3J

—
{va_.,

Intersection and Filleting of Non-Uniform B-Spline Surfaces
by
Robert W. Jones

thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Master of Science
in

Mechanical Engineering

APPROVED:

ot LI~

Dr. Arvid Myk#bust, Chairman

/&sz, yakh am Gt L Lok L

Dr. S ayé{'am Dr. R. L. Wﬁt

January 29, 1991

Blacksburg, Virginia



S
VoS

\ 4
o )

i
3 f
s iy 3

A/
Wi

0 o b



Abstract

Preliminary aircraft design codes require a more complete and integrated geometry
definition than that used by conceptual design codes. This thesis documents the design
and creation of an interactive CAD system which converts the geometry descriptions
commonly used in conceptual aircraft design codes to descriptions that meet the
requirements of preliminary design systems. In particular, the conversion of ACSYNT
Hermite surface data of aircraft models to the non-uniform bi-cubic B-Spline surface
representation is addressed. The topics discussed in this thesis include the design and
development of an interactive graphics user interface, the design and coding of an
intersection method for non-uniform bi-cubic B-Spline surfaces utilizing subdivision
techniques and the development of a one-dimensional filleting algorithm for blending

surfaces along iso-parametric curves.

Abstract



Acknowledgements

I would first like to thank my advisor Dr. Myklebust for giving me the opportunity to
do research in the area of geometric modeling. I want to also express my sincere
gratitude to Dr. Jayaram for his constant support and time devoted to helping me finish
my thesis on time. Thanks are also extended to Dr. R. L. West for taking the time to

be part of my graduate committee.

I want to thank the entire ACSYNT crew for putting up with me the last year and a half.
Special thanks go to J. R. Gloudemans and Kris Kolady. Without them I would still

be trying to log onto most of the computers in our lab.

Finally, I thank my Mother and Father for their constant love and support throughout

my college career, one they sometimes thought would last forever.

Acknowledgements



Table of Contents

10 Introduction .......... ...ttt ittt naanas 1
L1 Background . ... ... e e 2
L2 O eCtIVES . .ottt e e e e e e 3
1.3 Thesis Orgamization . ... ... .inenn ittt ittt 5
20 Literature SUIVEY ... ..ttt tttitetnenenenosnessssasracssisassanenssssss 6
2.1 ACSYNT B-Spline Module . .......... ..ttt 6
2.2 Intersection TeChmiQuUes . ... ... iiiiiitinn ittt iineennnnennn 8
2.3 Filleting of B-Spline Surfaces . ........ ...ttt tereinanireeeanann 10
30 ACSYNTB-SplineModule .........cc0iiiiiiiiiiiieiotenneansrinnsnans 11
3.1 Design Considerations . . ... ..t tttin ittt et e e 12
3.2 User ReqUirements ... ..ottt ie ettt et ten e et tie e eiaan e 12
3.3 Functional Requitements ... ... .cuuttttininnen ettt ennnnnnnas 14
3.4 Software Description . ... ... .ttt e e 15

34.1 Screen Layout .. ... ... e i e e e e e 15
3.5 Data StOTagE . . oot e e e e e e 18

Table of Contents iv



4.0 Spline Curvesand Surfaces . ...... ... 0ttt innerionnneeennnns 21

4.1 IntroduChion . . ... e e 21
4.2 B-SplNe CUIVES .« v ittt ettt et e e e 22
42,1 B-Sphne Curve Definition ... .. ... ... ... .ttt 24
422 Uniform Cubic B-Spline Curve ... ... ... .. i 24
4.2.3 Non-uniform Cubic B-Spline Curve . ......... ... .. 26
4.2.4 Important Properties of the B-Spline Representation ....................... 27
4.3 Bezier CUIVES . .ttt ettt e e et e e e e e e 29
4.4 B-Spline Surfaces ... ... ... e e e e e e 30
50 KnotInsertion ..........iiiiiiiiiiiiiiiiinnienissereoetoreseacasnnnn 34
6.0 Cubic B-SplineInversion ..........c.0itiiiiitiiietnirnnernerossernsennnas 38
6.1 Uniform Cubic B-Spline Inversion ....... ...ttt 38
6.2 Non-Uniform Cubic B-Spline Inversion . ..........c.couiuininieerereeennnn. 41
6.2.1 Non-Uniform Cubic B-Spline Inversion Process ............ ... ..., 43
6.3 Forcing a Tangent Discontinuity ... ...... ...ttt eennn.. 44
6.4 Surface INVersion .. ... ... e e e 47
7.0 Intersection of B-Spline Surfaces ........... ..ttt nnneans 48
7.1 The Subdivision Algorithm . .. .. ... ... e e 49
7.2 Bounding BoXes . ... ... e e e 50
7.2.1 Converting to Bezier Format . ........... ... ittt 54
7.3 Subdividinga Patch .. ... ... . . e 57
7.4 Plane ApProXimations . . . ...ttt ettt it e ittt e e 61
7.4.1 Minimum Distance froma PointtoaPlane .............. ... ... ... ..... 61
7.4.2 Minimum Distance from a Pointtoaline ............... ... ... ... .... 64
7.5 Computing Plane-Plane Intersections ............... .00ttt iiiteneennnnnn. 66

Table of Contents v



7.5.1 Computing the Intersection between a Triangleanda Line .................. 68

7.6 Sorting the Intersection Data .. .......... ... . . . ittt 70
7.6.1 The Sorting Algorithm . .. ... ... . ... .. e 72
80 Filleting . ...ttt ittt ittt it tarsietsrcsnnanatossnanananss 76
8.1 Curve FIlletIng . ..ottt e et et e e e 77
8.1.1 Forcinga Break Point . ....... ... i i i 79
8.1.2 Shape Control ... .. i e e e e 80
8.1.3 Point Selection ... .......i i e e 82
8.1.4 Curve Filleting Process ... ... ittt 82
8.2 One-Dimensional Filleting .. ... ... ...ttt 84
8.2.1 Alignment of Iso-Parametric Curves ...............ctununinnnnnn... 85
8.2.2 The One-Dimensional Filleting Process ........... .. ... i iiimnnnnn.. 90
9.0 Results ... ...ttt iiirtttensetonesseensnessannecsnnsssons 98
9.1 ACSYNT B-Spline Module ........... . ittt aiaan, 98
9.2 Intersection of B-Spline Surfaces . .......... ... . i i e 99
9.3 One-Dimensional Filleting .. ... ... ... i 100
10.0 Recommendations ...........c.cuuiiiiiiieeiereeronenonnnansoanensnas 111
10.1 ACSYNT B-Spline Module ............. i ittt 111
10.2 Intersection of B-Spline Surfaces ........... ... i 112
10.3 Filleting of B-Spline Surfaces ............ . .. . it 113
110 References ......ccoiiiiiiiitistntoesersesrnssasssnseossanssnscansos 120
Appendix A. ACSYNT B-Spline Module Manual ..............cciiiiiitvnernn. 125
A.1 Introduction to the ACSYNT B-Spline Module .................... ... ..... 125

Table of Contents vi



ALl UserGuide ... ..ot i e e e e e 126
A.1.2 Technical Reference . .......... ... 000ttt 126
A.L3 Screen Layout ... ... e e 127
A.2 Tutorial - ACSYNT B-Spline Module ........... ... 129
A.2.1 Orientation (Basic Operation Features) ............................... 130
A22 CreatingaPointDataFile ........... .. ... . .. 133
A.2.3 Non-Uniform Cubic B-Spline Inversion . ........... .. i, 135
A.2.4 Intersection of B-Spline Surfaces ......... ... ... .. ... ... . i ... 137
A.2.5 Filleting of Two B-Spline Surfaces . ...... ... ... i 138
A.2.6 Computation of Mass Properties for a Closed B-Spline Surface ............. 140
A.3 Software Development Using the B-Spline Module ......................... 141
A.3.1 Development Guidelines ......... ... .0ttt e e ereannnn 141
A3.2 Building Menu Modules . ... ... i e e 147
A3 SUMMATY .. e e e e 149
A4 Input Functions in the ACSYNT B-Spline Module ......................... 150
A.4.1 proc_input - Get and process event mode input . ........... ... ... ..., 152
A42 get input - Awaitevent mode input . ... ... e 153
A.43 get pick-Geteventmode pickinput ............ .. .. ... 154
A44 pget string - Get string input fromconsole .............. ... ... ... ..., 155
A45 get valuator - Get valuator input ... ...t e 156
A.4.6 get choice - Get choice or button boxinput ................. ... ... .... 157
A.4.7 proc_std_menu - Process standard menuinput ............... ... ... ..... 158
A.4.8 samp_locator - Sample locatordevice ............ .. ... . ... 159
A49 req locator - Request locatorinput ....... ... ... . . i i, 160
A.4.10 proc_choice - Process choice input .. ... i i e 161
A.4.11 proc_string - Process string event mode input . ........... .. ... .. ... 162
A.4.12 get comp pick - Getcomponent pick . ..... ... .. . i e 163
A4.13 newmenu-Draw new menu . ...... ... e 164

Table of Contents vii



A.4.14 oldmenu - Draw previous menu .. ... .. .....ottiinuneneeeennnnnnnn 165

A.5 File Handling in ACSYNT B-Spline Module .............................. 165
A.6 Display functions in the ACSYNT B-Spline Module ........................ 166
A.6.1 display_geometry - Display specific geometry onscreen . .................. 167
A.6.2 display_intsect - Display intersection data . ........... ... .. . ..., 168
A.6.3 display_nubs - Display B-Spline surface ............ ... ... .. .. ... 169
A.6.4 display_hull - Draw controlhullonscreen ...................... ... ... 170
A.6.5 draw_hull - Draw components control hull .. ....... ... . ... ... ... ..., 171
A.6.6 std_window - Display standard 2D window . ............ ... ... ... ..., 172
A67 open 2D window-Openal2D view ......... ... ... 173
A.6.8 remove 2D window - Removea2Dview ........... ... .. . .. 174
A.6.9 largest_string - Determine largest stringin list ............... ... ... ...... 175
A.6.10 view_active - Determine if view isactive . ......... .. ... ... ... .. . ... 176
A.6.11 display_hermite - Display Hermite geometry ............ ... ..o, 177
A.7 Utility Functions in the ACSYNT B-Spline Module ........................ 177
A.7.1 blend - Compute blending functions ......... ... . ... .. .. i 178
A.7.2 bspline_point - Calculate Point on B-Spline surface ...................... 179
A.7.3 draw_bspline - Draw B-Spline Model ....... ... ... ... . ... . .. o . 180
A.7.4 draw_nubs - Drawa B-Splinesurface ............. ... ... ... ... .. ... 181
A.7.5 draw_u nub - Draw alongconstantuline .................. ... ........ 182
A.7.6 draw_w_nub - Draw along constant wline ................ ... ... ... .. 183
A.7.7 knot_range - Determine knot range . ............ ..ttt 184
A.7.8 invert_nubs - Invert point datato NUBSformat ........................ 185
A.7.9 get nubs hull - Determine control hull ... ..... ... ... ... ... ... . ... 186
A.7.10 invert_u - Invert in parametric u direction ............ .. .. 187
A.7.11 invert w - Invert in parametric w direction . .............c.. ottt 188
A.7.12 curve_hull - Compute control hull foracurve ......................... 189
A.7.13 sur_knots - Calculate knot values .. ....... ... ... ... . i, 190

Table of Contents viii



A7.14
A7.15
A7.16
A717
A7.18
AT.19
A.7.20
A7.21
A.7.22
A7.23

Table of Contents

get_u_knots - Determine knot sequence in u direction ................... 191

get_w_knots - Determine knot sequence in w direction . .................. 192
average_u_dist - Average distance betweentwoulines ................... 193
average_w_dist - Average distance between two wlines ................... 194
insert_u_knot - Insert knot into u knot s‘equence ....................... 195
insert_w_knot - Insert knot into w knot sequence ....................... 196
add_knot_space - Reallocate memory ......... ...t 197
swap_uw - Swap u and w parametric directions . ........... ... ..., 198
flip_u - Flip parametric u direction . ..........c.oiuiiriiiteennnnnien.. 199
flip_ w - Flip parametric w direction . ............. .0ttt eenan. 200
............................................................. 201



List of Illustrations

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

. ACSYNT B-Spline Module Screen Layout ...................... 17
Example Component Data Structure . ..., 19
Example Model Data Structure . .......... .. ... .. 20
Relationship Between a B-Spline Curve and Control Polygon ........ 23
Relationships of Points, Control Vertices and Knots .............. 28
Bezier Control Polygon .......... ... i 31
B-Spline Surface Control Polyhedron .............. ... . ... ..., 32
Knot Insertion in a Cubic B-Spline Curve ...................... 37
End Conditions for Open and Closed Curves .................... 40
Forcing a Tangent Discontinuity . .......... .o 45
Building a Bounding BoX ...... ... e 51
Subdivided Patch and Intersection Curve ....................... 52
B-Spline and Bezier Control Polygons . ............. ... .. ...... 53
Conversion from B-Spline to Bezier Format ..................... 56
Splitting a Control Polygon . ....... ... . i, 60
Computing Equation of a Plane Given Three Points .............. 63
Computing the Minimum Distance Between a Point and a Line ...... 65
Error in Bounded Plane Approximation. ............cvvvivv.... 67
Computing the Intersection Using Triangle Approximations ........ 69

List of Illustrations X



Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.

Figure 43
Figure 44
Figure 45

Intersection Between a Lineand Plane ............. ... .. 71

Intersection Data Storage Schematic ..............c.cvunen.. 73
The Sorting Algorithm . ... ... ... i 75
Simple Curve Fillet ... ... ... . i i i i it 78
Example Conic Definition . ........0.iiiii i, 81
Point Selection for Curve Filleting .......... ... ... ... ..... ... 83
Iso-Parametric CUrves . ... vttt i i it e e e 86
Misaligned Iso-Parametric Curves . ............ciiiiivinnn. .. 88
Chord versus Centripetal Parameterization ..................... 89
Ratio Matching with Centripetal Parameterization ................ 91
Computing the Blend Points fora I-D Fillet .................... 93
Forcing Uniform Knot SpacingatBlend ....................... 94
Defining a Conic for 1-D Filleting ........... ... it 95
Points to Interpolate . ...... ... ... i e 96
Completed One-Dimensional Fillet ............... ... ... ... 97
Wing-Fuselage Intersection .......... ...t 101
Intersection of Two Arbitrary Surfaces ....................... 102
Plate-Cylinder Intersection ............cciiiiinriinennnenn, 103
Cone and Cylinder Before Filleting ............. ... . ..., 105
Filleted Coneand Cylinder ............ .. ..., 106
Plate and Tube Before Filleting ............. ... . ... . ..... 107
Filleted Plateand Tube ............. ... . i, 108
Example Fuselage and Wing Before Filleting ................... 109
Filleted Fuselageand Wing .......... ... i 110
Parametric Corner Filleting - Step 1 ........ ... . ... . ... 116
Parametric Corner Filleting - Step2 ....... ..., 117

List of Illustrations xi



Figure 46. Completed Parametric Corner Fillet ................ .. ... .... 118

Figure 47. ACSYNT B-Spline Module Screen Layout ..................... 128
Figure 48. Hermite Input File Format ......... ... ... ... .. . 0., 134
Figure 49. Header Block Formats . ........ ... .. .. . ... 142
Figure 50. Main Data Structure . .......... ...ttt eneneennnn. 144
Figure 51. Model Data Structure ...... ...ttt enennennnn 145
Figure 52. Global Constant Definitions . .......... .00t 146
Figure 53. Menu Module Format ... ....... ... .. 148

List of Illustrations xii



1.0 Introduction

Aircraft design is divided into the following three phases: conceptual, preliminary and
final design. The geometry requirements of conceptual design codes are less demanding
than those for preliminary design codes. Conceptual design codes, such as ACSYNT
(AirCraft SYNThesis), use geometry descriptions which can be quickly displayed and
easily modified [Wamp88b]. The sculptured surface representations are displayed as
either wireframe or shaded image models. This geometry definition allows the designer
to interactively change a design and easily visualize the effect on the screen. In most
cases the surface definition need only guarantee tangent continuity between surface

patches.

Preliminary design codes require a more complete and integrated geometry definition
than that of conceptual design codes. The geometry definition in the preliminary design
phase is used for detailed aerodynamic (CFD) and radar cross-section analysis. This
type of analysis requires positional, gradient and curvature continuity (C? continuity)
between surface patches. Additionally, intersecting components must be blended

(filleted) to form a C? continuous surface. At present, automated procedures to convert

Introduction 1



the geometry from conceptual to preliminary design systems are not published in the

literature.

1.1 Background

In the early “70’s the conceptual design code called ACSYNT (AirCraft SYNThesis) was
developed at the NASA Ames Research Center in Moffet Field, California [Greg73].
The goal of the ACSYNT project was to produce software to serve as an analysis tool
that is flexible enough to handle a wide range of civil and military aircraft. The software
is parameter based to allow designers to easily generate a design using general
descriptions of an aircraft’s wing, fuselage, nose, etc. ACSYNT was one of the first

conceptual design codes robust enough to handle non-linear optimization.

In 1987 the CAD/CAM laboratory at Virginia Polytechnic Institute and State University
(VP1&SU), under the direction of Dr. Arvid Myklebust, began work on a
computer-aided design system for ACSYNT. The goal of the work at VPI&SU was to
produce a highly interactive graphics interface and geometry data structure that would
enhance the analysis and design capabilities of ACSYNT. This new enhancement
utilized the 3D graphics standard PHIGS (Programmer’s Hierarchical Interactive
Graphics System) to produce visual design feedback while maintaining device
independence [Wamp88a,Wamp88b]. The bi-cubic Hermite representation was used to
describe component surfaces. This representation proved very successful for easy display

and manipulation of wireframe and shaded images of the component surfaces.

Introduction 2



The bi-cubic Hermite representation allows easy specification of both positional and
tangent continuity between surface patches. However, the ACSYNT geometry
description does not guarantee continuity between separate components. Conversion

to one completely C? continuous model is a slow and tedious, manually-assisted task.

Previous research at VPI&SU created and proved the capability to form C? continuous
fillets (blends) between any two intersecting bi-cubic B-Spline surfaces [Glou90]. This
research was used to produce a C? continuous model of one aircraft using point data
from an ACSYNT-based design. The objective was to verify these new concepts and
methods. The process of converting the model was still based on manual input of data

files.

1.2 Objectives

One of the objectives of the ACSYNT Institute at VPI&SU is to develop a
comprehensive design system to convert conceptual aircraft design geometry to
definitions which meet the requirements of preliminary design codes. The conversion
procedure consists of three steps: defining the component geometry with C? continuous
surfaces, computing the curves of intersection between all components and filleting

(blending) the intersecting components to form one C? continuous surface description.

The objectives of this thesis work are divided into two main categories.

Introduction 3



1. Design and develop a user interface and all necessary utilities to serve as a general
platform to test new algorithms in surface and solid modeling. This interface will
be used in the ACSYNT conceptual aircraft design code and will be referred to as

the "ACSYNT B-Spline Module”.

2. Create and code algorithms to convert point data for several intersecting

components into one C? continuous surface definition.

The first goal of designing and coding the ACSYNT B-Spline Module has been shared

by a fellow graduate student, Frederick W. Marcaly.

The surface description chosen is the non-uniform bi-cubic B-Spline surface. The cubic
B-Spline definition guarantees positional, gradient and curvature continuity at patch
boundaries. The C programming language and the 3D graphics standard, PHIGS, will

be used to create the necessary software.

The process of forming a completely C? continuous model involves converting each
component’s geometry to the bi-cubic B-Spline definition, computing the curve of
intersection between all intersecting components and finally, filleting (blending) all
intersecting components to form one C? continuous surface. The conversion of each
component to the bi-cubic B-Spline definition must allow the user to force tangent

discontinuities between patches in special cases (e.g. wing end caps).

Introduction 4



1.3 Thesis Organization

This thesis presents the various concepts and algorithms used to convert the Hermite
point data from ACSYNT to a C? continuous bi-cubic B-Spline model. The overall
design of the user interface and the programming formats are also discussed. The thesis

is divided into the following sections:

1. Literature Survey

2. ACSYNT B-Spline Module

3. B-Splines

4. Intersection of B-Spline Surfaces

5. Filleting B-Spline Surfaces

This structure is used to allow different levels of readers to quickly locate areas of
interest. The “B-Splines” section of this thesis gives a brief description of the B-Spline
representation from a geometric modeling point of view as well as a detailed description
of the steps necessary to convert point data to the non-uniform bi-cubic B-Spline
representation. Readers intending to work with the B-Spline Module in the future
should pay special attention to this section as well as the ACSYNT B-Spline Module
section itself. A comprehensive manual documenting the B-Spline Module is included

in Appendix A.

Introduction 5



2.0 Literature Survey

2.1 ACSYNT B-Spline Module

Wampler [Wamp88a] published the first complete documentation of the ACSYNT
interface in his thesis “Development of a CAD System for Automated Conceptual
Design of Supersonic Aircraft”. His thesis discusses the complete development of the
graphical interface for the conceptual aircraft design code using the 3D graphics
standard PHIGS. This thesis was followed by a paper which reviews the goals of the
PHIGS-based interface and describes the bi-cubic Hermite surface representation chosen

to visualize the aircraft geometry [Wamp88b].

Taylor’s thesis titled “Specification of Mission Cycles for Aircraft Conceptual Design
Using the PHIGS Standard” [Tayl88] was an extension of Wampler’s thesis. This thesis
discusses the use of PHIGS in creating an interactive graphical environment to allow
users to specify aircraft mission cycles. A PhD. dissertation by Jayaram [Jaya89]

investigated methods of developing machine independent tools to aid in the creation of

Literature Survey 6



CAD/CAM software. Jayaram’s dissertation provided ideas for producing tools that

would create menus, receive input or provide feedback in a quick and efficient manner.

Grieshaber’s thesis “Interactive Calculation of Cross-Sectional Areas for Aircraft Design
and Analysis” [Grie88a] discusses the implementation of wave drag analysis into the
ACSYNT design system. Grieshaber’s research included displaying the aircraft in Hess
format and restructuring the data to be suitable for CFD codes and the calculation of
areas of intersection between the aircraft and a cutting plane. Grieshaber’s work was
later extended to include an automatic method of generating cross-sections and the

development of area distribution plots along the aircraft axis [Grie88b].

Other ACSYNT related work included a thesis by Malon titled “Inlet Drag Prediction
for Aircraft Conceptual Design” [Malo89]. Malon’s thesis extended ACSYNT's inlet
drag prediction capabilities. Malon developed methods to predict the inlet drag of
subsonic and supersonic pitot inlets, fixed and translating spike conical inlets and
two-dimensional supersonic inlets. Malon and Brown published a paper based on his
thesis titled “Prediction of Inlet Drag for Aircraft Conceptual Design” [Mala90].
Gloudemans [Glou90] and Wong [Wong90] also completed thesis research related to

ACSYNT. Their work will be discussed in the following sections.

Literature Survey 7



2.2 Intersection Techniques

Most available literature for computing the intersection curves of free-form surfaces is
based on subdivision techniques. At present, only recursive subdivision techniques have
proven to be robust enough to be used in commercial CAD software. Cohen, et al.
[Cohe80] were one of the first researchers to utilize subdivision techniques to manipulate
and display B-Spline surfaces. Their research involved the utilization of subdivision
techniques for the display, interference calculation, contouring, and rendering of
non-uniform B-Spline surfaces. A second paper co-authored by Riesenfeld and Lane
[Lane80] discusses the utilization of subdivision techniques for computing the
intersection curve of two B-Spline surfaces. Their research also discusses the use of
subdivision techniques for the display of both Bezier and B-Spline surfaces. Dokken
[Dokk85] developed an algorithm which first converts several different complex
free-form surface descriptions to the B-Spline representation and then utilizes
subdivision techniques to compute the curve of intersection. After converting the
surfaces, the type of intersection is categorized based on the degree of the curve or
surface and the number of parametric directions used to define the curve or surface. A

separate subdivision algorithm is then utilized to compute the curve of intersection.

In July of 1984 Peng [Peng84] developed a "Divide and Conquer” algorithm. This
approach was an organized utilization of recursive subdivision techniques. Peng utilized
the control polyhedron of the B-Spline surface instead of the actual surface points. The
quad-tree organization was used to recursively subdivide two intersecting surfaces. In
this manner the time to sort intersection data was greatly reduced. Two years later

Lasser [Lass86] also developed a “Divide and Conquer” algorithm. Lasser’s algorithm

Literature Survey 8



differed in that each planar intersection was computed using two triangles instead of the
planar approximation. The triangle intersections resulted in a better approximation of

the actual surface.

Chen and Ozsoy [Chen86] have discussed the use of a hunting algorithm that uses
subdivision techniques to find the first point of intersection and then uses Newton's
method to march along the curve of intersection. Their research includes a dedicated
algorithm for predicting initial values for Newton’s method to guarantee its convergence.
Asteasu [Aste88] also describes an algorithm that uses the previous point to compute the
next point of intersection. Asteasu’s algorithm is successful for computing the

intersection between any two algebraic surfaces.

At VPI&SU, Wong [Wong90] researched the feasibility of finding the intersection curve
of two B-Spline surfaces analytically. His research was based on simplifying the B-Spline
surface by approximating it with ruled surface subsets of B-Spline surfaces. Once the
surface was simplified, elimination methods were utilized to obtain the polynomial which
describes the intersection curve between two B-Spline surfaces. In one case this
polynomial can be solved in closed form. For other cases, polynomials of degree 6,9,12

or 33, must be rooted.

Literature Survey 9



2.3 Filleting of B-Spline Surfaces

Literature on filleting or manipulating the shape of B-Spline surfaces is sparse. Farin,
et al. [Fari86] developed algorithms for the fairing or smoothing of B-Spline curves. The
goal of their research was to modify the B-Spline curve to give a pleasant aesthetic
appearance. Later work by Piegl [Pieg89] discusses ways of modifying the shape of
rational B-Spline curves and surfaces. Piegl’s algorithms are based on moving a control
vertex or adjusting the weight associated with a particular control vertex to pull/push the
curve toward/away from the control vertex. Warren [Warr89] researched methods of
blending two algebraic surfaces into one smooth (C? continuous surface. Warren's
method was successful but this research was limited to a small set of algebraic surfaces

such as cones and cylinders.

Gloudemans [Glou90] was one of the first to publish results of research in filleting
(blending) two arbitrary free form surfaces. His work was based on the non-uniform
bi-cubic B-Spline representation. Gloudemans used an intermediate surface to blend two
intersecting surfaces. The excess on each intersecting surface was then removed to
create one C? continuous surface. The intermediate surface matched the knot vector and

control vertices at the point of blending on both intersecting surfaces.

Literature Survey 10



3.0 ACSYNT B-Spline Module

The ACSYNT B-Spline Module was created from software designed to serve as a
development platform for testing new algorithms in surface and solid modeling. The
design and development of the ACSYNT B-Spline Module was shared between the
author of this thesis and fellow graduate student, Fredrick W. Marcaly. The ACSYNT
B-Spline Module will first be used in the creation of algorithms for converting geometry
descriptions from conceptual design codes to those of preliminary design systems in
particular, the conversion of bi-cubic Hermite geometry from ACSYNT-based designs

to a completely C? continuous non-uniform bi-cubic B-Spline model.

This section presents a brief overview of the design and development of the ACSYNT
B-Spline Module. Further details of the functionality and capabilities of this B-Spline
Module are given in the ACSYNT B-Spline Module manual. For completeness, this
manual has been included in Appendix A. Please note that this manual is updated
whenever new modules are added. Therefore, the reader should refer to the most recent

edition of the manual.

ACSYNT B-Spline Module 11



3.1 Design Considerations

There are three major considerations in the design of the ACSYNT B-Spline Module.
The most important consideration is modularity. Since the ACSYNT B-Spline Module
will serve as a platform for future work, it must be designed to allow new developers to
easily understand and take advantage of the available functions. Furthermore,
developers will need the ability to add new modules to the base platform once their
research is complete. The second consideration is that the user interface and
functionality be the same as those of ACSYNT. This is done to provide the ACSYNT
user with easy transition between the two software systems. The last consideration is
that the software must be portable to most UNIX workstations. For this reason, the

software development will utilize the 3D graphics standard, PHIGS.

3.2 User Requirements

The list of user requirements was created prior to the development of the ACSYNT
B-Spline Module. This list is a compilation of assumed needs of the end user of the
B-Spline Module. As stated earlier, the initial purpose of the B-Spline Module was to
convert ACSYNT geometry to the non-uniform bi-cubic B-Spline definition. Hence,
some of the user requirements are based on the ACSYNT software. A list of the user

requirements follows:

ACSYNT B-Spline Module 12



The interface must be identical to that of ACSYNT - i.e. the user should see no
major differences in the visualization and functionality (“look” and “feel”) of the

software.

The user should be able to read geometry represented in the bi-cubic Hermite or the

non-uniform bi-cubic B-Spline format.

The user should be able to write data files in either the bi-cubic Hermite or

non-uniform bi-cubic B-Spline format.

The user should be able to change the attributes of the geometry represented in both
the bi-cubic Hermite and non-uniform bi-cubic B-Spline definition (color, rendering,

etc.).

All logical input devices should be utilized to provide the user with several methods

of achieving the same goal.

Default values should be provided to help users who are unfamiliar with the system.

The user should be able to view the geometry in any of the four standard views (top,

front, side and isometric).

The user should have the ability to manipulate the orientation of any of the above

mentioned views in order to easily visualize various aspects of the model.

The user should be able to choose between a single view or multi-view windowing

system.

ACSYNT B-Spline Module 13



10. The user should be able to shade the displayed geometry depending on the hardware

shading capabilities of the workstation.

11. The user should be able to access the shading module (if one exists) at any time

during program execution.

3.3 Functional Requirements

The functional requirements of the ACSYNT B-Spline Module refer to file handling,
processing user input, geometry display and user feedback. These requirements also deal

with the limitations of the software and the format for data storage and retrieval.

Functional Requirements

1. Software will be written using the 3D graphics standard, PHIGS, and the C

programming language.

2. Utility routines for the display and manipulation of bi-cubic Hermite and

non-uniform bi-cubic B-Spline surface representations should be available.

3. A linked list data structure will be utilized for the storage of component data in both
the bi-cubic Hermite and non-uniform bi-cubic B-Spline representations (color,

rendering, points per cross section, cross sections, etc.).

ACSYNT B-Spline Module 14



Utility routines should be used to get and process the input from all five logical

input devices (Pick, Locator, String, Choice and Valuator).

Utility routines should be used for the display of menus and manipulation of a menu

tree.

Utility routines should be used for displaying messages in the message area.

The interface should provide an easy method for rotating, translating and scaling

three-dimensional geometry.

Output from the model data structure should be available in formats suitable for
input to the IBM 6090 DAP DEMO and the Initial Graphics Exchange
Specification (IGES).

The system should be able to read input data in the IBM 6090 DAP DEMO or
IGES format.

3.4 Software Description

3.4.1 Screen Layout

The screen layout of the ACSYNT B-Spline Module is similar to the ACSYNT screen

layout. The B-Spline Module screen is divided into the following sections:

ACSYNT B-Spline Module 15



¢ Software Title Area

e Regular Menu Input Area
¢ Standard Menu Input Area
¢ Message Scroll Area

e String Input Echo Area

e Geometry Display Area

Figure 1 on page 17 shows the location of each of these sections on the screen. The
software title and standard menu are the only static images shown on the screen. The
standard menu is a list of options that are available to the user at any time during
execution of the software. The options can be selected via the pick, choice or string
input devices. The regular menu is a dynamic menu on the right side of the screen. The
regular menu display allows room for the title of the menu module and up to thirteen
possible options for the user to choose from. Regular menu items can be selected using

the pick device only. Ultility routines exist for the display and manipulation of menus.

The message scroll area allocates space for up to five messages to give feedback to the
user or prompt the user for input. Ultility routines are available to allow the software
developer to display the messages whenever needed. The string input echo area is used
to display whatever the user types on the keyboard. Also, default input will appear in
this area whenever string input is needed. Finally, the geometry display allows for the
visualization of the design in one or four views. Again, utility routines are available for
controlling the display area. These routines are available to both the code developer and

the user during execution.

ACSYNT B-Spline Module 16



ACSYNT B-SPLINE MODULE
MENU
ITEM1

GEOMETRY TEMo
DISPLAY
ITEM3
AREA
MESSAGE SCROLL AREA STANDARD

MENU

ECHO AREA

Figure 1. ACSYNT B-Spline Module Screen Layout

" ACSYNT B-Spline Module

17



3.5 Data Storage

The B-Spline Module utilizes a linked list format using the C programming language for
storing all component data in a centralized format [Koch89]. The component data
structure contains all data needed to display a component in either the bi-cubic Hermite
or non-uniform bi-cubic B-Spline formats. Additionally, the component color, number,
name and rendering information are also stored in the component data structure. Refer

to Figure 2 on page 19 for an example of the component data structure.

A separate model data structure is utilized to serve as the entry position to the
component data. The model data structure contains the root structure identification
numbers (id’s) for all the possible types of geometry that can be displayed. The root id’s
are initially set to "-1” whenever a new data file is read. In this manner, the root id’s can
serve as flags for determining the types of available data. The model and component
data structure relationships were set up to limit the passing of variables between modules
to only the pointer to the model data structure. An example of the model data structure

is shown in Figure 3 on page 20.

ACSYNT B-Spline Module 18



Component Data Structure

typedef struct compdata_type {

int comp_number;

char comp_name[20];

int acs_id;

int nubs_id;

int *hull_id,

int fillet_id;

int open|2];

int color;

int existence;

int nu;

int nw;

int acs_ncross;

int acs_npts;

float ***acs_pts;
float ***acs_utan;
float ***acs_wtan;
int nu_knots;

int nw_knots;
float *u_knot;
float *w_knot;
float ***hull;

struct compdata_type *next; /*
}comp_data;

Figure 2. Example Component Data Structure

component number */
component name */
structure id  */

open flag I closed 0 open */
component color */

1 exists O does not exist */
rendering in u */

rendering in w */

number of cross sections */
number of pts per xsection */
pointer to component pts */

* pointer to tangents in u dir */

pointer to tangents in w dir */
number of u knots */

number of w knots */

u knot array */

w knot array */

control hull */

pointer to next component */

ACSYNT B-Spline Module

19



Model Data Structure

typedef struct {

int num_comp; /* number of components in model */
int acs_root; /* root structure id */
int nubs_root; /* Non-Uniform B-Spline root id */
int int_root, /* Structure id for intersection data */
int fillet_root;
comp_data *comp; /* pointer to beginning of linked list */
struct intersection_type *intlist; /* list of intersections */

}MODEL,

Figure 3. Example Model Data Structure

ACSYNT B-Spline Module

20



4.0 Spline Curves and Surfaces

4.1 Introduction

The spline curve was first introduced as a drafting tool for the aircraft and shipbuilding
industries. The spline was a strip of flexible material (plastic, wood, etc.) which could
be flexed to pass through a series of design points drawn on a drafting board. Weights
were positioned at the design points to force the spline to pass thru the required points.
Once the spline curve was properly flexed, draftsmen would use the spline as a guide to

draw a smooth curve passing through the specific design points [Mort85].

A key property of the spline is that it can pass through any number of points resulting
in a gradual change in curvature without any kinks. This is accomplished as long as the
spacing of the design points and the stiffness of the spline material are such that the
spline is deformed within its elastic range. Thus, the spline behaves structurally as a
beam under bending loads and the bending equations for a beam can be used to derive

the equation for a plane cubic spline [Mort85].

Spline Curves and Surfaces 21



Two popular curves are the Bezier and B-Spline curves. Both curve types are described
with a set of control vertices that are approximated by the resulting curve. Together, the
control vertices form the control hull or control polygon. The general shape of the

Bezier or B-Spline curve is taken from the shape of the control polygon.

4.2 B-Spline Curves

In general, a B-Spline curve is an approximation curve in which the actual curve points
approximate the control vertices but do not actually pass through them. However, it is
possible to use the B-Spline representation to interpolate points as will be discussed in
later sections. An example of the relationship between a control polygon and the
corresponding B-Spline curve is shown in Figure 4 on page 23. Any point on the curve
represents a weighted average of a specific number of control vertices. In the case of a

cubic curve, any point is a weighted average of at most four surrounding control vertices.

The effect of a control vertex on a point on a curve is controlled by a set of blending
functions. For a cubic curve, there will be at most four blending functions associated
with each point on the curve. These blending functions can be determined in a few
different ways which will be discussed in the following sections. At present it is sufficient
to understand that the shape of a B-Spline curve is defined by a control polygon while
the effect of each control vertex is determined by the blending functions. The following
sections discuss the formulation of the relationships between the blending functions,

control vertices and curve points.

Spline Curves and Surfaces 22



CONTROL
POLYGON

Figure 4. Relationship Between a B-Spline Curve and Control Polygon

Spline Curves and Surfaces

23



4.2.1 B-Spline Curve Definition

The B-Spline curve definition has been well explained by a number of authors [Mort85],

[Yama88], [Bart87] and [Glou90]. Yamaguchi’'s format for the display and rendering of

B-Splines has been adopted for the research in this thesis.

This section defines the

equations for computing the points along a B-Spline curve. All equations given are valid

for the cubic B-Spline representation. The following nomenclature will be used in this

thesis.

B-Spline Nomenclature

k
M

degree of curve (cubic k=3)

order of curve (k+ 1, for a cubic curve M = 4)
point on B-Spline curve

control vertex

control polygon or polyhedron

knot value along curve

knot vector for entire B-Spline curve

blending function

4.2.2 Uniform Cubic B-Spline Curve

The mathematical formulation for a B-Spline curve with n+1 control points is as

follows:

Spline Curves and Surfaces

24



P = gl
i=0

This equation states that any point on the curve is a weighted average of the
surrounding control vertices. The N, refers to the blending functions for an M* order
curve. An interesting characteristic of the B-Spline definition is the manner in which the
blending functions are computed. All but k+ 1 blending functions will be zero for any
point on the B-Spline curve. Hence, any point on the curve is affected by at most k+1
surrounding control vertices. This feature results in giving the B-Spline curve local shape
control. For the cubic B-Spline curve (k = 3), any point is a weighted average of at

most four surrounding control vertices.

The uniform B-Spline curve has the additional characteristic of having the same blending
function coefficients throughout the entire curve. Thus, the equation for the uniform

B-Spline curve can be simplified to the following format.

Pu) = UMQ,
Where:
[—1 3-3 1] (4]
3—6 30 q;
U=|:u3 u2u1] M=—é— Q= f
-3 0 30 g4 1
1 410 942

The “M” matrix contains the coefficients for all blending functions throughout the curve.

This matrix is often referred to as the “Universal Transformation Matrix” for B-Spline

Spline Curves and Surfaces 25



curves and surfaces. The multiplication of the U and M matrices gives the blending

functions for any point along the uniform B-Spline curve.

The B-Spline curve is a composite of curve segments. In the uniform case, each curve
segment starts at a parametric value (u) of 0 and ends at a value of 1. All points within
a cubic curve segment are affected by the same four control vertices. The blending
functions for each point are varied according to the parametric value u. As the
parameter u changes from O to 1 the blending functions will shift the effect of each

control vertex.

It is important to note that when the parameter u is equal to 0, the curve segment is only
affected by the first three control vertices. Likewise, when the parameter u is equal to
1, the curve segment is affected by the last three control vertices. These two limits of the
parametric value represent the transition from one curve segment to another. This
transition is defined as a curve segment breakpoint. The importance of this transition

property will become more apparent in later discussions of the filleting algorithm.

4.2.3 Non-uniform Cubic B-Spline Curve

The non-uniform B-Spline curve allows more shape control than the uniform B-Spline
curve. This additional control is accomplished through a knot sequence or knot vector.
The knot sequence is a set of nondecreasing numerical values. The cubic B-Spline curves
used in this thesis have one knot value for each control vertex with two additional knot

values at each end of the control polygon {Yama88§].

Spline Curves and Surfaces 26



The knot spacing (difference between two subsequent knot values) controls the effect
of a control vertex. Hence, a knot vector of (1, 3, 7, 9) has the same effect as (4, 6, 10,
12). Figure 5 on page 28 illustrates the relationships between the knot sequence, control

polygon, and points along a non-uniform B-Spline curve.

The blending functions for the non-uniform B-Spline curve are determined through a
sum of divided differences of the knot sequence. The following recursive formula can
be used to calculate the blending functions:

=1 f<su<yy,

Ni,l(u)

= 0 otherwise

(u — 1) Ny pp— (1) + (o — @) Npy - ()

N v =
LM Lym—1 — 4 Lhom — Lip

Again, all but k+1 blending functions will go to zero allowing at most k+1 control

vertices to affect any point along the B-Spline curve.

4.2.4 Important Properties of the B-Spline Representation

The following list reviews the important properties of the B-Spline representation which

led to the selection of the B-Spline definition for this research [Yama88].

e (*-! continuity between curve segments. i.e. a cubic B-Spline curve guarantees C?

continuity at curve segment breakpoints.

Spline Curves and Surfaces 27



ta 4
%
tz *
t, ok A éz
qo
to P, P,
>

Number of break points = n (2)

/A Number of control vertices = n + 2 (4)

% Number of knots = n + 6 (8)

CORRESPONDENCE
t,ot, b, ottt ot ot
q 9 9 q
P, P,

Figure S. Relationships of Points, Control Vertices and Knots

Spline Curves and Surfaces

28



¢ Variation Diminishing Property: A B-Spline curve never intersects any arbitrary
straight line more times than its control polygon does. Thus, the shape of a B-Spline

curve is reflected by the shape of its control polygon.

¢ Local Shape Control: The effect of any control vertex is limited to k+1 curve
segments. Any point along a cubic B-Spline curve is affected by at most four control

vertices.

¢ Curve Degree Control: The degree of a B-Spline curve is independent of the number
of control vertices. The degree of a Bezier curve is dependent upon the number of

control vertices.

4.3 Bezier Curves

The B-Spline and Bezier curves are related in that the Bezier control polygon is related
to the B-Spline control polygon. The development of the Bezier curve was published in
1972 at the Renault car company by P. Bezier [Mort85]. Bezier defined the following

four properties prior to developing his spline representation:

1. The curve must interpolate the first and last control points.

2. The curve tangent at p, is defined by the first two control vertices Q; - Q,. The curve

tangent at the last segment p, is defined by the last two control vertices Q, - Q,_;.

Spline Curves and Surfaces 29



3. The second requirement is generalized for the higher order derivatives. For example
the second derivative at p, is defined by the control vertices @y, @) and Q,. This

feature results in unlimited control of the continuity between curve segments.

4. The curve functions must be symmetric with respect to the parametric value u and

(1 - u). This feature allows for the reversal of the direction of parameterization.

Figure 6 on page 31 demonstrates the relationship between the control polygon and the
Bezier curve. The importance of these relationships will become more apparent when

the intersection algorithm is discussed.

4.4 B-Spline Surfaces

The formulation of the B-Spline surface is a direct extension of the B-Spline curve
formulation. The B-Spline surface has the same distinct characteristics as the B-Spline
curve. The B-Spline surface is defined in terms of its control polyhedron as shown in
Figure 7 on page 32. The following equation represents a point on a general B-Spline

surface:

p) = D D gy Nyaalt) Ny ()

i=0j=0

Spline Curves and Surfaces 30



q, CONTROL POLYGON q,

Figure 6. Bezier Control Polygon

- Spline Curves and Surfaces

31



Figure 7. B-Spline Surface Control Polyhedron

Spline Curves and Surfaces

32



This equation is similar to the B-Spline curve formulation with the addition of the

blending function in another parametric direction. As was the case with B-Spline curves,

the uniform B-Spline surface formulation can be simplified as follows:

pi.j(uyw)

where:

= UumMoM™ W’

U=[u3u2u1] W=[w3w2wl]

—

~1 3-=3 1]
| 3-6 30
—30 30
1 410

G—1,7—=1 9%-1,7 9Gi-1,j+1 9i=1,j+2

4, j-1 q;.; qi,ji+1 9i,j+2

Giv1,)-1 Gs1,5 Di+1,j+1 Di+1,j+2

| 942, -1 Gia2,) Te2,j+1 Da2,j42)

The blending functions are calculated recursively in the same manner as those in the

B-Spline curve formulation.

presented in matrix form below.

pifuw) = [Noa(w), Nyg, Nyy, N34l

- _
Gi—1,j—1 9-1,7 Di-1,7+1 9i-1,j+2
9i.j—1 Ui

G.j+1  Gij+2

Giv1,j-1 Giv1,j G41,j+1 941,542

| Fi+2,)-1 Di+2,) B+2,0+1 Ti+2,7+42]]

The non-uniform bi-cubic B-Spline representation is

Noa(w)
Nya(w)
N ()
Ns o)

The variable N(u) represents the blending functions in one parametric direction while the

variable N(w) represents the blending functions in the other parametric direction.

Spline Curves and Surfaces

33



5.0 Knot Insertion

As stated earlier, the break point on a cubic B-Spline curve is a weighted average of three
control vertices. The non-uniform B-Spline curve has a break point at every parametric
value that is equal to a knot value in the knot vector ( u = ). It is sometimes
advantageous to add a knot value into the knot sequence and force a break point in the
curve. These advantages will become apparent in the discussions of the intersection and

filleting algorithms.

De Boor [DeBo72] was the first to publish an algorithm for inserting knots into B-Spline
curves. This algorithm has been refined over the years by Boehm [Boeh80,Boeh85] and

is described by Yamaguchi as follows [Yama88]:
Q = (1 — a)g_y + oyq;

With:

Knot Insertion 34



1 <i-M+1

aJ:{tj‘F:,,_—ltj—tj (- M+2<j<))
0 G=i+ 1
Where:
Q new control vertex
q original control vertex
t knot values (¢ are original knots while t is the inserted knot)
i interval of inserted knot in the knot sequence
i index into array
M order of the B-Spline curve

For the cubic B-Spline curve (M = 4), the a equation can be simplified to:

1 G<i-—3)
t—tj )
M Bl 2 i<
) = o= (-2s5j<)
0 G=i+1)

The non-uniform cubic B-Spline curve shown in Figure 8 on page 37 has a knot vector
T.i = 0,1,2,3,4,5,6,7) with t, = (0,1,2,4,5,8,9,11) and control vertices Q; (j = 0,1,2,3).
Inserting a knot at t = 4.5 (interval of insertion = 3) results in the following insertion

equations:

Q= (1 — a)g_ + oyg;

1 G <0
i 1<j<3
= _— < <
o P 1<j<3
0 G > 4)

Knot Insertion 35



Solving for each new control vertex gives:

O = 9
0, = (1 — 0.875)q, + 0.875¢;
0, = (I — 0.4167)q, + 041674,

Qs = (1 — 0.0)g5

Thus, the control vertex ¢, will remain the same. Control vertices ¢, and ¢, are shifted
and a new control vertex is added at ¢;. Subsequently, the remaining control vertex

indices are shifted (e.g. Qs = ¢s).

The new knot vector T = (0,1,2,4,4.5,5,8,9,11) and control polygon Q, (i = 0,1,2,3,4).

are shown in Figure 8 on page 37.

When inserting a knot into a B-Spline surface the same insertion equations are carried
out for each row or column of the control vertex matrix. If a knot is to be inserted into
the u knot sequence, the insertion equations will be used on each column of the control
matrix. Likewise, if a knot is inserted into the w knot sequence, the insertion equations

will be used on each row of the control matrix.

Knot Insertion 36



* >*
q, q
t, A t,
% >*
’ ‘/\ %
pO p1
ORIGINAL CURVE

CURVE WITH INSERTED KNOT

Figure 8. Knot Insertion in a Cubic B-Spline Curve

Knot Insertion

37



6.0 Cubic B-Spline Inversion

6.1 Uniform Cubic B-Spline Inversion

B-Spline inversion is the process of determining the control polygon for a B-Spline curve
that passes through a given set of points. Yamaguchi [Yama88] defines “The Inverse
Transformation” method for determining the control polygon for a uniform B-Spline

curve.

The inverse transformation process is an iterative technique for finding the control
vertices Q; (j = 0,1,2,...,n) for the set of points P; (i = 1,2,...,n-1) on a uniform cubic

B-Spline curve.

When the parametric variable is equal to zero the point on a uniform cubic B-Spline

curve is affected by only three control vertices as given in the following equation:

1 2 1 i =1.2,..,n—1 (open curve)
i Q1+ ¥ P,
i=0,1,.n (closed curve)

Cubic B-Spline Inversion 38



Because there are two fewer equations than unknowns (extra control vertex at each end

of the B-Spline curve), the following end conditions are defined:

Q = 0, @O, = Q,_, opencurve
O, = Qn, OQuny1 = Qo closedcurve

Figure 9 on page 40 illustrates these end conditions for both the open and closed curves.
With the addition of these end conditions the number of equations is equal to the
number of unknowns allowing the set of simultaneous equations to be solved.
Yamaguchi defines an iterative technique for solving these equations by initially setting
the control vertices equal to the points to be interpolated. Once the control vertices
have been initialized, the following equation can be used to iteratively determine the

contro] vertices:
1 Ak 2 Ak 1 k-1
-1t 3G+ g =P
Where k stands for the k* iteration. This equation can be re-written in terms of QF as

follows:

1

of = P+ 5 {Pz - —%_(Qik—l + Qik+_ll)}

This equation solves for QF in terms of the previously computed control vertices. When
the difference between the &* and the ( &% - 1) iterations are less than some allowable

error, the equation is solved.

The iterative technique for solving the simultaneous equations involves the following

steps:

Cubic B-Spline Inversion 39



Figure 9. End Conditions for Open and Closed Curves

Cubic B-Spline Inversion

40



1. Initially set each control vertex equal to the points on the B-Spline curve. Specify

the end conditions corresponding to the open or closed curve.

2. Solve for the next iteration of control vertices using the equation previously stated.

Specify the end conditions corresponding to the open or closed curve.

3. Compute the difference between the k* and the ( &% - 1) iterations

& = of —of !

4. If the maximum difference between the k* and ( k* - 1) iteration is greater than some

allowable error, repeat steps two and three.

6.2 Non-Uniform Cubic B-Spline Inversion

Gloudemans [Glou90] extended Yamagughi’s inversion technique for uniform curves to
the non-uniform case. The equation for a general B-Spline curve is re-stated and

expanded for a non-uniform cubic curve.

plu) = Z‘h‘ Ni,4(“)
i=0

pPu) = Noa(t)g_1 + Nig(W)g + Npg (805401 + N34 (8)q 42

Cubic B-Spline Inversion 41



It 1s known that a curve break point is affected by only three control vertices for a cubic
B-Spline curve. Gloudemans applied this characteristic by computing the blending
functions for a parametric value u = f, and found that the fourth blending function goes
to zero. Hence, the equation for a point along a non-uniform cubic B-Spline curve for

every u = t is:

o= Noat)gi_1 + Natdg, + Nog(t)g; gy (= 1,2,..,n)

Similar to the formulation for inverting a uniform cubic B-Spline curve, the above

equation can be rewritten to solve for ¢

k 1 k k=
@ = —m {pi - (N0’4(fi)qi_1 + N2.4(ti)qz'+11)}

Before the non-uniform inversion process can be initiated, a knot sequence or knot
vector must be determined for the curve points. The selection of a knot sequence is
referred to as the parameterization of a curve.  The three most common
parameterization techniques are Uniform, Chord length and Centripetal. Each of these

are defined below:

Uniform The spacing between subsequent knot values is uniform (i.e. 7,,, - T; =
T.,2 - T,y ). This process can cause unwanted fluctuations when the

points to be interpolated are unevenly spaced.

Chord length The knot spacing is proportional to the distance between two subsequent

points.

Cubic B-Spline Inversion 42



Centripetal The knot spacing is proportional to the square root of the distance
between points. This parameterization technique allows tighter corners

than those allowed by chord length parameterization.

The chord length parameterization technique is used for the inversion of points in this
thesis. Chord length was chosen for reasons which will be discussed in the filleting

algorithm.

6.2.1 Non-Uniform Cubic B-Spline Inversion Process

The non-uniform cubic B-Spline inversion process is composed of the following five

steps:

1. Parameterize the points to be interpolated (in this case the chord length

parameterization technique is used).

2. Initially set each control vertex equal to the point on the B-Spline curve. Specify

the end conditions corresponding to the open or closed curve.

3. Solve for the next iteration of control vertices using the following equation. Again

specify the end conditions corresponding to the open or closed curve.

k ] \ .
BT N o — (Noaltdai=y + Naa(0as1)}

4. Compute the difference between the k* and the (k* - 1) iterations.

Cubic B-Spline Inversion 43



5 = of -

5. If the maximum difference between the k* and (k* - 1) iterations is greater than

some allowable error, repeat steps three and four.

6.3 Forcing a Tangent Discontinuity

The ability to force a tangent discontinuity in a B-Spline curve gives the designer
freedom to produce sharp corners without inverting two separate sets of points. A good

example of this is the inversion of a square with tangent discontinuities at each corner.

The steps taken to force a tangent discontinuity are described below. Figure 10 on page
45 illustrates the curve to be inverted with a tangent discontinuity and the resulting knot

sequence and control polygon.

Assume we are given a set of points P, (i = 0,1,2,3,4,5) to be interpolated with a
non-uniform cubic B-Spline curve. Additionally, set p, = pi.. The resulting

parameterization will be T; (j = 0,1,2,3,4,5,6,7,8,9,10) with & = f.

In attempting to invert this set of points with the knot sequence computed, a blending
function of zero will result for N5 N.s and N3, at j = 5. Restating the inversion

equation:

1 —
g = N o) {Pi - (NO,A(ti)qik-l + N2,4(fi)qik+11)}

)

Cubic B-Spline Inversion 44



POINTS TO BE INTERPOLATED

@ ¢
P, Py =P,

Py

RESULTING CONTROL POLYGON AND KNOTS

Figure 10. Forcing a Tangent Discontinuity

Cubic B-Spline Inversion 45



It is apparent that this will cause erroneous results when an attempt is made to divide
by zero. This situation can be corrected by setting the control vertex equal to the point

to be interpolated whenever a zero is found for the blending function N,,.

When computing the next control vertex (j = 6) the blending functions N,, and N;, will
be equal to zero resulting in ¢ = g¢,_;,. The resulting control polygon Q;, (1 =

0,1,2,3,4,5,6) will have coincident control vertices forl = 3and1 = 4 (¢ = q.).

Again, the equation for computing a point along a non-uniform cubic B-Spline curve is:

p) = Noa()g_1 + Nig ()@ + Nog (1)g54 1 + Nog (1)g; 45

However, when the parameter value u is equal to any one of the knot values (curve

segment break point) the fourth blending function goes to zero giving:

plu) = Noga(B)gi_y + Nig(t)g + Noyg (0)g; 44

Furthermore, at the parameter value u = # the third blending function also goes to zero

resulting in:

p) = Nos(t)g_ 1 + Nyg(t)g

Finally, the blending functions N, and N, equal 0.5. More importantly, the two control
vertices equal each other and the computed point equals the interpolated point. The
curve has a tangent discontinuity by definition because it is no longer piecewise linearly

continuous over more than one point.

Cubic B-Spline Inversion 46



6.4 Surface Inversion

The surface inversion algorithm used in this thesis is a direct extension of the
non-uniform cubic B-Spline curve inversion process previously stated. The surface

inversion process is repeated for both parametric directions as explained below.

The surface is inverted in the first parametric direction as independent curves. The
control polyhedron from the first inversion is used as the points to interpolate for the
second parametric direction. In this manner the final control polyhedron is a tensor

product of both parametric directions.

Cubic B-Spline Inversion 47



7.0 Intersection of B-Spline Surfaces

Computing the curve of intersection between two free form surfaces has remained a
difficult problem. Knowledge of the curve of intersection is needed for computing a
model’s volume, trimming surfaces, NC tool path determination, etc.. Both Peng
[Peng84] and Lasser [Lass86] have developed "Divide and Conquer” algorithms for
computing the curve of intersection between B-Spline or Bezier Surfaces. The following
section discusses the combined implementation of both algorithms to produce a robust
intersection method for non-uniform bi-cubic B-Spline surfaces. The first section defines
the subdivision algorithm in a generic format. The latter sections discuss how this

algorithm is implemented for the non-uniform bi-cubic B-Spline definition.

Intersection of B-Spline Surfaces 438



7.1 The Subdivision Algorithm

The subdivision algorithm is comprised of the following eight steps:

1. Build bounding boxes for each separate surface (component) by determining the
minimum and maximum X, Y, and Z Cartesian coordinates for the surfaces

(Figure 11 on page 51).

2. Compare two bounding boxes for a possible intersection. If the check is successful,
go to step three, otherwise test a different set of bounding boxes (Figure 11 on page

51).

3. Any two components that pass the component bounding box test are compared on
a patch by patch basis. A bounding box check is performed for each patch on one

component against every patch on the other component.

4. The larger of the two patches which pass the bounding box check is split into four
sub-patches. The sub-patches inherit the controversy (possibility of intersection)

from their parent patch.

5. New bounding box checks are performed on each of the sub-patches against their

parent’s adversary.

6. Steps four and five are repeated until both sub-patches can be approximated by a
plane. At this time the intersection between any two sub-patches can be determined

by calculating the intersection between two planes.

Intersection of B-Spline Surfaces 49



7. Steps three, four, five and six are repeated until all possible intersection checks have

been exhausted between two components.

8. The intersection data is sorted to form one or more continuous curves of

intersection.

Figure 12 on page 52 illustrates the sub-divisions on a patch along with the curve of

intersection.

7.2 Bounding Boxes

Two types of bounding boxes are needed for the subdivision algorithm: component
bounding boxes and patch bounding boxes. Both bounding boxes are computed by
determining the minimum and maximum X, Y, and Z values of the control polyhedron.
This type of of bounding box is larger than one computed from the actual surface points.
However, building a bounding box from actual surface points requires a large number

of computations.

Both the B-Spline and Bezier control polyhedrons approximate the corresponding
surface. However, the Bezier control polyhedron interpolates the surface patch at each
of the corner points. This characteristic of the Bezier control polyhedron results in a
smaller bounding box which reduces the number of subdivisions performed. Also, a
better approximation of the surface is made when the control polyhedron is assumed to
be a plane. Figure 13 on page 53 illustrates the difference between the B-Spline and

Bezier control polygons.

Intersection of B-Spline Surfaces 50



BOUNDING

BOX ' \ \

BOUNDING
BOX "A®

BOUNDING BOX TEST

IFA un <B wmax AND Aumx >B mny THEN
POSSIBLE INTERSECTION EXISTS

Figure 11. Building a Bounding Box

" Intersection of B-Spline Surfaces



INTERSECTION
CURVE

Figure 12. Subdivided Patch and Intersection Curve

Intersection of B-Spline Surfaces

52



B-SPLINE

BEZIER

Figure 13. B-Spline and Bezier Control Polygons

Intersection of B-Spline Surfaces

53



7.2.1 Converting to Bezier Format

A knot multiplicity of three (three coincident knots) for a bi-cubic B-Spline curve results
in the surface interpolating the control vertex. Hence, forcing a knot multiplicity of
three at each patch corner point will result in a Bezier type control polyhedron. Because
a knot value already exists at a patch corner point, only two knot insertions are needed

to obtain a knot multiplicity of three.

An illustration of the conversion to the Bezier type control polygon is shown in
Figure 14 on page 56. The figure displays one curve segment of a non-uniform cubic
B-Spline curve with a knot vector T; 1 = 0,1,2,3,4,5,6,7) and control polygon Q; (j =

0,1,2,3). Inserting a knot a t = # gives the following set of insertion equations:

L= t4_t1)q0+(t4—tl)ql

Intersection of B-Spline Surfaces 54



It should be noted that only two control vertices are affected when a knot is inserted on
top of an existing knot. The new knot vector 7; (i = 0,1,2,3,3,4,5,6,7) and control
vertices Q; (j = 0,1,2,3,4) are also shown in Figure 14 on page 56. Inserting another

knot at t = # will result with the following set of insertion equations:
11 _
9 = 9% = 9

11 1
9 = 4

1o
9 =

1 _ i — 5\ L — L\
93 = (1 T =14 )72 + ( A )‘h = Q

1m _
da =

1 1
s = 44 = g3

This time, only one control vertex was affected by inserting the knot on top of two
coincident knots. This knot insertion is also shown in Figure 14 on page 56. The
control vertex ¢, interpolates the B-Spline curve at the break point associated with the

original knot 4.

Inserting two knots at the other break point of the curve will force the control vertex gs
to interpolate the other break point which was originally associated with knot #. This
process is used to force the control polyhedron of a non-uniform bi-cubic B-Spline patch
to be interpolated by the patch corner points. Two knots are inserted on each side of

the patch in both parametric directions for a total of eight knot insertions.

Intersection of B-Spline Surfaces 55



t 3 t 4
q, qQ,
/—\
t, ORIGINAL CURVE t,
d, %
t, t,
qQ, q,

t, t,
FIRST INSERTION
qo q‘
‘. t, t,
a, q,
t 2 t,
SECOND INSERTION
9 95

Figure 14. Conversion from B-Spline to Bezier Format

Intersection of B-Spline Surfaces

56



7.3 Subdividing a Patch

Subdividing a patch is the process of splitting the control polyhedron of one bi-cubic
patch into four separate control polyhedrons. This is performed by forcing a knot
multiplicity of three in both parametric directions equally spaced between the patch
break points. This process will be demonstrated using the converted control polygon

described in the preceding section.

The curve segment shown in Figure 15 on page 60 has a knot vector T = ( &, &5, &, 1,
14, & ) and control polygon Q = ( ¢;, 43, ¢s, gs ). It is desired that the control polygon
be split to obtain two equally spaced curve segments. In order to accomplish this, a

knot multiplicity of three must be inserted into the knot sequence att = (  + 1 )/2

Inserting the first knot t = ( 4 + # )/2 into the knot vector gives the following a values

for all three affected control vertices.

r— 4
%345 s — I
Substituting ( & + 4 )/2 for t gives:
L+ 1 ,
. _ 2 3 - h 1
34,5 Iy — i3 2, — &) 2

Intersection of B-Spline Surfaces 57



Thus, & = 0.5 for all cases. Knowing this a value saves a number of computations while

performing the subdivision algorithm resulting in less time required to compute the

intersection curve. Using the a value of 0.5 for the knot insertion gives the following

equations:

92

(1 — 0.5)q, + 0.5¢;
= (1 — 0.5)qg, + 0.5¢,

(1 — 0.5)g, + 0.5s

qs

Inserting a second knot t = ( 4 + % )/2 into the knot sequence gives o values of

t— g
1, — 4

04,5 =

= 0.5 0g = —L =00

Which gives the insertion equations:

11
92

11
q3

11
qa

11
qs

11
96

11
q7

%
(1
(1
gqs
96

=@

— 0.5)q1 + 0.5¢,
— 0.5)q, + 0.5¢;5

= {gs

Finally, inserting the knot t = ( #; + # )/2 into the sequence a third time gives « values

of:

Intersection of B-Spline Surfaces

58



Resulting in the insertion equations:

111 11 1
9 =4 =4 = 4

111 1
93 =493 = 4

111 11
Qe = 44

gs' = (1 — 05" + 0.54g

1m _ 1
96 = 4s

11 11
99 = 4 = 45

' =47 =q = s
The curve segment has now been split into two curve segments and the control polygon
has been adjusted to interpolate both curve segments at their end points. Figure 15 on
page 60 displays the control polygon after each of the three knot insertions. The knot
vector and control polygon for the first curve segment are 74 = ( 4, &, 4, ¢, ¢, t ) and
Q4 = ( q, ¢, g4 gs ). The knot vector and control polygon for the second curve segment

are T8 = ( Lot Ly lay Igy Ua ) and QB = ( dss Gss 7, qs).

The same process is performed for splitting a bi-cubic patch. By inserting three knots
in one parametric direction and then inserting three knots in the other parametric

direction the patch can be split into four sub-patches.

Intersection of B-Spline Surfaces 59



Figure 15. Splitting a Control Polygon

Intersection of B-Spline Surfaces 60



7.4 Plane Approximations

The intersection algorithm recursively subdivides a patch until either a plane
approximation can be made or the possibility of an intersection ceases to exist (bounding
box check fails). Two types of checks are made to determine if the patch can be
approximated by a plane. The first of these is to calculate the distance of the interior
four control vertices qu;, 12, gu and g», from the plane described by control vertices g ,
gw and g The distance of control vertex gy from the plane is also computed. The
second check is the distance from the interior edge control vertices and a line drawn
between the corresponding corner vertices. For example, the distance from control
vertices gp and gx to a line drawn between control vertices go and gy is computed. The
largest value returned from all twelve tests is compared against a specified tolerance. If
the largest value is less than the specified tolerance the patch is approximated by a plane.

Refer back to Figure 7 on page 32 for an illustration of a B-Spline patch control

polygon.

7.4.1 Minimum Distance from a Point to a Plane

Hill [Hill90] defines a method which is used in this thesis for finding the minimum
distance from a point to a plane described with three points. The first obstacle of this
algorithm is to define the plane in the form Ax + By + Cz = D, given the three points

Pl,P;andP3.

Intersection of B-Spline Surfaces _ 61



The coeflicients A, B and C of the plane equation represent the plane normal vector,
while the value D is the projection of any vector from the origin to a point lying in the
plane, onto the plane normal vector. An example of this description is shown in
Figure 16 on page 63. The plane normal vector is found by computing the cross
product of the two vectors defined by points P,, P; and P;. The value D is then found
by computing the dot product of the plane normal vector and the point P,. This

sequence of computations is sometimes called the scalar triple product.

Assume the points shown in Figure 16 on page 63 are P, = (1,0, 2), P, = (2, 3,0) and

P; = (1, 2, 4). The vectors a and b are computed as follows:

a =[230]—-1[102]=T70[13-2]
b = [124] —[102]=C[022]
The cross product of vectors a and b is:
i Jj k
n =113 =2|=1[10-22]
0 2 2

Finally, the value D is obtained by the dot product of 7 and n:

D =1[102].[10 -2 2] = 14

Thus, the equation for a plane passing thru the points (1,0,2), (2,3,0) and (1,2,4) is:

10x -2y + 2z = 14

Intersection of B-Spline Surfaces 62



{(axb)

Figure 16. Computing Equation of a Plane Given Three Points

Intersection of B-Spline Surfaces

63



Once the equation of the plane is computed, the minimum distance from a point (x;, y,

z;) to a plane Ax + By + Cz = D is:

Axl +By1 + CZI _D
J4* + B+ C

min

7.4.2 Minimum Distance from a Point to a Line

The cross product is utilized to compute the minimum distance from a point to line
[Lin91]. The minimum distance between the point P,, shown in Figure 17 on page 65

and the line defined by the points P, and P; can computed using the equation:

d = |v]sing

However, the angle theta is unknown. The cross product of the unit vector u and the

vector v is:

| xv| = |ul|v]sin6

The magnitude of a unit vector = 1. Therefore, the equation to compute the distance

from a point to a line is:

Where:

d = minimum distance between a point and a line

Intersection of B-Spline Surfaces 64



Figure 17. Computing the Minimum Distance Between a Point and a Line

Intersection of B-Spline Surfaces

65



- X7 — Xy) = - - — -
. (x3 2) P4 ) ) 7o+ (23 z;)
| P,Ps | | P, | | P,Ps |

Vo= (g —x)i o+ =yl + (3 — 7k

7.5 Computing Plane-Plane Intersections

Approximating the B-Spline patch by a bounded plane can cause large errors in
calculating the intersection of that patch with another surface. Figure 18 on page 67
displays two of the problems associated with this approximation. All four corner control
vertices ( guw , 9 , o3 and ¢;; ) may not lie in the same plane. Therefore, approximating
the patch by a plane described by control vertices g, g and g may result in the
inaccurate calculation of an intersection point. Secondly, if the patch is degenerate as
shown in the second part of Figure 18 on page 67, a bounded plane approximation

could again give an erroneous intersection value.

To correct these problems, the plane-plane intersection is actually computed using
triangle approximations for each patch. Thus, all four corner control vertices are
involved in the intersection calculation. The intersection is computed by testing a series

of line-triangle combinations for intersections.

Figure 19 on page 69 represents two intersecting polygons. The test sequence consists
of first testing for an intersection between triangle 1 of polygon A against any of the four

edges of polygon B. Next, triangle 2 of polygon A is compared with the same four edges

Intersection of B-Spline Surfaces 66



PLANE
APPROXIMATION

U

Figure 18. Error in Bounded Plane Approximation.

Intersection of B-Spline Surfaces



of polygon B. The same sequence of tests are performed using the triangles on polygon
B and edges of polygon A. Once two distinct points of intersection are found, the
line-triangle intersection test is terminated. Both intersection points are stored along
with the corresponding parametric values on both surfaces into a ‘line” data structure.
This line data structure is then added to a linked list for later sorting. The format of the
‘line” data structure will be discussed later. If two points of intersection are not found,

the test is terminated and no intersection data is returned.

7.5.1 Computing the Intersection between a Triangle and a Line

Computing the intersection for a triangle and a line is a simple extension of the
line-plane intersection discussed in Mortenson [Mort85]). Figure 20 on page 71
illustrates an intersection between a line and a plane. The point of intersection can be

found by setting the equation of the plane equal to the equation of the line.
Z+u§+w6 = 5+sl—f

All three parametric values u,w and ¢ are unknown in the above equation. Multiplying

both sides of the equation by the cross product of vectors B and C gives:
(BxC)ed + (BxC)ouB + (BxC)owC = (BxC)eD + (BxC)+sE

Since the cross product of vectors Band Cis perpendicular to both Band C , the above

equation can be reduced to:
(BxC)ed = (BxC)eD + (BxC)esE

Intersection of B-Spline Surfaces 68



TRIANGLE 1

TRIANGLE 1

POLYGON B

POLYGON A

Figure 19. Computing the Intersection Using Triangle Approximations

Intersection of B-Spline Surfaces

69



Rearranging the equation gives:

The same method can be applied to solve for parametric values u and w.
(CxE)+D — (CxE)ed
(E x E ). B

u =

(BXE)sD — (BXE)+4
(Exf)-a

An intersection between the line and the plane exists if the parametric values u, w and
s all fall in the range of 0 and 1 (bounded line and plane). To extend this formulation
to a triangle-line intersection an additional constraint of u + w < 1 must be met. Ifu

+ w is greater than 1, an intersection does not exist between the triangle and the line.

7.6  Sorting the Intersection Data

As mentioned earlier, the intersection points of two planes are loaded into a ‘line’ data
structure. Each line data structure contains both points of intersection as well as the
parametric values on both surfaces corresponding to the points. Once all possible
intersections have been exhausted between two surface patches, a ‘patch’ data structure
is made. The patch data structure contains pointers to the beginning and end of the

linked list of line data structures.

Intersection of B-Spline Surfaces 70



wC

sE

Figure 20. Intersection Between a Line and Plane

Intersection of B-Spline Surfaces

71



Once all possible patch intersections have been exhausted between two components, an
intersection curve data structure is loaded. The intersection curve data structure
contains the pointer to the beginning of the intersection list. This data structure is a part
of another set of linked lists. The intersection linked list is a list of intersection curves
between components of a model. A schematic of the three data structures is shown in

Figure 21 on page 73

These three levels of data are utilized to reduce the number of sorting computations
which reduces the sorting time. The same sorting algorithm is applied to both the line
and patch levels of data storage. The line linked lists are each sorted independently.
Once all line linked lists have been sorted, the algorithm is applied to the patch linked

lists.

7.6.1 The Sorting Algorithm

The algorithm for sorting the intersection data makes no assumptions about the type
of data or relationships between data. The sort is based on the distance between
parametric values of two separate sets of intersection data. The algorithm is similar to
the standard bubble sort algorithm and consists of the following sequence of events

[Aho83].

1. Take the first element from the unsorted list and make it the first element in the

sorted list.

2. Compare the first number of each of the unsorted elements against the first and last

number of the sorted list.

Intersection of B-Spline Surfaces 72



INTERSECTION CURVE

Rt

PATCH

| .

LINE
1516

LINE
17 19

PATCH
LINE LINE LINE LINE
=
02 37 89 1015
Figure 21. Intersection Data Storage Schematic

Intersection of B-Spline Surfaces

73



3. Compare the second number of each of the unsorted elements against the first and

last number of the sorted list.

4. Add the closest number to the list before or after the sorted elements based on the
comparisons. If the closest number is not within a specified tolerance, start a new

list.

5. Repeat steps two, three and four until the unsorted list is exhausted.

Figure 22 on page 75 gives an illustration of the sorting algorithm at either the line or

patch level.

Intersection of B-Spline Surfaces 74



ORIGINAL 2-13 0-1 11-1.2 3-2
DATA
1.) YANK FIRST ELEMENT FROM UNSORTED LIST
SORTED 2-13
UNSORTED 0-1 11-12 3-2
2.) FIND THE BEST CONNECTION IN EITHER FRONT OR BACK
OF THE SORTED LIST FLIPPING ELEMENTS IF NEEDED
SORTED 3-2 2-13
UNSORTED 0-1 11-1.2
3.) REPEAT STEP TWO UNTIL UNSORTED LIST IS EMPTY
SORTED 3-2 2-13 12-11
UNSORTED 0-1
SORTED 3-2 2-13 12-1.1 1-0
UNSORTED

4.) GROUP THE SORTED LIST INTO PATCH OR CURVE

3-0

Figure 22. The Sorting Algorithm

Intersection of B-Spline Surfaces

75



8.0 Filleting

A fillet is an intermediate surface which blends two intersecting surfaces to form one
continuous surface. Preliminary aircraft design codes require fillets to blend adjoining
surfaces with (7 continuity. Gloudemans [Glou90] proved the feasibility of joining two
non-uniform bi-cubic B-Spline surfaces with a fillet surface that guarantees (2
continuity. The following sections discuss the filleting algorithm developed in this thesis.
First, the algorithm will be defined for filleting two curves. C? continuity at the curve
blend point will also be verified. Secondly, an extension to this algorithm for filleting
two surfaces along iso-parametric (one-dimensional filleting) curves will be discussed.
A design concept combining the work of Gloudemans and the author of this thesis for

parametric corner filleting is defined in the recommendations section of this thesis.

Filleting 76



8.1 Curve Filleting

The equation for computing a point along a uniform cubic B-Spline curve is:

Pfu)=UMQ,
Where:
[—1 3-3 1] [ g1 |
3-6 30 qi
U=[u3 uzul] M=—é- Q=
-3 0 30 Gi41
L 1 4 1 0_ | 942 |

It has been shown that any break point along the curve is a weighted average of only
three control vertices. Evaluating the first and second derivative of this equation with

respect to u gives:

1 2 1 .
p(0), = '6"];-._1 + -3—q,~ + "6"11+1 position
1 1
p0); = —7%‘—1 + '711;.,.1 slope
Pu0) = gy — 2q; + i1 curvature

The above equations verify that only the control vertices ¢;_,, ¢; and ¢;,, affect the
position, slope and curvature of a cubic B-Spline curve at the curve segment break
points. This demonstrates that two curves can be joined to form a C? continuous blend
providing they share the same three control vertices at the blend point. Figure 23 on

page 78 illustrates the blending of two intersecting curves with an intermediate curve.

Filleting 77



CURVE A . QA6

-
-

BLEND POINT

CURV= B

BLEND POINT

INTERSECTION POINT

FILLET CURVE

Figure 23. Simple Curve Fillet

Filleting



8.1.1 Forcing a Break Point

The algorithm described above is limited to blending two intersecting curves at a curve
segment break point. Most often, it will be desired to blend two curves at a location
other than a break point. The use of knot insertion allows a curve segment break point
to be created at any location along the curve. Thus, knot insertion will allow the curves

to be blended at any location.

The curve filleting algorithm was described using uniform cubic B-Spline curves.
Inserting a knot into the knot sequence results in a non-uniform cubic B-Spline curve.
The position, slope and curvature of a non-uniform cubic B-Spline curve are a function
of four control vertices and six knot values. However, similar to the uniform curve, the
position, slope and curvature at a curve segment break point are a function of only three

control vertices and five knot values.

Blending two non-uniform cubic B-Spline curves involves matching the knot spacing of
five knot values while sharing the same three control vertices at the blend point. The
best way of achieving this condition is to insert two knots on either side of the forced
break point. The spacing of the knots is irrelevant as long as it matches the spacing of
the other curve being blended with it. The algorithms used in this research force a

uniform knot spacing on both sides of the forced break point.

Filleting 79



8.1.2 Shape Control

The objective of this section is to discuss how a conic definition can be used to control
the shape of the intermediate fillet curve. An example of the conic definition is shown
in Figure 24 on page 81. The conic is defined using three points (A, B, C) and a
parametric value u. A parameter value of zero corresponds to a straight line between

points A and B, while a parameter value of one results in the tightest corner possible.

The conic representation is incorporated for shape control by using the point of
intersection as point C in the conic definition. Points A and B are set equal to the break
point at which the blend is to be made. The parameter value is now used to control the
shape of the conic between the two intersecting curves. Points along the conic are used
as interpolation points along with the three control vertices on each curve as input for

“Fixed Control Vertex Inversion” [Glou90].

Fixed control vertex inversion is an extension to the inversion algorithm discussed
earlier. In fixed control vertex inversion, actual control vertices are flagged for
protection against inversion. Thus, known control vertices can be used along with
actual interpolation points to control the shape of the curve while guaranteeing a C?

continuous blend at the end points.

Filleting 80



Figure 24. Example Conic Definition

81

Filleting



8.1.3 Point Selection

A poor selection of points along the conic can result in unwanted inflections in the fillet
curve. Each end of the fillet curve is controlled by three control vertices and five
uniformly spaced knots. The interior knot spacing is determined based on the chord
length between the points to be interpolated. However, knots # thru # must be
uniformly spaced. The relationships between knots, control vertices and points along
the curve ( Figure 5 on page 28 ) show that the break points p, thru p, must be uniformly
spaced to coincide with the chord length parameterization for determining knot values.
Furthermore, the break point p;, is the first point to be interpolated because the control
points g, and g, are taken from the curve with which the fillet curve is to be blended.

Figure 25 on page 83 illustrates this concept.

To ensure a smooth blend, the point spacing around the break point on the original
curve is determined. The first point to be interpolated on the conic is at a distance equal
to twice this point spacing from the blend point. The resulting intermediate break point
p1 will be the mid-point of the blend point and the first point to interpolate. Hence, the

first three break points are uniformly spaced.

8.1.4 Curve Filleting Process

The following is a list of steps necessary to fillet (blend) two curves with a non-uniform

cubic B-Spline curve:

Filleting 82



ADDED KNOTS ON ORIGINAL CURVE

* X * * X
t 3 t 4 t 5 t 6 t 7
CONTROL
A A 2 VERTICES
% % Q,
Po P, P,

RESULTING UNIFORM
POINT SPACING

SAME KNOT SPACING AS SEQUENCE ABOVE

X k% x

t, t, t, t, t,
JAN A A FIRST POINT TO
q q q INTERPOLATE

Figure 25. Point Selection for Curve Filleting

Filleting

83



1. Use the subdivision algorithm discussed earlier to compute the point of intersection

between both curves.

2. Define an offset distance from the point of intersection for the fillet curve to join

both intersecting curves.

3. Insert knots at the blend point, if needed, on both curves to force a curve segment

break point.

4. Define a conic between the intersecting curves using the point of intersection as

point C. Set points A and B equal to the blend points of the fillet.

5. Vary the parameter value u for the conic until the desired shape is achieved between

the curves.
6. Select points along the conic as interpolation points for the B-Spline curve.

7. Use the interpolation points along with the interior three control vertices at each

blend point as input for the fixed control vertex inversion process discussed above.

8.2 One-Dimensional Filleting

One-dimensional filleting refers to blending two intersecting surfaces in one parametric
direction along iso-parametric curves. Figure 26 on page 86 illustrates the concept of

an iso-parametric curve. An iso-parametric curve is a curve produced on a surface patch

Filleting 84



for a given constant value of the parameter u or w. In this thesis the term iso-parametric
curve will refer to the curve produced at a constant u or w parameter that is equal to a
knot value in the knot vector. Two intersecting surfaces can be blended along

iso-parametric curves in the same manner as the curve filleting algorithm defined earlier.

The position, slope and curvature of any point on a bi-cubic B-Spline surface are a
function of nine control vertices and five knot values in both parametric directions.
Hence, guaranteeing a C? continuous blend requires that the surfaces share nine control
vertices for each blend point. Additionally, the knot spacing over a span of five knots

in both parametric directions must be proportional.

One-dimensional filleting requires a blend point and conic definition to be computed
along each iso-parametric curve involved in the filleting. Each blend point is calculated
independent of the other iso-parametric curves. The farthest parametric value is then
used as the base for computing the break point for each surface. Similar to the curve
fillet, a uniform knot spacing is forced around the break point. The uniform knot

spacing is computed based on the knot spacing around the farthest blend point.

8.2.1 Alignment of Iso-Parametric Curves

Blending two surfaces along iso-parametric curves requires the surfaces to have the
iso-parametric curves in the direction of the fillet aligned with each other to ensure
against unwanted inflections in the fillet surface. More importantly, the knot spacing in

the other parametric direction must be proportional.

Filleting 85



ISO-PARAMETRIC
W CURVES

Figure 26. Iso-Parametric Curves

ISO-PARAMETRIC
U CURVES

Filleting

86



It is often necessary to insert knots into one or both of the intersecting surfaces to
prepare them for filleting. Shown in Figure 27 on page 88 are two intersecting surfaces
that do not have aligned iso-parametric curves for filleting. It can be easily realized that
two knots must be inserted on the first surface while one knot must be inserted on the

second surface.

It was mentioned earlier that chord length parameterization was used for inverting the
surface geometry. If both surfaces have been parameterized using chord length
parameterization, matching the ratio of individual knot spacing to total knot spacing
between the surfaces will result in aligned iso-parametric curves. This process will meet
the knot spacing requirements for a (C? continuous blend while also aligning the

iso-parametric curves to ensure against unwanted inflections in the blend surface.

To illustrate the importance of chord length parameterization, refer to Figure 28 on
page 89. The figure displays the same two intersecting surfaces, once with chord length
parameterization and once with centripetal parameterization. Using the chord length
parameterization gives a total knot spacing of 3 for both surfaces. The centripetal

method has a span of 3 for the surface A and a span of 2.414 for surface B.

Comparing the ratio of an individual knot span to the total knot span using the chord

length parameterization technique gives:

L E-d 1 _ o, w8 1
] i — 3 : 2 —F 3
S 3 6 3
A_zg’—tf _i#:B_‘f—If.__l_
27 4 A 2 = B B~ 3
2 -5 -1

A knot must be inserted on surface A at:

Filleting 87



Figure 27.

SURFACE 1

—

SURFACE 2
SURFACE 1 INSERTED KNOTS

/

/

SURFACE 2

Misaligned Iso-Parametric Curves

Filleting

88



SURFACE B

SURFACE A

CHORD LENGTH PARAMETERIZATION

2.414
SURFACE B

SURFACE A

CENTRIPETAL PARAMETERIZATION

Figure 28. Chord versus Centripetal Parameterization

Filleting

89



B B

s — 1

A A N 4 A 1

lpew = (IS —[3)'ﬁ +I,‘4 = B.T +1=2
[6—[3

The knot sequences for both surfaces are matched. The inserted knot in surface A aligns

the iso-parametric curves and the surfaces are now ready for filleting.

Performing the same comparison for the centripetal parameterization gives:

p g -5 L, 5 y-8 1
! P 2.414 ! &~ iF 3

According to the above calculation, a knot must be inserted on surface B between #, and
t,. This clearly adds an extra iso-parametric curve. Carrying out the ratio matching for
the centripetal parameterization gives a knot sequence on surface A of (0, 1.0, 1.24, 2,
3) and a knot sequence on surface B of (0, 0.8, 1.0, 1.61, 2.41). These two knot vectors
meet the proportional knot spacing requirements. However, the resulting iso-parametric
curves will not be aligned which can cause shape problems on the fillet surface.
Figure 29 on page 91 illustrates the resulting iso-parametric curves for the ratio

matching routine with centripetal parameterization.

8.2.2 The One-Dimensional Filleting Process

The process of filleting (blending) two surfaces along iso-parametric curves can be
divided into the steps listed below. An example one-dimensional fillet is also included.

The surfaces are filleted in the parametric w direction.

Filleting 90



2.414
SURFACE B

N

SURFACE A

Figure 29. Ratio Matching with Centripetal Parameterization

Filleting

91



1. Compute the curve of intersection using the subdivision method described earlier.

2. Define an offset distance from the curve of intersection for the fillet surface to join

both intersecting surfaces.

3. Use the offset distance to compute the blend point on both surfaces for each

iso-parametric curve involved in the fillet (Figure 30 on page 93).

4. Insert five knots uniformly spaced from the largest or smallest parametric w value

on both surfaces (Figure 31 on page 94).

5. Define a conic between the blend points along all iso-parametric curves involved in

the fillet (Figure 32 on page 95).

6. Select points along each of the conics as interpolation points for the B-Spline

surface.

7. Use the interpolation points and the three control vertices on both surfaces along
each iso-parametric curve as interpolation points for the fixed control vertex
inversion. Additionally, three extra control vertices on the outside edges of both

surfaces must be added as inputs for the inversion process (Figure 33 on page 96).

The completed fillet is shown in Figure 34 on page 97. The fillet surface is shown in
solid lines while the original surfaces are shown in dashed lines. The original surfaces
have also been trimmed to remove the sections which have been replaced with the fillet

surface.

Filleting 92



BLEND POINTS

Figure 30. Computing the Blend Points for a 1-D Fillet

Filleting 93



Figure 31.

Forcing Uniform Knot Spacing at Blend

UNIFORMLY INSERTED
KNOTS

Filleting

94



Figure 32. Defining a Conic for 1-D Filleting

CONIC
DEFINITION

Filleting

95



POINTS TO
INTERPOLATE

Figure 33. Points to Interpolate

CONTROL
VERTICES

Filleting

96



Figure 34. Completed One-Dimensional Fillet

Filleting

97



9.0 Results

9.1 ACSYNT B-Spline Module

The design and coding of the ACSYNT B-Spline Module has been completed. The
B-Spline Module can read files containing point data from ACSYNT and display the
geometry using the bi-cubic Hermite or non-uniform bi-cubic B-Spline surfaces. The
B-Spline Module has been released to all members of the ACSYNT Institute with the
V1.1.0 release of ACSYNT on January 25, 1991. A utility function has also been
included as part of the ACSYNT release to write out the ACSYNT geometry data in a

form which can be read by the B-Spline Module.

The ACSYNT B-Spline Module is also being used by several graduate students at
Virginia Tech as a development platform for their research in geometric modeling. A
few of the research projects currently using the B-Spline Module include: the
determination of parametric data for aircraft components (wing span, fuselage length,

etc.) from arbitrary B-Spline surfaces and the testing of modeling algorithms.

Results 98



9.2 Intersection of B-Spline Surfaces

The creation of the methods and software for computing the intersection between any
two arbitrary non-uniform bi-cubic B-Spline surfaces has been completed. The
intersection method has been successfully tested on several arbitrary B-Spline surfaces.
Once the intersections have been computed, a linked list data structure is used to store

the data for later display or for use in other modules (e.g. filleting).

The intersection method has been incorporated as part of the ACSYNT B-Spline
Module. The intersection method can be accessed through menu items in the B-Spline
Module (MAIN (GEOMETRY (B-SPLINE (INTERSECT)))). The user has the option
of computing the intersection between all components in the model or selecting
individual components to be used for the intersection algorithm. The user also has the

option of displaying existing intersection data if it is not already on the screen.

Figure 35 on page 101 thru Figure 37 on page 103 illustrate the results of the
intersection method. Each figure includes the maximum error in the intersection, the
tolerance specified for making a planar approximation and the number of subdivisions
performed. The real time to compute the intersection curve on an IBM RISC System

6000 Model 530 is also given.

Results 99



The maximum error is determined by comparing each intersection point found on the
first surface against the corresponding point on the second surface. The largest distance
between two corresponding points is then reported as the maximum error of the
intersection method. The actual point of intersection falls somewhere between the
points on both surfaces, therefore, this is a conservative method of computing the error.
The error value is a function of the specified tolerance for making a planar
approximation and does not depend on the size of the surfaces involved in the

intersection.

9.3 One-Dimensional Filleting

The creation of the one-dimensional filleting method has been completed. The algorithm
is based on extensive user interaction. The user must specify the parametric direction
of the fillet along both surfaces, the offset distance for the blend surface to join both
surfaces and the parametric value for defining the conic. The parametric direction
specifies the direction in which the filleting algorithm should move on both surfaces from
the intersection curve. If a wrong direction is given, the routine will report errors to the
user and the filleting process must be re-initiated. The offset distance and parametric

value for defining the conic are defined in the discussion on the filleting technique.

Figure 38 on page 105 thru Figure 43 on page 110 illustrate the results of the
one-dimensional filleting method. The results of each fillet are presented in two separate

figures. A gray scale shaded image of the two intersecting surfaces is shown in the first

Results 100



Maximum Error = 0.002141
Tolerance = 0.003

Number of Subdivisions = 574
Time (sec) = 2.56

Figure 35. Wing-Fuselage Intersection

Results 101



Maximum Error = 0.002596
Tolerance = 0.003

Number of Subdivisions = 5292
Time (sec) = 16.54

Figure 36. Intersection of Two Arbitrary Surfaces

Results 102



Number of Subdivisions = 598

Maximum Error = 0.002491
Time (sec) = 2.68

Tolerance = 0.003

Figure 37. Plate-Cylinder Intersection

103

Results



of each set of figures. The resulting fillet is then shown as a shaded image in the
following figure. The input parameters to produce each of the fillets shown are given in

the B-Spline Module tutorial in Appendix A.

Results 104



Figure 38. Cone and Cylinder Before Filleting

Results 105



Figure 39. Filleted Cone and Cylinder

Results 106



Figure 40. Plate and Tube Before Filleting

Results 107



lleted Plate and Tube

F

Figure 41.

108

Results



Figure 42. Example Fuselage and Wing Before Filleting

Results 109



Figure 43. Filleted Fuselage and Wing

Results 110



10.0 Recommendations

10.1 ACSYNT B-Spline Module

Although the ACSYNT B-Spline Module provides a robust interface for the conversion
of ACSYNT data to non-uniform bi-cubic B-Spline surface representations, several
topics need further investigation and development. The most important of these is the
development of a shading module for B-Spline models. The shading algorithm should
be developed to take full advantage of the hardware shading capabilities of most
graphics workstations. In most cases, it will be necessary for the shading module to
tessellate the B-Spline surfaces and compute polygons and polygon normals for the
shading routines. The tessellation routine should allow the user to specify the number

of polygons desired on the shaded image.

Research into the development of a method for creating models directly in the B-Spline
surface format would enhance the capabilities of the B-Spline Module. The method used

for designing components should allow users to build objects based on parametric data

Recommendations 111



similar to the manner in which the ACSYNT main module creates Hermite data. The
parametric design should be written as an interface to the B-Spline Module. In this
manner parametric interfaces for several different design criteria could be integrated into
the B-Spline Module. Cross-section design of components could also be added to the
design module. The cross-section design should allow users to move control points on
any specified cross section and see the resulting change to the surface interactively.
Integration of these tools will allow designers to enter a few widely used parameters to
get a basic configuration of their design. The cross section design module would then

allow the designer to fine tune the design for future analysis or visualization.

10.2 Intersection of B-Spline Surfaces

The sorting routine used in the intersection method mimics the widely used bubble sort
algorithm. This type of sorting is called an »? sort where n is the number of elements to
be sorted. The utilization of the quad-tree data structure will greatly reduce the number
of elements in any one sorting. Therefore, the quad-tree data structure would reduce the
sorting time and speed up the overall time required to compute the curve of intersection

between two B-Spline surfaces.

Another method for speeding up the intersection time is the development of a hunting
algorithm once an intersection point has been found. Most hunting algorithms use
subdivision techniques to find the first point of intersection. Once a point of intersection

is found, numerical methods such as Newton’s method are used to march across the

Recommendations 112



intersection curve. These marching methods rely on good initial guesses for proper

convergence.

10.3 Filleting of B-Spline Surfaces

The one-dimensional filleting algorithm described for blending two surfaces along
iso-parametric curves must be extended to include a two-dimensional or corner filleting
method. An algorithm for parametric corner filleting was designed and tested by
Gloudemans [Glou90] at VPI&SU. This algorithm was verified using special user input

for the blend points and matching of knot sequences.

The algorithm developed by Gloudemans isolated the parametric corner by inserting
four knots in both parametric directions. The four knots force a break point at the
parametric corner. Additionally, both sides of this break point are completely
independent of each other. In this manner, changes to one side of the corner have no

effect on the opposite side of the corner.

The following sequence of steps documents Gloudemans” parametric corner filleting
algorithm along with additional research topics which must be tackled in order to

produce a robust two-dimensional filleting method.

1. Compute the curve of intersection between both surfaces using the subdivision

algorithm discussed in this thesis.

Recommendations 113



Write a ray tracing algorithm to determine the filleting direction along both surfaces.
The algorithm could consist of defining a vector from the origin to any point along
the surface. If the vector intersects the surface an odd number of times, the point
1s inside the surface and is in the wrong direction for filleting. If the vector intersects
the surface an even number of times, the point lies along the proper filleting

direction for that surface.

Once the filleting directions are determined, compute the blend curve where the fillet
surface should blend both surfaces. An offset distance from the intersection curve
can be used to compute this curve. The blend curve is shown in Figure 44 on page

116 [Glou90].

Define several conics along the intersection curve between the blend curves on both

surfaces.

Compute the intermediate points along both surfaces Aup to the blend curve along
with points along the conic definitions to provide shape control of the fillet. These

points are shown in Figure 45 on page 117 for the example fillet [Glou90].
Invert the points in the parametric u direction only.

Add three knots at the parametric value of the fillet surface which corresponds to

the corner of surface A.

Load the surface data of both components involved in the intersection into
temporary data structures. This is done in order to manipulate the temporary data

without destroying the original surface description.

Recommendations 114



9. Insert three knots at w = 2.0 into surface A in order to isolate the parametric

corner.

10. Insert two uniformly spaced knots on either side of the parametric line u = 2.0 on

surface A and store the control vertex values along the u = 2.0 line.

11. Repeat steps 9 and 10 for the parametric w line on surface A.

12. Insert three knots into surface B at u = 5.0 in order to match the number of control

vertices at both ends of the fillet.

13. Add two uniformly spaced knots along the break line of surface B.

14. Store the fillet blend control vertices from surface B.

15. Invert the fillet surface along the parametric w direction using fixed control vertex

inversion. The final example fillet is shown in Figure 46 on page 118.

The above algorithm assumes that the surfaces have similar knot sequences for blending.
An intriguing area of research for producing a two-dimensional fillet is the
pre-processing of the surfaces. A knot ratio matching method must be created to take
into account the parametric corner on one of the surfaces. For instance, the original
knot sequence involved in the preceding example fillet is 4.0, 3.0, 2.0, 3.0, 4.0. In this
case, the knot sequence for the corner fillet first goes along the parametric w direction
and then turns a corner and goes along the parametric u direction. This knot sequence
would first be converted to a nondecreasing knot sequence (e.g. 0.0, 1.0, 2.0, 3.0, 4.0)

before any ratio matching is performed.

Recommendations 118



Figure 44, Parametric Corner Filleting - Step 1

Recommendations 116



SURFACE A 4.0
\

2.0 U
2.000

3.000

7.0

4.000

/

BREAKPOINTS
RESULTING
FROM INSERTED
KNOTS

Figure 45. Parametric Corner Filleting - Step 2

Recommendations

117



FILLET
SURFACE

Figure 46. Completed Parametric Corner Fillet

7/
4 RELIMITED
SURFACE B

Recommendations

118



The above mentioned steps include the research done by Gloudemans and the filleting
method designed by Gloudemans and the author of this thesis. A robust method for
producing parametric corner fillets is the final step in converting conceptual design
geometry to a format that meets the requirements of preliminary design systems for

aircraft design.

Recommendations 119



11.0 References

[Aho82] Aho, A., Hopcroft, J., Ullman, J., “Data Structures and Algorithms”,

Addison-Wesley, 1982.

[Aste88] Asteasu, C., “Intersection of arbitrary surfaces”, Computer Aided Design,

20, No. 9, 1988, pp.533-538.

[Boeh80] Boehm, W., Hartmut, P., “Inserting new knots into B-Spline Curves”,

Computer Aided Design, 12, No. 4, 1980, pp.199-201.

[Boeh85] Boehm, W., “The Insertion Algorithm”, Computer Aided Design, 17, No.

2, 1985, pp.58-59.

[Chen86] Chen, John J., Tulga, M., “An Intersection Algorithm For C? Parametric
Surface”, Knowledge Engineering and Computer Modelling in CAD, Proceedings of

CADS6, 1986, pp.69-T7.

References 120



[Cohe79] Cohen, E., Lyche, T., Riesenfeld, R., “Discrete B-Spline and Subdivision
Techniques in Computer-Aided Geometric Design and Computer Graphics”,

Computer Graphics and Image Processing, 14, 1987, pp.87-111.

[Debo72] De Boor, C., “On Calculating with B-Splines”, Journal of Approximation
Theory, 6, 1972, pp.50-62.

[Dokk85] Dokken, T., “Finding intersections of B-spline represented geometries
using recursive subdivision techniques”, Computer Aided Geometric Design, 2, 1988,

pp.189-195.

[Fari87] Farin, G., Rein, G., Sapidis, N., Worsey, A. J., “Fairing cubic B-spline

curves”, Computer Aided Geometric Design, 4, 1987, pp.91-103.

[Glou90] Gloudemans, J. R., “Filleting of Aircraft Components Using Non-Uniform
B-Spline Surfaces”, Thesis - Master of Science in Mechanical Engineering, Virginia

Polytechnic Institute and State University, 1990.

[Greg73] Gregory, T. J., “Computerized Preliminary Design at the early stages of
Vehicle Definition”, NASA TM X-62,303, 1973.

[Grie88] Grieshaber, M., “Interactive Calculation of Cross-Sectional Areas for
Aircraft Design and Analysis”, Thesis - Master of Science in Mechanical

Engineering, Virginia Polytechnic Institute and State University, 1988.

[Grie89] Grieshaber, M., Jayaram, S., Jayaram, U., Myklebust, A., Mahan, J. R,,
“Interactive Aircraft Section Calculation for Drag”, UPCAEDM '89, 1989,
pp.113-120.

References 121



[Hill90] Hill, F. S. Jr., “"Computer Graphics”, MacMillan Publishing Company, 1990.

[Jaya89] Jayaram, S., "CADMADE - An Approach Towards a Device-Independent
Standard for CAD/CAM Software Development”, Dissertation - PhD. in

Mechanical Engineering, Virginia Polytechnic Institute and State University, 1989.

s

[Koch89] Kochan, S., “Programming in C”, Hayden Books, 1989.

[Lin91] Lin, W., “An Intelligent, Object-Oriented Software Development
Environment for Geometric Modeling in Design”, Dissertation - PhD. in

Mechanical Engineering, Virginia Polytechnic Institute and State University, to be

submitted, 1991.

[Lane80] Lane, J., Riesenfeld, F., “A Theoretical Development for the Computer
Generation and Display of Piecewise Polynomial Surfaces”, IEEE Transactions on

Pattern Analysis and Machine Intelligence, 1, 1980, pp.35-46.

[Lass86] Lasser, D., “Intersection of parametric surfaces in the Bernstein-Bezier

representation”, Computer Aided Design, 18, No. 4, 1986, pp.186-192.

[Mala89] Malan, P., “Inlet Drag Prediction for Aircraft Conceptual Design”, Thesis
- Master of Science in Mechanical Engineering, Virginia Polytechnic Institute and

State University, 1989.

[Mala90] Malan, P., Brown, E. F., "Prediction of Inlet Drag for Aircraft Conceptual
Design”, 17th ICAS Congress, Stockholm, Sweden, 1990, pp.568-584.

[Mort85] Mortenson, M., “Geometric Modeling”, John Wiley and Sons, 1985.

References 122



[Peng84] Peng, Q. S., “An algorithm for finding the intersection lines between two

B-spline surfaces”, Computer Aided Design, 16, No. 4, 1984, pp.191-196.

[Pieg89a] Piegl, L., “Modifying the shape of rational B-Spline. Part 1: curves”,
Computer Aided Design, 21, No. 8, 1989, pp.509-518.

[Pieg89b] Piegl, L., "Modifying the shape of rational B-Spline. Part 2: surfaces”,
Computer Aided Design, 21, No. 9, 1989, pp.538-546.

[Tayl88] Taylor, A., "Specification of Mission Cycles for Aircraft Conceptual Design
Using the PHIGS Standard”, Thesis - Master of Science in Mechanical Engineering,

Virginia Polytechnic Institute and State University, 1988.

[Wamp88a] Wampler, S., “Development of a CAD System for Automated
Conceptual Design of Supersonic Aircraft”, Thesis - Master of Science in

Mechanical Engineering, Virginia Polytechnic Institute and State University, 1988.

[Wamp88b] Wampiler, S., Myklebust, A., Jayaram, and Gelhausen, P., “Improving
Aircraft Conceptual Design - A PHIGS Interactive Graphics Interface For
ACSYNT", American Institute of Aeronautics and Astronautics, AIAA-88-4481,
1988.

[Warr89] Warren, J., “Blending Algebraic Surfaces”, ACM Transactions on
Graphics, 8, No. 4, 1989, pp.263-278.

[Wong90] Wong, C., “Intersection of B-Spline Surfaces By Elimination Method”,
Thesis - Master of Science in Mechanical Engineering, Virginia Polytechnic Institute

and State University, 1990.

References 123



[Yama88] Yamaguchi, F., "Curves and Surfaces in Computer Aided Geometric

Design”, Springer-Verlag, 1988.

References 124



Appendix A. ACSYNT B-Spline Module Manual

A.1 Introduction to the ACSYNT B-Spline Module

This manual is a technical reference for future research and development in geometric
modeling as well as a simple user’s guide to orient new users with the ACSYNT B-Spline
Module. The first part is a comprehensive tutorial of the B-Spline Module’s capabilities.
The second section of this manual gives a detailed explanation of the organization of the

B-Spline Module along with descriptions of each function available.

Since this code was developed to serve as a platform for future research, some of the
algorithms may only work under certain assumed conditions or “special cases”. Such

algorithms will be preceded with disclaimers to warn the user of any such assumptions.

Appendix A. ACSYNT B-Spline Module Manual 125



A.1.1 User Guide

The user guide section of this manual consists of step by step tutorials on the use of the
different algorithms available in the B-Spline Module. The tutorials are accompanied
by various examples and brief descriptions of the purpose of each algorithm. Please pay
special attention to every detail in this section, since some of the examples use code that

may not be robust enough to handle user input errors.

A.1.2 Technical Reference

The technical reference section of this manual is divided into the following parts:

Format

e Input

¢ File Handling
¢ Display

¢ B-Spline Utilities

Each section begins with a brief explanation of its purpose within the B-Spline Module
followed by detailed descriptions of each function within that section. The purpose of
these detailed descriptions is to make the user/programmer aware of the available utility

routines.

Appendix A. ACSYNT B-Spline Module Manual 126



A.1.3 Screen Layout

The user interface for the B-Spline Module consists of six different sections:

¢ Software Title

e Regular Menu Input
¢ Standard Menu Input
e Message Scroll Area

e String Input Echo Area

Geometry Display

Figure 47 on page 128 shows the location of each section on the display screen. The
regular menu display area allows room for a menu title and a maximum of thirteen menu
options. The standard menu area is reserved for those functions which can be accessed
at any time during execution of the software. A maximum of five messages can be
displayed at a time in the message scroll area to provide proper feedback to the user.

Utility routines have been created to aid the programmer in displaying the menus and

messages.

The geometry display area is reserved for the four primary three dimensional views of
aircraft models. Any of these four views can be displayed alone or all four views may
be displayed at once. Control of views to be displayed is handled through a standard
menu item. A two-dimensional window can also be displayed in the geometry area. The
two-dimensional window gives the user an alternative list of possible options when

providing input to the software.

Appendix A. ACSYNT B-Spline Module Manual 127



ACSYNT B-SPLINE MODULE
MENU
ITEM1

GEOMETRY I
DISPLAY
ITEM3
AREA
MESSAGE SCROLL AREA STANDARD

MENU

ECHO AREA

Figure 47. ACSYNT B-Spline Module Screen Layout

Appendix A. ACSYNT B-Spline Module Manual

128



A.2 Tutorial - ACSYNT B-Spline Module

This tutorial has been organized to orient the new user with the features of the ACSYNT
B-Spline Module. The tutorial gives step by step instructions on every input command
necessary to accomplish a given task. Example input files are included, as part of the

tutorial, to demonstrate the various capabilities.

The tutorial has been divided into several sections. Each section is designed to cover a
new algorithm developed at Virginia Tech. It is not necessary to cover the tutorial in
the order given for all sections. However, a sound knowledge of the first section is

necessary in order to be successful with any of the later sections.

Each section of the tutorial is described using lessons. The lessons are essentially a list
of steps to accomplish a task. The steps will contain the title of the regular menu on the
left and the option to select on the right. Whenever necessary, italicized text will be used
to give a brief insight into the function being performed. All string entry will be in

normal text with the exact string to be entered within quotes.
The section headings are given below:

¢  Orientation (Basic Operation Features)
¢ Creating a point data file

¢ Non-Uniform Cubic B-Spline Inversion
e Intersection of B-Spline Surfaces

¢ Filleting of two B-Spline Surfaces

¢ Computation of Mass Properties for a closed B-Spline Surface

Appendix A. ACSYNT B-Spline Module Manual 129



A.2.1 Orientation (Basic Operation Features)

This section of the tutorial has been organized to give the user a sound foundation of
the overall operation and menu structure of the ACSYNT B-Spline Module. The first
step is of course to make sure you have the code properly installed on the workstation
and have successfully compiled the source code to build an executable file called
‘acsbsm’. If these tasks have been completed type “acsbsm’ from the ‘execs” directory.

The B-Spline Module display should appear on the graphics display device.

Notice the overall layout of the screen here. The display is divided into six sections.
All but one of the sections allow user input or feedback. This section is the title section
located across the top of the screen. Menu input has been split into regular menu input
and standard menu input. The regular menu is a dynamic menu displayed along the
upper right side of the screen. The regular menu has a title defining the module currently
active along with the options available within that module. The standard menu is
located in the lower right corner of the screen. The standard menu gives a list of six
static options. These options can be selected at any time during execution. The
standard menu options can also be selected from the choice box or by typing in the name

of the command from the keyboard.

The lower area of the screen has been reserved for user feedback. The small black strip
at the bottom is the string echo area. Any input from the keyboard will be seen in this
box until the enter key has been pushed. The larger box above the echo area is reserved
for the display of messages to prompt the user for input or give feedback on the success
of any operation. Please pay special attention to these messages as they are intended to

guide the user throughout the execution of any module. Finally, in the center of the

Appendix A. ACSYNT B-Spline Module Manual 130



screen is the geometry display area. The four primary geometry views of any object can

be seen in this area.

The orientation section of the tutorial has been divided into two lessons. The first lesson
is intended to guide the novice user through the regular menu structure. By doing so,
the user will learn the functions of the main, file I/O, and geometry menu modules. The
second lesson will demonstrate the function of the standard menu options. A sound
knowledge of these two lessons is essential before the user can use the other tutorials.

Lesson 1: Manipulating the Regular Menu Structure

Sequence of Commands:

®  Menu Title Select/ Enter
e MAIN MENU FILE
e FILE I/O READ HERMITE

= Type in “fl6.hermite”

An f16 point data file will be read in and the f16 geometry will be displayed in the
Hermite surface format. Pay attention to the messages giving feedback about the
success or failure of the request. If the f16 is not read in successfully... try again
and check the spelling.

e FILEI/O RETURN
e MAIN MENU GEOMETRY
¢ GEOMETRY COLOR
¢ CHG COLOR LIST
A list of each component will be displayed in the upper left corner of the screen.
Components can be selected by name (from this list) or from any of the geometry
views.
e CHG COLOR ONE COMPONENT
¢ COLORS LIGHT BLUE
= Select the nose of the f16
¢ CHG COLOR ONE COMPONENT
e COLORS GREEN
»  Select the component name “WING” from the Component list.
e CHG COLOR RETURN
¢ GEOMETRY RE-TILE
e RE-TILE ALL COMPONENTS

Appendix A. ACSYNT B-Spline Module Manual 131



= Press enter to accept default of 2 by 2 rendering

e RE-TILE

ONE COMPONENT

= Typein “10 10”. Notice, no commas between numbers.

= Select any component on the aircraft

RE-TILE
GEOMETRY
COMPONENT
COMPONENT

RETURN
COMPONENT
LIST

DELETE

= Select a component from either the geometry or the component list window

e COMPONENT

RETURN

This concludes lesson 1. At this point you should feel comfortable with the functions

under the main, file i/o, and geometry menu modules.

Try reading in other Hermite

input files from the execs directory and manipulating their display.

The next lesson illustrates the standard menu features. This lesson can be initiated from

any menu module.
screen.

Lesson 2: The Standard Menu Items

¢  Menu Title

¢ (ANY MENU MODULE)
s WINDOW

s WINDOW

¢ SINGLE VIEW

e SINGLE VIEW

The only assumption is that there is geometry displayed on the

Select/ Enter

WINDOW (STANDARD MENU)
MULTI-VIEW

SINGLE VIEW

ISOMETRIC VIEW

SOFT VAL (STANDARD MENU)

A software valuator box will be displayed in the message scroll area. Each slider
represents a valuator. Simply make a pick inside any of the boxes and watch the
resulting change in the geometry display. The geometry can also be manipulated
using the hardware valuators if available.

Val# Action

1 Roration about X axis
2 Rotration about Y axis
3 Rotation about Z axis
4 Translation in X

5 Translation in Y

6 Translation in Z

Appendix A. ACSYNT B-Spline Module Manual 132



7 Scale
8 Sensitivity (Software Valuators only)

Repeat the above exercise using the standard menu options, only this time select the

options from the either the choice box or by typing in the name of the command.

This completes the Orientation section of the tutorial. Make sure these features are well
known before attempting any of the following sections. There are several input files

included in the execs directory. Load these files and manipulate their display.

A.2.2 Creating a Point Data File

The example data files read in during the first two lessons of the tutorial where labeled
“Hermite Input Files”. These files contain the basic data necessary to display any
geometric object. An example of the format for a Hermite data file is shown in
Figure 48 on page 134 The file consists of two parts. The first part is the heading in
which the type of file is given (in this case "HERMITE INPUT FILE”) along with the

number of separate components in the file.

The second part of the input file is the component data section. The component data
section is a list of the various components in the model. Each component within the list
is described by the following four attributes: name, number, color and point data. The
component name can be any descriptive string of 20 characters or less. The component
number is any arbitrary number that is unique in the data file. The component color is

an index number between 0 and 12 (0 is black).

Appendix A. ACSYNT B-Spline Module Manual 133



HERMITE INPUT FILE

NUMBER OF COMPONENTS = 1

CYLINDER

COMPONENT NUMBER = 1
COMPONENT COLOR = 3
CROSS SECTIONS = 2
PTS/CROSS SECTION = 4

FIRST
CROSS SECTION

SECOND
CROSS SECTION

HKXXXX XX XX
<< << < <<=
NNNNIINNNN

Figure 48. Hermite Input File Format

Appendix A. ACSYNT B-Spline Module Manual

134



After the color index, the number of cross sections and points per cross section are
defined. Finally, the actual points describing the component are given. The points are
organized per cross section. For example a component with 4 cross sections and 8
points per cross section would have the 8 points on the first cross section followed by

the 8 points on the second cross section, etc. resulting in a total of 32 data points.

Within the execs directory there is file labeled “tutor.hermite”. Take a look at this data
file. The component described is a cylinder with a diameter of 3 and height of 13.
Notice, that each cross section consists of 9 points describing a circle in the XY plane.
Each new cross section has a different Z value but similar X and Y values. Now try
reading the “tutor.hermite” file into the B-Spline Module. The screen should display a
cylinder. Refer to lesson 1 in the orientation section for help on reading in the

“tutor.hermite” input file.

A.2.3 Non-Uniform Cubic B-Spline Inversion

Non-Uniform Cubic B-Spline Inversion is the process of converting the point data read
in from the Hermite input file to a B-Spline surface representation. From a user
standpoint this is a simple process. The next lesson will demonstrate the inversion
process and allow the user to compare the Hermite and B-Spline representations with
the display option of the geometry menu module.

Lesson 3: The B-Spline Inversion Process

Sequence of Commands:

®  Menu Title Select/ Enter
¢ MAIN MENU FILE
e FILEI/O READ HERMITE

= Type in "fl16.hermite”

Appendix A. ACSYNT B-Spline Module Manual 135



¢ FILEI/O RETURN

¢ MAIN MENU GEOMETRY

e GEOMETRY B-SPLINE
The Hermite geometry will now be inverted to the Non-Uniform Cubic B-Spline
representation.

e B-SPLINE RETURN

That was the entire inversion process from the users point of view. Whenever the
B-Spline option is selected, the B-Spline representation is automatically displayed.
If no B-Spline geometry exists, the inversion process is invoked.

¢ GEOMETRY DISPLAY
All four primary views will be displayed
e DISPLAY HERMITE
= Select any of the views to display the Hermite geometry in.
The display option can be very advantageous when comparing different

representations. Try to determine any differences between the Hermite and
B-Spline representations.

DISPLAY RETURN
GEOMETRY RETURN

The goal of the cubic B-Spline inversion was to develop a curvature continuous surface
out of cross section data. However, many configurations require curvature continuity
at one cross section and only point continuity (C®) at others. This discontinuity can be

accomplished by placing two cross sections at the same location.

In order to demonstrate this procedure, edit the “tutor.hermite” input file created in the
above tutorial. Copy the first and last cross sections over so that there are a total of 6
cross sections in all, but only four separate sets of points. Now add starting and ending
cross sections that consist of all zeros in the X and Y locations. Finally, increase the
number of cross sections to 8. Now try to read this file into the B-Spline Module and
invert it to the B-Spline representation. Do not be alarmed by the differences between

the Hermite and B-Spline representations. The B-Spline representation should look like

Appendix A. ACSYNT B-Spline Module Manual 136



a closed cylinder. The C? discontinuity has been forced at both ends of the cylinder. If
the display does not look correct, there is an example file called “cylinder.hermite” in the

execs directory. Compare the “tutor.hermite” file with this file and correct any mistakes.

A.2.4 Intersection of B-Spline Surfaces

Lesson 4 will describe the options available under the “Intersect” menu. The intersect
menu module will compute the intersection between any two components and load the
data into a data structure for later use in other modules. The intersection data is
necessary for filleting (blending) of two components and/or the calculation of mass
properties.

Lesson 4: Intersection of two B-Spline surfaces

Sequence of Commands:

®  Menu Title Select/Enter

¢ MAIN MENU FILE

e FILE I/O READ B-SPLINE
¢ FILE FORMAT DAP DEMO

= Type in "fl6cap.nurbs2”

This is an f16 data file with a C? discontinuity forced at the wing ends resulting in
end caps without distorting the shape of the air foil.

e FILE /O RETURN

e MAIN MENU GEOMETRY

¢ GEOMETRY B-SPLINE

e B-SPLINE INTERSECT

e INTERSECT LIST

e INTERSECT SELECT COMPS

= Select any two intersecting components from the geometry or the component
list window.

Messages will give feedback as to the status of the intersection computations.

Upon completion a final message will display the maximum distance between points
on both surfaces along the intersection curve. The intersection curve will also be

Appendix A. ACSYNT B-Spline Module Manual 137



displayed with a white line. If more than one curve of intersection is found the
different lines will be shown in different colors.

e INTERSECT RETURN
e B-SPLINE RETURN
e GEOMETRY RETURN
¢ MAIN MENU EXIT

e -EXIT- YES

A.2.5 Filleting of Two B-Spline Surfaces

Filleting of two B-Spline surfaces was developed to blend any two intersecting surfaces
to form one C? continuous surface. The filleting algorithm described below is valid for
filleting along iso-parametric lines. The first step in filleting two intersecting surfaces is
to calculate the intersection curve. For this reason, Lesson 5 will demonstrate the
obtaining of intersection data and fillet between two surfaces.

Lesson 5: Filleting of two B-Spline surfaces

Sequence of Commands:

o Menu Title Select/ Enter

¢ MAIN MENU FILE

¢ FILE I/O READ B-SPLINE
e FILE FORMAT SHOWTIME

= type in "wallfloor.showtime”.

This file contains two simple components that appear to be a wall intersecting a

Sfloor.
e FILEI/O RETURN
¢ MAIN MENU GEOMETRY
¢ GEOMETRY B-SPLINE
e B-SPLINE INTERSECT
e INTERSECT ALL COMPS
e INTERSECT RETURN
e B-SPLINE FILLET
e FILLET SELECT COMPS

= Select the wall first and then the floor.

Appendix A. ACSYNT B-Spline Module Manual 138



Interactive messages will walk you through the filleting procedures.

The parametric direction refers to which direction the fillet should blend both
surfaces (positive or negative). The 1" or '-1" refers to which way the surface was
originally put together. For example, the fillet needs to walk up the wall, but the
wall was developed from the top down. Therefore, the fillet needs to blend in the
negative direction on the wall (-1).

= Accept the default values of -1 1 for the parametric directions

The offsets for both surfaces refers to the distance from the intersection line for the
blend to begin.

= Enter 1.50 for the first surface and 2.20 for the second

The ‘rho’ refers to the rate of change of curvature for the blend. A 'rho’ of 0.0
results in a straight line between the offset points while a ‘rho” of 1.0 gives the
sharpest possible corner between the surfaces.

= Enter a rho value of 0.5

The new fillet surface will be seen in yellow

e FILLET RETURN

e B-SPLINE RETURN

¢ GEOMETRY COMPONENT

¢ COMPONENT LIST
The component list now includes the new fillet surface. This surface can be
manipulated just as the other surfaces were in Lessons 1 and 2.

¢ COMPONENT RETURN

¢ GEOMETRY RETURN

¢ MAIN MENU EXIT

e -EXIT- YES

That concludes all the necessary steps for filleting two surfaces along iso-parametric
lines. Try the filleting procedure on the following data files. Notice, a “.hermite”
extension refers to a Hermite data file while a “.showtime” extension refers to a B-Spline

data file in the showtime format.

¢ ¢x30.showtime
= Parametric directions fuselage 1, wing 1
= Offsets fuselage 1.00, wing 1.50

Appendix A. ACSYNT B-Spline Module Manual 139



» rho 0.35
e con_cyl.showtime
= Parametric directions cone 1, cylinder 1
»  Offsets cone 3.00, cylinder 2.40
= rho 0.30
¢ plnsqr.hermite
»  Parametric directions floor 1, pipe 1
« Offsets floor 0.8 pipe 1.0
= rho 0.25

A.2.6 Computation of Mass Properties for a Closed B-Spline Surface

Lesson 6 will describe the automatic computation of mass properties for arbitrary
B-Spline surfaces. The algorithm developed assumes a closed surface. Therefore, some
error may exist if the surface has holes or is not completely closed. To demonstrate this
feature read the “tutor.hermite” input file created earlier. If this file does not exist or is
not correct, read the “cylinder.hermite” input file.

Lesson 6: Computation of Mass Properties

Sequence of Commands:

o  Menu Title Select/ Enter
e MAIN MENU FILE
e FILEI/O READ HERMITE
= Type in “tutor.hermite” if the file exists. Otherwise, type in “cylinder.hermite”.
¢ FILE I/O RETURN
¢ MAIN MENU GEOMETRY
¢ GEOMETRY B-SPLINE
e B-SPLINE MASS PROP
¢ MASS PROP ALL COMPS
¢ MASS PROP EXECUTE

The mass properties will be computed for the cylinder and displayed in the message
scroll area. The location of the center of gravity is also displayed in the geometry
window.

This is an easy case to check; the cylinder has a diameter of 3 and a height of 13.
Check the values given against your own calculated values for the cylinder.

Appendix A. ACSYNT B-Spline Module Manual 140



In this case there was only one component. If a model has multiple components,
the mass properties for the entire model can be calculated or the contribution of
any one or group of components can be computed.

e MASS PROP RETURN
e B-SPLINE RETURN
¢ GEOMETRY RETURN
e MAIN MENU EXIT

o -EXIT- YES

Read the other geometry files and compute their mass properties. A simple sanity check
is the marker locating the center of gravity for the model. If this does not look correct,

calculate the center of gravity and compare the results.

A.3  Software Development Using the B-Spline Module

A.3.1 Development Guidelines

The organization of the B-Spline Module follows explicit rules for the format of data
storage, documentation and menu display. First and foremost, header blocks have been
designed to precede any file containing source code and any function in that file. These
header blocks are located in the ‘execs” directory of the source code directory tree and
are labeled ‘header.file’ and "header.module” respectively. These header blocks can be
obtained using the ‘recover’ command within any UNIX ‘vi’ editor. Sample header

blocks can be seen in Figure 49 on page 142.

The main data structure is contained in the include file ‘showtime.h’, which is also

located in the ‘execs’ directory. This data structure contains all the data necessary for

Appendix A. ACSYNT B-Spline Module Manual 141



“header.file” Header Block

/**********************************************************************

*  Name:

*  Author:

*  Date:

*

*  Description:
*

********************#**************************************************/

#include <afmnc.h>
#include ”../execs/showtime.h”

S — FUNCTION DECLARATIONS----emmeemmeemmmeceees */

L — END OF FUNCTION DECLARATIONS-----ceemeeemeee */
R — CONSTANT DEFINITIONS---ccemeeemceemmmemeee */

o —— END OF CONSTANT DEFINITIONS-----cssnmseanmnee- */

”header.module” Header Block

E3 3333333233333 3333333333333 3 3333333333333 3 2332222 E RS LSS 22 S S22
*  Module Name:

sk sk e e o e ok ok ok e ok ol sk sk sk ol sk sfe e sk ok ok ok sk ok sk e ook sk ok ko sk ko skok skok kbR ok ok ok ok kokokok ok sk kol ko sk sk k ok sk skok kok ok ok ok
* Description:
*
* Input:
*
*

Output:
***********************************************************************/

Figure 49. Header Block Formats

Appendix A. ACSYNT B-Spline Module Manual 142



the display of geometry using the bi-cubic Hermite and bi-cubic B-Spline representations
as well as attributes such as color, name and number of each component. When any file
input is performed, this data structure is loaded into a linked list format. A listing of this

data structure appears in Figure 50 on page 144.

The main ‘'model” data structure is used to define the initial entry point of the linked list
along with the root structure identification numbers (id’s) for the various types of
geometry representations. When a new representation is implemented, the main data
structure should be updated with a new root structure id assigned to the particular
representation. The root structure id is very important, as it is the only method for
knowing the data which has been loaded into the data structure. The main goal of the
Model data structure is to limit the data passed between modules to that of the pointer
to the Model data structure. A listing of the model data structure is shown in

Figure 51 on page 145.

Also contained in the ‘showtime.h’” include file are definition statements for constant
variable names used throughout the source code. These definitions can be seen in
Figure 52 on page 146. All definitions in the ‘showtime.h’ include file are in capital
letters to designate them as global declarations. Any definition made within a single file
is designated with the first letter capitalized while local variables are in all lower case

letters.

It is recommended that the designer develop a data structure for the development of new
code to store any data that is needed in any new algorithm. This should be done in order
to limit the complexity of data passed between individual routines. Additionally, data
structures should be dynamically allocated upon entry into the module and later freed

when leaving the module. All variable definitions should be accompanied by a brief

Appendix A. ACSYNT B-Spline Module Manual 143



Component Data Structure

typedef struct compdata_type {

int comp_number;
char comp_name[20];
int acs_id;

int nubs_id;

int *hull_id;

int fillet_1d;

int open|2];

int color;

int existence;

int nu;

int nw;

int acs_ncross;

int acs_npts;

float ***acs_pts;
float ***acs_utan;
float ***acs_wtan,
int nu_knots;

int nw_knots;
float *u_knot;
float *w_knot;
float ***hull;

/* component number */
/* component name */
/¥ structure id ¥/

/* open flag 1 closed 0 open */
/* component color */

/* 1 exists O does not exist */

/* rendering in u */

/* rendering in w */

/* number of cross sections */
/* number of pts per xsection */
/* pointer to component pts */
/* pointer to tangents in u dir */
/* pointer to tangents in w dir */
/* number of u knots */

/* number of w knots */

/* u knot array */

/* w knot array */

/* control hull */

struct compdata_type *next; /* pointer to next component */

Figure 50. Main Data Structure

}comp_data;

Appendix A. ACSYNT B-Spline Module Manual

144



Model Data Structure

typedef struct {

int num_comp; /* number of components in model */
int acs_root; /* root structure id */
int nubs_root; /* Non-Uniform B-Spline root id */
int int_root; /* Structure id for intersection data */
int fillet_root;
comp_data *comp; /* pointer to beginning of linked list */
struct intersection_type *intlist; /* list of intersections */

}MODEL,;

Figure 51. Model Data Structure

Appendix A. ACSYNT B-Spline Module Manual 145



#dcfne ON 1|

#dcline OFIF 0

#define MENU_VIEW |
#define ECHO_VIEW 2
#define STRING_VIEW 3
#dcfine STDOMNU _VIEW 4
#define TITLE_VIEW §
#deline GEOM1_VIEW 6
#define GEOM2 VIEW 7
#define GEOM3 _VIEW 8
#Hdefine GEOM4_VIEW 9
#define WINDOW VIEW 10
#dcfine SOFT VAL VIEW 11

L Define Colors --s--semmmmmmme e
#deﬁne BLACK 0
#define RED |}
#define GREEN 2
#dcfine BLUL 3
#define YELLOW 4
#define PURPLE 5
#define LT BLUE 6
#define DK_GREY 7
#define WHITE 8
#define DK_BLUE 11
#define LT_GREY 12
#define GREY 13

A Define Input Variables --

(¥ e Declare View Variables ----s-memmmmeomecmmamaaans

B End View Declarations ---=---=c=ceazzcmseeemnczn-

[¥ smemmannas End Color Definition Block -----------e-r=neeeee-

#define NONE 0
#define LOCATOR 1
#dcfine STROKE 2
#define VALUATOR 3
#define CHOICE 4
#define PICK 5
#define STRING 6

#define REG_MENU 1
#define STD_MENU 2
#define GEOMETRY 3
#deline WINDOW 4

#define VALI 1
#define VAL2 2
#define VAL3 3
#define VAL4 4
#define VALS5 S
#define VALG6 6
#deline VAL7 7
#define VALS 8

_*/

L End Input Declarations

Figure 52. Global Constant Definitions

Appendix A. ACSYNT B-Spline Module Manual

146



description of the purpose of the variable. Also note that variable names are not limited

to seven characters and therefore should be as descriptive as possible.

While developing new algorithms it is important that individual routines be written with
a general purpose so that future developers can utilize these functions. Additionally, all
new algorithms should be completed with full documentation of each individual

function.

A.3.2 Building Menu Modules

Any entry into an algorithm is initiated with a new menu module. However, the use of
menu modules is not limited to new algorithms. As stated before, only the pointer to
the Model structure should be passed between separate modules. Several utility routines
have been written to free the developer from the menial tasks of menu display, user
feedback and input retrieval. Descriptions of these routines can be found in the Input
section of this manual. Figure 53 on page 148 is an example of the format for a new
menu module. This format can be retrieved from the ‘execs’ directory using the vi

‘recover’ command.

Special attention must be devoted to the format of menu items. The new module name
should be given followed by a list of the user options. The menu options are organized
with the most used option at the top and the least used option at the bottom. Following
this format, the RETURN option is always listed first when creating a new menu
module. The title and all menu options should be displayed in capital letters. The same

principal is followed when sending messages to the message scroll area.

Appendix A. ACSYNT B-Spline Module Manual 147



STATIC CHAR *TITLE = "MENU TITLE";

STATIC CHAR *ITEMS[] = { "/RETURN",
“item 17,
“item 27 };

newmenu(title,no_items,items); /* display new menu */
{ .
Return = proc_input();
if ( Return > 0)

switch (Return)

case (1):
Return = 1;
break;
case (2):
Action for item 1
break;
case (3):
Action for item 2
break;
default:
message("BAD INPUT IN ‘title”,1);
break;
}
}
}
oldmenu(); /* display old menu */

Figure 53. Menu Module Format

int Return = 0; /* return code */
int no_items = 3, /* Menu Parameters */

while ( Return != 1) /* initial loop to start execution */

Appendix A. ACSYNT B-Spline Module Manual

148



A.3.3 Summary

To reinforce the above rules for format, the following list of development guidelines has

been composed. These rules were defined during the initial design of the B-Spline

Module and have proved to be very useful throughout the development.

Begin all files with the ‘header.file’ title block.

Begin all modules with the "header.module’ title block.

All geometry representations must have a distinct root id in the Model data

structure.

Global definitions must be designated in CAPITAL LETTERS.

Local definitions must be designated with the first letter Capitalized.

Local variables must be designated by all lower case letters.

Separate data structures should be implemented for each new algorithm.

Only the pointer to the model data structure should be passed between modules.

Variable names should be as descriptive as possible.

All menu options begin with the RETURN option.

All menu options are in CAPITAL letters.

Appendix A. ACSYNT B-Spline Module Manual 149



e All messages are in CAPITAL letters.

A.4 Input Functions in the ACSYNT B-Spline Module

The B-Spline Module can accept input from the following five logical input devices: Pick,
Locator, Valuator, Choice, and String. The B-Spline Module operates in event mode
input except when request or sample mode is invoked for String, Locator, or Pick input.
In addition, for those workstations not equipped with hardware valuators, a software
valuator algorithm has been designed and developed. The software valuators display

sliding bars in the message area of the screen.

All input is processed through one main input routine which determines the type of
input and processes the input based on the type. If possible, the input is processed
internally (i.e. moving the geometry based on valuator input) and no action is required
from a developer’s standpoint. Any input that can not be processed internally is
returned to the calling routine for processing. Several input utility routines have been
written to retrieve pick input from two-dimensional windows or the geometry display

area. All input routines are in this section.

If possible, input from the standard menu, choice box, or the keyboard are processed
internally. The standard menu layout is mimicked on the choice box to give the user the
option of selecting from the standard menu or the choice box. Finally, any event mode

string input is checked against a list of key words to determine if the user is requesting

Appendix A. ACSYNT B-Spline Module Manual 150



a standard menu option via the keyboard. These three separate devices have been

utilized to allow for those workstations that do not have all five logical input devices.

All pickable items are grouped by type. Refer to Figure 52 on page 146 for the various
input type definitions. Pick input is processed based on the group pick id. Within each
group, every item must contain its own pick id. Essentially, all the pickable items are
loaded into a sub-structure which is executed by a root or main structure containing the
type id of the group. This corresponds to a pick depth of two with the top level defining

the type of pick and the second level defining the item picked within the group.

Appendix A. ACSYNT B-Spline Module Manual 151



A.4.1 proc_input - Get and process event mode input

Purpose:
This routine will wait for an input event to enter the input queue. Upon
receiving input, the type is determined and the proper input processing routines
are activated.

Description:
int proc_input()

Input Arguments:

NONE

Output Arguments:

NONE

Function Output:
Upon receiving and acting on input, this routine will return an integer
value corresponding to the resulting action.

Value Meaning
<0 Item was picked from 2D window
=0 Input has been processed internally
>0 Item was picked from regular menu

(1 always means return)

Appendix A. ACSYNT B-Spline Module Manual 152



A.4.2 get_input - Await event mode input

Purpose:
Make PHIGS calls to await event mode input from the input queue.

Description:
void get_input(class, device)

int *class
int *device

Input Arguments:

NONE

Output Arguments:

class class of logical input received.
device device number of that class (ie. which valuator)

Function Output:
NONE

Appendix A. ACSYNT B-Spline Module Manual 153



A.4.3 get_pick - Get event mode pick input

Purpose:
Gets event mode pick input - Logical Unit Number $.

Description:
void get_pick(type, item)

int *type
int *item

Input Arguments:

NONE

Output Arguments:

type type of pick made (i.e. regular menu, geometry, etc.)
item item picked from that type or group (i.e. which menu
option)

Function Qutput:
NONE

Appendix A. ACSYNT B-Spline Module Manual 154



A.4.4 get_string - Get string input from console

Purpose:
Gets string input from the keyboard - Logical Unit Number 6.

Description:
void get_string(string)

char string()

Input Arguments:

string default values for expected input.

Output Arguments:
string string returned from keyboard.

Function Output:
NONE

Appendix A. ACSYNT B-Spline Module Manual 155



A.4.5 get_valuator - Get valuator input

Purpose:
Gets valuator input from a specific valuator device number - Logical Unit
Number 3.

Description:
void get_valuator(value)

float *value

Input Arguments:

NONE

Output Arguments:
value value retrieved from valuator (0 < =value< =1)

Function Output:
NONE

Appendix A. ACSYNT B-Spline Module Manual 156



A.4.6 get_choice - Get choice or button box input

Purpose:
Gets choice or button box input - Logical Unit Number 4.

Description:
int get_choice()

NONE

Input Arguments:

NONE

Output Arguments:
NONE

Function Output:
Number corresponding to which button was pushed.

Appendix A. ACSYNT B-Spline Module Manual 157



A.4.7 proc_std_menu - Process standard menu input

Purpose:
Processes standard menu input option.

Description:
int proc_std_menu(item)

int item

Input Arguments:

item Which item was selected from standard menu options
Number Action

1 SOFTWARE VALUATORS

2 SHADING - (Not Available)

3 COPY - Enlarge view on screen

4 WINDOW - Change view display

5 Empty

6 EXIT - Return out of menu module

Output Arguments:

NONE

Function Output:
Exit flag - 1 means exit was selected from standard menu.

Appendix A. ACSYNT B-Spline Module Manual 158



A.4.8 samp_locator - Sample locator device

Purpose:
Samples for which view the locator device is located - Logical Unit Number 1.

Description:
int samp_locator(device)

int device

Input Arguments:

device device number of locator (1-4).

Output Arguments:
NONE

Function Output:
Number corresponding to which view the locator device is in.

Appendix A. ACSYNT B-Spline Module Manual 159



A.4.9 req_locator - Request locator input

Purpose:
Request locator input - Logical Unit Number 1

Description:
int req_locator(device)

int device

Input Arguments:

device device number of locator (1-4).

Output Arguments:
None

Function Output:
Number corresponding to view locator was in at time of request.

Appendix A. ACSYNT B-Spline Module Manual 160



A.4.10 proc_choice - Process choice input

Purpose:
Processes any choice event mode input. Buttons on the choice box can be
defined for options accessible at any time during execution. In this manner the
user has quick access to functions without leaving the particular menu module
he/she is working in.

Description:
int proc_choice()

NONE

Input Arguments:

NONE

Output Arguments:
None

Function Output:
Return flag - 1 means user selected the return option from the choice box.

Appendix A. ACSYNT B-Spline Module Manual 161



A.4.11 proc_string - Process string event mode input

Purpose:
Compares event mode string input against several pre-defined commands to
determine if the user is requesting a standard menu or button box choice from
the keyboard.

Description:
int proc_string()

NONE

Input Arguments:

NONE

Output Arguments:

NONE

Function Output:
Return flag - 1 means user wants to return out of menu module.

Appendix A. ACSYNT B-Spline Module Manual 162



A.4.12 get_comp_pick - Get component pick

Purpose:
Gets the component selected from the geometry view area by the user. Will also
process any standard input.

Description:
comp_data *get_comp_pick(Model)

MODEL *Model

Input Arguments:

Model Pointer to the Model data structure.

Output Arguments:

NONE

Function Output:
Pointer to the data structure for a particular component within the main
data structure linked list.

Appendix A. ACSYNT B-Spline Module Manual 163



A.4.13 newmenu - Draw new menu

Purpose:

Displays a new menu module in the menu area of the screen.

Description:

void newmenu(title, no_items, items)

char
int
char

Input Arguments:

title
no_items
items

Output Arguments:

NONE

Function Output:
NONE

*title
no_items

*items()

Title of menu module.
Number of items in list.

List of menu options.

Appendix A. ACSYNT B-Spline Module Manual

164



A4.14 oldmenu - Draw previous menu

Purpose:
Displays the previous menu module and remove present menu from menu list.

Description:
void oldmenu()

NONE

Input Arguments:

NONE

Output Arguments:

NONE

Function Output:
NONE.

A.5 File Handling in ACSYNT B-Spline Module

File I/O has been divided into two main groups: Hermite I/O and B-Spline I/O. Hermite
files follow the format shown in -- Figure id "hmfil’ unknown --. The Hermite data is
simply point data. Once the point data has been read the tangents between points and

cross sections are calculated and the resulting Hermite surface is displayed.

B-Spline file 1/O has the following formats available:

Appendix A. ACSYNT B-Spline Module Manual 165



DAP DEMO Format for input to IBM 6090 distributed process demo.

SHOWTIME Similar format to that of DAP DEMO but without trimming curves or

relimiting data.

IGES The Initial Graphics Exchange Specification Version 4.0 for Rational

B-Spline Surfaces (entity number 128).
Sample formats for these files can be found in the ‘execs’ directory of the source code.

Whenever a file input operation is requested, the main data structure is initialized and
loaded for later display and manipulation. If necessary, the old data allocations are

removed before any new data is read.

A.6 Display functions in the ACSYNT B-Spline Module

Several utility routines are available for the display of geometry using the cubic Hermite

and the cubic B-Spline representations. These routines are listed on the following pages.

Appendix A. ACSYNT B-Spline Module Manual 166



A.6.1 display_geometry - Display specific geometry on screen

Purpose:
Controls what geometry is displayed in the geometry window. More than one
type of geometry can be displayed in the same window.

Description:
void display_geometry(no_views, assoc, views, geometry)

int . no_views
int assoc()

int views()

int geometry()

Input Arguments:

no_views Number of views to display geometry in

assoc Number of geometries to be displayed in each view
views array of view indexes for the display of geometry
geometry array of geometry root id’s to display in a view

Output Arguments:

NONE

Function Output:
NONE

Appendix A. ACSYNT B-Spline Module Manual 167



A.6.2 display_intsect - Display intersection data

Purpose:
Displays the intersection data of Non-Uniform B-Spline surfaces

Description:
void display_intsect(M odel)

MODEL *Model

Input Arguments:

Model Pointer to the Model data structure

Output Arguments:
NONE

Function Output:
NONE

Appendix A. ACSYNT B-Spline Module Manual 168



A.6.3 display_nubs - Display B-Spline surface

Purpose:
Displays only the Non-Uniform B-Spline surface representation on the screen.

Description:
void display_nubs(Model)

MODEL *Model

Input Arguments:

Model Pointer to the model data structure

Output Arguments:
NONE

Function Qutput:
NONE

Appendix A. ACSYNT B-Spline Module Manual 169



A.6.4 display_hull - Draw control hull on screen

Purpose:
Toggles the display of the control hull for a cubic B-Spline surface

Description:
void display_hull(Model)

MODEL *Model

Input Arguments:

Model Pointer to the model data structure

Output Arguments:
NONE

Function Output:
NONE

Appendix A. ACSYNT B-Spline Module Manual 170



A.6.5 draw_hull - Draw components control hull

Purpose:
Loads the point data array for the display of a components B-Spline control hull.

Description:
void draw_hull(comp)

comp_data *comp

Input Arguments:

comp Pointer to the component data structure

Output Arguments:
NONE

Function Output:
NONE

Appendix A. ACSYNT B-Spline Module Manual 171



A.6.6 std_window - Display standard 2D window

Purpose:

Displays a 2D window in upper left corner of geometry window

Description:

void std_window(title, no_items, items)

char
char
int

Input Arguments:

title
items
no_items

Output Arguments:

NONE

Function Output:
NONE

NOTE: The window view id is declared in the showtime.h include file as
"WINDOW_VIEW”,

*title
*items()

no_items

Title for 2D window.
List of strings to be displayed.

Number of items in list.

Appendix A. ACSYNT B-Spline Module Manual

172



A.6.7 open_2D_window - Open a 2D view

Purpose:
Initializes a 2D view for the display of model components

Description:
void open_2D_window(npc_viewpt, view_id)

float npc_viewpt()
int view_id

Input Arguments:

npc_viewpt Array containing NPC coordinates of view.

view_id ID number for view.

Output Arguments:

NONE

Function Output:
NONE

Appendix A. ACSYNT B-Spline Module Manual

173



A.6.8 remove_2D_window - Remove a 2D view

Purpose:
Removes a 2D view from the workstation state list

Description:
void remove_2D_window(update, view_id)

int update
int view_id

Input Arguments:

update Flag; 1 - Update workstation 0 - Do not update.
view_id View identification number.

Output Arguments:
NONE

Function Output:
NONE

Appendix A. ACSYNT B-Spline Module Manual 174



A.6.9 largest_string - Determine largest string in list

Purpose:
Determines the largest number of characters in any one string from a list of
character strings.

Description:
int largest_string(no_items, items)

int no_items
char *items()

Input Arguments:

no_items Number of character strings.
items Array of character strings.

Output Arguments:

NONE

Function Output:
Largest number of characters in any one string.

Appendix A. ACSYNT B-Spline Module Manual 175



A.6.10 view_active - Determine if view is active

Purpose:
Determines if a specified view is presently active.

Description:
int view_active(view_id)

int view_id

Input Arguments:

view_id View ID number.

Output Arguments:
NONE

Function Output:
Active Flag 1 - active 0 - not active

Appendix A. ACSYNT B-Spline Module Manual 176



A.6.11 display_hermite - Display Hermite geometry

Purpose:
Displays only the Hermite geometry in all four geometry views.

Description:
void display_hermite(M odel)

MODEL *Model

Input Arguments:

Model Pointer to the model data structure.

Output Arguments:

NONE

Function Qutput:
NONE

A.7 Utility Functions in the ACSYNT B-Spline Module

A number of utility routines are available for the manipulation of non-uniform bi-cubic
B-Spline surfaces. These routines range from finding a point on a B-Spline surface to
re-sizing the memory allocations for knot insertion. Most routines have been error
trapped to prevent a core dump in the event of erroneous input. However, if a core
dump should occur check the calling sequence to ensure the proper variables are being

passed to the function.

Appendix A. ACSYNT B-Spline Module Manual 177



A.7.1 blend - Compute blending functions

Purpose:

Computes the blending functions for a non-uniform B-Spline surface

Description:

void blend(rng, knot, u, N)

int

float
float
float

Input Arguments:

meg
knot
u

Output Arguments:

N

Function Output:
NONE

rng
knot()
u

N(4)

Interval in knot sequence for blending functions.
Array of knot values.

Knot value to compute blending functions at.

Blending functions.

Appendix A. ACSYNT B-Spline Module Manual 178



A.7.2 bspline_point - Calculate Point on B-Spline surface

Purpose:
Calculates the point on a non-uniform B-Spline surface for specified u and w
parametric values.

Description:
void bspline_point(comp, u_knot, w_knot, point)

comp_data *comp
float u_knot
float w_knot
float point(3)

Input Arguments:

comp Pointer to component data structure.
u_knot Parametric value in u direction.
w_knot Parametric value in w direction.

Output Arguments:

point Geometric location of point (x,y,z).

Function Output:
NONE

Appendix A. ACSYNT B-Spline Module Manual 179



A.7.3 draw_bspline - Draw B-Spline Model

Purpose:
Draws the entire model in the non-uniform B-Spline format.

Description:
void draw_bspline(M odel)

MODEL *Model

Input Arguments:

Model Pointer to the model data structure.

Output Arguments:
NONE

Function Output:
NONE

Appendix A. ACSYNT B-Spline Module Manual 180



A.7.4 draw_nubs - Draw a B-Spline surface

Purpose:
Draws one surface in the non-uniform B-Spline format.

Description:
void draw_nubs(comp)

comp_data *comp

Input Arguments:

comp Pointer to the component’s data structure.

Output Arguments:

NONE

Function Output:
NONE

NOTE: A PHIGS structure must be open before calling this routine

Appendix A. ACSYNT B-Spline Module Manual

181



A.7.5 draw_u_nub - Draw along constant u line

Purpose:
Draws a line on the B-Spline surface along a constant parametric u line.

Description:
void draw_u_nub(comp, u_rng, u)

comp_data *comp
int u_rng
float u

Input Arguments:

comp Pointer to the component’s data structure.
u_rng Interval in the knot sequence.
u Parametric u value

Output Arguments:

NONE

Function Output:
NONE

NOTE: A PHIGS structure must be open before calling this routine.

Appendix A. ACSYNT B-Spline Module Manual 182



A.7.6 draw_w_nub - Draw along constant w line

Purpose:
Draws a line on the B-Spline surface along a constant parametric w line.

Description:
void draw_w_nub(comp, w_rng, w)

comp_data *comp
int w_rng
float w

Input Arguments:

comp Pointer to the component’s data structure.
w_rng Interval in the knot sequence.
w Parametric w value

Output Arguments:

NONE

Function Output:
NONE

NOTE: A PHIGS structure must be open before calling this routine.

Appendix A. ACSYNT B-Spline Module Manual 183



A.7.7 knot_range - Determine knot range

Purpose:

Determines the interval of a specific value within an array.

Description:

int knot_range(knot, knot_array, num_knots)

float
float
int

Input Arguments:

knot
knot_array
num_knots

Output Arguments:

NONE

Function Output:

Interval in array.

knot
knot_array

num_knots

Specific knot value of interest.

Array of knot values.

Number of knot values in array.

Appendix A. ACSYNT B-Spline Module Manual

184



A.7.8 invert_nubs - Invert point data to NUBS format

Purpose:
[teratively inverts point data to the non-uniform B-Spline format

Description:
void invert_nubs(Model)

MODEL *Model

Input Arguments:

Model Pointer to the model data structure.

Output Arguments:

NONE

Function Output:
NONE

NOTE: This routine will also display the model in the NUBS format when the
inversion process is completed.

Appendix A. ACSYNT B-Spline Module Manual 185



A.7.9 get_nubs_hull - Determine control hull

Purpose:
Iteratively computes the control hull vertices for the conversion of point data to
non-uniform B-Spline surfaces.

Description:
void get_nubs_hull(comp, open)

comp_data *comp
int open()

Input Arguments:

comp Pointer to the component’s data structure.
open Array of open/closed flags 1 - closed 0 - open.

Output Arguments:
NONE

Function Output:
NONE

Appendix A. ACSYNT B-Spline Module Manual 186



A.7.10 invert_u - Invert in parametric u direction

Purpose:
Inverts point data along the parametric u direction for surface.

Description:
void invert_u(comp, open, hull)

comp_data *comp
int open
float ***hull

Input Arguments:

comp Pointer to the component’s data structure.
open Open/Closed flag 1 - closed 0 - open.

Output Arguments:

hull Inverted control hull array.

Function Output:
NONE

Appendix A. ACSYNT B-Spline Module Manual : 187



A.7.11 invert_w - Invert in parametric w direction

Purpose:

Inverts point data along the parametric w direction for surface.

Description:

void invert_w(comp, point, open)

comp_data

float
int

Input Arguments:

comp
point
open

Output Arguments:

NONE

Function Output:

NONE

*comp
***point

open

Pointer to the component’s data structure.
Array containing point data

Open/Closed flag 1 - closed 0 - open.

Appendix A. ACSYNT B-Spline Module Manual

188



A.7.12  curve_hull - Compute control hull for a curve

Purpose:
Iteratively computes the control hull for a non-uniform B-Spline curve.

Description:
void curve_hull(npoints, point, knot, open, invert, hull)

int npoints
float **point
float *knot
int open
int *invert
float **hull

Input Arguments:

npoints Number of points in curve array.

point Array of points to invert.

knot Knot array

open Open/Closed flag 1 - closed 0 - open
invert Invert flag array O - invert 1 do no invert

Output Arguments:

hull Resulting control hull array.

Function Output:
NONE

Appendix A. ACSYNT B-Spline Module Manual 189



A.7.13 sur_knots - Calculate knot values

Purpose:
Calculates the knot values for inverting to NUBS format. This routine calculates
knot values based on chord length parameterization.

Description:
void sur_knots(comp, open)

comp_data *comp
int open()

Input Arguments:

comp Pointer to the component’s data structure.
open Open/Closed flag 1 - closed O - open.

Output Arguments:
NONE

Function Output:
NONE

Appendix A. ACSYNT B-Spline Module Manual 190



A.7.14 get_u_knots - Determine knot sequence in u direction

Purpose:
Calculates the u knot vector

Description:
void get_u_knots(comp, open)

comp_data *comp
int open

Input Arguments:

comp Pointer to the component’s data structure.
open Open/Closed flag 1 - closed O - open.

Output Arguments:
NONE

Function Output:
NONE.

Appendix A. ACSYNT B-Spline Module Manual 191



A.7.15 get_w_knots - Determine knot sequence in w direction

Purpose:
Calculates the w knot vector

Description:
void get_w_knots(comp, open)

comp_data *comp
int open

Input Arguments:

comp Pointer to the component’s data structure.
open Open/Closed flag 1 - closed 0 - open.

Output Arguments:
NONE

Function Output:
NONE.

Appendix A. ACSYNT B-Spline Module Manual 192



A.7.16 average_u_dist - Average distance between two u lines

Purpose:

Calculates the average distance between two cross sections

Description:

float average_u_dist(comp, ul, u2)

comp_data

int
int

Input Arguments:

comp
ul
u2

Output Arguments:

NONE

Function Output:

*comp
ul

u2

Pointer to the component’s data structure.
Interval of first u line.

Interval of second u line.

Average distance between lines.

Appendix A. ACSYNT B-Spline Module Manual

193



A.7.17 average_w_dist - Average distance between two w lines

Purpose:
Calculates the average distance between two constant w lines

Description:
float average w_dist(comp, wl, w2)

comp_data *comp
int wl
int w2

Input Arguments:

comp Pointer to the component’s data structure.
wl Interval of first w line.
w2 Interval of second w line.

Output Arguments:

NONE

Function Output:
Average distance between lines.

Appendix A. ACSYNT B-Spline Module Manual 194



A.7.18 insert_u_knot - Insert knot into u knot sequence

Purpose:
Inserts a knot into the u knot vector and adjusts control hull vertices accordingly.

Description:
void insert_u_knot(comp, knot)

comp_data *comp
float knot

Input Arguments:

comp Pointer to the component’s data structure
knot Knot value to insert into list.

Output Arguments:

NONE

Function Output:
NONE

NOTE: The memory allocations must be increased using the add_knot_space
routine before calling this routine.

Appendix A. ACSYNT B-Spline Module Manual 195



A.7.19 insert_w_knot - Insert knot into w knot sequence

Purpose:
Inserts a knot into the w knot vector and adjusts control hull vertices
accordingly.

Description:
void insert_w_knot{comp, knot)

comp_data *comp
float knot

Input Arguments:

comp Pointer to the component’s data structure
knot Knot value to insert into list.

Output Arguments:

NONE

Function Output:
NONE

NOTE: The memory allocations must be increased using the add_knot_space
routine before calling this routine.

Appendix A. ACSYNT B-Spline Module Manual 196



A.7.20 add_knot_space - Reallocate memory

Purpose:

Increases memory allocations to allow for new knots to be inserted into the
component data structure.

Description:

void add_knot_space(comp, uw, num_knots)

comp_data
int
int

Input Arguments:

comp
uw
num_knots

Output Arguments:

NONE

Function Output:
NONE

*comp
uw

num_knots

Pointer to the component’s data structure.
Parametric direction flag 0-u 1-w.

Number of knots to be inserted.

Appendix A. ACSYNT B-Spline Module Manual

197



A.7.21 swap_uw - Swap u and w parametric directions

Purpose:

Swaps u and w parametric direction for a non-uniform cubic B-Spline surface.

Description:

void swap_uw(intdata, size, comp)

float
int
comp_data

Input Arguments:

intdata

size
comp

Output Arguments:

intdata

Function Output:
NONE

***intdata
size

comp

Pointer to Array of intersection data in parametric
format.

Size of intdata array.

Pointer to component’s data structure.

New intersection data array.

NOTE: If no intersection data exists, send in a blank array and a size of zero.

Appendix A. ACSYNT B-Spline Module Manual 198



A.7.22 flip_u - Flip parametric u direction

Purpose:
Reverses the order of the components data in the parametric u direction.

Description:
float flip_u(intdata, size, comp)

float ***intdata
int size
comp_data *comp

Input Arguments:

intdata Pointer to Array of intersection data in parametric
format.

size Size of intersection data array.

comp Pointer to the component’s data structure.

Output Arguments:

intdata New intersection data array.

Function Qutput:
Maximum parametric value before reversing u direction.

NOTE: If no intersection data exists, send in a blank array and a size of zero.

Appendix A. ACSYNT B-Spline Module Manual 199



A.7.23 flip_w - Flip parametric w direction

Purpose:
Reverses the order of the components data in the parametric w direction.

Description:
float flip_w(intdata, size, comp)

float ***¥intdata
int size
comp_data *comp

Input Arguments:

intdata Pointer to Array of intersection data in parametric
format.

size Size of intersection data array.

comp Pointer to the component’s data structure.

Output Arguments:

intdata New intersection data array.

Function Output:
Maximum parametric value before reversing w direction.

NOTE: If no intersection data exists, send in a blank array and a size of zero.

Appendix A. ACSYNT B-Spline Module Manual 200



Vita

The author was born on January 25, 1966 in Saginaw, Michigan. Upon graduating from
Western Michigan University in Kalamazoo, the author left his home state of Michigan
to pursue a Master’s degree at Virginia Tech. Now, once the author graduates, he plans
to move back north to Michigan and start a career in Engineering with Johnson
Controls Automotive Systems Group.

/é/&/ % %»a

Vita 201





