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Ö The min objective of this research effort was the construction of

a flnger valve dynamics model using simplified theory based on steady

flow conditions. The analytical valve positions were then compared to

experimental measurements from an Ingersoll Rand model 242 two·stage air

compressor. Proximlty probes were used to measure the valve position at

two points on the exhaust valve at two different exhaust valve stop

heights and at two points on the intake valve at one intake valve stop

height in the lower exhaust valve stop height c¤¤61g¤ra¤1o¤ only. A

data acqulsition system was configured to signal average and digitize

the analog data from the sensors using a digital oscilloscope. The data

was then sent to and stored in data acquisition computer for future

comparisons to analytlcal results.

The comparisons of the analytical and experimental exhaust valve

positlons at both points and both valve stop heights were of good

quality when the effects of oil stiction were taken into account. Also,

the comparisons of the intake valve positions were of good quality after

adjustments were made in the theoretical force on the valve

calculation. The adjustments entailed accounting for flow induced

forces on the intake valve after piston reversal.

Overall the simplified model predicted the valve positions with

sufficient quality to warrant the model's use as a design tool.
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1. INTRODUCTION

The valves are one of the most important mechanical components in a

compressor are the valves. The proper matching of the valves to the

compressor is a key factor in determining the compressor's thermodynamic

and mechanical efficlency. Therefore, the valve dynamics need to be

included in a compressor simulation model.

The most common types of compressor valves are finger type

valves. In its simpliest form the finger type valve is a thin piece of

sheet metal (Fig. 1.1). One valve covers each of the entrance and exit
l

ports to the compresslon chamber, controlling when the working fluid

enters and exits the chamber by way of the inlet and outlet plenums,

respectively (Fig. 1.2). The exact process of the working fluid

entering and leaving the compression chamber can be expressed

- mathematically as an series of coupled thermodynamic, kinematic, fluid

mechanic, and valve dynamics partial differential equations. The exact

solution of these simultaneous partlal differential equations is

difficult if not impossible, and the numerical solution is

computationally time consuming. Therefore, a simplified but valid

compressor model is required for feasible analytical compressor

development. Since finger type valves are common and they add

complexity to the simulation model, the main thrust of this research

effort is the development of simplified models for finger valve

dynamics.
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The order of progression in this research effort is as follows:

1. Development of thesimplifed compressor model.

2. Computer implementation of the model.
A 3. Experimental verification of the model.

The final goal of this research effort is to develop a valve model

that can be used in a compressor model so that the cylinder pressures

and valve positions can be accurately predicted.



2. LITERATURE

REVIEWCostagliola[1] produced the first meaningful mathematical model of

a compressor and its valves in 1950. Corresponding experimental work

was on a single cylinder air compressor. Although the experimental-and

analytical results were not directly compared, Castagliola claimed the

model to be essentially correct. However, at that time the non-linear

differential equations proved to be too tedious to solve for use in

indus trlal applllcations .

_ With the emerge,nce and wide availability of digital computers, the

complicated mathematical model derived by Castagliola [1] became

feaslble to solve. Two early works using models based on Castagl1ola's

work were those by MacLaren and Kerr [2], and Wambsgnass and Cohen [3].

In the MacLaren and Kerr study, the following conclusions were ·

made:

1. That oil between the valve and valve seat causes a delay in

the valve opening time. This phenomena is called °'oil

stiction".

2. That a compressor simulation program can produce results

faster and cheaper than an experimental analysis. „

It should be noted that the MacLaren and Kerr simulation program

depended on experimental results in order to determine the coefficients

necessary to oalculate the mass flow rate and force on the valve.

In the first of many works performed at Purdue University,

Wambgnass and Cohen [3] made a comparison between the analytical and

experimental analysis of a 1/4 H.P., 3600 RPM, hermitically sealed,

single cylinder air compressor. The correlation was judged good when

5
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‘ taking into account the instrumentation problems associated with the

small compressor. The Wambgnass and Cohen model treated the valves as a

multi-degree-of-freedom system rather than a single degree—of—freedom

system as in earlier approaches. The single degree—of—freedom system

was concluded to be too simple to adequately describe the valve motion

in high-speed compressors. Also, it was found that damping and valve

stiction played a significant role in modeling valve motion. As in the

MacLaren and Kerr [2] study, Wambgnass and Cohen required experimental

data to calculate the russ flow rate and force on the

valveanalytically.

With Wambgnass's and Cohen's [3] initial work, extensive work was

done on the development of mathematical models during the late 1960's

and early l970's at Purdue University. Soedel [4] produced a manual

summarizing this work. The manual detailed the necessary thermodynamic,

kinematic, fluid mechanic, and valve dynamic equations to produce a

compressor model. A computer simulation incorporatlng these equations

compared well to experimental results. However, the model required

experimental data to calculate the coefficients necessary to calculate

the mass flow rate and the forces on the valves.

In an extension to the Soedel text [lr], Hamilton [5] produced a

similiar document with alternatives to all the equations presented in °

the Soedel text. Of interest is the analytical method to calculate the

mass flow rates and the force on the valve, which in previous works

required experimental data. The method used to calculate the mass flow

rate assumes incompressible flow. The method for calculating the force

assumes steady flow conditions and that the flow changes direction by
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90° upon meeting the valve. Testing the force calculation method,

Hamilton made the following observations:

1. The method is valid for "small” valve displacements.

2. The method works well under normal flow conditions (1.e., flow

is into the compressor chamber when the intake valve is

open), and produces significant error during back·flow (l.e.,

flow is out of the compression chamber when the intake valve

is open).

_ Gatecliff, and Lady [6] presented a method to solve the forced

vibration differential equation of a finger valve of uniform thickness

and non-uniform width. The method uses a Rayleighj-Ritz procedure to

provide an approximate solution to the exact formulation of the

differential equation. Comparing one point on the valve, the analytical

method produced a valve cycle of the same shape as that of the true

valve, however, actual dzlsplacements were not compared due to

experimental difficulties.

Papastegious et al. [7] used finite element methods and the

experimentally measured pressure drop across the valve to determine the ·

motion of the valve. Comparing a static and a dynamic finite element

analysis, the static analysis underpredicted the valve dlsplacement and

associated stresses by up to three and five times, respectively.

Gatecliff, Griner, and Richardson [8] presented analytical results

of a simplified compressor simulation program. In this effort, the

valve is modeled as a series of lumped masses connected by massless

beams. Richardson, Gatecliff, and Griner [9] verified the results from

' the simplified model. Only physical parameters such as valve closing
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time, valve opening time, and cylinder pressure were compared with

excellent results. '

Giacomelli and Giorgetti [10] performed an experimental study on

the phenomena of oil stiction, which causes a delay in valve opening

time. The findings lndicate that the delay ls significant enough to

cause a slgnificant error in an analytical program if not taken into

U account.
From the literature summarized in the previous paragraphs, the

following observations can be made:

1. The use of compressor simulation programs is a valuable
development tool.

. 2. Valve damping and oil stiction are important factors in
_ determining valve motion.

3. Many of the analytical compressor model tested to date require
experimental data.

4. That analysis of valve dynamics using the Finite Element
Method is time prohlbitive.



3. THEORETICAL DEVELOPMENT ·

The theoretical development of the compressor model is presented in

the sections to follow.

3.1 Valve Dynamics

The equation of motion for a finger type compressor valve begins

with the plate bending equation as presented by Soedel [4]. For the

plate element in Fig. 3.1, the plate bending -equation is presented

below: ’ V

E h3 6- ·· 1[———-T] V w(x.y) + ¤Vhw(x.y) = P(><.y.¤) (3-1)
12(l - v ) ‘

where

E = modulus of elasticity

h = valve thickness

pv = density of valve material

v = Poisson's ratio

w(x,y) = valve displacement at point (x,y) (Fig. 3.1)

P(x,y,t) = Pressure on the valve at point (x,y) at time t

and
4 4 44 3 8 3V = -7:-+ 2 -———--·+ -——- (3.2)

8x öxzöyz 3y4

In Soedel [4] the valve displacement function, w(x,y), is described

in terms of a weighted sum of the valves natural modes, as shown below:

w(x,y) = E qm(t) ¢m(x,y) (3-3)
m=1

9
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ll

where

qm(t) = participation factor for the mth mode at time t

¢m(x,y) = mtb mode shape function

utilizing Eq. (3.3), Eq. (3.2) becomes

°—-°—-___—
9

\J•

[iEh3
](;q<¤>V°¢<xy>)+¤¤(;Ä<¤>¢<><>) (**4)

. 12(1-vz) m=l m m V m=1 m m

‘ = P(x.y.¤)· ·

In the free Vibration state P(x,y,t) is zero and Eq. (3.1) becomes

E h3 4
”

V W(X.y) + ovh w(x,y) = 0 (3.5)
12(1-v )

If the Valve is freely Vibrating in its mth mode, w(x,y) can be

expressed as follows:

V w(x,y) = Am ¢m(x,y) sin amt. · (3.6)

where

Am = amplitude coefficient

am = natural circular frequency of the mch mode.

Substituting Eq. (3.6) into Eq. (3.5) results in the following equation:
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;<=<.y) = — wg w(><,y) (3.7)

Substituting Eq. (3.7) into Eq. (3.4) yields

4 12 pvh mi(1—v2)
V ="—”_”—:T—_°_° (3-8)

E h

Substituting Eq. (3.8) into Eq. (3.4) yields

°° 2 °° ·· _1>(x,Z,«;)Z wm qm(¤) ¢m(X,)') + Z qm(¤) ¢m(X,>') ·· h (3·9)
m=1 m=l pv

To reduce Eq. (3.9) the following orthogonality property from

reference [13] is utilized:

O m ¢ n
jj 4, (x,y) cp (x,y) dxdy = 2 (3.10)

S m n If¢m(x.y) m=¤
s

where

jl = integration over the entire surface

Therefore, Eq. (3.9) becomes

ffP<x.>·.¤) ¢m(x.y>d><dy
w 2 S%„‘°> * wm Smm ' ————r——‘—

' 301pvh gf 4,m axdy < 1)

m = 1,2,3 . . . . w
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Reducing Eq. (3.11) and (3.3) to a one dimensional case produces the

following equations:

[ P(x,t) ¢ (x)dx
ä:¤(«;> + wm2qm(t) - -J·-—-——j-‘>——————— (3.12)

3
m = 1,2,3 • • • • Q

and
l

3 Q

w(x) # Z qm(t) ¢m(x) (3•13)
‘ _ m=1

where _

LL = intergration over the valve length

x = point along the length of the valve

The term in the numerator on the right side of the equality in Eq.

(3.12) is commonly called the generalized force, Fm, and the

denominator; the generalized mass, Mm. With these simplification Eq.

(3.12) becomes

¤ 2 Fm
+ "ü" m -1,2,3 • • ••”m

where

Fm = fL P(x,t) ¢m(x)dx (3.15)
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and V '

_ 2Mm Ovh fL¢m (X)dX (3-16)

Although there is very little damping internal to the valve

material, Hamilton [5] reports that previous experimental investigations

have correlated the valve damping to the valve Velocity. Hamilton

further states that this damping arises from the working fluid

interacting with the Valve. Hamilton accounts for the damping by

including an equivalent modal damping, as follows:

<=¤ • 2 Fm
qm + qm mm qm(t) + wm qm(t) =·ü— m = 1,2 3 .... w (3.17)

m

where qm is the damping factor for the mtb mode.

The solution of the valve dispacement function, w(x), per Eq.

(3.13) _requires the solution of an infinite number of differential

equations in the form of Eq. (3.17). In actuality only the lower modes

are required to solve w(x) with reasonable accuracy. This will be

elaborated upon in later sections.

The solution of Eq. (3.17) requires both the natural modes and the

pressure function P(x,t). The determination of both quantities will be

discussed in later sections after the boundary conditions of the Valve

are treated.

3.1.1 Treatment of Valve Boundary Conditions

The ideal valve opens and closes quickly and experiences small

displacements yielding small stresses and a corresponding long fatigue
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life, however,‘ quick response and small displacements are competing

valve features. A quick acting valve requires a low valve stiffness and

small displacements require a large valve stiffness. Therefore, most

compressors have valve stops (Fig. 3.2) that limit the maximum

displacement of a low stiffness valve to produce an ideal valve (quick

acting and small displacements). However, valve stops complicate the

valve dynamics since the stops cause nonlinear boundary conditions.

Modeling the nonlinear boundary conditions require the mathematical

treatment of the following elastic configurations: ‘

1. The valve leaves the seat.

2. The valve hits the stop and Stays at the stop.

3. The valve leaves the stop and returns to the seat.

4. The valve bounces on a hard surface.

When the valve leaves the seat at time, to, the valve is at rest.

The initial conditions for Eq. (3.17) are, therefore, as followsz

qm(¤O) = 0
(_

m = 1,2,3 . . . . w (3.18)
qm<¤o) = 0

The boundary conditions for the valve in this elastic configuration are

fixed at one end and free at the other.

At time tm when the valve hits and stays at the stop, the boundary

conditions change to fixed at one end and hinged at the other. The

displacement of the valve is now the superposition of che valve .
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displacement at time tu, g(x), plus any further displacement. This is

displayed graphically in Fig. 3.3 and mathematically below:

Q

W(X.C>‘¢H) = g(X) + Z Tn(C) ¢n(X) (3.19)”n=1

where

gpn(x) = nth mode shape function of the new boundary conditions.

Tn(t) = participation factor for nth mode of the new boundary

conditions. _

and _

g<x) =· Z qm<¤:H> ¢m<x> (3.20)
m=1

Placing Eq. (3.19) and (3.20) into Eq. (3.1) and repeating the

steps that produced Eq. (3.17) yields the following equation:

°° 2
F Z qm(tH) wm IL ¢m(x) ¤vn(x)

" • 2 n m=1'1‘n(c) + gnwn '1‘n(t) + wu Tn(1:) gg-L
n

1,2,3 O I O

Owhere

Fu =· IL P(x,t) 1pn(x)dx (3.22)

2Mu = pvh IL npn (x) dx (3.23)
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and

wu = nth natural frequency of the Valve under its new

boundary conditions

gn = damping ratio for the nth mode

The solution of the series of equations in the form of Eq. (3.21) yields

the valve displacement function from Eq. (3.19) when t > tq.

The initial conditions for Eq. (3.21) are obtained by equating

displacements and velocities of the new and old boundary conditions at

time tH. Equating displacements
l

E <1m(¤H)¢m(X) = s(x) + Z Tn(¤H)wu(¤<) <3·24)
m=l n=l

Substituting Eq. (3.20) into Eq. (3.24) yields

Tu(tH) = 0 n = 1,2,3 . . . . w (3.25)

Equating Velocities

z «im<¤H> ¢m<x> ==zm=l
. m=l —

using the orthogonal properties shown in Eq. (3.10)

IL ¢m(><) xvu(X)d><
T (t ) = ——-—-——-———————————————-——— n = 1,2,3 . . . w (3.27)n H f

• 2(x) dxL wn
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The Valve leaves the stop and returns to the seat at time tL when

the pressure force is less than the dynamic and elastic forces. Stated

in equation form, the Valve returns to the seat when the following

inequality is true:
”

I®®nil
Tu(¤)¤1»n(X) + R51

cnWn'Tn(¤)wn(X) + R; wu Tn(¤)¢u(X)

~ 2 P(x,t)
+

nä].
wm qm(CH)¢m(X) >

T-

At the time tL, the Valves boundary conditions return to fixed at

one end and free at the other. The initial conditions are again found

by equating displacments and Velocities, yielding

°° 2
Til

Tn(¤L) fLWn ¢m(X)¢n(X)dX
qm(tL) = g(X)fL¢m (X) dX

m = 1,2,3 . . . w

®

fL ¢m(x)¢n(x)dx
qm(tL)fL

¢m (x)dx
' m = 1,2,3 • • • •m

Valve bouncing occurs when E1 point xb on the Valve impacts and

bounces off a hard surface, such as the valve stop or seat. when valve

bouncing occurs at time tB, the Velocity, w(xb), of the point of impact

is reversed in direction and decreased in magnitude (Eq. 3.31), and the
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points position, m(xB), is held to the position of the obstruction (Eq.

3.32).

·( j<xB> = — Cr <7¤<xB> p (3.31)

_w_(xB) = Yo (3.32)

where

ji(xB) = Velocity of point xß after impact.

Cr = coefficient of restitution.
w(xB) = Velocity of point xB before impact.

- w(xB) = the new position of thepoint.

Yo = the position of the obstruction.

New participation factors that correctly describe the new

displacement and Velocity functions of the Valve, y_(x)

and j(x), respectively are required. Applying the orthogonality

principles presented in Eq. (3.10), the new participation factors are

calculated as follows: ·

fw(x) 4) (x)dx
q (t) =-E--4*-— m = 1,2,3 . . .«» (3.33)_m B [ 4) 2(x)dxL m
_ [L jo.) ¢m(x).1xq(t)=———-—-——— m=l,2,3...¤¤ (3.34)—m B 2u [L 4>m (x)dx
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where‘

_w(x) = the displacement function of the valve after impact

_Q(x) = the velocity function of the valve after impact.

gm(tB) = participation factor of the mth mode after impact

ém(tB) = derivative of the participation factor for the

_ mtb mode after impact.

^ 3.1.2 Determination of the Pressure on the Valve

Hamilton [5] presents a mthod to calculate the pressure function,

P(x,t), which is necessary for the solution of Eq. (3.17). Hamilton

defines the force on the valve in Fig. 3.4 as follows:

“‘ AP 1F(t) = ié?— ß---? + ZT-) · FV _ (3.35)
v (K A ) ov v —

where

mV = mass flow rate through the valve

p = density of the working fluid

AP = port area

A = bore areao
AV = area under the valve
KV = flow coefficient for the area under the valve
FV = elastic preload on the valve in terms of force

Hamilton made the following assuptions in deriving Eq. (3.35):

1. The valve displacements are small.

2. The flow changes direction by 90° as it meets the valve.

3. The flow is steady. ·

4. The flow is stagnated at the valve opening.
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Figure 3.4: Display of thephysical parameters used in the
force on the valve calculation.
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A simplified mass flow rate equation is presented by Hamilton

[5]. Hamilton assumes that each flow system in a cßmpressor may be

modeled as a system of orifices. Therefore, the following equation for

flow through an orifice may be used:

mv = (KA)e Y / 2p (Pd — Pu) (3.36)

mv = mass flow rate through the valve

(KA)e = equivalent flow area for the valve system

Y = compressibility factor ‘

p = working fluid density

Pd = downstream pressure

Pu = upstream pressure

Hamilton then assumes the fluid is incompressible (Y = 1), and goes on

to develop equations to calculate (KA)e. Since in this research effort

the working fluid is air, the incompressible assumption is invalid.

However, in most compressors the greatest obstruction to the flow occurs

at the valve. Therefore, it is assumed the equivalent flow area for the

flow system is approximately the equivalent flow area under the valve.

Expressed mathematically

(KA)e = KVAV (3.37)
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utilizing Eq. (3.36)

' · I
_mv (KvAvY) Y Zn (Pd Pu) (3.38)_

and -

pm = (K A 602 (-—-2-AP + L)(1> -p > — F (6 39)v v A d u v “(K„,^V] <>
Assuming that the pressure distribution is constant over the valve

length that covers the valve port in Fig. 3.5.

F(c) 28 < x < ZF

0 x < 2* , x > ZF

The generalize force, Fm, in Eq. 3.15, therefore becomes

F = Fm [lp <x>dx (6 61)m Z2 — £ )w V °F s v ßs

where P(t) is calculated by Eq. (3.39). In order to utilize Eq. (3.39)

and (3.38) the pressure drop across the valve must be known. This will

be treated in a later section.

3.2 Determination of the Free Vibration Modes of the Compressor Valves

The valve dynamics equations developed in Section 3.1 require the

natural frequencies and mode shapes of the valves at their various

boundary conditions. In the past, the natural modes have been found

experimentally or by the flnite element method. The finite element
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method has the disadvantage of considerable difficulties in interfacing

the finite element program with the compressor simulation program.
l

Experimental determination of the mode shapes is typically hampered by

the valves small size. Also, experimental methods require time,

facilities, and physical parts; all disadvantages for the analytical

development of a compressor model. An alternative method is the

transfer matrix method.

Since finger valves are comonly thin. pieces of. sheet metal of

· constant cross-sectional area, the valve can be modeled as a series of

lumped masses connected by massless beams (Fig. 3.6). With such a model

the transfer matrix method can be used to determine the bending natural

modes.

As Thomson [12] presents the transfer matrix method, the method is

ideal for lumped parameter systems made of several subsystems. The

method formulates a matrix that solves the state (displacement and

forces) of one end of the subsysteu knowing the state of the other

end. The combination of the matrices of each subsystem. of Va total

system yields a matrix that describes the total system.
2

To determine the natural modes of the valve modeled in Fig. 3.6 by

the transfer matrix method, the matrices describing a point mass and a

massless beam are required. The matrices are called field and point

matrices for the massless beam and point mass, respectively. The field

matrix and point matrix label indicate whether the subsystem has length

or not, respectively. '

The matrices are derived using the free body diagrams of the point

mass and the massless beam shown in Fig. 3.7. The subscripts indicate
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Figure 3,6: Lumped mass model of a finger valve.
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the point or field to which the variable is associated and the

superscript, the side of the point. The superscript L is for the left

side of the point and R, the right side.

Thomson [12] writes the following equations from the free body

diagram of the massless beam in Fig. (3.7)

L = R" . ”V1+1 V1+1(3**2)”

L = R _ R
‘

Mi+1 Mi Vi zi (3.43) j

L = R jL_ L61+1 61 + 661+1 (E1)1 + Vi+1 (6"*‘*)

WL =WR+6L1 +14L (L2) +vL (L3) (345)1+1 1 i 1 1+1 2EI 1 1+1 3EI 1 ~ '

where

V = shear

M = moment

ß = beam length
6

E = modulus of elasticity

I = area moment of inertia ‘

6 = angular beam deflection

w = displacement

Substituting Eqs. (3.42) and (3.43) into Eq. (3.44) and (3.45) and

arranging into matrix form
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-v L 1 1 0 0 _0 —v 12
M 2 1 O O M
6 = 12/2EI 1/E1 1 0 9 (3.46)

3 2 .w 1+1 1 /6E.1 1 /2E.I 1 1 1 w 1
The column vectors are known as state vectors, and the four by four

matrix is known as the field matrix, [F]i, for the ith beam.

Thomson [12] repeats the same process for the point mass in Fig.

3.7 and yields the following matrix equation:

—v R 1 0 0 662 -v 12
M O 1 O' O M
6 = 0 O 1 O 6 (3.47)
w 1 O 0 0 1 1 w i

where

m = circular excitation frequency.

The four by four matrix is the point matrix, [P]i, for a point mass.

Substituting matrix Eq. (3.47) into matrix Eq. (3.46) yields

—v R 1 0 0 mm2 -v 1*
M = ß 1 O mwzß M

2 2 26 1 /2E1 2/EI 1 mw 1 /E1 6
2 23 2 mw ß 1w 1+1 1 /6EI 1 /2E1 1 (1 w 1

(3.48)
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The resulting four by four matrix is the transfer matrix since it

transfers the ith state vector into the 1+1th state vector.

For the valve model shown in Fig. 3.6. the transfer matrix model is

produced by successive multiplications of field and point matrices, as

shown below: ' ~

—v R M ‘ - v
M M
6 - lPl4[F14[Pl3[Fl3[Plztvlzlplltr}1 9 (3.49)
wU _ wo _

Letting

M V ull u12 U13 “10
' M F U21 u22 “26. M20

U31 U32 U33 U3U (3.60)
“61 “a2 Mas “44

Matrix Eq. (3.49) becomes
)

- V R u u u u -V· 11 12 13 16M = u21 u22 U23 “2a M (3 51)0 u31 u32 M26 “s6
° R

M 6 “a1 “62 Mas M04 M 0

The boundary conditions for the model in Fig. 3.6 are

RM40
vä = O

_ (3.62)
9 = O “

O
w=·OO
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Applying the boundary conditions to matrix Eq. (3.51) yields

·
u u —V 011 12

<$ - (3.66)
U21 M22 M 0 · M

Since

-v R

=- 0 (3.54)M 0

for only the trivial solution of Eq. (3.53), which is when there is no
l

motion of the valve,

M11 M12
· usr (

- 0 (6.66)u21 M22

The solution of Eq. (3.53) yields the natural frequencies. The mode

shapes are then found by solving for the displacement, w, for each point

at each of the natural frequencies.

In order to ascertain the accuracy of the transfer matrix method,
the method was compared- to the solution of '1'homson's [13], Euler's

Equation for beams and results from a finite method analysis of a beam

with dimensions (1.24) cm x (.1969) cm x (5.906 x 10°3) cm. In the

transfer matrix method analysis, the beam was modeled as 20 successive

and equal massless beam-point mass elements. In the flnite element
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method solution the beam was modeled with 40 rectangular shell elements

using the code AHSYS [14]. The comparision of the first three bending

natural frequencies is shown in Table 1, and the comparison of the mode

shapes is shown in Figs. 3.8-3.10.

Since all three methods have underlying assumptions and

lnaccuracies that cause their results to deviate from the true modes,

the only conclusion that can be made is that the transfer matrix method ·

yields results comparable to other commonly accepted methods.

Although the transfer matrix method has been displayed for only two
types of subsystems, point masses and massless beams, Pestel and Leckie

[15] show many more cases where the transfer matrix can be used. The

use of the transfer matrix method can be used to analyze a multitude of
elastomechanical systems, and the method's capabilities are only

dependent on the enthusiasm of the analyst.
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Table 1: Comparison of the Calculated Bending
Natural Frequencies

Transfer FiniteMatrix Euler's Element
Method _ Equation MethodMode (Hz) (Hz) (Hz)

1 47.05 49.45 49.90
l

2 295.25 309.08 314.50

3 827.71 866.85 888.13
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3.3 Compression Chamber Thermodynamics

As stated earlier the pressures on each side of each valve are

required. Therefore, the cylinder pressure is required.

For many simple compression and expansion processes the pressure _

volume relationship of Eq. (3.54) is valid. Such processes are

PVn = constant (3.54)
where ·

P = pressure

V = volume °

n = polytropic indexü

called polytropic processes. The plot of the logarithm of pressure

versus the logarithm of volume for such a process is a straight line of

slope n (Fig. 3.11). The value of n depends on the type of

thermodynamic process. For an isothermal process n=1, and for an

adiabatic process_n is commonly described as follows:

C ou = EL (3.55)
vo

where

Cpo ¤ constant—pressure specific heat

Cvo = constant-volume specific heat

Assuming that the thermodynamic cycle in a compressor undergoes is
polytropic, the following. equations may be used to calculate the

cylinder temperature and pressure at time t:



ao

°+ 1
¤=E "7 P

· /0g

VFigure3.11: Log P vs. log V plot for a polytropic process.
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= m(t) nPc(t) Po (BSVTEY) (3.56)

n-1
TU:) = TO (3.67)

o

where

PC(t) = cylinder pressure at time t

T(t) = cylinder temperature at time t

V(t) = cylinder volume

m(t) = mass in the cylinder at time t

po = initial density of the working fluid

PO = initial cylinder pressure

To = initial cylinder temperature

The mass flow rate shown in Eq. (3.38) is used to determine m(t), and

the cylinder volume calculation is presented in the next section.
I

3.3.1 Cylinder Volume Calculation _

The cylinder volume for the simple compressor shown in Fig. 3.12 is

calculated as follows:

V(t) = X(t) • Ao + VCL (3.58)
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where '

X(t) = piston position relative to top dead center

AO = cylinder bore area

VCL = cylinder volume at top dead center

The position of the piston with respect to top dead center, X(t),

(Fig. 3.12) is presented by Mabie and Ocvirk [16],

xu;) =- - R ws Y - [1.2 — R2 s1¤2Y}l/2 + (R + L) (3.59)
where -

R = crank radius

L = connecting rod length

Y = crank angle

Assuming a constant speed compressor, the crank angle, Y, is

calculated as follows:

Y = Y u (3.60)
where

Y = crank angular speed.
t = time



4. VERIFICATION OF THE MATHEMATICAL MODEL

Model verification was performed by writing a computer program that

incorporated the compressor theory presented in Chapter 3, then

comparing the program's results to measurements made on an actual

compressor.

4.1 Experimental Measurements

Experimental data was obtained from the first stage of an Ingersoll

Rand Model 242 two-stage air~ compressor. The physical parameters

measured were exhaust valve positions at two points on the valve, the

intake valve positions at two points, the cyllnder pressure, and the
‘ exit plenum pressure. The exhaust valve and intake valve positions were

measured
at,

the points shown in Figs. 4.1 and 4.2, respectively.

Appendix A details the methods used in acquiring the data.

The exhuast valve positions at the two points, the cylinder

pressure, and exit plenum pressure were measured at two different

exhaust valve stop heights, SH (Fig. 4.4). The stop height was changed

by changing the gasket thickness between the first stage cylinder head

and the valve plate as shown in Fig. 4.3 (the exhaust valve stop is an _

integral part of the cylinder head). The two exhaust valve stop

heights, SH, were .35 mm and 1.0 mm, respectively. The intake valve

stop height was 1.65 mm in both cases. The intake valve position was

not measured in the higher exhaust valve stop height configuration due

to experimental limitations.

It is noted that the first stage of the Ingersoll Rand Model 242

compressor has two identical intake and two identical exhaust valves.

The position of only one valve of each set was measured.

_ 44
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Figure 4.1: Points on the exhaust valve where the valve
positions were expermentially measured.

[
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Figure 4.2: Points on the intake valve where the valve .
positions were expermentially measured.
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SH

Figure 4.4: Definition of the valve stop height.
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4.2 Compressor Simulation Program

Using the theory presented in Chapter 3, a single stage compressor

simulation program was written. The flow chart of the program is shown

in Fig. 4.5. As seen in Fig. 4.5, the program has two basic modes of

operation: using experimentally measured cylinders pressures, or using

the theory presented in Section 3.2 to calculate the cylinder

pressure. The ability to use measured cyllnder pressures was

incorporated to test the valve dynamics theory free of any errors -

induced by the analytical cylinder pressure calculation.
~

l

Since the simulation program is for a single stage compressor, the

experimentally measured first stage exit plenum pressures were used in

the program to take into account the second stage of the Model 242
l

compressor. The theory presented in Chapter 3 is not limited to a

single stage compressor, but the program was limited to a single stage

for the following reasons:
V

1. The extension of the program to two stages made theoretical

deficiencies too difficult to solve.

2. To limit computer run time.

For clarity the assumptions made in the theory presented in Chapter

3 are repeated below:

1. The pressure is constant over the portion of the valve that

covers the valve port (Fig. 3.5), and zero every where else.

2. The thermodynamic process in the compression chamber is

polytropic.



49

ENTER INITIAL
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Figure 4. 5: Flow chart of the simulation program



50

3. The exit and entrance flow systems of the cylinder may be

modeled as flow through a system of orifices.

4. The intake and exhaust valves are the greatest obstruction to

the flow in and out of the cylinder, respectively.

5. The flow changes direction by 90° upon impact with the Valve.

6. The Valve displacements are small.
l

7. The torsional modes of the valves.contribute little to the

Valve motion.

8. The transfer matrix method correctly determines the bending

. natural modes of the Valve.

9. The compressor operates at a constant speed

Further assumptions made in the computer program are as

follows:1.

Each of the two intake valves and two exhaust valves displace

identically.

2. The damping factor, gm, is the same for each natural mode and

constant throughout the process. The optimum. value being

found by experimentation.

3. The polytropic index is constant (varying the polytropic index

was found to cause the simulation program to behave
·

unstably). The optimum index was found by experimentation.

4. The flow coefficients, and other factors in the mass flow rate

and pressure equations (Eqs. (3.38) and (3.39), respectively)

are constant throughout the process. The optimum Values were

found by experimentation.
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5. Since the first stage intake plenum is exposed to the

atmosphere, the intake plenum pressure is always equal to the

atmospheric pressure.
U 6. Using the first stage exit plenum pressure takes into account

the influence of the second stage on the first.

Another assumption in the simulation program is associated with the

nature of the valve stops in the Model 242 compressor shown in Fig.

4.6. As seen the actual valve stops are blocks that start before the

tip of the valve. When the valve hits the stop, the valve is

constrained at a point before the tip. Therefore, the valve length used

in the program is that from the point at which the valve is bolted to

the beginning of the valve stop, ze in Fig. 4.6. Linear interpolation
I

was used to determine the positions of the valve at points beyond ze.

The justification for using the shorter length rests in the fact

that the distance from the valve seat to the valve stop is very small:

less than or equal to 1.65 mm for all configurations and all valves.

Therefore, the valve spends a large part of the cycle time pinned to the

stop rather than between the stop and seat.
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//6

/ 3

Figure 4.6: The actual valve stop on the Ingersoll Rand
Model 242 compressor. '



5. RESULTS AND DISCUSSION

In the section to follow the results of the simulation program are

compared to the experimental results. The program was run using

experimental cylinder pressures at both exhaust valve stop heights, and I

with the calculated cylinder pressures at only the lower exhaust valve

stop heights.
A U

For simplicity, the comparison points on the valves will be

referred to as Point 1 and Point 2 as shown in Fig. 4.1 and 4.2 for the

intake and exhaust valves, respectively. .Also, Case 1 and Case 2 will

refer to the smaller and larger exhaust valve stop heights respectively.

5.1 Results Using Measured Cylinder Pressures V

As stated earlier, the purpose of using the measured cylinder

pressures in the simulation program is to determine deficiencies in the

valve dynamics theory free of errors induced by an analytical pressure

calculation.

In the analysis of both cases it was found that only three natural

modes were necessary to describe the valve motion. The disadvantage of

using only three modes is that valve bouncing cannot be predicted. This

phenomena will be elaborated on in the discussion of the intake valve

results were valve bouncing is evident.

5.1.1 The Exhaust Valve Results

The figures displaying the analytical and experimental comparisons

are listed below:

Fig. 5.1) Comparison of the analytical and experimental exhaust

valve positions for Case 1, Point 1.

153
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Fig. 5.2) Comparison of the analytical and experimental exhaust

valve positions for Case 1, Point 2.

Fig. 5.3) Comparison of the analytical and experimental exhaust

valve position for Case 2, Point 1.

Fig. 5.4) Comparison of the analytical and experimenuali exhaustvalve positions for Case 2, Point 2. ·
An observation made in running the simulation program, which is not

evident in the figures, is that the exhaust valve experiences

substantial oil stiction. Figures 5.1-5.4 were produced with oil

stiction taken into account by increasing the valve preload, PV, (Eq.

3.39). In Fig. 5.5 the exhaust valve position at Point 1, Case 1 is

shown with no increase in the preload. The delay is shown to be

approximately 12.5 crank angle degrees, or 2.53 thousands of a second

(rotational speed of the crank is 85.9 r/s). Giacommeli, et al. [10]

observed oil stiction induced delays of 5 to 20 thousands of a second in

„ their bench test analysis of oil stiction. Also, the effects of oil

stiction seem to vary along the length of the valve. This can be

observed in both the Case 1 and Case 2 comparisons (Figs. 5.1 and 5.2

and Figs. 5.3 and 5.4, respectively). In both cases increasing PV has

eliminated the effects of oil stiction at Point 1 but not at Point 2.

The comparison of the Case 1 experimental and analytical results at

Points 1 and 2 show a reasonable comparison. The largest discrepancy is

that the analytical valve stays open «approximately 12.5 crank angle

degrees. This indicates that theoretical pressure on the valve (Eq.

3.39) overpredicts the pressure on the valve in the latter part of

exhaust valve cycle.



55 ”

•

S
·S’ (0 vzG)» $-4

3U)
UI
GJr-I $-4<¤ ¤„•4-I•-I ‘

OG! $-4GU q)Ew-4 ·¤·°I"I‘¤· ,· §•$•>«
G ~•-4•-·•

4.4574 1A UI:B-IE S _¤·«-4
O- LO OJQ-•I I-4I * D •·

I m•—•
I

I
md.)GJI EmI
DDS
IZZ 745,_,...-·-——-T" DI-4-4

/* OO‘ Sé :;-1V BJ -4-4-1-Ins mmCD OOlk} Q-IG-Qah
BJ ·-I4.:—« I-] OC!—· U ><u‘ - Z E

. ,

ä ää4 SE éääG SO um.N‘
¤—4_:;mu
-30uu>~••-I'U

E8 4
<d<¤

Q.
CDE„-'ZO
HU

O

| I —
· IILO

v N S G,• , , •
HS S S S fu••¤I

2-
' (mm) NOIZLISOII HA"IVA



56

· S
. Q cn

E 2
3

« InIncus-I•-I IL
<¤I.: I-I I.:
G CU 4;
cu U

‘¤
E ·•-I ;:•

•«·I u ·«-IN
H >~• •—I

2*:%* GE -
M 2 g ÜE
I » O) Ü
I

3•~

I
m•—I

I
gw

I Zw
I ung

G·•-InmcG °““
F-¤ mmä SSgg :2::

·•-I·„-I........... GBV gg
( E ¤.•¤.•

U wr-I‘ 2 ::2
GC! °\_ z >g‘ E **2:ua

°c';.S äm
B mu

go
uuist

{ ::2
<¤c¤¤.EäE-IQ

s "Ä
I {IV

M exe .. S
LD $3

si ° ‘ · · ääQ ~•-I
lu

(mm) NOILISOII HNIVA



S7

· SS ä(-O n

- :¤cncn
•—¢ :u
eu s.
4.••-1

IL

53 ‘ „.
E-• -

ev

. ~•-au
*:1

Ü-!}

¤•

<u•-I
—,-••-•

¤•m
-1

ää E Sg

E I
E Ex

I
5 ••

I
mw

I
cuwwZwcugnu

~•-es-•

·
S2

G .u¤m

·-_ lr-T ·•-•·«-u
*—·*=

V SEE

¤—·„ M
>‘·V

——-—¤(— Z **5é ääi
U mg,äéä

S ::.1
Q cu

I In Ef
·•·-IoUu>«EB
cs-«"é§.
mEééä

u
S V

.
Q °

G aw · I N m
. LD

·· Q ' V N S g'
S

‘ ‘
S Q G ä

<¤¤¤> uouxsoa HA"IVA



58

3 2:$-4G :¤r- CA
CA2vau«-·• S;

g-3 *= ·gg { I{°'aJ•—•_$62
~

{ G §~”
~ l cum.· { r Z2

* wo
I g :CJ) ••-{H

k]- CAODu-4
Eä gg‘ Q_ OO- Y} •:•E

Gm‘

C4 gi}
° _,,·..-#’ ‘ «-{.- "’ { E säK · · o E,,_,..-·•··’ - 4-•·•-{

CAS-•

I ÜGJCUQ-
.-"J><${*== Q V

* uuE gu
CBC}
ßi-4
¢CB‘ Q-QE::8
Jnn

I • ‘ I co $:3
G7 LO <¤' N · S co

·
• . • . •v-1

sz s s sz sz °"
. (um) NOILISOJ HATVA



59

S

I I I
“>

[ N':
•-I

¢¥ ¢¤
Q.: Q

G:

E -«-I
)

VJ

1: —·
8

„ :.~ /
äLr.1

<

UE

I
S o

I

tf} ¤··

:

N) 4.:

I

GJ

gg •—•
Q

ä >

5

1
\\

“" EE IäS E
V < lgN),

—\-
ä >„

\ cu

.
‘ 3

UI I 3
1 M g

1
:1 ·§
L'-] cn
Q •-I••-•

O .

a
ua;

LD
9 (\[ m

°
Q

G)

S '

"‘
. Q :1

4 cos F2
. (mm) NOI.I.ISO& EIATVA



60

In the Case 2 comparisons at Point 1 and 2, the discrepancy in the

latter part of the valve cycle is much greater than the discrepancy seen

in Case 1. At both Points 1 and 2 in Case 2 the actual valve

displacement begins to drop off much earlier than the analytical model

predicts. Before the start of the discrepancy in Case 2, however, the

Vcomparison in the analytical and experimental results is very good.
’ In Figure 5.6 the calculated pressure on the valve is compared to

‘
the actual valve position for Case 2, Point 1. As seen the calculated

‘pressure holds relatively constant when the valve is actually starting

to close. Since the pressure on the valve calculatlon is mainly based
(on

steady flow through the valves, it ls hypothesized that there is an

.unsteady flow phenomena that causes the pressure to drop and the valve

to close. One explanation for this unsteady flow phenomena ls the

second stage flow dynamics are adversely affecting the first stage flow

dynamics. Since the first stage exit plenum is connected to the second

stage inlet plenum, by pipe work, closure of the second stage intake

valve can cause the flow between the stages to stagnate. Therefore, due ·

to the stagnation of the flow, flow forces develop on the exhaust valve

which may cause the first stage exhaust valve to close.

Another interesting observation ls that the valve damping decreases

with increasing valve stop height. This is seen by comparing the Case 1

(lower stop height) and Case 2 (higher stop height) experimental results

at Point 1. As seen the valve in the Case 2 configuration is visibly

less damped. Since a lightly damped valve undergoes more fatigue cycles

in a given time period, this suggests a lower stop height increases the

fatigue life of finger valves. 4
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5.1.2 Intake Valve Results

As stated earlier, due to experimental limitations the intake valve

position could not be measured in the increased exhaust valve stop

configuration (Case 2), so only Case 1 comparisons will be made in this

section. The comparisons are shown in Figs. 5.7 and 5.8 for Points 1

and 2, respectively.

The results in Figs. 5.7 and 5.8 show that the analytical intake

valve stays open much longer than the actual valve. In Fig. 5.9 the
·

piston velocity is plotted along with the actual intake valve

displacement at Point 2. As seen, the actual valve closes very quickly

after the piston reverses direction. Therefore, it is theorized that

reversal of the piston induces a flow force on the valve that is not

predicted by the theory.

Applying a large force to the analytical intake valve after the.

piston reverses direction, the positions for Points 1 and 2 are shown in

Fig. 5.10 and 5.11, respectively. As seen the analytical intake valve

closure, although more abrupt than the actual valve, now occurs at

approximately the same time as the actual intake valve. However, the

analytical valve stays at too high of a level before closure,

In order to further improve the correlation the following relation

was used:

PU:) = QB äü)2 P(t) <5·l)
where

.P(t)
= corrected pressure on the valve

X(t) = piston velocity

P(t) = uncorrected pressure on the valve (Eq. 3.39)
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Equation 5.1 is not meant'to depict a physical relation but instead to
be E1 means of varying the flow coefficients in Eq. (3.39) which are

otherwise assumed to be constant.

. The combined effects of applying a large force on the valves and

_using Eq. 5.1 are seen in Figs. 5.12 and 5.13 for Points 1 and 2,

respectively. As seen the general trend of the motion is now predicted
l

well, but the large oscillations in motion are still not predicted.
' These oscillations in the motion are hypothesized to be due to

·oscillations in the flow.

An important observation to make about Fig. 5.13 is that the peaks

that occur at the end of the actual valves cycle are not predicted by

the analytical model. These peaks are assumed to be the valve bouncing

on the seat as the valve closes.

As mentioned earlier, the valve positions are described with only ‘

the first three natural nodes. When valve bouncing occurs it was found

that three modes are insufficient to correctly describe the motion. In

fact, the truncated set of modes yielded extraneous results. So, bounce

analysis, as presented in Chapter 3, requires the higher modes.

However, extending the model to just 5 modes provided no improvement to

the results while making the program computationally slow.

Also, the intake valve was found to experience no effects of oil

stiction. It is theorized that since the intake port brings in air from

the atmosphere, the air contains no oil and, therefore oil is not

deposited cxx the valve and its seat eliminating any delay due to oil
stiction. On the other hand, the exhaust valve experiences the effects

of oil stiction since the valve is exposed to air with a significant oil
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content. The air that exits the exhaust port obtains oil while it is in

the cylinder cavity. Oil is scraped off the cylinder‘ walls by the

piston motion and partially carried away by the air.

5.2 Results Using Calculated Cylinder Pressures _

In the analysis using calculated pressures, the analysis used the

same coefficients and factors that were used in the analysis using

measured pressures. Also, this analysis used the adjustments in the

force on the intake valve used to produce Figs. 5.12 and 5.13. The

_ justification in doing so was to reproduce the intake valve position in

order to minimize the errors introduced into the thermodynamic and fluid

mechanics equations. ·

Also, only three modes were found necessary to reproduce the valve

motion.

Due to the fact that the intake valve position could not be
U

measured at the higher exhaust yalve stop height (Case 2), the

analytical analysis using calculated cylinder pressures was performed

only in the Case 1 configuration.

The figures comparing the analytical results to the actual results

are listed below:

Fig. 5.14) Cylinder pressure comparison

Fig. 5.15) Comparison of intake valve positions at Point 1

Fig. 5.16) Comparison of intake valve positions at Point 2

Fig. 5.17) Comparison of exhaust valve positions at Point 1

Fig. 5.18) Comparison of exhaust valve positions at Point 2 .
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' Figures 5.15 and 5.16 show that the analytical intake valve position

predictions are comparable to the predictions shown in Figs. 5.12 and

5.13, which were produced using measured cylinder pressures. Figs. 5.17

and 5.18, the exhaust valve comparisons, show that the model predicts

premature closure of the exhaust valve.

This premature closure of the exhaust valve is due to the poor

correlation between the analytical and experimental curves during the
W

expansion part of the compression process (Fig. 5.14). As stated

earlier, the compression process is assumed to be polytropic.

Therefore, the plot of logarithm of the actual cylinder pressure versus

the logarithm of the actual cylinder volume (Fig. 5.19) should have a

straight line relationship as originally shown in Fig. 3.11. As seen in

Fig. 5.19, the slope varies. However, Fig. 5.19 shows the combined

effects of the thermodynamic and fluid mechanic processes. So, a

varying slope could be due totally to lthe fluid processes.

Determination of the correct method to model the thermodynamic process,

therefore, requires an extensive experimental analysis of the fluid as

well as the thermodynamic processes that occurs inside the cylinder

volume.
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6.0 CONCLUSIONS AND RECOMMENDATIONS

. In the sections to follow, the conclusions will be drawn from the
comparlsons of the analytical model with the actual compressor. Based
on these conclusions, recommendations for further research will be made.

6.1 Conclusions

In the previous chapters a theoretical compressor model was
presented. Results of the computer implementation of the theory were
compared_ to data from an Ingersoll Rand Model 242 compressor. The
positive conclusions that can be drawn from the comparisons are as ·
follows:

‘

1. The use of plate theory to describe the valve motion is

effective.

2. The use of the transfer matrix method ls an efficient method to

determine the valves natural modes.

3. The equivalent viscous damping usee to model the valve damping

appears valid.

4. The model predicts the exhaust valve motion for a small valve
stop height with reasonable accuracy.

_ . 5. Valve damping tends to decrease with increasing valve stop

height.
J 6. The effect of oil stiction is evldent in the operation of the

exhaust valve. A

7. Although not substantiated, the effects of oil stiction vary

along the length of the valve.

8. Only three odes are necessary to describe the displacement of
the valve under most of its elastic configurations. _

79
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An area of considerable discrepancy is the determination of the
forces on the valve. In all cases there were unexplained oscillations
in the valve motion. The theory assumes steady flow through the

valve. Therefore, the unexplained pscillations are either due to
unsteady flow or other unexplained flow forces or a combination of both.

The determination of the oscillations in the valve motion may have

a direct parallel to the areas of poor correlation between the

analytical and calculated cylinder pressure curves. Both the valve
motion and the cylinder pressure depend heavily on the mass flow rate
calculation.

Although there were definite discrepancies found in the simplified,

compressor model, there was a significant amount of correlation to

justify further research.

6.2 Recommendations

The recommendatlons for further research are as follows:

1) Experimentally study the flow dynamics of the compressor.

2) Experimentally study the thermodynamic process that occurs in '

the compressor.
q

3) Inclusion of the second stage of the compressor in the

analytical mode or use of a single stage compressor.

4) Analytical investigation of the proper modeling of bounce
‘ analysis.
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The schematic of the experimental setup is shown in Fig. A.l. A

complete list of the equipment is shown below. (The numbers in the list

correspond to the number shown in Fig. A.l):

l. Compressor:

Manufacturer: Ingersoll Rand Two Stage Air Compressor

Model: 242-Two-stage air compressor

·- S/N (serial number): 493670

2. Proximity Probes Used to Measure Valve Position:

Manufacturer: Electro Corp.

Model: 4947F Electro Mike Sensor

· Quantity: 4 (one for each point measured) _

3. Electronics to Decode Signal From the Proximity Probes:

Manufacturer: Electro Corp.

Model: PAl2D47 Electro Mike Displacement Transducer
” System

Quantity: l (same system used for all probes)

s/N: 607428
9

4. Pressure Transducer Measuring the 0utlet Plenum Pressure:

Manufacturer: PCB

Model: lllA27—62 Piezoelectric Pressure Transducer

Serial Number: 607
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5. Outlet Pressure Transducer's Conditioning Amplifier:

' Manufacturer: PCB

Model: 480D09 Power Unit

Serial number: 438

6. Pressure Transducer Measuring the Cylinder Pressure:

Manufacturer: PCB- I
i

Model: 1llA26 Piezoelectric Pressure Transducer "
n

Serial number: 2773
\

7. Cylinder Pressure Transducer Signal Conditioner:

Manufacturer: PCB ·
Model: 480D09 Power Unit

Serial Number: 439 ”

8. Digital Oscilliscope:

Manufacturer: Norland

Model: 3001 Processing Digital Oscilliscope

Serial Number: 0134

9. Data Acquisition System:

Manufacturer: DEC

Model: PDP 11/23-AX Data System I
Serial Number: WM 820121089U
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10. Data Acquisition System Terminal:

~ Manufacturer: DEC
Model: 440 WF GIGI Terminal

Serial Number: WF 11341

11. Terminal Monitor:

Manufacturer: GBC

Model: MV-12 Closed Circuit Monitor

_ Serial Number: S8002

12. Computer Where Simulation Program Was Executed

Manufacturer: DEC

Model: VAX 11/780 computer .

As the schematic of the experimental setup shows (Fig. A.1) the
proximity probes were used to measure the valve position. These

proximity probes emit a low level radio frequency field in front of the

sensor. As a metallic mterial approaches the sensor, the

characterlstics of the field change and the change can be decoded by

electronics to yield a voltage. This voltage can then be multiplled by

a sensitivity factor to yleld the position of the body being

monitored. Since the proximity probes were mounted in the cylinder

head, the cylinder head was made out of aluminum, a non-ferrous

material. The valve positions could then be measured without

substantial interference from the cylinder head. In some instauces the

sensors were mounted in the cylinder head such that aluminum completely

surrounded the sensor. Those sensors had to be recalibrated since the
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manufacturer's sensitivity measurements were performed with the sensor

surrounded by air.

As shown in, Fig. A.1, the cylinder· pressure was measured using

piezoelectric pressure transducers. It was found that the driving motor

transmitted 60 Hz noise to the pressure transducer. To eliminate this

noise the pressure transducers were isolated from the compressor by

Teflon adapters. ·_ „

The analog signals from the transducers and probes were signaled

averaged and digitized using a digital oscilliscope using 150 samples at

a sample rate of 200 us. Then using a RS 232 data link and an

interface program, the data was transferred from the digital

oscilliscope to a data acquisition system for storage_(Fig. A.1). The

data was then copied from the data acquisition system to the simulation

computer for future comparisons with analytical results. ·




