five algorithms for efficiency in finding the optimal value of the objective function.

5.5.2 Comparison Criteria

There are three responses of interest used for comparing the four MGAs to the GA. The

first one is the best optimal value of an objective function obtained by the GA or MGAs.

We denote this optimal value by “best.” The second response of interest is the distance from

the location of the best value obtained to the location of the true optimal value, denoted by

“distance.” The third response is the total number of evaluations of the objective function,

denoted by “evaluation.” Under stopping rule 1, the interesting responses are best and

distance. Under stopping rule 2, the most interesting response is evaluation, with best and

distance also of interest.

Boxplots (from Minitab) will be our graphical tool to compare the four MGAs to the GA

across all the combinations. The numerical criteria utilized for comparison are (1) the

mean squared error (MSE) of the responses best and distance, denoted by “MSE(best)”

and “MSE(distance),” respectively; (2) the mean and variance of the number of evaluations

(the response evaluation), denoted by “Mean(evaluation)” and “Var(evaluation),” respec-

tively; and (3) the number of winners among the 500 replications between any two of the
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four algorithms for each setting of the operations (or each combination) in terms of the

responses best, distance or evaluation, denoted by “Count(best),” “Count(distance),” and

“Count(evaluation),” respectively.

For Criteria (1), the MSE is given by

MSE =

500
∑

i=1

(yi − T )2

500
, (5.4)

where yi is a response (either best or distance) and T is an true optimum for the response

yi. For Criteria (2), the MSE cannot be used for the response evaluation, since no optimum

exists for this response. Thus the estimated mean and variance are used as criteria for

evaluation in our study. For Criteria (3), among the five algorithms there are a total of

ten paired comparisons in terms of the number of winners among the 500 replications for

each combination, where a “winner” refers to the most favorable response among each pair

of responses being compared. For each paired comparison, there may be some ties when

the values obtained by one algorithm are equal to the values by another algorithm. For

example, to compare GA versus MGASD in terms of Count(evaluation), it follows that

“Count(evaluation) by GA” + “Count(evaluation) by MGASD” + “Ties(evaluation)” =

500. In the following examples, the numbers of counting ties will not be presented.

Computational time is used to compare the computational efficiency. Besides MGANR, the

computational time of a single function evaluation with a local directional search imple-

mented for each of the other three MGAs is not very different from that by GA in our C++

code, especially for the cases with a single function evaluation, a time-consuming task. Thus,

the number of evaluations under stopping rule 2 will be an appropriate indirect measurement

of total computational time for each of the GA, MGASD, MGA3, and MGA4 procedures.

5.5.3 Comparisons for the Benchmark Functions

For the comparisons of GA, MGASD, MGA3, MGA4, and MGANR, we have selected five

objective functions used in previous GA literature. The five objective functions are (1) the

sphere model with smooth surface in 2-dimension (Back, 1996), (2) and (3) the Schwefel’s

function with relatively a bumpy surface (which has been utilized as a benchmark function

by Araujo and Assis (2001)) in 5- and 20-dimensions respectively, (4) and (5) the Rastrigin’s
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function with a very bumpy surface (another benchmark function by Araujo and Assis (2001))

in 5- and 20-dimension respectively. The results from all these five objective functions

show that MGASD, MGA3, MGA4, and MGANR all perform better in both accuracy and

computational efficiency than GA over nearly all combinations and all criteria. The exception

is for function (4) (the Rastrigin’s function in 5-dimension) in terms of the MSE of the

response distance where all MGAs outperform GA in seven combinations out of 18. As an

example, we only present some comparison results for function (5) (Rastrigin’s function in

20-dimension). This function presents a serious challenge to the GA and the MGAs, due to

a very bumpy surface of the function in high dimensions. For details about the sphere model

and the Schwefel’s function, see Appendix A.4.

Comparisons for the Rastrigin’s function with 20 dimensions

A generalized Rastrigin’s function is given by

f(x) =

k
∑

i=1

(x2
i − 10 cos(2πxi) + 10), where − 5.12 ≤ xi ≤ 5.12, (5.5)

where k is the number of dimensions of the function. Figure 5.2 shows its 1- and 2-

dimensional surfaces. The surfaces are very bumpy in a narrow range [-5.12, 5.12]. The

goal is to find a minimal value and its corresponding location by GA and MGAs. The mini-

mum of this function is known as min(f(x)) = f(0, ..., 0) = 0. In this study, we compare the

five algorithms using the function in 20 dimensions (that is, k = 20).

To conduct a split-plot design, the levels of the three whole-plot factors are as follows. The

factor type has 2 levels: ranking and tournament; the factor crossover has levels: 2, 4, and 8;

and the factor mutation has levels: 0.04, 0.05, and 0.06. There are a total of 18 combinations

of type, crossover and mutation. Note the middle level for mutation of 0.05 is 1/k where k

is the number of genes (or dimensions). For stopping rule 2, the cut-off value, which is a

near-global optimum, is set to 0.5. The pre-selected number of generations used by stopping

rule 1 is 5,000. The appropriate moving distance for each moving step, d, is set to 0.05.

Under stopping rule 1, Figure 5.3 presents boxplots for the responses best and distance

across the 500 repetitions for the MGAs and GA models for each of the 18 combinations

of type, crossover and mutation. This figure illustrates that MGASD, MGA3, MGA4, and
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Figure 5.2: Surface of Rastrigin’s function. Left: 1-dimension; right: 2-dimension.

MGANR all perform better than GA over all 18 combinations in terms of the best value and

the distance. Not only are all these four new methods more accurate (plots closer to the

true minimal value 0), but also more precise (plots exhibit less spread) over all situations.

Among the four MGAs, MGANR performs the best in both accuracy and precision, since the

500 best values obtained by MGANR all achieve zero (the true minimum) across all of 18

combinations. In addition, MGASD and MGA4 both perform much better than MGA3: when

type is 0 (ranking), the best values found by both MGASD and MGA4 are all zero across all

of the nine combinations shown in the top left boxplot; when type is 1 (tournament), most

of the best values by both the MGASD and MGA4 are zero except for a few outliers shown

in the top right boxplot. The boxplots by the response best and by the response distance

express similar patterns. That is, lower best values have smaller distances. The numerical

results including the MSE of best and distance (which are not presented here) also match

well with Figure 5.3.

Under stopping rule 1, the amounts of time recorded to complete the 500 repetitions for GA,

MGASD, MGA3, MGA4, and MGANR are 22959, 23614, 23120, 23628, and 38616 seconds,

respectively. Except for MGANR, the times of the other four algorithms are relatively similar

to each other. The slight differences in the amounts of time between the other four are due to

the slightly different computations required for each MGA/GA and to the slightly different

numbers of extra function evaluations for MGASD, MGA3, and MGA4. The reason that

50



Figure 5.3: Multiple boxplots for comparisons of GA, MGASD, MGA3, MGA4, and MGANR

(denoted by “0, SD, 3, 4, and NR,” respectively) in 18 combinations of the factors type,
crossover, and mutation for the Rastrigin’s function with 20 dimensions by stopping rule 1:
the top left is for the response best when type = 0, the top right is for best when type =
1, the bottom left is for the response distance when type = 0 and the bottom right is for
distance when type = 1.
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MGANR took much longer than the other four is in calculating the Hessian and its inverse

matrix in formula (5.3).

Under stopping rule 2, Table 5.1 presents the mean of the number of function evaluations and

its estimated Monte Carlo (MC) error as a summary of the 500 repetitions for comparisons

of the five algorithms. It shows that the numbers of evaluations required to obtain a value

of the objective function within 0.5 of the true minimum by MGASD, MGA3, MGA4, and

MGANR are all consistently less than required by GA over all combinations. Among the

four MGAs, MGANR performs the best with much smaller mean values for the number of

function evaluations than the other three MGAs over all combinations. Among the other

three MGAs, MGASD has the smallest mean values of the number of function evaluations in

12 combinations out of 18, MGA4 has the smallest mean values in five combinations, while

MGA3 has the smallest value in only one combination (which is the 17th).

Also under stopping rule 2, Table 5.2 presents the paired comparisons of GA, MGASD,

MGA3, MGA4, and MGANR (denoted by “0, SD, 3, 4, and NR,” respectively) in terms of

the number of winners among the 500 replications for each combination with respect to the

response evaluation (denoted by “Count(evaluation)”). Note that Table 5.2 presents only

six paired comparisons, not ten (the total number of paired comparisons), because these six

paired comparisons are sufficient to rank these five algorithms. These paired comparisons

show that all MGAs have more winners than GA over all combinations in terms of the count

of the number of evaluations. Among the four MGAs, MGANR has consistently the most

winners over all combinations. MGASD has the most winners than the other two MGAs

across all the combinations, and MGA4 has more winners than MGA3 over all combinations.

The amounts of time recorded for GA, MGASD, MGA3, MGA4, and MGANR, under stopping

rule 2, are 5622, 3717, 4137, 3702, and 15 seconds, respectively. Obviously, MGANR finds

the optimal solution very quickly, with MGASD and MGA4 as the next fastest, while the

GA is the slowest. These results match well with those in Tables 5.1 and 5.2.
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Table 5.1: Comparisons of GA, MGASD, MGA3, MGA4, and MGANR (denoted by “0, SD, 3,
4, NR,” respectively) in terms of mean of the number of evaluations and the estimated Monte
Carlo (MC) error of the mean under the 18 combinations of the factors type, crossover, and
mutation for the Rastrigin’s function in 20-dimensions by stopping rule 2

Combinations Mean(evaluation) MC error(mean(evaluation))

type cross muta 0 SD 3 4 NR 0 SD 3 4 NR

.04 30706 15792 22266 15925 115 331 207 272 208 2

2 .05 31310 15859 22585 15996 114 339 208 274 204 2

.06 32366 16415 23274 16600 113 327 215 281 218 2

.04 27280 15598 19511 15749 113 317 222 270 222 2

0 4 .05 26870 15407 19463 15495 108 299 213 254 212 2

.06 28537 16096 21003 16264 111 305 208 262 213 2

.04 25270 15933 17354 16122 108 331 227 246 229 2

8 .05 25604 16018 17554 16224 106 293 218 238 214 1

.06 26705 16564 18917 16744 107 315 227 267 225 2

.04 51259 31001 36751 30899 118 413 371 364 342 2

2 .05 77109 45175 53467 45011 116 722 548 590 555 2

.06 118768 69806 81530 70206 122 1335 1125 1001 1092 2

.04 45254 31973 33970 31918 113 392 338 299 342 2

1 4 .05 70515 49371 53342 49323 117 738 627 635 613 2

.06 113514 78707 87176 78988 116 1558 1260 1332 1228 2

.04 46250 37753 37965 38155 109 444 429 380 416 2

8 .05 89548 74159 71903 73197 111 1379 1179 1082 1250 2

.06 177024 149430 152007 148541 112 3482 3237 3327 3356 2
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Table 5.2: Numerical six paired comparisons of GA, MGASD, MGA3, MGA4, and MGANR

(denoted by “0, SD, 3, 4, and NR,” respectively) in terms of the number of winners among
the 500 replications for each combination with respect to the response evaluation (denoted
by “Count(evaluation)”) for the Rastrigin’s function in 20-dimensions by stopping rule 2.
The maximal MC error is 11.

Count(evaluation)
0 SD 0 3 0 4 SD 4 3 4 SD NR

1 13 487 79 421 12 488 475 25 78 422 0 500
2 8 492 66 434 11 489 467 32 72 428 0 500
3 14 486 69 431 13 487 477 23 75 425 0 500
4 27 473 85 415 28 472 482 18 106 394 0 500
5 25 475 80 420 25 475 472 28 107 393 0 500
6 23 477 84 416 26 474 480 20 95 405 0 500
7 61 439 86 414 62 438 482 18 168 331 0 500
8 49 451 65 435 53 447 483 17 187 313 0 500
9 50 450 89 411 55 445 483 17 155 344 0 500
10 14 486 38 462 24 476 348 152 143 357 0 500
11 25 475 53 447 25 475 358 142 149 351 0 500
12 44 456 66 434 47 453 367 133 175 325 0 500
13 61 439 67 433 51 449 355 145 199 301 0 500
14 65 435 93 407 68 432 402 98 204 296 0 500
15 95 405 128 372 93 407 409 91 203 297 0 500
16 118 382 120 380 123 377 438 62 247 253 0 500
17 158 342 150 350 149 351 447 53 243 257 0 500
18 183 317 190 310 179 321 435 65 238 262 0 500
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Some Other Details on Comparisons Among the Four MGAs using the Bench-

mark Functions

Among our four MGAs, in the examples of the benchmark functions, MGANR performs the

best in terms of our criteria (as mentioned in Section 5.5.2) except for the amount of time

recorded under stopping rule 1 for the Rastrigin’s function with very bumpy surface in 5-

and 20- dimensions. Among the other three MGAs, under stopping rule 1, MGASD and

MGA4 are quite competitive with each other and both perform much better than MGA3 in

most cases. In addition, under stopping rule 2, MGASD performs better than MGA4 and

MGA3, and MGA4 performs better than MGA3 in most cases.

In the examples using Rastrigin’s function in 5- or 20-dimensions (as presented in Section

5.5.3), the results show that MGANR exhibits superior performance over the other three

MGAs, especially when using stopping rule 2. When under stopping rule 1, MGANR took

much more time to finish the MGA process than the other three MGAs, although MGANR

still has the best performance by far in terms of other criteria such as MSE(best) and

MSE(distance). Except for the time concern, it seems that the local directional search using

NR greatly helps the GA process jump out of local peaks or valleys towards the global

optimum. But this superior performance by MGANR appears to hold only for a function

with a very bumpy surface. When the Schwefel’s function is used with its relatively bumpy

surface, the results (not presented in this study) show MGANR still performs better than

MGASD, but both algorithms are very competitive with each other in terms of all criteria

including the amount of time taken. It seems that when the peaks or valleys are further

away from each other, the search by NR does not easily jump over them as when the peaks

or valleys are quite close to each other.

5.5.4 Comparisons for the Case Study: A Chemical Process

The real example used to illustrate our methods is taken from Myers and Montgomery

(2002), where a central composite design (CCD) was conducted on a chemical process. Two

independent variables (or factors) are time (x1) and temperature (x2). Three responses of

interest are yield (y1), viscosity (y2) and number-average molecule weight (y3). The collected

data are given in Myers and Montgomery (2002). As in Myers and Montgomery (2002), we

55



transform the natural independent variables into the coded variables within the range of [0,

1].

In this case study, their multi-response optimization goal is to maximize y1 (the minimum L

= 70 and optimum T = 80), achieve a target value for y2 (the minimum L = 62, the target

T = 65, and the maximum U = 68), and, at the same time, control y3 within the acceptable

range of [3200, 3400]. The desirability function method by Derringer and Suich (1980) is

utilized to find simultaneous optimum solutions of the responses y1, y2, and y3.

The desirability function (which is the objective function utilized in GA and the MGAs) is

given by

D = (d1 × d2 × · · · × dm)1/m × 100%, (5.6)

where m is the number of responses and di is the ith individual desirability, which is given

in Derringer and Suich (1980). The researcher’s goal is to find the common location, x,

where the maximum value of D is achieved, indicating, in some way, the best location, x,

where all the responses achieved their most desirable values simultaneously. In addition, the

solution vector, xs, should be controlled within the experimental region R, which is defined

as (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.52 in this case study.

Under the same conditions such as experimental priority and fitted models given in Myers

and Montgomery (2002), the two solutions we found by GA are listed as follows.

1) x1 = 0.5758 x2 = 0.1624 ŷ1 = 78.6344 ŷ2 = 65.0000 ŷ3 = 3260.7992 D = 0.9292

2) x1 = 0.2661 x2 = 0.7964 ŷ1 = 78.2694 ŷ2 = 65.0000 ŷ3 = 3399.1632 D = 0.9094

These two solutions are different from the two solutions obtained by Design-Expert as shown

in Myers and Montgomery (2002) (whose two values of D are 0.822 and 0.792) in terms of

fitted optimal values for all of the three responses. The solutions obtained by GA result in

larger values of D, indicating that GA performs better at finding the optimal value of D than

the algorithm used by Design-Expert in this example.

Figure 5.4 represents the surface (the left graph) of the desirability function D within the

experimental region R and its corresponding contour plot (the right graph). The figure

shows that there are two distinct surfaces which represent two disjoint operating regions.

Obviously, the surface of D matches well to the contour plot. In addition, the two optimal
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solutions we found also match well to the figure. Notice that if the case study had more than

two or three factors/dimensions, then it would be hard to graphicly show the surface of the

desirability function D and its contour plot. Thus, in such a situation, we could not depict

graphically the location of the optimal solution. But we still could use either the MGAs or

GA to find its optimal or near-optimal solution.
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Figure 5.4: The 3-D surface and the contour of the desirability function (denoted by “Des”)
within the experimental region R in the case study of a chemical process: left: 3-D surface
and right: contour

To compare the performance of GA, MGASD, MGA3, MGA4, and MGANR on this example,

a split-plot design is conducted and repeated 500 times, similar to the design used in the

five examples mentioned above. The pre-selected number of generations was set at 50. The

appropriate moving distance was set at 0.001. Since the true optimal solution is unknown,

the response “distance” cannot be measured in this application. Stopping rule 2 is also not

suitable in this example, since the pre-specified cutoff which is a near-global optimal value

is unknown. We consider only two levels of the factor crossover instead of three considered

in the previous example. Thus, there are only 12 combinations of our three factors, type,

crossover, and mutation. To calculate the MSE of the response “best” of the desirability

function D, MSE(best), for each combination with 500 repetitions, based on formula (2), we

need the value of T , the true optimum (the maximum of D), which is, however, unknown in

this case. Since the maximum of D is generally close or equal to one, T is set to be one for

this example.

57



Table 5.3 presents the results with respect to the MSE of the response “best” of the desir-

ability function D and the estimated MC error for each combination under stopping rule 1

for this case study. It shows that MGA4 has the smallest MSEs among the five algorithms

over all 12 combinations. MGA3 has the next smallest MSEs over all combinations. MGASD

has smaller MSEs than GA in six combinations, while MGANR has only one smaller MSE

value than GA.

Table 5.3: Numerical comparisons of GA, MGASD, MGA3, MGA4, and MGANR (denoted
by “0, SD, 3, 4, NR,” respectively) in terms of the MSE of the response best and the MC
error of the MSE under the 12 combinations of the factors type, crossover, and muation for
the case study by stopping rule 1

Combinations MSE(best) MC error(MSE(best))
×10−3 ×10−3

type cross muta 0 SD 3 4 NR 0 SD 3 4 NR

.4 12.75 11.69 10.02 8.49 13.09 2.07 2.07 1.75 1.29 2.14
0 .5 7.82 7.21 7.07 6.64 8.04 0.86 0.79 0.68 0.62 0.95

0 .6 7.14 6.73 6.59 6.30 7.22 0.67 0.63 0.54 0.48 0.75
.4 8.99 9.05 8.23 7.94 10.42 1.27 1.47 1.39 1.37 1.87

1 .5 7.19 7.09 6.58 6.37 7.75 0.81 0.85 0.60 0.57 1.10
.6 6.75 6.50 6.50 6.34 6.91 0.63 0.59 0.57 0.56 0.67
.4 10.18 9.54 8.72 8.15 11.37 1.45 1.54 1.34 1.29 1.81

0 .5 8.25 7.95 7.22 6.79 8.94 0.96 1.26 0.71 0.65 1.38
1 .6 7.26 6.62 6.65 6.31 7.18 0.71 0.57 0.57 0.48 0.72

.4 8.93 9.56 6.91 6.76 10.20 1.43 1.70 0.73 0.70 1.75
1 .5 6.53 6.53 6.29 6.16 6.77 0.62 0.66 0.51 0.48 0.70

.6 6.14 6.13 5.95 5.86 6.38 0.51 0.52 0.41 0.40 0.57

Also under stopping rule 1, Table 5.4 presents the results on the six paired comparisons

of GA, MGASD, MGA3, MGA4, and MGANR in terms of the number of winners among

the 500 replications for each combination with respect to the response best (denoted by

“Count(best)”). For the same reason as Table 5.2, this table presents only six paired com-

parisons, not ten. These paired combinations show that MGA4 has superior performance

since it consistently has more winners than the other four over all combinations, although

there are some counting ties from each paired comparison (not presented in the table as

mentioned in Section 5.5.2). MGA3 performs the second best since it has more winners than
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GA, MGASD, and MGANR over all combinations. MGASD is the third best since it has

more winners than GA and MGANR in most combinations. However, MGANR is even worse

than GA over all combinations.

Table 5.4: Numerical six paired comparisons of GA, MGASD, MGA3, MGA4, and MGANR

(denoted by “0, SD, 3, 4, and NR,” respectively) in terms of the number of winners among
the 500 replications for each combination with respect to the response best (denoted by
“Count(best)”) for the case study by stopping rule 1. The maximal MC error is 11.

Count(best)
0 SD 0 3 0 NR SD 3 3 4 SD NR

1 136 221 88 347 129 80 199 284 62 201 236 83
2 145 247 134 307 146 89 229 253 65 215 257 102
3 168 214 162 276 157 84 229 256 94 205 227 119
4 189 211 173 321 150 81 213 285 73 185 215 137
5 177 224 199 293 156 88 242 255 74 176 217 149
6 198 212 201 291 160 88 223 273 77 189 246 139
7 118 245 117 340 144 82 218 258 52 211 251 73
8 127 264 145 317 150 104 244 247 70 228 261 99
9 152 233 175 292 136 94 242 245 66 180 247 109
10 227 178 183 308 214 63 195 301 85 164 212 134
11 244 194 235 261 242 78 217 280 100 169 226 175
12 263 181 235 257 223 80 225 271 121 165 223 186

The results in Table 5.4 match well with those in Table 5.3. The amounts of times recorded

for GA, MGASD, MGA3, MGA4, and MGANR are 54, 47, 52, 53, and 49 seconds, respectively.

Unlike the results for the benchmark functions, MGASD and MGANR both perform worse

than MGA3. We speculate that one reason for this result is that the surface of the desirability

function in the case study has two disjoint “mountains”, both of which are locally irregular,

unlike the surfaces of the five objective functions which are locally smooth and regular.

One reason that MGANR is worse than GA under stopping rule 1 is that the number of

function evaluations required by MGANR is less than the total of number of evaluations

run by GA, which is equal to the number of extra evaluations of MGA4 added onto the

pre-selected number of evaluations, as mentioned in Section 5.5.1. When we let the GA run

the number of evaluations equal to the number of the extra evaluations of MGANR (which

is smaller than the number of the extra evaluations of MGA4) added onto the pre-selected
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number of evaluations, the results show that MGANR has the smaller MSEs than GA in

eight combinations out of 12.

5.5.5 Summary on the GA/MGAs Optimal Settings from the Ex-

amples

Recall that our goal for this study is to find optimal levels for each operation among a

variety of levels of interest to the user of either the MGAs and/or theGA. A Monte Carlo

experiment has been performed for each combination of levels of the three GA operations

(type, crossover and mutation). In this study, the optimal settings for each algorithm are

decided based on the MSEs of the response “best” when using stopping rule 1, and based

on the mean of the response “evaluation” when using stopping rule 2.

Table 5.5 presents the summary of the optimal settings for GA, MGASD, MGA3, MGA4,

and MGANR from the examples including the case study. The first row of this table says

that in the case study with two factors, under stopping rule 1, the optimal setting for all of

the five algorithms is tournament replacement, one crossover point, and 0.6 mutation rate.

The presentations of the other rows follow the format of the first row.

From Table 5.5, it seems that under the different stopping rules, each specific example has its

own optimal GA setting for each of the five algorithms. These results seem to agree with the

“No Free Lunch Theorems for Optimization” conclusions by Wolpert and Macready (1997),

which states that the optimal GA setting is problem-dependent and there are no general

optimal GA settings.

However, from Table 5.5, there are some rules we may follow before either the MGAs or

GA are run. First, the factors crossover and mutation both depend on the length of a

chromosome/string (which is the number of genes in a chromosome). Second, ranking, a

replacement type, is preferred in most cases, especially when the surface of an objective

function is bumpy or very bumpy. Third, the factor crossover is important and the number

of crossover points should be increased as the length of a chromosome increases. Fourth, the

optimal mutation rate is approximately equal to 1/k, as suggested in Back (1996).
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Table 5.5: Summary on the GA/MGAs optimal settings (combinations) of the GA operations
(type, crossover (denoted by “cross”), and mutation (by “muta”)) in all of our examples

Examples Number Stopping Optimal settings
(Functions) factors rules type cross muta Algorithms
Case study 2 1 tour 1 0.6 All

tour 1 0.4 GA
Sphere 1 — — — MGASD, MGA4, MGANR

model 2 tour 1 0.5 MGA3

“smooth” 2 tour 1 0.4 GA,MGA3

rank 1 0.4 MGASD, MGA4, MGANR

1 tour 3 0.1 All
Schwefel’s 5 2 rank 3 0.2 GA, MGA3

“bumpy” rank 2 0.2 MGASD, MGA4, MGANR

1 rank 8 0.05 GA, MGA3

20 tour 8 0.04 MGASD, MGA4, MGANR

2 rank 8 0.04 GA, MGA3

rank 4 0.05 MGASD, MGA4, MGANR

1 rank 3 0.2 GA, MGASD, MGA3, MGA4

5 — — — MGANR

2 rank 3 0.2 GA, MGASD, MGA3, MGA4

rank 3 0.1 MGANR

Rastrigin’s rank 8 0.05 GA
“very 1 — — — MGASD, MGA4, MGANR

bumpy” 20 rank 8 0.04 MGA3

rank 8 0.04 GA, MGA3

2 rank 4 0.05 MGASD, MGA4

rank 8 0.05 MGANR

—: Algorithm achieves the optimal solution, zero, in many combinations.
tour: tournament rank: ranking
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5.6 Conclusion and Discussion

This study presents the four versions of modified GAs: MGASD, MGA3, MGA4, and

MGANR, all of which make an improvement over the traditional GA both in accuracy (by

stopping rule 1) and in computational efficiency (by stopping rule 2) in most cases. The

main idea in our modification is to implement a local directional search into the GA process.

The local directional searches utilized in this study to develop our four MGAs include using

SD, NR, DFDS, and the method that combines SD with DFDS. MGASD and MGA4 both

require the first derivative of f , MGANR requires calculating the Hessian matrix with the

second derivative of f and its inverse matrix, while MGA3 requires no derivative calculations.

Several examples, including a case study of a chemical process, are used to facilitate com-

parisons of GA, MGASD, MGA3, MGA4, and MGANR. Such examples include comparisons

between low-dimensional and high-dimensional problems, and smooth, relatively bumpy and

very bumpy surfaces. Numerical and graphic comparison results in all of the examples show

that the new MGAs procedures perform better than the traditional GA procedure in most

cases.

Among the four MGAs, the results show that MGANR performs the best in the examples

using the benchmark functions (Araujo and Assis, 2000) in terms of all comparison criteria,

except for the amount of time taken under stopping rule 1 for the benchmark function with a

very bumpy surface. Under stopping rule 2, MGANR demonstrates a considerable improve-

ment over the other MGAs regarding all criteria including the amount of time when using

the benchmark function with a very bumpy surface. However, when using the benchmark

functions with relatively a less bumpy surface (like the Schwefel’s function) or a smooth

surface (like the spherical model), MGANR and MGASD are quite competitive in terms of

all criteria including the amount of time.

Among the other three MGAs, under stopping rule 1, the comparison results in the examples

of the benchmark functions show that MGASD and MGA4 are competitive with each other

and both perform much better than the MGA3 in most situations. Under stopping rule 2,

the comparison results show that MGASD performs the best with MGA4 performing better

than MGA3 in most situations. In summary, for our benchmark functions, MGANR is the

top method, followed in order by MGASD, MGA4, and MGA3.
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However, the results in the case study are quite different from those in the examples based

on the benchmark functions. In the case study, the results show that in terms of all criteria,

MGA4 exhibits superior performance, followed in order by MGA3, MGASD and MGANR.

We speculate that one reason that MGASD and MGANR both perform worse than MGA3

is that the surface of the function in the case study has two disjoint “mountains”, both of

which are locally irregular, unlike the surfaces of the benchmark functions which are locally

smooth and regular.

Based on all the results in the examples including the case study, we prefer to use MGA4

if the first derivative can be taken for an objective function f . If the second derivative can

be taken for f and if the surface of f is very bumpy but locally smooth and regular, then

we would choose MGANR. But if derivative cannot be taken for f , then MGA3 is the only

suitable choice.

Several issues remain for further study. For example, the three derivative-free directions

defined in MGA3 may not be optimal. Additionally, the derivative-based directions defined

in MGASD and MGANR may also not be optimal. Perhaps, there are other directions better

than the four we have chosen in this study. Another issue concerns the appropriate moving

distance, once the directions are chosen. The size of an appropriate moving distance, chosen

carefully by us, may greatly affect the efficiency of the MGAs. The last issue is on the optimal

setting of the GA operations. In this study, type of replacement, the number of crossover

points, the mutation rate, the three main GA operations, have been studied. However, there

may be some other operations affecting the GA performance, such as population size and

parent/offspring ratio. We plan to study these issues in future work.

C++ code is available upon request from the authors.
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Chapter 6

Using a Modified Genetic Algorithm
to Find Feasible Regions of a
Desirability Function

The multi-response optimization (MRO) problem in response surface methodology (RSM)

is quite common in real applications. Most of the MRO techniques such as the desirability

function method by Derringer and Suich (1980) (as mentioned in Section 3.1) are utilized

to find one or several optimal solutions. However, in fact, as stated in Myers et al. (2004),

practitioners are usually interested in finding not only the optimal solution(s) but the near-

optimal solutions as well. That is, the goal in MRO is to find all feasible regions defined as

those locations of the factors that result in near-optimal responses. Identifying all feasible

regions is often more useful to the practitioner than finding one or several optimal solutions,

as certain feasible regions may be more desirable than others based on practical considera-

tions. For example, some of the feasible regions may be larger than other feasible regions,

and thus represent a broader range of operating conditions under which the process gives

optimal or near-optimal results.

The approach of overlaying the response contour plots, as recommended in Myers and Mont-

gomery (2002), could be a choice to find the feasible operating regions by visual inspection.

But this graphical approach is limited to two or three dimensional domains of explanatory

variables or factors. In this chapter, a procedure using a modified GA (MGA) is presented to

generate approximately all feasible regions for the desirability function without being limited

by the number of factors. The GA and MGAs have been discussed in Chapters 4 and 5,
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respectively.

The remainder of this chapter is organized as follows. Section 6.1 introduces how to define

feasible regions for the desirability function in this study. Section 6.2 justifies the GA/MGA

method as useful at approximating all feasible regions, and presents the procedure for using

the MGA to approximate all feasible regions of the desirability function. In Section 6.3, a

case study is employed to illustrate that this procedure successfully identifies the disjoint

feasible regions. Section 6.4 gives a short summary and conclusion.

6.1 Feasible Regions of the Desirability Function

Our goal is to identify all feasible regions, which consist of all near-optimal solutions/locations.

All feasible regions may be defined and constructed by all solutions/locations which achieve

D ≥ Dcutoff , where Dcutoff is some appropriate value. The choice of Dcutoff may depend

on the global maximum value of D (which we find using a MGA in this study), denoted by

“Dmax”, and on the goals of the experiment. Moreover, each solution must be within the

experimental region R. For example, suppose that the maximum value of D, found by a

MGA, is Dmax = 0.85. The feasible regions may be defined and constructed by all those

feasible solutions which achieve D ≥ Dcutoff = 0.80 and which are within the experimental

region R.

6.2 Using a MGA to Find Feasible Regions of the De-

sirability Function

In order to find all feasible regions, we utilize the stochastic nature of a GA/MGA. If one

uses the same random seed and the same settings of the GA operations, the MGA has

the same stochastic process as the GA because the local directional search implemented

in the MGA process, which is the only difference between the GA and MGA, involves no

randomness. Each individual/search point obtained in a whole GA/MGA process does

not involve randomness. The initial population is completely randomly generated and the

successive populations are also generated with partial randomness due to the use of the three
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main GA operations which involve randomness as stated in Chapter 4.

When we run a GA/MGA twice with two different random seeds at the same settings of

the GA operations, the two initial populations generated by two GAs (or MGAs) processes

should be different from each other. It can be seen that these two GAs (or MGAs) should

have two different paths towards the same target, a true optimal point. Recall that the

feasible region should consist of all of those near-optimal points close to or equal to the

true optimal point. If we repeat the GA/MGA process many times, using different random

seeds and even different settings of the GA operations (such as the different number of

crossover points and different mutation rates), then there are many different paths towards

the true optimal point. All of those points, evaluated along each of these paths, that satisfy

D > Dcutoff , can be stored as the collection of feasible points and used to approximate the

true feasible region.

In the description above on using the GA/MGA process to find feasible regions, it is assumed

that there is one global optimum. This process, however, is also suitable for those cases where

there are multiple disjoint local optima with similar values of D.

To find all feasible regions, we prefer to use the MGA, although both the GA and MGA have

the same stochastic process given the same settings of the GA operations as mentioned above.

The reason is that the Monte Carlo study in Chapter 5 shows that the MGA converges faster

than the GA. That is, the best value obtained by the MGA is likely to be closer to the true

optimal value than the best value obtained by the GA, and the best location obtained by

the MGA is more likely to be closer to the true location of the true optimum than the best

location obtained by the GA. Therefore, the MGA should have a greater chance of finding

those solutions that are feasible than by the GA.

As mentioned in Chapter 5, we developed four different MGAs using the four different local

directional search methods. MGA4 is the best among the four MGAs, as shown in the

examples. Therefore, we use MGA4 to find all feasible regions in this study.

The procedure of using MGA4 to determine the approximate feasible regions has four stages,
listed as follows.

1. MGA4 is repeated several times (say, five times) with different random seeds and an
optimum and its corresponding location are recorded for each time. The best optimum
among all these recorded optima is considered as a global optimum.
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2. Based on the results from Stage 1 and based on the priority from the experimenters,
the feasible solutions of the desirability function D may be determined. That is, an
appropriate cutoff value, Dcutoff , may be chosen so that all locations found by MGA4

which achieve corresponding D values greater than this cutoff could be regarded as
feasible solutions.

3. When MGA4 is repeated many times with different random seeds and with different
settings of the GA operations such as different crossover points and mutation rates,
feasible solutions are collected when the cutoff value which has been decided in Stage
2 is achieved. As the number of repetitions of MGA4 is increased, the approximate
feasible regions approach the true feasible regions.

4. Plot these feasible points using pairwise 2-dimensional axes. Then, based on these
plots, calculate the feasible regions for each factor.

6.3 Case Study: A Chemical Process

To illustrate finding the feasible regions for a specific problem, we consider the following

example from Myers and Montgomery (2002), where a central composite design (CCD) was

conducted in the chemical process. Two independent variables (or factors) are time (x1)

and temperature (x2). Three responses of interest are yield (y1), viscosity (y2) and number-

average molecule weight (y3). The collected data are given in Myers and Montgomery (2002).

As in Myers and Montgomery (2002), we transform the natural independent variables into

the coded variables within the range of [0,1].

In this case study, their MRO goal is to maximize y1 (the minimum L = 70 and optimum T

= 80), and achieve a target value for y2 (the minimum L = 62, the target T = 65, and the

maximum U = 68), and, at the same time, control y3 within the acceptable range of [3200,

3400]. The desirability function method is utilized to find simultaneous optimum solutions

of the responses y1, y2, and y3. In addition, the solution vector, xs, should be within the

experimental region R, which is defined as (x1 − 0.5)2 +(x2 − 0.5)2 ≤ 0.52 in this case study.

In Stage 1, under the same conditions and fitted models given in Myers and Montgomery

(2002), the two solutions we found by MGA4 are listed as follows.

1) x1 = 0.5767 x2 = 0.1624 ŷ1 = 78.6344 ŷ2 = 65.0000 ŷ3 = 3261.3111 D = 0.9292

2) x1 = 0.2676 x2 = 0.7964 ŷ1 = 78.2821 ŷ2 = 65.0000 ŷ3 = 3400.0000 D = 0.9101
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These two solutions are different from the two solutions obtained by Design-Expert as shown

in Myers and Montgomery (2002) (whose two values of D are 0.822 and 0.792) in terms of

fitted optimal values for all of the three responses. The solutions obtained by MGA4 result

in larger values of D, indicating that MGA4 performs better, in this example, at finding the

optimal value of D than the Nelder-Mead simplex algorithm used by Design-Expert.

Figure 6.1 represents the surface (the left graph) of the desirability function D within the

experimental region R and its corresponding contour plot (the right graph). The figure

shows that there are two distinct surfaces which represent two disjoint operating regions.

Obviously, the surface of D matches well to the contour plot. In addition, the two optimal

solutions we found also match well to the figure.
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Figure 6.1: The 3-D surface and the contour of the desirability function (denoted by ”Des”)
within the experimental region R in the case study of a chemical process: left: 3-D surface
and right: contour

Based on the results from Stage 1, the feasible solutions can be defined by choosing ap-

propriate cutoff values in terms of the desirability function D. In this study, several cutoff

values, 0.2, 0.5, 0.8 and 0.9, are used to check if MGA4 can determine the two feasible re-

gions by collecting feasible points. That is, if the cutoff value of D (0.2, 0.5, 0.8 or 0.9) is

achieved, then the corresponding location, which is regarded as a feasible point, is recorded

during the MGA4 process. MGA4 with 100 iterations is repeated 20 times with 20 different

starting random seeds and with 12 different settings of the GA operations to obtain a large

enough number of the feasible points. We note that during the MGA4 process, some of the
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same feasible points/locations may be found multiple times. The CPU time is only about 8

seconds using a moderately equipped PC.

Figure 6.2 represents the plots of the feasible points collected by MGA4 with different cutoff

values (0.2, 0.5, 0.8, and 0.9) respectively. It shows that the observed feasible points define

two disjoint regions, which correspond to the peaks of the two surfaces shown in Figure 6.1.

With the cutoff values increasing from the left to the right in Figure 6.2, the regions become

smaller and narrower. Compared to the contour plot of the desirability function in Figure

6.1, it is easy to see that the shapes and sizes of the two disjoint regions are very close to

the ones of the contour plot at the four different levels of cutoff values of D. That is, the two

disjoint regions are defined very well by the feasible points collected using MGA4.
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Figure 6.2: Plots of the feasible points collected by MGA4 with four different cutoff values
in the case study of a chemical process: the first graph is by 0.2; the second is by 0.5; the
third is by 0.8; and the last is by 0.9.

Based on the knowledge from the plots in Figure 6.2, we can calculate the feasible regions

for each factor. For example, suppose that only values of D greater than or equal to 0.9 are

acceptable. To calculate the approximate feasible regions, one feasible region would be x1 in

[0.247, 0.268] with x2 in [0.795, 0.798] and the second feasible region would be x1 in [0.460,

0.798] with x2 in [0.153, 0.176]. Obviously, the second feasible region is larger and wider than

the first one in terms of the ranges of both factors x1 and x2. Therefore, the second feasible

region would be considered to be more desirable than the first one, due to a broader set of

the operating conditions. In addition, in the feasible region, the factor x1 (time) is more

robust than the factor x2 (temperature), because x1 has a wider range than x2 to achieve

the same feasible operating region. Note that the feasible regions calculated only give us

the information on the upper and lower bounds for each factor. For more information about

the feasible regions such as the shape, we have to rely on the plots of the feasible regions,
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approximately displayed by the collected feasible points.

In this case study, the surface of the desirability function D and its contour plot are utilized

to check the performance of our method to identify all feasible regions. If the case study

had more than two or three factors/dimensions, then it would be difficult to graphicly show

the surface of D and its contour plot. Thus, in such situations, we could not tell where

the optimal solution is and where the feasible regions are. However, we still could use

MGA4 to find its optimal solution and all its feasible regions and plot them using pairwise

2-dimensional axes.

6.4 Conclusion

Benefitting from the stochastic property of a GA/MGA, this study presents a procedure using

a MGA (MGA4) to determine approximately all possible feasible regions of the desirability

function without the limitation of the number of factors (or domains). A case study has

been utilized to illustrate the procedure. In this case study with two independent variables,

all possible feasible regions can be clearly illustrated and easily computed. In a situation

with more than two independent variables, the feasible regions can be displayed by plotting

pairwise-coordinates. This procedure can also be easily extended to other MRO techniques

which have nonlinear objective functions such as generalized distance measure function and

weighted squared error loss function mentioned in Section 1.3. C++ code is available upon

request from the authors.

There may be some other alternative methods for finding all feasible regions for the desir-

ability function method. For example, we may use a grid method, which is to put a very fine

grid (say, 200 × 200, if the experimental space is 2-dimensional) on the entire experimental

space and to evaluate each point on the fine grid in terms of the desirability function. Similar

to our method, those points which achieve D ≥ Dcutoff can be collected and may approxi-

mately construct all feasible regions. Another choice is the Monte Carlo method where the

desirability function is evaluated at a large number, say 10,000, randomly select points in

the experimental space. Those points satisfying D ≥ Dcutoff approximately construct all

feasible regions. If the experimental space is in very high dimensions (say, 15-dimensions),

then the grid method would possibly become very burdensome and the Monte Carlo method
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may fail to find the optimal setting. It would be interesting to compare the grid method and

the Monte Carlos method with our MGA method to find feasible regions for a desirability

function. We leave this project for future research.
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Chapter 7

Multivariate Multiple Regression

7.1 Introduction

Recall that the regression techniques, as discussed in Chapter 2, were focused on the univari-

ate case. That is, the regression techniques are utilized to estimate the functional relationship

between a single response variable and a set of fixed explanatory variables. In this chapter,

we will extend estimation results from the regression techniques in the univariate case to

the multivariate case, so as to estimate the functional relationship between several responses

and a set of explanatory variables, for the MRO problem.

Suppose on the ith trial, i = 1, ..., n, the relationship between m responses, y1i, y2i, ..., ymi,

and k explanatory variables, x1i, x2i, ...xki, is

y1i = f1(x1i, x2i, ..., xki) + ε1i

y2i = f2(x1i, x2i, ..., xki) + ε2i

...

ymi = fm(x1i, x2i, ..., xki) + εmi,

(7.1)

where the function, fj, represents the true relationship between the jth response, yji, j =

1, ..., m, and the ith set of explanatory variables, x1i, x2i, ...xki, εji represents a random error

term from the jth response, yji, and the error term εi = [ε1i, ε2i, ..., εmi]
′ has E(εi)= 0

and V ar(εi) = Σ. The error terms associated with different responses may be correlated.

However, the n observations within each of the m responses are uncorrelated with constant
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variance. E(yji|x1i, x2i, ..., xki) = µji = fj(x1i, x2i, ..., xki). That is, fj(x1i, x2i, ..., xki) is the

jth mean response function.

Similarly to the univariate case in Chapter 2, the true relationship fj is unknown and must

be estimated, based on the collected data. The three regression techniques, utilized to

estimate the true relationship in the univariate case, are parametric, nonparametric, and

semiparametric methods. In the next sections we will extend the estimation results from

these three regression techniques to the multivariate case.

7.2 Parametric Approach

By analogy with the univariate case in Section 2.2, the parametric approach to estimate the

relationship is to assume that each response surface is relatively smooth in a relatively small

region of the explanatory variables so that the true mean functions f ’s can be adequately

approximated by a low-order polynomial. In this section, based on the work from Rencher

(2002), we summarize the estimation results from the second-order model in univariate case

(shown in Section 2.2) to the multivariate case.

Given n observations, in matrix notation, the matrix of regressor data is

X =















1 x11 x21 · · · xq1

1 x12 x22 · · · xq2

...
...

...
...

1 x1n x2n · · · xqn















,

where q = 2k +





k

2



. The X matrix is essentially the same as that for the single response

regression model (given in Equation 2.3). As in Rencher (2002), the other matrix quantities

have multivariate counterparts:

Y =















y11 y12 · · · ym1

y1n y22 · · · ym2

...
...

...

y1n y2n · · · ymn















= [y1 y2 · · · ym],
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B =















β01 β02 · · · β0m

β11 β12 · · · β1m

...
...

...

βq1 βq2 · · · βqm















= [β1 β2 · · · βm], (7.2)

and

Ξ =















ε11 ε21 · · · εm1

ε12 ε22 · · · εm2

...
...

...

ε1n ε2n · · · εmn















= [ε1 ε2 · · · εm].

Since each of the m y’s will depend on the x’s in its own way, each column of Y will need

different β’s. Thus we have a column of β’s for each column of Y, and these columns form

the B matrix, B = [β1 β2 · · · βm]. Our multivariate model is therefore

Y = XB + Ξ, (7.3)

where Y is n × m, X is n × (q + 1), B is (q + 1) × m, and Ξ is n × m.

By analogy with the univariate case in Section 2.2.1, we estimate B with

B̂ = (X′X)
−1

X′Y. (7.4)

B̂ is called the least squares estimator because it “minimizes”

E = Ξ̂′Ξ̂ = (Y − XB̂)′(Y − XB̂),

which is analogous to SSE by using the ordinary least squares method (OLS). Essentially, B̂

minimizes the scalar quantities tr(Y−XB̂)′(Y−XB̂) and |(Y−XB̂)′(Y−XB̂)| (Rencher,

2002).

By analogy with the univariate case in Section 2.2.1, some assumptions which lead to the

estimator B possessing desirable properties are as follows : 1) E(Y) = XB or E(Ξ) = O;

2) cov(yi) = Σ for all i = 1, 2, ..., n, where y′

i is the ith row of Y; and 3) cov(yi,yj) = O

for all i 6= j. Under these assumptions, B has minimum variance among all possible linear

unbiased estimators (Rencher, 2002).
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As previously mentioned, a column of B corresponds to each column of Y; that is, each yj,

j = 1, 2, ..., m, is predicted differently depending on location x0 = [x10 x20 ... xq0]
′. In the

estimate B̂, we have a similar pattern:

B̂ = (X′X)
−1

X′Y = (X′X)
−1

X′(y1 y2 ... ym)

= [(X′X)
−1

X′y1 (X′X)
−1

X′y2 ... (X′X)
−1

X′ym]

= [β̂1 β̂2 ... β̂m]. (7.5)

The estimated responses can be obtained as:

Ŷ(OLS) = XB̂ = X(X′X)
−1

X′Y = H
(OLS)

Y

= H(OLS)(y1 y2 ... ym)

= [H(OLS)y1 H(OLS)y2 ... H(OLS)ym]

= [ŷ
(OLS)
1 ŷ

(OLS)
2 ... ŷ(OLS)

m ]. (7.6)

Equations 7.5 and 7.6 show that the multivariate estimation results are equal to the uni-

variate results in Section 2.2.1 in terms of estimated coefficients and fitted values for each

response.

The only difference in OLS results between the univariate case and multivariate case is in

estimation of the variance-covariance structure cov(yi) = Σ. The variance-covariance struc-

ture cannot be estimated in the univariate case, while it can be estimated in the multivariate

case, due to taking the correlation among the residuals into account. The unbiased estimator

of cov(yi) = Σ is given by

Se =
E

n − q − 1
=

(Y −XB̂)′(Y − XB̂)

n − q − 1
=

Y′Y − B̂′X′Y

n − q − 1
. (7.7)

The estimated variance of each response is on the diagonal of Se, and equivalent to the esti-

mated variance in the univariate case. More details on the multivariate multiple regression

model can be seen in Rencher (2002).

7.3 Nonparametric Approach

Recall that the nonparametric methods do not specify a specific functional form, and rely

completely on the data itself for estimation of a mean response. In this section, we extend
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the estimation results of LLR (which is utilized in this research) in the univariate case to

the multivariate case.

According to Equation 7.1, the true relationships for the m responses at location x0 can be

expressed as

(y10 y20 . . . ym0) = (f1(x0) f2(x0) . . . fm(x0)) + (ε10 ε20 . . . εm0). (7.8)

Similar to the multivariate parametric approach in Section 7.2, we obtain a separate estimate

of the mean function for each of the m responses. Similarly, we obtain the bandwidth

separately for each of the m responses using the PRESS** selection method. The size

of bandwidth chosen for each response is usually different for each response and thus the

local weight matrices at location x0 for each response are also different for each response.

Therefore, our multivariate model by LLR is

(y10 y20 . . . ym0) = (x̃′

0β10 x̃′

0β20 . . . x̃′

0βm0) + (ε10 ε20 . . . εm0), (7.9)

where x̃′

0 = (1 x10 ... xk0) is the same as mentioned in Equation (2.16), βj0 is the “local”

coefficient vector for the jth response at location x0. The difference between βj0 and the

coefficient βj in Equations 7.2 and 7.3 is that βj is constant across all locations x0. However,

due to the local weighting scheme as shown in Equations 2.11 and 2.13, βj0 is “localized”

and changes with each location x0.

By analogy with the univariate case in Section 2.3.2, using the local weighted least squares

method, the estimate of the coefficient B0 = (β10 . . . βm0) at x0 is obtained as

B̂0 = (β̂10 . . . β̂m0)

= ((X̃′W10X̃)
−1

X̃′W10y1 . . . (X̃′Wm0X̃)
−1

X̃′Wm0ym), (7.10)

where the LLR model matrix X̃ includes the column of ones and the k first-order terms,

as mentioned in Equation (2.16). Wj0 is a diagonal weight matrix for the jth response at

location x0 and is the same as the weight matrix in the univariate case shown in Equations

2.10 and 2.16. The LLR fits for each response at x0, therefore, are

ŷ
(LLR)
0 = (ŷ

(LLR)
10 ... ŷ

(LLR)
m0 )

= [x̃′

0(X̃
′W10X̃)

−1
X̃′W10y1 ... x̃′

0(X̃
′Wm0X̃)

−1
X̃′Wm0ym]

= [h
(LLR)′
10 y1 ... h

(LLR)′
m0 ym].
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In matrix notation, the multivariate LLR estimated fits may be expressed as

ŶLLR = [H
(LLR)′
1 y1 ... H(LLR)′

m ym],

where H
(LLR)
j , j = 1, ..., m, is also the same as the jth LLR HAT matrix in the univariate

case shown in Equation 2.19.

7.4 Semiparametric Approach

Recall that MRR2, a semiparametric method, utilized in this research, combines a parametric

fit to the raw data with a nonparametric fit to the residuals from the parametric fit via a

mixing parameter. In this section, we extend the estimation results of MRR2 in the univariate

case to the multivariate case.

Similar to the multivariate LLR approach, we obtain separate MRR2 fits for each of the m

responses. The sizes of the bandwidth b and the mixing parameter λ chosen for each response

are likely different from each other. According to Equation 7.8 on the true relationships for

the m responses at location x0, our multivariate model by MRR2 is

(y10 . . . ym0) = (
^
x
′

0β1 + λ1x̃
′

0β1r0 . . .
^
x
′

0βm + λmx̃′

0βmr0) + (ε10 . . . εm0), (7.11)

where
^
x
′

0 = (1 x10 x20 . . . xq0) includes all terms in a full second-order model, βj the coeffi-

cient for the jth response corresponding to the parametric part of MRR2 is the same as the

jth one in Equations 7.2 and 7.3 for the model by OLS, x̃′

0 = (1 x10 x12 . . . x1k) is the same

as in Equation 7.9, and βjr0, similar to the “local” coefficient in Equation 7.9 for the model

by LLR, is the coefficient for the jth residuals (considered as a response) from the parametric

part
^
x
′

0βj and x̃′

0βjr0 corresponds to the nonparametric component of MRR2.

By analogy with the univariate case in Section 2.4, the estimate of the coefficient B =

(β1 . . . βm) is obtained by OLS, as shown in Equation 7.5. The estimate of the coefficient

B0r = (β1r0 . . . βmr0) is obtained by the local weighted least squares method (considered

the m residual vectors from the parametric fits as the m response vectors) as

B̂0r = (β̂1r0 . . . β̂mr0)

= ((X̃′W1r0X̃)
−1

X̃′W1r0r1 . . . (X̃′Wmr0X̃)
−1

X̃′Wmr0rm), (7.12)
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where rj is the jth residuals from the jth parametric fits, and similar to the weight matrix

in Equation 7.10, Wjr0 is a diagonal weight matrix for the jth residuals rj (considered as a

response) at location x0. Therefore, the MRR2 fits for each response at x0, are

ŷ
(MRR2)
0 = (ŷ

(MRR2)
10 ... ŷ

(MRR2)
m0 )

= [
^
x
′

0(X
′X)

−1
X′y1 + λ̂1x̃

′

0(X̃
′W1r0X̃)

−1
X̃′W1r0r1 ...

^
x
′

0(X
′X)

−1
X′ym + λ̂mx̃′

0(X̃
′Wmr0X̃)

−1
X̃′Wmr0rm]

= [h
(MRR2)′
10 y1 ... h

(MRR2)′
m0 ym], (7.13)

where h
(MRR2)′
j0 =

^
x
′

0(X
′X)−1X′ + λ̂jx̃

′

0(X̃
′Wjr0X̃)

−1
X̃′Wjr0(I −X(X′X)−1X′), and λ̂j is

chosen by PRESS**(λ) or estimated by the asymptotic optimal data driven method, both

of which are mentioned in Section 2.4.2.

In matrix notation, the multivariate MRR2 estimated fits may be expressed as

Ŷ(MRR2) = [H(OLS)y1 + λ1H
(LLR)
1r r1, ...,H

(OLS)ym + λmH(LLR)
mr rm]

= [H
(MRR2)
1 y1 ... H(MRR2)

m ym],

where H
(LLR)
jr is the LLR HAT matrix for fitting the jth residuals rj, and H

(MRR2)
j is the jth

MRR2 HAT matrix, which is also the same as the MRR2 HAT matrix in the univariate case

mentioned in Equation 2.21.

Unlike the parametric approach, neither the nonparametric nor semiparametric approaches

have a nice closed-form expression for the variance-covariance estimator Σ̂, due to different

local weight structures and different values of bandwidth and/or different values of mixing

parameter among the m responses. But an estimator of the variance-covariance matrix can

be obtained in a general way. As in Shah, Montgomery and Carlyle (2004), an estimator of

Σ is given by

Σ̂ =
E

n
=

(Y − Ŷ)′(Y − Ŷ)

n
, (7.14)

where the denominator n is the sample size, which is the same as the denominator of the

variance estimator in the univariate case when using the maximum likelihood method. In

Equation 7.14, if Ŷ is Ŷ(LLR), then Σ̂ is one possible LLR variance-covariance estimator. If

Ŷ is Ŷ(MRR2), then Σ̂ is one possible MRR2 variance-covariance estimator. If Ŷ is Ŷ(OLS),

then Σ̂ is the OLS variance-covariance estimator and is equivalent to the variance-covariance

estimator using the maximum likelihood method.
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Chapter 8

A Semiparametric Approach to
Multi-Response Optimization

As mentioned in Chapters 1 and 2, MRR2 can be a good choice for estimating the mean

response regression function. In this chapter, a case study and simulation studies will be

utilized to compare MRR2 with OLS and LLR during the modeling stage and then the

different estimated mean functions obtained by these three methods will be utilized by the

MRO techniques during the optimization stage.

As mentioned in Chapter 2, after bandwidth selection, MRR2 has two different mixing

parameter selectors to choose the size of λ: one uses PRESS** to obtain an appropriate

λ, denoted by λ1; and the other uses an estimate of the asymptotically optimal λ (Mays,

Birch, and Starnes, 2001), denoted by λ2. In this chapter, we will compare both methods to

check if the estimate of the asymptotic method is still suitable to RSM data, as determined

by Mays, Birch, and Starnes (2001), especially when the sample size is small. The MRR2

estimator with λ1 is denoted by “MRR2λ1” while the MRR2 estimator with λ2 is denoted

by “MRR2λ2”.

After the model building stage is completed, where each regression model built for each

response is assumed to be appropriate, the optimization stage starts. In this study, the

desirability function method is utilized to obtain an optimal solution with the best compro-

mise of the multiple responses. The MGA4 method (as mentioned in Chapter 5) is used

to find an optimal solution for the desirability function under the three different modeling

methods respectively. Details on the GA and MGA methods are discussed in Chapters 4
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and 5, respectively.

Before presenting the case study, more details on how to select an appropriate bandwidth

parameter, b, and on model comparison criteria are discussed as follows.

8.0.1 Choice of the Smoothing Parameter b

As mentioned in Chapter 2, the choice of bandwidth is crucial in obtaining a ”proper”

estimate of the true underlying function f. Also, as mentioned in Chapter 2, in this study,

we will use PRESS∗∗(b) as a bandwidth selector for the LLR fit, given in Equations 2.24-2.25.

Based on the work in Mays and Birch (2002) and in Pickle et al. (2006), and based on some

additional examples, the following is our procedure for finding an appropriate bandwidth

parameter, b, using PRESS**. Recall that the regressors are rescaled to be between zero

and one.

1. Set the range for the bandwidth selection as [0.1, 1]. Note the bandwidth could be
greater than 1. Usually, b ≥ 1 means that a large bandwidth is best and, hence, the
LLR fit is simply a first-order parametric regression fit.

2. Calculate PRESS** given the values of bandwidth within the range [0.1, 1].

2.1 If the b which achieves the global minimum value of PRESS** is less than 1, then
this value of b is used to obtain the LLR fit.

2.2 If the b which achieves the global minimum value of PRESS** is equal to 1, then
go to Step 2.2.1.

2.2.1 If there are one or more than one local minimums of PRESS**, then the b
with the smallest local minimum value of PRESS** would be chosen as an
optimal bandwidth.

2.2.2 If there are no local minimums of PRESS**, then the LLR fit is a first-order
parametric regression fit.

The procedure above is suitable for the case study. For simulation studies, Step 2.2.1 is

changed for simplification and computational efficiency as follows: the b with the first local

minimum of PRESS** would be chosen to obtain the LLR fit which is the same as Mays

and Birch (2002). To obtain the b with the first local minimum, in this study, we use the

absolute relative error (ARE), which is given by

ARE =
|PRESS∗∗(bi) − PRESS∗∗(bi−1)|

PRESS∗∗(bi−1)
, (8.1)
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where PRESS∗∗(bi) is the PRESS∗∗ value when the value of bandwidth is bi, bi = bi−1+0.01

in this study. If ARE was smaller than some pre-selected tolerance limit(say, 0.001), then

the iteration process stops and the bandwidth would be chosen as bi. R code is written to

accomplish this procedure.

8.0.2 Model Comparison Criteria

To compare the three modeling methods, some numerical criteria are utilized: (1) DFerror,

the degree of freedom of error; (2) s2, estimate of error variance; (3) R2, coefficient of

determination; (4) R2
adj , adjusted R2; (5) PRESS; (6) PRESS*; (7) PRESS**. Criteria 1-4

focus on describing how well a model is fit by the observed data, while Criteria 5-7 focus on

describing some functions of prediction variance associated with the fitted model.

Criteria 2-5 are standard criteria for comparing models (Myers, 1992). Criteria 1, 6, and

7 have been mentioned in Chapter 2. The DFerror, given in Equation 2.23 can be used to

compute the degrees of freedom for the model as DFmodel = DFtotal − DFerror. DFmodel

represents the complexity of the model. DFtotal is the total number of degrees of freedom,

equal to n, the sample size. PRESS*, a penalized PRESS bandwidth selector, given in

Equation 2.22, essentially is a PRESS adjusted by DFerror in its denominator. PRESS**,

given in Equations 2.24-2.27, the second penalized PRESS bandwidth selector, is utilized for

the bandwidth selection and for the mixing parameter (λ1) selection.

8.1 The Minced Fish Quality Example

A real example, originally introduced by Tseo et al. (1983) and utilized by Shah, Montgomery

and Carlyle (2004), is from food science and is used here to illustrate the various procedures

we have proposed. The goal of the study is to determine the optimum combination of

the levels of three processing factors (washing temperatures (x1), washing time (x2), and

washing ratio of water volume to sample weight (x3)) on minced fish quality, expressed by

four responses (springiness (y1), thiobarbituric acid number (TBA) (y2), cooking loss (y3),

and whiteness index (y4)). The observed data were collected through a CCD and presented

in Table 8.1.
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Table 8.1: A CCD with three factors and four responses on minced fish quality

Coded Variables Response values

x1 x2 x3 y1 y2 y3 y4

0.203 0.203 0.203 1.83 29.31 29.50 50.36

0.797 0.203 0.203 1.73 39.32 19.40 48.16

0.203 0.797 0.203 1.85 25.16 25.70 50.72

0.797 0.797 0.203 1.67 40.18 27.10 49.69

0.203 0.203 0.797 1.86 29.82 21.40 50.09

0.797 0.203 0.797 1.77 32.20 24.00 50.61

0.203 0.797 0.797 1.88 22.01 19.60 50.36

0.797 0.797 0.797 1.66 40.02 25.10 50.42

0 0.5 0.5 1.81 33.00 24.20 29.31

1 0.5 0.5 1.37 51.59 30.60 50.67

0.5 0 0.5 1.85 20.35 20.90 48.75

0.5 1 0.5 1.92 20.53 18.90 52.70

0.5 0.5 0 1.88 23.85 23.00 50.19

0.5 0.5 1 1.90 20.16 21.20 50.86

0.5 0.5 0.5 1.89 21.72 18.50 50.84

0.5 0.5 0.5 1.88 21.21 18.60 50.93

0.5 0.5 0.5 1.87 21.55 16.80 50.98
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Shah, Montgomery and Carlyle (2004) use the second-order polynomial parametric method

to model each response to obtain the optimal fitted value ŷi(x) at location x, for i = 1, 2, 3, 4.

The final fitted second-order models for the four responses by OLS are given in Shah, Mont-

gomery and Carlyle (2004). For the responses y1 and y4, the final fitted models include

three terms: intercept, x1 and x2
1. The final model for the response y2 includes five terms:

intercept, x1, x2, x2
1 and x12. The model for y3 has a total of eight terms, including intercept,

x1, x2, x3, x2
1, x12, x13, and x2

3.

For each response, the design spaces we use for the LLR and the nonparametric part of the

MRR2 are the same as the ones used for the OLS by Shah, Montgomery and Carlyle (2004).

In addition, according to Equation 2.21, the model spaces for the parametric part of the

MRR2 we use are the same as the ones for the OLS. For example, for the response y2, the

design space consists of the two factors x1 and x2, and thus these two factors, excluding the

factor x3, are utilized in the LLR and the nonparametric part in the MRR2. Meanwhile, the

model space consists of intercept, x1, x2, x2
1 and x12 altogether, and thus these five terms will

construct the modeling space for the parametric part in the MRR2. For the same example

as above, the modeling space for the LLR consists of intercept, x1, and x2, because the LLR

is the local linear regression.

8.1.1 Results on Model Comparisons

As mentioned before, the three modeling techniques, OLS, LLR, and MRR2, are to be

compared in the case study. Table 8.2 shows the numerical results for model comparisons

of OLS, LLR and MRR2 with two different methods for λ selection for all the responses

respectively with respect to the seven criteria mentioned at the beginning of this chapter. If

the two λ’s chosen by these two methods are equal, then both corresponding results should

be the same and therefore only one result is presented. Otherwise, both corresponding results

are presented. Table 8.2 shows that MRR2 has smaller s2 than OLS and LLR across all of

the four responses. MRR2 has larger R2 and R2
adj than OLS and LLR in three of the four

responses. MRR2 has smaller PRESS, PRESS* and PRESS** than OLS and LLR in most

cases. Furthermore, in the case with MRR2 which does not perform the best among the

three modeling techniques, MRR2 still is very competitive to the best modeling technique

in terms of all the seven criteria.
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Table 8.2 also shows that OLS has consistently larger DFerror than LLR and MRR2 in

that LLR and MRR2 both need more degrees of freedom to estimate the local relationship

between the response(s) and the factors. In addition, the DFerror by MRR2 is typically

competitive to the DFerror by LLR.

Table 8.2 also shows that for responses y1, y3, and y4, MRR2 using PRESS∗∗(λ) for λ

selection is the same as MRR2 using the estimated asymptotic method. For the response

y2, MRR2 has smaller λ1 by the data-driven method PRESS** than λ2 by the asymptotic

data-driven method. MRR2 with the smaller λ1 has much smaller PRESS, PRESS* ,and

PRESS** than with the larger λ, but is a little worse in terms of s2, R2, and R2
adj . Therefore,

in the following sections, for the response y2, the model by MRR2 with λ1 will be utilized.

Table 8.2: Results on model comparisons of OLS, LLR, and MRR2 with two different meth-
ods for λ selection for all the responses in the minced fish quality example

b λ DFerror s2 R2 R2
adj PRESS PRESS* PRESS**

OLS — — 14.000 1.653E-03 0.9211 0.9099 0.0582 0.0042 0.0042

y1 LLR 0.146 — 12.138 1.039E-03 0.9570 0.9433 0.0682 0.0056 0.0026

MRR2 0.170 1 12.268 1.033E-03 0.9568 0.9436 0.0473 0.0039 0.0025

OLS — — 12.000 7.5417 0.9341 0.9122 234.1166 19.5097 19.5097

LLR 0.436 — 11.212 21.8508 0.8217 0.7456 785.7855 70.0873 36.4222

y2 MRR2λ1 0.277 0.6 10.164 5.5280 0.9591 0.9356 236.9712 23.3154 15.3159

MRR2λ2 0.277 1 8.940 4.8253 0.9686 0.9438 319.3332 35.7214 19.6311

OLS — — 9.000 4.5641 0.8408 0.7170 182.4468 20.2719 20.2719

y3 LLR 0.537 — 8.373 9.7990 0.6821 0.3925 287.0564 34.2849 17.0554

MRR2 0.542 1 6.596 2.9031 0.9258 0.8200 177.6750 26.9357 13.1264

OLS — — 14.000 14.2182 0.5407 0.4751 684.7407 48.9101 48.9101

y4 LLR 0.120 — 12.031 1.0197 0.9717 0.9624 454.5871 37.7832 17.1484

MRR2 0.119 1 12.029 1.0158 0.9718 0.9625 486.8458 40.4725 18.6472

Figures 8.1 - 8.4 show the comparisons of the plots of the factor x1 versus the response y1,

y2 (at x2 = 0, 0.5, and 1), y3 (at all combinations of x2 = 0, 0.5, and 1, and x3 = 0, 0.5,

and 1), and y4, respectively, by OLS, LLR, and MRR2. Note that the OLS fits are smooth,

but do not fit well at the several levels of the factor x1. The LLR fits in Figures 8.1 and
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8.4 are not very smooth and seem to ”connect” the means of the responses y1 and y4 at the

five levels of the factor x1. However, the LLR fits in Figures 8.2 and 8.3 are too smooth to

capture the dips and fit at the several levels of the factor x1. A possible reason for some

of the poor LLR fits, as shown in Figures 8.2 and 8.3, is that the data is sparse and the

sample size is relatively small for the 2- or 3-dimensional design spaces, when compared to

the 1-dimensional design space for the responses y1 and y4 in Figures 8.1 and 8.4. The MRR2

fits maintain the smoothness of OLS, while using LLR information to pull the fits closer to

data where needed. Even in the 2- and 3-dimensional design spaces in Figures 8.2 and 8.3,

the MRR2 fits are reasonably close to the sample means at each value of x1 and much closer

than many of the LLR fits. This illustrates the advantage of MRR2 over LLR for data from

a sparse design.
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Figure 8.1: Comparison of plots of y1 vs x1 by OLS, LLR, and MRR2. [◦ ◦ ◦ Raw data]

8.1.2 Optimization Results Using the Desirability Function Method

Under the OLS, LLR and MRR2 Methods

Shah, Montgomery and Carlyle (2004) use the Design-Expert software and the desirability
function method to find an optimal location x that achieves the best value in terms of the
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Figure 8.2: Comparison of plots of y2 vs x1 by OLS, LLR, MRR2λ1, and MRR2λ2, when x2

= 0 (left), x2 = 0.5 (center), and x2 = 1 (right), respectively. [◦ ◦ ◦ Raw data]

86



0.0 0.4 0.8

20
30

40
x2 = 0 x3 = 0

x1

y3

0.0 0.4 0.8

25
35

x2 = 0.5 x3 = 0

x1

y3
0.0 0.4 0.8

26
32

38

x2 = 1 x3 = 0

x1

y3

0.0 0.4 0.8

18
24

30

x2 = 0 x3 = 0.5

x1

y3

0.0 0.4 0.8

20
24

28

x2 = 0.5 x3 = 0.5

x1

y3

0.0 0.4 0.8

20
30

x2 = 1 x3 = 0.5

x1

y3

0.0 0.4 0.8

22
28

34

x2 = 0 x3 = 1

x1

y3

0.0 0.4 0.8

20
30

x2 = 0.5 x3 = 1

x1

y3

0.0 0.4 0.8

20
30

40

x2 = 1 x3 = 1

x1

y3

Plot of y3 vs x1

Figure 8.3: Comparison of plots of y3 vs x1 by OLS, LLR, and MRR2: top left: x2 = 0 and
x3 = 0; top center: x2 = 0.5 and x3 = 0; top right: x2 = 1 and x3 = 0; middle left: x2 =
0 and x3 = 0.5; middle center: x2 = 0.5 and x3 = 0.5; middle right:x2 = 1 and x3 = 0.5;
bottom left: x2 = 0 and x3 = 1; bottom center: x2 = 0.5 and x3 = 1; bottom right: x2 = 1
and x3 = 1. [◦ ◦ ◦ Raw data, solid line: OLS, dashed line: LLR, dotted line: MRR2]
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Figure 8.4: Comparison of plots of y4 vs x1 by OLS, LLR, and MRR2. [◦ ◦ ◦ Raw data]

desirability function D. The following conditions on the four responses they used are as
follows.

springiness (y1) maximize ≥ 1.7

thiobarbituric acid number (y2) minimize ≤ 21

cooking loss (y3) minimize ≤ 20

whiteness index (y4) maximize ≥ 45

We use the maximum (or minimum) of the observed data as the T values (see pages 30-31

for definition of T) for each response, since the T values in individual desirabilities for each

response are not given in Shah, Montgomery and Carlyle (2004). Thus, the T values in this

case study are 1.92, 20.16, 16.80 and 50.98 for y1, y2, y3 and y4 respectively. The weights

r, r1, or r2 in the individual desirability functions are all 1.0 in this case study, due to no

priority. In addition, similar to Chapter 6, the solution vector xs should be controlled within

the experimental region R. That is, in the CCD design, which is a spherical design, the

region constraint is x′

cxc ≤ r2, where xc = (x1c, x2c, ..., xkc) is transformed from xs so that

xc is centered at zero, and r2 is the squared design radius, and k, the number of independent

variables, is three in this case. If xic is transformed into the range [-1.682, 1.682], then the r2
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in this example is three. The formulas of the desirability function and individual desirability

have been given in Chapter 3.

As mentioned earlier, Shah, Montgomery and Carlyle (2004) use the second-order polynomial

to parametrically model each response to obtain the optimal fitted value ŷi(x) at location x,

for i = 1, 2, 3, 4. The final fitted models are given in Shah, Montgomery and Carlyle (2004) as

well as the location where the simultaneous optimal solution is found. Based on the location

they find using Design-Expert, the corresponding fitted values for the four responses are

re-calculated by us as well as the desirability value D and given as follows.

The OLS solution:

x1 = 0.3514 x2 = 0.7973 x3 = 0.7319 xc1 = -0.500 xc2 = 1.000 xc3 = 0.780

y1 = 1.9074 y2 = 20.2910 y3 = 17.6381 y4 = 49.8346 D = 0.8301

We use the MGA to find the optimization solutions by the three different modeling tech-

niques. The parametric models we used for each response are exactly the same as the models

in Shah, Montgomery and Carlyle (2004). The solutions we find by the OLS, LLR and MRR2

methods are as following.

The OLS solution:

x1 = 0.3857 x2 = 0.9693 x3 = 0.6784 xc1 = -0.3844 xc2 = 1.5786 xc3 = 0.6002

y1 = 1.9067 y2 = 19.7378 y3 = 17.3903 y4 = 50.4668 D = 0.9149

The MRR2 solution:

x1 = 0.3379 x2 = 0.9422 x3 = 0.7080 xc1 = -0.5452 xc2 = 1.4877 xc3 = 0.6997

y1 = 1.8947 y2 = 19.5246 y3 = 17.7507 y4 = 51.3969 D = 0.8880

We do not show the LLR solution, because the desirability function value D = 0. The

reason that D = 0 is that the fits for the responses y2 and y3 by the LLR method can be

highly inadequate as shown in Figures 8.2 and 8.3 (as mentioned in Section 8.1.1). The

two dips are not captured well and the estimated smallest values for these two responses

are obviously larger than the pre-selected acceptable maximum values (the L values in the
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individual desirability functions), which are 21 and 20 for y2 and y3 respectively in this case

study. Thus, the corresponding individual desirabilities (d2 and d3) cannot be greater than

zero.

It is easy to see that our OLS solution found by the MGA is better than the OLS solution

found by Design-Expert in Shah, Montgomery and Carlyle (2004). The OLS solution should

not be compared to the MRR2 solution, because the OLS solution has been shown in Table

5.2 to be misspecified. However, the MRR2 solution should be viewed as more reliable than

the OLS solution, because the MRR2 method provides a superior fit to the data than the

OLS method in terms of our model comparison criteria.

Similar to what we have done in Figures 8.1 - 8.4 in Section 8.1.1, the surfaces of the D

versus x1 versus x2 given at x3 = 0, 0.5, and 1 are utilized to describe the 3-D surfaces of

the desirability function. We also include the two optimal levels of x3 (x3 = 0.68 and 0.71)

for the OLS and MRR2 methods respectively.

Figure 8.5 shows the surfaces and corresponding contours of the desirability function D by

the OLS method with x1 versus x2 at x3 = 0.5 and 0.68 (which is the optimal level for x3

found by the MGA). The surfaces and contours of the function D at levels of x3 = 0 and 1

are not shown due to flat surfaces and no contours. It is easy to see that there is only one

peak for this desirability function D in this case study.

Figure 8.6 shows the surfaces and corresponding contours of the desirability function D by

the MRR2 method with x1 versus x2 at x3 = 0.5 and 0.71 (which is the optimal level for x3

found by the MGA). Similar to the results for the OLS method, the surfaces and contours of

the function D at levels of x3 = 0 and 1 are not shown due to flat surfaces and no contours.

It is also easy to see that there is only one peak for this desirability function D in this case

study.

It is reasonable to think that the optimization results based on the different model as-

sumptions should be different from each other. However, these differences due to model

assumptions are not completely inconsistent. The surfaces and contours of the desirability

function D in Figures 8.5 and 8.6 show that the results by the OLS and MRR2 have the

similar shape and cover the similar area. Recall that the MRR2 fit combines the OLS fit

with the LLR fit to the residuals of the OLS via the mixing parameter, λ. These surfaces

and contours confirm that the results by MRR2 and OLS are consistent. But the results
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Figure 8.5: Surfaces and the corresponding contours of the desirability function D by the
OLS method with x1 versus x2 at x3 = 0.5 and 0.68
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by MRR2 should be more believable, due to having less model misspecification, as shown in

Table 8.2, than by OLS.

8.2 Simulation Studies

In the minced fish quality example of the MRO problem with a CCD design, the semipara-

metric fit was observed to be highly competitive or superior to its parametric and nonpara-

metric counterparts through all of the four responses in terms of the seven criteria. Under

the different fits given by the OLS, LLR, MRR2λ1, and MRR2λ2 methods, respectively,

the desirability function has been utilized to find the location which optimizes the multiple

responses simultaneously. In this section, the MRO problem will be simulated via Monte

Carlo simulations.

8.2.1 The MRO Goals and Simulation Process

To simplify the MRO problem, a CCD design with two factors and two responses will be

simulated using two true underlying response functions. Like the univariate case for a CCD

design with two factors in Pickle et al. (2006) and also similar to the multivariate case in

the chemical process example with two factors in Myers and Montgomery (2002) mentioned

in Section 6.1, the CCD will contain a total of 13 design points, including four axial runs

and five center runs, which are shown in Table 8.3 for each simulated data set.

Each Monte Carlo simulation will be based on the following two underlying models:

y1i = µ1(xi) + ε1i

= 66 + 22x1i+10x2i+13x1ix2i−23x2
1i−25x2

2i

+ γ[−2sin(3πxi1) − 2cos(3πx2i) + 2sin(2πx1ix2i)]+ε1i, (8.2)

y2i = µ2(xi) + ε2i

= 70 − 15x1i−10x2i−14x1ix2i+15x2
1i+25x2

2i

+γ[2sin(3πx1i) − 2cos(3πx2i) + 2sin(3πx1ix2i)]+ε2i. (8.3)
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where µ1(.) and µ2(.) are the true mean functions of y1 and y2, respectively, xi = (x1i, x2i)
′

is the ith design point, the two error terms, (ε1i, ε2i), are independent normally distributed

random variables with means of zero and variances of one, i = 1, ..., n, with n = 13. In

both models (8.2) and (8.3), γ represents the model misspecification parameter. That is,

the user’s models will be represented by (8.1) and (8.2) with γ = 0. As the value of γ

increases, the amount of misspecification increases in the models. Five degrees of model

misspecification will be studied (γ = 0.00, 0.25, 0.5, 0.75, and 1.00), where γ = 0 represents

a correctly specific model. According to these five levels of γ, there will be five Monte Carlo

simulations respectively, in each of which 500 simulated data sets will be generated.

Table 8.3: Design points of a CCD for each simulated data set

i x1 x2

1 0.8536 0.8536

2 0.1464 0.8536

3 0.8536 0.1464

4 0.1464 0.1464

5 1.0000 0.5000

6 0.0000 0.5000

7 0.5000 1.0000

8 0.5000 0.0000

9 0.5000 0.5000

10 0.5000 0.5000

11 0.5000 0.5000

12 0.5000 0.5000

13 0.5000 0.5000

Figure 8.7 shows the surfaces of the true mean function of the response y1 when γ = 0.00,

0.25, 0.50, 0.75, and 1.00, respectively. Similarly, Figure 8.8 shows the surfaces of the true

mean function of the response y2. Both figures show that as γ increases, the curvatures of

the surfaces becomes more pronounced.

Two MRO goals are used for each Monte Carlo simulation to do a comparison of OLS, LLR,

and MMR2. Goal 1 is to maximize y1 and minimize y2 simultaneously. Goal 2 is to achieve

some target value for y1 and some target value for y2 simultaneously. Each goal will be solved

94



0
0.2

0.4
0.6

0.8
1

x2

0
0.2

0.4
0.6

0.8
1

x1

55

60

65

70

y2

0
0.2

0.4
0.6

0.8x2

0
0.2

0.4
0.6

0.8x1

0
0.2

0.4
0.6

0.8
1

x2

0
0.2

0.4
0.6

0.8
1

x1

60

70

y2

0
0.2

0.4
0.6

0.8x2

0
0.2

0.4
0.6

0.8x1

0
0.2

0.4
0.6

0.8
1

x2

0
0.2

0.4
0.6

0.8
1

x1

60

70

y2

0
0.2

0.4
0.6

0.8x2

0
0.2

0.4
0.6

0.8x1

0
0.2

0.4
0.6

0.8
1

x2

0
0.2

0.4
0.6

0.8
1

x1

60

70
y2

0
0.2

0.4
0.6

0.8x2

0
0.2

0.4
0.6

0.8x1

0
0.2

0.4
0.6

0.8
1

x2

0
0.2

0.4
0.6

0.8
1

x1

60

70

80

y2

0
0.2

0.4
0.6

0.8x2

0
0.2

0.4
0.6

0.8x1

Figure 8.7: Surfaces for the true mean function of the response y1 when γ = 0.00 (top
one), 0.25 (middle left), 0.50 (middle right), 0.75 (bottom left), and 1.00 (bottom right),
respectively.
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by the desirability function method with some required and pre-specified parameters, such

as T, L, U, indicated in Equations 3.1 - 3.4. For Goal 1, we choose T1 = 83 and L1 = 65 for

y1, and T2 = 58 and U2 = 75 for y2, while in the second goal, we choose T1 = 60, L1 = 55,

and U1 = 65 for y1 and T2 = 75, L2 = 70, and U2 = 80 for y2. All these parameters are fixed

across all levels of γ.

8.2.2 One Simulation Criterion During The Modeling Stage

After completion of the data generation stage, the modeling stage begins using the OLS,

LLR and MRR2 methods respectively to model the m responses, where m is 2, the number

of the responses in this study. Similar to the univariate case in Pickle et al. (2006), for each

simulation, we will compare the MRR2 method with the OLS and LLR methods in terms

of simulated integrated mean squared error (SIMSE). The SIMSE in the multivariate case

is given by:

SIMSE =

∑

ASE

500
, (8.4)

where

ASE =

s
∑

l=1

(µ(xl) − ŷ(xl))
′(µ(xl) − ŷ(xl))

s
, (8.5)

where ASE denotes the average squared error for the estimates from the true mean functions

for each of the 500 simulated data sets, µ(xl) = (µ1(xl), µ2(xl))
′ is the true mean functions

of y1 and y2 at location xl = (x1l, x2l)
′, ŷ(xl) = (ŷ1(xl), ŷ2(xl))

′ is the fits at xl by OLS, LLR,

or MRR2, l = 1, ..., s, and s is the number of locations within the experimental space used

for prediction. When the ASE is calculated based on the 41 × 41 uniform grid of points,

those points outside of the experimental space are excluded. In this study, s = 1257. SIMSE

provides an indication of the fit performance of each of the three methods over the entire

design space.

8.2.3 Two Simulation Criteria During The Optimization Stage

After completion of the modeling stage, the optimization stage begins using the desirability

function method to find an optimal solution. In practice, the optimization stage is concerned

with finding an optimal location, not an optimal fit for each response. Therefore, there are
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two criteria used to compare the three methods, both of which are related to an optimal

location found by MGA4 through the desirability function for each simulated data set.

For each Monte Carlo simulation, the three methods will be compared in terms of the average

squared error loss (ASEL) from the true target response values. The ASEL is given by

ASEL =

q=500
∑

q=1

(µ(x∗

q) − T)′(µ(x∗

q)−T)

500
, (8.6)

where µ(x∗

q) is a 2× 1 vector of the values of the true mean function at an optimal location

x∗

q , the location x∗

q = (x∗

1q, x
∗

2q)
′ is obtained by MGA4 through the desirability function for

the qth simulated data set, q = 1, ..., 500, and T is a 2 × 1 vector of the target values for

the responses. For Goal 1, as mentioned in Section 8.2.1, T = (83, 58)′, and for Goal 2,

T = (60, 75)′.

For each Monte Carlo simulation, the three methods will also be compared in terms of

average desirability function (AD), which is given by

AD =

500
∑

q=1

Dq

500
, (8.7)

where

Dq = (d1(x
∗

q)d2(x
∗

q))
1/2, (8.8)

and similar to Equation 8.6, x∗

q is an optimal location obtained by MGA4 through the

desirability function for the qth simulated data set, d1 and d2 are individual desirabilities

for y1 and y2, respectively. Essentially, both ASEL and AD measure the performance of the

locations chosen by each modeling method. We measure with ASEL the average Euclidean

distance of the mean response vector from the target vector at the chosen locations for each

method. And, with AD we measure the average desirability of the chosen functions. Of

course, we prefer a method with a small value of ASEL and a large value of AD.

Figure 8.9 provides the surfaces of the desirability function for Goal 1 using the two true mean

functions (shown in Equations 8.2 and 8.3) for the varying degrees of model misspecification.

Similarly, Figure 8.10 provides the surfaces of the desirability function for Goal 2. All these

surfaces have only one big “mountain”, which means that there will be only a single optimal

solution in terms of the desirability function for each level of γ.
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Figure 8.9: Surfaces of the desirability function for Goal 1 using the two true mean functions
(aa shown in Equations 8.2 and 8.3) when γ = 0.00 (top one), 0.25 (middle left), 0.50 (middle
right), 0.75 (bottom left), and 1.00 (bottom right), respectively.
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Figure 8.10: Surfaces of the desirability function for Goal 2 using the two true mean functions
(as shown in Equations 8.2 and 8.3) when γ = 0.00 (top one), 0.25 (middle left), 0.50 (middle
right), 0.75 (bottom left), and 1.00 (bottom right), respectively.
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Table 8.4 provides the true optimal solutions for Goal 1, using the true mean functions,

for each level of γ. In the table, Columns 2-3 represent the true optimal location, x∗
′

opt =

(x∗

opt1, x
∗

opt2). Columns 4-5 represent the values of the true mean functions of y1 and y2

at x∗

opt, respectively. The last column is the value of the desirability function, D∗

opt =

(d1(x
∗

opt)d2(x
∗

opt))
1/2. Similar to Table 8.4, Table 8.5 provides the true optimal solutions

for Goal 2. It is easy to see that the optimization results in Tables 8.4 and 8.5 match well

with Figures 8.9 and 8.10, respectively.

Table 8.4: True optimal solutions for Goal 1 for the varying degrees of model misspecification
using the true mean functions.

γ x∗

opt1 x∗

opt2 µ1(x
∗

opt) µ2(x
∗

opt) D∗

opt

0.00 0.6103 0.3639 74.0754 62.9948 0.5967

0.25 0.5602 0.3638 75.4653 63.6494 0.6231

0.50 0.5456 0.3795 76.8226 64.1142 0.6485

0.75 0.5427 0.4160 77.8638 64.2434 0.6725

1.00 0.5429 0.4566 78.3741 63.8511 0.6981

Table 8.5: True optimal solutions for Goal 2 for the varying degrees of model misspecification
using the true mean functions.

γ x∗

opt1 x∗

opt1 µ1(x
∗

opt) µ2(x
∗

opt) D∗

opt

0.00 0.0759 0.7649 61.3133 75.1137 0.848873

0.25 0.0651 0.7459 61.0107 75.0002 0.893217

0.50 0.0619 0.7407 60.5261 75.0007 0.945863

0.75 0.0601 0.7378 60.0171 75.0007 0.998213

1.00 0.0803 0.7337 60.0000 75.0001 0.999989

8.2.4 Simulation Results During The Modeling Stage

Table 8.6 provides a comparison of the OLS, LLR, MRR2λ1, and MRR2λ2 based on the

SIMSE values for the varying degrees of model misspecification in the simulations based on

the CCD as shown in Table 8.3. Table 8.6 also includes the Monte Carlo errors of the SIMSE
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values. For the scenario in which the researchers correctly specify the form of the underlying

models (i.e., γ = 0.00), we would expect the parametric approach to be superior. The first

row of Table 8.6 shows that the parametric approach performs the best as it yields a SIMSE

value of 0.6330. The semiparametric approaches, MRR2lambda1 and MRR2lambda2, are a close

second and third with values of 0.6668 and 0.6720, respectively, whereas the nonparametric

fit is much worse with a SIMSE value of 5.2171.

Table 8.6: Simulated integrated mean squared error (SIMSE) values by OLS, LLR, MRR2λ1,
and MRR2λ2 in the simulations based on CCD and the estimated Monte Carlo (MC) error
of SIMSE. Best values in bold.

SIMSE MC error(SIMSE)

γ OLS LLR MRR2λ1 MRR2λ2 OLS LLR MRR2λ1 MRR2λ2

0.00 0.6330 5.2171 0.6668 0.6720 0.0120 0.0491 0.0123 0.0123

0.25 1.4435 5.6521 1.4097 1.4161 0.0181 0.0472 0.0183 0.0184

0.50 3.8424 7.4220 3.5061 3.4809 0.0293 0.0482 0.0299 0.0302

0.75 7.8296 10.2053 6.9378 6.8348 0.0417 0.0551 0.0426 0.0430

1.00 13.4051 14.0769 11.7393 11.5172 0.0545 0.0578 0.0555 0.0558

The remaining rows of Table 8.6 provide the SIMSE values for the scenario in which the

researchers misspecify the models (i.e., γ > 0). Both MRR2λ1 and MRR2λ2 perform better

than OLS and LLR with smaller SIMSE values through each non-zero degree of misspec-

ification. The poor performance of the nonparametric method is most likely due to the

sparsity of the data and the small sample size. Thus, we conclude that the semiparametric

approaches (both MRR2λ1 and MRR2λ2) are highly competitive to the parametric approach

when no model misspecification, and always superior to both the parametric and nonpara-

metric approaches when there exists some moderate model misspecification.

Table 8.6 also shows that MRR2λ1 and MRR2λ2 have close SIMSE values across all levels of

γ. It means that the semiparametric approach with the data-driven method (PRESS**) is

almost equivalent to the semiparametric approach with the estimated asymptotically optimal

data driven method, even if the sample size is small (n=13 with two factors). Therefore,

we will only use the MRR2λ2 fit for optimization, not the MRR2λ1, because the estimated

asymptotically optimal data driven method (for MRR2λ2) is more computationally efficient

than the data-driven method using PRESS** (for MRR2λ1).
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8.2.5 Simulation Results During The Optimization Stage

Table 8.7 provides a comparison of OLS, LLR, and MRR2λ2 in terms of the ASEL and AD

values for the varying degrees of model misspecification for Goal 1 in the simulations based

on CCD during the optimization stage. When γ = 0.00 or 0.25, OLS performs the best

because it has the smallest ASEL values and the biggest AD values than LLR and MRR2λ2.

When γ is 0.50 or 0.75, MRR2λ2 performs the best because it has the smallest ASEL values

and the biggest AD values. The ASEL values (or the AD values) by MRR2λ2 may be not

smaller (or larger) than the ones by the other two methods by a least two Monte Carlo error.

When γ is 1.00, LLR performs the best.

Table 8.7: Average squared error loss (ASEL) and averaged desirability function (AD) values
by OLS, LLR, and MRR2λ2 for Goal 1 in the simulations based on CCD, with the ranges of
the estimated Monte Carlo errors of ASEL and AD values (0.0017, 0.0200) and (6.5×10−5,
8.4×10−4), respectively. Best values in bold.

ASEL AD

γ OLS LLR MRR2λ2 OLS LLR MRR2λ2

0.00 10.2591 10.4696 10.2643 0.5954 0.5868 0.5952

0.25 9.5246 9.7425 9.5286 0.6192 0.6103 0.6190

0.50 8.8613 9.0983 8.8470 0.6419 0.6322 0.6426

0.75 8.3301 8.3231 8.2930 0.6627 0.6629 0.6645

1.00 7.9774 7.5698 7.9352 0.6815 0.6952 0.6840

The three modeling methods actually all have close ASEL and AD values as shown in Table

8.7. It seems some relationship across methods between SIMSE from the modeling stage

and ASEL and AD from the optimization stage: the smaller value of SIMSE yields the

smaller value of ASEL and the larger value of AD in most cases. One reason for this weak

relationship is that however poor the fit (say, the LLR fit) may be, if a location obtained

based on the fit is closer to the true location which achieves the best compromise, then the

location can make the corresponding values of ASEL smaller and AD larger. This reason

can be seen in Figures 8.11 and 8.12.

Figure 8.11 provides the plots of y1 vs. x2 at x1 = 0.25, 0.5, and 0.75, by OLS, LLR, and

MRR2λ2, and the true mean function of y1, respectively, where the response data of y1 come
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from the true mean function (8.2) with γ = 1.00, based on CCD. Recall that Goal 1 is to

maximize y1 and minimize y2 simultaneously. Figure 8.11 shows that the locations by OLS,

LLR, and MRR2λ2, which achieve the maximum of y1, are close to each other, although the

LLR fit is far away from the curve of the true mean function of y1. Similar to Figure 8.11,

Figure 8.12 provide the plots of y2 vs. x2 at x1 = 0.25, 0.5, and 0.75, by OLS, LLR, and

MRR2λ2, and the true mean function of y2, respectively, given γ = 1.00. It shows that the

locations by OLS, LLR, and MRR2λ2, which achieve the minimum of y2, are close to each

other, although the LLR fit is very far away from the curve of the true mean function of y2.
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Figure 8.11: Comparison of plots of y1 vs. x2 by OLS, LLR, and MRR2λ2, and the true
mean function of y1, respectively, where the response data of y1 come from the true mean
function (8.2) with γ = 1.00 based on CCD: left: x1= 0.25; center: x1 = 0.5; right: x1 =
0.75.
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Figure 8.12: Comparison of plots of y2 vs. x2 by OLS, LLR, and MRR2λ2, and the true
mean function of y2, respectively, where the response data of y2 come from the true mean
function (8.3) with γ = 1.00 based on CCD: left: x1= 0.25; center: x1 = 0.5; right: x1 =
0.75.
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Similar to Table 8.7, Table 8.8 provides a comparison of the three modeling methods in terms

of the ASEL and AD values for the varying degrees of model misspecification for Goal 2.

When γ = 0.00, LLR performs better than OLS and MRR2λ2 since it has the smallest ASEL

value and the biggest AD value. But LLR only performs slightly better, since actually, all

of the three methods have nearly equal values of ASEL and AD. When γ > 0.00, however,

MRR2λ2 performs better than the other two, since it has smaller ASEL values and bigger

AD values. The ASEL values (or the AD values) by MRR2λ2 may be not smaller (or larger)

than the ones by the other two methods by a least two Monte Carlo error. As the value of γ

increases, the advantage of MRR2λ2 increases over the other two. Like Table 8.7, Table 8.8

shows some relationship across methods between SIMSE and ASEL and AD as in general:

the smaller value of SIMSE yields the smaller value of ASEL and the larger value of AD,

except for LLR at γ = 0.

Table 8.8: ASEL and AD values by OLS, LLR, and MRR2λ2 for Goal 2 in the simulations
based on CCD, with the ranges of the Monte Carlo errors of ASEL and AD values (0.0164,
0.0758) and (0.0136, 0.0021), respectively. Best values in bold.

ASEL AD

γ OLS LLR MRR2λ2 OLS LLR MRR2λ2

0.00 1.5741 1.5327 1.5637 0.7964 0.7996 0.7975

0.25 2.0139 2.0071 1.9387 0.7275 0.7298 0.7387

0.50 2.4658 2.3030 2.1151 0.6434 0.6745 0.7017

0.75 3.2945 3.0537 2.5123 0.5028 0.5458 0.6441

1.00 4.0907 3.9122 2.9282 0.4209 0.4357 0.6063

For Goal 1, as shown in Table 8.7, the optimization results by the semiparametric fit are

highly competitive to the results by the other two methods when there is no or low model

misspecification, and superior or highly competitive to the results by the other two methods

when there are moderate model misspecification. For Goal 2, as shown in Table 8.8, the

optimization results by the semiparametric fit are highly competitive to the results by the

other two methods when there is no model misspecification, and always superior to the results

by the other two methods when there exists model misspecification with different degrees.

Thus, we can conclude that the optimization results by the semiparametric approach are

more reliable than the ones by the parametric and nonparametric approaches in general.
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8.2.6 Some Further Discussion

Although Table 8.6 shows that MRR2 is highly competitive or superior to OLS and LLR over

the entire range of γ values, MRR2 does not enjoy a large advantage over OLS in terms of

SIMSE because a CCD is designed to have several nice properties when fitting a second-order

polynomial model by OLS. A CCD space is too sparse to capture the important features of

a surface of interest for models of the type considered here when γ is large. A second design

will now be considered, a design that places points in the interior of the CCD design space.

This “space-filling design” (SFD) may not be any optimal design, but simply spreads out the

five central runs within the interior of the CCD to capture more structure of the response

surface. Table 8.9 provides the 13 design points of the SFD. It shows that only the last four

rows (design points) are different from the original CCD. Figure 8.13 shows the 13 design

points in the experimental space of the SFD.

Table 8.9: Design points of a space-filling design (SFD) modified from the CCD in this study

i x1 x2

1 0.8536 0.8536

2 0.1464 0.8536

3 0.8536 0.1464

4 0.1464 0.1464

5 1.0000 0.5000

6 0.0000 0.5000

7 0.5000 1.0000

8 0.5000 0.0000

9 0.5000 0.5000

10 0.3232 0.3232

11 0.3232 0.6768

12 0.6768 0.3232

13 0.6768 0.6768

Based on the SFD, we repeat the simulation studies of Section 8.2.1. There are also five

Monte Carlo simulations with respect to the five levels of γ, in each of which 500 simulated

data sets are generated. All of the data sets are also generated, based on the two underlying
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Figure 8.13: Design points in the experimental space of a space-filling design (SFD) modified
from the CCD in this study.

models given in Equations 8.2 and 8.3. Each data set is also fitted by OLS, LLR, and MRRλ2.

The three simulation criteria, SIMSE, ASEL, and AD, are also used to compare the three

methods.

Similar to Table 8.6, Table 8.10 provides a comparison of OLS, LLR, and MRR2λ2 in terms

of SIMSE for the varying degrees of model misspecification in the simulations based on the

SFD. When γ = 0, OLS is the best with the smallest SIMSE, slightly smaller than the SIMSE

value for MRR2λ2. When γ > 0, MRR2λ2 is always the best with the smallest SIMSE values

across all non-zero degrees of misspecification. The results in Table 8.10 described above

are quite similar to the ones in Table 8.6. The difference between these two tables is that

MRR2 makes a much bigger improvement over the other two methods when there exists

some model misspecification, especially when the value of γ is relatively large. This result

implies that MRR2λ2 obtains greater benefits from the SFD than from the CCD. However,

LLR in Table 8.10 is worse than LLR in Table 8.6 in terms of SIMSE, when the value of γ

is relatively large. The reason is that the sample size is 13 in both designs and LLR fits are

highly variable when the sample size is small.
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Table 8.10: SIMSE values by OLS, LLR, and MRR2λ2 in the simulations based on SFD and
the estimated Monte Carlo (MC) errors of the SIMSE values. Best values in bold.

SIMSE MC error(SIMSE)

γ OLS LLR MRR2λ2 OLS LLR MRR2λ2

0.00 0.6489 4.9717 0.7252 0.0127 0.0471 0.0131

0.25 1.2530 6.4235 1.1364 0.0147 0.0497 0.0153

0.50 3.0467 9.0253 2.3309 0.0190 0.0529 0.0229

0.75 6.0294 12.9662 4.2767 0.0245 0.0575 0.0314

1.00 10.2012 18.4711 6.9408 0.0304 0.0667 0.0373

Similar to Tables 8.7 and 8.8, Tables 8.11 and 8.12 provide a comparison of OLS, LLR, and

MRR2λ2 in terms of ASEL and AD in the simulations based on the SFD for Goals 1 and 2,

respectively. Like Table 8.7, Table 8.11 shows that OLS and MRR2λ2 are quite competitive

to each other since they have nearly equal values of ASEL and AD for Goal 1. But unlike

Table 8.7, Table 8.11 shows that LLR is much worse than OLS and MRR2λ2 since it has

much larger ASEL values and much smaller AD values than the other two methods. Table

8.12 has similar pattern to Table 8.8 for Goal 2 in terms of ASEL and AD as follows. When

γ = 0.00, LLR performs slightly better than the other two since it has the smallest ASEL

value and the largest AD value, but actually, OLS and MRR2λ2 are quite competitive. When

γ > 0.00, MRR2λ2 always performs much better than the other two.

Table 8.11: ASEL and AD values by OLS, LLR, and MRR2λ2 for Goal 1 in the simulations
based on SFD, with the ranges of the estimated Monte Carlo errors of ASEL and AD values
(0.0018, 0.0787) and (6.9×10−5, 4.1×10−4), respectively. Best values in bold.

ASEL AD

γ OLS LLR MRR2λ2 OLS LLR MRR2λ2

0.00 10.2587 10.9483 10.2886 0.5954 0.5668 0.5941

0.25 9.5508 10.6943 9.5592 0.6181 0.5721 0.6178

0.50 8.9430 10.7227 8.9184 0.6385 0.5678 0.6397

0.75 8.4901 11.0299 8.4198 0.6562 0.5537 0.6591

1.00 8.2363 11.7881 8.0901 0.6711 0.5221 0.6762
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Table 8.12: ASEL and AD values by OLS, LLR, and MRR2λ2 in Goal 2 in the simulations
based on SFD, with the ranges of the estimated Monte Carlo errors of ASEL and AD values
(0.0167, 0.0898) and (0.0022, 0.0145), respectively. Best values in bold.

ASEL AD

γ OLS LLR MRR2λ2 OLS LLR MRR2λ2

0.00 1.5597 1.5285 1.5792 0.7977 0.7988 0.7959

0.25 2.0745 2.0121 1.9137 0.7203 0.7288 0.7419

0.50 2.7866 2.3681 2.0561 0.5974 0.6714 0.7114

0.75 3.8317 2.8032 2.3270 0.3869 0.5853 0.6757

1.00 4.9048 3.4404 2.9258 0.2729 0.4809 0.6040

8.3 Conclusion

RSM has utilized parametric regression techniques to study products and processes since

its inception. One drawback, however, is that optimization depends too heavily on the

assumption of well-estimated models for the responses of interest, and it is often the case

that the user’s specified parametric models are not flexible enough to adequately model the

process. Nonparametric smoothing has been considered when the user is unable to specify

the explicit form for the underlying function. However, in small sample settings, which

are customary for response surface experiments, the nonparametric approach often produces

estimates that are highly variable. Therefore, we suggest MRR2, a semiparametric approach,

which combines the OLS, a parametric method, and the LLR, a nonparametric method. This

combination combines the advantages from both the parametric and nonparametric methods

and reduce some of their disadvantages (high bias mainly from the OLS, and large variance

mainly from the LLR).

In the minced fish quality example of the MRO problem, the results show that MRR2 is

superior to OLS and LLR in terms of the seven model comparison criteria through all of

the responses. During the optimization stage, the models by the OLS, LLR, and MRR2 are

assumed to be correct respectively, and the desirability function method has been utilized

to find the optimal solutions with the best compromise among the responses. Although the

optimal solutions by the three modeling methods are incomparable directly, the optimization

results by MRR2 is more reliable, because the MRR2 model appears to have less misspec-
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ification (i.e., both lower bias and variances) than both the parametric and nonparametric

models based on the model comparison results.

Simulation studies based on a CCD with different degrees of model misspecification were

conducted to compare the three approaches more generally. If the user correctly specifies

the model for each response of interest, the parametric approach yields the best fit in terms

of SIMSE and its corresponding optimization results are the best for Goal 1 and highly

competitive to the results by the other methods for Goal 2 in terms of ASEL and AD.

If there exists some moderate model misspecification, the semiparametric approach always

yields the best fit in terms of SIMSE and its corresponding optimization results are superior

or highly competitive to the ones by the other two methods for Goal 1, and are always

the best for Goal 2. Thus, we can conclude that the semiparametric approach consistently

performs well in general and its corresponding optimization results are more reliable than

the other two.

Although the semiparametric approach performs the best in terms of SIMSE when there

exists some model misspecification, its advantage is not great over the parametric approach

because a CCD is designed to work well for a second-order polynomial model when using

OLS, our parametric method. The CCD space is too sparse to capture well the surface

structure of each response. A space-filling design (SFD) is modified from the CCD in the

study to capture more of this structure.

Simulation studies based on the SFD with different degrees of model misspecification were

conducted to compare the three approaches under the same conditions as the simulation

studies based on the CCD. The model fitting and optimization results are quite similar

to the results in the simulations based on the CCD. The only big difference is that the

semiparametric approach performs much better than the other two in terms of SIMSE.

Since, in practice, one never knows if the form of the underlying model for each response

of interest has been correctly specified, we advocate the semiparametric method as it is the

only one which consistently performs well over all degrees of potential misspecification and

its corresponding optimization results are more reliable. We also suggest use of a SFD in

those cases where the user is unsure of the appropriateness of a parametric model. However,

the optimal SFD for a specific problem is unknown and is certainly a viable topic for future

research.
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Chapter 9

Summary and Future Research

The multi-response optimization (MRO) problem in response surface methodology (RSM)

is quite common in industry and in many other areas of science. Before the optimization

stage in MRO, appropriate fitted models for each response are required. Traditional RSM

modeling parametric methods, which are not flexible, are likely to lead to biased estimates

and result in miscalculating optimal solutions, when the user’s model is incorrectly specified.

Nonparametric methods have been suggested as an alternative, yet they often result in highly

variable estimates, especially for sparse data with small sample size which are the typical

properties of traditional RSM experiments. Therefore, in this research, we have proposed

the use of semi-parametric methods to combine the advantages from each of the parametric

and nonparametric methods and at the same time to avoid the disadvantages inherent in

each.

During the optimization stage in MRO, the desirability function method, one of the most

flexible and popular MRO approaches and which has been utilized in this research, is a

highly nonlinear function. Therefore, we have proposed the use of the genetic algorithm

(GA), which is a global optimization tool, to help solve the MRO problem.

This chapter summarizes the work from the previous chapters and then proposes areas for

future research.

112



9.1 Summary and Future Work on a MGA

A GA is a very powerful optimization tool, but it has computational efficiency problem.

Thus, we developed an improved GA, the MGA, with four different versions, as presented

in Chapter 5. The main idea in our modification is to incorporate a local directional search

into the GA process. The local directional searches utilized in this study to develop our

four MGAs include using SD, NR, DFDS, and the method that combines SD with DFDS.

MGASD and MGA4 both require the first derivative of f , MGANR requires calculating the

Hessian matrix with the second derivative of f and its inverse matrix, while MGA3 requires

no derivative calculations.

Several examples, including a case study of a chemical process, are used to facilitate compar-

isons of GA, MGASD, MGA3, MGA4, and MGANR under a variety of combinations using

different levels of GA operations. Numerical and graphic comparison results in all of the

examples show that the new MGAs procedures perform better than the traditional GA pro-

cedure, not only in computational efficiency (by stopping rule 2), but also in accuracy (by

stopping rule 1), in most cases.

Several issues remain for further study. For example, the three derivative-free directions

defined in MGA3 may not be optimal. Additionally, the derivative-based directions defined

in MGASD and MGANR may also not be optimal. Perhaps, there are other directions

better than the four we have chosen in this study. Another issue concerns the appropriate

moving distance, once the directions are chosen. The size of an appropriate moving distance,

arbitrarily chosen by us, may greatly affect the efficiency of the MGAs. The last issue

is on the optimal setting of the GA operations. In this study, type of replacement, the

number of crossover points, the mutation rate, the three main GA operations, have been

studied. However, there may be some other operations affecting the GA performance, such

as population size and parent/offspring ratio. We plan to study these issues in future work.
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9.2 Summary and Future Work on Finding the Feasi-

ble Region of a Desirability Function

Finding all possible feasible regions is usually preferred by practitioners, instead of finding

only one or several optimal/feasible solutions. The reason is that some feasible regions may

be more desirable than others based on practical considerations. In Chapter 6, using the

stochastic property of a GA/MGA, we have presented a procedure of using a MGA to obtain

all possible feasible regions of a desirability function. This procedure is not limited by the

number of factors. A case study has been employed to illustrate that our procedure can

successfully define all feasible regions.

This procedure should be easily extended to other nonlinear objective functions such as

generalized distance measure function and weighted squared error loss function mentioned

in Chapter 3. We plan to study these issues in future work.

9.3 Summary and Future Work on a Semiparametric

Approach to MRO

MRR2, a semiparametric modeling method, combines the OLS, a parametric method, and

the LLR, a nonparametric method. This semiparametric approach combines the advantages

from both the parametric and nonparametric methods and reduces some of their disadvan-

tages (high bias mainly from the OLS, and large variance mainly from the LLR).

In the minced fish quality example on the MRO problem in Chapter 8, the results show that

MRR2 is superior to OLS and LLR in terms of the seven model comparison criteria through

all of the responses. During the optimization stage, the models by OLS, LLR, and MRR2 are

assumed to be correct respectively, and the desirability function method has been utilized

to find the optimal solutions with the best compromise among the responses. Although the

optimal solutions by the three modeling methods are incomparable directly, the optimization

results by the MRR2 is more reliable, because the semiparametric models appears to have

less model misspecification than both the parametric and nonparametric models based on

the model comparison results.
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Simulation studies based on a CCD with different degrees of model misspecification were

conducted to compare the three approaches more generally. If the user correctly specifies

the model for each response of interest, the parametric approach yields the best fit in terms

of SIMSE and its corresponding optimization results are the best for Goal 1 and highly

competitive to the results by the other methods for Goal 2 in terms of ASEL and AD.

If there exists some moderate model misspecification, the semiparametric approach always

yields the best fit in terms of SIMSE and its corresponding optimization results are superior

or highly competitive to the ones by the other two methods for Goal 1, and are always

the best for Goal 2. Thus, we can conclude that the semiparametric approach consistently

performs well in general and its corresponding optimization results are more reliable than

the other two.

Although the semiparametric approach performs the best in terms of SIMSE when there

exists some model misspecification, its advantage is not great over the parametric approach

because a CCD is designed to work well for a second-order polynomial model when using

OLS, our parametric approach. The CCD space is too sparse to capture well the surface

structure of each response. A space-filling design (SFD) is modified from the CCD in the

study to capture more of this structure.

Simulation studies based on the SFD with different degrees of model misspecification were

conducted to compare the three approaches under the same conditions as the simulation

studies based on the CCD. The model fitting and optimization results are quite similar

to the results in the simulations based on the CCD. The only big difference is that the

semiparametric approach performs much better than the other two in terms of SIMSE.

Since, in practice, one never knows if the form of the underlying model for each response

of interest has been correctly specified, we advocate the semiparametric method as it is the

only one which consistently performs well over all degrees of potential misspecification and

its corresponding optimization results are more reliable.

Several issues remain for further study. In this research, PRESS** is utilized to select an

appropriate bandwidth for LLR fit, including the LLR method to obtain a fit to the OLS

residual in MRR2. As mentioned in Chapter 2, Mays and Birch (1998, 2002) compared

PRESS** with PRESS* and some other popular bandwidth selectors such as the general-

ized cross-validation (GCV) and Akaike’s Information criterion (AIC). Their examples and
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simulation results show that, when using MRR2, PRESS** is the best choice in terms of

minimizing integrated mean squared error of fit across a broad variety of data scenarios.

But their examples and simulation studies do not include data resulting from a typical RSM

problem. That is, designs where the design points are sparse with most of the design points

on the edge of the design space and where the sample size is small. Therefore, we propose

simulating RSM data and comparing PRESS**, PRESS* with other popular bandwidth se-

lection methods such as GCV, and AIC (two of the most popular bandwidth selectors), and

determining if PRESS** still outperforms the others. This issue will be left for our future

research.

Another issue is related to outliers in the RSM data. It is well-known that outliers frequently

occur in the RSM data. The MRR2 techniques originally designed are robust to model

misspecification, but not robust to outliers. Especially the MRR2 technique we have utilized

in this research is not robust to outliers, because it combines OLS (parametric part) with

LLR (nonparametric part), and both OLS and LLR are sensitive to outliers.

One way to deal with the outlier problem is to modify the MRR2 technique to combine a

robust parametric method, such as m-estimators with LOWESS, one of resistant smoothing

nonparametric techniques. LOWESS denotes LOcally WEighted Scatter plot Smoothing,

introduced by Cleveland (1979). The idea of LOWESS is to start with a local polynomial

least squares fit and then to ”robustify” it. More details on LOWESS can be seen, for

example, Hardle (1990). Assaid (1997) studied this problem using MRR2 combining m-

estimators and a robust version of LLR (a method related to LOWESS) for the non-RSM

problem and found excellent results favoring MRR2 over either m-estimation or robust LLR.

This issue on the outlier problem will be left for our future research.

9.4 Other Future Work

In this dissertation, the only MRO technique focused on is the desirability function. As

discussed in Chapter 3, the generalized distance method and the weighted squared error loss

method are popular due to both taking into account the variance-covariance structure of

the responses. However, the desirability function does not consider the variance-covariance

structure of the responses. Thus, comparing the desirability function with these two methods
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via Monte Carlo simulation would be interesting. This will be left in future work.

We adopted the MRR2 modeling technique to the MRO problem. For simplification of the

application of MRR2, we assume that the variance of each response is constant across all

responses. When the constant variance assumption is violated, we prefer to apply the dual

response approach to the MRO problem with the MRR2 technique for both the mean and

variance models. This problem will be left for our future work.

As mentioned in Chapter 1 of this research, we assume that the data have already been

collected and we focused on the latter stages modeling and optimization. That is, the

traditional RSM designs such as CCD are assumed to be conducted in a some region of

interest so that the lower-polynomial parametric method is suitable. However, suppose it is

known that a simple polynomial model in the region of interest cannot adequately describe

the response before an experiment is conducted. That is, the traditional RSM designs are

unsuitable.

Myers et al. (2004) suggest conducting a space-filling design covering the entire experimental

region, not just a small region of interest, so that the nonparametric or semiparametric

modeling methods could be better utilized than if a traditional design where used. Of

course, MRR2 should work well even if the parametric function is nonlinear. Actually, the

nonparametric part of MRR2 should be more efficient if the data were collected through

the space-filling design rather than through a sparse data design such as a CCD. In this

situation, comparing MRR2 with one of the nonparametric techniques would be interesting.

This will also be left for future work.
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Appendix A

Computational Details on a
Directional Search in a MGA and
Some Related Functions

A.1 Mathematical Representation of the Three Direc-

tions in MGA3

We first introduce our notation. Parent 1 (P1) is given by xP1 = [xP11, ..., xP1k]
′, where

x is a vector of size k × 1 where k is the number of factors or the number of dimensions.

Similarly, Parent 2 (P2) is given by xP2 = [xP21, ..., xP2k]
′, and their offspring (O) is ex-

pressed as xO = [xO1, ..., xOk]
′. The Parent 1 direction (from P1 to O) is expressed as δP1O

and the Parent 2 direction (from P2 to O) is as δP2O. And the common direction is simply

denoted as δ. The new points after the first step along the three directions are expressed

as xNew1 = [xNew11, ..., xNew1k]
′, xNew2 = [xNew21, ..., xNew2k]

′, and xNew = [xNew1, ..., xNewk]
′,

corresponding to Parent 1, Parent 2, and their common direction respectively. The appro-

priate moving distance on each axis in each moving step is expressed as d.

The parent 1 direction, which essentially is the different distances on each dimension between

points P1 and O, is expressed as

δP1O = xO − xP1 = [δ11, δ12, ..., δ1k]
′. (A.1)
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Similarly, the parent 2 direction is expressed as

δP2O = xO − xP2 = [δ21, δ22, ..., δ2k]
′. (A.2)

To keep the same directions and move along the three paths, the moving distance on each axis

should be in constant proportion to each other, as in the method of steepest ascent/descent in

response surface methodology (RSM). In RSM, the constant proportion on the ith dimension

is defined as β̂i/β̂
∗, where the β̂i is the ith estimated coefficient in the estimated first-order

model and the β̂∗ is the largest coefficient in magnitude among the k estimated coefficients,

that is, β̂∗ = max
i=1,...,k

|β̂i|. From this ratio, we can see that the proportion only depends

on the βi, the ith coefficient. The moving distance on the ith dimension is defined as

(β̂i/β̂
∗) ∗ ρ, where the ρ is an appropriate fixed distance. (For more details, please see Myers

and Montgomery (2002) in page 205-207.)

In our GA application, the main idea in moving along the parent 1 path is the same as

that in the method of steepest ascent/descent. That is, to keep the constant proportion in

each dimension and move some appropriate fixed distance (which is d in our case) along the

parent 1 path. But the difference between our GA case and RSM is the starting point. In the

GA case, the starting point is P1, not O. That is, the first step has already been completed.

So the next moving step starts at O. The largest moving distance in the first step is also not

d, but max
i=1,...,k

|δ1i|, where the δ1i is the moving distance on ith axis in Equation (A.1). Let δ∗1

denote max
i=1,...,k

|δ1i|. In our study, if δ∗1 < d, then the moving distant in the next step will be

δ∗1. Otherwise, the distance in the next step will be d. The distance d is obviously utilized

to control the next moving distance.

The procedure of moving along the parent 1 direction is as following.

1. Calculate δP1O and then find δ∗1 = max
i=1,...,k

|δ1i|, the largest distance in the first moving

step.

2. If δ∗1 < d, then the next new position on the ith axis, i = 1, ..., k, is defined as
xNew1i = xOi + (δ1i/δ

∗

1) × d. Otherwise, the new position is xNew1i = xOi + δ1i.

3. Check the region of the new point xNew1 = [xNew11, ..., xNew1k]
′. If xNew1i is greater

than its upper bound (which is the largest value in the ith domain), then let it be the
upper bound . Similarly, if it is less than its lower bound (which is the lowest value in
the ith domain), then let it be the lower bound. (Usually, the upper bounds and lower
bounds have been given through defining the objective function.)
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4. Evaluate the new point xNew1 by the objective function. If the new point performs
worse than the point xO, then the process of moving along the parent 1 direction is
halted. If the new point performs better than the xO, then replace the point xNew1 by
the next new point xNew1 + ∆N1O, where ∆N1O = xNew1 − xO. (The ”N1O” means
”New point from Parent 1” to ”Offspring”.) Then return to Step 3.

The procedure for moving along the parent 2 direction is the same as that for the parent 1

direction. However, the procedure for the common direction is slightly different from them,

due to the different starting points. The starting points from the parents directions are P1

or P2, while the starting point in the common direction is O.

As mentioned earlier, building the common direction depends on whether both parent direc-

tions are consistent or not. If they are consistent on ith axis (either both positive or both

negative), then move the same direction on the ith axis as the parent directions. Otherwise,

stay on that axis without any movement, due to inconsistent directions. There is a special

case: one of the moving distances on an axis in the parent directions is zero and the other

is nonzero. In this case, we recommend movement in the same direction with the parent

direction with nonzero moving distance on the axis.

The procedure for movement along the common direction is as follows:

1. Calculate δP1O and δP2O as Equation (A.1) and (A.2).

2. The next new point is defined as xNew = [xNew1, ..., xNewk]
′ along the path from

the common direction. To establish the common direction, three situations on each
axis/dimension are possible: (a) the δ1i × δ2i > 0 which means that there is a common
direction on the ith axis; (b) The δ1i×δ2i < 0 which means that there is not a common
direction on the ith axis; and (c) the δ1i × δ2i = 0 which means that at least one of δ1i

and δ2i equals zero.

2.1. If the situation is (a), then the new point position on the ith axis is given by
xNewi = xOi + min(|δ1i|, |δ2i|, d) if both δ1i and δ2i are positive, or xNewi = xOi −
min(|δ1i|, |δ2i|, d) if both δ1i and δ2i are negative.

2.2. If the situation is (b), the new point position on the ith axis is given by xNewi = xOi

(no movement on the ith axis in this situation).

2.3. If the situation is (c), there are three subcases: (1) δ1i = 0 and δ2i 6= 0; (2) δ1i 6= 0
and δ2i = 0; and (3) δ1i = 0 and δ2i = 0.

2.3.1. For case (1), if |δ2i| ≥ d, then xNewi = xOi+d (when δ2i > 0) or xNewi = xOi−d
(when δ2i < 0). Otherwise, xNewi = xOi + δ2i.

120



2.3.2. For case (2), similar to case (1), if |δ1i| ≥ d, then xNewi = xOi ± d. Otherwise
xNewi = xOi + δ1i.

2.3.3. For case (3), xNewi = xOi.

3. Check the range of the new point xNew.

4. Evaluate the point xNew. If the new point performs worse than the point xO, then
the process for moving along the common direction is stopped. If the new point is
better than xO, then replace the point xNew by the next new point xNew + ∆NCO,
where ∆NCO = xNew − xO. (The ”NCO” means ”New from Common directions” and
”Offspring”). Return to Step 3.

A.2 Computational Details on A Derivative-based Di-

rectional Search by SD

In this appendix, we focus on how to implement SD into the GA process. Suppose that in

the ith iteration, the best offspring, which is the best among both the current parent and

offspring populations, denoted by xO = [xO1, ..., xOk]
′, is found. Then the MGA procedure

will implement a direction determined by SD into the GA process.

Based on formula (5.1), the procedure of building a derivative-based directional search by

SD into the GA process between the ith and (i + 1)th steps is as follows:

1. The first new point is defined as x1 = xO − d∇f(xO), where d is the size of a moving
distance in each step and xO is the best offspring. If f(x1) < f(xO) in the case of
finding a minimum of f , or f(x1) > f(xO) in the case of finding a maximum, then go
to Step 2. Otherwise, the procedure is halted.

2. Compute xj+1 = xj − d∇f(xj), where the iteration index j = 1, 2, .... If f(xj+1) <
f(xj) for minimization, then repeat Step 2 by letting j = j + 1. Otherwise, the
procedure is halted.

The procedure shows us that the algorithm starts at the best offspring, xO, on the surface of

the objective function f and minimizes along the direction of its gradient. This procedure

can be improved by using fractional increments (Myers, 1990, pp. 429) to allow the procedure

itself to adjust the moving distance in magnitude to the surface of the objective function. In
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our study, the strategy on fractional increments implemented into each step of the procedure

of building a direction by SD is as follows:

1. Let l = 1.

2. Let xj+1 = xj − dγl−1∇f(xj), where γ is a constant value within (0, 1), and γ = 0.5
in our study.

3. If f(xj+1) < f(xj) for minimization, then the procedure is completed.

4. If f(xj+1) > f(xj), then let l = l + 1 and go back to Step 2.

5. If l > a (where a is some constant integer and a = 5 in our study), then the procedure
is halted.

A.3 Computational Details on A Derivative-based Di-

rectional Search by NR

Implementation by the NR method into a GA process is quite similar to implementation of a

search by SD. When the best offspring, which is also the best over the parent population, is

found at the ith iteration, implement a directional search by NR into the GA process between

the ith and (i + 1)th steps as the following procedure, based on formula (5.3):

1. The first new point is defined as x1 = xO −H−1
O ∇f(xO), where similar to the Hessian

matrix in Equation 5.3, HO is the Hessian matrix evaluated at location xO. If the
point x1 is better than xO in terms of f , then go to Step 2. Otherwise, the procedure
is halted.

2. Compute xj+1 = xj − H−1
j ∇f(xj), where the iteration index j = 1, 2, .... If xj+1 is

better than xj in terms of f , then repeat Step 2 by letting j = j + 1. Otherwise, the
procedure is halted.

This procedure can also be improved by using fractional increments as the procedure by

SD. The following is the strategy on fractional increments implemented into each step of the

procedure of NR.

1. Let l = 1.
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2. Let xj+1 = xj −γl−1H−1
j ∇f(xj), where γ is a constant value within (0, 1), and γ = 0.5

in our study.

3. If xj+1 is better than xj in terms of f , then the procedure is completed.

4. If xj+1 is worse than xj in terms of f , then let l = l + 1 and go back to Step 2.

5. If l > a (where a is some constant integer and a = 5 in our study), then the procedure
is halted.

A.4 Sphere Model and Schwefel’s Function

The sphere model (Schwefel, 1995; Back, 1996; and Haupt and Haupt, 2004) is given by

f(x) =

k
∑

i=1

x2
i ,

where the k is the number of dimensions of the function. We chose k = 2 in this study and

the range is set to −40 ≤ xi ≤ 60 as in Back (1996). The goal is to find its minimal value

and its corresponding location. Obviously, the minimum value is 0 and its location is (0, 0).

A generalized Schwefel’s problem 2.26 from Schwefel (1995), is given by

k
∑

i=1

−xi sin(
√

|xi|), where − 500 ≤ xi ≤ 500,

where k is the number of dimensions of the function. The minimum of the objective function

is given by

min(f(x)) = f(420.9687, ..., 420.9687).

The minimum is dependent on k, the number of dimensions. For example, if k =5, then the

minimum value is -2094.9144. If k=20, then the minimum value is -8379.6577. Figure A.1

shows its 1- and 2-dimensional surfaces.
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Figure A.1: Surface of Schwefel’s function. Left: 1-dimension; right: 2-dimension.
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Appendix B

Some Relationships Among the OLS,
LLR, and MRR2 Fits

In this study, our MRR2 procedure, a semiparametric method, combines the parametric

fit to the raw data obtained by the OLS method with a nonparametric fit to the residuals

from the parametric fit obtained by the LLR method via a mixing parameter λ. Under

some special conditions, several relationships exist among the OLS, LLR, and MRR2 fits, as

stated the two following theorems.

Theorem 1 If the bandwidth b goes to infinity, then the MRR2 fit at location x0 is equal to

the OLS fit at x0 for all values of λ.

Proof. According to Equations 2.5-2.7, the OLS fit at location x′

0 = (x10, x20, ..., xk0) for the

full second-order model is given by

ŷ
(OLS)
0 = h

(OLS)
0

′

y =
^
x
′

0(X
′X)

−1
X′y, (B.1)

where h
(OLS)
0

′

=
^
x
′

0(X
′X)−1X′,

^
x
′

0 = (1 x10 x20 ... xq0), including the k first-order terms,

the k second-order terms, and the





k

2



 interaction terms, q = 2k +





k

2



, and X is the

model matrix, the same as in Equation 2.3. However, according to Equations 2.20-2.21, the

MRR2 fit at x0 can be expressed as

ŷ
(MRR2)
0 = h

(MRR2)
0

′

y = h
(OLS)
0

′

y + λh
(LLR)
r0

′

r (B.2)

= [
^
x
′

0(X
′X)

−1
X′y + λx̃′

0(X̃
′Wr0X̃)

−1
X̃′Wr0(I −X(X′X)

−1
X′)]y, (B.3)
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where h
(LLR)
r0

′

= x̃′

0(X̃
′Wr0X̃)

−1
X̃′Wr0, x̃′

0 and X̃ both include the intercept and the k

first-order terms, as shown in Equation 2.16, the local weight matrix Wr0 =
〈

h
(KER)
r0j

〉

is

the similar to the local weight matrix in Equation 2.16 by considering the residuals from

the parametric fits as the response, and similarly, the kernel weight h
(KER)
r0j is similar to the

kernel weight in Equation 2.16.

When the bandwidth b goes to infinity, the local weight matrix becomes a constant weight

matrix across all observations. That is, Wr0 = I. Thus,

x̃′

0(X̃
′Wr0X̃)

−1
X̃′Wr0(I − X(X′X)

−1
X′) = x̃′

0(X̃
′X̃)

−1
X̃′(I − X(X′X)

−1
X′). (B.4)

X can be partitioned into [ X̃ X̃2 ], where X̃2 includes the k second-order terms and the




k

2



 interaction terms. That is, X̃ is a subset of X. According to X̃′X(X′X)
−1

X′ = X̃′

(Rencher, 2000),

x̃′

0(X̃
′X̃)

−1
X̃′(I −X(X′X)

−1
X′) = x̃′

0(X̃
′X̃)

−1
(X̃′ − X̃′) = 0. (B.5)

Therefore, ŷ
(MRR2)
0 = ŷ

(OLS)
0 when the bandwidth goes to infinity. �

Theorem 2 If the parametric fit of MRR2 is the first order polynomial fit to the raw data

and λ = 1, then the MRR2 fit at location x0 is equal to the LLR fit at x0.

Proof. The LLR fit at x′

0 = (x10, x20, ..., xk0) is given by

ŷ
(LLR)
0 = h

(LLR)
0

′

y = x̃′

0(X̃
′W0X̃)

−1
X̃′W0y, (B.6)

the same as Equation 2.16. However, the MRR2 fit at x0 can be expressed as in (B.2) and

(B.3).

When λ = 1 and the parametric part of the MRR2 fit is the first order polynomial,
^
x0

becomes x̃0 and X becomes X̃ and thus,

h
(MRR2)
0

′

= x̃′

0(X̃
′X̃)

−1
X̃′ + x̃′

0(X̃
′Wr0X̃)

−1
X̃′Wr0(I − X̃(X̃′X̃)

−1
X̃′)

= x̃′

0(X̃
′Wr0X̃)

−1
X̃′Wr0. (B.7)

To show ŷ
(LLR)
0 = ŷ

(MRR2)
0 it must be shown that W0 = Wr0. This is equivalent to proving

that PRESS** by LLR and PRESS** by MRR2 are equal to each other because the local
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weight matrices only depend on the value of the bandwidth chosen by PRESS** in this

study.

The PRESS** by LLR is given by

PRESS∗∗(LLR)(b) =

∑

(yi − ŷ
(LLR)
i,−i (b))2

n − trace(H(LLR)(b)) + (n − k − 1)SSEmax−SSEb

SSEmax

, (B.8)

while the PRESS** by MRR2 is

PRESS∗∗(MRR2)(b) =

∑

(ei − ê
(MRR2)
i,−i (b))2

n − trace(H
(LLR)
r (b)) + (n − k − 1)SSErmax−SSE

rb

SSErmax

, (B.9)

where ei is the ith residual from the parametric fit, considered as a response, and ê
(LLR)
i,−i is

the LLR fit at location xi with the ith observation left out. The PRESS** by LLR in (B.8)

is exactly the same as the PRESS** in (2.24), while the PRESS** by MRR2 in (B.9) is

similar to (B.8) and (2.24), except for considering the residuals r from the parametric fit as

a response. Therefore, the terms H(LLR)(b), SSEmax, and SSEb in (B.9) are marked with a

subscript r.

According to the formula ŷi,−i = ŷi−hiiyi

1−hii
(Myers, 1990), the numerator of the PRESS** by

LLR becomes
∑

(yi − ŷ
(LLR)
i,−i )2 =

∑

(

yi − ŷ
(LLR)
i

1 − h
(LLR)
ii

)2

, (B.10)

while the numerator of the PRESS** by MRR2 becomes

∑

(ei − ê
(LLR)
i,−i )

2
=
∑

(

ei − ê
(LLR)
i

1 − h
(LLR)
ii

)2

. (B.11)

Since ei = yi − ŷ
(OLS)
i and

ê
(LLR)
i = x̃′

i(X̃
′WriX̃)

−1
X̃′Wrir

= x̃′

i(X̃
′WriX̃)

−1
X̃′Wri(y − ŷ(OLS))

= x̃′

i(X̃
′WriX̃)

−1
X̃′Wriy − x̃′

i(X̃
′WriX̃)

−1
X̃′WriX̃(X̃′X̃)

−1
X̃′y

= ŷ
(LLR)
i − ŷ

(OLS)
i , (B.12)

the numerator of PRESS** by MRR2 (shown in (B.9) and (B.11) becomes

∑

(ei − ê
(LLR)
i,−i )

2
=
∑

(

yi − ŷ
(LLR)
i

1 − h
(LLR)
ii

)2

, (B.13)
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which is equal to the numerator of PRESS** by LLR (shown in (B.8) and (B.10).

Now, it must be shown that the denominators in (B.8) and (B.9) are equal. The H(LLR)(b)

in (B.8) is given by

H(LLR)(b) =











x̃′(X̃′W1X̃)
−1

X̃′W1

...

x̃′(X̃′WnX̃)
−1

X̃′Wn











, (B.14)

while the H(MRR2)(b) in (B.9) is by

H(MRR2)(b) =











x̃′(X̃′Wr1X̃)
−1

X̃′Wr1

...

x̃′(X̃′WrnX̃)
−1

X̃′Wrn











. (B.15)

For equality of H(LLR)(b) and H(MRR2)(b), it must be shown that Wi = Wri. Wi and

Wri both depend only on the X̃ values, not the responses. Thus, at the same value of b,

Wi = Wri.

SSEmax, the largest sum of square error over all possible bandwidth values, essentially, is

the parametric SSE by OLS that results when b goes to infinity, as mentioned in Section

2.4.1. Thus, in this study, SSEmax =
n
∑

i=1

(yi − ŷ
(OLS)
i )2 =

n
∑

i=1

e2
i (where ŷ

(OLS)
i is the ith first

order polynomial fit), while SSErmax =
n
∑

i=1

(ei − ê
(OLS)
i )2 (where ê

(OLS)
i is the ith first order

polynomial fit by considering the residuals as a response). It is easy to see that ê
(OLS)
i = 0,

for all i, since ŷ
(OLS)
i is the result of a first order polynomial fit and ei = yi − ŷ

(OLS)
i

cannot obtain further a first order polynomial fit. That is, if ŷ
(OLS)
i = H(OLS)y, then

ê(OLS)= H(OLS)e = H(OLS)(I −H(OLS))y = 0. Therefore, SSEmax = SSErmax.

SSEb in the denominator of the PRESS** by LLR is given by

SSEb =
n
∑

i=1

(yi − ŷ
(LLR)
i (b))2, (B.16)

while SSErb in the denominator of the PRESS** by MRR2 is given by

SSErb =
n
∑

i=1

(ei − ê
(LLR)
i (b))2. (B.17)
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(B.16) and (B.17) are equal to each other, since they are the numerators of (B.10) and

(B.11), respectively, and it has been proven that (B.10) and (B.11) are equal to each other.

Thus, PRESS∗∗(LLR)(b) = PRESS∗∗(MRR2)(b) with the same numerators and the same

denominators. Therefore, PRESS∗∗(LLR)(b) and PRESS∗∗(MRR2)(b) pick up the same value

of bandwidth, which achieves the minimum of PRESS**. Therefore, ŷ
(LLR)
0 = ŷ

(MRR2)
0 . �

A model general version of Theorem 2 can be stated in the following theorem:

Theorem 3 If the model matrix of the parametric fit of MRR2 is the same as the model

matrix used by the nonparametric fit and λ = 1, then the MRR2 fit at location x0 is equal to

the nonparametric fit at x0.

Proof. It is easy to prove Theorem 3 based on the work of the proof of Theorem 2. �
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