COMPUTER-ASSISTED SYNTHESIS OF
WRAPPING CAM MECHANISMS

by
Kurnia Dias Iskandar

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

in Mechanical Engineering

APPROVED:

Charles F. Reinholtz, C

IV Znclt

Paul H. Tidwell ugene F. Brown

B J

June 28, 1996
Blacksburg, Virginia

Key words: Wrapping Cam, Cam Synthesis, Cam Design,
Force Synthesis, Kinematics

LD
5655
NSS!

TAS3A

C. S

COMPUTER-ASSISTED SYNTHESIS OF
WRAPPING CAM MECHANISMS

by
Kurnia Dias Iskandar
Charles F. Reinholtz, Chairman

Mechanical Engineering

ABSTRACT
A wrapping cam mechanism consists of a cam wrapped by a belt or flexible band. An
analytical method for synthesizing wrapping cam mechanisms has recently been developed.
This thesis extends the previous work and describes the development of an interactive
wrapping cam synthesis package based on analytical methods. The software presented in
this thesis generates cam profiles for eight configurations of wrapping cam-pulley or
wrapping cam-sprocket mechanisms. This software package has a graphical user interface
to give intuitive interactions. The modularity of the software package increases the
flexibility for future program extension. This thesis also discusses the extended synthesis

methods for a wrapping cam-link mechanism.

Thank you and dedication
to my family and others
who had given so much support:

A M. Satari
Vestawati Satari
Achmad Ika Wardhana
Nurlaila Rahman
and
Sri Kusumaning Diah

i1

ACKNOWLEDGMENT
I would like to thank Dr. Charles Reinholtz, Dr. Paul Tidwell, and Dr. Eugene Brown for
being members of the advisor committee in my master program at Virginia Polytechnic
Institute and State University (VPI & SU). Their help and patience contribute to the
success of this thesis work. It has been an honor to know them and being one of their
students.

The contribution of PT PAL-INDONESIA, an Indonesian ship building company,
also cannot be forgotten. Its scholarship had given me a chance to pursue a higher and a

better education. I cannot thank enough for this, and I am very grateful.

iv

TABLE OF CONTENTS:

LIST OF FIGURES
1.INTRODUCTION e 1
2. LITERATURE REVIEW i, 3
3. WRAPPING CAM SYNTHESIS
3.1. GGRR Wrapping Cam Synthesis 7
3.2. GRRR Wrapping Cam Synthesis 13
4. C++/OBJECT-ORIENTED PARADIGM 21
S.0BJECTIVE 25
6. PROGRAM OVERVIEW 26
7. GRAPHICAL USER INTERFACE(GUI) 38
7.1. Windows Interface 40
7.2.File Structure. 45
8. OBJECT-ORIENTED APPROACH
TO WRAPPING CAM MODELLING. 48
9. SYNTHESIS MODULE i, 53
10. ANALYSISMODULE 60
11. CONCLUSION AND CONTRIBUTION. 63
12. REFERENCES 65
APPENDIX
e Appendix A: Installing & Running The Program 67
e Appendix B: Program Source Codes
e B.L.GUICIasses. i 68
e B2 WrappingCamC Classes 133
e B.3. Supporting Functions. 154
VITA | 180

LIST OF FIGURES

2.1. A Wrapping Cam Mechanism 3
2.2. A Wrapping Cam with Link Mechanism 4
3.1. Variables of Constant Tension GGRR Wrapping Cam. 7
3.2. Variables of Crossed-Chain GGRR Wrapping Cam. 11
3.3. Negative GGRR Wrapping Cam. 12
3.4. Variables of GRRR Wrapping Cam. 14
3.5. Torque Produced by the Link 16
3.6. Instantaneous Center Method 18
4.1.Class: Storage Box 22
4.2 Example of Inheritance 23
6.1. The Program Structure 27
6.2. Design Process of Wrapping Cam Program. 28
6.3. Constant Chain Tension (Positive Cam). 30
6.4. Positive Cam with Crossed-Chain 30
6.5. Positive Cam with Spring Mounted. 31
6.6. Positive Cam with Spring Mounted and Crossed-Chain. 31
6.7. Constant Cam Torque (Negative Cam). 31
6.8. Negative Cam with Crossed-Chain. 31
6.9. Positive Cam with Linkage. 31
6.10. Positive Cam with Linkage and Crossed-Chain. 31

vi

6.11. An Example of Force FunctionData. 33

6.12. The Input Datain ASCII Text 34
6.13. A Wrapping Cam Datain ASCII Text 35
6.14. Plot of Cam Surface. 36
6.15. Moment Arms vs. Cam Rotations in ASCII Text 37
6.16. Plot of Moment Arms vs. Cam Rotations 37
7.1. Main Window Layout. 39
7.2. Encapsulation of Windows Interface. 40
7.3. Both Plot and Edit View Windows Opened. 41
7.4. Positive GGRR Dialog Box 43
7.5. Negative GGRR DialogBox 43
7.6. GGRR Analysis Dialog Box. 44
7.7.New Input File Dialog Box 44
8.1. Hierarchical Diagram of GGRR Classes. 49
9.1. Graphical Plot of Cam Profile 58
9.2 Plotof Force Function. 59

10.1. Plot of Moment Arms
vs. Cam Rotations. 62

vii

1. INTRODUCTION

There is a need for software that can improve the efficiency of cam design process
[Dvorak, 1988]. Even though there are some cam design software available in the market
such as Cam Designer by Delta Engineering Corp., no package is available for the design
of wrapping cam mechanisms. There are two main reasons why a software for wrapping
cam design is not yet available. The analytical methods for wrapping cam synthesis have
only been recently developed, and adding these methods into the existing proprietary cam
synthesis packages is very difficult.

Nautilus, Inc. has been using wrapping cam mechanisms in their line of exercise
equipment. Originally, the design of wrapping cams used in these mechanisms was done
using graphical methods. Only recently has a closed-form method for wrapping cam
synthesis been developed [Tidwell et al., 1994] [Tidwell, 1995]. The research work
presented here extends Tidwell’s method of wrapping cam synthesis and implements it in
an interactive software package.

An important consideration in designing a software package is the utility of the
program for either novice or advance users, e.g. intuitive interface between the user and
program and ease of program updating and maintenance. A graphical user interface (GUI)
is one way to provide an intuitive interface to the program. The efficiency in program
updating and maintenance can be improved by making the program as a network of
modules. One programming language that supports the concept of modularity is Object-

Oriented Programming (OOP) language. To write and to compile the program’s code,

Borland C++ version 4.0 is used because it supports object-oriented programming. To
conform with OOP, Borland’s ObjectWindows Library 2.0 is implemented in the
development of the GUI [Swan et al., 1994].

The organization of this thesis is as the following. Chapter 2 is a literature review.
Chapter 3 discusses the analytical methods for wrapping cam mechanisms. Chapter 4
presents a brief discussion on C++ and object-oriented programming languages, which are
used in developing the package. Chapter 5 describes the objectives of this research.
Chapter 6 gives an overview of the wrapping cam synthesis software package. Chapter 7
discusses the graphical user interface (GUI) of this software package. Chapter 8 discusses
the object-oriented programming approach in the modelling of a wrapping cam design.
Chapter 9 and 10 cover the synthesis and analysis modules of this package. Chapter 11
discusses the conclusion and contributions this work gives to the study of wrapping cam
mechanisms. The program source code is listed in the Appendix, with the purpose to help

the user in modifying the program if necessary.

2. LITERATURE REVIEW

A wrapping cam mechanism is often used to produce either force functions. The
mechanism is composed of a planar disk cam wrapped by either a chain or a belt (Figure
2.1). Unlike traditional cam mechanisms, there is no sliding between the cam and the
follower. There is only rolling contact, therefore this joint is also called a gear joint. This
type of joints is called a gear joint. The cam and the sprocket center of rotations are single
degree of freedom joints, i.e., revolute joints. Tidwell uses the nomenclature ‘G’ and ‘R’
for a gear joint and a revolute joint [Tidwell, 1995]. The conventional cam synthesis

methods for oscillating or reciprocating followers can not be applied to this mechanism.

o~

Figure 2.1. A Wrapping Cam Mechanism

Nautilus Inc. uses the wrapping cams in their line of exercise machine products.
For quite some times, the graphical methods were the only way to generate the surface of
a wrapping cam. Recently, an analytical method for wrapping cam synthesis has been
developed [Tidwell et al., 1994] [Tidwell, 1995]. This method uses the loop-closure
method and vector-complex notation. Tidwell’s work covers two types of wrapping cam
mechanisms, GGRR and GRRR. A GGRR mechanism contains a cam wrapped by belt or

chains with a pulley or a sprocket at its end (Figure 2.1). In a GRRR mechanism, the belt

or chains is connected to a link with a revolute joint (Figure 2.2). The letter ‘G’ stands for
a gear joint, and ‘R’ stands for a revolute joint. The GGRR wrapping cam has gear-gear-

revolute-revolute joints, while the GRRR has gear-revolute-revolute-revolute joints.

T,

W

Figure 2.2. A Wrapping Cam with Link Mechanism

This analytical method has been implemented in software using the Matlab and
MathCad packages. Matlab and MathCad are general purpose mathematical packages. In
Matlab and MathCad programs, the user specifies the variables and functions then asks the
program to compute the dependent variables. Both Matlab and MathCad have graphical
function capability to plot the function’s output. This graphics capability is very useful for
mechanism synthesis. Matlab and MathCad are easy to use and readily available for
various platforms (e.g. PC, Macintosh, etc). These advantages contribute to the popularity
of these software packages among engineers and students.

Mathematical software packages are not very suitable, in many cases, for
interactive synthesis of wrapping cam mechanisms. MathCad is a slow and clumsy when it
has to calculate many points on the cam surface. The mathematical software packages

were designed solely to solve mathematical problems, therefore they do not provide

intuitive interaction with the user. The need to have interactive synthesis program for cam
design has been recognized for quite sometimes. One reason to have cam synthesis
software is to accelerate the design process [Dvorak, 1988]. Interactive synthesis software
will allow the users to perform what-if analysis, and puts their intuitive understanding of
mechanical design on a firmer foundation [Deitz, 1995]. Even though there are many
software packages available for cam kinematic and synthesis analysis, they are only
suitable for standard cam mechanisms. Those software packages are only for designing a
cam with roller follower, flat face follower, and knife edge follower [Payne, 1994]
[Cleghorn and Podhorodeski, 1988] [Dvorak, 1988]. The wrapping cam synthesis problem
has different design parameters such as chain’s or belt’s thickness, sprocket’s radius,
center distance between cam and sprocket, and torque as the function of cam’s angle of
rotation. Also, since the analytical wrapping cam synthesis method was only recently
developed, it has yet to be implemented in a synthesis package. Adding wrapping cam
synthesis to existing packages can be very difficult, eventhough the end-user might has
access to the program’s source code.

For the reasons described above, this thesis work has the objective of developing
an interactive wrapping cams synthesis software package. This package implements the
force synthesis case for wrapping cam mechanisms. The force synthesis means that the
mechanism supposes to reproduce the user specified external force function. An
interactive package requires fast user feedback on designs and some form of visualization,

e.g. a graphical user interface. To simplify the program design and to provide versatility

for the end-user, this package was designed as a network of modules. These modules are
the graphics module including graphical user interface (GUI), the kinematic analysis
module, and the wrapping cam synthesis module. One programming language that
supports the concept of modularity is C++ / object-oriented programming language which
was used to write and to compile the program. The user interacts with this program
through GUI. The kinematic analysis module is used to obtain the torque curve or strength
curve given the dimensions of the wrapping cam mechanism. The kinematic analysis is
helpful to practicing engineers who want to examine the motion characteristics of an
existing wrapping cam mechanism and to check a synthesized mechanism. The synthesis

module will generate a cam profile that satisfies user specification.

3. WRAPPING CAM SYNTHESIS

3.1. GGRR Wrapping Cam Synthesis

Tidwell’s method of wrapping cam synthesis uses loop-closure method expressed in
complex vector form [Tidwell et al., 1994] [Tidwell, 1995]. Using vector summation in
complex form, a vector-loop is traversed from a point on the cam surface through the
sprocket and back, as shown in Fig. 3.1. Using a conjugate geometry method, the cam
becomes a reference (fixed) object. The sprocket, the center distance, and the belt rotate

relative to the cam. A reference line on the cam is used for angle measurements.

© “Cam
Surface

~Pitch
Surface

Figure 3.1. Variables of Constant Tension GGRR Wrapping Cam

Figure 3.2 shows a GGRR wrapping cam with a weight hanging at end of the belt.
This weight produces a constant tension in the belt with magnitude W. This type of
configuration is also called a positive wrapping cam. For the constant tension (positive)
GGRR wrapping cam, given the center distance between the cam and sprocket (C), the

sprocket radius (r;), the belt or chain thickness (t), and the weight (W), the equation to

locate a point on the cam surface as function of the rotation of the sprocket relative to the

cam can be found as follows:

- . e o |
P — Cele + rlen(e ¢) + le.(e ¢-m/2) _2__e1(9 $)

P =Ce® +(r, - % —il)ei®® 3.1)

The length | and the angle ¢ must be determined before solving equation 3.1.
Torque acting on the cam is specified as a function of sprocket’s angle of rotation
around the cam, T(0), and the weight ‘W’ hanging at the other end creates a tension on

the chain or belt. Thus, the moment arm of the weight can be obtained by:

T
h(0) = L.O) (3.2)
To eliminate the dependency on the weight W, T(0) is defined such that
T.(0) = c,t(9), (3.3)

where c; is an arbitrary constant and t(9) is a nondimensional torque function. If W moves

a distance L from its initial position, then W does work of magnitude WL.

eI"l'l

WL = [™c,1(6)d0,

Omi
then solved it for c;.

o WL o)

j::_jt(e)de

WL

Then substitute T,(0) = -———
[e™+(8)d6

t(8) into equation 3.2 to obtain:

h(6) = % t(0) (3.5)
) t(0)do

0,
The angle ¢, between the line of center distance and the moment arm, in Figure 3.1 can be

found as:

o = cos“l[%} : (3.6)

and taking the derivative of ¢ with respect to 0 gives:

dé 1 dh
= _ = 37
do \EZ —(h-r1,)* 40 S

Length 1 is the distance along the belt between the point of contact with sprocket
to the point of contact on the cam pitch surface, as shown in Figure 3.1. According to

[Chakraborty and Dhande, 1977] the condition of contact at the cam surface must be

dp : :
— -1 = 0, where n is a unit normal vector at the point of contact. From Figure 3.1., the

do
unit normal vector is equal to
f = ei®® (3.8)

dp .
and the tangent vector ® is equal to

p . : / .
P _ iCe® —1i ﬂe‘(e’d” + iLr] o il)(l - @)e‘(w’) (3.9)
do do 2 de

Now taking the dot product between equations 3.8 and 3.9 produces

Csin(9)
1= 3.10
do

From Figure 3.1, sin(9) is:

C’-(h-1)’
sin(d) = V€' ~(h-1) G.11)
C
Then substitute equations 3.7 and 3.11 into equation 3.10 to obtain
ct-(h-r)

| = (h-r) - (.12)

JC’ —(h—r1 R e

do

where the derivative of h with respect to 0 is
dh L dt (3.13)

40 [™i(g)do O

The equations 3.1 through 3.13 are sufficient for the synthesis of constant tension GGRR
wrapping cams.

For wrapping cams with crossed-chains and constant tension, as shown in Figure
3.2 below, there are some slight modification to the above equations. The cam rotates in

the opposite direction of the sprocket rotation.

10

Figure 3.2. Variables of Crossed-Chain GGRR Wrapping Cam

h+
For a wrapping cam with a crossed-chains, ¢ is given by ¢ = cos '(%} . To find the

distance between the contact point on the sprocket and the contact point on the cam’s

surface, equation 3.12 for wrapping cam with crossed-chain becomes:

C’—(h+r)

C? —(h+r,)’ +:g

= (3.14)

Another configuration of wrapping cam is one that has a weight hanging from a
sprocket at a radius r,. This input sprocket is rigidly attached to the cam (Figure 3.3). The
mechanism will have a contant cam torque and will produce a nonlinear chain or belt force
which in turn will produce a nonlinear torque, Ts, in the output sprocket with radius r;.
This type of wrapping cam configuration is also called a negative wrapping cam. Let y be
the rotation of the output sprocket. The mechanism to be synthesized should produce the

specified torque as a function of sprocket rotation, Ts(\).

11

Figure 3.3. Negative GGRR Wrapping Cam

The equations for this constant cam torque (negative) GGRR synthesis case are slightly

different than the constant tension wrapping cam cases. There is an additional variable vy

as function of 0 in the synthesis equations. Using the chain rule on equations 3.7 and 3.10

should obtain equations 3.15 and 3.16 below:

46 dv _ 1 dh dy
dy 40 o' (g, dv O
o -1 dh

dv [—(h-r1,)’ dy
|__ Csin()
22
dy do

The rotation velocities of the sprocket and the cam should be equal thus,

90 dy

d 'dt’

12

(3.15)

(3.16)

and

d —h

wv_ (3.17)
de 1

And the cam’s moment arm, h is

h = K where & is a constant equal to ﬁjwm t(\p)d\u (3.18)

t(w) L ’ '

then taking derivative of h with respect to y to obtain

an_ ok a 519)
dy t*(v) dy

Substitute equations 3.17, 3.18, and 3.19 into equation 3.12 to yield the distance between

the contact point on the output sprocket and the contact point on the cam surface as
k 2
C’ - [— - rlj
t(v)

(k)L K duw)
c*-| - . awv)
\/ (t(w) r} v t*(y)r, dy

The cam angle of rotation (assuming 6, = 0 and y, = O at the same place) is

| = (3.20)

0=~ t(v)dy (3.21)

and the point on the cam surface can be found using equation 3.1.

3.2. GRRR Wrapping Cam Synthesis
Another type of wrapping cam, the GRRR mechanism is also discussed by [Tidwell,

1995]. There is a minor error in the equation for GRRR synthesis derived by Tidwell

13

[Tidwell, 1995]. Tidwell’s GRRR synthesis method does not put into consideration the
effect of the link on the design. This thesis presents the proper synthesis for GRRR
wrapping cam with one end of the belt attached to a link. The center of mass and the
weight of this link causes tension in the belt that wrappes around the cam. The user
specifies the torque on the cam as function of the cam rotation. This type of GRRR
wrapping cam can be used for counter balance mechanism. Figure 3.4 shows the variables

used in deriving the loop-closure method of GRRR synthesis.

|
N

q

Figure 3.4. Variables of GRRR Wrapping Cam

Some initial parameter values are needed to perform the synthesis of GRRR wrapping
cam. They are the distance between the pivot points of the cam and the link also called the
center distance (C), the length of the link attached to the belt (1), the link’s center of mass
and weight, the link’s initial position angle (W), and the thickness of the belt (t). In
analyzing this mechanism, a conjugate geometry method is used. The cam is fixed, while

the link, the belt, and the center distance rotate relative to it. A reference line on the cam is

14

used for angle measurements. By traversing a vector loop, the equation for points on the

cam surface in complex form is obtained as

i‘j — Ceie + 1ei(6+w) + qei(e+\p+c) + iei(9+w+0+n/2) (322)

Using equation 3.22, each point on the cam surface is calculated for a given cam rotation

0. First the other variables in equation 3.22 must be calculated.
. . dp :
The condition of contact on the cam surface is o n = 0. Therefore, the distance

(q) measured at the belt’s center between the points of contact on the cam surface and the

link is determined by calculating the dot product between

@ — Cei(6+n/2) + 1[1 + d_"l‘,}ei(9+w+ﬁ/2) + (d_q _ 1(1 + d_\'/ + d_o-]} ei(eﬂwc)
do do e 2 de do

+q(1 + ‘;—g + %}ei“’“”*"“"”

and

fi = gl@wromD)

which yields:

Ccos(y +0 — n)+l(1 +((11—2)jj cos(c —m) + ¢ +q(l +i—g+%%) cos(—m) =0

then solving for q,

—Ccos(y +0) +1(1 + dij) o)
do (3.23)

q:
43y, do
do do

15

Based on the conservation of energy, the work produced by the cam is equal to the work
done raising the weight of the link: _f:'““Tldw = I:’““ T.dO . T, is the torque acting on the

link, while T, is the torque produced at the cam. In this analysis, the link acts as the input

member while the cam acts as the output member.

* W cos(y - v)

Figure 3.5. Torque Produced by the Link

Assuming the weight “W’ produces the torque on the link T, and the user specifies the
torque on the cam T.(0), then the link’s angle of rotation y can be calculated as follows.
Start with a torque balance on the link of Figure 3.5.

T, =d-Wcos(y —7), (3.24)
where d is the distance from the link’s pivot point to the link’s center of mass, W is the

weight of the link, and y is the offset angle.
By performing the integration of _[:‘“_“Tldw = _{:“"’" T,dO, the link’s angle of rotation v for

a given 0 is equal to:

V= sin”[ﬁ j: T,dO + sin(y ;,, — y)j + v (3.25)

16

where Wi 18 the initial position of the link when the cam angle of rotation 0 is equal to

ZETO.

From the equation 3.25 the first and second derivatives of v with respect to 6 can

be obtained as

v _ L.O) (3.26)
d@ d-w-cos(v—vy)

d’y 1 1 dT, + sin(y —)(d_\lljz (3.27)
46> cos(y —7) |d-w do MR '

Another variable to be determined before solving equation 3.22 is the angle between the
belt and the link (o).

oc=n—-«o (3.28)
To obtain the angle a, the method of instantaneous centers is used. A line is extended
from the belt’s center-line until it intersects with an extension of the center distance
(Figure 3.6). The angle a is measured from the belt center line to the link. From similar

triangles, the length IC is obtained:

IC-C _h,

IC h,
c-_C (3.29)

(-%)

1——¢

h,

17

Figure 3.6. Instantaneous Centers Method

The torque acting on the cam T.is equalto T, = F- h_, where F is the amount of tension
in the belt and h, is the moment arm of the cam. Meanwhile, the torque acting on the link

isequalto T, = F - h,

f LT
hc h1 ’
fhus & = 3o (3.30)

1 1

Knowing the work done by the torque on cam is equal to the work done by the torque on

T
the link L‘fﬂ‘:‘T,dw = _[:"“" T.d6, then -Ti = % thus

1

h, dy
. _ dy 3.31
T (3.31)

and solving for h,,

hczhl-% orhczl-sina-i—\!ej

By substituting equation 3.31 into equation 3.29 the value of IC can be obtained as:

18

Taking the derivative of IC with respect to 6

d’y
dic ¢ do?
do.

From the geometry of Figure 3.6, the length A is equal to

A? = (IC)* +1> = 2-1-(IC) - cos(m —)

dA 1[_dIC dIC . (d\y) 2
—=—22—=-2-1"—cos(m—y)—-2-1-IC - sin(w — y) - | —
o 2 { a0 o TV SRV

And the angle o is equal to

2 2 2
o :cos’(A L (L) J (3.32)
2-1-A

dA dICj . 2(dA)
2-A-C2 2. 01C- S22 1 A) - (AP + 1P —ICH) 21 T
do -1 [do a0)¢ AT) dGJ
do sino (2-1-A) J

n
Also the angle o0 = v + 2 ¢, then substitute it into equation 3.28 to obtain:

T
0—¢—W*E
do _do _dy (3.33)
o do do’

19

] (3.34)

o Jc?—(h, ~1-sina)?’

where

h 2

dh, :l-sina-d \zll+l-coscx-g(—x—~d—w
do do do do

After finding q, y, and o values for given 0 and T.(0), the points on the cam surface can

be calculated by equation 3.22 for the range of link angles .

20

4. C++/OBJECT-ORIENTED PARADIGM

Object-Oriented Programming (OOP) is a new programming paradigm that evolved in
1980s [Prata 1995]. One programming language that supports OOP is C++, an extension
of the C programming language. This research used Borland C++ Ver. 4.0. Borland C++
Ver. 4.0 is compatible with Windows 3.x, Windows NT, and DOS systems.

Unlike traditional procedural programming languages which emphasize the
algorithms, OOP emphasizes the data. The data is designed in such a form that it will be as
close as possible to the essential features of a problem [Prata, 1995]. In the OOP, the data
and operations that perform on the data are enclosed in a construct called class.

A class is a derive data type. Derived data type is data made up of one or more
basic data types such as integers, floats, and characters. A class has attributes and
methods. Attributes are characteristics of the objects that belong to the class, e.g. a box
has width, length, height, and volume. Methods are functions through which the object
interacts with its user, e.g. the user can set the box size. Therefore, class supposes to
represent ‘real-world’ object. And an object can be described by its shape and
functionality. For example, a class for a storage box (Figure 4.1) has height, width, length,
volume, and type of item as its attributes. set size(length,width,height), set item(type),
get item(j), add item(j), and get volume() are methods to set and to access the
information about this class.

C++ has important characteristics that supports the object-oriented programming,

such as information hiding (encapsulation), polymorphism, and inheritance. The concept of

21

abstraction facilitates the development of classes. A class is thus also called abstract data

type.

class: Storage Box
height, width, length;
volume, type;
number of item;

Method to change
set_size(length,width,height); - the box size
set_item (type);- 7] . Method to change the
Method to obtain - >
- t
the jth item N ttem type

get_item(j);

Method toadd |~ add_item(j);
j items .
- Method to obtain

L »

get_volume();—— | the volume

Figure 4.1. Class: Storage Box
Johnsonbaugh and Kalin [Johnsonbaugh and Kalin, 1995] define a data type as abstract if
the high-level operations appropriate to the data type are isolated from the low-level
implementation details associated with the data type. Encapsulation protects the classes
from unauthorized access. One type of polymorphism allows multiple definition of
operators and functions depending upon the context of the message received by the object.
For example, the functions rect(w, I, pt) and rect(upleft, loright) of class rectangular,
both can be used to define a rectangular object, however each of them receive different
parameters. Another type of polymorphism is one where a function or method behaves
differently depending on the type of object which calls it. For example the function draw()
in Figure 4.2 will draw the shape according to what object it relates to, i.e. whether
rectangular or circular object. Inheritance eases the work for the user who wants to create

new code from old code. It is quite similar to a derived data type, only in this case the user

22

creates a derived class (Figure 4.2). class Shape is the base or parent class that describes a
general property of shape object. From this parent class, two specific classes are derived,
rectangular and circle. These two classes have different dimension variables however they
share the same property belonging to class Shape. All these characteristics enable C++ to
create a collection of objects. This collection, or rather a network, of objects is the
foundation of object-oriented programming. The program output is the result of

interaction between different objects in that program.

class: Shape

Iﬁ color;
(virtual)draw();

set_color();

[N

class: rectangular class: circle
’ width, lenght, upleft, radius, center;
loright; N

circle(r, ctr);
rect(w, 1, pt); T draw();

rect(upleft, loright);
draw(),

Figure 4.2. Example of Inheritance
Due to its characteristics, i.e. abstraction, encapsulation, polymorphism, and
inheritance, OOP supports the concept of modularity better than procedural programming
languages. Chin-Purcell and Riley [Chin-Purcell and Riley, 1989] point out some
advantages of OOP in supporting a flexible and interactive program for mechanism
synthesis. They developed a linkage synthesis program called Macintosh Lincages using

OOP for Macintosh system. OOP can facilitate the development of more intuitive

23

engineering programs, because the user interacts with the program through a set of objects
rather than a set of alphanumeric functions [Deitz, 1995]. The possibility of incorporating
parameters other than variable dimensions into the OOP data models is important in
mechanical engineering applications. For example a mechanical part can also have stock
number information, manufacturing information, material information, in addition to its
dimensional shape. Engineers can thus perform product modelling instead of only

geometric modelling.

24

5. OBJECTIVE

The research work presented here has objective to extend Tidwell’s analytical synthesis
methods for wrapping cam mechanisms and to implement it in an interactive wrapping
cam synthesis package. This program must be user friendly and easy to maintain. The
criteria of user friendliness is that a novice user can use this program without having to
know all the fundamentals behind it, but still maintaining the features needed by the
advance user. To provide the advance users with ease of maintainance, this package will
be designed as a network of modules. It is expected that the program can be used to
perform preliminary design of wrapping cam, which allows quick evaluation of a design

without excessive details.

25

6. PROGRAM OVERVIEW

The program is written and compile in Borland C++ version 4.0. Borland’s
ObjectWindows Library (OWL) 2.0 is used to develop the graphical user interface (GUI).
OWL classes help to simplify the design process of Windows applications.

The package consists of three main modules namely, the graphic module, the
kinematic analysis module, and the synthesis module. The user will interact with the
program through a graphical user interface (GUTI). The GUI in this program has several
windows, they are the main window, the edit-view window, the plot-view window, the
analysis pop-up window, and the synthesis pop-up window. The main window, with a
menu bar attached to it, will be displayed at all time. The edit-view window is a text
editing window on which the user could type in the data to be used as input for cam
synthesis or cam analysis or to view an output file. The plot-view window displays the
scatter plot (or point plot) of the input data. The analysis pop-up window is a modal
dialog window where the user types in the required parameter values to perform cam
analysis on the given cam design. The synthesis pop-up window is a modal dialog window
where the user types in the required parameter values to perform cam synthesis from the
given strength curve or function curve. The program structure of this package is shown
below. Some of the legends used in Figure 6.1 are:

e PGGRR represents the positive GGRR synthesis dialog box.
o NGGRR represents the negative GGRR synthesis dialog box.

o ANLSYS represents the GGRR analysis dialog box.

26

e NEWFILE represents the new input file dialog box.
e Solid line means that the user has direct interaction with the object.
e Dash line means that the user has no direct interaction with the object or the object is

hidden from the user.

Graphical User Interface

Figure 6.1. The Program Structure
As shown by the above diagram, the user is generally unaware of the processes in the
synthesis and the analysis modules. By hidding these modules from direct interaction with
the user, any modification in the modules can be done without affecting the rest of the
program code. For example, a spline curve fitting method can replace the polynomial
curve fitting method and this modification will only affect the synthesis and/or analysis

modules. The user will not see the changes in the synthesis and/or analysis modules,

27

because the user only sees the graphical user interface on the screen. This form of
information hiding can add flexibility to the program.

Any cam design process involves synthesis and analysis of the cam. In the cam
synthesis process, it starts with a known force function or position function data and ends
with a cam profile that satisfies those data. The analysis process starts with a given
wrapping cam configuration and ends with force functions or position functions as the
output. The flow chart below shows the design procedures of the wrapping cam program,

as shown in Figure 6.2,

Open or Create
a file

l

Synthesis Dialog
box

l

N

" N
NG
. Analysis ~
_‘_Dialog box//Modify

~ -
\////
lAcccpt

T I
(END
~—

Figure 6.2. Design Process of Wrapping Cam Program

28

The solid line indicates the steps for a wrapping cam synthesis process. The dash line
indicates the steps for a wrapping cam analysis process. Looking at the flow chart, the
wrapping cam synthesis procedure in this program will be as follows:
a) Either open the existing force function or position function data file or create a
new file.
b) Perform the synthesis by selecting the type of GGRR wrapping cam to be
designed.
c) Either open the synthesis output file or directly perform the analysis on the
results from the synthesis process.
d) Check the results, and if it is not acceptable then either modify the input file or
perform another synthesis with new parameter values.
Meanwhile, to perform the analysis process on the wrapping cam mechanism, the
procedures are as the following:
a) Either open the existing wrapping cam file or create a new file.
b) Perform the analysis on the cam.
c¢) Either open the output file or directly perform the synthesis on the result of the
analysis process.
d) Check the result, and if it is not acceptable then either modify the input file or
perform another analysis with new parameter values.
The user will begin with a default setting of some design parameters. For example,

a wrapping cam with constant chain tension will have the following inputs and parameters:

29

strength curve, sprocket radius, center distance, chain or belt thickness, and weight stroke
(i.e. how far the weight moves from original position). Except for the strength curve
diagram, these design parameters and their values will be displayed in the synthesis pop-up
window. The strength curve diagram will be displayed in the plot-view window. The
synthesis pop-up window is used to change any design parameters within the specified
range.

There are several configuration of wrapping cams, for example the positive
(constant tension) cam (Figure 6.3), the positive cam with crossed-chain/belt (Figure 6.4),
the positive spring mounted (Figure 6.5), the positive spring mounted with crossed-
chain/belt (Figure 6.6), the negative cam (constant cam torque) (Figure 6.7), the negative
with crossed-chain/belt (Figure 6.8), the positive linkage mounted (Figure 6.9), and the
positive linkage mounted with crossed-chain (Figure 6.10). In general, these wrapping
cams can be arranged into groups based on where the input force or torque is located, the
type of device (e.g. weight, spring, or linkage) connected to the cam, and either crossed or

straight connection.

Figure 6.3. Constant Chain Tension Figure 6.4. Positive Cam with
(Positive Cam) Crossed-Chain

30

Figure 6.5. Positive Cam with Figure 6.6. Positive Cam with
Spring Mounted Spring and Crossed-Chain

Figure 6.7. Constant Cam Torque Figure 6.8. Negative Cam with
(Negative Cam) Crossed-Chain
linkage
e
- vn%
linkage /%/T‘j
aned/‘ FiXEd;‘
Figure 6.9. Positive Cam with Figure 6.10. Positive Cam with
Linkage Linkage and Crossed-Chain

Each configuration will require a sligthly different synthesis approach. Nevertheless, the
design parameters or data are quite similar for all these configurations. The plot-view

window displays the plot of wrapping cam profile. The synthesis pop-up window or the

31

edit-view window shows the corresponding design parameters of the selected cam
configuration. To see what type of strength curve a cam configuration gives, the user
selects the analysis pop-up window option from the menu and types in all the required
parameter values.

To provide the software that encompasses all wrapping cam configurations at this
time is not practical. The wrapping cam configurations currently available in the program
are the positive and negative GGRR cams. These are the configurations most commonly
used in industry. This thesis also covers the object-oriented modelling of wrapping cam
data used in the program package. The intent is to aid the user in developing new
wrapping cam mechanisms. In order to provide a facility of adding other wrapping cam
configurations, this software package is also designed to be an open-ended program. By
providing reusable code, the programmer can use the existing code for most of the
features of a new synthesis case. Modularity in the source code also adds flexibility to the
program.

A typical GGRR wrapping cam design problem has this following inputs, i.e., the
belt or chains thickness, the degree of polynomial fit on the force function data, the
number of calculated points on the cam surface, the weight stroke, the center distance, the
pulley’s radius or the number of sprocket teeth and chain pitch, the name of input file that
contains force function data, and the name of output file that contains wrapping cam data.

Figure 6.11 shows the plot of a force function data used for this example.

32

GGRRPDAT.TXT:2
{CURVE}

91

fiy

61

0 theta 180

Figure 6.11. An Example of Force Function Data

This force function data is an experimental data used in Tidwell’s work [Tidwell, 1995]. A
proper comparison between the analysis and the actual data can thus be made. The ASCII

text format of this input file is shown in Figure 6.12 below.

{CURVE}
19

0 89
10 885
20 90
30 90
40 91
50 91
60 88
70 87
80 86
90 80
100 735
10 71
120 68
130 66
140 635

33

150 62

160 61
170 62
180 615

Figure 6.12. The Input Data in ASCII Text
To perform the synthesis, the user then calls one of the synthesis dialog boxes.
Some of the parameters have default values, and the user can either accept or modify
them. The user only needs to supply a name of the output file for this synthesis. Using the
example data in Figure 6.12 as the input data, the synthesis module generates the cam
surface. The result of the synthesis is stored as an ASCII text file, as shown in Figure 6.13.
The plot of the cam surface is shown in Figure 6.14.

{GGRRP|S}
26

0.862808 -5.59456
2.10413 -5.17735
3.03107 -4.72976
3.7262 -4.27647
4.24452 -3.83395
4.62604 -3.41245
4.90189 -3.01635
5.09705 -2.64392
5.23081 -2.28742
531627 -1.93408
5.35955 -1.56819
5.3596 -1.17415
5.30904 -0.739842
5.19624 -0.259748
5.00829 0.263191
4.73429 0.817215
4.36837 1.38304
3.91181 1.93646
3.37406 2.45157
2.77272 2.90415
2.13278 3.27456

34

1.48567 3.55009
0.868349 3.7269

0.323113 3.81183
-0.101949 3.82477
-0.351313 3.80225

5.6607 278.767
5.58859 292.117
5.61765 302.654
5.6721 311.066
5.71972 317.909
5.74848 323.585
5.7556 328.394
5.74197 332.584
5.70908 336.38

5.65715 340.008
5.58427 343.691
5.4867 347.643
5.36034 352.067
5.20273 357.138
5.0152 3.00819
4.8043 9.79368
4.58208 17.568

4.36487 26.3368
4.17067 36.002

4.01523 46.3264
3.90788 56.923

3.84842 67.2913
3.82673 76.8844
3.8255 85.1549
3.82012 91.5269
3.81845 95.2789

1

15

0.5
0.4685
17.75
16

6

Figure 6.13. A Wrapping Cam Data in ASCII Text

35

The output of a synthesis process, i.e., the wrapping cam data, can then be used as input
data for the analysis module. The analysis module generates the moment arm versus cam

angle of rotation.

T PWPCAM.TXT:2

Figure 6.14. Plot of Cam Surface

An output from the analysis module is stored in ASCII text file, as shown in Figure 6.15.
The plot of moment arms versus the cam rotations is shown in Figure 6.16.

{A_GGRRPS}
25

129976 5.89096
836818 5.80333
154303 5.80481
224886 5.85324
29.5455 591557
36.6024 5.96698
43.6607 5.99007
50721 5.97405
57.7839 5.91386
648493 580936
719172 5.66449
789871 5.4864

36

86.0586 5.28465
93.131 5.07035
100.204 4.8553
107.276 4.65121
114.348 4.46878
121.418 4.31692
128.486 4.20191
135.552 4.12653
142.616 4.08924
149.678 4.08333
156.738 4.09613
163.797 4.10809
170.857 4.09198
5

Figure 6.15. Moment Arms vs. Cam Rotations in ASCII Text
The profile of this curve conforms with the profile of the input data, however the force or
torque magnitude is not the same. To obtain the force or torque magnitude for a given

cam rotation, a tension in the belt or chains due to weight must be determined.

PCAMNLS.TKT:2

5.99 o {A_GGRRP|S}
h(g
4.08 : .
1.3 theta 17

Figure 6.16. Plot of Moment Arms vs. Cam Rotations

37

7. GRAPHICAL USER INTERFACE (GUI)

The graphical user interface (GUI) in this program was written using Borland
ObjectWindows Library (OWL) version 2.0. OWL are classes that encapsulate functions
of Windows Application Program Interface (API). Using OWL assures the program’s
GUI will conform with the object-oriented programming paradigm [Swan et al, 1994].

The program is built on a multiple document interface (MDI) model to provide
opening of multiple files. The user may like to open different files at one time to either
modify them or just to compare the contents.

To provide both graphical and editing view, this program is built on
document/view model. There are two types of views, text edit view and plot view, and
one type of document, Borland OWL’s TFileDocument, which is an ASCII text file
document. TFileDocument is an OWL document class. At this moment, the user must use
text edit-view mode to create new input data. The graphical view of the data cannot be
modified directly, modifications can only be done through edit-view window.

The window layout in this program follows the standard windows layout with title
bar, menu bar, control bars, and status bar. To see what each button represents, move the
mouse’s pointer onto the buttons, and a hint shows up in the status bar describing the
function of the button. The menu in the main window consists of File, Edit, Search,
Synthesis, Analysis, Window, and Help. Under File, Edit, and Search menus, submenus
contain choices for executing standard operations, e.g. File|Open, Edit|Cut, etc. To

perform a GGRR wrapping cam synthesis, the user must select one of the

38

Synthesis| GGRR menus. There are positive and negative wrapping cams, and their
synthesis menus are Synthesis| GGRR|Positive and Synthesis| GGRR|Negative, respectively.
The analysis of GGRR wrapping cam is under Analysis| GGRR menu. At the beginning of
the program, the main window is displayed with menu and tools or buttons attached to it.
The menu in the main window at the start of the program has only two choices which are
File]Open and File[New, the rest of the menu choices are grayed. Graying the rest of the
menu and buttons reduces the chance of choosing a wrong operation. If the user selects
either File|Open or File]New commands, the grayed menus become clear and selectable.

The layout of the main window is shown below

YWrapping Cam Sy;nthesis ver. 1.1
Analysis Window Help

Figure 7.1. Main Window Layout
This program implements several types of Borland OWL defined Windows. They
are the myMDIClient derived from TMDIClient class, the myMDIChild derived from

TMDIChild class, and the TGraphView derived from TWindowView class. The user

39

interacts with the program through a type of window called a dialog box. The following
subsection covers in some details the Windows interface of this program.

7.1. Windows Interface

The Windows interface function as a wrapper that enclosed the actual operations of the
program. The program’s Windows interface follows the rules of Borland OWL
applications. The whole graphical user interface is enclosed by a TApplication derived
class. In this program this derived class is called myWPCamApp class. The functions of
controlling multiple document interface (MDI) is given to myMDIClient class. When a
file is opened or created, a new window is also created. This new window is an instance of
myMDIChild class. What special about this window is how it interprets the view of the
file. Depending upon the view type chosen, the view on this window can be either an edit-
view window or a plot-view window. The diagram (Figure 7.2) below shows the

program’s encapsulation.

myWPCamApp

myMDIClient

Instances of
myMDIChild. Files can
be opened as either
edit-view or plot-view.

Figure 7.2. Encapsulation of Windows Interface

To view the data in a file as text, the edit-view window is used. Currently, the user

can only modify the file if it is opened as edit-view window. The plot-view window only

40

provides a graphical view of the data. The user can not edit the data in this view. Because
this program implements the document/view model, a single file can be open in multiple
views. To open the file in different views, the user selects Window|New Window and the
type of view. The figure below shows a file in both the edit view and the plot view

windows, as shown in Figure 7.3.

File Edit Search Synthesis Analysis Window Help

RETR o

i

o1_____,. _feumvgy {CURVE}
w x 'E 19
: 0 89
10 88.5
v H20 90
: 30 90
R . ; 40 al

Figure 7.3. Both Plot and Edit View Windows Opened

The user interacts with the synthesis and the analysis modules through dialog
boxes. Modal dialog box means that other operations are blocked while a dialog box is
still active. The reason to use modal dialog box is to ensure that all design parameters have
been given their appropriate values before performing any design calculation. The dialog
box for the GGRR wrapping cam synthesis has the following formats:

1. The user types in the parameter values inside the edit control boxes.

41

2. Some of the edit control boxes are initialized with default values. The user can
either accept or change them.

3. A group box is used to group the related parameters, e.g. the sprocket group
box has sprocket-teeth and sprocket-pitch edit controls as its members.

4. Because GGRR wrapping cam can have either a sprocket or a pulley as one of
its members, the synthesis dialog box has edit control boxes for both of them.
To tell the synthesis module which one (sprocket or pulley) is selected, the
user should click on the radio button next to its group box.

5. There are two push buttons on the bottom of dialog box. To accept all
parameter values click the OK button, and then the synthesis module will
execute the calculations. To discard all inputted values click the Cancel
button, and the dialog box will be closed and no calculations performed.

The GGRR synthesis dialog boxes are represented by GGRRPDialog class and
GGRRNDialog class. GGRRPDialog dialog box is the interface for positive GGRR
wrapping cam synthesis, while GGRRNDialog dialog box is the interface for negative
GGRR wrapping cam synthesis. The positive and negative GGRR wrapping cam synthesis

dialog boxes are shown below (Figure 7.4 and 7.5).

42

Positive GGRR Synthesis

Follower
O Crossed
@ UnCrossed
Thickness:
0.4685

Polynomial fit: ICI

Weight's stroke:
Points on cam E

sunface:

Center distance:

@ [Sprocket] O [Pullep ‘
Number of teeth: [| ’ Radius: ||
Chainpitch: [|

Input file: Dutput file:

Iggnpdat_h:l l J

Figure 7.4. Positive GGRR Dialog Box

The GGRR analysis dialog box also uses the edit control boxes where the user
types in the parameter values. The analysis dialog box has fewer parameters than the
synthesis box. The parameters are degree of the polynomial curve fit for cam’s points, the
number of data points to be calculated, the name of the input file, and the name of the
output file. The polynomial curve fit and number of data points are initialized to some
default values. To accept these and to initiate analysis calculations, the user must click the
OK push button. Clicking the Cancel push button will discard and close the analysis

dialog box. AnalysisGGRRDialog class represents the GGRR analysis dialog box. The

Negative GGRR Synthesis

Followes
O Crossed
@® UnCrossed
Thickness:

Polynomial it [5__ |
Weight's stroke: E
Pomts an cam E

surface:

Center distance: IE]
@ [Sprocket ——1 O Pulley
Input teeth: | | Input radis:
Output teeth: D 0 radias
Chain pitch: ||
Input file: Output file:
Iggnndal_uﬂ

1

Figure 7.5. Negative GGRR Dialog Box

analysis dialog box has the layout shown in Figure 7.6.

43

Curve fit of cam profile: [5_|

Number of data points: @

Input file: Dutput file:

:

Figure 7.6. GGRR Analysis Dialog Box

The synthesis and analysis dialog boxes require an input file to exist before they
can perform either synsthesis or analysis calculations. The program has a dialog box that
can help the user create a new input file. The user first selects File]New Input File
command from the menu. A dialog box will pop-up. The user has choices of what type of
input file is to be created (e.g. curve, positive GGRR with sprocket, negative GGRR with
sprocket, etc). To accept the selection, click the OK button and the program will create
the file with the appropriate layout. The user can then open this file and type in the

necessary values. Figure 7.7 shows the layout of dialog box for creating a new input file.

New Input File

Type of File

@ Curve file

O Positive GERR w/sprocket
O Hegative GGRR w/sprocket
O Positive GEGRAR w/pulley

O Megative GERR w/pulley

Data/Cam Points: E

Filename:

[]

Figure 7.7. New Input File Dialog Box

44

The dialog box does not perform calculations, it only provides an interface
between the user and the program. The synthesis and analysis modules are the ones that
actually perform the calculations. The synthesis and analysis modules get their parameter
values by calling the transfer-buffers of the dialog boxes. A transfer-buffer is a structure
type data that is used by a dialog box to stored data.

An important part of any program is the data. The input and output data of this
program are stored as files. In order for a program to properly read and write a file, a file
structure must be defined. The next subsection discusses how such a file structure used in
this program.

7.2. File Structure

As mentioned earlier, there is only one type of document used in this program, namely,
TFileDocument. To have a uniform file output, every file must have a file structure. There
are three different file structures used by this program, they are the input curve file, the
output file from synthesis calculation, and the output file from analysis calculation. For the
input curve file, the file structure is as follows:

{identification statement}

[number of data points]
Xo Yo
X7 Vi

The output file from synthesis calculation has the following file structure:

45

{identification statement}

[number of data points]

Xg Yo

X X; |, cartesian coordinate form of
points on cam surface

Xn Xn |

o G, DE—

r O L, polar coordinate form of
points on cam surface

Ty 6, +——

[follower index)

[# of output sprocket teeth] for {...|P} replaced with [output pulley radius)|
[pin separation] for {..|P} there is no pin separation

[follower thickness)

[center distance]

[weight stroke]

[degree of polynomial curve fit)

The output file from the analysis calculation has the following file structure:

{identification statement}
[rumber of data points)

Xo

X

Xn

Yo
Vi

Yn

[degree of polynomial curve fit]

The program also uses nine (9) distinguishable identification statements that appears on
the first line of the text file. These identification statements are enclosed within {..}, and
the words inside the braces give a description what kind of file this is. The input curve file
will have a {curve} statement in its first line of code. The words inside the braces can be in
lower or upper case. This identification is used by the plotting function to properly

produce the graphical output on the screen. Since the GGRR wrapping cam can have

46

either a sprocket or a pulley as one of its links, this identification scheme also helps the
analysis module to perform the appropriate analysis calculations. The statements
{GGRRP|[P} and {GGRRP|S} define the file as being the output file of the synthesis
module for GGRR wrapping cam in the positive cam configuration. If the synthesis output
is a negative GGRR wrapping cam, then the file has either {GGRRN|P} or {GGRRN]|S}
as the first statement in the file. The last letters ‘P’ and ‘S’ indicate whether this wrapping
cam uses a pulley or a sprocket. The output from the analysis calculations will have
identification statements such as {A_GGRRP|P} and {A GGRRN|P} at first line of its
output file.

In addition to being an identification of the type of output file, these identification
statements are also important when a module tries to read in the data from the file. For
example the data in the curve file, a file with {curve} in its header, is used by the synthesis
module as its input. The analysis module will only read a file with {GGRRP|P} or
{GGRRN|P} or {GGRRP|S} or {GGRRN]|S} in its header. One of these files must exist
in order for these modules to perform their operations properly. The next chapters, i.e.

chapters 9 and 10, cover the synthesis and analysis modules in more details.

47

8. OBJECT-ORIENTED APPROACH TO WRAPPING CAM MODELLING

One important issue in software package development is ease of program maintainance.
Program maintainance includes adding and/or modifying functions and data in the
program’s source code. To provide ease of maintainance, this package has been developed
as a network of modules. The object-oriented approach or paradigm supports the concept
of modularity [Zdonik and Maier, 1990].

The first step in software development using the object-oriented approach is to
identify the essential objects in the program. Because an object is an instance of a class,
class definitions are needed. In this wrapping cam software package, the essential objects
are obviously the wrapping cam mechanisms.

The next step is to develop those classes that represent wrapping cam synthesis
and analysis. There are many possible configuration of wrapping cams, but the data used
in each configuration is quite similar. It is impossible and impractical to include all
wrapping cam configurations in the software at this time. Fortunately, the characteristics
of object-oriented programming (OOP) provide a method for creating a new class without
the difficulty of writing a whole new program. Data abstraction is used to create a class of
object. A new class can be created that shares common features with other classes through
inheritance.

In order to take full advantage of the inheritance characteristic of OOP, the class
definition must be in such a form that its abstraction is as general as possible. The user can

use this already defined class as basis or “parent’ class to create new class. To aid in the

48

software development, a hierarchical diagram is used as a tool for creating classes of
wrapping cams (Figure 8.1).

class: WCamSyn

WCamSyn’s data member

Polynomial Curve Fit Calcs.
(Virtual) Cam Position Cales. !
(Virtual) Cam’s Points Calcs.

(Virtual) Cam’s Pitch Calcs.

'Redefine the virtual functions :
+or methods declared in parent !
: class. : ’

I |
class: GGRRP class: GGRRN

1 GGRRP’s data member GGRRN’s data member

..

\® Functions to set values of each
member of the mechanism : » member of the mechanism

Figure 8.1. Hierarchical Diagram of GGRR Classes

A wrapping cam is a subset of general cam mechanisms. The definition of cam is
the starting point for wrapping cam modeling. The fundamentals of cam design, which are
synthesis and analysis [Mabie and Reinholtz, 1987], are the starting point for data
abstraction. To have a proper wrapping cam abstract data type, all factors involved in cam

design must be considered. Those factors are as follows:
1. Wrapping cams can have many possible configurations. Nevertheless, some wrapping
cams have quite similar data. Data sharing between different configuration brings

about the implementation of inheritance. Different wrapping cams can actually be

49

created from a single class; i.e, in OOP this class is called the base class or parent
class.

Any cam synthesis requires as input the type of output motion or force the cam should
produce [Liang and Quinn, 1991]; hence, the wrapping cam synthesis class needs to
have a function or method for reading input curves. Since every wrapping cam
synthesis requires this , the base class should contain such a method.

The final output of wrapping cam synthesis is the cam’s profile. The synthesis base
class should have a method to represent this output, because this output data is used
by all wrapping cams.

Even though several wrapping cam configurations use similar methods,
implementation of them for a particular cam is likely to be different. The OOP concept
of polymorphism and virtual functions provide a way to redefine the actual
implementation of a method.

A new wrapping cam class is derived from the base class by either adding or redefining
data and/or methods. The crossing of the follower (belt or chain) in GGRR wrapping
cam, however, does not produce another derived wrapping cam class, because it does
not requires new data and the method implementation does not change significantly.

. Portability of the program’s input and output must also be considered. This program’s
input and output are ASCII text files only. This ensure that other programs can also

use these files.

50

7. The members of a wrapping cam mechanism have dimensional values such as the
sprocket’s radius, the follower thickness, etc. The wrapping cam class definition must
includes these parameter as its data members.

The first class to be defined is WCamSyn class which acts as the base class for
other wrapping cam synthesis classes. WCamSyn class has a function to perform a curve
fitting method on the force synthesis or function generation data points, which is required
prior to any calculation of wrapping cam synthesis. The other member functions are
declared to be virtual functions.

There are two synthesis classes in this program, one represents positive GGRR
wrapping cam and the other represents negative GGRR wrapping cam. The reason for
having two different synthesis classes for GGRR wrapping cam is because each
mechanism requires different data members (attributes) and implementation of methods.
However, both positive and negative GGRR classes use similar equations to determine
points on the cam surface. Both classes also implement the least-square method in their
polynomial curve fitting. Because of these similarities, the positive and negative GGRR
wrapping cam objects share the same base or parent classes. And from these base classes
the specific GGRR wrapping cam classes are derived. The calculations for cam position,
cam’s points, and cam pitch are declared as virtual functions in the WCamSyn class, so
that a different wrapping cam class can use this base class. For example a GRRR wrapping
cam synthesis may use the polynomial curve fitting but have different synthesis method,

therefore it will require different calculations to find the cam positions and the cam’s

51

points. Meanwhile to facilitate a mean of communication between the user and these
classes, this program uses the graphical user interface (GUI). The GUI of this package is

discussed in previous chapter 7.

52

9. SYNTHESIS MODULE

The synthesis module is represented by the GGRRP class and the GGRRN class. These
two classes are derived from the GGRR class. The GGRRP class is the synthesis module
for the positive GGRR wrapping cam mechanism. The GGRRN class is the synthesis
module for the negative GGRR wrapping cam mechanism. The GGRR class has the
WCamSyn class as its base class. The synthesis module consists of several methods and
data members. These methods and data members directly affect the behavior of the
synthesis module itself. Since every cam design or synthesis requires the force functions or
position functions to be specified before hand, a class with a method to process these input
data can act as the base class from which the other synthesis classes will be built. This base
class must also have methods to represent the synthesis results. The cam profile is
represented by both real-imaginary (Cartesian) coordinate and polar coordinate forms. The
Cartesian coordinate form is used by the plotting functions, since the program does not
plot in polar form. The polar coordinate form is used in analysis calculations to obtain the
output curve.

For simplicity of the calculations, the data points from input motion curve are
interpolated using polynomial equation with a maximum degree of ten (10). Degree of
polynomial is set at maximum of ten to avoid excessive oscillation in the data
interpolation. The interpolation calculation is done using the least square method. The
function void poly coef (int n, int d, double* x, double* y) is a member of the

WCamSyn class that performs least square curve fitting prior to the synthesis calculation.

53

The WCamSyn class also has several pure virtual functions. A virtual function does
nothing for the base class, and it has to be redefined by the derived class. The functions
void cam motion(int n), point2d* point vector(), and point2d* pitch point() are pure
virtual functions. Different wrapping cam configuration uses different methods to calculate
points on the cam surface. By declaring these methods as virtual functions, the derived
class only needs to modify the virtual functions and still uses the other non-virtual
functions. To convert from Cartesian coordinates to polar coordinates, this class also has
point2d* polar coor (int n, point2d* cartesian), which reads in the Cartesian points and
returns points in the polar form. The WCamSyn base class is declared as follows

class WCamSyn{
public:
WCamSyn(){polar = NULL;}
~WCamSyn(){delete []polar;}
//Member function to calculate the polynomial function
//coefficients by least square method. Input: number of
//data points(n), degree of polynomial(d), abscisca (x), and
//ordinate (y). This function also calculates the xmin
//and xmax, the lower and upper boundary of input data.
void poly coeffint n, int d, double *x, double *y);
//Member function to convert Cartesian to polar coordinates.
point2d* polar coor(int n, point2d* cartesian);
//a pure virtual function to find the cam range of motion.
//Input: number of the cam position(n).
virtual void cam motion (int n) = 0;
//a pure virtual function to calculate cam surface.
virtual point2d* point vector() = 0;
//a pure virtual function to calculate cam pitch.
virtual point2d* pitch point() = 0;
protected:
ArrayDb coef;
point2d* polar;
double xmin, xmax,
int degree, numData;

54

s
In the GGRR class, virtual functions or methods of WCamSyn are redefined. The
function void cam motion (int n) determines the cam positions for the GGRR wrapping
cam based on the number of cam points to be calculated. The function point2d*
point vector () calculates and returns the points on the cam surface in Cartesian
coordinates. And the point2d* pitch point () calculates and returns the points on the cam
pitch surface in Cartesian coordinate. The GGRR class is declared as follows
class GGRR : public WCamSyn{
public:
GGRR(); //default constructor
~GGRR();, //default destructor
//Redefined pure virtual functions
void cam motion(int n);
point2d* point vector(), //surface in Cartesian coordinates
point2d* pitch point(); //pitch surface in Cartesian coordinates
protected:
double t, C, rl;
double *phi, *theta, *q;
point2d* camPts;
point2d* camPch;

int numPts;

2

The functions or methods in the GGRR class are used by both positive and
negative GGRR wrapping cam synthesis; that is why the GGRRP class and the GGRRN
class are derived from it. The main difference between positive and negative GGRR
wrapping cams is the location of the applied weight. In positive GGRR wrapping cam, the

weight is attached to the end of the follower (chains or belt) that wraps around the output

55

sprocket. In negative GGRR wrapping cam, the weight is attached to a sprocket or a
pulley, which is also rigidly attached to the cam. Because of this, GGRRN class requires a
different approach to find cam positions, moment arms of the cam, and other parameters
required in the calculations.

The configuration of positive GGRR wrapping cam requires the following
members: an output sprocket or pulley, a chain or belt, and a cam. The function void
sprocket radius(int N, double p) is the GGRRP member function that reads in the
number of teeth and pitch of the output sprocket and calculates the radius of output
sprocket. If a pulley is used instead of a sprocket, void pulley radius(double rad) is used
to read in the pulley’s radius. The function veid torque moment arm(double stroke) is
member function that calculates the cam’s moment arms and reads in the weight stroke.
The follower index, the center distance, and the follower thickness are read by the function
void follower length thick(int index, double center, double thick). This member function
also calculates other intermediate parameters used in the synthesis equations. The
GGRREP class is declared as follows

class GGRRP : public GGRR{

public:
GGRRP();
~GGRRP();

//Member functions
void sprocket radius(int N, double p); //sprocket radius
void pulley radius(double rad);
void torque moment_arm(double stroke);

void follower length thick(int index, double center, double thick);

protected:
Sprocket gearl;

56

double L;

double *h;

int sign,
};

The negative GGRR wrapping cam mechanisms have different attributes and
implementation of methods. Therefore, its synthesis requires slightly different calculations
to find the cam moment arm and other intermediate parameters. This mechanism also has a
sprocket or pulley attached to the cam onto which a weight is hanging. The function void
sprocket radius (int N1, int N2, double p) accepts the number of teeth on the output and
input sprockets and the sprocket pitch, and also calculates their radius. If the mechanism
uses pulleys instead of sprockets, then the funcion veid pulley radius(double radl,
double rad2) should be used. The GGRRN class declaration is as follows

class GGRRN : public GGRR{
public:
GGRRN(); //default constructor
~GGRRN(); //default destructor

//Member functions
/et radius of sprocket. Input: number of teeth for output
//sprocket(N1), number of teeth for input sprocket(N2), and
//chain’s pin separation(p).
void sprocket radius(int N1, int N2, double p);
//Get radius of pulleys. Input: radius of output pulley(radl)
//and radius of input pulley(rad2).
void pulley radius(double radl, double rad2);
//Function to calculate torque's moment arm. Input: the weight's stroke.
void torque_moment arm(double stroke);
//Function to calculate follower length. Input: cam's branching (index =1
// or index = -1), center distance (center), and follower thickness(thick).
void follower length thick(int index, double center, double thick);

//Redefine the virtual function of wcamsyn base class.
void cam motion(int n);

57

protected:

Sprocket gearl;

Sprocket gear2;

double L, r2, k;

double *h, *S;

int sign;

'y
The objects of these classes builds the actual synthesis module. In this program,

the user does not interact directly with these classes, but instead the user interacts through
their dialog boxes and transfer-buffers. The dialog boxes for the synthesis module is
discussed in chapter 7.1. The output from the synthesis module is a text file that describes
the cam surface in both Cartesian (rectangular) and polar coordinates, and gives other

related results such as follower index, number of sprocket teeth, etc. This output file of the

synthesis can be

Wrapping Cam Synthesis ver. 1.1 - [-é'"S‘TOUTI. I - |
Edi rch i

Figure 9.1. Graphical Plot of Cam Profile

viewed as either text edit-view or graphical plot-view. The graphical plot-view can give a

better view on the shape of the cam. And from the cam profile plot, a judgement can be

58

made whether this cam conforms with the user specified force synthesis or function
generation data. In the plot example above (Figure 9.1), the cam is plotted with the cross-
mark indicates the cam’s center, the word start indicates the starting point of contact with
the follower, and the word end indicates the ending point of contact with the follower.
The input file for the above example of wrapping cam synthesis is a force function based

on

Wrappmg Cam Synthesis ver 1.1 - [CCHRPDA‘T IXI] %

File Edit Search Synthesis Analysis Window Help :

Figure 9.2. Plot of Force Function

the experimental data from Tidwell’s work (Figure 9.2). The force is plotted with respect
to the cam rotation angle theta. Before it is used as input data, this data points are

interpolated by a polynomial function,

59

10. ANALYSIS MODULE
The kinematic analysis of the GGRR wrapping cam is the same for both positive GGRR
and negative GGRR wrapping cams. The analysis module is represented by the
GGRRAnls class. The analysis module calculates the moment arms versus the cam
rotation angles. Even though the analysis equations for positive and negative GGRR cams
are similar, the actual relationship between the moment arms and the cam rotation angles
is not. The moment arms (h) and the cam rotation angle (0) in the positive GGRR cam has
a directional relationship. In the negative GGRR cam, the moment arms and the cam
rotation angle has an inverse relationship. Therefore in order to have the correct data for
plotting the analysis output of a negative GGRR cam, the moment arms (h) is inverted
from ‘h’ to “1/h’.

Data points on the cam surface in GGRR analysis are fitted by a polynomial curve.
A least-square method is employed to fit a curve onto the data. At first, the instance or
object of GGRRAnls reads the data required for analysis. This data is polar coordinates
of cam surface, the number of points on the cam surface, the follower index (uncrossed or
crossed), the radius of output sprocket or pulley, the follower thickness, and the center
distance. The function void wrapping cam data (point2d* pol, int num, int index, double
r, double t, double c) is the member function of the GGRRAnlIs class that reads these
parameters. The function point2d* kinematic analysis(int num, int d) is the member

function that calculates and returns data points of the output force or position function

60

curve. And the function int number of data () returns the number of data calculated. The
GGRRAnIs class is declared as follows

class GGRRAnls : public WCamAnls {
public:
//Redefine the virtual functions
//The input: d = degree of polynomial curve fit for cam surface.
4 num = number of data points to be calculated.
//return output force synthesis or position function curve
point2d* kinematic analysis(int num, int d);

GGRRAnls(); //default constructor

~(GGRRAnls(); //default destructor
//Member function to read in wrapping cam data
//The inputs are: pol = polar coordinate

/ num = number of cam surface data points

V4 index = the branching sign (1 = uncrossed, -1 = crossed)
/4 r = radius of output sprocket

4 t = follower's thickness

/7 ¢ = center distance

/-

void wrapping cam_data(point2d* pol,int num,int index,double r,
double t,double c); //read in all needed data for analysis

//Member function to return number of data calculated
int number of data(){return m,}

protected:

//Variables: curve = strength curve data points

4 x = follower's position on cam surface

4 y = radius of polar coordinate of cam suface
// sign = branching index (I=uncrossed, -1=crossed)
Va org num = number of actual cam's data points
4 m = number of data points to be calculated

W tau = follower's angle position

V4 theta = cam's angle of rotation

/7 h = moment arm

/ radius = output sprocket's radius

4 thickness = follower's thickness

/-

point2d* curve;
ArrayDb x;

61

ArrayDb y;

int sign, org num, m,

double* h, *theta, *tau;

double radius, center, thickness, range;

I

The user does not interact directly with this module, but instead through a dialog
box with edit control boxes. The object or instance of the GGRRAnls class calls the
transfer buffer of its dialog box to retrieve the parameter values. When the object
successfully performs the analysis, it writes the output into a text file. The output file of
the analysis calculations describes the strength curve or position function curve in
Cartesian coordinates and the degree of polynomial curve used to approximate the cam
surface. The result of the analysis can also be viewed as the plot-view, Figure 10.1 shows
an example of a curve plot between the cam’s moment arm versus the cam angle of
rotation.

YWrapping CarnVSynthrrsis ver'. 1.1 - [PAOUTI .TX?:Z]
Window Help

{A_GGRRPJS}

Figure 10.1. Plot of Moment Arms vs. Cam Rotations

62

11. CONCLUSION AND CONTRIBUTION

The program has been successfully tested against earlier MathCad and MatLab results.
The current implementation has several advantages. The program developed in this work
can be useful for either novice or advanced users. Using a graphical user interface (i.e.
dialog boxes and other visual interfaces), the novice user can easily navigate through the
program. This program is a single, stand-alone program which treats eight (8) cases (i.e.
positive-uncrossed-sprocket GGRR, positive-uncrossed-pulley GGRR, positive-crossed-
sprocket GGRR, positive-crossed-pulley GGRR, negative-uncrossed-sprocket GGRR,
negative-uncrossed-pulley GGRR, negative-crossed-sprocket GGRR, and negative-
crossed-pulley GGRR). The MathCad wrapping cam program, for example, is not a
single, stand-alone program. In order to perform different wrapping cam cases the user
needs to call different MathCad files. Compared to the MathCad models, this program
also performs the calculation much faster. The newly developed program provides a
convenient interface and gives the ability to evaluate many more alternative in the
preliminary design of wrapping cams.

The GRRR wrapping cam is not implemented in this program, in part because the
practical application of this type of mechanism has yet to be found. However, it is
important to study this mechanism for future reference. This paper also presents the
correct analytical approach for the synthesis of GRRR wrapping cam, where the weight of

a link produces the tension in the belt.

63

This program also shows the versatility of the object-oriented programming
paradigm. The encapsulation of data and methods inside an object makes the interaction
between the user and the program more secure. The user does not have direct access to
the synthesis and analysis modules other than through the program’s graphical user
interface. This gives an intuitive interface to the program which can ease the of use of this
package by a novice user. Because this program is modular, any future expansion to it is
possible. By implementing the object-oriented programming paradigm (OOP), this
program becomes very modular which improves the flexibility to expand its scope. The
advance user can add other types of wrapping cams modules to this program, as long as
the code is compatible with Borland C++ version 4.0. The modularity concept also
improves the effectiveness in the debugging process. It is hoped that the implementation of
OOQP in this research work will help encourage engineers and students to learn the object-
oriented programming paradigm, because OOP appears to be the future of programming
language [Simms, 1996].

All these features make this program suitable as industry-ready software. At this
moment, this program runs on 16-bit IBM compatible PC with MS-Windows version 3 .x.
It can, however, be compiled and run on different computer platforms such as a 32-bit

computer with Microsoft Windows 95 and Windows NT.

64

12.

1.

10.

11.

12.

REFERENCES

Dvorak, P., 1988, “Software Speeds Cam Design,” Machine Design, Vol. 60 (October
6), pp. 137-138.

Tidwell, P.H., Naveed Bandukwala, Sanjay G. Dhande, Charles F. Reinholtz, and
Greg Webb, 1994, “Synthesis of Wrapping Cams,” Journal of Mechanical Design, Vol.
116 No. 2, pp. 634-638.

Tidwell, Paul H., 1995, “Wrapping Cam Mechanisms,” Ph.D. Dissertation, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia, January.

Swan, T., Robert Arnson, and Marco Cantti, 1994, ObjectWindows 2.0 Programming,
Random House, Inc.

Deitz, D., 1995, “Kinematic Analysis Programs Reduce Overdesign,” Mechanical
Engineering, Vol. 117 No. 6, June, pp. 80-81.

Payne, Stephen R., 1994, “A CAD-Interactive Software Package for the Synthesis of
Planar Disk Cams”, Master of Science Thesis, Virginia Polytechnic Institute and State
University, Blacksburg, Virginia, February.

Cleghorn, W.L. and R.P. Podhorodeski, 1988, “Disk Cam Design Using a
Microcomputer,” International Journal of Mechanical Engineering Education, Vol. 16
No. 4, pp. 235-250.

Chakraborty, J. and S.G. Dhande, 1977, Kinematics and Geometry of Planar and
Spatial Cam Mechanisms, J. Wiley & Sons, New York.

Prata, S., 1995, C++ Primer Plus, Second Edition, Waite Group Press.

Johnsonbaugh, R. and Martin Kalin, 1995, Object-Oriented Programming in C++,
Prentice-Hall, Inc.

Chin-Purcell, K. and D. Riley, 1989, “An Interactive, Object Oriented Approach to
Mechanism Synthesis,” Computers in Engineering, Proceedings of the 1989 ASME
International Computers in Engineering Conference and Exposition, July 30 - August
3, Vol. 1 pp. 225-232.

Deitz, D., 1995, “Programming From a Clean Slate,” Mechanical Engineering, Vol.
117 No. 4, April, pp. 84-86.

65

13. Zdonik, Stanley B. and David Maier, 1990, Readings in Object-Oriented Database
Systems, Morgan Kaufmann Publishers, Inc., pp. 84-91.

14. Mabie, HH. and Charles F. Reinholtz, 1987, Mechanisms and Dynamics of
Machinery, Fourth Edition, John Wiley & Sons, Inc.

15. Liang, Z. and C. Jack Quinn, 1991, “Accurate Design of a Cam Profile on the CAD
System,” Journal of Manufacturing Systems, Vol. 10 No. 6, pp. 501-508.

16. Simms, A., 1996, “Visualizing the future,” Engineer’s Forum -- Virginia Tech’s
student Engineering Magazine, Vol. 15 No. 2, pp.8-9.

66

APPENDIX
Appendix A: Installing & Running The Program
This appendix discusses all necessary files needed to run the Wrapping Cam Synthesis
version 1.1 package. Some Borland C++ DLL files are not included in this documentation,
however they are very important to run this software package. These Borland C++ DLL
files are BIDS40.DLL, OWL200.DLL, and BC40RTL.DLL. The executable code to
run this program is wrpcam1l1l.exe. This version of the software package is a Windows
application program, therefore it must be runned under the Microsoft Window 3 .x.
To install this program under the Microsoft Windows, the user should follow these
procedures:
1. Open File Manager from Windows, the select the drive the contains the program
diskette.
2. Copy wrpcamll.exe, BIDS40.DLL, OWL200.DLL, BC40RTL DLL, and other
existing data files into the HDD.
3. After copying all necessary files, close File Manager. Select File]New command from
the menu. If you want to make a new group for this program then select the group
item. If you want to add a new program item into the existing group then select the

program item.

67

Appendix B: Program Source Codes

The program source codes are grouped according to what roles they play in supporting

this program. The first group is the source codes for the graphical user interface. The

second group is the codes for the wrapping cam classes. And the third group is functions

used to support the synthesis and analysis modules.

B.1. The Graphical User Interface (GUI) Classes

Class Name:

AnalysisGGRRDialog

GGRRNDialog

GGRRPDialog

myMDIChild
myMDIClient

TGraphView

myWPCamApp

NewlnputFileDialog

TCam

T2Curve

Header File:
anlggrrd h

gerrndlg h

gerrpdlg h

mymdichl.h
mymdicln.h
tgraphvw.h
wpcamapp.h

nwnptfdg.h

tcam.h

t2curve.h

Resource File:

anlggrrd.cpp

ggrrndlg.cpp

ggrrpdlg.cpp

mymdichl.cpp

mymdicln.cpp

tgraphvw.cpp

wpcamapp.cpp

nwnptfdg.cpp

tcam.cpp

t2curve.cpp

68

About The Class:
Dialog box for GGRR
analysis

Dialog box for
negative GGRR
synthesis

Dialog box for
positive GGRR
synthesis

MDI child windows
MDI client window
Plot view window

Windows application

Dialog box for new
input file

Cam object

Curve object

#if !defined(__ anlggrrd h) // Sentry, use file only if it's not already included.
#define _ anlggrrd h

/* Project wpcamgui
Virginia Tech.
Copyright © 1993. All Rights Reserved.

SUBSYSTEM: wpcamgui.exe Application
FILE: anlggrrd.h
AUTHOR: Kurnia Dias Iskandar

OVERVIEW

Class definition for AnalysisGGRRDialog (TDialog).
*/

#include <owl\owlpch.h>
#pragma hdrstop

#include <owl\dialog.h>
#include <owl\edit.h>
#include <owl\validate h>

#include "myguiapp.rh" // Definition of all resources.

// Declare a transfer buffer structure for this dialog box.
struct TransAnalysisGGRR {
TransAnalysisGGRR();

char InputFile[13];
char QutputFile[13];
char CurveFit[7];
char DataPoints[7];

3

//{{TDialog = AnalysisGGRRDialog} }

class AnalysisGGRRDialog : public TDialog {

public:
AnalysisGGRRDialog (TWindow* parent, TransAnalysisGGRR& transfer),
virtual ~AnalysisGGRRDialog (),

//{{ AnalysisGGRRDialogVIRTUAL BEGIN}}
69

public:

virtual void SetupWindow ();
/1{{AnalysisGGRRDialogVIRTUAL END}}
}; //{{AnalysisGGRRDialog} }

#endif // __anlggrrd h sentry.

70

/* Project wpcamgui

Virginia Tech.
Copyright © 1993. All Rights Reserved.

SUBSYSTEM: wpcamgui.exe Application
FILE: anlggrrd.cpp
AUTHOR: Kurnia Dias Iskandar

OVERVIEW

Source file for implementation of AnalysisGGRRDialog (TDialog).
*/

#include <owl\owlpch.h>
#pragma hdrstop

#include "anlggrrd h"

// Constructor for transfer buffer structure.
TransAnalysisGGRR:: TransAnalysisGGRR(){

}

InputFile[0] = "\0",
OutputFile[0] ="0",
strcpy(CurveFit, "5");
strepy(DataPoints, "25"),

/1{{ AnalysisGGRRDialog Implementation} }
AnalysisGGRRDialog:: AnalysisGGRRDialog (TWindow* parent, TransAnalysisGGRR&
transfer):

{

TDialog(parent, IDD ANALYSISGGRR)

new TEdit(this, IDC_INPUTFILE, sizeof{transfer InputFile));

new TEdit(this, IDC_OUTPUTFILE, sizeof(transfer. OutputFile)),

new TEdit(this, IDC_CURVEFIT, sizeof{transfer. CurveFit))
->SetValidator(new TRangeValidator(1, 10));

new TEdit(this, IDC_DATAPOINTS, sizeof{transfer. DataPoints))
->SetValidator(new TFilterValidator("0-9"));

SetTransferBuffer(&transfer); // Sending transfer buffer to its dialog box.
// INSERT>> Your constructor code here.

71

AnalysisGGRRDialog::~AnalysisGGRRDialog ()
{
Destroy(),

// INSERT>> Your destructor code here.

void AnalysisGGRRDialog::SetupWindow ()
{
TDialog:: SetupWindow(),

// INSERT>> Your code here.

72

#if !defined(_ ggrrndlg h) // Sentry, use file only if it's not already included.
#define ggrrndlg h

/* Project wpcamgui
Virginia Tech.
Copyright © 1993. All Rights Reserved.

SUBSYSTEM: wpcamgui.exe Application
FILE: ggrrndlg h
AUTHOR: Kurnia Dias Iskandar

OVERVIEW

Class definition for GGRRNDialog (TDialog).
*/

#include <owl\owlpch.h>
#pragma hdrstop

#include <owl\dialog.h>
#include <owl\radiobut.h>
#include <owl\edit.h>
#include <owl\validate.h>

#include "myguiapp.rh" // Definition of all resources.

/"
// Definition of transfer buffer structure for GGRRNDialog box.
// Tts member function and member data.
/
struct TransGGRRN {
TransGGRRN();

char InputFile[13];
char OutputFile[13];
char CamPosition[6];
char CurveFit[6];
char CenterDistance[14];
char Stroke[14];
char InSprocketTeeth[6];
char OutSprocketTeeth[6];
char PinSeparation[14];

73

char InPulleyRadius[14];
char OutPulleyRadius[14],
char FollowerThick][14],
UINT Crossed;

UINT UnCrossed;

UINT Sprocket;

UINT Pulley;

/1{{TDialog = GGRRNDialog} }

class GGRRNDialog : public TDialog {

public:
GGRRNDialog (TWindow* parent, TransGGRRN& transfer),
virtual ~GGRRNDialog (),

//{{GGRRNDialogVIRTUAL BEGIN}}
public:

virtual void SetupWindow (),
/I{{GGRRNDialogVIRTUAL END}}
}. //{{GGRRNDialog}}

#endif /' __ggrrndlg h sentry.

74

/* Project wpcamgui
Virginia Tech.
Copyright © 1993. All Rights Reserved.

SUBSYSTEM: wpcamgui.exe Application
FILE: ggrrndlg.cpp
AUTHOR: Kurnia Dias Iskandar

OVERVIEW
Source file for implementation of GGRRNDialog (TDialog).
*/

#include <owl\owlpch.h>
#pragma hdrstop

#include "ggrrndlg h"

// Constructor for TransGGRRN transfer buffer.

TransGGRRN:: TransGGRRN(){
InputFile[0] = \0",
OutputFile[0] ="\0";
strcpy(CamPosition, "25");,
strepy(CurveFit, "5");
strepy(CenterDistance, "12");
strcpy(Stroke, "15"),
InSprocketTeeth[0] = "0,
OutSprocketTeeth[0] = \0';
PinSeparation[0] = \0';
InPulleyRadius[0] ="\0',
OutPulleyRadius[0] = "\0';
strcpy(FollowerThick, "0.468"),
Crossed = BF UNCHECKED;
UnCrossed = BF CHECKED;
Sprocket = BF CHECKED;
Pulley = BF UNCHECKED;

}

//{{ GGRRNDi1alog Implementation} }

GGRRNDialog::GGRRNDialog (TWindow* parent, TransGGRRN& transfer):
75

TDialog(parent, IDD GGRRNDIALOG)

new TEdit(this, IDC_INPUTFILE, sizeof{transfer . InputFile)),

new TEdit(this, IDC_OUTPUTFILE, sizeof{transfer. OutputFile));

new TEdit(this, IDC_CAMPOSITION, sizeof(transfer. CamPosition))
->SetValidator(new TFilterValidator("0-9"));

new TEdit(this, IDC_CURVEFIT, sizeof{transfer. CurveFit))
->SetValidator(new TRangeValidator(1, 10));

new TEdit(this, IDC_CENTERDISTANCE, sizeof(transfer. CenterDistance))
->SetValidator(new TFilterValidator(".0-9"));,

new TEdit(this, IDC_STROKE, sizeof{transfer. Stroke))
->SetValidator(new TFilterValidator(".0-9"));

new TEdit(this, IDC_INSPROCKETTEETH, sizeof(transfer InSprocketTeeth))
->SetValidator(new TFilterValidator("0-9"));

new TEdit(this, IDC_OUTSPROCKETTEETH,

sizeof(transfer. OutSprocketTeeth))

->SetValidator(new TFilterValidator("0-9"));

new TEdit(this, IDC_PINSEPARATION, sizeof{transfer. PinSeparation))
->SetValidator(new TFilterValidator(".0-9"));

new TEdit(this, IDC_INPULLEYRADIUS, sizeof{transfer.InPulleyRadius))
->SetValidator(new TFilterValidator(".0-9")),

new TEdit(this, IDC_OUTPULLEYRADIUS, sizeof{transfer.OutPulleyRadius))
->SetValidator(new TFilterValidator(".0-9"));

new TEdit(this, IDC_FOLLOWERTHICK, sizeof{transfer. FollowerThick))
->SetValidator(new TFilterValidator(".0-9")),

new TRadioButton(this, IDC_CROSSED);,

new TRadioButton(this, IDC_UNCROSSED),

new TRadioButton(this, IDC_SPROCKET);,

new TRadioButton(this, IDC_ PULLEY);

// INSERT>> Your constructor code here.

SetTransferBuffer(&transfer), //Sending transfer buffer to dialog.

GGRRNDialog: :~GGRRNDialog ()

{

Destroy();

// INSERT>> Your destructor code here.

76

void GGRRNDialog::SetupWindow ()

{
TDialog::SetupWindow(),

// INSERT>> Your code here.

77

#if 'defined(__ggrrpdlg h) // Sentry, use file only if it's not already included.

#define ggrrpdlig h

/* Project wpcamgui
Virginia Tech.
Copyright © 1993. All Rights Reserved.

SUBSYSTEM: wpcamgui.exe Application
FILE: gerrpdig.h
AUTHOR: Kurnia Dias Iskandar

OVERVIEW

Class definition for GGRRPDialog (TDialog).
*/

#include <owl\owlpch.h>
#pragma hdrstop

#include <owl\dialog.h>
#include <owl\radiobut.h>
#include <owl\edit.h>
#include <owl\validate. h>

#include "myguiapp.rh" // Definition of all resources.

"
// transfer buffer structure for GGRRPDialog has the following
// members and constructor
/
struct TransGGRRP {
TransGGRRP(), //constructor

char InputFile[13];

char OutputFile[13];
char CamPosition[6];
char CurveFit[6];

char CenterDistance[14];
char Stroke[14];

char SprocketTeeth[6];
char PinSeparation[14];
char PulleyRadius[14],

78

char FollowerThick[14];
UINT Crossed;

UINT UnCrossed;
UINT Sprocket;

UINT Pulley;

b

//{{TDialog = GGRRPDialog} }

class GGRRPDialog : public TDialog {

public:
GGRRPDialog (TWindow* parent, TransGGRRP& transfer),
virtual ~GGRRPDialog (),

//{{GGRRPDialogVIRTUAL BEGIN}}
public:

virtual void SetupWindow ();
/1{{GGRRPDialogVIRTUAL END}}
}, /7{{GGRRPDialog}}

#endif /l gegrrpdlg h sentry.

79

/* Project wpcamgui
Virginia Tech.
Copyright © 1993. All Rights Reserved.

SUBSYSTEM: wpcamgui.exe Application
FILE: ggrrpdlg.cpp
AUTHOR: Kurnia Dias Iskandar

OVERVIEW

Source file for implementation of GGRRPDialog (TDialog).
*/

#include <owl\owlpch.h>
#pragma hdrstop

#include "ggrrpdig.h"

// Constructor for transfer buffer.

TransGGRRP:: TransGGRRP() {
InputFile[0] = \0";
OutputFile[0] ="0",
strcpy(CamPosition, "25");
strepy(CurveFit, "6"),
strcpy(CenterDistance, "17.75");
strcpy(Stroke, "16"),
SprocketTeeth[0] ="\0';
PinSeparation[0] ="\0';
PulleyRadius[0] = "\0";
strepy(FollowerThick, "0.4685");
Crossed = BF_UNCHECKED,
UnCrossed = BF CHECKED;
Sprocket = BF_ CHECKED;
Pulley = BF_ UNCHECKED;

/1{{ GGRRPDialog Implementation} }
GGRRPDialog :GGRRPDialog (TWindow* parent, TransGGRRP& transfer):
TDialog(parent, IDD GGRRPDIALOG)

{
new TEdit(this, IDC_INPUTFILE, sizeof{transfer. InputFile)),

80

new TEdit(this, IDC OUTPUTFILE, sizeof{transfer. OutputFile));

new TEdit(this, IDC_CAMPOSITION, sizeof(transfer. CamPosition))
->SetValidator(new TFilterValidator("0-9"));

new TEdit(this, IDC_CURVEFIT, sizeof{transfer. CurveFit))
->SetValidator(new TRangeValidator(1, 10));

new TEdit(this, IDC_CENTERDISTANCE, sizeof{transfer. CenterDistance))
->SetValidator(new TFilterValidator(".0-9")),

new TEdit(this, IDC_STROKE, sizeof{transfer.Stroke))
->SetValidator(new TFilterValidator(".0-9")),

new TEdit(this, IDC_SPROCKETTEETH, sizeof(transfer. SprocketTeeth))
->SetValidator(new TFilterValidator("0-9")),

new TEdit(this, IDC_PINSEPARATION, sizeof(transfer. PinSeparation))
->SetValidator(new TFilterValidator(".0-9"));

new TEdit(this, IDC_PULLEYRADIUS, sizeof{transfer. PulleyRadius))
->SetValidator(new TFilterValidator(".0-9")),

new TEdit(this, IDC_FOLLOWERTHICK, sizeof(transfer FollowerThick))
->SetValidator(new TFilterValidator(".0-9")),

new TRadioButton(this, IDC_CROSSED);

new TRadioButton(this, IDC_UNCROSSED),

new TRadioButton(this, IDC SPROCKET),

new TRadioButton(this, IDC PULLEY);

// INSERT>> Your constructor code here.

SetTransferBuffer(&transfer);, // Sending transfer buffer to controls.
}
GGRRPDialog: . ~GGRRPDialog ()
{
Destroy(),
/I INSERT>> Your destructor code here.
}
void GGRRPDialog:: SetupWindow ()
{
TDialog:: SetupWindow(),
// INSERT>> Your code here.
}

81

#if !defined(mymdichl h) // Sentry, use file only if it's not already included.
#define _mymdichl h

/* Project mywpcam]
VPI & SU
Copyright © 1993. All Rights Reserved.

SUBSYSTEM: mywpcaml.exe Application
FILE: mymdichl h
AUTHOR: Kurnia D. Iskandar

OVERVIEW

Class definition for myMDIChild (TMDIChild).
*/

#include <owl\owlpch.h>
#pragma hdrstop

#include <owl\editfile.h>
#include <owl\listbox.h>

#include "wpcamapp.rh” // Definition of all resources.

#include <iomanip.h> // Header file for i/o manipulation.

#include <ggrrp.h> // Definition for GGRR Positive
synthesis.

#include <ggrrn.h> // Definition for GGRR Negative
synthesis.

#include <ggrranis.h> // Definition for GGRR Kinematic analysis.
#include <point2d. h> // Definition for 2D cartesian
coordinate.

#include <ggrrpdlg h> // Definition for GGRRPositive dialog.

#include <ggrrndlg h> // Definition for GGRRNegative dialog.
#include <anlggrrd h> // Definition for AnalysisGGRR dialog.

//{{TMDIChild = myMDIChild} }
class myMDIChild : public TMDIChild §
private:

82

GGRRP synl;
GGRRN syn2;

GGRRAnls analysis1;
point2d* a;

point2d* b;

point2d* datal,

point2d* data2;

point2d* data3,

int num, n, d, N1, N2, index;

double* xval, *yval, *S, dist, p, |, t, 11, 12;
Sprocket gear,
char type[11];

protected:
TransGGRRP transggrrp;
TransGGRRN transggrrn;
TransAnalysisGGRR transanlysggrr;,

public:

myMDIChild (TMDIClient &parent, const char far *title=0, TWindow *clientWnd=0,
BOOL shrinkToClient = FALSE, TModule* module = 0);

virtual ~myMDIChild ();

//{{myMDIChildVIRTUAL BEGIN}}
public:
virtual void Paint (TDC& dc, BOOL erase, TRect& rect);
virtual void CleanupWindow();
//{{myMDIChildVIRTUAL END}}
//{{myMDIChildRSP_TBL BEGIN}}
protected:
void EvGetMinMaxInfo (MINMAXINFO far& minmaxinfo);
void CmAnalysisGGRR (),
void CmGGRRNegative (),
void CmGGRRPositive ()
//{{myMDIChildRSP_TBL END}}
DECLARE RESPONSE TABLE(myMDIChild),
}, //{{myMDIChild} }

#endif // _mymdichl h sentry.

83

/* Project mywpcaml
VPI & SU
Copyright © 1993, All Rights Reserved.

SUBSYSTEM: mywpcaml exe Application
FILE: mymdichl.cpp
AUTHOR: Kurnia D. Iskandar

OVERVIEW

Source file for implementation of myMDIChild (TMDIChild).
*/

#include <owl\owlpch.h>
#pragma hdrstop

#include "wpcamapp.h"
#include "mymdichl.h"

#Hinclude <stdio.h>

//{{myMDIChild Implementation} }

/

// Build a response table for all messages/commands handled

// by myMDIChild derived from TMDIChild.

//

DEFINE RESPONSE TABLE1(myMDIChild, TMDIChild)

/1{{myMDIChildRSP_TBL BEGIN}}
EV_WM_GETMINMAXINFO,
EV_COMMAND(CM_ANALYSISGGRR, CmAnalysisGGRR),
EV_COMMAND(CM_GGRRNEGATIVE, CmGGRRNegative),

EV_COMMAND(CM_GGRRPOSITIVE, CmGGRRPositive),
//{{myMDIChildRSP_TBL_END}}
END RESPONSE TABLE,;

I
// myMDIChild

J] e

84

// Construction/Destruction handling.
myMDIChild:: myMDIChild (TMDIClient &parent, const char far *title, TWindow
*clientWnd, BOOL shrinkToClient, TModule *module)
: TMDIChild (parent, title, clientWnd, shrinkToClient, module)
{

// INSERT>> Your constructor code here.
xval = NULL,;

yval = NULL;

S =NULL,;

a=NULL;

b=NULL;

datal = NULL;

data2 = NULL;

data3 = NULL,;

type[0] ="0';

myMDIChild::~myMDIChild ()

{
Destroy(),

// INSERT>> Your destructor code here.
delete[] datal;

delete]] data2;

delete[] data3;

delete[] S;

delete[] xval,

delete[] yval,

/!

// Paint routine for Window, Printer, and PrintPreview for an TEdit client.
/!

void myMDIChild: Paint (TDC& dc, BOOL, TRect& rect)

{
myWPCamApp *theApp = TYPESAFE DOWNCAST(GetApplication(),
myWPCamApp);
if (theApp) {
// Only paint if we're printing and we have something to paint, otherwise
do nothing.
if (theApp->Printing && theApp->Printer && !rect IsEmpty()) {

85

// Use pageSize to get the size of the window to render into.
For a Window it's the client area,

// for a printer it's the printer DC dimensions and for print
preview it's the layout window.

TSize pageSize(rect.right - rect.left, rect.bottom -
rect.top);

void myMDIChild:: EvGetMinMaxInfo (MINMAXINFO far& minmaxinfo)

{
myWPCamApp *theApp = TYPESAFE DOWNCAST(GetApplication(),
myWPCamApp),
if (theApp) {
if (the App->Printing) {
minmaxinfo.ptMaxSize = TPoint(32000, 32000);
minmaxinfo.ptMaxTrackSize = TPoint(32000, 32000);

return;
}
}
TMDIChild:: EvGetMinMaxInfo(minmaxinfo),
}
void myMDIChild::CmAnalysisGGRR ()
{

// INSERT>> Your code here.
if (AnalysisGGRRDialog(this, transanlysggrr) Execute() == IDOK){
// Create input and output file stream objects.
ifstream fin(transanlysggrr. InputFile, ios::injios::nocreate);
ofstream fout(transanlysggrr. OutputFile, ios::out|ios::applios::trunc),

if (!fin.good() || !fout.good()){
MessageBox("Cannot Open/Create File", "File Error"),
else{

// Read in the data from input file.

fin>>type, // type of cam file

fin>>n; // number of points of cam profile
datal = new point2d[n];

data2 = new point2d[n],

86

cam profile

profile

pitch

teeth

pitch

for (int i=0; i<n; i++)
fin>>datal[i].x>>datal[i].y, //read in cartesian form of

for (i=0, i<n, i++)
fin>>data2[i].x>>data2[i].y; //read in polar form of cam

fin>>index; // read in the follower index (crossed or uncrossed)

if (strempi(type," { GGRRP|S}") = 0)
{

fin>>N1>>p; // read in the sprocket teeth and sprocket

rl = gear Radius(p,N1),
yelse if (strempi(type," { GGRRN|S}") == 0)
{

fin>>N1>>N2>>p; // read in the output and input sprocket

// and sprocket

rl = gear.Radius(p,N1),
}else if (strempi(type," { GGRRP|P}") == 0)

{
fin>>rl; // read in the pulley radius
}else if (strcmpi(type," { GGRRN|P}") == 0)
{
fin>>r1>>r2; // read in the output and input pulley radius
}
fin>>t>>dist>>1;
fin.close();

// Convert type char to numeric type (int or double).
d = atoi(transanlysggrr. CurveFit);
num = atoi(transanlysggrr.DataPoints),

// Perform kinematic analysis by calling the GGRRAnls object.
analysis1.wrapping cam_data(data2,n,index,rl,t,dist);
data3 = analysis] kinematic_analysis(num, d);

// Create an output file stream object.
fout. setflios: :left, i0os::adjustfield),

if (strcempi(type,"{ GGRRP|S}") == 0)
(

87

fout<<"{A GGRRP|S}"<<"\n";
}else if (strcmpi(type,"{ GGRRP|P}") == 0)

{
fout<<"{A GGRRP|P}"<<"\n",
telse if (strcmpi(type," { GGRRN|S}") == 0)

{

fout<<" {A_GGRRN,S} "<<"\ﬂ";
}else if (strempi(type," { GGRRN|[P}") == 0)
{

}

fout<<"{A_GGRRN|P}"<<"\n";

// write out the number of data points calculated
fout<<analysis1.number of data()<<"\n";

// write out the analysis data points
for (i=0; i<num; i++)

fout<<setprecision(6)<<setw(15)<<data3[i] x<<setw(15)<<data3[i] y<<"\n",

fout<<d, // write out the polynomial curve fit used
fout.close(),

void myMDIChild:: CmGGRRNegative ()
{
// INSERT>> Your code here.
if (GGRRNDialog(this, transggrrn). Execute() == IDOK){
// Create input and output file stream objects.
ifstream fin(transggrrn InputFile, 10s::injios::nocreate),
ofstream fout(transggrrn. OQutputFile, ios::outlios::applios: trunc);

if (fin.good() || 'fout.good()){
MessageBox("Cannot Open/Create File", "File Error"),
}else{

// Read in from the input file.
fin>>type;

88

fin>>n;

xval = new double[n];
yval = new double[n];
for (int i=0; 1<n; i++){

fin>>xvalli];
fin>>yval[i],
}
fin.close();

if (transggrrn. Crossed == BF_ CHECKED & &

transggrrn. UnCrossed == BF UNCHECKED){

index = -1;
telse if (transggrrm. Crossed == BF_ UNCHECKED &&

transggrrn. UnCrossed == BF_ CHECKED){

variables.

index = 1;

}

// Convert type char to double or int and assigned to corresponding

d = atoi(transggrrn. CurveFit),

| = atof{transggrrn. Stroke),

num = atoi(transggrrn. CamPosition),
dist = atof{transggrrn. CenterDistance);,
t = atof{transggrrn. FollowerThick),

if (transggrrn. Sprocket == BF_ CHECKED && transggrrn Pulley

== BF_UNCHECKED){

N1 = atoi(transggrrn, OutSprocketTeeth);
N2 = atoi(transggrrn. InSprocket Teeth);
p = atof(transggrrn PinSeparation);,
syn2.sprocket radius(N1,N2,p);
rl = gear Radius(p, N1);
telse if (transggrrn. Sprocket == BF UNCHECKED &&

transggrrp Pulley == BF CHECKED){

displacement.

rl = atof(transggrrn. OutPulleyRadius);,
r2 = atof{transggrrn. InPulleyRadius);
syn2.pulley radius(rl, r2);,

}

S = new double[n];
for (int j=0; j<n; j++) S[j] = r1*xval[j], // Calculate chain

89

// Perform the actual synthesis by calling GGRRN object.
syn2.poly coef(n,d,S,yval);

syn2.cam_motion(num);

syn2.torque_moment arm(l),
syn2.follower length thick(index,dist,t);

a = syn2.point_vector(),

b = syn2.polar_coor(num,a);

// Define a file output stream:.
fout.setf(ios::left, i0s::adjustfield);
if (transggrrn, Sprocket == BF_ CHECKED)

{
fout<<"{GGRRN|S}"<<"\n";
yelse if (transggrrn. Pulley == BF CHECKED)

{
fout<<"{GGRRN|P}"<<"n";
}
fout<<(num-+1)<<"\n", // write out the number points of cam
profile
fout<<"\n";

// write out the cam profile in cartesian form
for (j=0; j<num+1; j++)

fout<<setprecision(6)<<setw(15)<<a[j]. x<<setw(15)<<a[j].y<<"\n";
fout<<"\n";
// write out the cam profile in polar form
for (j=0; j<num+1; j++)

fout<<setprecision(6)<<setw(15)<<b[j]. x<<setw(15)<<b[j}.y<<"\n";
fout<<"\n"<<index<<"\n"; // write out the follower index

//(crossed or uncrossed)

if (transggrrn. Sprocket == BF_ CHECKED)

{
// write out the output sprocket teeth and
// the input sprocket (attached to cam) teeth
fOut<<N1<<"\n"<<N2<<"\n"<<p<<"\n";

}else if (transggrrn. Pulley = BF CHECKED)

{
// write out the output pulley radius and
// and the input pulley (attached to cam) radius
fout<<r1<<"\n"<<r2<<"\n";

90

}
fout<<t<<"\n"<<dist<<"\n"<<, // write out the follower
thickness,

// center distance, and weight's stroke

fout<<"\n"<<d; // write out the polynomial curve fit used
fout.close();

void myMDIChild::CmGGRRPositive ()
{
// INSERT>> Your code here.
if (GGRRPDialog(this, transggrrp). Execute() == IDOK){
// Create input and output file stream objects.
ifstream fin(transggrrp. InputFile, i0s::inlios::nocreate);
ofstream fout(transggrrp. OutputFile, ios::out/ios::applios::trunc);,

if (ffin.good() || fout.good()){
MessageBox("Cannot Open/Create File", "File Error "),
}else{

//Read in the strength curve

fin>>type;

fin>>n;//Read in number of data points.
xval = new double[n];

yval = new double[n];

for (int i=0; i<n; i++){

fin>>xvalli],
fin>>yval[i],
}
fin.close();

if (transggrrp.Crossed == BF_CHECKED &&
transggrrp.UnCrossed == BF_ UNCHECKED){
index = -1,
telse if (transggrrp.Crossed == BF_UNCHECKED &&
transggrrp. UnCrossed == BF CHECKED){
index =1,

}

91

variables.

//Convert type char to double or int and assigned to corresponding

d = atoi(transggrrp.CurveFit),

| = atof{transggrrp. Stroke),

num = atoi(transggrrp. CamPosition),
dist = atof{transggrrp. CenterDistance);
t = atof{transggrrp.FollowerThick);

if (transggrrp.Sprocket == BF CHECKED && transggrrp.Pulley

— BF_UNCHECKED){

N1 = atoi(transggrrp.SprocketTeeth);
p = atof{transggrrp. PinSeparation);
synl.sprocket radius(N1,p);

yelse if (transggrrp. Sprocket == BF UNCHECKED &&

transggrrp. Pulley == BF_CHECKED){

profile

rl = atof{transggrrp. PulleyRadius);
synl .pulley radius(rl),
j

// Perform the actual synthesis by calling GGRRP object.
synl.poly coef(n,d,xval,yval);

synl.cam_motion(num);

synl.torque_moment_arm(l);

synl follower length thick(index,dist,t);

a = synl.point_vector(),

b = synl.polar _coor(num,a);

// Define a file output stream.
fout setf(ios::lefl, 10s::adjustfield);
if (transggrrp. Sprocket == BF CHECKED)

{
fout<<"{GGRRP|S}"<<"\n";
telse if (transggrrp.Pulley == BF_ CHECKED)

{
fout<<"{GGRRP[P}"<<"\n",
}
fout<<(num-+1)<<"\n"; // write out number of points of cam
fout<<"\n";

// write out the cam profile in cartesian form
for (int j=0; j<num-+1; j++)

fout<<setprecision(6)<<setw(15)<<a[j].x<<setw(15)<<a[j] y<<"\n",

92

fout<<"\n";
// write out the cam profile in polar form
for (j=0; j<num+1; j++)

fout<<setprecision(6)<<setw(15)<<b[j] x<<setw(15)<<b[j].y<<"\n";
fout<<"\n"<<index<<"\n"; // write out follower index

//(crossed or uncrossed)
if (transggrrp.Sprocket == BF CHECKED)
(
fout<<N1<<"\n"<<p<<"\n"; // write out sprocket teeth
and sprocket pitch
}else if (transggrrp Pulley = BF CHECKED)

{
}

fout<<t<<"\n"<<dist<<"\n"<<l; // write out follower thickness,

fout<<r1<<"\n"; // write out pulley's radius

// center distance and weight's stroke.
fout<<"\n"<<d, // write out the polynomial curve fit used
fout.close(),

}

void myMDIChild::CleanupWindow ()

{
TMDIChild::CleanupWindow();

// INSERT>> Your code here.
datal = NULL;

data2 = NULL,;

data3 = NULL,

S=NULL;

xval = NULL,;

yval = NULL,

93

#if !defined(_ mymdicln_h) // Sentry, use file only if it's not already included.
#define _mymdicin_h

/* Project mywpcam1
VPI & SU
Copyright © 1993. All Rights Reserved.

SUBSYSTEM: mywpcaml.exe Application
FILE: mymdicln h
AUTHOR: Kurnia D. Iskandar

OVERVIEW

Class definition for myMDIClient (TMDIClient).
*/

#include <owl\owlpch.h>
#pragma hdrstop

#include <owl\opensave.h>
#include <nwnptfdg.h>

#include "wpcamapp.rh" // Definition of all resources.
/1{{TMDIClient = myMDIClient} }

class myMDIClient : public TMDIClient {

protected:

TransBuffNewFile transbuffnewfile;

public:
int ChildCount; // Number of child window created.

myMDIClient ();
virtual ~myMDIClient (),

void OpenFile (const char *fileName = 0);

private:
void LoadTextFile (),

//{ {myMDIClientVIRTUAL BEGIN}}
94

protected:
virtual void SetupWindow (),
/H{{myMDIClientVIRTUAL END}}

//{{myMDIClientRSP_TBL BEGIN}}
protected:
void CmNewInputFile ();
void CmFilePrint ();
void CmFilePrintSetup ();
void CmFilePrintPreview (),
void CmPrintEnable (TCommandEnabler &tce);
H{{myMDIClientRSP_TBL END}}
DECLARE_RESPONSE TABLE(myMDIClient);,
}, //{{myMDIClient} }

#endif // __mymdicln_h sentry.

95

/* Project mywpcaml
VPIL & SU
Copyright © 1993. All Rights Reserved.

SUBSYSTEM: mywpcaml .exe Application
FILE: mymdicln.cpp
AUTHOR: Kurnia D. Iskandar

OVERVIEW

Source file for implementation of myMDIClient (TMDIClient).
*/

#include <owl\owlpch.h>
#pragma hdrstop

#include "wpcamapp.h"
#include "mymdicln.h"
#include "mymdichl h"
#include "apxprint.h"
#include "apxprev.h"

/1{{myMDIClient Implementation} }

//
// Build a response table for all messages/commands handled
// by myMDIClient derived from TMDIClient.
/
DEFINE_RESPONSE_TABLE1(myMDIClient, TMDIClient)
//{{myMDIClientRSP_TBL BEGIN}}
EV_COMMAND(CM NEWINPUTFILE, CmNewInputFile),
EV_COMMAND(CM_FILEPRINT, CmFilePrint),
EV_COMMAND(CM_FILEPRINTERSETUP, CmFilePrintSetup),
EV_COMMAND(CM_FILEPRINTPREVIEW, CmFilePrintPreview),
EV_COMMAND ENABLE(CM_FILEPRINT, CmPrintEnable),
EV_COMMAND ENABLE(CM_FILEPRINTERSETUP, CmPrintEnable),
EV_COMMAND ENABLE(CM_FILEPRINTPREVIEW, CmPrintEnable),
//{{myMDIClientRSP_TBL END}}
END RESPONSE TABLE,;

96

T i
// myMDIClient
I
// Construction/Destruction handling.
myMDIClient:: myMDIClient ()
- TMDIClient ()
{
// Change the window's background color
SetBkgndColor(RGB(0xfY, 0xff, 0xff)),

ChildCount = 0;

// INSERT>> Your constructor code here.

myMDIClient::~myMDIClient ()

{
Destroy(),

// INSERT>> Your destructor code here.

I LT
// myMDIClient
//
// MDIClient site initialization.
void myMDIClient:: SetupWindow ()
{
// Default SetUpWindow processing.
TMDIClient:: SetupWindow ();

i
// myMDIClient

97

// Menu File Print command
void myMDIClient:: CmPFilePrint ()
{

//

// Create Printer object if not already created.

1

myWPCamApp *theApp = TYPESAFE DOWNCAST(GetApplication(),
myWPCamApp);

if (theApp) {

if (1theApp->Printer)
theApp->Printer = new TPrinter,

!/

// Create Printout window and set characteristics.

1/

APXPrintOut printout(theApp->Printer, Title, GetActiveMDIChild(), TRUE);

theApp->Printing = TRUE;

//

// Bring up the Print dialog and print the document.

//

theApp->Printer->Print(Get ActiveMDIChild()->GetClientWindow(), printout,
TRUE),

theApp->Printing = FALSE,

}
}

I i
/l myMDIClient
// Menu File Print Setup command
void myMDIClient::CmFilePrintSetup ()
{

myWPCamApp *theApp = TYPESAFE DOWNCAST(GetApplication(),
myWPCamApp);

if (theApp) {

if ('theApp->Printer)
theApp->Printer = new TPrinter;

/"
98

// Bring up the Print Setup dialog.
//
theApp->Printer->Setup(this),
}
}

i
// myMDIClient

// Menu File Print Preview command
void myMDIClient::CmFilePrintPreview ()
{

myWPCamApp *theApp = TYPESAFE DOWNCAST(GetApplication(),
myWPCamApp),

if (theApp) {

if ('theApp->Printer)
theApp->Printer = new TPrinter;

theApp->Printing = TRUE,;

PreviewWindow *prevW = new PreviewWindow(Parent, theApp->Printer,
GetActiveMDIChild(), "Print Preview", new TLayoutWindow(0));
prevW->Create(),

GetApplication()->BeginModal(Get Application()->MainWindow),

// We must destroy the preview window explicitly. Otherwise, the window will not
be destroyed until

// it's parent the MainWindow is destroyed.

prevW->Destroy();

delete prevW,

theApp->Printing = FALSE,
}
}

i
// myMDIClient

Jf e

// Menu enabler used by Print, Print Setup and Print Preview.
void myMDIClient::CmPrintEnable (TCommandEnabler &tce)

99

if (GetActiveMDIChild()) {
myWPCamApp *theApp = TYPESAFE DOWNCAST(GetApplication(),
myWPCamApp),
if (theApp) {
// If we have a Printer already created just test if all is okay.
// Otherwise create a Printer object and make sure the printer
// really exists and then delete the Printer object.
if ('theApp->Printer) {
theApp->Printer = new TPrinter;

tce. Enable(the App->Printer->GetSetup(). Error == 0),

} else
tce. Enable(theApp->Printer->GetSetup(). Error ==

0);

}

} else

tce. Enable(FALSE),
}
//
// A new input file command
/
void myMDIClient::CmNewlInputFile ()
{

// INSERT >> Your code here.
int num,;

if (NewInputFileDialog(this, transbuffnewfile). Execute() == IDOK)

{ ofstream fout(transbuffnewfile Filename, i0s::outios::applios::trunc),
if ({fout.good())
{ MessageBox("Cannot Open/Create File", "File Error"),
c}alse
{

num = atoi(transbuffnewfile. NumPoints);
if (transbuffnewfile. CurveFile == BF_CHECKED)
{

fout<< "{curve}" << "\n",

fout<< num << "\n\n";

100

for (int i = 1; i <= num; i++)
fout<< "X[H<<i<<"] "<<"y["<<i<<"]\n";

}else if (transbuffnewfile PosGGRRSprocket == BF CHECKED)

{

fout<< "{GGRRP|S}\n";
fout<< num << "\n\n";
for (inti=1;i <= num; i++)
fout<< "x["<<i<<"] "<<"y["<<i<<"]\n";
fout <<"\n";
for (i=1; 1 <= num; i++)
fout<< "r["<<i<<"] = "<<"theta["<<i<<"]\n";
fout <<"\n";
fout << "[follower index (-1 or 1)]\n";
fout << "[sprocket teeth]\n";
fout << "[sprocket pitch]\n";
fout << "[follower thickness]\n";
fout << "[center distance]\n";
fout << "[weight stroke]\n";

yelse if (transbuffnewfile NegGGRR Sprocket == BF_ CHECKED)

{

fout<<"{GGRRN|S}\n";
fout<< num << "\n\n";
for (inti=1;1i<= num; it++)
fout<< "x["<<i<<"] "<<"y["<<i<<"]\n";
fout <<"\n";
for (1= 1;1 <= num; i++)
fout<< "["<<i<<"] "<<"theta["<<i<<"]\n",
fout << "\n";
fout << "[follower index (-1 or 1)J\n";
fout << "[output sprocket teeth]\n";
fout << "[input sprocket teeth]\n";
fout << "[sprocket pitch]\n";
fout << "[follower thickness]\n";
fout << "[center distance]\n",
fout << "[weight stroke]\n",

}else if (transbuffnewfile PosGGRRPulley == BF_ CHECKED)

{

fout<< "{GGRRP[P}\n";
fout<< num << "\n\n";
for (inti= 1, 1<= num, i++)

fout<< "x["<<i<<"] "<<"}’["<<i<‘<"]\n";
fOUt <<"\1’1"',
for (i=1;1<=num, i++)

101

fout<< "r["<<i<<"] "<<"theta["<<i<<"]\n";
fout << "\n";
fout << "[follower index (-1 or 1)]\n";
fout << "[pulley radius]\n";
fout << "[follower thickness]\n";
fout << "[center distance]\n";
fout << "[weight stroke]\n";

telse if (transbuffnewfile NegGGRRPulley == BF_ CHECKED)

{

fout<< "{GGRRN|P}\n";
fout<< num << "\n\n";
for (inti=1; 1 <= num; i++)
fout<< "x["<<i<<"] "<<"y["<<i<<"]\n";
fout <<"\n";
for (1=1; 1 <= num, i++)
fout<< "r["<<i<<"] "<<"theta["<<i<<"]\n",
fout << "\n";
fout << "[follower index (-1 or 1)}\n";
fout << "[output pulley radius]\n";
fout << "[input pulley radius]\n";
fout << "[follower thickness]\n";
fout << "[center distance]\n";
fout << "[weight stroke]\n";

102

#if !defined(__tgraphvw _h) // Sentry, use file only if it's not already included.

#define tgraphvw h

/* Project wrpcam11
VPI & SU
Copyright © 1993. All Rights Reserved.

SUBSYSTEM: wrpcaml].exe Application
FILE: tgraphvw h
AUTHOR: Kurnia D. Iskandar

OVERVIEW
Class definition for TGraphView (TWindowView).
*/

#include <owl\owlpch.h>
#pragma hdrstop

#include <owl\docview.h>
#include <owl\filedoc.h>

#include "wpcamapp.rh" // Definition of all resources.

/1{{TWindowView = TGraphView}}
class TGraphView : public TWindowView {
private:
char label[7];
TPoint* points;
int xMinPost, yMinPost, xMaxPost, yMaxPost;

protected:
char type[11],
char* File;
int num;
double *x, *y;
double xmin, ymin, xmax, ymax;

public:

TGraphView (TFileDocument& doc, TWindow™* parent = 0);
virtual ~TGraphView ();

103

/1{{TGraphViewVIRTUAL BEGIN}}

public:
virtual char far* GetClassName(),
virtual void GetWindowClass(WNDCLASS& wndClass);
virtual void Paint(TDC& dc, BOOL erase, TRect& rect);
virtual void SetupWindow ();
virtual void CleanupWindow ();

/1{{TGraphViewVIRTUAL END}}
//{{TGraphViewRSP_TBL BEGIN}}
protected:
//{{TGraphViewRSP TBL _END}}

DECLARE RESPONSE TABLE(TGraphView);
}, {{TGraphView}}

#endif // __tgraphvw h sentry.

104

/* Project wrpcaml1
VPI & SU
Copyright © 1993, All Rights Reserved.

SUBSYSTEM: wrpcaml1.exe Application
FILE: tgraphvw.cpp
AUTHOR: Kurnia D. Iskandar

OVERVIEW

Source file for implementation of TGraphView (TWindowView).
*/

#include <owl\owlpch.h>
#pragma hdrstop

#include "tgraphvw.h"
#include <fstream.h>
#include <sort.h>
#include <math.h>
#include <tcam h>
#include <t2curve.h>

//

// Build a response table for all messages/commands handled

// by the application.

I

DEFINE RESPONSE TABLEI1(TGraphView, TWindowView)
/1{{TGraphViewRSP_TBL BEGIN}}
/1{{TGraphViewRSP_TBL END}}

END RESPONSE TABLE;

//{{TGraphView Implementation} }

TGraphView:: TGraphView (TFileDocument& doc, TWindow* parent):
TWindowView(doc, parent)
{

// INSERT>> Your constructor code here.
File = new char[strlen(doc.GetTitle())+1],
strepy(File,doc.GetTitle());,

105

x = NULL,;

y =NULL;
num = 0,

xmin = 0.0,
ymin = 0.0;
xmax = 0.0,
ymin = 0.0;
points = NULL;

type[0] ="\0";

TGraphView::~TGraphView ()

{
// INSERT>> Your destructor code here.

delete []points;
delete []x,
delete [y;
delete []File,

Destroy(),

}

char far* TGraphView::GetClassName()

{
// define a specific WNDCLASS

return "TGraphView",
}

void TGraphView::GetWindowClass(WNDCLASS& wndClass)

{
TWindowView::GetWindowClass(wndClass);

wndClass.style = CS HREDRAW|CS VREDRAW;

}

void TGraphView: Paint(TDC& dc, BOOL erase, TRect& rect)
{

TWindowView::Paint(dc,erase,rect);

106

0)

0)

0)

// INSERT>> Your code here
if (stremp(File, "Untitled") != 0)

{

// draw the data as point or scatter plot
if (strempi(type,"{CURVE}") == 0)

{
T2Curve my_curve,
my_curve.set_curve xy (X, y, num),
my_curve.set label(type,"theta" "f(t)"),
my curve.draw_curve(dc, rect);,

else

if (strempi(type," { GGRRP|S}") == 0 || strempi(type,"{ GGRRP|P}") =0
|| strempi(type," { GGRRN|S}") == 0 || strcmpi(type," { GGRRN|P}")

TCam my cam,
TPoint labell, label2;

my cam.set cam_ xy(X, y, num);

my cam.draw_cam(dc, rect);

labell = my cam.get start pts();

label2 = my cam.get end pts();
dc.SetTextAlign(TA TOP|TA LEFT);,
dc.TextOut(labell.x+1,label1.y+1,"start"),
dc.SetTextAlign(TA TOP|TA LEFT),
dc. TextOut(label2 x+1,label2.y+1,"end"),

}else
if (strempi(type," { A GGRRP|S}") = 0 || strcmpi(type,"{A_GGRRP|P}")

{
T2Curve my curve,
my_curve.set_curve xy(x,y, num);
my_curve.set label(type,"theta","h(t)");
my curve.draw_curve(dc, rect),

else

if (strempi(type," {A GGRRN|S}") == 0 || strcmpi(type,"{A GGRRN|P}")

{

T2Curve my curve,

107

my curve.set_curve xy(x, y, num),
my_curve.set label(type,"theta","1/h(t)");
my curve.draw_curve(dc, rect),

}

if (FlashWindow(TRUE)) Invalidate(),

}
}

void TGraphView::SetupWindow ()

{
TWindowView:: SetupWindow(),

// INSERT>> Your code here.

if (strcmp(File, "Untitled") != 0)
{
ifstream fin(File, ios::injios::nocreate);
fin >> type;
fin >> num; // read in number of data points

x = new double[num];
y = new double[num];
points = new TPoint[num],

for (int 1 = 0; i < num; i++){
fin >> x[i] >> y[i];

)

fin.close();

if (strempi(type,"{A GGRRN|S}") == 0 || strcmpi(type,"{A GGRRN|P}")

{
for (1=0;1<num, i++)
ylil = 1.0/y[il;
}

xmin = DMin(x,num);
ymin = DMin(y,num),
xmax = DMax(x,num);
ymax = DMax(y,num);

108

}

void TGraphView::CleanupWindow ()

{

TWindowView::CleanupWindow();

// INSERT>> Your code here.
points = NULL,

x = NULL,;

y=NULL;

File = NULL,;

109

#if !defined(_ wpcamapp h)
#define wpcamapp h

/* Project mywpcaml
VPI & SU

// Sentry, use file only if it's not already included.

Copyright © 1993, All Rights Reserved.

SUBSYSTEM: mywpcaml.exe Application

FILE: wpcamapp.h
AUTHOR:

OVERVIEW

Kurnia D. Iskandar

Class definition for myWPCamApp (T Application).

*/

#include <owl\owlpch h>
#pragma hdrstop

#include <owl\statusba.h>
#include <owl\controlb.h>
#include <owl\buttonga.h>
#include <owl\editview.h>
#include <owl\listview . h>
#include <owl\docmanag.h>
#include <owl\filedoc.h>
#include <owl\printer.h>

#include "wpcamapp.rh"
#include <tgraphvw.h>

//{{TApplication = myWPCamApp} }

// Definition of all resources.

class myWPCamApp : public TApplication {

private:
int nChild,

private:

void SetupSpeedBar (TDecoratedMDIFrame *frame),

public:
myWPCamApp ();

110

virtual ~myWPCamApp (),

// Public data members used by the print menu commands and Paint routine in
MDIChild.

TPrinter *Printer, // Printer support.

BOOL Printing; // Printing in progress.

H{{myWPCamAppVIRTUAL BEGIN}}
public:

virtual void InitMainWindow();
N{{myWPCamAppVIRTUAL END}}

//{{myWPCamAppRSP TBL BEGIN}}
protected:
void EvNewView (TView& view),

void EvCloseView (TView& view);

void CmHelpAbout (),

void EvWinIniChange (char far* section);
/1{{myWPCamAppRSP TBL END}}

DECLARE _RESPONSE TABLE(myWPCamApp);

35 //{{myWPCamApp}}

#endif /' __wpcamapp h sentry.

111

/* Project mywpcaml
VPI & SU
Copyright © 1993. All Rights Reserved.

SUBSYSTEM: mywpcaml . exe Application
FILE: wpcamapp.cpp
AUTHOR: Kurnia D. Iskandar

OVERVIEW

Source file for implementation of myWPCamApp (TApplication).
*/

#include <owl\owlpch h>
#pragma hdrstop

#include <wpcamapp.h>

#include <mymdicln.h>

#include <mymdichl h>

#include <myabtdlg h> // Definition of about dialog.

/1{{myWPCamApp Implementation} }

/1{{DOC_VIEW}}

DEFINE DOC TEMPLATE CLASS(TFileDocument, TEditView, DocTypel),
DEFINE DOC TEMPLATE CLASS(TFileDocument, TGraphView, DocType2),
/H{{DOC_VIEW_END}}

1{{DOC_MANAGER}}

DocTypel _ dvt1("As Text Edit(* txt)", "*.txt", 0, "TXT",dtAutoDelete|dtUpdateDir);
DocType2 dvt2("As Plot View(* txt)", "* txt", 0, "TXT",dtAutoDelete|dtUpdateDir);
/1{{DOC_MANAGER END}}

//

// Build a response table for all messages/commands handled

// by the application.

/

DEFINE RESPONSE TABLE1(myWPCamApp, TApplication)

11{{myWPCamAppRSP_TBL. BEGIN}}
EV_OWLVIEW(dnCreate, EvNewView),

112

EV_OWLVIEW(dnClose, EvCloseView),
EV_COMMAND(CM_HELPABOUT, CmHelpAbout),
EV_WM WININICHANGE,
/1{{myWPCamAppRSP TBL END}}
END RESPONSE TABLE;

I T
// myWPCamApp

myWPCamApp:: myWPCamApp () : TApplication("Wrapping Cam Synthesis ver. 1.1")
{

Printer = 0,
Printing = FALSE,

DocManager = new TDocManager(dmMDI | dmMenu);,

// INSERT>> Your constructor code here.
nChild = 0;

myWPCamApp:.~myWPCamApp ()

{
if (Printer)
delete Printer;
// INSERT>> Your destructor code here.
}

void myWPCamApp::SetupSpeedBar (TDecoratedMDIFrame *frame)
{
//
// Create default toolbar New and associate toolbar buttons with commands.
i
TControlBar* cb = new TControlBar(frame);
cb->Insert(*new TButtonGadget(CM_MDIFILENEW, CM_NEWINPUTFILE));,
cb->Insert(*new TButtonGadget(CM_MDIFILEOPEN, CM_MDIFILEOPEN));,

113

cb->Insert(*new TButtonGadget(CM_FILESAVE, CM_FILESAVE));

cb->Insert(*new TSeparatorGadget(6));

cb->Insert(*new TButtonGadget(CM_EDITCUT, CM_EDITCUT)),

cb->Insert(*new TButtonGadget(CM_EDITCOPY, CM_EDITCOPY));

cb->Insert(*new TButtonGadget(CM_EDITPASTE, CM_EDITPASTE));

cb->Insert(*new TSeparatorGadget(6));

cb->Insert(*new TButtonGadget(CM_EDITUNDO, CM_EDITUNDO));

cb->Insert(*new TSeparatorGadget(6));

cb->Insert(*new TButtonGadget(CM_EDITFIND, CM_EDITFIND)),

cb->Insert(*new TButtonGadget(CM_EDITFINDNEXT,
CM_EDITFINDNEXT)),

cb->Insert(*new TSeparatorGadget(6));

cb->Insert(*new TButtonGadget(CM_GGRRPOSITIVE,
CM_GGRRPOSITIVE)),

cb->Insert(*new TButtonGadget(CM_GGRRNEGATIVE,
CM_GGRRNEGATIVE)),

cb->Insert(*new TSeparatorGadget(6)),

cb->Insert(*new TButtonGadget(CM_ANALYSISGGRR,
CM ANALYSISGGRR)),

//cb->Insert(*new TSeparatorGadget(6)),

//cb->Insert(*new TButtonGadget(CM_FILEPRINT, CM_FILEPRINT));

//cb->Insert(*new TButtonGadget(CM_FILEPRINTPREVIEW,
CM_FILEPRINTPREVIEW)),

// Add fly-over help hints.
cb->SetHintMode(TGadgetWindow:: EnterHints),

frame->Insert(*cb, TDecoratedFrame:: Top),

I T
// myWPCamApp

J] =====

// Application intialization.

//

void myWPCamApp::InitMainWindow ()

{
TDecoratedMDIFrame* frame = new TDecoratedMDIFrame(Name,
MDI _MENU, *(new myMDIClient), TRUE);

nCmdShow = (nCmdShow != SW_SHOWMINNOACTIVE) ?
SW_SHOWNORMAL : nCmdShow;

114

1

/I Assign ICON w/ this application.
//

frame->SetIcon(this, IDI WPCAM),

/

// Menu associated with window and accelerator table associated with table.
/!

frame->AssignMenu(MDI_MENU);

1/

// Associate with the accelerator table.
//

frame->Attr. AccelTable = MDI MENU;
SetupSpeedBar(frame);
TStatusBar *sb = new TStatusBar(frame, TGadget::Recessed,
TStatusBar::CapsLock |
TStatusBar::NumLock |
TStatusBar::ScrollLock |

TStatusBar:: Overtype),
frame->Insert(*sb, TDecoratedFrame::Bottom);

MainWindow = frame,

TN
// myWPCamApp

// Response Table handlers:
//

void myWPCamApp: EvNewView (TView& view)
{

115

TMDIClient *mdiClient = TYPESAFE DOWNCAST(MainWindow-
>GetClientWindow(), TMDIClient),
if (mdiClient) {
myMDIChild* child = new myMDIChild(*mdiClient, O,
view.GetWindow());

// Associate ICON w/ this child window.
child->SetIcon(this, IDI DOC);

child->Create();

}
}
void myWPCamApp: EvCloseView (TView&)
{
}

I T
// myWPCamApp

1/
// Menu Help About mywpcam1.exe command
void myWPCamApp::CmHelpAbout ()

{
1
// Show the modal dialog.
/
myAboutDlg(MainWindow). Execute(),
}

void myWPCamApp:: EvWinIniChange (char far* section)
{
if (Istrcmp(section, "windows") == 0) {
// If the device changed in the WIN.INI file then the printer
// might have changed. If we have a TPrinter (Printer) then
// check and make sure it's identical to the current device
// entry in WIN.INL
if (Printer) {
char printDBuffer[255];
LPSTR printDevice = printDBuffer;
LPSTR devName =0,
LPSTR driverName = 0;

116

LPSTR outputName = 0;

if (::GetProfileString("windows", "device",

"t

, printDevice, sizeof(printDevice))) {

// The string which should come back is something like:

/i
//
/I
/! Where the format is:
/
//
/
devName = printDevice;
while (*printDevice) {
if (*printDevice == ') {
*printDevicet++ = 0,
if (!driverName)
driverName = printDevice;
else
outputName = printDevice;
} else

HP LaserJet IILhppcl5a,LPTI:

devName,driverName, outputName

printDevice = AnsiNext(printDevice);,

}

if ((Printer->GetSetup().Error |= 0)

(Istrcmp(devName, Printer->GetSetup(). GetDeviceName()) != 0)

|
|

(Istrcmp(driverName, Printer->GetSetup(). GetDriverName()) !=0) ||
(Istrcmp(outputName, Printer->GetSetup().GetOutputName()) != 0)) {

// New printer installed so get the new printer device now.

delete Printer;
Printer = new TPrinter;

)
} else ¢

// No printer installed (GetProfileString failed).

delete Printer;
Printer = new TPrinter;
}
}
}
)

int OwlMain (int , char*® [])
117

myWPCamApp App;
int result;

result = App.Run(),

return result;

118

#if 'defined(_ nwnptfdg_h) // Sentry, use file only if it's not already included.
#define nwnptfdg h

/* Project wrpcam11
VPI & SU
Copyright © 1993, All Rights Reserved.

SUBSYSTEM: wrpcaml1.exe Application
FILE: nwnptfdg h
AUTHOR: Kurnia D. Iskandar

OVERVIEW

Class definition for NewInputFileDialog (TDialog).
*/

#include <owl\owlpch h>
#pragma hdrstop

#include <owl\dialog h>
#include <owl\radiobut.h>
#include <owl\edit.h>
#include <owl\validate. h>

#include "wpcamapp.rh" // Definition of all resources.

/"

// transfer buffer structure for this dialog
/I

struct TransBuffNewFile

{
TransBuffNewFile();

char Filename[13];
char NumPoints[5];
UINT CurveFile;
UINT PosGGRRSprocket;
UINT NegGGRRSprocket;
UINT PosGGRRPulley,
UINT NegGGRRPulley,

119

//{{TDialog = NewlInputFileDialog} }

class NewlInputFileDialog : public TDialog {

public:
NewlInputFileDialog (TWindow* parent, TransBuffNewFile& transfer);
virtual ~NewInputFileDialog ();

}; //{{NewlnputFileDialog} }

#endif //_nwnptfdg h sentry.

120

/* Project wrpcam11
VPI & SU
Copyright © 1993. All Rights Reserved.

SUBSYSTEM: wrpcaml1.exe Application
FILE: nwnptfdg.cpp
AUTHOR: Kurnia D. Iskandar

OVERVIEW

Source file for implementation of NewlInputFileDialog (TDialog).
*/

#include <owl\owlpch.h>
#pragma hdrstop

#include "nwnptfdg. h"

//

// Constructor of transfer buffer

/

TransBufftNewFile:: TransBuffNewFile ()

{
Filename[0] ="\0',
strcpy(NumPoints, "25"),
CurveFile = BF_ CHECKED,;
PosGGRRSprocket = BF UNCHECKED;
NegGGRRSprocket = BF UNCHECKED,;
PosGGRRPulley = BF UNCHECKED;
NegGGRRPulley = BF UNCHECKED,

}

//{{NewlnputFileDialog Implementation} }

NewlnputFileDialog::NewlInputFileDialog (TWindow* parent, TransBuffNewFile&
transfer):

TDialog(parent, IDD NEWINPUTFILEDLG)
{

// INSERT>> Your constructor code here.

new TEdit(this, IDC_FILENAME, sizeof{transfer Filename)),

121

new TEdit(this, IDC_NUMBERPOINTS, sizeof{transfer. NumPoints))
->SetValidator(new TFilterValidator("0-9"));

new TRadioButton(this, IDC_CURVEFILE),

new TRadioButton(this, IDC_PGGRRSPROCKET);

new TRadioButton(this, IDC_NGGRRSPROCKET);

new TRadioButton(this, IDC_ PGGRRPULLEY),

new TRadioButton(this, IDC_NGGRRPULLEY);

SetTransferBuffer(&transfer),

NewlnputFileDialog::~NewInputFileDialog ()
{
Destroy();

// INSERT>> Your destructor code here.

122

#if !defined(_ tcam_h)

#define

__tcam h

/* Project wrpcaml1

*/

VPI & SU
Copyright © 1993, All Rights Reserved.

SUBSYSTEM: wrpcaml1.exe Application
FILE: tcam.h
AUTHOR: Kurnia D. Iskandar

Class definition for TCam.

#include <owl\owlpch.h>
#pragma hdrstop

#include <sort.h>

/

// Class TCam declaration

I

class TCam {
private:

public:

3
#endif

double* cam_x, *cam y; // x-y cartesian coordinate form
double *cam r; // cam radius

TPoint* cam_points, // points in client window coordinate form
int num_pts, // number of cam's points

TCam (),

TCam (double* x, double* y, int n);,

~TCam (),

void set cam_xy(double* x, double* y, int n),
TPoint get_start pts (),

TPoint get_end pts (),

virtual void draw cam (TDC& dc, TRect& rect);

123

// Sentry, use file only if it's not already included.

/* Proj

*/

ect wrpcaml1
VPI & SU
Copyright © 1993. All Rights Reserved.

SUBSYSTEM: wrpcaml1.exe Application
FILE: tcam.cpp
AUTHOR: Kurnia D. Iskandar

OVERVIEW

Source file for implementation of TCam.

#include <owl\owlpch.h>
#pragma hdrstop

#include <tcam.h>
#include <math.h>

/!
// Class
/!
TCam::

TCam::

TCam::

TCam definition

TCam () {

cam x = NULL;
cam_y = NULL,;
cam_points = NULL;
cam r = NULL;
num_pts = 0,

TCam (double* x, double* y, int n) §{
num_pts = n,
cam_x = new double[num_pts],
cam_y = new double[num_pts];
cam_r = new double[num_pts];
for (int 1=0; 1 <num_pts; i++) {
cam_x[i] = x[i],
cam_y[i] = y[i];

cam_r[i] = sqrt(cam_x[i]*cam x[i] + cam_y[i]*cam y[i])

}.

~TCam () {
delete [] cam_x;

124

}

void TCam::set cam xy(double* x, double* y, int n) {

}

delete [] cam_y;
delete [] cam_points;
delete [] cam _r;

num_pts =n,
cam_x = new double[num_pts};
cam_y = new double[num_pts];
cam_r = new double[num_pts];
for (int i =0; 1 <num_pts; i++) {
cam_x[i] = x]i];
cam_y[i] = y[i];
cam_r[i] = sqrt(cam_x[i]*cam_x[i] + cam_y[i]*cam_y[i]),

}

TPoint TCam::get start pts () {

}

return cam_points[0];

TPoint TCam::get end pts () {

}

return cam_points[num_pts-1];

void TCam:.draw_cam(TDC& dc, TRect& rect)

{

TPoint center;
TPoint upleft;
TPoint loright;
int width, height;
double rmax;

rmax = DMax(cam_r,num_pts);

// the center of the cam
center.x = 0.5 * rect.right;
center.y = 0.5 * rect.bottom,

// set up the width & height of the focus box
if (rect.bottom < rect.right)

width = height = 0.80 * rect.bottom,;
else if (rect. bottom > rect.right)

width = height = 0.80 * rect.right;
else

{
width = 0.80 * rect.right;

125

height = 0.80 * rect.bottom;
}

//

// rectangular frame coordinates

1

upleft. x = center.x - 0.5 * width;
upleft.y = center.y - 0.5 * height;
loright.x = center.x + 0.5 * width;
loright.y = center.y + 0.5 * height;

/
// rotate the focus box to properly align the cam
/
if (cam_y[0] <0.0) {
TPoint dummy;

dummy = upleft;
upleft = loright;
loright = dummy;
}
/
// draw the enclosing box (focus box)
/
//TPen pen1(TColor::Black, 1, PS_SOLID);
//dc.SelectObject(penl),
//dc Rectangle(upleft, loright);

// mark the center of the cam

TPen pen3(TColor:: LtGreen, 1, PS_SOLID);
dc.SelectObject(pen3);

dc.MoveTo(center x-5,center.y);

dc LineTo(center x+5,center.y);,
dc.MoveTo(center x,center.y-5),
dc.LineTo(center.x,center.y+5);

// make scatter or point plot of the cam profile
// in polar form

TPen pen2(TColor: LtRed, 1, PS SOLID);
dc.SelectObject(pen2);

cam_points = new TPoint[num_pts];,
for (int j = 0; j <num_pts; j++) {

126

if (cam_x[j] > 0.0 && cam_y[j] > 0.0) {
cam_pointsfj].x = (cam_x[j]/rmax)*(loright x-center x)+center x;
cam_points[jl.y = (cam_y[j}/rmax)*(upleft.y-center.y)+center.y;
else
if (cam_x[j} < 0.0 && cam_y[j] > 0.0) {
cam_points[j].x = (cam_x[j]/-rmax)*(upleft.x-center.x)+center.x;
cam_points[j].y = (cam_y[j]/rmax)*(upleft.y-center.y)+center.y;
}else
if (cam_x[j] <0.0 && cam _y[j] <0.0) {
cam_points[j].x = (cam_x[j]/-rmax)*(upleft x-center.x)+center.x;
cam_points[jl.y = (cam_y[j]/-rmax)*(loright. y-center.y)+center.y;
else
if (cam_x[j} > 0.0 && cam _y[j] <0.0) {
cam_points[j].x = (cam_x[j]/rmax)*(loright.x-center.x)+center.x;
cam_points[jl.y = (cam_y[j]/-rmax)*(loright.y-center.y)+center.y,
}
//dc.Rectangle(cam_points[j].x-1,cam_points[j].y-
1,cam_points[j].x+1,cam_points[j].y+1);
}//end for-loop

dc MoveTo (cam_points[0]);

for (j = 1;j <num_pts; j++){
dc.LineTo (cam_points{j]);
dc.MoveTo (cam_points[j]);

}// end for-loop

127

#ifndef t2curve h
#define t2curve h

/* Project wrpcaml 1
VPI & SU
Copyright © 1993, All Rights Reserved.

SUBSYSTEM: wrpcaml]1.exe Application
FILE: t2curve.h
AUTHOR: Kurnia D. Iskandar

Class definition for T2Curve.
*/

#include <owl\owlpch.h>
#pragma hdrstop

#include <sort.h>

I
// Class T2Curve declaration
I
class T2Curve {
private:
double *curve x, *curve y,
TPoint* curve points;
int num_pts;
char* main, *x label, *y label,
public:
T2Curve ();
T2Curve (double *x, double *y, int n);
~T2Curve (),
void set_curve xy (double *x, double *y, int n),
void set_label (const char* labell,const char* label2,const char* label3);
virtual void draw_curve(TDC& dc, TRect& rect),
35
#endif

128

/* Project wrpcaml1
VPI & SU
Copyright © 1993. All Rights Reserved.

SUBSYSTEM: wrpcaml1.exe Application
FILE: t2curve.cpp
AUTHOR: Kurnia D. Iskandar

Source file for implementation of T2Curve.
*/

#include <owl\owlpch.h>
#pragma hdrstop

#include <t2curve h>
#include <stdio.h>

/!
// Class T2Curve definition
/!
T2Curve:: T2Curve (){
curve x =NULL;
curve y = NULL,
curve points = NULL;
)
T2Curve:: T2Curve (double *x, double *y, int n) {
num_pts = n;
curve x = new double[num_pts];
curve y = new double[num_pts];
for (int i = 0; 1 < num_pts; i++) {
curve x[i] =x[i];
curve_y[i] = y[i];
}
}
T2Curve::~T2Curve () {
delete [] curve x;
delete [] curve y;
delete [] curve points;

}

void T2Curve::set_curve xy (double *x, double *y, int n) {

129

num_pts =n;

curve x = new double[num_pts];

curve y = new double[num_pts];

for (int i1 = 0; 1 <num_pts; i++){
curve_ x[i] = x{i];
curve_y[i] = y[i];

}

}

void T2Curve: set_label (const char* labell, const char* label2,
const char* label3) {

main = new charfstrlen(label1)+1];

x_label = new char[strlen(label2)+1];

y label = new char[strlen(label3)+1];

strcpy(main, labell);

strepy(x_label, label2);

strcpy(y_label, label3);

}
void T2Curve::.draw_curve(TDC& dc, TRect& rect) {
char label[7];
TPoint center;
TPoint upleft;
TPoint loright;

int xMinPost, yMinPost, xMaxPost, yMaxPost;
int width, height;
double xmin, ymin, xmax, ymax;

xmin = DMin(curve x,num_pts);
ymin = DMin(curve_y,num_pts);
xmax = DMax(curve x,num_pts),
ymax = DMax(curve y,num pts);

center.x = 0.5 * rect.right;
center.y = 0.5 * rect.bottom,;

width = 0.80 * rect.right;
height = 0.80 * rect.bottom;

/1

// rectangular frame coordinates
/"

upleft.x = center.x - 0.5 * width;
upleft.y = center.y - 0.5 * height;
loright.x = center.x + 0.5 * width;

130

loright.y = center.y + 0.5 * height;

xMinPost = upleft x;
yMinPost = loright.y;
xMaxPost = loright x;
yMaxPost = upleft.y;

/

// draw the label

/

sprintf{label,"%7.3g" xmin),
dc.SetTextAlign(TA_TOP|TA CENTER);,
dc. TextOut(xMinPost,yMinPost+1,label),

sprintf{label,"%7.3g" ,ymin);
dc.SetTextAlign(TA RIGHT|TA BOTTOM);
dc. TextOut(xMinPost,yMinPost, label);

sprintf(label,"%7.3g" ymax),
dc.SetTextAlign(TA RIGHT|TA BOTTOM),
dc. TextOut(xMinPost-1,yMaxPost+1,label);

sprintf{label,"%7.3g" xmax),
dc.SetTextAlign(TA TOP|TA _CENTER),
dc. TextOut(xMaxPost,yMinPost+1,label),

dc.SetTextAlign(TA TOP|TA CENTER),

dc. TextOut(0.5*rect.right,0.01*rect.bottom,main);
dc. TextOut(0.5*rect.right,0.92*rect.bottom,x_label),
dc SetTextAlign(TA LEFT|TA _CENTER);

dec. TextOut(0.05*rect.right,0.5*rect. bottom,y label);

I

// draw the enclosing box (frame box)

/

TPen penl(TColor::Black, 1, PS_SOLID);
dc.SelectObject(penl),
dc.Rectangle(upleft,loright);

// make scatter or point plot

TPen pen2(TColor::LtRed, 1, PS_SOLID),
dc.SelectObject(pen2);

curve_points = new TPoint[num_pts];

131

for (int j = 0; j <num_pts; j++)
{
curve_points[j].x = ((curve_x[j] - xmin)/(xmax - xmin))
*(xMaxPost-
xMinPost)+xMinPost;
curve_points[j].y = ((curve_y[j] - ymin)/(ymax - ymin))
*(yMaxPost-
yMinPost)+yMinPost;
dc.Rectangle(curve points[j].x-1,curve points[j].y-1,
curve_points[j].x+1,curve points[j].y+1);

132

B.2. Wrapping Cam Classes

Class Name:

GGRR

GGRRAnls

GGRRN

GGRRP

WCamAnls

WCamSyn

Header File:

ggrr.h

ggrranls h

ggrr.h

ggrrp.h

wcamanls.h

wcamsyn.h

Resource File:

ge1r.cpp

ggrranls.cpp

ggrrn.cpp

881Tp.-Cpp

wcamsyn.cpp

133

About The Class:
General GGRR
synthesis class

GGRR analysis class

negative GGRR
synthesis class

positive GGRR
synthesis class

Abstract base class for
wrapping cam analysis

Base class for
wrapping cam
synthesis

//ggrr.h
//Header file for GGRR class of wrapping cam mechanism.
//Written by: Kurnia D. Iskandar
//Date: 11/01/1995
/f
#ifndef GGRR H
#define GGRR H
#include <math h>
#include <point2d.h>
#include <wcamsyn.h>
/it = follower's thickness.
//C = center distance between cam and sprocket or pulley.
//r1 = radius of output sprocket.
//phi = angle (radian) locating the contact point between follower
// and sprocket or pulley.
//theta = angle (radian) of rotation of sprocket or pulley
I around the cam.
//q = length of follower between points of contacts.
//camPts = points on the cam profile surface.
//camPch = points on the cam pitch surface.
//mumPts = number of points to be generated by synthesis process.
class GGRR : public WCamSyn{
public:

GGRR(), //default constructor
~GGRR(); //default destructor

//Redefined pure virtual functions
void cam_motion(int n);
point2d* point_vector(); //surface in cartesian coordinate
point2d* pitch_point(), //pitch surface in cartesian coordinate

protected:
double t, C, rl;
double *phi, *theta, *q;
point2d* camPts;
point2d* camPch;
int numPts;

Hendif

134

/1ggrrp.cpp
//Class method definition for GGRR positive wrapping cam.
//Written by: Kurnia D. Iskandar
//Date: 10/31/1995
/!
#include <ggrrp.h>
//Default constructor
GGRRP::GGRRP(){
h=NULL; q =NULL,
phi = NULL; theta = NULL,
camPts = NULL; camPch = NULL;
numPts = 0;

}

//Default destructor

GGRRP::~GGRRP(){
delete []h;
delete []q;
delete []phi,
delete {]theta;
delete [JcamPts;
delete [JcamPch;

}

//Public member function to calculate the gear radius.
/[Function reads in number of teeth and chain's pitch.
void GGRRP::sprocket radius(int N, double p){

rl = gearl Radius(p,N);

}

//Function reads in the pulley's radius
void GGRRP::pulley radius(double rad){
rl =rad,

}

//Public member function to calculate torque moment arm.

//Function reads in the stroke of weight stack.

void GGRRP: torque moment arm(double stroke){
double denum, poly;

h = new double[numPts];
L = stroke;
denum = polyintg(coef, degree, xmin, xmax),

135

/fcout<<"denum="<<denum,;
//Given the cam range of motion theta, find torque moment arm.
for (int i=0; i<numPts; i++){

poly = 0.0,

for (int j=0; j<=degree; j++)

poly += coefj]*riseto(theta[i],(double)(degree-)));
h[i] = L * poly/denum,
Jlcout<<"h["<<i<<"] = "<<h[i]<<" ";

}

//Function to calculate the follower length. Input:
/fbranching index (index = 1 or -1), center distance (center), and follower
//thickness(thick).
void GGRRP: follower length_thick(int index, double center, double thick){
double hprime, denum, dt;
double a, b;

sign = index;

C = center;

t = thick;

denum = polyintg(coef,degree,xmin,xmax);
/lcout<<"denum="<<denum,

q = new double[numPts];

phi = new double[numPts];

for (lnt i=0; i<numPts; i++){
a = C*C-(h[i]-sign*r1)*(h[i]-sign*r1);
/lcout<<"a="<<g<<" ";
b = sqrt(a);
/feout<<"b="<<b<<" "
dt = polyderv(theta[i],coef,degree, 1);
/lcout<<"dt="<<dt<<" ",
hprime = L. / denum * dt;
//cout<<"hprime="<<hprime<<"";
qli] = a/ (b + hprime),
flcout<<"q["<<i<<"]="<<q[i]<<" "
phi[i] = acos((h[i] - sign * r1) / C);
//cout<<"phi["<<i<<"]="<<phi[i]<<" ";

136

//ggrranls.h

//Header file of GGRR wrapping cam analysis class.
//Written by: Kurnia D. Iskandar

//Date: 11/20/1995

1
#ifndef GGRRANLS H
#define GGRRANLS H

#include <math.h>
#include <sort.h>
#include <arraydb.h>
#include <leastqr.h>
#include <wcamanls.h>
#include <riseto.h>
#include <polyderv.h>
#include <point2d h>

class GGRRAnls : public WCamAnls {
public:
//Redefine the virtual functions
//The input: d = degree of polynomial curve fit for cam surface.
/1 num = number of data points to be calculated.
point2d* kinematic_analysis(int num, int d), /return output force synthesis
or

//position function curve

GGRRAnls();, //default constructor

~GGRRANIs(); //default destructor
//Member function to read in wrapping cam data
//The inputs are: pol = polar coordinate

// num = number of cam surface data points

I index = the branching sign (1 = uncrossed, -
1 = crossed)

I r = radius of output sprocket

/! t = follower's thickness

/l ¢ = center distance

//

void wrapping_cam_data(point2d* pol,int num,int index,double r,
double t,double c); //read in all needed data for analysis

//Member function to return number of data calculated
int number_of data(){return m;}

137

}.

#

endif

protected:
//Variables: curve = strength curve data points

/"
/
1
/
1z
//
/
//
/"
//
1

x = follower's position on cam surface
y = radius of polar coordinate of cam suface
sign = branching index (1=uncrossed, -1=crossed)
org_num = number of actual cam's data points
m = number of data points to be calculated
tau = follower's angle position
theta = cam's angle of rotation
h = moment arm
radius = output sprocket's radius
thickness = follower's thickness

point2d* curve,

ArrayDb x;

ArrayDb y;

int sign, org_num, m;

double* h, *theta, *tau,

double radius, center, thickness, range;

138

//ggrranls.cpp

//Class method for GGRR analysis.
//Written by: Kurnia D. Iskandar
/MDate: 11/25/1995

/
#include <ggrranls. h>

//Default constructor

GGRRAnls::GGRRAnls(){
curve = NULL; h = NULL; theta = NULL; tau = NULL,
m=0,

}

//Default destructor

GGRRAnls::~GGRRAnlIs(){
delete [] curve; delete [] h; delete [] theta;
delete [] tau;

}

//Member functions
void GGRRAnls:: wrapping cam_data(point2d* pol,int num,
int index,double r,double t,double c¢){

double* dum,;

double min,max;

ArrayDb a(num);

ArrayDb b(num),

Org_num = num,;
sign = index;
radius =r;
center = ¢
thickness = t;
x=a,y=b;

dum = new double[num)],

for (int j=0; j < num,; j++){
(polfjl.y > pol[num-11.y) ? (dum[j]=pol[j].y-360.0):(dum[j]=pol[j] y);
}
min = DMin(dum, num);
max = DMax(dum, num);
range = max - min,

139

for (int i=0; i<num; i++){
x[i] = dum[i]-min; /funit in degree
y[i] = pol[i] x; //radius of polar coordinate data of cam surface

}

delete [] dum,;
}

//The virtual function

point2d* GGRRAnls: kinematic_analysis(int num, int d)§{
double dp, p, step;
double* sigma,
ArrayDb coef;,

//Approximate the cam surface with polynomial curve (least square fit)
coef = leastqr(x,y,org_num,d),

m =num; //number of data points to be calculated
tau = new double[m]; //unit in degree
step = range/m,;

tau[0] = 0.0,

for (int i=1; i <m; i++){
tau[i]=tau[i-1]+step;

}

//Calculate the strength curve data; i.e. moment arms and the cam rotation
//angles.
h = new double[m];
theta = new double[m],
sigma = new double[m];
curve = new point2d[m];
for (int j=0; j < m; j++){
p=0.0;
for (int n=0; n <= d; n++) p += coef]n]*riseto(tau[j],(double)(d-n));
dp = polyderv(tau[j], coef, d, 1);
sigma[j] = atan(dp/p);
h{j] = p * cos(sigmal[j]) + thickness/2.0,
theta[j] = tau[j] + sigma[j] + acos((h[j] - sign*radius)/center);,

curve[j].x = theta[j]; //unit in radian
curve[j].y = hfj];
140

}

delete [] sigma;

return curve,

141

//ggrn.h

//Header file for GGRR wrapping cam with negative cam.
//Written by: Kurnia D. Iskandar

//Date: 11/01/1995

/
#ifndef GGRRN H
#define GGRRN H
#include <math.h>
#include <polyintg. h>
#include <polyderv. h>
#include <riseto.h>
#include <sprocket h>
#include <point2d.h>
#include <ggrr.h>

class GGRRN : public GGRR {

public:
GGRRN(), //default constructor
~GGRRN();, //default destructor
//Member functions

//Get radius of sprocket. Input: number of teeth for output
//sprocket(N1), number of teeth for input sprocket(N2), and
//chain's pin separation(p).

void sprocket radius(int N1, int N2, double p);

//Get radius of pulleys. Input: radius of output pulley(radl)
//and radius of input pulley(rad2).

void pulley radius(double rad1, double rad2);

//Function to calculate torque's moment arm. Input: the weight's stroke.
void torque_moment_arm(double stroke);

//Function to calculate follower length. Input: cam's branching (index =1 or
//index = -1), center distance (center), and follower thickness(thick).

void follower length thick(int index, double center, double thick);

//Redefine the virtual function of wcamsyn base class.
void cam_motion(int n);

protected:

Sprocket gearl;
Sprocket gear2;
double L, 12, k;
double *h, *S;
int sign;

142

b
#endif

143

//ggrm.cpp
//Class method definition for GGRR wrapping cam with negative cam.

//Written by: Kurnia D. Iskandar
//Date: 11/01/1995
//
#include <ggrrn h>
//Default constructor
GGRRN::GGRRN(){
h=NULL; q = NULL,;
phi = NULL; theta = NULL,;
camPts = NULL; camPch = NULL; S = NULL;
numPts = 0;

}

//Default destructor
GGRRN::~GGRRN(){
delete []h; delete []q;
delete []phi; delete []theta;
delete []S; delete [JcamPts;
delete [JcamPch;

}

void GGRRN::cam_motion(int n)§{
double step;

numPts =n+1,

step = (xmax - xmin)/n;

S = new double[numPts];

for (int i=0; i<numPts; i++) S[i] = xmin + i*step;

}

//Get radius of sprocket. Input: number of teeth for output
//sprocket(N1), number of teeth for input sprocket(N2), and
//chain's pin separation(p).
void GGRRN::sprocket radius(int N1, int N2, double p){
rl = gearl Radius(p, N1),
r2 = gear2.Radius(p, N2),

}

//Get radius of pulleys. Input: radius of output pulley(radl)

//and radius of input pulley(rad2).

void GGRRN::pulley radius(double radl, double rad2){
rl =radl; r2 =rad2;

144

}

//Function to calculate torque's moment arm. Input: the weight's stroke.
void GGRRN::torque_moment_arm(double stroke){

)5

}

double B, ds, poly;

L = stroke;
ds = polyintg(coef, degree, 0.0, xmax),
k=L/ds;

theta = new double[numPts];
h = new double[numPts];

for (int i=0; i<numPts; i++){
poly =0.0;
for (int j=0, j<=degree; j++) poly += coef]j]*riseto(S[i],(double)(degree-

h[i] =12/ (poly * k),
B = polyintg(coef, degree, 0.0, S[1]);
theta[i] = k/r2 * B;

void GGRRN::follower length thick(int index, double center, double thick){

1))

double a, b, c, poly, ds;

sign = index;
C = center;
t = thick;
q = new double[numPts];
phi = new double[numPts];
for (int i=0; i<numPts; i++){
a = C*C - (h[i]-sign*r1)*(h[i]-sign*r1);
b = sqrt(a);
poly = 0.0,
for (int =0, j<=degree; j++) poly += coef]j]*riseto(S[i],(double)(degree-

ds = polyderv(S[i],coef,degree, 1),
c=r12*r2*ds/(k *k * poly * poly * poly);
qlij=a/(b-c);

phi[i] = acos((h[i] - sign*r1)/C);

145

//ggrrp.h

//Header file for GGRR wrapping cam mechanism with positive cam.
//Written by: Kurnia D. Iskandar

//Date: 10/31/1995

/1
//L. = stroke of the weight.

//h = torque moment arm of tension in the follower.
//gearl = a sprocket object.

//sign = -1 for crossed or 1 for uncrossed configuration.
#ifndef GGRRP_H

#define GGRRP H

#include <math.h>

#include <ggrr.h>

#include <point2d.h>

#include <sprocket.h>

#include <polyintg. h>

#include <polyderv.h>

class GGRRP : public GGRR{
public:
GGRRP(),
~GGRRP();
//Member functions

void sprocket radius(int N, double p); //sprocket radius
void pulley radius(double rad);

void torque_moment_arm(double stroke),

void follower length thick(int index, double center, double thick),

protected:
Sprocket gearl;
double L;
double *h;
int sign,
15
#endif

146

//ggrrp.cpp
//Class method definition for GGRR positive wrapping cam.

//Written by: Kurnia D. Iskandar
//Date: 10/31/1995
//
#include <ggrrp.h>
//Default constructor
GGRRP::GGRRP(){
h=NULL; q =NULL,
phi = NULL; theta = NULL,
camPts = NULL, camPch = NULL,
numPts = 0,

}

//Default destructor

GGRRP::~GGRRP(){
delete []h;
delete []q;
delete []phi;
delete []theta,
delete [JcamPts;
delete [JcamPch;

}

//Public member function to calculate the gear radius.
//Function reads in number of teeth and chain's pitch.
void GGRRP::sprocket radius(int N, double p){

r1 = gearl Radius(p,N);
)

//Function reads in the pulley's radius
void GGRRP::pulley radius(double rad){
rl =rad,

}

//Public member function to calculate torque moment arm.

/[Function reads in the stroke of weight stack.

void GGRRP::torque_moment_arm(double stroke){
double denum, poly;

h = new double[numPts],
L = stroke;
denum = polyintg(coef, degree, xmin, xmax),

147

//cout<<"denum="<<denum,
//Given the cam range of motion theta, find torque moment arm.
for (int i=0; i<numPts; i++){

poly = 0.0,

for (int j=0; j<=degree; j++)

poly += coef[j]*riseto(theta[i],(double)(degree-)));
h[i] = L * poly/denum,;
/lcout<<"h["<<i<<"] = "<<h[i]<<" *;

}

//Function to calculate the follower length. Input:
//branching index (index = 1 or -1), center distance (center), and follower
//thickness(thick).
void GGRRP: follower length thick(int index, double center, double thick){
double hprime, denum, dt;
double a, b;

sign = index;

C = center;

t = thick;

denum = polyintg(coef,degree, xmin,xmax),
/fcout<<"denum="<<denum,

q = new double[numPts],

phi = new double[numPts];

for (int i=0; i<numPts; i++){
a = C*C-(h[i]-sign*r1)*(h[i]-sign*r1);
/fcout<<"a="<<g<<" "
b = sqrt(a);
/cout<<"b="<<p<<" ",
dt = polyderv(theta[i],coef,degree, 1);
/fcout<<"dt="<<dt<<" ";
hprime =L / denum * dt;
/lcout<<"hprime="<<hprime<<" ";
qli] = a/ (b + hprime),
//Cout<<nq[ﬂ<<i<<"]: "<<q[i]<<n n;
phi[i] = acos((h[i] - sign * r1) / C);
//Cout<<"phi["<<i<<"]:"<<phi[i]<<u u;

148

/fwcamanls.h

//Header file for Wrapping Cam Analysis abstract base class.
//Written by: Kurnia D. Iskandar

//Date: 11/14/1995

/1
#ifndef WCAMANLS H
#define WCAMANLS H
#include <point2d.h>

class WCamAnls {
public:

//Pure virtual functions.
virtual point2d* kinematic_analysis(int num, int d)=0; //returns data points
3
#endif

149

/lwcamsyn.h

//Header file for wrapping cam synthesis abstract base class.
//Written by: Kurnia D. Iskandar

//Date: 10/30/1995

/
#ifndef WCAMSYN H

#define WCAMSYN H

#include <math h>

#include <arraydb.h>

#include <leastqr.h>

#include <point2d.h>

#include <sort.h>

//coef = an ArrayDb of polynomial coefficients
//degree = a degree of polynomial curve fitting
//numData = number of data points of input curve
/fxmin = lower boundary of input data

//xmax = upper boundary of ouput data

//polar = polar coordinate

class WCamSyn{

public:

WCamSyn(){polar = NULL;}

~WCamSyn() {delete []polar;}
//Member function to calculate the polynomial function
//coefficients by least square method. Input: number of
//data points(n), degree of polynomial(d), abscisca (x), and
//ordinate (y). This function also calculates the xmin
//and xmax; the lower and upper boundary of input data.

void poly_coef{int n, int d, double *x, double *y);,
//Member function to convert cartesian to polar coordinate.

point2d* polar_coor(int n, point2d* cartesian);
//a pure virtual function to find the cam range of motion.
//Input: number of the cam position(n).

virtual void cam_motion (int n) = 0;
//a pure virtual function to calculate cam surface.

virtual point2d* point vector() = 0;
//a pure virtual function to calculate cam pitch.

virtual point2d* pitch point() = 0,
protected:

ArrayDb coef,

point2d* polar;

double xmin, xmax;

int degree, numData;

150

1
#endif

151

/lwcamsyn.cpp

//Class method definition for wrapping cam abstract base class.

//Written by: Kurnia D. Iskandar

//Date: 10/31/1995

//

#include <wcamsyn.h>

void WCamSyn::poly coef{int n, int d, double *x, double *y){
double ymax, *xrad,

numData = n;

degree =d,

xrad = new double[numData];

/[Convert degree to radian

for (int j=0; j<numData, j++) xrad[j] = x[j]/180.0 * M_PI;
ArrayDb a(xrad,numData);

xmin = DMin(xrad,numData),//lower boundary
/fcout<<"\nlower boundary = "<<xmin;

xmax = DMax(xrad,numData);, //lupper boundary
//cout<<"\nupper boundary = "<<xmax;

ymax = DMax(y,numData), //max. value for ordinate normalization
//Normalizing the ordinate of input data

ArrayDb ynormal(numData),

for (int i=0; i<numData, i++) ynormal[i]=y[i]/ymax;
//Curve fit the data by least square a polynomial method
coef = leastqr(a,ynormal,numData,degree),
/fcout<<"\nThe curve fit coeflicients:\n";

/lcout<<coef,

delete []xrad,

}

//Member function to convert cartesian to polar coordinate.
point2d* WCamSyn::polar_coor(int n, point2d* cartesian){
double *radius, *angle;
double a, b;

radius = new double[n+1],
angle = new double[n+1];
for (int i=0; i<n+1; i++){
a = cartesian[i] x * cartesian[i].x + cartesian[i].y * cartesian[i].y,
b = cartesian[i].y/cartesian(i] x;
radius[i] = sqrt(a);
angle[i] = atan(b)/M_PI * 180.0; //unit in degree

152

if (cartesian[i]. x<0.0 && cartesian[i].y>0.0){
angle[i] += 180.0;

}else if(cartesian[i]. x<0.0 && cartesian[i].y<0.0){
angle[i] += 180.0,

}else if (cartesian[i] x>0.0 && cartesian[i].y<0.0){
angle[i] += 360.0;

}

}

polar = new point2d[n+1];

for (int j=0; j<n+1, j++){
polar[j].x = radius[j}];
polar{j].y = angle[j];

}

delete []radius;

delete []angle;

return polar,

153

B.3. Supporting Functions

Class/Function Name: Header File: Resource File:
Array2D array2d.h array2d.cpp
ArrayDb arraydb.h arraydb.cpp
DMin & Dmax sort.h sort.cpp
gausswp gausswp.h gausswp.cpp
leastqr leastqgr.h leastqr.cpp
point2d point2d.h point2d.cpp
polyderv polyderv.h - polyderv.cpp
polyintg polyintg h polyintg.cpp
riseto riseto.h riseto.cpp
Sprocket sprocket.h sprocket.cpp

154

About The Class:
2-D array or matrix

Dynamic array
Sorting functions

Gaussian elimination
with partial pivoting

Least square method
for polynomial
functions

2-D points

Function to calculate
a derivative value of
polynomial function

Numerical integration
of polynomial function

Modified power
function

Function to calculate
sprocket radius from
number of teeth and
sprocket pitch

//array2d.h
//class declaration for 2D array
//Written by:Kurnia D. Iskandar
//Date: 09/22/1995

I

#ifndef ARRAY2D H
#define ARRAY2D H

#include<iostream.h>
#include<stdlib.h> //exit() function

const int numPtr = 10;//maximum array size is 10 by 10

class Array2D{

3
#endif

private:

unsigned int row, column;

protected:

public:

double * ptr[numPtr];

//default constructor

Array2D();

//initial Array2D of n by m, and set each element to val
Array2D(unsigned int n, unsigned int m, double val=0.0);
//initial Array2D object to another Array2D object
Array2D(const Array2D & a);

//destructor

~Array2D();

//public methods

unsigned int arsize() {return row;}

//overloaded operators

double * operator[](int 1),

const double * operator[](int 1) const;

Array2D & operator=(const Array2D & a);

155

//array2d.cpp

//class methods for 2D array
//Written by:Kurnia D. Iskandar
//Date: 09/22/1995

1
#include<array2d.h>

//default constructor
Array2D:: Array2D(){
for(int i=0; i<numPtr; i++)
ptr[i} = NULL,;
row = column = 0,

}

//initial Array2D of n by m, and set each element to val
Array2D:: Array2D(unsigned int n, unsigned int m, double val){
int i,j;
//initialize the pointer array to avoid loss pointers
for (i=0; i<numPtr; i++)
ptr[i] = NULL;
TOW =n,
column = m;
for(i=0; i<row; i++){
ptr[i] = new double[column]; //allocate memory
for(j=0; j<column; j++)
ptr[i][j] = val; //set each element to val

1
s

//initial Array2D object to another Array2D object
Array2D:: Array2D(const Array2D & a){
int ij;
//initialize the pointer array to avoid loss pointers
for (1=0; i<numPtr; i++)
ptr[i] = NULL,

TOW = a.TOw,
column = a.column,
for(i=0; i<row; i++){
ptr[i] = new double[column], //allocate memory
for(j=0, j<column; j++)
ptr[i][j] = a.ptr[i][j]; //assign value to it

156

}

//destructor
Array2D::~Array2D(){
for (int i=0; i<numPtr; i++)
delete [ptrl[i];
}

//let user access element by index (assignment allowed)
double * Array2D: operator[](int 1){
//check index before continuing
if(i<0 || i>=row){
cerr<<"Error in array limits; "<<i
<<"is a bad row index\n";
exit(1);
}
return ptr[i];

}

//let user access element by index (assignment disallowed)
const double * Array2D::operator[](int i) const{
//check index before continuing
if(i<0 || i>=row){
cerr<<"Error in array limits; "<<1i
<<" is a bad row index\n";
exit(1),
}
return ptr(i];

}

//define class assignment
Array2D & Array2D::operator=(const Array2D & a){
int i,j;

if (this == &a) //if object assigned to self,

return *this; //don't change anything
//free memory from old data and point to NULL
for (1=0; i<numPtr; i++){

delete [] ptr[i];

ptr[i] = NULL,;
}

oW = a.TOW,

157

column = a.column;

for (i=0; i<row; i++){
ptr[i] = new double[column]
for(j=0; j<column; j++)

} ptr[i][j] = a.ptr{i][j];

return *this;

b4

158

//arraydb.h
//Define array class with size of row by column
//Based from: Stephen Prata, "C++ Primer Plus", 2nd Edition, 1995.

//Date:

I

09/20/1995

#ifndef ARRAYDB H_
#define ARRAYDB H
#include <iostream.h>

class ArrayDb {

|

#endif

private:

unsigned int size; //number of array elements
protected:

double * arr; //address of first element
public:

ArrayDb(), //default constructor

//create an ArrayDb of n elements, set each to val
ArrayDb(unsigned int n, double val = 0.0);

/lcreate an ArrayDb of n elements, initialized to array pn
ArrayDb(const double* pn, unsigned int n);

ArrayDb(const ArrayDb &a), /[copy constructor
~ArrayDb();

//destructor
unsigned int arsize()const{return size;} //return array size

//overloaded operators
double & operator]](int 1),
const double & operator[](int i)const;
ArrayDb & operator=(const ArrayDb & a),
friend ostream & operator<<(ostream & os, const ArrayDb & a);

159

/farraydb.cpp

//Class method for ArrayDb class

//Based from: Stephen Prata, "C++ Primer Plus", 2nd Edition, 1995.
//Date: 09/20/1995

/
#include <iostream h>

#include <stdlib.h> /fexit()prototype
#include <arraydb.h>

//default constructor -- no arguments
ArrayDb:: ArrayDb(){

arr = NULL;

size = 0,

}

//constructs array of n elements, each set to val
ArrayDb:: ArrayDb(unsigned int n, double val){
size = n,
arr = new double[size];
for (int i=0; i<size, i++)
arr[i] = val,

}

//initialize ArrayDb object to a nonclass array
ArrayDb:: ArrayDb(const double *pn, unsigned int n){
arr = new double[n],
size = n,
for (int i=0; i<size; i++)
arr[i] = pn[il;

}

//initialize ArrayDb object to another ArrayDb object
ArrayDb:: ArrayDb(const ArrayDb & a){
size = a.size,
arr = new double[size],
for (int i=0; i<size; i++)
arr[i] = a.arr[i],

}

//destructor
ArrayDb::~ArrayDb(){
delete [] arr;

160

}

//let user access elements by index (assignment allowed)
double & ArrayDb: operator[](int i){
//check index before continuing
if (i<0 || i>=size){
cerr<<"Error in array limits: "
<<1<<"is a bad index\n";
exit(1),
}

return arr[i],

}

//let user access element by index (assignment disallowed);
const double & ArrayDb::operator[](int i)const{
//check index before continuing
if (i<0 || i>=size) {
cerr<<"Error in array limits: "
<< 1<<"is a bad index\n";
exit(1),
}

return arr]i];

}

//define class assignment
ArrayDb & ArrayDb:.operator=(const ArrayDb & a){
if (this == &a) //if object assigned to self,
return *this; //don't change anything
delete arr;
size = a.size,
arr = new double[size];
for (int 1=0; i<size; i++)
arr[i] = a.arrfi];
return *this;

}

//quick output, S values a line
ostream & operator<<(ostream & os, const ArrayDb & a){
for (int 1=0; i<a.size; i++){
os << a.arr[i] <<"\n";
if (1% 5==4)
os <<"\n";

161

if (1 % 5 1=0)
0s << "\n";
return os,

162

//sort.h

//Header file for sorting functions
//Written by: Kurnia D. Iskandar
//Date: 10/29/1995

//

//a = a type double array of values.

//n = number of element in the array.

//DMin returns a minimum value of type double.
//DMax returns a maximum value of type double.

#ifndef SORT H
#define SORT H

double DMin(const double* a, const int n);

double DMax(const double* a, const int n);
#endif

163

//sort.cpp

//File definition for sorting functions
//Written by: Kurnia D. Iskandar
//Date: 10/29/1995

/

#include <sort.h>
double DMin(const double* a, const int n){
double min;
min = a[0];
for (int i=1; i<n; i++){
if (a[i] < min) min = a[i];
}
return min;
}
double DMax(const double* a, const int n){
double max;
max = a[0];
for (int i=1; i<n; i++){
if (a[i1] > max) max = a[i];
}

return max;

164

//gausswp.h

//header file for gaussian elimination with partial pivoting
//Written by:Kurnia D. Iskandar

//Date: 09/26/1995

/!
#ifndef GAUSSWP H
#define GAUSSWP H

#include<array2d.h>
#include<arraydb.h>
#include<math.h>
#include<iostream h>

// X = n by n polynomial matrix
/I'Y = right hand matrix
// size = size of the matrix (n = size)

ArrayDb gausswp(Array2D & X, ArrayDb & Y),

#endif

165

//gausswp.cpp

//Function definition for gaussian with partial pivoting

//Based on: Stanley I. Grossman and William R. Derrick, "Advanced
/ Engineering Mathematics",
//Maximum array size can be solved is 10 by 10.

//To change the array size go to array2d.h file.

1
#include<gausswp.h>

ArrayDb gausswp(Array2D & X, ArrayDb & Y){
int i, j, index;
unsigned int size;
double large, temp, pivot;

size = X arsize();
//create row echelon form
for (j=0; j<size; j++){

if (j 1= (size-1)){ //start of step 1-4
large = fabs(X[j1[1]); //step 1
index = j;

for (1=j; i<size; i++){
if (fabs(X[1][j])>large){
large = fabs(X[1][j]);
index =1;
}
}

//swapping row of X matrix; step 2
for (i=j; i<size; it+){
temp = X[j][il;
XIjl{i] = X[index][il;
X[index][i] = temp;

}
//swapping row of Y matrix; step 2
temp = Y[j];

Y[j] = Y[index];
Y[index] = temp;
//divide the pivot row with its diagonal element; step 3
pivot = Xjl[il;
for (i=j; i<size, i++)
X[jlfi] /= pivot;
Y[j] /= pivot;
//add multiple the first row to other rows; step 4
for (i=)+1; 1<size; 1++){

166

double m = X[i][j];
for (int 1=j; 1<size; 1++)
X[l += (-1 *m* X[,
Y[i] += (-1)*m*Y[j];
}
telse if j == (size-1)){
double n = X[j]1[j1;
X[1G1 /= n;
Y[j]/=n,
}
}//inish row echelon form
//back substitution
ArrayDb D(size),
for (i=(size-1); >=0; i--){
if (i == (size-1)){
D[i] = Y[i];
jelse if (i 1= (size-1)){
double sum = 0.0;
for (j=(size-1), j>=(i+1), j--)
sum += X{i][j] * D[jl;
D[i] = Y[i] - sum;
)
}

return D,
}//end function definition

167

/Nleastqr.h

//function declaration

//least square method solved using gaussian with partial pivoting
//Written by: Kurnia D. Iskandar

//Date: 09/24/1995

7
#ifndef LEASTQR H
#define LEASTQR H

#include<array2d.h>
#include<arraydb.h>
#include<gausswp.h>
#include<riseto.h>
#include<math h>
#include<iostream.h>

//Function prototype least square method for polynomial

/ffunctions solved by Gaussian with partial pivoting.

//Function returns an ArrayDb type data. The first element

//corresponds to the variable with the highest power.

// xval = pointer to an array of x values of type ArrayDb.

// yval = pointer to an array of y values of type ArrayDb.

// m = number of points

/I n = degree of polynomial

// The highest degree of polynomial is 10; to change it, go

// to array2d.h file and change numPtr value.

ArrayDb leastqr(const ArrayDb & xval, const ArrayDb & yval,
const int m, const int n),

#endif

168

//eastqr.cpp

//function definition of least square method solved by gaussian
//with partial pivoting

//information on variables can be found in header file
#include<leastqr.h>

ArrayDb leastqr(const ArrayDb & xval, const ArrayDb & yval,
const int m, const int n){
Array2D B(n+1, nt1);
ArrayDb C(n+1),
ArrayDb A,
inti,j, k,r;
double xsum, ysum,
if(n> 10| n<0){
cerr<<"Error, "<<n<<" ig invalid degree polynomial \n";
cerr<<"Check numPtr in array2d.h file and n in leastqr.h file.";
exit(1);
}
for (1=0; 1<=n; 1++){
for (j=0; j<=n; j++){
xsum = 0.0;
r=@2*n-(@+j,
for (k=0; k<m; k++){
xsum += riseto(xval[k],double(r));
j
B[i]{j] = xsum,

}
}
for (i=0; i<=n; i++){
ysum = 0.0,
for (k=0; k<m, k++){
ysum += yval[k] * riseto(xval[k],double(n-1)),
}
C[i] = ysum;
}

//call gaussian function and assigned to A
A = gausswp(B, C),
return A;

169

//point2d.h

//File to declaration for 2D points
#ifndef POINT2D H

#define POINT2D H

#include <iostream h>

class point2d {
//no private members
public:
//public data
double x, y;

point2d(){} //default constructor
point2d(const point2d & a), //copy constructor
~point2d(){} //destructor

//Member functions
point2d & operator=(const point2d & a); //assignment operator
//Friend function ‘
friend ostream & operator<<(ostream & os, const point2d & a);
3
#endif

170

//point2d.cpp
//Method defintion for 2D points
#include <point2d.h>

//copy constructor

point2d: :point2d(const point2d & a){
x=ax,y=ay,

}

// Assignment operator
point2d& point2d: operator=(const point2d & a){
if (this == &a)
return *this;
X=ax,y=ay,
return *this;

}

ostream & operator<<(ostream & os, const point2d & a){
os<<a.x<<" "<<aly,

return os,

171

//polyderv.h

/[Header file for derivative of polynomial function at a given
/Ivalue.

//Written by: Kurnia D. Iskandar

//Date: 10/28/1995

//v = a value to be evaluated.

//a = an array of polynomial function coefficients; a[0] corres-
/I ponds to coefficient of variable with highest degree,...,
/' and a[n] corresponds to a constant variable.

//n = degree of polynomial function.

//p = order of derivative of the polynomial function.
//Function returns a type double value.

#ifndef POLYDERV _H_

#define POLYDERV H

#include<riseto.h>

#include<arraydb.h>

double polyderv(const double v, const ArrayDb &a, int n, int p);

#endif

172

/lpolyderv.cpp
//Function definition
//Written by: Kurnia D. Iskandar
//Date: 10/28/1995
/
#include <polyderv.h>
double polyderv(const double v, const ArrayDb &a, int n, int p){
double sum ;
double d;

sum = 0.0;
for (int k=0, k<=(n-p); k++){
d=1.0;
if (k < (n-p)){
for (int 1=0; 1<p; i++) d *= (double)(n-k-1),
sum += a[k] * d * riseto(v,(double)(n-k-p));
}
else if (k == (n-p)){
sum += a[k];
}
}

return sum,

173

//polyintg.h

/Header file for numerical integration of polynomial function,
//given the min and max values.

//Written by: Kurnia D. Iskandar

//Date: 10/27/1995

//~--
//a = polynomial coeficients, ArrayDb data type; a[0O] corresponds
/I to coeflicient for the highest degree variable, a[1] is

/I for the next variable, so on, and a[n] is a constant.

//n = degree of polynomial.

//min = minimum boundary value.

//max = maximum boundary value.

//The function return a type double.

#ifndef POLYINTG H
#define POLYINTG H
#include <arraydb.h>
#include <riseto.h>

double polyintg(const ArrayDb &a, const int n, const double min, const double max),
#endif

174

//polyintg.cpp
//Function definition for numerical integration of polynomial function.
#include <polyintg h>

double polyintg(const ArrayDb &a, const int n, const double min, const double max)§{
double suml,
double sum?2;
double f,

suml = sum2 = 0.0,

for (int i=n; i>=0, i--){
suml += a[n-i]*riseto(max,(double)(i+1))/(double)(i+1),
sum?2 += a[n-i]*riseto(min,(double)(i+1))/(double)(i+1),
/fcout<<sum]<<" "<<sum2<<"\n";

}

f=suml - sum2;

return £,

175

//riseto.h

//file declaration for power function

//a is rised to b, and function returns double
//Written by:Kurnia D. Iskandar

//Date: 09/27/1995

//

#ifndef RISETO H
#define RISETO H

#include<iostream.h>
#include<math. h>

double riseto(double a, double b),

#endif

176

//riseto.cpp

//ile definition for power function
//Written by:Kurnia D. Iskandar
//Date: 09/27/1995

1

#include<riseto.h>

double riseto(double a, double b){
double temp, output;

if(a==0.0&& b !=0.0){
output = 0.0;

telse if (a == 0.0 && b == 0.0){
output = 1.0;

telse if (a < 0.0 && int(b)%2 == 0){
temp = b * log(-1*a),
output = exp(temp),

telse if (a < 0.0 && int(b)%2 != 0){
temp =b * log(-1*a),
output = -1 * exp(temp);

}else {
temp = b * log(a);
output = exp(temp);

}

return output;

177

//sprocket.h
//Mechanical sprocket class declaration
//Written by: Kurnia D. Iskandar
//Date: 10/27/1995
/
#ifndef SPROCKET H
#define SPROCKET H
#include <math.h>
class Sprocket {
private:
double radius; //Sprocket radius.
double pitch; //Link distance or pin separation for
//ANSI type 40 chain.
int teeth; //Number of sprocket teeth.

double findRadius(double p, int t);
public:
Sprocket(){} //default constructor
//Create and initialize an object. Input: pin separation (p)
//and number of teeth (t).
Sprocket(double p,int t);
~Sprocket(){} //default constructor

//Member functions
//Return sprocket radius. Input: pin separation(p) and
//number of teeth(t).
double Radius(double p, int t); //return the sprocket radius.
int numTeeth(){return teeth;} //return the number of sprocket teeth.
//Overloaded operator
35
#endif

178

//sprocket.cpp

//Class method definition for sprocket class
//Written by: Kurnia D. Iskandar

//Date: 10/29/1995

//-- - ---

#include <sprocket.h>

//Create and initialize an object

Sprocket::Sprocket(double p, int t){
pitch = p; teeth =1t;

}

//Private class method definition
double Sprocket::findRadius(double p, int t){

return radius = p / (2 * sin(M_PI/(double)t));
}

//Public class member definition
double Sprocket::Radius(double p, int t){
pitch = p; teeth = t;
return radius = findRadius(pitch, teeth);

179

VITA
Name: Kurnia Dias Iskandar
Date and Place of Birth: 6 April 1970, Bogor
Home Country: INDONESIA
Educational Background:
e Master of Science in Mechanical FEngineering, June 1996, Virginia

Polytechnic Institute and State University (VPI & SU), Blacksburg, Virginia,
USA.

e Bachelor of Science in Mechanical Engineering, May 1993, West Virginia
Institute of Technology, Montgomery, West Virginia, USA.

Signaturez/’} -

Jurdp A

Kurnia Dias Iskandar

180

