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Executive Summary 
 

CS4984 is a newly-offered class at Virginia Tech with a unit based, project-

problem learning curriculum.  This class style is based on NSF-funded work on 

curriculum for the field of digital libraries and related topics; and in this class, is 

used to guide a student based investigation of computational linguistics.  More 

specifically, this class is corpus linguistics oriented and explores the question:  

  

What is the best summary that can be automatically generated for your type of 

event? 

 

Corpus linguistics is a form of linguistic analysis focused on collections of “real 

word” texts known as corpora.  In the scope of this class, corpora consist of web 

archives related to a variety of event types ranging from community events to 

fires.  Summaries of these events consist of one or two paragraphs of well-

written English text that describe the event.  The generation of these summaries 

involves identifying the most critical pieces of information in natural language 

text, extracting the relevant information, and combining the extracted information 

to produce an informative and concise summary.  The class is structured such 

that each event type and its related corpora are assigned to an individual group 

of students for investigation.  It was the task of our group to investigate 

earthquake related events.  

 

The specific problem this report addresses is the creation of a means to 

automatically generate a short summary of a corpus of articles about 

earthquakes. Such a summary should be best representative of the texts and 

include all relevant information about earthquakes. For our analysis, we operated 

on two corpora--one about a 5.8 magnitude earthquake in Virginia in August 

2011, and another about a 6.6 magnitude earthquake in April 2013 in Lushan, 

China. Techniques used to analyze the articles include clustering, lemmatization, 

frequency analysis of n-grams, and regular expression searches. 

 

The report first provides a manual for the use of the project’s codebase followed 

by a manual for further development.  The implementation and results of the 

project are then provided and discussed. 

  



 

 

User Manual 
 

The code base of the project can be found at the following URL: 

https://github.com/atokop/compling 

 

Requirements: 

Much of the code is written in Python and thus requires a Python environment to 

execute.  The following modules are required: 

 

● numpy 

● pyparsing 

● dateutil 

● six 

● matplotlib 

 

In addition to a Python environment, some code is written for a Hadoop cluster 

and uses the mapreduce programming model.  Consequently, a Hadoop system 

or virtual machine is required for some portions of the code.   

 

Running Instructions see each unit’s directory on the provided GitHub repository 

above and then execute the corresponding script for each unit after making 

necessary imports.  

 
  

https://github.com/atokop/compling


 

 

Developer Manual 
 

The code base of the project can be found at the following URL: 

https://github.com/atokop/compling 

 

U1 

 Two functions defined, import u1_analysis: 

 

  most_frequent(text) 

   Returns the 20 most frequent words in the given text 

  most_frequent_above_n(text, n) 

Returns the 20 most frequent words in the given text with 

lengths greater than n 

 

U2 

Script is defined in small_analysis.py. Loads in YourSmall, lemmatizes, 

and provides frequency distribution 

 

U3 

Functions defined in u3.py 

tagged_nouns(tagged_words) 

Given words with their tags, returns all tagged words that 

are nouns 

brown_tagged_sents() 

Returns a training set and test set generated from the 

Brown corpus. 

simple_pos_tagger(words) 

Tags words with NLTK’s default tagger, and returns a set 

without stop words and duplicates. 

get_regexp_tagger() 

Returns a tagger that tags words based on regex on their 

endings 

sents_to_words() 

Expands a list of sentences into one list containing all the 

words. 

trigram_tag(sentences, default_tagger) 

Tags a list of sentences, via backoff trigram tagging. If no 

default tagger is specified uses a regex tagger. 

Script implementation in u3_ce.py. Creates a tagger and stores it as 

tagger.pkl 

 

 

https://github.com/atokop/compling


 

U4 

Functions defined in u4.py 

load_words(filename) 

Given a filename, decodes contents via Unicode, then 

parses the content into a list of words. 

load_clean_words 

Like load_words, but cleans invalid characters out of words 

returned. 

contains_word_feature_set(document_words, feature_words) 

Creates a feature set for the set of words provided. The 

featureset consists of a set of Boolean flags, one for each 

word in feature words, that are true if the word is found in 

document words. 

contains_word_feature_set_from_file(filename, 

feature_words) 

Similar to contains_word_feature_set but takes in a 

filename instead of the document words. 

top_words_by_frequency(words, n=20) 

Returns the words with the highest frequency in the list of 

words given (default: top 20). 

top_words_with_frequency(words, n=20) 

Similar to top_words_by_frequency but returns the 

frequency of each word in a tuple with the word (default: 

top 20). 

create_boolean_training_sets(create_featureset_func, 

tagged_dir) 

Given the directory containing a training set of files that are 

tagged either positive or negative by appending ‘_pos.txt’ 

or ‘_neg.txt’, creates featuresets for and mixes up the 

tagged data to create a training set containing 75% of the 

tagged data and a testing set containing 25% of the data 

as a tuple. 

 

Script in u4_execution.py 

● Creates a featureset by determining most common words 

in the corpus 

● Creates training and test sets from tagged data,  

● Trains a Decision Tree Classifier on this data 

● Trains a Naive Bayes Classifier on the training data 

● Prints the accuracy of the Decision Tree on the test data 

● Prints the accuracy of the Naive Bayes on the test data 

 

 

 



 

U5 

u5_execution.py 

file_words(corpus_root) 

Returns a list containing the list of words for each 

document in the corpus. 

tag_files(file_list, tagger) 

Given a list with document words for each documents, 

returns a list with the tagged document words for each 

document as tagged by the provided tagger. 

sort_freq(tagged_words) 

Given a list of words that are tagged, returns the same list 

of tagged words, sorted by how often they occur. 

   

● Tags all words in all files using the Stanford NER tagger 

● Expands the nested list of words into one list with all the tagged 

words 

● Determines which tagged words are named entities 

● Prints most common locations, organisations, and people from 

those named entities 

    

U6 

scrub.py 

 Usage: scrub.py file_to_be_cleaned.txt 

Removes paragraphs with no mention of earthquakes from the file 

to be cleaned  

 

U8 

fill_template.py 

most_common(lst) 

Given a list, returns the element that occurs the most often. 

find_magnitude(raw_collection) 

Given the raw text of a collection describing an 

earthquake, determines the value that occurs most often in 

contexts corresponding to magnitude descriptions, using 

regex. 

find_deaths(raw_collection) 

Given the raw text of a collection describing an 

earthquake, determines the value that occurs most often in 

contexts corresponding to number of deaths descriptions, 

using regex. 

find_injuries(raw_collection) 

Given the raw text of a collection describing an 

earthquake, determines the value that occurs most often in 



 

contexts corresponding to descriptions of the number 

injured, using regex. 

find_epicenter(raw_collection) 

Given the raw text of a collection describing an 

earthquake, determines the value that occurs most often in 

contexts corresponding to descriptions of the epicenter 

location, using regex. 

find_date(raw_collection) 

Given the raw text of a collection describing an 

earthquake, determines the value that occurs most often in 

contexts corresponding to descriptions of the date the 

event occurred, using regex. The date object returned is a 

3-tuple of (day, month, year) 

find_time(raw_collection) 

Given the raw text of a collection describing an 

earthquake, determines the value that occurs most often in 

contexts corresponding to descriptions of the time the 

event occurred, using regex. 

find_word(word, path_to_corpus, cutoff) 

Given a word, the path to the corpus root directory, and a 

certain cutoff value (0-1), determines whether the fraction 

of files that the word occurs is higher than cutoff. 

earthquake_template(corpus, path_to_corpus=None) 

Given a corpus, and optionally the path to the corpus, 

determines various characteristics of the corpus using 

regexes, and returns a Python dictionary containing these 

values. 

u8_execution.py 

● Imports big collection and small collection 

● Creates and prints the earthquake template for each 

 

U9 

summary.py 

summarize(template) 

Given a template (of the form returned by the function 

earthquake_template in U8), constructs a paragraph 

summary of the qualities of the earthquake. 

u9_execution.py 

● Loads in Big and Small collections 

● Generates and prints a summary of each 

  



 

Problem Statement 
For this course, we were tasked with creating the means to automatically generate a short 

summary of a corpus of articles about earthquakes. Such a summary should be best 

representative of the texts and include all relevant information about earthquakes. For our 

analysis, we operated on two corpora--one about a 5.8 magnitude earthquake in Virginia in 

August 2011 (referred to as our “Big” collection), and another about a 6.6 magnitude earthquake 

in April 2013 in Lushan, China (referred to as our “Small” collection).  

 

Outline of Approach 
In computational linguistics, text summarization is the process of identifying the most critical 

pieces of information in natural language text and combining them to form an informative and 

concise summary.  

 

An important part of text summarization can be lemmatization. Lemmatization is the process of 

grouping together different forms of a word which share the same linguistic lemma when 

considering them for analysis. This makes word lemmas with a high number of alternative forms 

be represented in the same proportion as word lemmas with a low number of alternative forms.  

 

Additionally, part of speech tagging allows for more in-depth text analysis. Backoff tagging is a 

method used to tag words with their parts of speech for further analysis. Backoff tagging works 

by using multiple methods of tagging, starting with the most accurate but less applicable and 

shifting to less accurate but more applicable methods in order to tag each word with the highest 

accuracy possible. 

 

To extract relevant pieces of information from natural language, one method commonly used is 

k-Means clustering. Clustering is a technique that starts by defining identifiable features of the 

text such as words or n-grams and the objects to be clustered, such as sentences or 

documents. Once a feature set is defined, the number of clusters must be decided upon; the 

larger the variation in the text, the more clusters that are typically chosen. The centroid of a 

cluster contains its most relevant features. The clustering process begins by defining the 

centroids of these clusters in a random manner. After the centroids are defined, which objects 

belong in which clusters is determined by finding the cluster to which each object is closest. 

After the objects have been assigned to a cluster, the features in the centroids of the clusters 

are recalculated to be the average feature set of the objects in the cluster. An iterative process 

of defining which objects belongs to which cluster and defining the centroids based upon the 

average feature set of the clusters continues until the process yields no additional 

reassignments. Clustering sentences of a corpus and then choosing sentences closest to a 

particular centroid can be used to extract sentences about a particular topic.  

 

Regular expressions are a way to ambiguously define a string. Regular expressions can be 

used to search for strings containing specific words or pieces of information in order to obtain 

better results than a traditional exact search query.   

 



 

Details of Approaches Taken 

Frequency Analysis 

Naive frequency analysis of the texts yields meaningful but noisy results. As shown in Table 1, 

the nine most common words of our Lushan earthquake corpus have little to do with the 

earthquake. 

 

Word the  in to of  and a s on for china earthquake 

Frequency 14092 8953 8372 7339 6463 5441 4048 3677 3005 2719 2649 

Table 1. Naive Frequency Analysis of Lushan Earthquake 

 

To reduce the amount of noise in the frequency analysis, we filtered the results using a list of 

stopwords from the Natural Language Toolkit (NLTK). This stopword list contains over 2,400 

words which provide very little contextual value and are present in natural language from a wide 

range of topics. The results of the most common words after this filtration are shown in Figure 2.  

 

Word china earthquake news quake sichuan people said us sikkim 

Frequency 2719 2649 2310 2153 1482 1380 1339 1083 982 

Table 2. Filtered Frequency Analysis of Lushan Earthquake 

 

Filtered frequency analysis provides meaningful information about the contents of the corpus, 

however it doesn’t provide the context of the information. To provide context to the information, 

we utilized NLTK to create a backoff part-of-speech tagger  (Bird, “NLTK Processing with 

Python”). This tagger analyzes the n-grams of the word to determine its part of speech. The first 

layer of the backoff tagger analyzes the trigrams, followed by bigrams, and finally unigrams. If n-

gram analysis isn’t able to determine the part-of-speech of the word, the tagger backs off to 

using custom regular expressions to match common patterns in words such as -ing being 

indicative of the word being a gerund. If all else fails then the word is categorized as a noun, by 

default. From the tagged data, the most notable are the nouns, followed by the verbs. Table 3 

shows the most common nouns in the Lushan earthquake. 

 

 

Word earthquake news quake sichuan people comment sikkim 

Frequency 2717 2281 1965 1473 1382 952 948 

Table 3. Lushan Earthquake Most Frequent Nouns 

 

  



 

Corpora Cleaning 

From the frequency analysis, the Lushan earthquake corpus has produced promising results, 

however the most popular nouns from the Virginia earthquake corpus consisted of ad, blog, and 

business. From these results, it was determined that our corpora were very noisy and contained 

information not related to earthquakes. To begin cleaning the corpora, trivially poor documents 

were omitted. Any documents shorter than a couple sentences were removed since most 

consisted of only noise. Then documents not even mentioning the word earthquake were 

removed as being completely off topic.  

 

To aid in cleaning the corpora, a classifier was created to classify documents as relevant and 

irrelevant. To produce the classifier, we manually looked at a sample of 150 documents from the 

corpora and labeled them as relevant or irrelevant. We then trained three types of classifiers on 

the set of 150 files to recognize the relevancy of the file based on the presence of 

distinguishable words in the documents. Once the classifiers were trained, they were run 

against all documents to determine which files are relevant and which are not. Manual checking 

of the files showed that the best classifier (Decision Tree) had over 90% accuracy.  

Collection Files Words Sentences 

YourSmall Raw 454 411,717 17,923 

YourSmall Clean 281 103,996 4,094 

YourBig Raw 4599 4,103,266 171,525 

YourBig Clean 59 40,107 2010 

Table 4. Effect of Cleaning on Corpus Size 

Examining Named Entities 

To consider named entities in our analysis, we made use of open source libraries. NLTK’s built 

in named entity extractor is called ne_chunk. Table 5 shows some of the results of NLTK’s 

named entity recognition on our Lushan earthquake corpus.  

 

GPE China Chinese India Lushan Sikkim Boston 

Frequency 2682 535 416 405 364 355 

 

Person Sichuan Sikkim Google Xinhua Video Lushan 

Frequency 817 384 186 176 133 118 

 

Organization CNN Date YouTube Reuters US RSS AP 

Frequency 205 204 144 131 105 98 95 

Table 5. NLTK.ne_chunk Results for Lushan Earthquake. 



 

The global, political, and economic results of NLTK’s named entity extractor are accurate and 

descriptive; however the people and organization results are not representative of the Lushan 

earthquake. Additionally, we utilized the Stanford Named Entity Recognizer (NER). Table 6 

shows the results of the Stanford NER run against the Lushan earthquake corpus. 

 

Location China Sikkim Sichuan India U.S. Province 

Frequency 450 244 171 110 35 33 

 

Person Weibo Renren Sina Kaixin Li David 

Frequency 36 15 15 15 13 13 

 

Organization News Home Weibo Business India Xinhua World 

Frequency 184 100 69 67 65 62 61 

Table 6. Stanford NER Results for Lushan Earthquake 

 

The Stanford NER was able to obtain better information about the location of the earthquake. 

Sichuan, the third location result, is located in Lushan and was the epicenter of the earthquake. 

While the Stanford NER was better at recognizing people’s names than NLTK, the people 

extracted are not noteworthy in describing the earthquake. Additionally, the organizations 

acquired from both named entity recognizers were unhelpful in describing the earthquake.  

Clustering 

To cluster the text, we decided to use words as features and cluster sentences as the individual 

objects. After trying different numbers of clusters, we decided on twenty as the optimal number. 

We utilized Mahout for our k-means clustering which takes advantage of MapReduce for its 

processing. After manually observing the contents of the clusters, we chose six which contained 

the most relevant content and discarded the other fourteen as noise.  

 

The first cluster which we chose characterized information about whom was affected by the 

Lushan earthquake and where the earthquake took place. Words such as son, wife, hospital, 

family, and evacuated are used in contexts which can help characterize potential victims. Table 

7 contains the Mahout sentence vector which best characterizes the cluster. 

 

Sentence: (30.450599999999998, ['lin:8.709', ' tent:7.292', ' his:7.018', ' son:6.746', ' wife:7.493', ' 

after:4.002', ' hospital:5.579', ' soon:6.358', ' 37:6.857', ' family:5.624', ' sat:6.645', ' who:4.894', ' 

zhou:7.844', ' big:5.861', ' chen:6.630', ' before:6.009', ' another:5.713', ' looking:6.818', ' 

said:3.683', ' tending:9.179', ' were:4.000', ' from:3.580', ' never:6.661', ' farmer:8.016', ' 

tianxiong:9.690', ' struck:4.948', ' earthquake:3.309', ' old:5.400', ' quake:3.409', ' between:6.135', 

' i:4.289', ' ve:6.763', ' stretcher:9.402', ' saturday:4.293', ' day:5.190', ' evacuated:8.150', ' 

tents:5.854', ' lushan:4.335', ' lying:7.233', ' seen:6.485', ' three:5.574']) 

Table 7. Relevant Victim Cluster 



 

The second cluster chosen contains technical information relevant to the earthquake. Words 

such as magnitude, geological, and aftershock are contained in sentences which give detailed 

information about the structure of the earthquake. Table 8 contains the Mahout sentence vector 

which best characterizes the cluster. 

 

Sentence: (47.557709000000003, [' field:7.323', ' oil:6.837', ' down:5.689', ' largest:6.614', ' 

later:6.526', ' reuters:5.531', ' revised:8.304', ' telephone:7.323', ' total:6.458',' china:3.364',' 

magnitude:4.333', ' 100:5.510', ' bifengxia:7.493', ' geological:6.018', ' output:7.744', ' 

provinces:7.205', ' spokesman:10.356', ' huge:6.471', ' office:6.960', ' safe:8.925', ' sichuan:3.862', 

' sinopec:8.224', ' accounts:6.897', ' gas:9.354', ' initially:7.793', ' major:6.001', ' survey:5.976', ' 

houses:5.516', ' producing:8.486', ' refiner:8.391', ' more:3.521', ' puguang:8.709', ' put:6.645', ' 

unaffected:8.486', ' aftershock:10.545', ' background:8.016', ' us:4.147'])  

 Table 8. Technical Information Cluster 

 

The third cluster contains information relevant to the amount of damage done including damage 

to builds and death toll. Table 9 shows the centroid vector and the sentence vector closest to 

the centroid. It contains words such as damaged, hospital, died, and missing which give insight 

into the impact of the earthquake. 

 

centroid: ['also:4.792', ' have:3.759', ' government:7.052', ' hospital:5.579', ' damaged:5.490', ' 

building:8.331', ' school:6.569', ' buildings:8.784', ' four:6.088', ' all:3.947', ' secretariat:8.391', ' 

extensively:9.402', ' districts:7.698', ' press:5.590', ' headquarter:8.997', ' been:4.214', ' 

police:5.372']  

Sentence: (14.130080999999999, ['have:3.759', ' died:5.985', ' people:3.668', ' another:5.713', ' 

180:8.150', ' least:4.880', ' 24:5.427', ' missing:5.618'])  

Table 9. Relevant Damage Cluster 

 

The fourth cluster contains information regarding the location of the earthquake and contains 

words such as epicentre, hits, and outskirts which are typically accompanied by specific location 

information. Table 10 contains the Mahout sentence vector which best characterizes the cluster. 

 

 

 

Sentence: (49.570920999999991, ['ago:5.943', ' epicentre:6.173', ' chengdu:5.409', ' 

morning:5.671', ' city:4.775', ' miles:8.511', ' outskirts:8.843', ' around:5.585', ' china:5.827', ' 

capital:5.547', ' close:5.505', ' its:4.792', ' magnitude:4.333', ' authorities:5.968', ' people:3.668', ' 

hits:5.579', ' province:4.253', ' western:6.897', ' rise:6.358', ' from:3.580', ' shallow:6.857', ' 

south:5.451', ' co:5.869', ' likely:6.370', ' over:4.594', ' struck:4.948', ' 7:4.319', ' area:4.755', ' 

earthquake:5.732', ' quake:3.409', ' sichuan:6.689', ' 8:4.677', ' casualties:6.358', ' uk:6.419', ' 

injured:6.111', ' least:4.880', ' provincial:6.097', ' depth:5.891', ' number:6.116', ' saturday:4.293', ' 

150:9.133', ' county:4.651', ' telegraph:7.611', ' lushan:4.335', ' roughly:9.179', ' killed:4.660', ' 

more:4.980', ' magnified:8.016']) 

Table 10. Relevant Location cluster 

 



 

The fifth cluster contains information regarding the time of the earthquake. Words such as gmt 

and pm are used exclusively with time which is usually accompanied with information about the 

date. Table 11 contains the centroid vector of the cluster. 

 

centroid: ['epicentre:4.116', ' local:1.743', ' s:1.880', ' 68:7.698', ' gmt:2.190', ' 41:2.190', ' 

pm:1.734', ' time:1.555', ' capital:5.547', ' sikkim:4.298', ' gangtok:5.720', border:2.026', ' 7:2.880', ' 

being:1.849', ' earthquake:1.103', ' india:1.438', ' occurred:2.100', ' quake:1.136', ' located:4.685', ' 

depth:3.927', ' epicenter:1.865', ' km:7.793', ' nepal:1.862', ' northwest:7.456']  

 Table 11. Relevant Time Cluster 

 

The sixth cluster contains contains information about the reason why and how the earthquake 

occurred. Table 12 contains the Mahout sentence vector which best characterizes the cluster. 

Words such as tectonic and movement usually are accompanied with context as to what caused 

the earthquake. 

 

 Sentence: (67.634175999999997, ['earthquakes:6.106', ' movement:8.391', ' seems:7.611', ' 

tectonic:7.955', ' build:7.898', ' causing:7.075', ' plate:8.591', ' up:4.362', ' stress:8.224'])  

Table 12. Circumstantial Cluster 

 

Compared to other approaches (units), clustering did not yield particularly accurate results, nor 

was the process as intuitive as others. The clusters listed above were our best results, but are in 

no way indicative of the average value of the clusters we received. Many clusters were not 

distinguishable in terms of relevance, rendering the clustering useless at times.  

 

In regards to timings and speedup of clustering, we noticed that both our big collection and 

small collection took similar times to run as demonstrated in Table 13 below. 

 

Big Collection Clustering Timing (minutes) Small Collection Clustering Timing (minutes) 

5.17535 5.1245 

Table 13. Clustering Timings 

 

After consulting the TAs about this phenomenon, we learned that this was most likely due to the 

actual processing time being insignificant compared to the overhead of running the clustering.  

This also implied that the size of our collections was too small to gain a significant advantage 

from utilizing the Hadoop cluster.   

  



 

Regular Expressions  

Our next approach was to construct a template containing critically important information for 

earthquakes. After some research into what factors are most important for earthquakes we 

appraised and used the template categories described in Table 14 (Jones, A Parent’s Guide To 

Earthquakes). We decided that this template would be filled using regular expressions 

combined with frequency analysis. Regex searches were constructed by combining the results 

from various regexes that aimed to find relevant data that was surrounded by certain key 

indicators. See Table 14 for the regex searches used. 

 

Category Regex(s) used 

Magnitude ‘magnitude (?:of )?[0-9]\.?[0-9]*’ 
'[0-9]\.?[0-9]* magnitude' 

Deaths '(?:[0-9]+ deaths)' 
'(?:[0-9]+ were killed)' 
'killed (?:\w+ ){0,2}[0-9]+ people' 
'(?:[0-9]+ casualties)' 

Injuries '[0-9]+ injur(?:(?:ies)|(?:ed))' 
'(?:[0-9]+ were injured)' 
'injured (?:\w+ ){0,2}[0-9]+ people' 

Location ‘((in|at)\s([A-Z][a-zA-Z]{4,}|[A-Z][a-zA-Z]{2,}\s[A-Z][a-zA-Z]{3,})|\s+[A-Z][a-zA-
Z]{3,},\s[A-Z][a-zA-Z]{2,}\s[A-Z][a-zA-Z]{3,})’ 

Epicenter ‘((in|at)\s([A-Z][a-zA-Z]{4,}|[A-Z][a-zA-Z]{2,}\s[A-Z][a-zA-Z]{3,})|\s+[A-Z][a-zA-
Z]{3,},\s[A-Z][a-zA-Z]{2,}\s[A-Z][a-zA-Z]{3,})’ 
 
NOTE: This regex is only applied to sentences containing the word ‘epicenter’ 

Date (Month) ‘(?:January|February|March|April|May|June|July|August|September|October|Novemb
er|December)’ 

Date (Day) ‘(?:January|February|March|April|May|June|July|August|September|October|Novemb
er|December),?\s([0-9]{,2})[^0-9]' 

Date (Year) '(?:1|2)[0-9]{3}' 

Time '[0-9]{1,2}:[0-9][0-9](?::[0-9][0-9])?(?:\s?[apAP]\.?[mM]\.?)?' 

 

  Table 14. Regex Searches 

 

All occurrences where appropriate data was found near an indicator were recorded, and the 

average and mode were determined for numerical data types (number of deaths, magnitude, 

etc.) We reported final values using the mode, since high frequency was our best indicator of 

accuracy. 

 



 

Finding the mode of non-numeric data distributions also resulted in extremely accurate 

templates containing the relevant information from the corpus. The templates created are shown 

in Table 15. One thing to note is that while our results were extremely accurate, and the process 

was extremely fast to run, setting up correct regexes requires careful engineering. Some of our 

solutions were nested regular expressions which required multiple iterations of development 

before we found a combination that provided the best results. As such, these expressions may 

not be as flexible as our solutions for other units. The accuracy and speed obtained from this 

technique comes with a loss of flexibility; this solution, unlike the vast majority of the other 

approaches to extracting information from the corpus, can not be readily applied to a corpus 

with a different subject matter. 

 

Big Corpus Earthquake Analysis: 

Deaths: 140.0 

Epicentre: Louisa 

Magnitude: 5.8 

Location: Virginia 

Time: 1:51 

Date: (u'23', u'August', u'2011') 

 

Small Corpus Earthquake Analysis: 

Deaths: 186.0 

Epicentre: Lushan 

Magnitude: 6.6 

Location: Lushan 

Time: 8:02 

Date: (u'20', u'April', u'2011') 

     Table 15. Template Results 

 

Results 
Our final step was to construct a way to transform this simple template into a dynamic, 

grammatically correct English report. We wrote a Python script to analyze the contents of the 

template and built this report accordingly. We used the structure shown in Table 16, and our 

results are detailed in Table 17. 

 

summary = 'On {0} {9}, {10} at {1}, a {2} magnitude earthquake struck {3}. The epicenter of the 

quake was located at {4}. There {5} aftershocks that followed the earthquake and {6} tsunami was 

caused by the earthquake. There {7} reports of landslides due to this earthquake. A total of {8} 

deaths occurred.'.format(template['date'][0], template['time'], template['magnitude'], 

template['location'], template['epicentre'], aftershock, tsunami, landslide, int(template['deaths']), 

template['date'][1], template['date'][2]) 

Table 16. Structure for Summary 

 

 

 



 

YourBig: 

On 23 August, 2011 at 1:51 p.m., a 5.8 magnitude earthquake struck Virginia. The epicenter of 

the quake was located at Louisa. There were aftershocks that followed the earthquake and no 

tsunami was caused by the earthquake. There are no reports of landslides due to this 

earthquake. A total of 140 deaths occurred. 

YourSmall: 

On 20 April, 2013 at 8:02 a.m., a 6.6 magnitude earthquake struck Lushan. The epicenter of the 

quake was located at Lushan. There were aftershocks that followed the earthquake and no 

tsunami was caused by the earthquake. There are reports of landslides due to this earthquake. A 

total of 186 deaths occurred. 

Table 17. Final Summaries  

 

We were very pleased with the quality of our results. We verified the accuracy of each report 

with our own research of the earthquakes. This result was by far the most comprehensive and 

accurate summary and it can be viewed as our crowning achievement for this course. 

 

Potential Improvements 
In regards to our most successful approach of filling a template using regular expression 

analysis and then constructing an English report based on this template, there are a few 

improvements that we would have liked to have made given more time. First of all, having an 

expanded template containing more useful earthquake information would enable an even more 

descriptive report to be constructed. In addition, combining the strategy of using regular 

expression with other techniques such as named entity recognition could improve our solution. 

 

Spending more time with clustering also has the potential to produce valuable results. We 

encountered many obstacles during this phase of development and as a result, our solution was 

not as well written and useful as it could have been. We noticed that other groups had more 

success with this approach so it would be a good idea to revisit this strategy in the future. 

 

It would be helpful to improve upon the way that the collections are retrieved before being 

analyzed by our system. Implementing a way to collect only relevant articles from the web would 

help our system focus on the textual analysis and it would allow the system to avoid periodic 

collection cleaning that needed to be performed. Further, it would be interesting to perform the 

strategies of the earliest units again on final, cleanest collections that we were using as input by 

the final units since it is likely that more useful results would be given by our solutions. 

 

Lessons Learned 
We learned early on that analyzing a “noisy” corpora and expecting meaningful results is 

unreasonable. At the beginning of most units, we made an effort to make our collections 

cleaner. We found that this greatly improved our results. In our first few units, we likely had false 

positives and false negatives due to the nature of our collections. However, as we progressively 

cleaned our corpora, we found that our solutions were more reliable. 



 

 

Over the semester, we encountered many new technologies that were useful when developing 

solutions for this project. We found that approaching new technologies in an intelligent way is 

critical to efficiently learning and applying them. We typically approached the technologies in 

four distinct phases: Familiarize, Explore, Practice, and Utilize. In the first stage, we researched 

the tool and learned its most distinguishable properties. We then explored the technology in a 

more detailed way, examining its intricacies and beginning to take into account the problem we 

were trying to solve. We then practiced using this technology to solve simple related problems. 

For example, we completed some NLTK exercises in the course textbook when learning that 

technology. Finally, we applied the techniques we learned to the problem at hand. We found 

that this four stage approach increased our efficiency when learning new technologies. 

 

We also realized the importance of parallelization in two areas of development. First, we found it 

quite important to split up work between our group members in a fair and efficient way. This 

required careful analysis of the driving question and developing an approach that could be 

broken into mutually exclusive parts to facilitate parallelization. In some units we also 

parallelized the execution of our solution. We accomplished this by using the MapReduce 

technology on a Hadoop file structure. 

 

Similar to parallelization, documentation and reuse of code greatly increased our efficiency. Due 

to the incremental nature of our units, we quickly learned code reuse was invaluable. This 

allowed us to focus on new and improved aspects for solutions, building on old foundations. 

Code reuse also allowed us to have multi-level solutions which we found to be more reliable 

than single strategy approaches. 

 

The combination of the above high level approaches to this course’s driving question allowed us 

to implement a working solution which provided a meaningful summary of an earthquake event. 

The lessons we learned from this project will be immediately applicable to any design or 

programming projects that we encounter in the future. 
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