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the Max and Burkhart (1976) model is recommended for 
diameter estimation at specific heights along the stem for the 
ten sub-regions. After comparison, the Max and Burkhart 
(1976) model was refitted using nonlinear mixed-effects 
techniques. Mixed-effects models would be used only when 
additional upper stem diameter measurements are available 
for calibration. Differences in region-specific taper functions 
were indicated by the method of the non-linear extra sum of 
squares. Therefore, the particular taper function should be 
adjusted accordingly for each sub-region in the Daxing’an 
Mountains.

Keywords  White birch · Taper function · 
Multicollinearity · Autocorrelation · Nonlinear regression

Introduction

White birch (Betula platyphylla Sukaczev) is a valuable 
hardwood species of China and listed among the top ten 
species of the country. It covers an area of 10.38 × 106(M) 
hectares, with a total volume of 1033 M m3 (Xu et al. 2019). 
It has been registered as one of China’s science and technol-
ogy research tree species. Stands of white birch are widely 
dispersed across the north and southwest. The largest area 
of this species with the largest stand volume lies in north-
east China. This region contains abundant forest resources 
and is one of the most important areas of timber produc-
tion. As per the latest National Forest Inventory (NFI-8), 
the northeast region has an area of 32.71 M ha under forest 
with 28,180 M m3 standing volume (Zeng et al. 2015). The 
Daxingʹan Mountains are located in Heilongjiang province 
and in the eastern part of Inner Mongolia, and white birch 
is the second major tree species in this area, the major spe-
cies is Dahurian larch (Larix gmelinii Rupr.). The standing 
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volume of white birch is distributed over 1.9 M ha and is 
128 M m3, which is 25% of the total standing volume of tree 
species of the region (Samuelsson 2006).

White birch possesses excellent properties in terms of 
growth rate, adaptability, wood texture, structure, and dura-
bility. Additionally, it is the primary source for pulp in paper-
making, for plywood and for furniture (Xu et al. 2016). Its 
commercial and economic uses extend globally, for example, 
Chinese white birch plywood is the principal item of wood 
imports into the USA. The wood contains exceptional physi-
cal characteristics that allow for natural and dyed finishes, 
cabinetry, and lamination (Far-East-American 2012). With 
the importance of white birch, a stem taper equation would 
be beneficial for sustainable management of the species. 
Stem taper functions have been recommended as an effec-
tive tool based on several studies to predict stem diameter (d) 
at any height as well as to estimate merchantable and total 
volumes (Rojo et al. 2005; Trincado and Burkhart 2006; 
Li and Weiskittel 2010; Özcelik et al. 2011). The majority 
of such functions require total tree height (H), diameter at 
breast height (D), and height (h) of d above the ground as 
independent variables (Berhe and Arnoldsson 2008; Hjelm 
2013). Stem taper functions supersede the customary stem 
volume models as they estimate d, merchantable height to 
any diameter above the ground, the volume of a log of any 
length and at any height from the ground, in addition to 
merchantable and total stem volume (Kozak 2004).

Stem taper equations may be divided into three catego-
ries: simple polynomial, segmented polynomial, and vari-
able-exponent equations. Simple taper equations describe 
the changes from base to crown tip in diameter by a single 
function (Behre 1923; Matte 1949; Osumi 1959; Kozak et al. 
1969; Demaerschalk 1972). Simple fitting and easy integra-
tion to calculate volume are characteristic features of these 
functions. Such functions adequately account for the middle 
stem portion but are significantly biased in predicting diam-
eter for upper and lower sections (Max and Burkhart 1976; 
Demaerschalk and Kozak 1977; Kozak 1988).

This inconsistency of simple taper functions was resolved 
by Max and Burkhart (1976) by introducing the first seg-
mented polynomial model. Three parts of the stem, i.e., 
top, middle and bottom, are represented by different sub-
functions (Kozak 1988; Rojo et al. 2005), assuming the top 
as a cone frustum, middle as a paraboloid frustum and the 
bottom as a neiloid frustum (Corral-Rivas et al. 2007; Li and 
Weiskittel 2010; Burkhart et al. 2019). Many researchers 
have successfully used this approach, e.g., Max and Burkhart 
(1976), Demaerschalk and Kozak (1977) and Fang et al. 
(2000). These models satisfactorily predicted the diameters 
at most parts of the trunk.

The third category i.e., variable exponent functions, was 
introduced by Kozak (1988) who defined the neiloid, parab-
oloid, and conic forms of the bole by a changing exponent 

from ground to top. As indicated by the term, the functions 
of this category are founded on the logic that variation in 
stem form is continuous from bottom to top (Lee et al. 2003). 
The most frequently used stem taper equations, allowing for 
the limitation of simple functions, are segmented polynomial 
and variable exponent (Berhe and Arnoldsson 2008; Li et al. 
2012; Gómez-García et al. 2013).

In China, there have been numerous studies dealing with 
stem taper equations fitted for important tree species such 
as Larix gmelinii (Rupr.) Rupr., Cunninghamia lanceolata 
(Lamb.) Hook., Castanopsis hystrix Miq. (C. hystrix), Eryth-
rophleum fordii Oliv., Tectona grandis L. f., Quercus vari-
abilis Blume (Jiang and Liu 2011; Pang et al. 2016; Tang 
et al. 2016; Zheng et al. 2017). Different studies for Betula 
alnoides Buch.-Ham. ex D.Don. in south China and Betula 
species in Canada and Europe have also been carried out 
(Gál and Bella 1994; Zianis et al. 2005; Tang et al. 2017). 
However, as the stem taper function is always species-spe-
cific (Sharma and Zhang 2004; Subedi et al. 2011), a specific 
stem taper function has not been developed for white birch 
in northeast China. This study was carried out to evaluate 
the performance of three widely used taper functions and to 
select the best for stem diameter prediction of B. platyphylla.

The specific objectives were to develop a stem taper 
equation that delivers an appropriate description of the 
stem profile of white birch in 10 different sub-regions of 
the Daxing’an Mountains and to estimate dissimilarities in 
region-specific taper functions. Two main difficulties allied 
with the formation of taper functions are multicollinearity 
and auto-correlated errors. Viable statistical assumptions 
were used to address these issues.

Materials and methods

Study area and data description

The research area is located in the Daxing’an Mountains 
in Heilongjiang province and in the eastern part of Inner 
Mongolia (121° 12′ E to 127° 00′ E and 50° 10′ N to 53° 
33′ N). This region is approximately 84,600 ha and is one 
of the main areas of high quality wood production in China. 
The major forest types are natural secondary forests with a 
high density of white birch. The topography is mountain-
ous with diverse ecological conditions and distinct floristic 
composition. Elevation varies from 700 to 1000 m a.s.l. The 
prevailing climate is continental with summer monsoons and 
a long, dry severe winter. Average annual precipitation is 
360 − 550 mm, of which 80% occurs in summer, and mean 
annual temperatures range from − 1.2  to − 5.6 °C. The typi-
cal soil type is brown coniferous forest soil (Burger and Shi-
dong 1988).



Stem taper functions for Betula platyphylla in the Daxing’an Mountains, northeast China﻿	

1 3

Ten sub-regions (Songling, Jiagedaqi, Xinlin, Tahe, 
Huzhong, Shibazhan, Hanjiayuan, Xilinji, Tuqiang, and 
Amuer) were selected from the three main regions of the 
Daxing’an Mountains (Zhang et al. 1992). Data from the 
sub-regions were processed to assess the statistical proper-
ties of selected taper functions.

A total of 1344 trees were studied, with the data grouped 
into sub-regions to examine the differences in stem taper. 
The sample satisfactorily represented the distribution of 
trees with regards to diameter and height classes. Diameter 
at breast height (D, cm) to the nearest 0.1 cm was recorded 
Trees were felled to measure total height, diameter at the 
ground and at 2%, 4%, 6%, 8%, 10%, 15%, 20%, 30%, 40%, 
50%, 60%, 70%, 80%, and 90% of total height. Measurement 
intervals fluctuated from 14 to 2.4 m depending upon the 
total height. Extra measurements were taken for the lower 
bole to improve the accuracy of prediction. Summary sta-
tistics for tree diameter and total height for each sub-region 
are shown in Table 1.

Functions selected for comparison

Three taper equations from segmented and variable expo-
nent taper equations were selected and included the Max and 

Burkhart (1976), Fang et al. (2000) and Kozak (2004) mod-
els, later written as MB-76, Fang-2000 and Kozak-2. The 
choice of these models was made on the basis of previous 
studies (Rojo et al. 2005; Dieguez-Aranda et al. 2006; Barrio 
Anta et al. 2007; Corral-Rivas et al. 2007; Li and Weiskittel 
2010; Özcelik and Crecente-Campo 2016). Mathematical 
expressions corresponding to the models are presented in 
Table 2.

The segmented model of Fang-2000 was considered as 
the best model for Eucalyptus plantations in Turkey and 
oak species in Mexico (Pompa-García et al. 2009; Özcelik 
and Göceri 2015). This model was also ratified for different 
species in Spain (Crecente-Campo et al. 2009; Sevillano-
Marco et al. 2009). Similarly, good results were provided by 
the Kozak-2 model of 11 conifer species in North America, 
lodgepole pine (Pinus contorta Douglas) and Siberian larch 
(Larix sibirica Ledeb.) in Iceland and white cedar (Cupres-
sus lusitanica Mill.) plantations in Ethiopia (Berhe and 
Arnoldsson 2008; Heidarsson and Pukkala 2011; Li et al. 
2012). Additionally, the model was used as a base model in 
a study of Scots pine (Pinus sylvestris L.) and Sitka spruce 
(Picea sitchensis (Bong.) Carr.) in northern Britain (Fonwe-
ban et al. 2011). The segmented function MB-76 produced 
excellent results for loblolly pine (Pinus taeda L.) in East 
Texas, for Japanese larch (Larix kaempferi (Lamb.) Carr.) in 

Table 1   Descriptive statistics 
for sample trees of 10 sub-
regions in the Daxingan 
Mountains

D, diameter at breast height over bark (cm, 1.3 m above ground); H, total tree height (m); Sub-region 1, 
Songling; Sub-region 2, Jiagedaqi; Sub-region 3, Xinlin; Sub-region 4, Tahe; Sub-region 5, Huzhong; Sub-
region 6, Shibazhan; Sub-region 7, Hanjiayuan; Sub-region 8, Xilinji; Sub-region 9, Tuqiang; Sub-region 
10, Amuer

Sub-region Variable No of trees No of
sections

Mean Minimum Maximum SD

1 D (cm) 97 1455 19.2 5.4 34.2 8.2
H (m) 16.9 8.2 23.2 3.9

2 D (cm) 359 5385 18.5 5.0 43.4 8.0
H (m) 16.3 7.0 23.2 3.4

3 D (cm) 107 1605 18.4 5.2 42.5 7.7
H (m) 17.6 7.5 22.8 3.2

4 D (cm) 109 1635 15.7 5.0 30.8 7.7
H (m) 15.5 7.1 22.1 4.0

5 D (cm) 92 1380 17.2 5.2 36.3 7.7
H (m) 15.91 8.5 23.9 3.33

6 D (cm) 83 1245 18.85 5.3 36.6 7.78
H (m) 16.48 6.4 22.6 3.68

7 D (cm) 124 1860 18.41 5.2 34.4 7.46
H (m) 18.84 8.8 23.9 3.82

8 D (cm) 126 1890 16.34 5.0 43.8 8.14
H (m) 17.03 7.9 24.1 4.09

9 D (cm) 185 2775 17.84 5.3 38.3 7.85
H (m) 16.66 9.4 22.3 3.61

10 D (cm) 62 930 19.67 5.3 41.3 8.88
H (m) 18.45 8.9 25.7 4.99
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South Korea, and for Brutian pine (Pinus brutia Ten.), Cedar 
of Lebanon (Cedrus libani A. Rich.), and Cilicia fir (Abies 
cilicica Carr.) in Turkey (Coble and Hilpp 2006; Brooks 
et al. 2008; Doyog et al. 2017).

Model fitting

The model parameters were estimated by the generalized 
non-linear least-squares methods with the MODEL proce-
dure of SAS (SAS Institute Inc. 2008). Fitting of the stem 
taper equation is accompanied by various statistical prob-
lems, including lack of independence of errors. Two addi-
tional issues of importance are multicollinearity and auto-
correlation (Kozak 1997). Multicollinearity is the presence 
of high inter-correlations among predictor variables during 
the analysis of multiple regression. Dealing with excessively 
complicated models containing several polynomials and 
cross-product terms is a key reason for multicollinearity.

Autocorrelation is the occurrence of spatial correlations 
among the observations from the same tree that negates the 
assumption of independent error terms. Although least-
squares estimates of regression coefficients are consistent 
and unbiased in conjunction with multicollinearity and auto-
correlation, their efficiency is affected (Myers 1990). For 
this reason, suitable statistical measures need to be followed 
for model fitting to avoid autocorrelated errors and to reduce 
multicollinearity whenever possible (Kozak 1997).

The extent of multicollinearity in the models was assessed 
by condition number (CN), which is the square root of the 
quotient between maximum and minimum eigenvalues of the 
correlation matrix. As suggested by Myers (1990), a condition 
number greater than 10000.5 denotes the presence of multi-
collinearity- related problems. As another benchmark set by 

Belsley (1991), there should be no concern about multicollin-
earity, provided the CN ranges from 5–10. Multicollinearity-
associated problems are formed if CN values are from 30–100 
and the figure of CN from 1000–3000 signifies a high degree 
of multicollinearity-related problems.

During regression analysis, error terms are presumed to be 
independent, evenly distributed, and normal random variables 
(Kozak 1997). As the database for constructing taper functions 
consists of multiple observations pertaining to each tree, i.e., 
hierarchical data, it is rational to expect autocorrelation within 
the observations. Such correlation contravenes the assumption 
of independence. A continuous autoregressive error structure, 
CAR (1), was established to model the error terms for the 
adjustment of innate autocorrelation in the data. This speci-
fied error structure allows the pragmatic use of a model for 
unbalanced and irregularly spaced data (Gregoire et al. 1995; 
Dieguez-Aranda et al. 2006), both of which are attributes of 
many datasets in forestry (West et al. 1984).

Model comparison

The accuracy of diameter estimates for each model was judged 
by graphical and numerical assessment of the residuals. Two 
goodness-of-fit statistics, i.e., coefficient of determination (R2) 
and root mean square error (RMSE), were tested. Some deficien-
cies are connected with employing R2 in nonlinear regression, 
but its general expediency overrules such limitations (Thomas 
1997). However, it is not advisable to use R2 as the sole cri-
terion while choosing the best model (Myers 1990). The use 
of RMSE is advantageous since its measurement units are the 
same as those of the dependent variable, and therefore displays 
the average error of a model. The notations for these statistics 
are as under:

Table 2   Analyzed taper 
functions

D, breast height diameter (cm); H, total tree height (m); h, height above ground (m); d, diameter over bark 
(cm) at height h; ai, bi, and pi, parameters to be estimated; q = h/H; t = 1.3/H

Model Expression

MB-76
d = D

[

b1(q − 1) + b2
(

q2 − 1
)

+ b3
(

a1 − q
)2
I1 + b4

(

a2 − q
)2
I2

]0.5

where I1 = 1, if q ≤ a1; 0 otherwise I2 = 1, if q ≤ a2; 0 otherwise
Fang- 2000

d = c1

√

H(k−b1)∕b1 (1 − z)(k−b)∕bq
I1+I2
1

q
I2
2

where c1 =
√

a0D
a1Ha2−k∕b1

/[

b1
(

t0 − t1
)

+ b2
(

t1 − q1t2
)

+ b3q1t2
]

{

q1 =
(

1 − p1
)(b2−b1)k∕b1b2

q2 =
(

1 − p2
)(b3−b2)k∕b2b3

Z = h∕H

b = b
1−(I1+I2)
1

b
I1
2
b
I2
3
, k = 0.000078539, t0 = 1

{

t1 =
(

1 − p1
)k∕b1

t2 =
(

1 − p2
)k∕b2

{

I1 = 1, if p2 ≥ Z ≥ p1; 0 otherwise

I2 = 1, if 1 ≥ Z ≥ p2; 0 otherwise

Kozak-2
d = b0D

b1Hb2

[

1−q1∕3

1−t1∕3

]

{

b3q
4+b4

(

1

eD∕H

)

+b5

(

1−q1∕3

1−t1∕3

)0.1

+b6

(

1

D

)

+b7H
1−q1∕3+b8

(

1−q1∕3

1−t1∕3

)

}
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where yi, ŷi and yi are measured, predicted, and average val-
ues of the response variable; n is the total number of obser-
vations, p is the number of parameters, and RMSE is root 
mean square error.

Ordinary residuals indicate the excellence of fit but 
these residuals will not likely measure the quality of 
the predictions in the future (Myers 1990). Thus, it is 
mandatory to validate the model and only separate data 
will serve the purpose to some extent. As the chances to 
access validation data are limited, a number of methods 
have been suggested, (e.g., splitting the data for fitting 
and validation, double cross-validation), although it is 
rare to obtain any additional information beyond the sta-
tistics revealed from the models fitted to the entire dataset 
(Kozak and Kozak 2003). Therefore, in this study, it was 
decided to make decisions using the available data.

The box and whisker plots of d residuals against rela-
tive heights along the stem (5%, 15%, 25% and up to 95%) 
were also developed to assess the suitability of taper mod-
els. These graphs illustrate the domains where the func-
tions deliver inadequate or acceptable predictions (Kozak 
and Smith 1993; Kozak 2004).

Mixed‑effects modeling

Since the late twentieth century, the use of mixed-effects 
models has become popular in forest growth and yield 
modeling. Compared to the regression method, these 
models consist of fixed and random effects parameters to 
account for the between-tree and within-tree variations 
in the data (Fang and Bailey 2001; Garber and Maguire 
2003; de-Miguel et al. 2013). Additionally, this technique 
enables the calibration of the taper equation for a spe-
cific site or tree, provided additional measurements are 
available.

After selecting the best taper model, several nonlin-
ear mixed-effects models were developed using differ-
ent combinations of random parameters. The combina-
tions of these included only those that have an effect on 
the parameters of the best taper model. In this study, we 
used the NLMIXED procedure in SAS (SAS Institute 
Inc. 2008) to estimate the fixed and random parameters. 
Mixed models were compared using Akaike’s Information 
Criterion (Akaike 1974), Schwarz’s Information Criterion 

(1)R2 = 1 −

∑i=n

i=1

�

yi − ŷi
�2

∑i=n

i=1

�

yi − yi
�2

(2)RMSE =

�

∑i=n

i=1

�

yi − ŷi
�2

n − p

(Schwarz 1978), and twice the negative log-likelihood, 
–2Ln (L). To avoid over-parameterization and conver-
gence problems, mixed models were fitted for different 
sub-regions.

Comparison of taper functions among regions

The non-linear extra sum of squares method was used to 
find whether different taper functions would be needed for 
different regions (Bates and Watts 1988). In this method, fit-
ting of full and reduced models is required. It has repeatedly 
been implemented to judge the necessity of separate models 
for specified species or distinct geographical regions, e.g., 
Huang et al. 2000a, b; Zhang et al. 2002; Rivas et al. 2004. 
The full model constitutes a separate set of parameters for 
each region, while the reduced model involves the same set 
of parameters for all regions under consideration. The full 
model is attained by expanding all global parameters with a 
dummy variable and an associated parameter to distinguish 
the regions. The significance of the comparison between full 
and reduced models is based on the F-test of the formula:

where SSER, SSEF, dfR, and dfF are the error sum of squares 
and degrees of freedom for reduced and full models, respec-
tively. The non-linear extra sum of squares follows an 
F-distribution.

Provided the F-test reveals no differences among taper 
equations for different regions, a simple composite model 
fitted with the combined data is desired. If the F-test results 
indicate otherwise, i.e., taper equations are not the same 
across regions (P < 0.05), more tests are needed to evalu-
ate whether the differences are due to as few as two or as 
many as all of the regions. In our case, a full model for all 
possible sub-regions paired comparisons should be matched 
with the corresponding reduced model by the F-test. Taper 
functions for these sub-regions should be considered alike 
and combined in  situations only when an insignificant 
F-value (P > 0.005 considering the Bonferroni’s correction) 
is obtained.

Results

Most of the parameters were significant at P < 0.05 (Table 3, 
4, 5). The exceptions were: b6 for sub-regions 1 and 5; b2 
for sub-region 7; b4, b6 for sub-regions 6 and 8; b4, b8 for 
sub-regions 2 and 3; b2, b7, b8 for sub-region 9; b6, b7, b8 
for sub-region 10, and b4, b6, b7, b8 for sub-region 4 in the 
model of Kozak-2.  

(3)F =

(

SSER − SSEF
)/(

dfR − dfF
)

SSEF
/

dfF
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Table 3   Parameter estimates 
for MB-76 equation for each 
sub-region. Standard errors of 
the estimated parameters are 
shown in in bracket

Sub-region  1, Songling; Sub-region 2, Jiagedaqi; Sub-region 3, Xinlin; Sub-region 4, Tahe; Sub-region 
5, Huzhong; Sub-region 6, Shibazhan; Sub-region 7, Hanjiayuan; Sub-region 8, Xilinji; Sub-region 9, 
Tuqiang; Sub-region 10, Amuer

Sub
region

b1 b2 b3 b4 a1 a2

1  − 3.191
(0.123)

1.576
(0.070)

 − 1.639
(0.157)

208.319
(12.765)

0.579
(0.029)

0.054
(0.001)

2  − 3.239
(0.094)

1.614
(0.052)

 − 1.232
(0.089)

258.307
(9.855)

0.630
(0.024)

0.051
(0.001)

3  − 3.182
(0.175)

1.566
(0.099)

 − 1.575
(0.178)

135.273
(8.334)

0.620
(0.035)

0.077
(0.002)

4  − 3.627
(0.179)

1.803
(0.099)

 − 2.001
(0.149)

117.045
(7.226)

0.648
(0.025)

0.077
(0.002)

5  − 3.494
(0.144)

1.768
(0.080)

 − 1.614
(0.167)

164.297
(12.162)

0.610
(0.031)

0.059
(0.002)

6  − 3.287
(0.203)

1.633
(0.114)

 − 1.292
(0.183)

343.725
(20.201)

0.632
(0.050)

0.052
(0.001)

7  − 3.506
(0.141)

1.768
(0.078)

 − 1.435
(0.121)

467.902
(25.094)

0.640
(0.030)

0.035
(0.001)

8  − 3.659
(0.298)

1.791
(0.163)

 − 1.303
(0.170)

531.199
(30.497)

0.732
(0.038)

0.036
(0.001)

9  − 4.712
(0.345)

2.234
(0.188)

 − 2.120
(0.193)

102.511
(6.680)

0.808
(0.014)

0.069
(0.002)

10  − 4.445
(0.384)

2.252
(0.206)

 − 1.780
(0.208)

383.487
(35.056)

0.767
(0.030)

0.036
(0.001)

Table 4   Parameter estimates 
for Fang-2000 equation for each 
sub-region

Standard errors of the estimated parameters are shown in bracket
Sub-region  1, Songling; Sub-region 2, Jiagedaqi; Sub-region 3, Xinlin; Sub-region 4, Tahe; Sub-region 
5, Huzhong; Sub-region 6, Shibazhan; Sub-region 7, Hanjiayuan; Sub-region 8, Xilinji; Sub-region 9, 
Tuqiang; Sub-region 10, Amuer

Sub
region

b1 b2 b3 a0 a1 a2 p1 p2

1 6.4E−6
(1.6 E−7)

3 × 10–5

(7.5 E−7)
2 × 10–5

(4.1 E−7)
2 × 10–5

(3.6 E−6)
1.772
(0.037)

1.391
(0.078)

0.048
(0.001)

0.457
(0.016)

2 6 × 10–5

(6.1 E−6)
1.896
(0.020)

0.910
(0.047)

6.0 E−6
(9.3 E−8)

3 × 10–5

(3.3 E−7)
2 × 10–5

(3.3 E−7)
0.047
6 × 10–4

0.520
(0.014)

3 2 × 10–5

(6.0 E−6)
1.718
(0.036)

1.384
(0.096)

6.3 E−6
(1.8 E−7)

3 × 10–5

(8.4 E−7)
2 × 10–5

(5.2 E−7)
0.053
(0.001)

0.481
(0.025)

4 3 × 10–5

(4.6 E−6)
1.993
(0.034)

1.030
(0.071)

7.9 E−6
(2.2 E−7)

3 × 10–5

(5.6 E−7)
2 × 10–5

(7.0 E−7)
0.068
(0.001)

0.601
(0.020)

5 9.1 E−6)
(1.7 E−6

1.861
(0.040)

1.609
(0.093)

8.2 E−6
(2.5 E−7)

3 × 10–5

(6.7 E−7)
2 × 10–5

(5.8 E−7)
0.067
(0.001)

0.546
(0.013)

6 2 × 10–5

(4.3 E−6)
2.038
(0.042)

1.072
(0.080)

5.8 E−6
(1.5 E−7)

3 × 10–5

(8.8 E−7)
2 × 10–5

(7.0 E−7)
0.065
(0.001)

0.520
(0.024)

7 2 × 10–5

(4.5 E−6)
2.254
(0.036)

0.873
(0.087)

6.0 E−6
(1.4 E−7)

3 × 10–5

(4.3 E−7)
2 × 10–5

(6.7 E−7)
0.046
9 × 10–4

0.632
(0.016)

8 1 × 10–5

(3.0 E−6)
1.817
(0.035)

1.472
(0.091)

5.4 E−6
(1.3 E−7)

3 × 10–5

(5.2 E−7)
2 × 10–5

(7.5 E−7)
0.045
(0.001)

0.629
(0.029)

9 4 × 10–5

(5.8 E−6)
2.004
(0.031)

0.981
(0.071)

9.6 E−6
(2.5 E−7)

3 × 10–5

(4.7 E−7)
3 × 10–5

(5.6 E−7)
0.066
(0.001)

0.632
(0.019)

10 1 × 10–5

(3.3 E−6)
1.660
(0.065)

1.650
(0.128)

6.6 E−6
(2.3 E−7)

3 × 10–5

(5.9 E−7)
2 × 10–5

(8.0 E−7)
0.048
(0.001)

0.642
(0.020)
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The values of the coefficient of determination (R2) and 
root mean squared error (RMSE) for all models are shown 
in Table 6. Above 98% of the total variance of d was 
explained by the models in seven sub-regions except sub-
regions 3, 6, and 8, where almost 98% of the total variance 
was indicated. The values of RMSE varied between 0.98 
and 1.37 cm depending upon the sub-region. The model of 
Kozak-2 with the smallest RMSE was the most stable taper 
function for all sub-regions except sub-region 4, where it 
was replaced by the MB-76 model. As per statistics, the 
leading model was Kozak-2, closely followed by MB-76. 
Among the three contesting models, the variability dis-
played by the model of Fang-2000 was relatively higher. 
Multicollinearity was noted in the models as implied by 
the condition numbers. The minimum value of CN was 
38 − 100 from the MB-76 model, followed by the values 
of 106 − 152 and 70 − 110 for the Kozak-2 and Fang-2000 
models, respectively.  

The box and whisker plots of d residuals versus relative 
height classes showed that the error was small, and its distri-
bution along the stem was almost the same among different 
taper functions (Appendix Fig. S1). Plots showed overall 
satisfactory performance of the models and did not indicate 
any distinct inconsistencies among the models.

According to the fit-statistics and box plots, the models of 
MB-76 and Kozak-2 were more accurate than the Fang-2000 
model in predicting diameters. The MB-76 equation was, 

however, suggested for diameter estimates due to the low-
est CN and the provision of an integral solution for volume 
calculation. The results of the F-test of the MB-76 equa-
tion indicated consistent significant differences in different 
regions (not shown).

The adaptation of the MB-76 model was refitted using 
nonlinear mixed-effects techniques. The estimated param-
eters and fit statistics of the best mixed model are listed in 
Tables 7 and 8.

Discussion

Ample material is available on manifold functions and pro-
cedures for the precise estimation of diameter at any position 
along the trunk (Crecente-Campo et al. 2009; Heidarsson 
and Pukkala 2011; Hjelm 2013; Özcelik and Göceri 2015; 
Lumbres et al. 2016; Özcelik and Crecente-Campo 2016; 
Tang et al. 2017). In this study, three stem taper functions 
from two groups, segmented and variable exponent, were 
fitted to estimate stem diameters of white birch with the best 
possible accuracy.

Prospective variations among the regions were exam-
ined by grouping the data into ten sub-regions for which 
all models were fitted independently (Table 6). As noted 
earlier, all models exhibited above 98% of the total vari-
ance of d accounted for in most of the sub-regions. Further 

Table 5   Parameter estimates 
for Kozak-2 equation for each 
sub-region

Standard errors of the estimated parameters are shown in in bracket
The (–) sign indicates non-significant parameters at p < 0.05. Sub-region  1, Songling; Sub-region 2, 
Jiagedaqi; Sub-region 3, Xinlin; Sub-region 4, Tahe; Sub-region 5, Huzhong; Sub-region 6, Shibazhan; 
Sub-region 7, Hanjiayuan; Sub-region 8, Xilinji; Sub-region 9, Tuqiang; Sub-region 10, Amuer

Sub
region

b0 b1 b2 b3 b4 b5 b6 b7 b8

1 0.735
(0.079)

0.862
(0.018)

0.260
(0.045)

0.553
(0.034)

− 0.320
(0.120)

0.592
(0.027)

– 0.006
(0.002)

− 0.130
(0.039)

2 0.931
(0.064)

0.917
(0.010)

0.124
(0.029)

0.625
(0.023)

– 0.583
(0.015)

− 1.165
(0.346)

− 0.004
(0.001)

–

3 0.643
(0.100)

0.851
(0.019)

0.325
(0.062)

0.551
(0.042)

– 0.554
(0.030)

− 2.383
(0.757)

− 0.006
(0.003)

–

4 0.770
(0.086)

0.989
(0.019)

0.110
(0.047)

0.567
(0.037)

– 0.504
(0.030)

– – –

5 0.534
(0.067)

0.890
(0.021)

0.350
(0.055)

0.659
(0.046)

− 0.370
(0.153)

0.647
(0.031)

– 0.007
(0.003)

− 0.199
(0.044)

6 0.830
(0.101)

0.982
(0.021)

0.104
(0.049)

0.543
(0.045)

– 0.648
(0.033)

– 0.008
(0.003)

− 0.098
(0.047)

7 0.984
(0.109)

1.027
(0.015)

– 0.621
(0.033)

− 1.220
(0.105)

0.844
(0.027)

3.185
(0.541)

0.018
(0.002)

− 0.312
(0.039)

8 0.687
(0.091)

0.897
(0.018)

0.243
(0.054)

0.470
(0.035)

– 0.527
(0.029)

– 0.010
(0.002)

− 0.104
(0.044)

9 0.901
(0.100)

1.031
(0.020)

– 0.351
(0.021)

0.461
(0.129)

0.368
(0.028)

− 1.775
(0.542)

– –

10 0.554
(0.079)

0.826
(0.031)

0.381
(0.067)

0.610
(0.043)

− 0.365
(0.151)

0.576
(0.040)

– – –
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examination of Table 6 reveals that the models of MB-76 
and Kozak-2 accounted for total variability better than the 
model of Fang-2000, which furnished the highest RMSE val-
ues. As per goodness-of-fit statistics, models of Kozak-2 and 
MB-76 demonstrated the lowest errors in predicting stem 
diameter in all regions with the model of Kozak-2 slightly 
ahead of MB-76. Although the prediction of merchantable 
or total stem volumes is beyond the scope of this study, 
it is important to note that variable form taper functions, 
to which category Kozak-2 belongs, cannot be integrated 
analytically. To overcome this difficulty, integration of the 
taper equation is required to estimate merchantable height 
(Gómez-García et al. 2013). Alternatively, analytical com-
patibility on the part of MB-76 is a point worth noting.

The box and whisker plots provide the mean, maximum 
and minimum errors of prediction, median, and interquartile 
range (IQR) of diameter residuals by relative height classes 
(Appendix Fig. S1). The narrowness of IQR demonstrates 
that the precision of prediction is relatively high in all 
regions. No significant differences were displayed among 
the models in the plots of d residuals versus relative height 
classes. As a whole, all models presented higher standard 
errors of estimates at 0 − 10% and 65% − 85% relative 
heights, which may be attributed to the association of these 
specific parts of the stem with butt swell and the point of the 
base of live crown (Jiang et al. 2005). The models performed 
well for the sections nearest the ground. Accurate diameter 
estimation in this section is vital considering the commercial 
value of the basal log.

All models portrayed similar and homogenous d residual 
distributions in general, as the medians are largely distrib-
uted near zero. Close observation, however, shows that the 
MB-76 model slightly underestimates the relative heights of 
35 − 55% of trees in sub-regions 1, 2, 3, 6, and 7 and overes-
timates at relative height 15 − 25%. The middle bole sections 
are marginally underestimated by Kozak-2 in sub-regions 1, 
2, 5, and 6, but the extent of error is lower than the MB-76 
function, as it is restricted to the 35 − 45% relative height 
class. The top bole section is underestimated by Kozak-2 
in all sub-regions. Being the least valued part of the stem, 
this error does not generally influence the performance of 
the models. The Fang-2000 model underestimated relative 
height classes 35 − 45% in sub-regions 1, 2, 5, 6, and 7 and 
overestimated by 15 − 25% in sub-regions 3 and 4. Data on 
all these plots were too close to decide the superiority of a 
model.

All models in this study are affected by multicollinearity 
to some extent. It is worth noting however, that the condi-
tion number (CN) of the MB-76 model is lower than for the 
Kozak-2 and Fang-2000 models. The minor CN value of the 
MB-76 model was previously noted in a stem taper study in 
southern China where it was as low as 7.6 (Tang et al. 2017) 
but still higher than the Kozak-2, Fang-2000 or other similar 
models (Rojo et al. 2005; Dieguez-Aranda et al. 2006; Özce-
lik and Crecente-Campo 2016). The CN values are not in an 
acceptable range for the Kozak-2 and Fang-2000 models, 
as noted in earlier studies (Barrio Anta et al. 2007; Corral-
Rivas et al. 2007). In terms of multicollinearity, the MB-76 
model ranked best among the models in this analysis.

The fit statistics and graphic illustrations showed mar-
ginal differences between the MB-76 and Kozak-2 models. 
At the same time, they were more reliable than the Fang-
2000 equation for the diameter estimates in all sub-regions. 
For the models of MB-76 and Kozak-2, the multicolline-
arity was significantly lower in the former. Kozak (1997) 
suggested that a model with less severe multicollinearity 
would be preferable. Although this analysis was limited to 

Table 6   Goodness-of-fit statistics and condition number of the taper 
models analyzed

Sub-region 1, Songling; Sub-region 2, Jiagedaqi; Sub-region 3, Xin-
lin; Sub-region 4, Tahe; Sub-region 5, Huzhong; Sub-region 6, Shiba-
zhan; Sub-region 7, Hanjiayuan; Sub-region 8, Xilinji; Sub-region 9, 
Tuqiang; Sub-region 10, Amuer

Model Sub-region R2 RMSE CN

MB-1976 1 0.986 1.039 38.67
2 0.981 1.200 42.68
3 0.977 1.346 41.67
4 0.985 0.977 48.66
5 0.985 1.059 38.04
6 0.980 1.287 47.98
7 0.984 1.062 45.13
8 0.980 1.201 71.36
9 0.984 1.044 100.81

10 0.984 1.187 87.54
Fang-2000 1 0.986 1.058 89.69

2 0.981 1.219 83.69
3 0.977 1.342 96.47
4 0.984 1.008 71.40
5 0.984 1.067 87.71
6 0.978 1.369 70.17
7 0.983 1.215 110.13
8 0.978 1.259 92.67
9 0.984 1.067 93.56

10 0.983 1.215 110.13
Kozak-2 1 0.987 1.029 118.24

2 0.982 1.174 122.77
3 0.978 1.331 141.13
4 0.984 0.986 111.61
5 0.985 1.040 122.57
6 0.981 1.266 106.52
7 0.986 0.985 135.26
8 0.981 1.183 131.87
9 0.984 1.052 152.18

10 0.985 1.139 130.41
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diameter predictions, the MB-76 equation can also provide 
estimates of total and merchantable volumes. Besides, this 
equation contains all significant parameters compared with 
the Kozak-2 equation. While evaluating the suitability of a 
model, some studies have considered the multicollinearity, 
compatibility, and significance of parameters, e.g., Sakici 
et al. 2008; Crecente-Campo et al. 2009; Özcelik et al. 2016; 
Tang et al. 2017. Therefore, the MB-76 model was selected.

To test the reliability of our results, previous studies 
were reviewed and the MB-76 model has been popular 
for a variety of species (Martin 1981; Brooks et al. 2002, 
2008; Jiang et al. 2005; Teshome 2005; Coble and Hilpp 
2006; Özcelik and Brooks 2012; Doyog et al. 2017). Of 
five equations, this model was most consistent in a study of 
18 Appalachian hardwood species in predicting diameter, 
height, and volume (Martin 1981). As an extensively used 
model for the prediction of taper and volume, Coble and 
Hilpp (2006) recommended it for diameter and volume 
estimation of loblolly pine (Pinus taeda L.) in East Texas, 

USA. In another study in northwestern Spain, it was a 
successful model of 14 equations analyzed for accurate 
diameter estimation at all positions along the stem in Scots 
pine plantations (Dieguez-Aranda et al. 2006). A study by 
Brooks et al. (2008), on compatible stem taper and volume 
equations in Turkey, found it as a reliable model for vari-
ous statistical measures and sectional performance.

In some studies, the MB-76 equation was not the high-
est-ranking model. In appraising 33 stem taper equations, 
de-Miguel et al. (2012) found the model to be the best 
amongst eight equations. However, with further analysis, 
the MB-76 model was less accurate in volume prediction. 
In a comparison of several stem taper models for Leba-
non cedar (Cedrus libani A. Rich.) the model’s perfor-
mance was poor in predicting diameter and other variables 
(Özcelik and Crecente-Campo 2016). Another compara-
tive study of 31 taper functions for the Bornmullerian fir 
(Abies nordmanniana subsp. bornmulleriana Mattf.), the 
MB-76 equation was third among the segmented functions 

Table 7   Parameter estimates for the MB-76 model with mixed effects for sub-regions 1–5 of study area

�
2 : residual variance; ρ: correlation parameter for the CAR (1) error structure; var (U1 – U4): variances for the random effects corresponding to 

fixed parameters b1– b4; cov (U1U3), cov (U1U4), cov (U2U3), cov (U2U4), and cov (U3U4): covariances between pairs of random effects.

Parameter Sub-region 1 Sub-region 2 Sub-region 3 Sub-region 4 Sub-region 5
Estimate Estimate Estimate Estimate Estimate

b1  − 3.6518  − 3.7521  − 3.4716  − 3.5472 − 3.9063
b2 1.7739 1.8443 1.6851 1.7371 1.9692
b3  − 1.6399 − 1.6225  − 1.6559  − 1.6472 − 2.0164
b4 187.92 163.55 114.33 80.712 88.825
a1 0.7017 0.7109 0.6796 0.6845 0.6533
a2 0.0583 0.0681 0.0853 0.0882 0.0799

Correlation parameter

ρ 0.8494 0.8071 0.7982 0.8241 0.8199

Variance components

�
2 0.0106 0.0192 0.0284 0.0170 0.0137

var (U1) 0.0312 0.0319 0.0228 0.0209
var (U2) 0.0090
var (U3) 0.0498 0.1516 0.2262 0.2232 0.1434
var (U4) 6074.68 6011.16 1966.85 1135.06 1868.86
cov (U1U3) 0.0623 0.0759 0.0552 0.0472
cov (U1U4) − 0.3409 − 0.9632 − 0.9649 0.3243
cov (U2U3) 0.0143
cov (U2U4)  − 0.7448
cov (U3U4)  − 4.5105  − 0.2319  − 3.0288  − 5.7040  − 2.5916

Goodness-of-fit

AIC  − 3718  − 12,054  − 3377  − 3797  − 3570
BIC  − 3682  − 12,000  − 3340  − 3759  − 3535
−2Ln(L)  − 3746  − 12,082  − 3405  − 3825  − 3598

…ctd
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(Sakici et al. 2008). These studies do not fully corroborate 
our findings, as taper functions are species-specific and 
their accuracy depends upon the particular species and its 
stem form (Schröder et al. 2014).

Nonconformity of one equation for different sub-regions 
was expected, due to the distinct geographical and environ-
mental conditions in the regions.The Daxing’an Mountains 
extending from the northeast to southwest has different 
topography on eastern and western slopes; east slopes are 
steep and west slopes are relatively smooth (Zhang et al. 
1992). There is considerable variation in temperatures and 
precipitation. Southern regions have higher temperatures 
and more precipitation, while northern areas have lower 
temperatures and less precipitation. Forest fires are another 
important ecological factor affecting natural regeneration 
of the birch forest. Density is increased with increasing fire 
intensity (Shi et al. 2010). The intensity of forest fires is also 
influenced by variations in topography and meteorological 
conditions in this region (Fan et al. 2017). Such contrast-
ing geo-climatic factors are reflected in soil development. 

Lower elevations of the Daxing’an range have dark brown 
forest soils with high organic matter (16 − 20%). Towards the 
south of the range, the brown forest soils contain less organic 
matter (9%). In drier and colder areas, chestnut soils are also 
present (Burger and Shidong 1988). Therefore, a combina-
tion of biogeoclimatic conditions determines the variations 
in tree taper among the sub-regions. Zhang et al. (2002) 
and Özcelik et al. (2016) reported similar findings for jack 
pine (Pinus banksiana Lamb.), and brutian and black pines 
(Pinus brutia Ten. and Pinus nigra Arnold.) in Ontario and 
southern Turkey, respectively.

Similarly, some researchers have specifically investi-
gated the effect of climate and other local factors on stem 
taper. Climate-induced changes in stem form were recorded 
for Korean red pine (Pinus densiflora Siebold & Zucc.) in 
Korea (Lee et al. 2006), for lodgepole pine (Pinus contorta 
Douglas) in British Columbia (Nigh and Smith 2012), and 
for several North American tree species (Schneider et al. 
2018). Li et al. (2011) also found the influence of eleva-
tion on stem taper of Schrenk’s spruce (Picea schrenkiana 

Table 8   Parameter estimates for the MB-76 model with mixed effects for sub-regions 6–10 of study area

�
2 : residual variance; ρ: correlation parameter for the CAR (1) error structure; var (U1 – U4): variances for the random effects corresponding to 

fixed parameters b1– b4; cov (U1U3), cov (U1U4), cov (U2U3), cov (U2U4), and cov (U3U4): covariances between pairs of random effects.

Parameter Sub-region 6
Estimate

Sub-region 7
Estimate

Sub-region 8
Estimate

Sub-region 9
Estimate

Sub-region 10
Estimate

b1  − 3.9538 − 3.8831 − 4.0524 − 3.1608 − 4.2119
b2 1.9421 1.9129 1.9788 1.3679 2.1099
b3 − 1.7811 − 1.7226 − 1.7514 − 1.1681 − 1.9924
b4 146.60 199.53 216.60 63.867 99.083
a1 0.7261 0.7245 0.7488 0.7827 0.7279
a2 0.0799 0.0549 0.0579 0.0891 0.0749

Correlation parameter

ρ 0.7462 0.8379 0.6964 0.8408 0.7810

Variance components

�
2 0.0560 0.0117 0.0853 0.0135 0.0168

var (U1) 0.0447 0.0304 0.0728 0.0180
var (U2) 0.0081
var (U3) 0.2031 0.0442 0.1326 0.2829 0.1169
var (U4) 3147.47 5797.55 23.106 968.73 2936.83
cov (U1U3) 0.0845 0.0575 0.1393 0.0373
cov (U1U4) − 0.9152 − 0.2681 − 2.0063 − 1.9314
cov (U2U3) 0.0158
cov (U2U4) 1.8884
cov (U3U4)  − 4.3941 3.1916 0.5817 − 4.9276 − 10.8795

Goodness-of-fit

AIC − 2441 − 4884 − 4206 − 6635 − 2558
BIC − 2408 − 4845 − 4167 − 6591 − 2529
−2Ln(L) − 2470 − 4913 − 4235 − 6664 − 2587
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Fisch. & C.A. Mey.) in northwest China. The quantification 
of climatic effects on stem taper was not in an objective of 
this study. Further research might support the decision to fit 
the separate models for different sub-regions.

The fixed-effects models, fitted by ordinary least squares 
or nonlinear least squares, minimize the sum of squared dif-
ferences between the observed and predicted values of the 
data. The sum of squared errors is smaller than for mixed-
effects models when the random parameters are not used 
in prediction. The fixed-effects models are more accurate 
when the random parameters of the mixed-effects models 
are supposed to be zero and additional measurements are not 
available to calibrate the model (Meng et al. 2009; Pukkala 
et al. 2009; Shater et al. 2011; Groom et al. 2012; Guzmán 
et al. 2012; de-Miguel et al. 2013; Arias-Rodil et al. 2015).

Consequently, for prediction purposes, many research-
ers suggest using the fixed-effects models in the absence of 
calibration data (de-Miguel et al. 2013; Arias-Rodil et al. 
2015). However, de-Miguel et al. (2013) advised to record 
both fixed and mixed-effect forms of a model since calibra-
tion may be feasible in some cases. Calibration can assist in 
determining the best estimates with or without the prospect 
of model calibration. Accordingly, mixed-effects modeling 
of the MB-76 equation was carried out. Mixed-effects mod-
els would be used where additional upper stem diameter 
measurements are available for calibration.

Conclusion

Three widely used stem taper functions, Kozak-2, MB-76, 
and Fang-2000 were evaluated for Betula platyphylla in dif-
ferent sub-regions of the Daxing’an Mountains. Kozak-2 
and MB-76 models provided good results and were similar 
to a certain extent. Without multicollinearity, Kozak-2 per-
formed slightly better in the goodness of fit statistics and 
graphical representation. As recommended in the literature, 
models bearing less multicollinearity should be preferred. 
Lowest multicollinearity and all significant parameters are 
two substantial rationales to suggest the MB-76 model for 
diameter prediction of B. platyphylla in northeast China.
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