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ABSTRACT 

 
The commercial CFD software STAR-CCM+ is applied as a RANS solver for 

comparison with potential flow methods in the calculation of vertical plane radiation and 
diffraction problems.  A two-dimensional rectangular cylinder oscillating in an unbounded fluid 
is first considered, and the added mass result shown to agree well with the analytical potential 
flow solution.  Hydrodynamic coefficients are then determined for the cylinder oscillating in 
heave and sway about a calm free surface.  Predicted values are observed to coincide with 
available experimental and linear potential flow results for most amplitudes and frequencies of 
oscillation examined.   A three-dimensional radiation problem is then studied in which 1-DoF 
heave and pitch motions are prescribed to the ONR Tumblehome hullform in calm water at zero 
forward speed and Fn 0.3.  Combinations of amplitude and frequency of oscillation ranging from 
small to large are considered.  Results are compared with several potential flow codes which 
utilize varying degrees of linearization.  Differences in the force and moment results are 
attributed to particular code characteristics, and overall good agreement is demonstrated between 
RANS and potential flow codes which employ a nonlinear formulation.  The ONR Tumblehome 
is next held static in incident head waves of small and large steepness and zero forward speed or 
Fn 0.3.  Force and moment time histories of the periodic response are compared with the same 
set of potential flow codes used in the radiation problem.  Agreement between potential flow and 
RANS is reasonable in the small wave steepness case.  For large wave steepness, the nonlinear 
wave response is seen to be important and the RANS solution does not generally agree well with 
potential flow results.   
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1   INTRODUCTION 

1.1 BACKGROUND 

Historically, hydrodynamicists have been able to rely on past experience and empirical 
data when determining the seakeeping characteristics of a conventional hullform [1].  Based on 
this knowledge an estimate of the limiting design conditions could be obtained with relative ease.  
However, recent advances in hullform design have been geared towards the development of 
unconventional forms such as trimarans, SWATH and tumblehome for a variety of reasons and 
applications.  The advent of these advanced hullforms has increased reliance on experimentation 
and numerical simulation in order to assess their performance [2].  Because experiments are 
expensive, it is desirable to develop reliable computational tools which fully consider all of the 
relevant physics and are capable of simulating a number of conditions in a time frame reasonable 
for design.  This is beyond the current state of the art.  Instead, tradeoffs must be made in current 
methods between accuracy of the solution and the computational effort required.   

Potential flow is a widely utilized and computationally efficient approach to modeling the 
flow about a ship in a seaway.  This approach assumes that the flow is inviscid, irrotational, and 
incompressible.  Generally, these methods can be categorized according to their treatment of the 
nonlinearities relevant to potential flow.  That is, those associated with the free surface boundary 
conditions, nonlinear behavior of waves and body geometry.  Linearization of the problem 
comes in assuming that motions are small and thus the nonlinear phenomena can be neglected.  
There are a number of theoretical approaches to both the linear and nonlinear problem.  The strip 
theory method is a popular approach to the linear problem which assumes that the ship’s beam 
and draft are small relative to the length and its oscillation is of a high-frequency [3].  The three-
dimensional problem can then be simplified to a series of two-dimensional problems on 
transverse planes distributed longitudinally along the ship.  In two or three-dimensions, the 
problem is linearized by applying the body boundary condition at its mean position and using the 
linearized free surface boundary condition.  A boundary element method is often used which 
formulates the solution as singularity integrals over the surfaces bounding the fluid domain [4].  
Typically this approach is referred to as a panel method since the hull geometry is discretized by 
elements over which some source or dipole is distributed.  The strength of the singularity 
distributions over each panel is calculated in order to satisfy the chosen boundary conditions and 
computations are performed in the frequency or time domain.  In the other extreme, the fully 
nonlinear free surface boundary conditions are considered, and a “body-exact” approach is taken 
which satisfies the hull boundary condition on the exact wetted surface of the body.  This 
problem is a time-variant system and must be solved in the time domain.  Typically a mixed 
Euler-Lagrange approach, introduced by Longuet-Higgins and Cokelet [5], is used to obtain a 
solution.  This method has been applied successfully to steady flow (e.g. [6]).  However, its 
applications to seakeeping computations have been limited to simple problems since it is still 
computationally expensive and faces difficulties due to breaking waves and stability of the time 
stepping method [4].  Much of the work has been to avoid these issues by suppressing wave 
breaking or introducing linearizations.  Blended methods are an engineering approximation 
which blends nonlinear and linear computational techniques.  Typically, they take advantage of 
the nonlinearities which are easily computed, i.e. satisfying the hydrostatic and Froude-Krylov 
components of the potential on the instantaneous wetted hull while maintaining a linear 
approximation of the more difficult to compute radiation and diffraction components.   
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Nonlinearities are the main source of difficulty in seakeeping simulations and are 
typically prevalent in the problems of greatest interest, such as large amplitude motions and 
waves. Nonlinearities in seakeeping computations stem from viscosity, velocity squared terms in the 
pressure equation, body geometry, free surface boundary conditions and the behavior of incident waves 
[4].  Potential flow solutions are able to incorporate these nonlinearities to some extent but in all cases 
lack viscous effects, such as flow separation, and typically cannot capture violent free surface phenomena 
like breaking waves.  Viscous flow approximations such as Direct Numerical Simulation (DNS), Large 
Eddy Simulation (LES), and Reynolds Averaged Navier Stokes (RANS) have emerged with increasing 
computing power over the last two decades.  Of these, RANS is the most computationally efficient, 
and best suited for analysis of ship motions in the present and near future.  In this approach, the 
complete Navier-Stokes equations are solved on a computational grid, with models for 
turbulence and the free surface interface.  For RANS, the entire turbulence spectrum is modeled, 
and only the large scales of motion are resolved.  A variety of models of turbulence have been 
developed, including linear eddy viscosity models such as the two-equation k-ε and k-ω models 
which are commonly used for ship hydrodynamics [7].  Free surface interfaces are typically 
represented by an interface tracking or interface capturing method.  In an interface tracking 
scheme, the computational grid deforms to satisfy a kinematic boundary condition at the free 
surface and the governing equations are solved in the water phase.  Interface capturing methods, 
such as Volume of Fluid (VOF), level-set, and front tracking, solve the governing equations in 
both air and water and are able to model large free surface deformations and green water on 
deck.  Solutions to the RANS problem are obtained through several numerical approaches which 
determine the grid, discretization scheme and solution algorithms employed.   

Applications of RANS to seakeeping problems have increased significantly over the past 
decade.  Much of this work has been focused on comparison with experimental results for 
validation of heave and pitch in head waves.  The Wigley hull [8] and DTMB 5512 [9] were 
examined in heave and pitch using CFDShip-Iowa with interface tracking and single-phase level 
set methods respectively.  Predicted motions compared well with experimental data for regular, 
linear head waves.  At the 2010 Workshop on Numerical Ship Hydrodynamics in Gothenburg, 
solutions for the KCS container ship and KVLCC2 tanker models in head waves were presented 
from five codes for validation [10].  RANS simulations have also been used to study specific 
phenomena such as parametric roll and roll damping.  Sadat-Hosseini [11] conducted captive and 
free-running simulations for parametric rolling, broaching, surf-riding, and periodic motion of 
the ONR Tumblehome model which generally compared well with experimental results.  Roll 
decay of DTMB 5415 and DTMB 5613-1 with and without bilge keels was examined as part of a 
study of the physical phenomena associated with roll damping [12].  However, computational 
speeds are still insufficient to viably model the large number of variants needed for design using 
RANS based methods.  There has thus been some recent interest in comparing RANS with 
potential flow methods.  Belknap et al. [13] compared two body-exact potential flow methods 
with linear free surface conditions to RANS and nonlinear potential flow codes in a series of two 
and three-dimensional prescribed heave tests.   A S175 container ship model was examined in 
head seas using a RANS code and blended potential flow method by Grasso et al [14].  The 
Cooperative Research Ships (CRS) group conducted a systematic study in which several 
potential flow, RANS and other CFD codes are compared in their solutions of a container ship 
and ferry advancing at forward speed in regular waves [15].   
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1.2 OBJECTIVE AND OUTLINE 

The key aim of this thesis is to distinguish to what extent current potential flow methods 
are able to capture the nonlinearities experienced by a ship undergoing vertical plane motions in 
calm water and held static in a head sea as compared to a fully nonlinear RANS solution.  
Section 2 gives an overview of the RANS computational method and a brief review of potential 
flow theory.  In Section 3, hydrodynamic coefficients of a rectangular cylinder are calculated 
using the RANS approach.  Initially, results are obtained for added mass of the rectangle in an 
unbounded fluid and compared with the closed-form potential flow solution.  A calm free surface 
is then added, and hydrodynamic coefficients are determined for harmonic oscillations of several 
amplitudes and frequencies in heave and sway.  The coefficients are compared to potential flow 
solutions and experimental data for validation.  Effects of the RANS simulation time step, 
turbulence model and near-wall grid spacing on the solution are examined.  Forces and moments 
on the ONR Tumblehome hullform model during prescribed single degree-of-freedom (DoF) 
heave and pitch motions and held static with an incident head wave are given in Section 4.  
Several amplitudes and frequencies of prescribed oscillation and two wave heights are 
considered such that regimes are represented where linear approximations are expected to 
adequately describe the flow physics and where nonlinearities are expected to be important.  
Predictions are compared with several potential flow codes using varying degrees of linearization 
which took part in a computational “Force Study” [2],[16].  A brief summary of this study and 
the potential flow codes which it features are given.  Differences between the potential flow and 
RANS solutions are correlated with characteristics of each solution method to show the 
significance of particular sources of nonlinearity.  Uncertainty in the RANS solution associated 
with grid spacing and time step is determined through a systematic study of solution convergence 
and the effect of additional simulation parameters such as turbulence models and order of the 
temporal discretization scheme are considered.  Finally, conclusions from the study and 
recommendations for future research are discussed in Section 5.   

2  COMPUTATIONAL METHODS 

2.1  STAR-CCM+ RANS CODE 

This study uses the commercial CFD code STAR-CCM+ versions 7.02 and 7.04 as a 
RANS solver.  STAR-CCM+ is a product of CD-adapco and is a comprehensive simulation 
package capable of modeling and meshing geometry, employing a variety of physical models 
and solvers and post-processing within a single interface.  The solution to a free surface flow is 
obtained through a finite volume discretization of the domain.  A VOF method is employed to 
capture the position of the phase interface.  The formulation is second order accurate in space 
and in time.  Equations are solved as an uncoupled system using a segregated flow solver which 
employs a SIMPLE algorithm with Rhie-Chow correction for pressure-velocity coupling.  The 
RANS equations are closed by modeling the Reynolds stress tensor using the Realizable k-ε or 
SST k-ω turbulence model.   
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2.1.1 Governing Equations 

The Navier-Stokes equations are given in the integral form for a cell of volume V as:  
 

 𝑑
𝑑𝑡
�ρ𝑑𝑉

 

𝑉
+ �𝜌�𝐯 − 𝐯 𝑔� ∙ 𝑑𝒂 = 0

 

𝐴
 (1)  

 
 𝑑

𝑑𝑡
� 𝜌𝐯𝑑𝑉 +  �𝜌𝐯 x�𝐯 − 𝐯𝒈� ∙ 𝑑𝒂

 

𝐴
=  −� p𝐈 ∙ 𝑑𝒂 + �𝐓 ∙ 𝑑𝒂 +

 

𝑨

 

𝐴

 

𝑉
�𝐅𝑑𝑉

 

𝑉
 (2)  

 
Here, 𝐯 is the velocity, 𝐯 𝑔R is the grid velocity, 𝜌 is the density, p is the pressure, 𝐈 is the identity 
matrix, 𝐓 is the viscous stress tensor and 𝐅 is an external body force, in this case due to gravity.  
The face area vector is given by 𝒂.  The terms on the left hand side of Eqn. 2 are the transient 
and convective flux terms respectively.  Pressure gradient, viscous flux and body force terms are 
given on the right hand side.   
 Using an eddy viscosity model, the complete stress tensor for a turbulent flow invokes 
the Boussinesq approximation such that:  
 
 

𝐓 = 𝜇𝑒𝑓𝑓[∇𝐯 + ∇𝐯𝑇 −
2
3

(∇. 𝐯)𝐈] (3)  

 
Here 𝜇𝑒𝑓𝑓 is the sum of the laminar and turbulent viscosities 𝜇 and 𝜇𝑡, and the superscript 𝑇 
indicates the transpose of the differential matrix.   Turbulent viscosity is used to model the 
Reynolds stress tensor as a function of mean flow quantities so that the governing equations are 
closed. 

2.1.2 Boundary Conditions  

 Domain boundaries control fluid flux into and out of the domain and vary for given 
simulation conditions.  The boundaries used for a particular mesh and simulation are stated in 
Sections 3 and 4.  Here the basic formulation of each boundary type is given.   
 A velocity inlet boundary condition permits user specification of the inlet face velocity 
vector.  Boundary face pressure is extrapolated from the adjacent cells using reconstruction 
gradients.    
 Pressure outlet boundary conditions allow user specification of the boundary pressure.  
The boundary face velocity is extrapolated from interior cells.  In the free surface application, the 
boundary pressure is governed by a field function which monitors the instantaneous pressure on, 
above and below the free surface at the boundary.   
 Symmetry plane boundaries are used to mirror the domain such that the total cell count of 
the mesh is reduced.  The symmetry plane is commonly placed on the centerline when motion is 
only in the x-z plane.  Shear stress at the symmetry boundary is zero.  Velocity and pressure face 
values are extrapolated from interior cells.  
 A no-slip and non-penetration condition is placed on wall surfaces of the model.  The 
wall surface tangential velocity is set to a specified value, zero in the case of no wall motion.  
Boundary face pressure is extrapolated from adjacent cells.  
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2.1.3 Numerical Method 

A finite volume method is used to discretize the domain as a finite number of control 
volumes (CVs) corresponding to computational grid cells.  The discretized conservation 
equations are applied at each CV in a collocated arrangement.  The result is a set of coupled, 
non-linear equations at each CV centroid.  Each equation is a function of pressure and velocity at 
the CV center and in all neighboring CVs.  All space integrals are approximated using the mid-
point method in which surface integrals are the product of the integrand at the cell face center 
and the area of the face and volume integrals are the product of the mean integrand value and the 
CV volume.  These are both of second-order accuracy given that the integrand value is also 
computed with second order accuracy.  Eqn. 2 is discretized for a cell-centered CV, leaving off 
the body force term, as: 

 
 𝑑

𝑑𝑡
(𝜌𝐯𝑉) + �[𝐯𝜌�𝐯 − 𝐯𝒈�. 𝒂]𝑓

 

𝑓

= −�(ρ𝐈. 𝒂)𝑓 + �(𝐓. 𝒂)𝑓

 

𝑓

 

𝑓

 (4)  

 

2.1.3.1 Transient and Convective Terms 

The transient term derivative is approximated by a one-sided, second-order finite 
difference scheme dependent upon the solution at the current iteration, and that from the 
previous two time levels.  The time step dt is specified by the user.  Time step calculation and 
analysis is given in Sections 3 and 4.   

A nominally second-order upwind scheme is used for the convection term in which 
velocity values at the face are linearly interpolated from neighboring cell values using 
reconstruction gradients (see Section 2.1.3.6).  Limiting the reconstruction gradients introduces 
greater dissipation than a central-differencing scheme, helping to reduce local extrema [17].  
While this method is more accurate than a first-order scheme, reduced numerical dissipation may 
lead to convergence issues.    

2.1.3.2 Turbulence Modeling 

The Boussinesq approximation given in Eqn. 3 makes use of a turbulent viscosity concept 
to model the Reynolds stress tensor as a function of mean flow quantities.  To close the Reynolds 
averaged equations a turbulence model must be added which determines this turbulent viscosity 
value.  STAR-CCM+ offers a variety of eddy viscosity models which use the stated 
approximation, and also permits use of several Reynolds Stress turbulence models which 
encompass greater complexity.  

Generally, a realizable, two-layer form of the k-ε model is employed in this study.  The k-
ε turbulence model is a two-equation model which solves transport equations for the turbulent 
kinetic energy k and its dissipation rate ε.   This model is widely used in industrial applications 
and provides a good compromise between robustness, computational cost and accuracy [17].  
The realizable model contains a different transport equation for the dissipation rate, and a 
realizable eddy viscosity formulation which has shown improvement over the standard k-ε 
model.    A two-layer approach is used to better capture the peaked turbulent kinetic energy and 
dissipation profiles near the wall [18].  The formulation blends the realizable, two transport 
equation model with a one-equation model which solves for k but prescribes ε and μt 
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algebraically with distance from the wall [17].  In the layer adjacent to the wall the latter 
formulation is used and the values of ε are blended smoothly with the two equation model values 
far from the wall using a blending function.   

The SST k-ω model is an alternative two-equation model to the k-ε formulation which is 
also used at points in this study.  This model solves transport equations for turbulent kinetic 
energy 𝑘 and a specific dissipation rate 𝜔 which is defined as the dissipation rate per unit 
turbulent kinetic energy, 𝜔 = 𝜀/𝑘.  The k-ω model generally demonstrates improved 
performance for adverse pressure gradients and separated flows when compared with the k-ε 
model.  However, the general k-ω model is sensitive to free stream/ inlet conditions.  To solve 
this problem, the SST approach [19] effectively blends a k-ε model in the far-field with a k-ω 
model near the wall.   
  In either turbulence model, mean flow quantities near the wall are calculated according 
to an all y+, blended wall treatment.  This approach is flexible in its ability to handle a range of 
local mesh refinement levels near the wall.  Cells with low y+ values are assumed to be properly 
resolved such that no wall treatment is necessary, while cells of y+>30 are treated as in the 
logarithmic region.  The wall treatment affects the near wall velocity, turbulent production and 
turbulent dissipation.   

2.1.3.3 SIMPLE Algorithm 

The discretized governing equations are solved in a segregated manner using a predictor 
corrector approach.  Here, the SIMPLE algorithm is employed.  This method can be described 
generally as an implicit technique which calculates velocity based on a predicted pressure value 
then updates the pressure and velocity to satisfy continuity.  The process is repeated over 
multiple iterations within a single time step until the difference between the discretized solution 
and exact solution meets some tolerance or a maximum number of iterations have occurred.  The 
algorithm’s performance is highly dependent upon the size of the time step [18]. 

The mass conservation equation, Eqn. 1, is discretized as: 
 

 
��𝑚̇𝑓

∗ + 𝑚̇𝑓
′ � = 0

 

𝑓

 (5)  

 
Where 𝑚̇𝑓

∗ is the uncorrected face mass flow rate and 𝑚̇𝑓
′  is the mass flow correction necessary to 

satisfy continuity.  A solution of the discrete momentum equations is obtained using pressure 
values of the previous iteration.  The resulting velocity terms and a Rhie-Chow type dissipation 
are used in calculating the uncorrected mass flow rate.  The Rhie-Chow correction is necessary 
for smoothing of oscillations which can occur in the mass flux of a collocated grid.  Enforcing 
continuity yields the mass flow correction as a function of pressure correction values.  Discrete 
equations for pressure correction are solved for in an analogous manner to the velocity values of 
the discrete momentum equations.  The total mass fluxes and velocity terms are then updated.  
The process is repeated in subsequent iterations using the pressure values obtained in the 
previous iteration. 
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2.1.3.4 VOF Interface Capturing 

 The air-water interface at the free surface is captured using the volume of fluid (VOF) 
method.  VOF assumes a common velocity and pressure field for all phases within a single CV, 
and monitors the phase fraction.  The governing equations for mass and momentum continuity in 
a single-phase flow are thus solved for an equivalent fluid whose physical properties (density and 
laminar viscosity) are a function of the constituent phase’s properties and volume fractions 
within each CV.  This is often known as the volume-fraction method.  The transport of volume 
fraction is described by an additional conservation equation. 
 
 𝑑

𝑑𝑡
�𝛼𝑖𝑑𝑉

 

𝑉

+ �𝛼𝑖

 

𝑆

�𝐯 − 𝐯𝒈�. 𝑑𝒂 = 0 (6)  

 
Where 𝛼𝑖 represents the volume fraction.  VOF is an interface capturing method, capable of 
tracking breaking waves and spray but lacking the sharp interface of interface-tracking methods.  
The critical issue with this method is the discretization of Eqn. 6.  Typical low order schemes 
tend to smear the interface and introduce artificial mixing of the two fluids.  The High 
Resolution Interface Capturing (HRIC) discretization scheme used in STAR-CCM+ is designed 
to mimic the convective transport of immiscible fluid components to improve the VOF interface 
tracking capabilities.  

2.1.3.5 Algebraic Multigrid Solution Method 

A linear equation system is obtained for the velocity and pressure terms at the CV 
centroid through the SIMPLE method which must be solved implicitly through iteration.  This 
becomes an inner iterative process to the outer process of iteration via the SIMPLE algorithm.  
The equation to be solved, written in delta form for a general scalar 𝜑 is: 

 
 𝑎𝑝

𝜔
𝛥𝜑𝑝 + �𝑎𝑛𝛥

 

𝑛

𝜑𝑛 = 𝑏 − 𝑎𝑝𝜑𝑝𝑘 −�𝑎𝑛𝜑𝑛𝑘
 

𝑛

 (7)  

 
The coefficient 𝑎 is obtained from the discretized terms of the cell of interest 𝑝 and its 
neighboring cells 𝑛.  The coefficient 𝑏 represents the explicit contribution to the discretized 
equation evaluated at iteration 𝑘.  The delta term is defined as 𝛥𝜑𝑝 = 𝜑𝑝𝑘+1 − 𝜑𝑝𝑘.  An under-
relaxation factor is given by 𝜔.  The term on the right hand side is the residual and goes to zero 
when the exact solution to the discretized equation is reached.  An algebraic multigrid method 
(AMG) is used to solve the linear system given by Eqn. 7 iteratively.  Computation time is 
reduced by deriving a system of coarse-grid equations from arithmetic combinations of the fine-
grid coefficients and performing some of the iterative work on the coarser level.  This behaviour 
is due to the pace of information travel at one cell per iteration.  In an elliptic problem, the 
information must travel across a great number of cells back and forth to reach convergence.  If 
the cells are fine, then this iterative process is time consuming.  The method is also more 
effective at removing low-frequency components of error.     
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2.1.3.6 Interpolation Methods 

 Variable values are calculated at CV centroids only.  Reconstructing the face values and 
cell gradients in STAR-CCM+ involves three steps.  First, reconstruction gradients are calculated 
using a hybrid Gauss/weighted LSQ method for both pressure and velocity.  The reconstructed 
values are then limited so they do not exceed the maximum and minimum of the neighboring CV 
centroid values.  Cell gradients are copied from the LSQ-based reconstruction gradients which 
are linear-exact.   

2.1.3.7 Parallel Computing 

 RANS computations of a three-dimensional free surface flow are computationally 
intensive.  It was therefore essential to use parallelization in computing.  Simulations were 
generally run on 1 to 6 nodes of the Ithaca system at the Virginia Tech Advanced Research 
Computing Center.  The system is an IBM iDataPlex with 8 processors, 2.26 GHz in speed and 
24 GB of memory per node.  Prescribed motion simulations in Section 4 for example, with an 
overset mesh on the order of 10 million cells, required approximately 3500 s of computational 
time per time step (97 hours per second for dt = 0.01 s).  By splitting the simulation on 48 
processors this was effectively reduced to approximately two hours of wall time for every second 
of simulation time.   

2.2  OVERVIEW OF POTENTIAL FLOW THEORY 

Potential flow methods are used for comparison with the RANS results.  The derivation 
of potential flow solutions is based on the assumptions of an inviscid, incompressible, 
homogeneous fluid and an irrotational velocity field applied to the complete Navier-Stokes 
equations.  Given these conditions, the velocity field may be represented by a scalar velocity 
potential, 𝛷, which must satisfy the Laplace equation for conservation of mass in the fluid 
domain.  This allows the problem to be reduced to the solution of a single linear partial 
differential equation instead of the coupled, nonlinear set of partial differential equations 
considered in a RANS approach.  Here the full nonlinear formulation is given, and then 
linearization is discussed.   

Following the notation of [4], a right handed coordinate system Oxyz translating in the 
negative x-direction with time-dependent velocity of the ship 𝑈0(𝑡)  is chosen.  Setting the origin 
along the calm waterline with z pointing upward, the velocity potential in the time domain may 
be expressed as  

 
 𝛷(𝑥, 𝑦, 𝑧; 𝑡) = 𝑈0(𝑡)𝑥 + 𝜑(𝑥, 𝑦, 𝑧; 𝑡) (8)  
 
Where 𝜑(𝑥, 𝑦, 𝑧; 𝑡) is the perturbation potential.  The Laplace equation is then 
 
 ∇2𝛷 = 0 (9)  
 
The difficulty comes in the application of boundary conditions to all surfaces which enclose the 
fluid domain: the body surface, the bottom, the free surface, and the surrounding fluid at infinity.  
The kinematic boundary condition is applied on the instantaneous position of the body wetted 
surface. 
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 ∂𝜑

∂n
= −𝑈0(𝑡)n1 + 𝐕 ∙ 𝐧 (10)  

 
Where 𝐕 is the body velocity relative to Oxyz and 𝐧(n1, n2, n3) is the unit normal into the body 
with components n1, n2, n3 in the x, y and z directions.  A similar relation may be applied for a 
finite depth boundary.   At infinite depth, ∇𝜑 → 0 as 𝑧 → −∞.  On the instantaneous free surface 
dynamic and kinematic conditions must be satisfied.  The amplitude of the free surface is 
unknown in the nonlinear case and must be determined as part of the solution.  For a free surface 
elevation 𝑧 = 𝜂(𝑥, 𝑦; 𝑡), the kinematic condition that the normal velocity of a particle on the free 
surface equals the normal velocity of the free surface itself is  
 
 ∂𝜂

∂t
=
∂𝜑
∂z

− ∇𝜑 ∙ ∇𝜂 − 𝑈0(𝑡)
∂𝜂
∂x

 (11)  

 
The dynamic condition that pressure on the free surface is everywhere equal to a known ambient 
pressure, 𝑃𝑎, can be given using Bernoulli’s equation as 
 
 ∂𝜑

∂t
= −𝑔𝜂 −

1
2
∇𝜑 ∙ ∇𝜑 − 𝑈0(𝑡)

∂𝜑
∂x

−
𝑃𝑎
𝜌

 (12)  

 
Where 𝑔 is the gravity and 𝜌 is the density of the fluid.  In the time domain initial values of the 
free surface elevation and potential must be specified.  For the frequency domain, time 
dependence is replaced by the real part of 𝑒𝑖𝜔𝑡.  At infinity, waves due to the body disturbance 
must be outgoing in the frequency domain.   For a problem with no incident waves in the time 
domain ∇𝜑 → 0 as the distance from the body goes to infinity.   

In order to linearize the nonlinear problem, various approximations of the involved 
physics are made.  The common assumptions are the linearization of the free surface boundary 
conditions, and satisfaction of the body boundary condition at its mean position rather than on 
the instantaneous wetted surface.  In the linear free surface boundary condition, higher order 
terms are neglected in Equations 10 and 11, and the condition is imposed on the undisturbed free 
surface plane.  Methods which use this free surface condition and evaluate the body boundary 
condition on the mean wetted surface are typically categorized as linear, while nonlinear codes 
consider the 2nd order terms in the free surface boundary condition and satisfy the hull boundary 
condition on its changing wetted surface.  In addition, blended methods have emerged which 
take advantage of the nonlinearities that are easily computed.  Typically, the hydrostatic and 
Froude-Krylov components of the potential are calculated using the body-exact and nonlinear 
free surface boundary conditions, while a linear approximation of the more difficult to compute 
radiation and diffraction components is used.    
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3 HYDRODYNAMIC COEFFICIENTS of 2D RECTANGULAR CYLINDER 

  The estimation of a ship’s response in waves relies on the accurate calculation of 
hydrodynamic coefficients and exciting forces.  Using linear ship motions theory, the problem is 
separated into a radiation problem in which added mass and damping coefficients are 
determined, and an excitation problem which seeks Froude-Krylov and diffraction forces.  To 
simplify the calculation of these hydrodynamic coefficients, a strip theory method is often used 
in which the frequency dependent added mass and damping terms are found for a number of two-
dimensional transverse sections and integrated along the ship length to obtain the three-
dimensional coefficients.  Most estimates of two-dimensional coefficients are found using linear 
potential flow approaches including distributed sources and conformal mapping techniques such 
as Lewis forms.  However, viscous and rotational effects have been shown to be important in 
certain cases.  Previous studies have demonstrated good agreement between added mass and 
damping coefficients calculated using RANS methods and experimental results for simple two-
dimensional sections (e.g. [20],[21]).   

In this section, the STAR-CCM+ RANS solver is employed in calculating the 
hydrodynamic coefficients of a two-dimensional rectangular cylinder.  For validation of the 
method, the added mass of the rectangle in an unbounded fluid is determined and compared to 
the analytical potential flow result.  A calm free surface is then added, and hydrodynamic 
coefficients are determined for harmonic oscillations of several amplitudes with the cylinder 
situated at beam-to-draft ratios, 𝐵/𝑇 = 2, 4 and 8.  Results are compared with the potential flow 
solutions and experimental work of Vugts [22] over a series of frequencies.   

3.1 HYDRODYNAMIC COEFFICIENT CALCULATION 

 Hydrodynamic coefficients are obtained by oscillating the body according to some 
harmonic function and measuring the total force response in the direction of motion.  As an 
example, a harmonic function of the form 𝑧3 = 𝑧𝑎 sin(𝜔𝑡) is considered in heave.  According to 
linear theory, the total radiation force result of a body in sinusoidal heave motion in otherwise 
calm water is 
 

 𝐹𝑅3 = −[𝑎33(𝜔)𝑧̈3 + 𝑏33(𝜔)𝑧̇3 + 𝑐33𝑧3] (13)  
 
Where 𝑎 and 𝑏 are the added mass and damping respectively as functions of frequency, and 𝑐 is 
the hydrostatic restoring term.  The restoring force, 𝐹𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔3 = −𝑐33𝑧3, is estimated according 
to the body cross-sectional geometry and position relative to the mean waterline over time.  This 
is alternately defined by 
 

 𝐹𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔3 = ∀𝑑𝜌𝑔 (14)  
 
Where ∀ is the instantaneously submerged cross-sectional area with respect to the mean 
waterline, 𝑑 is the depth of the approximately two-dimensional body, 𝜌 is the freshwater density, 
and g is the gravitational acceleration.  Removing this component of force leaves the purely 
hydrodynamic force, given by 
 

 𝐹𝐻3 = −𝑎33(𝜔)𝑧̈3 − 𝑏33(𝜔)𝑧̇3 (15)  
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 Since the added mass term is in phase with the heave motion, and damping is in 
quadrature, the two terms may be separated by a Fourier phase analysis.  Instantaneous values of 
each coefficient are obtained from the force time history by analyzing discrete windows equal to 
a single period of oscillation [23].  Thus, the coefficients in heave are 
 
 

𝑎33 =
1

𝜋𝑧𝑎𝜔
� 𝐹𝐻3 sin(𝜔𝑡)𝑑𝑡

𝑡+𝑇/2

𝑡−𝑇/2

 (16)  

 
 

𝑏33 =
1
𝜋𝑧𝑎

� 𝐹𝐻3 cos(𝜔𝑡) 𝑑𝑡

𝑡+𝑇/2

𝑡−𝑇/2

 (17)  

 
A similar formulation can be given for the coefficients in sway (𝑎22, 𝑏22).  However, in 

sway and in the case of motion in an unbounded fluid there is no restoring force.  Coupled sway-
roll coefficients are determined by monitoring roll moment about the center of gravity 𝐺 induced 
by sway motion.  In the experimental results, coefficients are defined for motion about a point 𝑂 
which is centered at the intersection of the centerline and waterline.  The total hydrodynamic 
moment in 1-DoF sway is then given as 
 

 𝐹𝐻4 = −�𝑎24(𝜔) + 𝑂𝐺 ∙ 𝑎22(𝜔)�𝑥̈2 − �𝑏24(𝜔) + 𝑂𝐺 ∙ 𝑏22(𝜔)�𝑥̇2 (18)  

 
Where 𝑂𝐺 is the distance between 𝑂 and 𝐺, which is zero for 𝐵/𝑇 = 2.  The coupled sway-roll 
coefficients, 𝑎24 and 𝑏24,  are calculated by substituting into Eqn. 16 and 17 and subtracting the 
coordinate system change component using the pre-computed 𝑎22 and 𝑏22 values.  As a result, 
the coupling coefficients are equal to the small difference between two large quantities such that 
accuracy in the analysis is low.  Coefficients are non-dimensionalized as 
 
 

𝑎𝑗𝑗∗ = 𝑎𝑗𝑗
𝜌𝐴𝑥

   𝑏𝑗𝑗∗ = 𝑏𝑗𝑗
𝜌𝐴𝑥

� 𝐵
2𝑔

 

 
(19)  

 
𝑎24∗ = 𝑎24

𝜌𝐵𝐴𝑥
  𝑏24∗ = 𝑏24

𝜌𝐴𝑥
� 𝐵
2𝑔

 

 
 

Where B is the beam of the cylinder and 𝐴𝑥 is the mean submerged area.  Time history results 
from STAR-CCM+ are not rigorously analyzed for settling of transients, but a visual 
examination is used to determine the starting point for data analysis.  At least 3 periods of 
oscillation are allowed to pass before the analysis in all cases.   Hydrodynamic coefficients are 
obtained from subsequent periods and averaged together.    
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3.2 OSCILLATION IN AN UNBOUNDED FLUID 

 An analytical solution is available for the added mass of a circular cylinder in an 
unbounded fluid using potential flow assumptions.  Taking advantage of the conformal 
transformation of a circle to a rectangle of equal dimensions the added mass in any translation 
direction is 4.754 𝜌𝑎2 where the height and beam dimensions are equal to 2𝑎 [24].  For 
submerged bodies without proximity to a free surface, there is added mass but no damping in 
potential flow.  A rectangular geometry with dimensions matching those used in experiments; 
height and beam of 0.4 m, and sharp corners was considered.  Although a finite volume 
formulation is employed, STAR-CCM+ allows the extraction of a two-dimensional mesh from a 
one cell thick three-dimensional mesh in cases which do not involve a VOF model of the free 
surface.  Essentially the mesh remains one unit cell thick, but the two-dimensionality is 
acknowledged by STAR-CCM+ which saves computational time and some complexity in the 
definition of boundary conditions.  The mesh is unstructured, with local refinement about the 
body and a body-fitted prism layer.  The near-wall prism layer thickness is 10-4 such that a 
𝑦+ ≤ 10 is maintained.  The domain, shown in Figure 1, is 4.4 x 4.4 m and totals 62,253 cells.  
Local mesh refinement around the sharp corners and the prism layer mesh are shown in Figure 2.  
The mesh is rigid and body-fixed such that the body oscillation involves movement of grid 
points.   

 
Figure 1.      Unbounded fluid case domain mesh 

    
Figure 2.      Corner and boundary layer mesh refinement 
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To best match the analytical potential flow solution in which there are no frequency or 
amplitude effects, the prescribed oscillation in heave was of the lowest amplitude, 𝑧𝑎 = 0.01 m, 
and frequency, 𝜔 = 1.5 rad s�  considered in [22].  Time step size, 𝑑𝑡, was governed by the CFL 
number which relates cell dimension 𝛥 to flow speed 𝑈 by 𝐶𝐹𝐿 = 𝑈𝑑𝑡

𝛥
.  This is the ratio between 

time step, and the time required for a disturbance to convect across a cell.  For numerical 
stability, local CFL numbers should in general be kept less than unity.  A time step of 0.005 s 
was used to satisfy this criterion for most cells through time.  No-slip and non-penetration 
boundary conditions apply on the surface of the cylinder.  Bottom, top and side boundaries are 
pressure outlets which maintain the constant far field pressure of an unbounded fluid.  
Oscillation in the vertical direction permitted use of a symmetry plane through the cylinder 
center to mirror the domain on one side and halve the total number of cells.  As expected at the 
low amplitude and frequency chosen to most closely resemble the potential flow case, damping 
in the RANS result is small.   The added mass exhibited little variation between periods that were 
analyzed.  The averaged result, 𝑎33 = 189.64 kg/m, shows excellent agreement with the 
analytical solution, 𝑎33 = 189.70 𝑘𝑔. 

3.3 OSCILLATION IN HEAVE AND SWAY ABOUT A CALM FREE SURFACE 

A calm free surface is added, and hydrodynamic coefficients are determined for the 
rectangular cylinder oscillating in heave and sway at several beam-to-draft ratios and 
frequencies.  To create the mesh, rounded bilges were added to the previous geometry using a 
fillet of radius 2.5 mm.  The computational domain was enlarged to match approximately the 
physical proportions of the experimental basin with width 400 m.  Within 25 m on either side of 
the cylinder the mesh is similar to that shown in Figure 1 and Figure 2.  Extending from 25 m off 
of the centerline to the edge of the domain are extruded cells of growing aspect ratio.  These cells 
widen the domain and create a numerical beach for limitation of wave reflections without 
significantly increasing the total number of cells.  Local refinement around the bilges and around 
the body below the waterline is maintained and refinement of the free surface about the mean 
waterline is added.  Symmetry about the centerline is applicable in heave, but not in sway and 
total cells number 134,560 and 268,949 respectively.  The mesh without symmetry plane is 
shown in Figure 3.  A periodic boundary interface is used with a one cell thick mesh to mimic a 
two-dimensional flow.  The interface maps flux through one boundary to the second boundary, 
setting up a cyclic repeat of information and approximating an infinite geometry.  All other 
boundaries match those described in the previous section.  Turbulence is modeled using a k-ε 
approach. 
 

 

Figure 3.      Free surface case mesh 
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3.3.1 Influence of Near-Wall Grid Spacing and Time Step 

A systematic study of the effect of wall-normal grid spacing in the boundary layer is 
presented in Table 1 for 𝐵/𝑇 = 4 with the cylinder in heave.   To create each mesh, the distance 
of the first grid line from the wall was changed while tangential cell spacing remained constant.  
The solution with near-wall thickness y0 = 0.0001 m is shown to be reasonably well converged.  
This resolution was used for the rest of the study.  It results in maximum y+ values of 10 or less 
and average y+ values of approximately 1 or less for the near-wall cell in the boundary layer.   

Table 1.  Influence of near-wall grid spacing on hydrodynamic coefficients, 
rectangular cylinder in heave, B/T = 4 

 
ω* 𝐳𝐚(m) y0 (m) y+ max y+ avg a33* b33* 

1.71 

0.01 
0.001 30.76 4.15 1.89 0.12 
0.0005 17.27 2.31 1.89 0.12 
0.0001 5.52 0.54 1.90 0.12 

0.03 
0.0005 60.06 5.81 1.92 0.29 
0.0001 11.95 1.15 1.95 0.41 
0.00001 1.02 0.12 1.95 0.40 

1 

0.01 
0.001 30.76 4.15 1.51 0.60 
0.0005 17.27 2.31 1.52 0.56 
0.0001 5.52 0.54 1.55 0.53 

0.03 
0.0005 60.06 5.81 1.59 0.72 
0.0001 11.95 1.15 1.65 0.75 
0.00001 1.02 0.12 1.65 0.75 

0.4 
0.01 

0.001 6.79 1.25 2.21 1.10 
0.0005 4.67 0.71 2.20 1.10 
0.0001 1.61 0.15 2.15 1.11 

0.03 0.0005 9.41 1.28 2.17 1.21 
0.0001 3 0.28 1.88 1.28 

A time step convergence study was conducted for cases with the highest frequency 
considered and two amplitudes of oscillation.  Time steps were systematically refined by a ratio 
of 2, with the smallest time step being 0.003 s for 𝑧𝑎 = 0.01 m and 0.001 s for 𝑧𝑎 = 0.03 m.  
Added mass and damping coefficients are given for simulations using each time step in Table 2.  
The convergence appears oscillatory; however, the relative difference between the medium and 
small time step solutions was seen as sufficiently small.  The smallest time step examined was 
thus used for all other simulations. CFL numbers were seen to vary between 0.8 and 1.2 through 
most cells at the highest frequencies of oscillation, and were generally less than 0.25 at the 
lowest frequencies.   
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Table 2.  Influence of time step on hydrodynamic coefficients, rectangular 
cylinder in heave,   B/T = 4 

 

ω* 
za 

(m) Time Step a33* b33* 

1.71 0.01 
0.012 1.85 0.05 
0.006 1.81 0.15 
0.003 1.90 0.12 

1.71 0.03 
0.004 1.96 0.37 
0.002 1.92 0.45 
0.001 1.95 0.41 

3.3.2 Oscillation in Heave Results 

A rectangular cylinder harmonically heaving at a free surface with beam-to-draft ratios 
𝐵/𝑇 = 2, 4 and 8 was examined.  Non-dimensional circular frequencies 𝜔∗ = 𝜔�𝐵/2𝑔 between 
0.40 and 1.71 were used with amplitudes 𝑧𝑎 = 0.01 and 0.03 m.  Results are compared to the 
experimental data and linear potential flow calculations of Vugts [22].  Figure 4 gives added 
mass and damping coefficients as a function of the non-dimensional frequency, with potential 
flow solutions according to the best section fit mapping shown by solid lines and those according 
to the Lewis form by dashed lines.  In general, good agreement is shown between RANS, 
potential flow and experimental results.  At 𝜔∗ = 0.4 the damping tends to be over-predicted by 
RANS.  This is due to bottom effects in the experimental results which were not considered in 
this RANS solution, but are examined in Section 3.4.2.  In cases of high amplitudes and 
frequencies of oscillation the total hydrodynamic force becomes nonlinear with significant 
deviation from sinusoidal form.  The Fourier analysis to determine constant added mass and 
damping coefficients breaks down in this circumstance.  Figure 5 shows a time history of the 
hydrodynamic force over one period of oscillation, and the approximation of added mass and 
damping forces using constant coefficients for the 𝐵/𝑇 = 4 , 𝜔∗ = 1.71, 𝑧𝑎 = 0.03 m case.  
Nonlinearity of the hydrodynamic force may be attributed to several effects.  The linear 
approximation of hydrostatic force is a poor assumption in the case of a nonlinear free surface 
and hydrostatic elements could remain in the total hydrodynamic force as a result.  A 
contribution to added mass arises from variation in wetted surface area such that nonlinearities in 
the free surface can also cause time variation in the added mass coefficient.  Also, viscous eddies 
propagating along the body invoke an unsteady component which may manifest itself in time-
dependence of the hydrodynamic coefficients.  The viscous effects are clearly visible in Figure 6, 
in which vorticity contours and velocity vectors are shown for two different amplitudes of 
oscillation at the same 𝐵/𝑇 and 𝜔∗ as in Figure 5.  Nonlinearity was most substantial at 𝜔∗ ≥
1.25 for 𝐵/𝑇 = 8 and 𝑧𝑎 = 0.03 m.  Results for these cases are not shown since analysis using 
constant coefficients was not viable.  It is surmised that eddy formation and diffusion in 
particular may be the root cause for deviation of the RANS and experimental damping 
coefficients from the potential flow solutions at high frequencies for cases of high amplitude 
oscillation.  Separation at the sharp bilges corresponds with an energy loss due to the formation 
of eddies.  Because the dissipation of energy is represented by damping coefficients it is 
reasonable that their increase with amplitude and frequency is related to the increase in eddy 
strength.  Since the viscous flow field undergoes significant modification as oscillation 
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amplitude and frequency are increased, it is also plausible that the added mass is becoming time 
dependent (through its flow field dependence) and the increase in the damping is a result of the 
Fourier analysis attempting to produce the best match to the nonlinear hydrodynamic force.   
 

 

 

Figure 4. Non-dimensional added mass (top) and damping (bottom) 
coefficients in heave as function of non-dimensional frequency; 
experimental values in black and white, RANS results in red and 
potential flow theory solutions using conformal mapping given by 
solid (best section fit mapping) and dashed (Lewis form) lines 
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Figure 5.  Hydrodynamic components of force in heave: B/T = 4, ω* = 1.71,   
za = 0.03 m 

 

Figure 6.  Vorticity contours and velocity vectors in heave at t/T = 0, 0.25, 
0.50, 0.75: B/T = 4, ω*= 1.71, za = 0.01 m (top) and za = 0.03 m 
(bottom) 

3.3.3 Oscillation in Sway Results 

 The case of a rectangular cylinder harmonically swaying at a free surface was studied at 
the same beam-to-draft ratios and frequencies examined in heave.  Amplitudes of oscillation 
𝑧𝑎 = 0.01 m were simulated for all beam-to-draft ratios, and 𝑧𝑎 = 0.03 m was tested at 𝐵/𝑇 = 4 
in order to assess any influence of amplitude.  The added mass and damping coefficients in sway 
are given in Figure 7.  Good agreement is shown between RANS and experimental results, 
particularly for added mass.  Sway damping is somewhat over-predicted at 𝐵/𝑇 = 8, and under-
predicted at 𝐵/𝑇 = 2.  In the 𝐵/𝑇 = 2 case the RANS solution aligns approximately with the 
linear potential flow solution, while experimental results show damping forces which are greater 
than theoretical predictions.  Overall, the RANS and potential flow solutions appear to match 
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experimental results equally well.  Sway-roll coupling coefficients are given in Figure 8 through 
Figure 10.  The coupling coefficients are small and unreliable as realized during the experimental 
study and corroborated by the RANS results.  Nevertheless, the RANS results generally match 
the experimental values more closely than potential flow.  In examining the influence of 
amplitude for 𝐵/𝑇 = 4, no regular trend is apparent.  Further, as Figure 11 shows, the scale of 
eddies generated at 𝑧𝑎 = 0.03 m is much smaller in sway than in heave and congruently no 
significant nonlinearity appears in the hydrodynamic force.   
 

 

 

Figure 7.  Non-dimensional added mass (top) and damping (bottom) 
coefficients in sway as function of non-dimensional frequency; 
experimental values in black and white, RANS results in red and 
potential flow theory using conformal mapping given by solid (best 
section fit) and dashed (Lewis form) lines 
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Figure 8.  B/T = 2 added mass (left) and damping (right) sway-roll coupling 
coefficients; conformal mapping solutions given by solid (best 
section fit) and dashed (Lewis form) lines  

   

Figure 9.  B/T = 4 added mass (left) and damping (right) sway-roll coupling 
coefficients; conformal mapping solutions given by solid (best 
section fit) and dashed (Lewis form) lines 

  

Figure 10.  B/T = 8 added mass (left) and damping (right) sway-roll coupling 
coefficients; conformal mapping solutions given by solid (best 
section fit) and dashed (Lewis form) lines 
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Figure 11.  Vorticity contours and velocity vectors in sway at t/T = 0, 0.25, 0.50, 
0.75: B/T = 4, ω*= 1.71, za = 0.01 m (top) and za = 0.03 m (bottom)  

3.4 ADDITIONAL PARAMETER EVALUATION 

3.4.1 Turbulence Model Effects 

 To show the influence of turbulence modeling, added mass and damping coefficients 
determined using the k-ε and k-ω models described in Section 2.1.3.2 are given in Table 3 for 
𝐵/𝑇 = 4 in heave at select frequencies.  At low frequency, turbulence has little effect on the 
hydrodynamic coefficients and the modeling approach is inconsequential.  At higher frequencies, 
the k-ω model damping coefficients are larger than those produced using the k-ε model although 
added mass values remain consistent.  While the damping coefficients produced by the k-ε model 
match more closely with experimental values, inferences about the accuracy of each turbulence 
model are impractical since there is no experimental force time history available.   The 
comparison for validation is limited to linear approximations of added mass and damping, which 
are a poor representation of the actual force time history at high frequency.  Nevertheless, 
differences between the two turbulence models are evident in the hydrodynamic coefficients, 
force time histories and flow features.  For instance, the discrepancies shown between the time 
histories of hydrodynamic force in Figure 12 appear to be due to the tendency for eddies in 
simulations using a k-ω model to be larger and separate more easily from the body than those 
produced by the k-ε model.  Figure 13 shows snapshots over time of the vorticity contours and 
velocity vectors for the B/T = 4, 𝜔∗ = 1.71, 𝑧𝑎 = 0.03 m case using the k-ω model.  Comparing 
this with Figure 6 illustrates the flow feature differences between solutions using each model.  
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Table 3. Turbulence model comparison, hydrodynamic coefficients for heave 
motion, B/T = 4 

    
k-ε k-ω 

𝒛𝒂(m) ω* y+ max y+ avg a33* b33* a33* b33* 

0.01 
0.4 1.58 0.14 2.15 1.11 2.9 1.10 
1 3.31 0.34 1.55 0.53 1.52 0.61 

1.71 5.52 0.54 1.90 0.12 1.91 0.19 

0.03 
0.4 2.65 0.28 1.88 1.28 1.92 1.29 
1 5.8 0.66 1.65 0.75 1.63 0.84 

1.71 11.95 1.15 1.95 0.41 1.93 0.60 
 

 

Figure 12. Total hydrodynamic force in heave: B/T = 4, ω* = 1.71, za =0.03 m 

 

 

Figure 13.  Vorticity contours and velocity vectors in heave at t/T = 0, 0.25, 
0.50, 0.75: B/T = 4, ω*= 1.71, za = 0.01 m (top) and za = 0.03 m 
(bottom) using k-ω turbulence model 
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3.4.2 Bottom Effects 

 A deep-water wave approximation is practical as long as the actual water depth is greater 
than ½ λ, where λ is the wavelength.  The simulation results given in Sections 3.3.2 and 3.3.3 are 
for water depths of 2 m, 1.9 m and 1.85 m for 𝐵/𝑇 = 2, 4 and 8 respectively.  These are within 
the stated water depth range, 1.8 m to 2.25 m, of the experimental study.  However, a pressure 
outlet boundary condition is used in the simulations to accommodate fixed mesh motion such 
that the effective water depth is infinite.  This approximation is sufficient for higher frequencies 
of oscillation in which the radiated wave lengths satisfy the deep-water criteria.  At frequencies 
of 𝜔∗ ≤ 0.75, bottom effects become relevant due to the long wavelength of radiated waves.  To 
account for bottom effects, the bottom boundary must have no-slip and non-penetration 
conditions.  Because rigid mesh motion with a bottom wall boundary would vary the water depth 
with time, a new simulation was created using an overset mesh to investigate these effects.   Use 
of an overset mesh permits motion of the body, while the background mesh and domain 
boundaries remain static.  The overset mesh is shown in red in Figure 14 displaced to a vertical 
position of 0.02 m and the background mesh is shown in blue.  Details of the overset mesh 
technique employed by STAR-CCM+ are given in Section 4.3.1.  Figure 15 compares 
experimental added mass and damping coefficients with RANS results for several water depths 
as a function of frequency for 𝐵/𝑇 = 4.  RANS results are given for a depth of 1.9 m between 
𝜔∗ = 0.25 and 0.75, and for depths of 1.8 and 2.2 m at 𝜔∗ = 0.40.  The inclusion of bottom 
effects affords a better estimate of the hydrodynamic coefficients relative to experimental values 
at low frequencies, particularly for damping.  However, added mass and damping coefficients 
appear to be underpredicted relative to the experimental values for low amplitude, 𝑧𝑎 = 0.01 m, 
cases.  Comparison of results at 𝜔∗ = 0.40 for three finite depths demonstrates the magnitude of 
change in the coefficients resulting from small changes in water depth.  Since only a range of 
depths used in the experimental study are known, instead of exact values for particular cases, the 
corresponding RANS estimation may lie anywhere within this range.   

 

Figure 14.    Overset mesh in red, background mesh in blue, B/T = 4 
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Figure 15.  Non-dimensional added mass (top) and damping (bottom) 
coefficients in heave as function of non-dimensional frequency; 
experimental values in black and white, RANS results in color and 
potential flow theory using conformal mapping given by solid (best 
section fit) and dashed (Lewis form) lines 
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4 ONR TUMBLEHOME IN PRESCRIBED MOTIONS AND WAVES 

Calculations of force and moment on the ONR Tumblehome (ONRTH) hullform during 
prescribed 1-DoF heave and pitch oscillations and in a 0-DoF, fixed in waves condition, are 
compared between STAR-CCM+ as a RANS solver and a set of potential flow codes with 
varying degrees of simplification.  The latter results are part of a computational Force Study 
summarized by Belknap and Telste [16] and fully documented in an additional report [2].  The 
study’s aim was to compare existing potential flow models with varying degrees of 
simplification in their ability to calculate forces and moments on the ONRTH.  It consisted of a 
series of prescribed motions and waves representing conditions in which linear assumptions may 
be sufficient to model the physical response and those in which nonlinearity was expected to be 
significant.   The specific tasks completed were 1-DoF prescribed oscillation in calm water 
(radiation problem), 0-DoF forward speed in waves (diffraction problem), and 2-DoF prescribed 
motion in waves (nominal wave contouring problem).  Codes involved in the study are given in 
Table 4 along with an abbreviated identifier.  

The potential flow methods considered are categorized as linear, blended or nonlinear, 
and may be three-dimensional or use a two-dimensional strip-theory approach.  In general, the 
potential flow codes can be classified by their treatment of hydrostatic forces and moment [2].  
Linear codes (A1, L1) use waterplane quantities in calculating hydrostatics while all others 
employ pressure integrals.  Blended and nonlinear theories are separated by their treatment of 
radiation and diffraction forces which are typically linear and non-linear respectively.  The 
handling of hydrostatic and Froude-Krylov forces is nonlinear for both blended and fully 
nonlinear methods.  NFA is an Euler code based on a VOF technique.  Of the codes examined in 
the Force Study, NFA most closely matches the STAR-CCM+ RANS solver in formulation with 
the key exception being its neglect of viscous effects.   Due to limitations of this code at the time 
of the study, and the significant computational resources required for it to run, results were not 
given for all cases [13].  A summary of the characteristics of each code included in the study is 
given by Telste and Belknap [2].  In the Force Study, results provided from each code were 
separated into contributions from hydrostatic, radiation, diffraction and Froude-Krylov force.  
However, for this study only the total forces and moments are considered since the RANS 
computational technique does not lend itself to identifying these individual components.   

Table 4.     List of Force Study Codes 

Abbr. Program Name Development Location Theory Type 
A1 AEGIR-1 Applied Physical Sciences and Flight Safety Technology 3-D, Linear 
A2 AEGIR-2 Applied Physical Sciences and Flight Safety Technology 3-D, Blended 
FD FREDYN MARIN 2-D, Blended 
L1 LAMP-1 SAIC-Annapolis 3-D, Linear 
L3 LAMP-3 SAIC-Annapolis 3-D, Blended 
L4 LAMP-4 SAIC-Annapolis 3-D, Nonlinear 
NF NFA SAIC-La Jolla Euler 
NS NSHIPMO University of Michigan 2-D, Nonlinear 
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4.1 GEOMETRY 

The hull geometry considered is the tumblehome variant of the ONR Topsides series 
known as ONRTH with length 154 m and draft 5.5 m.  DTMB Model #5613-1 is the 
corresponding model, described in detail by Bishop et al. [25].  The ship is representative of a 
modern surface combatant with a hullform similar in size and characteristics to the DDG51 with 
10-degree sloping tumblehome sides.   Sharp changes in the waterline geometry with changes in 
draft represent a source of nonlinearity in the response during large amplitude motions. 
Numerical simulations using STAR-CCM+ and in the Force Study were performed for the ship 
at full scale without deckhouse or appendages.   The origin of the ship-fixed coordinate system is 
at the center of gravity with x-axis positive forward, y-axis positive to port and z-axis pointing 
upward.  Table 5 summarizes the principal particulars of the ONRTH.  A body plan of the 
hullform is shown in Figure 16 and an isometric view is given in Figure 17.   

Table 5.     ONRTH Particulars 

Length, L (m) 154 
Beam, B (m) 18.8 
Draft, T (m) 5.5 
Volume (m3) 8543 
Weight (kN) 8.59 x 104 

VCG (m ABL) 5.5 
LCG (m aft of FP) 79.6 

 

  

Figure 16.     ONRTH body plan 
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Figure 17.     ONRTH isometric view 

4.2 PRESCRIBED 1 DOF HEAVE AND PITCH OSCILLATIONS  

Prescribed 1-DoF heave and pitch motions are examined at two frequencies and two 
amplitudes.  Cases are considered at both zero speed and forward speed (Fn=0.3).   Low 
frequency and amplitude represent highly linear cases which confirm the STAR-CCM+ solution.  
High frequency and amplitude cases exhibit significant nonlinearity.  Table 6 gives the selected 
cases with heave amplitude represented as a percentage of the design draft and pitch taken about 
the LCG.   

Table 6.     Prescribed Oscillation Cases 

Heave 𝑍 = 𝑧𝑎 𝑠𝑖𝑛(𝜔𝑡) Pitch 𝜃 = 𝜃𝑎 𝑠𝑖𝑛(𝜔𝑡)  
Amplitude Frequency Amplitude Frequency 
𝒛𝒂 (% of T) 𝝎 (rad/s) 𝜽𝒂( ° ) 𝝎 (rad/s) 

0.55 m (10%) 0.2079 1.1 1 0.2079 1.1 
4.40 m (80%) 0.2079 1.1 5 0.2079 1.1 

 Linear ramping of the oscillation amplitude was used over the first three periods of 
motion for high frequency cases and the first period at low frequency.  This approach smooths 
the transition from initial conditions to full amplitude motion, minimizing transients in the 
response and helping iterative convergence over the first few time steps.  To initialize forward 
speed cases, the model was run in a static condition at Fn 0.3 until a steady state solution was 
reached.  Eight inner iterations were performed during each time step.  For select cases, STAR-
CCM+ was run without the effect of viscosity and congruently with no prism mesh of the 
boundary layer.  In this configuration, STAR-CCM+ solves the Euler equations and is similar to 
NFA.  Table 7 gives the abbreviations used to denote STAR-CCM+ results. 

Table 7.     STAR-CCM+ Abbreviations 

Abbr. Program Name Theory Type 
SC STAR-CCM+ RANS 

SC_I STAR-CCM+ EULER 
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4.2.1 Computational Mesh and Approach 

 An overset mesh is used to facilitate heave and pitch motion of the ONRTH.  While rigid 
and deforming mesh motion options are available tools in STAR-CCM+, these methods have 
distinct disadvantages for large amplitude motion.  Rigid oscillation presents difficulties for free 
surface refinement, particularly in pitch, and deforming meshes can cause cell quality issues.  
The overset region encompasses the body and moves with the prescribed body motion relative to 
a static background mesh of the entire domain.  In the region of overlap between background and 
overset regions, cells are defined as active, inactive or acceptor cells.  Active cells solve the 
discretized governing equations in a typical manner, while no calculations are performed in 
inactive cells.  Coupling between the two regions is executed by the acceptor cells.  These cells 
separate the active and inactive regions of the background mesh, and completely ring the outer 
boundary of the overset region which is otherwise composed of active cells.  Acceptor cells 
adopt values interpolated from the nearest four active cells, or donor cells, in the other region.  
The acceptor cell is necessary for a solution to the discretized governing equations in interior 
cells in the absence of a boundary condition at the overset/ background region interface.  A linear 
interpolation between cells is employed which applies a weighting factor to the donor cell values 
based on a shape function which spans the tetrahedron composed of the surrounding donor cell 
centroids.  The variable value in an acceptor cell is described as 
 
 

𝜑𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟 =  �𝛼𝑖𝜑𝑖 (20)  

 
Where 𝛼𝑖 is the weighting factor and 𝜑𝑖R is the variable value of the donor cell for i equal to 1 
through 4.  Figure 18 and Figure 19 show centerline views of the overset and background meshes 
respectively with acceptor cells shown in blue, active cells in yellow and inactive cells in red.  
The ONRTH is positioned at a positive (bow down) pitch angle of 5 degrees.  An additional view 
of the mesh is shown in Figure 20, in which the overset mesh is in red and the background mesh 
in blue, in order to illustrate more clearly the overlapping acceptor cells. 

 

 

Figure 18.     Overset mesh: acceptor cells in blue, active cells in yellow 
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Figure 19.    Background mesh: acceptor cells in blue, active cells in yellow, 
inactive cells in red 

 

Figure 20.    Overset Region in red, background region in blue 

 The overset and background regions are composed of trimmed hexahedra with 4.1 and 
7.2 million cells respectively in the fine mesh.  Many background mesh cells in the overlapping 
region are inactive such that the number of cells for which a solution is obtained is 
approximately 10.1 million.  The size of the overset region is designed to limit flow variability 
near the coupling boundary while minimizing background mesh refinement requirements.  The 
background mesh extends 21L to each side of the ship and L below the waterline.  Over the last 
20L the mesh aspect ratio increases with distance from the body to create a numerical beach, 
effectively eliminating contamination of the solution by reflected wave energy.  Refinement of 
the overset and background mesh in the overlap region is the same.  The mesh is locally refined 
in areas of interest near the body and along the free surface with a prism layer mesh of the 
boundary layer.  The first prism layer grid line is placed 0.15 mm from the body such that the 
average y+ is less than 30 for all cases and the boundary layer resolution is in the near-wall-
resolving or blended regime.  The prism layer mesh is composed of 12 layers and extends 31.25 
mm in the direction normal to the body.  Solutions are sought only for motion in the vertical-
plane.  Therefore, a symmetry plane is placed at the centerline to reduce the total cell count.  At 
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zero forward speed, all domain boundaries where taken as pressure outlets.  At forward speed, 
the forward boundary was defined as a velocity inlet boundary.   

4.2.2 Mesh and Time Step Uncertainty  

For a CFD simulation, error and uncertainty in the solution occur from two sources: 
modeling and numerical calculation.  Modeling errors are related to the assumptions made in the 
mathematical representation of a physical problem.  Sources of these errors include the 
governing equations, boundary conditions and turbulence models.  Assessing the modeling error 
is termed validation, and may only be performed if corresponding experimental data is available.  
Because no experimental data is available for the ONRTH in prescribed heave and pitch or 
incident waves, the focus was on estimating the error in the numerical prediction.  Numerical 
error is the result of approximations made in determining a solution to the modeled problem.  
These errors stem mainly from discretization of the problem in space and time, iterative solution 
techniques and computer round-off.  Solution verification is the process of estimating these 
errors, or bounding their true value within some uncertainty interval for a specific application.    

For this study, discretization errors due to grid spacing and time step are assumed to be 
the only significant contributions to the numerical uncertainty.  To assess these uncertainties, and 
thus the suitability of the selected grid and time step for the present simulations, convergence 
studies were undertaken using the solutions on three grids and with three time steps.  To the 
extent possible, with an unstructured grid and prism layer mesh of the boundary layer, similarity 
was maintained between grids.  Medium and coarse meshes were created from the fine mesh 
described in Section 4.3.1 by increasing cell size in all directions outside the prism layer by a 
refinement factor 𝑟𝑔 = 𝛥𝑥𝑔2/𝛥𝑥𝑔1, √2.  In the prism layer the tangential cell spacing was changed 
by √2, while the wall-normal spacing was held constant.  A time step of 0.01 s was used for all 
grid convergence simulations.  Time step sensitivity was determined on the fine mesh using time 
steps of 0.04, 0.02 and 0.01 s such that the time step refinement factor, 𝑟𝑡 = 𝑑𝑡𝑡2/𝑑𝑡𝑡1, is equal to 
2.  Cases of 1.1 rad/s frequency and 4.4 m or 5 degree amplitude of oscillation in heave and pitch 
were chosen for uncertainty analysis since they represent the most extreme cases considered.  A 
zero forward speed condition was used because cases with forward speed required much greater 
run times.  CFL numbers are on typically below 0.4 for these cases with a time step of 0.01 s on 
the fine grid, though occasional local values exceed 1.   

A systematic approach to verification proposed by Stern et al. [26] with factor of safety 
method [27] was used to obtain estimates of the uncertainty associated with the grid spacing and 
time step.  The verification quantities of interest are force and moment on the body over one 
period of motion, which for the cases examined are highly nonlinear.  Two approaches were 
taken in determining the time dependent solution differences between the fine, medium and 
coarse mesh or time steps.  In the first approach, referred to subsequently as the “normalization” 
option (e.g. [28]), solutions on each grid, or using each time step, are matched at discrete points 
in time, and the solution change obtained.  L2 norms of the solution change at all points in time 
are then used to determine global values for convergence ratio and observed order of accuracy.  
The “harmonic” approach (e.g. [8, 29]) utilizes solution changes between the mean value, F0, 
first harmonic amplitude F1, and phase, θ1 , of each time history.  Since single response 
quantities for the entire period are considered, instead of the value at each discrete point in time, 
normalization of the solutions is not necessary.  Eqn. 21, 22 and 23 show the solution changes 
and solution change ratios respectively, where 𝑆𝑘 is the solution for the 𝑘 study (grid (𝑔), time 
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step (𝑡)), and the numerical subscripts give the refinement level with 1 indicating the finest mesh 
or smallest time step.   

 𝜀𝑘21 = 𝑆𝑘2 − 𝑆𝑘1 (21)  

 𝜀𝑘32 = 𝑆𝑘3 − 𝑆𝑘2 (22)  

 𝑅𝑘 = 𝜀𝑘21/𝜀𝑘32 (23)  

 
Three convergence conditions are possible; monotonic (0<𝑅𝑘<1, MC), oscillatory (𝑅𝑘<0, 

OC) and divergent (𝑅𝑘>1, D).  Convergence ratios in the normalization approach may become 
ill-conditioned if one or more solution changes go to zero.   To avoid this difficulty a global 
convergence ratio based on the L2 norm of solution changes at all points in time is used.  
Unfortunately, global convergence ratios cannot be less than zero and thus this approach may not 
be used to assess the oscillatory convergence condition.  In addition, local divergence at some 
points may be ignored since global convergence ratios less than 1 are assumed to demonstrate 
monotonic convergence.  For oscillatory convergence conditions assessed using the harmonic 
approach, uncertainty is simply estimated based on solution maxima, 𝑆𝑈, and minima, 𝑆𝐿,  i.e. 
the uncertainty, 𝑈𝑘 = 1

2
(𝑆𝑈 − 𝑆𝐿).  Uncertainty cannot be estimated if the solution is divergent.  

Convergence ratios obtained using each method are given in Table 8 and Table 9.  Using the 
normalization approach all response quantities are judged to be monotonically converging.  
Several harmonics are shown to be diverging, partly due to the importance of higher order terms 
in the nonlinear response quantities which make examination of first order harmonics for 
solution convergence problematic in this case.  Given monotonic convergence of the solutions, 
an approach based on Richardson extrapolation (RE) is used.  Observed order of accuracy is 
estimated using L2 norms of the solution change in the normalization approach, or the harmonic 
solution change in Eqn. 24.  This formula gives a poor estimate of the order of accuracy for 
solutions not in the asymptotic convergence range, which is typically the case for unsteady, 
three-dimensional seakeeping computations.  To determine the proximity of the solution to the 
asymptotic range a distance metric is used, and is given in Eqn. 25 where 𝑝𝑘𝑒𝑠𝑡 is the assumed 
theoretical order of accuracy (2).  When solutions are in the asymptotic range,  𝑝𝑘𝑒𝑠𝑡 = 𝑝𝑘 and the 
distance metric is equal to 1.  Distance metrics are not generally close to 1 in this case, as shown 
in Table 8 and Table 9, demonstrating that the solutions do not approach the asymptotic range.   
 
 

𝑝𝑘 =
ln(𝜀𝑘32/𝜀𝑘21)

ln(𝑟𝑘)  (24)  

 𝑃𝑘 =
𝑝𝑘
𝑝𝑘𝑒𝑠𝑡

 (25)  

 
A RE estimate of numerical error is obtained for the finest grid or time step using Eqn. 

26.  While global convergence ratio and observed order of accuracy were determined using L2 
norms of the solution change in the normalization approach, here 𝜀𝑘21 is the solution change at 
each discrete point in time.  Thus, an RE estimate of error is obtained for all points in the time 
history, while the harmonic approach results in estimates for the mean and first harmonic.  Since 
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the magnitude of the RE error estimate is indefinite and the sign indeterminable in this case, an 
uncertainty interval is utilized which ideally bounds the true numerical error with a 95% level of 
confidence.  This interval is obtained by applying a safety factor based on the distance metric to 
the RE error as shown in Eqn. 27.  Table 8 and Table 9 contain the safety factors for each 
convergence study and response quantity. 
 
 𝛿𝑅𝐸𝑘1

∗ =
𝜀𝑘21

𝑟𝑘
𝑝𝑘 − 1

 (26)  

 
𝑈𝑘 = �

(2.45 − 0.85𝑃𝑘) �𝛿𝑅𝐸𝑘1
∗ �     0 < 𝑃𝑘 ≤ 1

(16.4𝑃𝑘 − 14.8) �𝛿𝑅𝐸𝑘1
∗ �             𝑃𝑘 ≥ 1

 (27)  

 
Uncertainty over time is obtained in the normalization method, and is plotted as a bounds 

relative to the fine grid or time step solution (𝑆𝑘1+ 𝑈𝑘) and (𝑆𝑘1- 𝑈𝑘) in Figure 21 through Figure 
24.  Solutions on the medium and coarse grid or time step are also shown.  The bounds are 
highly oscillatory because of zero solution change at crossing points and large changes near local 
maxima caused by small differences in the phase and amplitude of higher order components. 
Comparing solutions at discrete points in time accounts for convergence of amplitude, but does 
not properly consider phase differences.  A small change in phase may thus be accounted for in 
the normalization approach as a major change in amplitude and thus a large peak in uncertainty.  
Table 10 gives the L2 norm of the uncertainty bounds as a percentage of the force and moment 
peak-to-peak amplitudes.  The uncertainty estimates obtained in the harmonic approach are also 
given, with uncertainty in the first harmonic amplitude given as a percentage of its magnitude in 
the fine case, and the phase as a percentage of 2π.  The mean is shown as a percentage of the 
maximum between its value and the first harmonic amplitude.  The normalization approach 
appears to give a consistent estimation commensurate with the relative level of variation between 
solutions in each response quantity.  For example, uncertainty is smallest for the dominant modes 
(i.e. Fz for heave and My for pitch) while the responses containing the greatest nonlinearity have 
the highest uncertainty.  For the cases considered, the grid spacing and time step uncertainties are 
generally on the order of 10% with a minimum of 1.95 % and maximum of 34.18 %.  However, 
this estimation is probably overly conservative since it averages in local uncertainty maxima 
caused by scatter in the convergence.  Due to strong nonlinearity in the solutions, examination of 
convergence by leading order harmonics provided disjointed results.  For several quantities 
divergence occurred, while in others correlation between the uncertainty estimate and actual 
convergence was marginal.  Overall, little confidence may be placed in the estimated uncertainty 
values for this case.  Likely, this problem is simply ill-suited for uncertainty analysis according 
to current methods due to prominent nonlinearity in the response.  However, a pragmatic 
comparison of the convergence study time histories in Figure 21 through Figure 24 gives some 
assurance that the fine mesh and time step are reasonable for this case.   
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Table 8. Verification parameter results: heave, frequency 1.1 rad/s, amplitude 
4.4 m, Fn 0.0 

 
 

Grid Convergence Time Step Convergence 
 𝑅𝑔 𝑃𝑔 𝐹𝑆𝑔 𝑅𝑡 𝑃𝑡 𝐹𝑆𝑡 

N
or

m
al

iz
at

io
n Fx 0.79 0.33 2.17 0.76 0.39 2.12 

Fz 0.66 0.60 1.94 0.51 0.97 1.63 

My 0.82 0.30 2.20 0.85 0.23 2.25 

H
ar

m
on

ic
 

Fx0, Fx1, 
θx1 

-5.3, 3.3, 0.2 D,D,2.17 D,D,10.375 0.3, 0.1, 0.5 0.9, 1.5, 0.6 1.7, 9.1, 2.0 

Fz0, Fz1, 
θz1 

6.8, 0.8, -5.5 D,0.38,D D,2.13,D 0.08, 0.5, 0.9 1.9, 0.5, 0.1 15.5, 2.0, 2.4 

My0, My1, 
θy1 

-1.9, 1.8, -
1.1 D,D,D D,D,D 0.9, 0.4, 0.3 0.1, 0.6, 0.8 2.4, 1.9, 1.7 

Table 9.  Verification parameter results: pitch, frequency 1.1 rad/s, amplitude 
5 deg, Fn 0.0 

 
 

Grid Convergence Time Step Convergence 
 𝑅𝑔 𝑃𝑔 𝐹𝑆𝑔 𝑅𝑡 𝑃𝑡 𝐹𝑆𝑡 

N
or

m
al

iz
at

io
n Fx 0.90 0.15 2.32 0.68 0.56 1.98 

Fz 0.62 0.70 1.86 0.62 0.69 1.86 

My 0.77 0.37 2.14 0.53 0.92 1.67 

H
ar

m
on

ic
 

Fx0, Fx1, 
θx1 

0.1, 1.2, 0.3 2.1, D, 0.8 54.6, D, 11.7 -1.6, 9.0, 0.5 D, D, 0.25 D, D, 2.0 

Fz0, Fz1, 
θz1 

0.8, -0.2, -
0.4 0.15, OC, OC 2.2, OC, OC 0.3, -0.1, 0.3 0.4, OC, 0.4 1.8, OC, 1.8 

My0, My1, 
θy1 

1.9, -0.2, -
3.8 D, OC, D D, OC, D 2.0, -3.0, 0.2 D, D, 0.6 D, D, 2.9 

Table 10. Grid and time step uncertainties: high amplitude and frequency, Fn 0.0 

  
 

Heave Pitch 
 𝑈𝑔 𝑈𝑇 𝑈𝑔 𝑈𝑡 

N
or

m
al

iz
at

io
n Fx 12.77% 8.72% 30.19% 8.58% 

Fz 3.59% 1.95% 11.48% 9.10% 

My 31.92% 34.18% 11.83% 4.70% 

H
ar

m
on

ic
 

Fx0, Fx1, 
θx1 

D, D, 0.5 % 0.03,0.41,0.33 % 0.22, D, 0.89 % D, D, 1.27 % 

Fz0, Fz1, θz1 D, 1.0, D % 0.02, 1.51, 7.22 % 8.94, 6.61, 2.21 % 0.26, 10.96, 0.43 % 

My0, My1, 
θy1 

D, D, D % 6.56, 4.00, 0.06 % D, 0.64, D % D, D, 0.36 % 
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Figure 21.  Grid refinement study, 
oscillation in heave at frequency 1.1 rad/s, 
amplitude 4.4 m and Fn 0.0: longitudinal 
force (top), vertical force (middle) and pitch 
moment (bottom) 

 

 
 
Figure 22.  Time step refinement study, 
oscillation in heave at frequency 1.1 rad/s, 
amplitude 4.4 m and Fn 0.0: longitudinal 
force (top), vertical force (middle) and pitch 
moment (bottom) 
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Figure 23.  Grid refinement study, 
oscillation in pitch at frequency 1.1 rad/s, 
amplitude 5 deg. and Fn 0.0: longitudinal 
force (top), vertical force (middle) and pitch 
moment (bottom) 

 

 
 
Figure 24.  Time step refinement study, 
oscillation in pitch at frequency 1.1 rad/s, 
amplitude 5 deg. and Fn 0.0: longitudinal 
force (top), vertical force (middle) and pitch 
moment (bottom) 
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4.2.3 Force and Moment Results  

 Total force and moment results are given over one period of motion, exclude the weight 
vector and are relative to the ship fixed coordinate system.  The various codes are represented by 
the legend given in Table 11.   Results from NFA are only available for the cases of frequency 
1.1 rad/s and amplitude 4.4 m or 5 degrees at forward speed.  Inviscid solutions using STAR-
CCM+ were obtained for oscillations of frequency 1.1 rad/s and amplitude 4.4 m or 5 degrees 
with no forward speed and Fn 0.3.  Results are discussed in full only for these most extreme 
cases.  However, some key observations from other cases are given and the complete results of 
all other cases are given in Appendix A.   

Table 11.    Legend for time history plots 

 

4.2.3.1 Zero Forward Speed Cases 

 For low amplitudes of oscillation, 0.55 m or 1 degree for heave and pitch respectively, at 
zero forward speed the various potential flow codes and RANS solutions agree well.  For 
motions with large amplitudes of 4.4 m or 5 degrees geometric nonlinearity becomes important.  
In particular, the emergence of the shallow transom of the ONRTH results in abrupt changes in 
waterplane area.  The potential flow codes are separated in this regard by their approach to 
calculation of hydrostatic force and moment.  In the low frequency case, this is the principal 
source of nonlinearity and the linear methods (A1, L1) do not agree with the blended and 
nonlinear potential flow results [2] or with the RANS results.  This is demonstrated in Figure 25, 
which gives the pitch moment exerted on the hull for oscillation in pitch at frequency 0.2079 
rad/s and amplitude 5 degrees.  Over the first half of the period, nonlinearity is noticeable as the 
stern emerges above the free surface.  Through the rest of the period, the response is 
approximately linear as the stern submerges below the calm waterline.  A progression over time 
of the body position at centerline relative to the waterline is shown for pitch at frequency 0.2079 
rad/s and amplitude 5 degrees in Figure 26. 
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Figure 25.  Pitch moment for oscillation in pitch at freq. 0.2079 rad/s, amp. 5 
deg. and Fn 0.0  

 

Figure 26.  Centerline stern section free surface in pitch at freq. 0.2079 rad/s, 
amp.5 deg. and Fn 0.0 

4.2.3.2 Forward Speed Cases 

 For low amplitude cases at both frequencies, the influence of forward speed sinkage force 
and trim moment effects are noticeable, though they are more than an order of magnitude lower 
than the hydrostatic component of force and moment.  Figure 27 compares the vertical 
component of force from RANS at Fn 0.0 and 0.3 for heave motion of frequency 0.2079 rad/s 
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and 0.55 m amplitude.  The sinkage effect at forward speed causes a net decrease in vertical 
force of approximately 4,000 kN.  This effect varies with body position, causing less change in 
vertical force during the first half of the period when the body is above its mean position and 
increasing over the second half of the period as draft increases.  The LAMP suite of codes 
includes a steady Kelvin component in the hydrodynamic force and moment at forward speed 
[2].  As shown by Figure 28 this results in a much closer agreement with the RANS result than 
the other potential flow codes which did not include such a correction.    

 

Figure 27.  Vertical force from RANS for oscillation in heave at freq. 0.2079 
rad/s, amp. 0.55 m, Fn 0.0 & 0.3 

 

Figure 28.  Vertical force for oscillation in heave at freq. 0.2079 rad/s, amp.  0.55 m, 
and Fn 0.3 
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4.2.3.3 Large Amplitude and High Frequency  

 The most interesting cases are those which show the greatest nonlinearity.  These are 
prescribed oscillation at the largest amplitude, 4.4 m or 5 degrees, and frequency, 1.1 rad/s.  In 
these cases, nonlinearity in the radiation force is important in addition to geometric nonlinearity 
since magnitudes of the hydrodynamic force and moment approach the hydrostatic magnitudes.  
Telste and Belknap [2] demonstrate this using separate plots of the potential flow radiation and 
hydrostatic components of force and moment.  Of the cases considered, high amplitude and 
frequency is also most likely to exhibit a viscous influence on the solution which is captured by 
RANS but not the potential flow codes.  Longitudinal force, vertical force and pitching moment 
are given in Figure 30 and Figure 31 for sinusoidal oscillation in heave and Figure 32 and Figure 
33 for oscillation in pitch at Fn 0.0 and 0.3.   
 In Figure 30, a spike in heave force and pitch moment occurs between 2.6 and 2.8 s into 
the period of oscillation.  This spike occurs as the shallow transom stern impacts the free surface 
while traversing downward toward the mean waterline.  Here, the codes are especially distinct in 
their results for pitch moment, with the nonlinear potential flow and RANS solutions displaying 
a markedly different character than the blended and linear methods.  In particular, the codes 
which do not account for nonlinearity in the radiation force miss the peak in the pitch moment 
time history.  There is also some difference between the RANS solution and nonlinear potential 
flow results.  The cause of this discrepancy is likely their treatment of free surface nonlinearities 
and viscous effects since the nonlinear radiation and hydrostatic forces are considered in both 
methods.  Visualization of the STAR-CCM+ solution for this case in Figure 29 shows that the 
free surface beneath the stern is highly disturbed prior to impact due to perturbations created on 
the previous upstroke.    
 The forward speed case in which the body is undergoing prescribed heave oscillation of 
4.4 m amplitude and 1.1 rad/s frequency given in Figure 31 shows a result similar to that for 
prescribed heave oscillation of the same amplitude and frequency with no forward speed.   
Solutions from NFA and STAR-CCM+ both display a difference in phase relative to the 
nonlinear potential flow results over the first 2 s of the period.  Between 2.6 and 2.8 s the STAR-
CCM+ solutions exhibit a smaller peak heave force magnitude than NFA, LAMP-4 and 
NSHIPMO which all agree well.  In addition, the peak in pitch moment appears to occur slightly 
earlier in the period for the STAR-CCM+ solution than for the other nonlinear methods.  
Through the entire period, the two STAR-CCM+ solutions are in close agreement, except for 
greater noise in the inviscid result due to less dissipation.  It is interesting that the STAR-CCM+ 
inviscid solution agrees more closely with the RANS result from the same code, than with NFA 
which also assumes zero viscosity.  In either case, the numerical viscosity inherent in the scheme 
prohibits a straightforward comparison with potential flow.  VOF methods capture the nonlinear 
free surface by tracking volume-fractions to the extent allowed by a given spatial discretization 
whereas nonlinear potential flow codes may employ some linearization of the free surface to 
avoid computational difficulty.  For instance, the Lamp-4 code linearizes the free surface 
boundary condition with respect to the incident wave [30].  This approach assumes that radiated 
wave heights are small relative to the incident wave.  Given that the radiated wave amplitude is 
approximately equal to the amplitude of prescribed heave oscillation, or 80% of the draft in this 
case, and the STAR-CCM+ solution shows that this wave is breaking near the body, that 
assumption is violated.   
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Figure 29.  Time history of free surface: heave oscillation, freq. 1.1 rad/s, amp. 
4.40 m, & Fn 0.0 

 The radiation pitch moment for prescribed oscillation in pitch at frequency 1.1 rad/s and 
amplitude 5 degrees given by Telste and Belknap [2] has a magnitude near that of the hydrostatic 
pitch moment, and is nearly 180 degrees out of phase.  The hydrostatic pitch moment is also 
approximately linear.   Consequently, the total pitch moments shown in Figure 32 and Figure 33 
for Fn 0.0 and Fn 0.3 respectively are sensitive to nonlinearities in the predicted radiation force.  
Again, the RANS and nonlinear methods match closely while the character of the blended and 
linear potential flow solutions differ significantly.  Also, there is a slight difference between 
VOF and nonlinear potential flow solutions, which is most apparent in the vertical force result.  
In this case there does not appear to be any notable difference between NFA and the STAR-
CCM+ solutions.  As in heave motion, significant deformations of the free surface are apparent 
in the STAR-CCM+ solution, including local wave breaking.  However, the influence of free 
surface phenomena on the force and moment results cannot be examined independently since 
viscous effects and simulation characteristics unrelated to the underlying theory also introduce 
differences between the solutions from each code.  An example of the effect of viscosity is 
shown in Figure 34.  Here, velocity vectors and vorticity contours of a transverse, two-
dimensional section at 95% of the ship length, or midway on the rise between the baseline and 
transom stern, are depicted.  The water phase is shown only for cells in which the volume 
fraction of water is greater than 50 % so spray modeled by the VOF method is not visible.  
Separation is evident around the sharp bilges of the section as it travels vertically at t = 0, 5 and 
5.5 s.  The effect is rather similar to that realized by a two-dimensional rectangular cylinder in 
Section 3.3.2.  As with the rectangle, there is likely some nonlinear viscous influence on the 
hydrodynamic response.  However, in the RANS solution for this case, the ONRTH stern 
emerges above the calm waterline and viscous effects coalesce with deformation of the free 
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Figure 30.  Oscillation in heave at 
frequency 1.1 rad/s, amplitude 4.4 m and Fn 
0.0: longitudinal force (top), vertical force   
(middle) and pitch moment (bottom) 

 

Figure 31.  Oscillation in heave at 
frequency 1.1 rad/s, amplitude 4.4 m and Fn 
0.3: longitudinal force (top), vertical force 
(middle) and pitch moment (bottom) 
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Figure 32.  Oscillation in pitch at frequency 
1.1 rad/s, amplitude 5 deg. and Fn 0.0: 
longitudinal force (top), vertical force (middle) 
and pitch moment (bottom) 

 

 

Figure 33.  Oscillation in pitch at 
frequency 1.1 rad/s, amplitude 5 deg. and Fn 
0.3: longitudinal force (top), vertical force 
(middle) and pitch moment (bottom) 
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surface in a complicated flow field which induces hydrodynamic nonlinearities dependent upon 
previous interactions.    
 For the forward speed case of prescribed pitch with frequency 1.1 rad/s and 5 degree 
amplitude in Figure 33, the LAMP-4 vertical force is in better agreement with the VOF solutions 
than NSHIPMO over the second half of the pitch cycle as the stern reenters the water.  Perhaps 
some three-dimensional effect is influential.  However, the general character of the nonlinear 
strip-theory method NSHIPMO is still very near the other nonlinear methods.  In fact, it is 
notable that the prediction of heave force and pitch moment by the two-dimensional method is 
generally quite similar to the three-dimensional, nonlinear code LAMP-4 [31] and the VOF 
methods NFA and STAR-CCM+ for all cases.   

 

Figure 34. Velocity vector and vorticity contour time history from RANS for 
transverse section at 95% of L: oscillation in pitch at frequency 1.1 
rad/s, amplitude 5 deg., and Fn 0.0 
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4.2.4 Evaluation of Simulation Parameters 

In addition to examining the uncertainty associated with grid and time step refinement, 
several other parameters were considered in their effect on the solution. Figure 35 and Figure 36 
show a comparison between 2nd and 1st order temporal discretization schemes for cases of 1.1 
rad/s frequency and 4.4 m or 5 degree amplitude of oscillation in heave and pitch at zero forward 
speed.  While a 2nd order discretization of the transient term offers greater accuracy for an 
unsteady simulation, the results show that a 1st order solution does not differ significantly for the 
chosen time step.  Moreover, a 1st order scheme offers substantial benefits in stability and 
computational time.  A 1st order temporal solution on a mesh which is body-fixed and rigidly 
oscillated is also shown for heave motion of 1.1 rad/s frequency and 4.4 m amplitude in Figure 
35. In this mesh motion implementation, body oscillation involves translation of the entire 
domain rather than an overset region surrounding the body.  The grid refinement used in this 
mesh is similar to that of the overset mesh.  Close agreement between the rigid and overset mesh 
solutions confirms that no significant errors are introduced by interpolation between the overset 
and background regions of the overset mesh for this case.   

Figure 37 and Figure 38 show solutions for cases of 1.1 rad/s frequency and 4.4 m or 5 
degree amplitude of oscillation in heave and pitch respectively at zero forward speed using a k-ω 
turbulence model.  Previously discussed solutions obtained using the k-ε model are given for 
comparison.  The formation and diffusion of vorticity about sharp edged stern sections does 
differ somewhat between methods.  However, the difference between the two solutions is slight 
for both heave and pitch motion.  This is in contrast with the findings for a two-dimensional 
rectangular cylinder in heave which showed that significant differences in force on the body 
resulted due to disparities in the formation and propagation of eddies approximated by the 
respective turbulence models during large amplitude motion.
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Figure 35.  Comparison of temporal 
discretization order and fixed mesh; 
oscillation in heave at frequency 1.1 rad/s, 
amplitude 4.4 m and Fn 0.0: longitudinal 
force (top), vertical force (middle) and pitch 
moment (bottom) 
 

 

 

Figure 36.  Comparison of temporal 
discretization order; oscillation in pitch at 
frequency 1.1 rad/s, amplitude 5 deg. and Fn 
0.0: longitudinal force (top), vertical force 
(middle) and pitch moment (bottom) 
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Figure 37.  Comparison of k-ε and k-ω 
turbulence models; oscillation in heave at 
frequency 1.1 rad/s, amplitude 4.4 m and Fn 
0.0: longitudinal force (top), vertical force 
(middle) and pitch moment (bottom) 

 

Figure 38.  Comparison of k-ε and k-ω 
turbulence models; oscillation in pitch at 
frequency 1.1 rad/s, amplitude 5 deg. and Fn 
0.0: longitudinal force (top), vertical force 
(middle) and pitch moment (bottom)
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4.3 FIXED 0 DOF IN HEAD WAVES  

ONRTH is examined in a 0-DoF fixed condition with incident head waves (β=180°) at 
both zero speed and constant forward speed (Fn=0.3).  This is commonly referred to as the 
diffraction problem.  The smallest and largest wave steepnesses examined in the Force Study are 
considered to include cases in the linear regime and in which nonlinearity is likely important.  
The tested wave amplitudes, 𝑎, are 1.28 and 7.70 m, and wave steepness H/λ is 1/60 and 1/10.  
The wavelength, λ, in each case is equal to the ONRTH ship length or 154 m and deep water 
waves are assumed in all cases.  Both forward speed and Fn 0.3 are examined.  Table 12 gives 
the considered conditions.   

Table 12.    Fixed in head waves cases 

H/λ λ/L 𝒂 (m) β (°) Fn 
1/10 1 7.70  180 0.0 0.3 
1/60 1 1.28 180 0.0 0.3 

Using linear wave theory the free surface elevation is given in the form 
 

 𝜂 = 𝑎 cos(𝑘𝑥 − 𝜔𝑡) (28)  
 
And the encounter period, 𝑇𝑒,  is approximated as 
 
 𝑈 = Fn�𝑔𝐿 (29)  

 𝜔 = �2𝜋𝑔/𝜆 (30)  

 𝜔𝑒 = 𝜔 − (𝜔2𝑈 𝑔⁄ ) cos 𝛽 (31)  

 𝑇𝑒 = 2𝜋/𝜔𝑒 (32)  
 
Where Fn is the Froude Number, 𝑈 is the body velocity and 𝛽 is the angle of incidence with 
180° defined as head waves.  Using Equations 29-32 the estimated encounter period of the 
chosen wavelength is 9.93 and 5.67 s for zero speed and Fn 0.3 respectively.  The linear theory is 
valid only for small wave steepnesses.  Several higher order theories are available which for deep 
water waves follow the Stokes expansion.  For wave input conditions, either boundary or initial 
conditions, STAR-CCM+ offers linear waves and a 5th order Stokes theory approximation.   

4.3.1 Computational Mesh and Approach  

 The overset mesh described in Section 4.2.1 for prescribed motions of the ONRTH is 
employed again here with some differences.  Extruded cells of increasing aspect ratio which 
began at a distance L forward of the ship and continue to the inlet boundary are eliminated.  
These cells created a numerical beach which dampened radiated waves during prescribed heave 
and pitch, but would distort incident waves in head seas before they encounter the body.  Similar 
cells are maintained aft of the ship in order to dampen diffracted waves and the incident wave as 
it passes downstream of the body.  Waves are additionally dampened in the zero forward speed 
case by introducing a smoothly increasing vertical resistance starting 2L aft of the ship and 
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continuing to the outlet boundary located 5L aft of the ship.  The free surface region is further 
refined with cell sizes tailored to each wave steepness.  Wave heights are discretized by 24 and 
32 cells for wave amplitudes of 7.70 and 1.28 m respectively.  Using aspect ratios greater than 1 
in the free surface region there are 124 cells across the wavelength in each case.  In the overset 
region an aspect ratio of 1 is maintained and the mesh is the same as shown in Figure 18 except 
for further refinement of the free surface in the vertical direction.  Overset meshes are composed 
of 4.1 and 8.7 million cells and the background meshes contain 7.4 and 13.2 million cells for the 
large and small amplitude wave conditions respectively.  Figure 39 shows the overset mesh in 
red and background mesh in blue for each wave amplitude.  Though an overset mesh has no 
benefit in this static case, it is employed in order to examine the interpolation of waves across the 
background to overset mesh interface.   

 

 

Figure 39.  Overset (red) and background (blue) mesh: incident waves of 7.7 m 
amp. (top) and 1.28 m amp. (bottom) 

The main difficulties in implementing free surface waves in a CFD simulation are 
generation at the inlet, resolution of the wave through the domain without dissipation, and 
outflow without reflection.  Some experimentation was utilized in selecting the boundary 
conditions and mesh structure which best satisfied these criteria.  The 5th order Stokes wave 
theory is used to specify boundary and initial conditions according to a close approximation of 
the nonlinear wave profile.   A pressure outlet is specified on the downstream,  top and bottom 
faces, symmetry planes are utilized at the centerline and side boundary, and the forward face is a 
velocity inlet which specifies the transient wave velocity and volume fraction.  Turbulence is 
modeled using the SST k-ω approach.   Six inner iterations are performed during each time step.  
Forward speed and waves were initialized throughout the domain with no ramping.   

4.3.2 Mesh and Time Step Uncertainty 

 Incident waves of H/λ = 1/10 were considered for grid and time step uncertainty at zero 
forward speed.  Convergence studies using the approach of Section 4.2.2 were undertaken using 
the solutions on four grids and with four time steps.  Medium and coarse meshes were 
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constructed from the fine mesh described in Section 4.3.1 through progressive increases in cell 
size by a refinement ratio, 𝑟𝑔 = √2.  An additional extra fine mesh was created by reducing cell 
size by the same factor.  A time step of 0.01 s was used for all grid convergence simulations.  
Grid uncertainty on the fine mesh was determined using the medium and coarse grids, and 
uncertainty on the extra fine mesh utilized the solution on fine and medium grids.  Time steps of 
0.005 s, 0.01 s, 0.02 s and 0.04 s were considered to determine uncertainty due to discretization 
in time on the fine grid.  Uncertainty associated with a time step of 0.01 s was estimated using 
time steps of 0.02 s and 0.04 s while calculation of the extra fine time step, 0.005 s, uncertainty 
employed time steps of 0.01 s and 0.02 s.   
 Convergence study results on the fine grid and using the fine time step are given in Table 
13 and Table 15.  The time step uncertainty study shows monotonic convergence in all cases 
except for the mean of the vertical force which converges in an oscillatory manner.  
Uncertainties of the mean and first harmonic amplitude and phase are between 0.13 and 0.90 %, 
with the greatest uncertainty typically appearing in the phase.  Unlike the prescribed heave and 
pitch results, a first harmonic approximation matches the solutions well in this case because they 
resemble a simple trigonometric form. Using the normalization approach, the uncertainty due to 
time step is between 3.91 and 10.40 %.  For the reasons given in Section 4.2.2 this estimate is 
likely overly conservative. Plots of the uncertainty time histories are given in Appendix B.  In the 
fine mesh uncertainty study, divergent or oscillatory convergence occurs in the harmonic 
approach and divergence is shown for the vertical force using normalization. Grid refinement 
uncertainties for converging quantities in this case are between 43.11 and 89.45 % or 0.69 and 
6.08 % for the normalization and harmonic approaches respectively.  These values are 
significantly larger than those due to temporal discretization, and are higher than is expected 
based on previous uncertainty estimates for periodic ship motion simulations using the same 
approach [7]. 
 Estimation of uncertainty due to discretization in time using the extra fine time step is 
shown in Table 15 and the convergence ratio, distance metric and factor of safety are provided in 
Table 14.  Estimates using normalization are between 1.81 and 4.47 %, while the harmonic 
uncertainties range from 0.04 to 0.67 %.  These values are somewhat less than uncertainties due 
to temporal discretization for the fine time step.  Even so, the reduction in numerical error in the 
extra fine case is minimal and the uncertainty in the fine time step case is also small.  The fine 
time step was consequently accepted for this study and is used in all subsequent simulation 
results.  Estimates of uncertainty due to spatial discretization on the extra fine mesh range from 
5.96% to 16.10 % using normalization and 0.45 to 5.88 % in the harmonics.  This is a substantial 
improvement over uncertainty on the fine mesh and is comparable to previous seakeeping 
simulation uncertainty estimates.  Based on this outcome, results in Section 4.3.3.2 are presented 
on the extra fine mesh for H/λ = 1/10 with zero forward speed and at Fn 0.3.  Figure 40 shows 
the extra fine mesh overset and background regions.  Approximately 217 cells span the wave 
length on this refined mesh, with 34 cells across the wave height.  The extra fine background 
mesh is composed of 19.2 million cells with the overset mesh containing 10.2 million cells.  
Average y+ values are less than 16 and the maximum CFL number due to phase speed of the 
incident wave is less than 0.4 with no forward speed and 0.62 with forward speed.  A more 
efficient approach would be to refine locally about areas of interest such as the free surface and 
body, but the uniform approach to refinement was used here since it is required for estimation of 
uncertainty.   
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Figure 40.  Extra fine mesh; overset (red) and background (blue) mesh: incident 
waves of 7.7 m amp. 

In general, the mesh uncertainty was greater than the time step uncertainty and vertical 
force was the response most influenced by discretization error.  Estimates of uncertainty using 
the normalization approach may be conservative and are much larger than the uncertainty 
associated with the mean, first harmonic amplitude and phase.  However, because iterative and 
round-off errors were not assessed, refinement of the boundary layer mesh was uniform in only 
two-dimensions, and solutions were not in the asymptotic range, there is some ambiguity as to 
whether a 95 % confidence interval is achieved in the harmonic uncertainties and to what extent 
the normalization scheme may result in an overly conservative estimate. 

Table 13. Verification parameter results: fine mesh, fine time step, H/λ = 1/10, 
Fn 0.0 

  Grid Convergence Time Step Convergence 
 𝑅𝑔 𝑃𝑔 𝐹𝑆𝑔 𝑅𝑡 𝑃𝑡 𝐹𝑆𝑡 

N
or

m
al

iz
at

io
n Fx 0.82 0.29 2.20 0.42 0.63 1.91 

Fz 1.01 D D 0.52 0.47 2.05 

My 0.91 0.13 2.34 0.51 0.48 2.04 

H
ar

m
on

ic
 Fx0, Fx1, θx1 -0.6, -0.8, -0.8 OC, OC, OC OC, OC, OC 0.3, 0.2, 0.3 0.8, 1.0, 0.8 1.8, 1.8, 1.8 

Fz0, Fz1, θz1 -1.0, -0.9, -1.1 D, OC, D D, OC, D -0.1, 0.3, 0.3 OC, 0.9, 0.9 OC, 1.7, 1.7 

My0, My1, 
θy1 

-0.7, -0.7, -1.1 OC, OC, D OC, OC, D 0.3, 0.05, 0.3 0.8, 2.2, 0.8  1.7, 21.2, 1.8 

Table 14.  Verification parameter results: extra fine mesh, extra fine time step, H/λ = 
1/10, Fn 0.0 

 
 

Grid Convergence Time Step Convergence 
 𝑅𝑔 𝑃𝑔 𝐹𝑆𝑔 𝑅𝑡 𝑃𝑡 𝐹𝑆𝑡 

N
or

m
al

iz
at

io
n Fx 0.58 0.80 1.77 0.57 0.41 2.10 

Fz 0.27 1.88 1.95 0.52 0.47 2.05 

My 0.67 0.58 1.95 0..42 0.63 1.91 

H
ar

m
on

ic
 Fx0, Fx1, θx1 -0.1, -0.3, -0.7 OC, OC, OC OC, OC, OC -0.0, -0.4, 0.2 OC, OC, 1.1 OC, OC, 3.9 

Fz0, Fz1, θz1 -0.2, -0.2, -0.3 OC, OC, OC OC, OC, OC 0.4, -0.1, 0.2 0.7, OC, 1.3 1.9, OC, 6.2 

My0, My1, 
θy1 

-0.2, -0.2, -0.8 OC, OC, OC OC, OC, OC 0.6, -3, 0.1 0.3, D, 1.5 2.2, D, 9.4 
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Table 15.    Grid and time step uncertainties, H/λ = 1/10, Fn 0.0 

 
 
 
 
 
 

4.3.3 Force and Moment Results  

 Results from STAR-CCM+ are given for total force and moment over one wave period 
and are compared with potential flow results from the Force Study.  The free surface elevation, 
eta, is measured at the center of gravity position in the x-direction.  For the RANS solution with 
no forward speed, the actual wave profile was measured at this location in an additional 
simulation with no body present so that an accurate representation was obtained without the 
influence of diffracted waves.  In the forward speed case, diffracted waves propagate 
downstream, and the wave profile was monitored at the center of gravity in the x-direction and 
250 m to starboard of the centerline.  RANS results are shifted in time such that the initial zero 
crossing point of the wave profile matches with that of the potential flow codes.  Simple 
harmonic waves are considered by codes in the Force Study with the exception of NFA which is 
an Euler code and calculates nonlinear waves.  Results from NFA are provided only for forward 
speed and high wave steepness, and NSHIPMO results are only given for the smaller wave 
amplitude examined.  Figure 41 and Figure 42 show the results for waves of amplitude 1.28 m at 
zero forward speed and Fn 0.3 respectively.  Results for amplitude 7.7 m are given in Figure 43 
and Figure 44 for zero forward speed and Fn 0.3 in turn.   

4.3.3.1 H/λ = 1/60 

 No systematic study of time step size and mesh refinement was conducted for H/λ = 1/60.  
A time step of 0.01 s and the mesh shown in Figure 39 were used for results presented in this 
section.  It was found that additional refinement below the waterline was necessary in this case in 
order to accurately capture the wave elevation and associated pressure and velocity profiles.  
Refinement to capture the wave height about the mean waterline did not extend sufficiently far 
below the surface.  This area of added refinement is visible forward of the overset region in the 
low amplitude wave mesh of Figure 39.  For this mesh, maximum CFL numbers due to phase 
speed are 0.25 and 0.44 for zero forward speed and Fn 0.3 respectively.  Typically y+ values are 
less than 17.   

At H/λ = 1/60, the force and moment responses are approximately linear for RANS and 
potential flow results.  The Fn 0.0 RANS wave elevation in Figure 41 displays a higher peak and 
shallower trough relative to the linear approximation which is characteristic of nonlinear waves.  
This free surface nonlinearity is not significant and appears to have little effect on the forces and 

  Fine Mesh, Time Step Extra Fine Mesh, Time Step 
 𝑈𝑔 𝑈𝑡 𝑈𝑔 𝑈𝑡 

N
or

m
al

iz
at

io
n Fx 43.11 % 3.91 % 5.96 % 4.47 % 

Fz D 10.40 % 16.10 % 5.12 % 

My 89.45 % 6.85 % 9.99 % 1.81 % 

H
ar

m
on

ic
 Fx0, Fx1, θx1 1.19, 5.07, 0.69 % 0.55, 0.42, 0.88 % 0.73, 4.12, 0.58 % 0.30, 0.36, 0.21 % 

Fz0, Fz1, θz1 D, 6.08, D % 0.36, 0.87, 0.76 % 5.88, 5.65, 1.32 % 0.04, 0.67, 0.23 % 

My0, My1, 
θy1 

2.51, 3.54, D % 0.16, 0.13, 0.90 % 1.70, 2.53, 0.45 % 0.45, D, 0.17 % 
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moment experienced by the body in this case.  Potential flow results shown in Figure 41 are 
differentiated primarily by the code rather than the theory on which they are based. Interpretation 
of these differences is challenging because they are based on variations in how each code 
represents incident waves and calculates pressure on the hull.  For instance: second order 
pressure terms are employed by the LAMP suite of codes and NSHIPMO but not in other codes, 
Wheeler stretching is used in NSHIPMO to correct the pressure within a linear wave while the 
LAMP codes use the fully nonlinear Bernoulli equation to compute pressure, and LAMP 
includes extra grid velocity terms even when there is no grid motion such that LAMP-1 force and 
moment computations do not match those computed by other linear codes [2].  The blended 
strip-theory code, FREDYN, displays the greatest variation from other potential flow methods.  
This is evident especially in the pitch moment and lateral force response of Figure 41.  Vertical 
force solutions are the most inconsistent since deviation from the mean hydrostatic force is 
small.  Grouping of solutions by the potential flow code rather than theory is most evident in this 
component, and the RANS vertical force response does not reach a periodic steady state.  In 
general, lateral force and pitch moment results agree reasonably well between RANS and 
potential flow methods for this low wave steepness and zero forward speed. 
 Force and moment results at Fn 0.3 with H/λ = 1/60 shown in Figure 42 are mainly 
distinguished from potential flow solutions by inclusion of forward speed effects, though 
additional differences occur which are difficult to decipher as in the zero forward speed case.  
Lateral force in the negative x-direction from RANS is generally greater than the potential flow 
solutions due to inclusion of frictional resistance.  As in the low amplitude and frequency 
prescribed motion cases, a sinkage effect is evident in the vertical force component.  Because 
they include a steady sinkage force, the LAMP codes are able to match the RANS vertical force 
result rather well compared to other potential flow codes.  Pitch moment results agree well 
between the LAMP suite of codes, NSHIPMO and RANS.   

4.3.3.2 H/λ = 1/10 

Modeling of the nonlinear wave using the inherently nonlinear free surface boundary 
conditions of RANS with a VOF technique provides a more accurate definition of the incident 
wave’s kinematics and pressures near the free surface as compared to potential flow simulations.  
This ultimately has a significant impact in determining the total fluid force on the body.  For H/λ 
= 1/10 the incident wave nonlinearity of the RANS simulation is substantial, possessing a peak 
about 20% higher and trough 22% shallower than the linear wave amplitude of 7.7 m.  Phase 
velocity is weakly dependent upon the wave height in the nonlinear case, a phenomenon referred 
to as amplitude dispersion.  Waves of larger height travel faster and in this case the average 
RANS wave period is 9.46 s whereas the linear prediction is 9.93 s.  The larger height of the 
nonlinear wave peak has a secondary effect in this case; because the nonlinear peak is above the 
weather deck, shipping of green water occurs.  This is shown in the time lapse of wave 
propagation past the body in Figure 45.  Green water on deck does not appear to significantly 
affect the total force and moments experienced by the body however.  In the linear and nonlinear 
wave representations the trough is below the draft of the ship which caused difficulty for some 
potential flow codes such as the noisy LAMP-4 result [2].  Despite the significant wave height, 
and nonlinearity in the RANS wave profile, the total force and moment results in Figure 43 do 
not deviate substantially from a simple trigonometric form for potential flow or RANS.  No clear 
delineation between potential flow theories is apparent in the results and the RANS solution is 
not well matched by any single code.   Interestingly, the RANS vertical force response matches 
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Figure 41.  H/λ = 60 and Fn 0.0: wave 
elevation (top), longitudinal force (1st 
middle), vertical force (2nd middle) and 
pitch moment (bottom) 

 

 

 

Figure 42.  H/λ = 60 and Fn 0.3: wave 
elevation (top), longitudinal force (1st 
middle), vertical force (2nd middle) and 
pitch moment (bottom) 
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Figure 43.  H/λ = 10 and Fn 0.0: wave 
elevation (top), longitudinal force (1st 
middle), vertical force (2nd middle) and 
pitch moment (bottom) 

 

Figure 44.  H/λ = 10 and Fn 0.3: wave 
elevation (top), longitudinal force (1st 
middle), vertical force (2nd middle) and 
pitch moment (bottom) 
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that of the linear code Aegir-1, though this may simply be by coincidence.  The character of the 
LAMP-4 nonlinear potential flow result generally agrees with RANS, but the amplitudes often  
differ substantially and a phase difference is evident towards the end of the period.  This 
difference in phase occurs in all potential flow results and is due to the amplitude dispersion 
effect in the RANS solution mentioned previously.  Because the RANS results were shifted in 
time such that the initial zero crossing point of the wave elevation matches the potential flow 
solutions, this phase difference becomes most evident at the end of the period examined.   

In the forward speed case with H/λ = 1/10 the NFA solution is available for comparison.  
Its wave profile agrees well with the STAR-CCM+ solution since both codes resolve the 
nonlinear wave using a VOF approach.  There is some difference however at the peaks, and most 
noticeably in the phase and magnitude of the trough.  It is unknown what boundary and initial 
conditions were utilized in running the NFA code for this case, but STAR-CCM+ solutions using 
linear wave initial and inlet boundary conditions showed behavior similar to that in the NFA 
wave elevation plot.  Although linear wave input conditions are specified, the inherently 
nonlinear free surface calculations performed in STAR-CCM+ cause the linear wave profile to 
deform toward its true nonlinear profile as it propagates through the domain.  For this reason, 5th 
order Stokes theory instead of a linear approximation was specified as the inlet boundary and 
initial conditions for the included STAR-CCM+ results.  The difference in wave profile between 
NFA and STAR-CCM+ near the end of the period has some effect on the lateral force results at 
this time.  With this exception, the NFA and STAR-CCM+ force and moment results match 
almost exactly.  Yet agreement with potential flow solutions is generally poor and, as in previous 
cases, the variation between potential flow solutions is without order.  The average period of the 
RANS result is 5.51 s compared to a linear prediction of 5.67 s due to amplitude dispersion.  

 
Figure 45.    Time lapse of free surface at t/T = 0, 0.25, 0.50, 0.75: Fn 0.0, H/λ = 

1/10 
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4.3.4 Influence of Overset Mesh Interpolation 

Errors in the free surface elevation originate at the boundary between overset and 
background regions in the STAR-CCM+ RANS result and propagate through the overset region.  
These are visible as small perturbations in the free surface local to the overset region in Figure 
45, and may stem from interpolation and a sharp change in cell aspect ratio at the boundary 
between background and overset mesh regions.  In addition, wave reflections were seen to occur 
from the overset boundary, where the cell aspect ratio changes by a factor of two, at both H/λ = 
1/60 and H/λ = 1/10 with zero forward speed.  Using the STAR-CCM+ meshing tool, avoiding a 
change in aspect ratio at this point is difficult.  The influence of reflections at the overset 
boundary is most evident in Figure 41.  Here the peak and trough of the measured RANS wave 
elevation for Fn 0.0 and H/λ = 1/60 are somewhat above that for the same wave steepness at 
forward speed, and a slight difference in phase appears relative to the linear potential flow 
solutions. At Fn 0.3, similar reflections did not appear to occur.   

In order to assess the impact of overset mesh interpolation on the force and moment 
response, additional simulations were run with zero forward speed.  A fixed mesh similar to that 
shown in Figure 39 and Figure 40 for H/λ = 1/60 and H/λ = 1/10 respectively was employed with 
no overset mesh or corresponding interpolation.  A transition in the cell aspect ratio remained 
where the mesh was refined near the body.  The resulting force and moment time histories are 
compared to overset mesh solutions for the same excitation period in Figure 46 and Figure 47.  
Some difference in the solutions due to overset mesh interpolation is seen, particularly for H/λ = 
1/60 and vertical force at H/λ = 1/10.  Perturbations in the free surface remain in the fixed mesh 
cases within the refined region around the body which previously constituted the overset mesh.  
These perturbations are thus a consequence of the change in mesh refinement, having occurred 
on both overset and fixed meshes.  No cases were run without a body present on the fixed mesh 
and consequently wave reflection due to transitions in the cell aspect ratio was not measured.    
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Figure 46.  Comparison of overset and 
fixed mesh solutions; H/λ = 60 and Fn 0.0: 
longitudinal force (top), vertical force 
(middle) and pitch moment (bottom) 

 

Figure 47.  Comparison of overset and 
fixed mesh solutions; H/λ = 10 and Fn 0.0: 
longitudinal force (top), vertical force 
(middle) and pitch moment (bottom) 
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5 SUMMARY, CONCLUSIONS AND FUTURE WORK 

5.1 SUMMARY 

 The STAR-CCM+ RANS solution was first validated for a two-dimensional rectangular 
cylinder oscillating in an unbounded fluid via comparison with the analytical potential flow 
result.  A calm free surface was then added and the rectangular cylinder was oscillated at several 
amplitudes and over a range of frequencies in heave and sway.  At low frequencies, bottom 
effects due to the finite depth of the experimental basin were shown to be important.  By using 
an overset mesh, these effects were considered and a good approximation of the experimental 
hydrodynamic coefficients obtained with RANS.  In oscillations of high frequency and 
amplitude, the influence of viscous effects was demonstrated predominantly for heave motion.  
The viscosity introduced a nonlinear, time-dependent component to the hydrodynamic force on 
the body in these cases.  Which turbulence model was chosen impacted the viscous flow features 
and thus the time histories of force and approximations of added mass and damping.  In general, 
RANS and linear potential flow methods were shown to match experimental added mass and 
damping coefficients for the two-dimensional rectangle in heave and sway about a calm free 
surface well, though the RANS solution provided better agreement for high amplitude and 
frequency oscillations in heave and in the coupling coefficients between sway motion and roll 
moment response.   
 A three-dimensional radiation problem was considered in which the full-scale ONR 
Tumblehome hullform was oscillated according to 1-DoF prescribed heave and pitch motions.  
Combinations of amplitude and frequency of oscillation ranging from small to large were 
considered at zero forward speed and Fn 0.3 such that responses in both the linear and nonlinear 
regime might be evaluated.  Motion of the body was permitted in STAR-CCM+ using an overset 
mesh approach.  Uncertainty in the numerical result due to discretization was assessed through a 
systematic refinement study of the mesh and time step.  Calculations of force and moment on the 
body by the RANS solver were compared with established solutions from potential flow codes 
with theories ranging from linear to blended to nonlinear.  Linear potential flow methods 
provided poor approximations for large amplitude motions in which geometric nonlinearity was 
significant, and blended approaches did not match nonlinear potential flow and RANS results 
well for high amplitude and frequency cases in which nonlinear radiation forces were important.  
In general, the character of the RANS and nonlinear potential flow solutions agreed well.  To 
some extent, nonlinearity in the free surface and viscous effects may have caused differences 
between these method’s results in the most extreme cases considered; heave and pitch with 4.4 m 
or 5 degree amplitude and 1.1 rad/s frequency.  Regardless, the primary nonlinearities were those 
associated with the changing wetted hull form and radiation force.   
 The ONR Tumblehome was also examined in a three-dimensional diffraction problem in 
which incident head waves impacted the fixed body at zero forward speed or Fn 0.3.  Two wave 
conditions were considered, with wave steepness H/λ = 1/60 and 1/10 and the wavelength, λ, 
equal to the ship length.  Mesh and time step uncertainty were determined for H/λ = 1/10, and all 
solutions were compared with previous results from the same potential flow codes used in the 
radiation problem.  In the low amplitude wave case, the force and moment results were 
approximately linear, and agreed reasonably well between RANS and potential flow codes for 
pitch moment and lateral force at zero forward speed.  Vertical force responses were small 
relative to the hydrostatic force and differed substantially though there was no systematic 
variation in potential flow results due to the underlying theory as in the prescribed motions case.  
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Instead, inconsistencies in the results reflected, at least in part, on differences in how the codes 
treated incident waves, calculated pressures and handled the complex geometry.  Nonlinearity in 
the wave representation was substantial in the RANS solution for the large amplitude wave 
condition, while all potential flow methods considered only a simple harmonic representation.  
This led to substantial differences in the wave profile, and corresponding discrepancies in the 
force and moment results.  There was no meaningful grouping of potential flow solutions, and 
their agreement with the RANS result was poor although the forces and moments were 
approximately linear.  The RANS result did agree well with an Euler code of similar formulation 
which was run with the potential flow methods only for the large amplitude wave case at forward 
speed.   

5.2 CONCLUSIONS AND FUTURE WORK 

A comparison was made between the commercial CFD code STAR-CCM+ as a RANS 
solver and several potential flow methods in the calculation of forces and moments on bodies in 
vertical plane radiation and diffraction seakeeping problems.  The aim was to correlate the 
characteristics of each solution method with differences in the results in order to show the 
significance of particular sources of nonlinearity.  Linear potential flow methods are still the 
most common approach to seakeeping computations for design due to their speed and adequate 
results for simple cases.  Blended and nonlinear potential flow approaches account for the most 
significant nonlinearities which are associated with the changing underwater hull shape.  Yet in 
some cases, the nonlinear, time-dependent nature of viscous phenomenon and the free surface 
have a considerable effect on the resulting pressure force on the body.  The main advantage of 
RANS is its capability to model all of the nonlinear effects, including those due to viscosity, 
large deformations of the free surface and the behavior of incident, radiated and diffracted 
waves.  In addition, RANS is able to provide detailed local flow information useful for 
examination of particular flow phenomenon.  While potential flow methods generally offer an 
efficiency advantage over RANS, even the more subtle nonlinearities may have a considerable 
influence on predictions of hull motion in waves.  RANS thus has the potential to produce 
superior results in the prediction of a ship’s dynamic response in the vertical plane and, to a 
greater extent, in motions where viscous effects are more prominent such as roll.  Future work 
will be to extend the present simulations in STAR-CCM+ to permit free heave and pitch motion 
of a ship in head waves.  Comparison with experimental data will provide validation of the 
RANS approach and models.  This is sought first for small amplitude waves, which have been 
studied previously using RANS and shown good agreement with experiments (e.g. [10]).  
Eventually it is hoped that validation of large amplitude motions in the vertical plane and in 
coupled vertical and horizontal plane motions is achieved.   
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Appendix A: ONRTH Prescribed motion results 

 
Figure A-1. Prescribed heave: Fn 0.0; za 0.55 m; ω 0.2079 rad/s 

 
Figure A-2. Prescribed heave: Fn 0.0; za 0.55 m; ω 1.1 rad/s 

 
Figure A-3. Prescribed heave: Fn 0.0; za 4.4 m; ω 0.2079 rad/s 
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Figure A-4. Prescribed heave: Fn 0.3; za 0.55 m; ω 0.2079 rad/s 

 
Figure A-5. Prescribed heave: Fn 0.3; za 0.55 m; ω 1.1 rad/s 

 
Figure A-6. Prescribed heave: Fn 0.3; za 4.4 m; ω 0.2079 rad/s 
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Figure A-7. Prescribed pitch: Fn 0.0; θa 1 deg; ω 0.2079 rad/s 

 
Figure A-8. Prescribed pitch: Fn 0.0; θa 1 deg; ω 1.1 rad/s 

 
Figure A-9. Prescribed pitch: Fn 0.0; θa 5 deg; ω 0.2079 rad/s 
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Figure A-10. Prescribed pitch: Fn 0.3; θa 1 deg; ω 0.2079 rad/s 

 
Figure A-11. Prescribed pitch: Fn 0.3; θa 1 deg; ω 1.1 rad/s 

 
Figure A-12. Prescribed pitch: Fn 0.3; θa 5 deg; ω 0.2079 rad/s
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Appendix B: ONRTH Incident wave 
uncertainty time histories  

 

 

 

 

Figure B-1.  Fine grid refinement study,   
H/λ = 1/10: longitudinal force (top), vertical 
force (middle) and pitch moment (bottom) 

 

 

 

Figure B-2.  Fine time step refinement 
study, H/λ = 1/10: longitudinal force (top), 
vertical force (middle) and pitch moment 
(bottom)
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Figure B-3.  Extra fine grid refinement 
study, H/λ = 1/10: longitudinal force (top), 
vertical force (middle) and pitch moment 
(bottom) 

 

 

 

Figure B-4.  Extra fine time step 
refinement study, H/λ = 1/10: longitudinal 
force (top), vertical force (middle) and pitch 
moment (bottom) 
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