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STUDY IN THE MODELING OF COMPRESSOR VALVE DYNAMICS

by

Antonio Spagnuolo, Jr.
(ABSTRACT)

The main objective of this research effort was the construction of
a fluger valve dynamics model using simplified theory based on steady
flow conditions. The analytical valve positions were then compared to
experimental measurements from an Ingersoll Rand model 242 two-stage air
compressor. Proximity probes were used to measure the valve position at
two points on the exhaust valve at two different exhaust valve stop
heights and at two points on the intake valve at one intake valve stop
height in the lower exhaust valve stop height configuration only. A
data acquisition system was configured to signal average and digitize
the analog data from the sensors using a digital oscilloscope. The data
was then sent to and stored in data acquisition computer for Efuture
comparisons to analytical results.

The comparisons of the analytical and experimental exhaust valve
positions at both points and both valve stop heights were of good
quality when the effects of oil stiction were taken into accouat. Also,
the comparisons of the intake valve positions were of good quality after
adjustments were made in the theoretical force on the valve
calculation. The adjustments entailed accounting for flow induced
forces on the intake valve after piston reversal.

Overall the simplified model predicted the valve positions with

sufficient quality to warrant the model's use as a design tool.
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amplitude coefficient for the nt? mode

Ap port area

A, bore area

A, area under the valve

Cpo constant pressure specific heat

Cyo constant volume specific heat

E modulus of elasticity

g(x) displacement of the valve at the time of impact with the stop

Fn generalized force for nth node |

F(t) force on the valve at time t

F, preload on the valve in terms of force

h valve thickness

I area moment of inertia

(RKA) o equivalent flow area

Ky flow coefficient for the valve opening area

L connecting rod length

zF length from fixed end of the valve to the end of the valve
port

Lg length from fixed end of the valve to the start of the valve
port~

m( t) generalized mass from mth mode

m,, mass flow rate through the valve

n polytropic index

P(x,y,t) pressure distribution on the valve at time t

P.(0) cylinder pressure at time t

xi



X

downstream pressure

upstream pressure

proportionality constant

crank radius

exhaust valve stop height

time

point in time where valve bouncing occurs

point in time where the valve hits the stop

point in time where the valve leaves the stop

point in time where the valve leaves the seat

cylinder temperature at time t

initial cylinder temperature

participation of at? mode at time t

cylinder volume at time t

cylinder volume at top dead center

displacement'function of the valve

velocity function of the valve

acceleration function of the valve

displacement of the point xj along the length of the valve
after valve bounding occurs at the point

velocity of the point xg along the length of the valve after
valve bouncing occurs at the point

width of the valve

point along the length of the valve

point along the length of the valve where valve bouncing
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occurs

xii



x(t) position of piston relative to its top dead center position

Greek symbols

V2 Laplace operator

v Poisson's Ratio

¢m(x) mode shape function for ath mode
wm(x) mode shape function for nth mode
Wy at? natural frequency

p working fluid density

o initial density of the working fluid
Py valve material density

Y crank angle

Y crank angular velocity

T damping ratio for the nth mode

Transfer Matrix Operators

Note: Subscripts determine the point or field that the variable is
referring to. Superscripts determine the side of the point
that the variable is referring to. The superscript L refers
to the left side of the point and an R the right side.

L length

M moment

v shear

W displacement

8 angular displacement
[F] field matrix

[P] point matrix
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1. INTRODUCTION

The valves are one of the most important mechanical components in a
compressor are the valves, The proper matching of the valves to the
compressor 18 a key factor in determining the compressor's thermodynamic
and mechanical efficiency. Therefore, the valve dynamics need to be
included in a compressor simulation model.

The most common types of compressor valves are finger type
valves, In its simpliest form the finger type valve 1s a thin plece of
sheet metal (Fig. 1.1). One valve covers each of the entrance and exit
ports to the compressfon chamber, controlling when the working fluid
enters and exits the chamber by way of the inlet and outlet plenums,
respectively (Fig. 1.2). The exact process of the working fluid
entering and leaving the compression chamber can bhe expressed
mathematically as a series of coupled thermodynamic, kinematic, fluid
mechanic, and valve dynamics partial differential equations. The exact
solution of these slmultaneous partial differential equations is
difficult if not 1impossible, and the numerical solution |is
computationally time consuming. Therefore, a simplified but valid
compressor model is required for feasible analytical compressor
development. Since finger type valves are common and they add
complexity to the simulation model, the main thrust of this research

effort 1is the development of simplified models for finger wvalve

dynamics.
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Figure 1.2: A basic reciprocating compressor.



The order of progression in this research effort is as follows:

1. Development of the simplifed compressor model.

2. Computer implementation of the model.

3. Experimental verification of the model.

The final goal of this research effort is to develop a valve model
that can be used In a compressor model so that the cylinder pressures

and valve positions can be accurately predicted.



2. LITERATURE REVIEW

Costagliola [1] produced the first meaningful mathematical model of
a compressor and its valves in 1950. Corresponding experimental work
was on a single cylinder air compressor. Although the experimental.and
analytical results were not directly compared, Casr;agliola claimed the
model to be essentially correct. However, at that time the non-linear
differential equations proved to be too tedious to solve for use in
indus tr;al applica tions.

Wi;h the emergence and wide availability of digital computers, the
complicated mathematical model derived by Castagliola [1] became
feasible to solve. Two early works using models based on Castagliola's
work were those by MacLaren and Kerr [2], and Wambsgnass and Cohen [3].

In the MacLaren and Kerr study, the following conclusions were
made:

1. That oil between the valve and valve seat causes a delay in
the valve opening time, This phenomena is called "oil
stiction”.

2. That a compressor simulation program can produce results
faéter and cheaper than an experimental analysis.

It should be noted that the MacLaren and Kerr simulation program
depended on experimental results in order to determine the coefficients
necessary to calculate the mass flow rate and force on the valve.

In the first of many works performed at Purdue University,
Wambgnass and Cohen [3] made a comparison between the analytical and
experimental analysis of a 1/4 H.P., 3600 RPM, hermitically sealed,

single cylinder air compressor. The correlation was judged good when



taking 1into account the 1instrumentation problems associated with the
small compressor. The Wambgnass and Cohen model treated the valves as a
multi~degree—-of-freedom system rather than a single degree-of-freedom
system as in earlier approaches. The single degree-of-freedom system
was concluded to be too simple to adequately describe the valve motion
in high-speed compressors. Also, it was found that damping and valve
stiction played a significant role in modeling valve motion. As in the
MacLaren and Rerr [2] study, Wambgnass and Cohen required experimental
data to calculate the mass flow rate and force on the valve
analytically.

With Wambgnass's and Cohen's [3] initial work, extensive work was
done on the development of mathematical models during the late 1960's
and early 1970's at Purdue University. Soedel [4] produced a manual
summarizing this work. The manual detailed the necessary thermodynamic,
kinematic, fluid mechanic, and vélve dynamic equations to produce a
compressor model. A computer simulation incorporating these equations
compared well to experimental results‘. However, the model required
experimental data to calculate the coefficients necessary to calculate
the mass flow rate and the forces on the valves.

In an extension to thé Soedel text [4], Hamilton [5] produced a
similiar document with alternatives to all the equations presented in
the Soedel text. Of interest is the analytical method to calculate the
maés flow rates and the force on the valve, which in previous works
required experimental data. The method used to calculate the mass flow
rate assumes incompressible flow. The method for calculating the force

assumes steady flow conditions and that the flow changes direction by



90° upon meeting the wvalve. Testing the force calculation method,
Hamilton made the following observations:
1. The method is valid for "small” valve displacements.
2, The method works well under normal flow conditions (i.e., flow
is into the compressor chamber when the intake valve 1is
open), and produces significant error during back ‘flow (i.e.,
flow is out of the compression chamber when the {ntake valve
is open).

Gatecliff, and Lady [6] presented a method to solve the forced
vibration differential equation of a finger valve of uniform thickness
and non-uniform width. The method uses a Rayleigh-Ritz procedure to
provide an approximate solution to the exact formulation of the
differential equation. Comparing one point on the valve, the analytical
method produced a valve cycle of the same shape as that of the true
valve, however, actual displacements were not compared due to
experimental difficulties.

Papastegious et al. [7] used finite element methods and the
experimentally measured pressure drop across the valve to determine the
mbtion of the valve. Comparing a static and a dynamic finite element
analysis, the static analysis underpredicted the valve displacement and
associated stresses by up to three and five times, respectively.

Gatecliff, Grimer, and Richardson [8] presented analytical results
of a simplified compressor simulation program. In this effort, the
valve 1is modeled as a series of lumped masses connected by massless
beams. Richardson, Gatecliff, and Griner [9] verified the results from

the simplified model. Only physical parameters such as valve closing



time, valve opening time, and cylinder pressure were compared with
excellent results.

Giacomelli and Giorgetti [10] performed an experimental study on
the phenomena of oil stiction, which causes a delay in valve opening
time. The findings indicate that the delay is significant enough to
cause a significant error in an analytical program if not taken into

account.

From the 1literature summarized in the previous paragraphs, the

following observations can be made:

1. The use of compressor simulation programs is a valuable
development tool,

2. Valve damping and oil stiction are important factors in
determining valve motion.

3. Many of the analytical compressor model tested to date require
experimental data.

4, That analysis of wvalve dynamics using the Finite Element
Method i{s time prohibitive.



3. THEORETICAL DEVELOPMENT

The theoretical development of the compressor model is presented in

the sections to follow.
3.1 Valve Dynamics

The equation of motion for a finger type compressor valve begins
with the plate bending equation as presented by Soedel [4]. For the

plate element in Fig. 3.1, the plate bending -equation 1s presented

below:
E h3 4 - ‘
=] ¥ w(x,y) + p hu(x,y) = P(x,y,t) (3.1)
12(1 = v7) ‘
where
E = modulus of elasticity
h = valve thickness
Py = density of valve material
v = Poisson's ratio
w(x,y) = valve displacement at point (x,y) (Fig. 3.1)
P(x,y,t) = Pressure on the valve at point (x,y) at time t
and
4 4 4
4 ) 3 3
v = — + 2 + (3.2)
9x ax23y2 ay4

In Soedel [4] the valve displacement function, w(x,y), is described

in terms of a weighted sum of the valves natural modes, as shown below:

(-]

wix,y) = I q (t) ¢ (x,y) (3.3)
m=1
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where

th

qm(t) = participation factor for the m  mode at time t

th

¢m(x,y) = m  mode shape function

utilizing Eq. (3.3), Eq. (3.2) becomes

3 © ®
" h 4 ..
—E0 1 (2 q (07 (x,9)) +ph (£ q(t) ¢ (x) (34
12(l-v2)] m=1 O o ) v £=1 o a0 et

= P(x,y,t).

In the free vibration state P(x,y,t) is zero and Eq. (3.1) becomes

E h3

—EE ] v w4 pgh wix,y) =0 (3.5)
12(1-v7)

If the valve is freely vibrating in its ath mode, w(x,y) can be

expressed as follows:
w(x,y) = A ¢.(x,y) sin w t. ' (3.6)

where

Ay = amplitude coefficient

h

vy = natural circular frequency of the at? mode.

Substituting Eq. (3.6) into Eq. (3.5) results in the following equation:
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w(x,y) = = uZ w(x,y) (3.7

Substituting Eq. (3.7) into Eq. (3.4) yields

, 120o.h mi(l-vz)
7= (3.8)

E h3

Substituting Eq. (3.8) into Eq. (3.4) yields

Eoul ap(®) g0y + B ay(0) gu(xy = EELE (5
m=1 o=1 v

To reduce Eq. (3.9) the following orthogonality property from

reference [13] is utilized:

0 m#n
[] ¢.(%,7) ¢ (x,y) dxdy = (3.10)
s ® o f 42 xy) m=n
s
where
fé = integration over the entire surface
Therefore, Eq. (3.9) becomes
[[B(x,7,8) ¢ (x,y)dxdy
© 2 s
qm(t) + o qm(t) = 3
p b £j ¢, dxdy (3.11)
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Reducing Eq. (3.11) and (3.3) to a one dimensional case produces the

following equations:

IL P(x,t) cpm(x)dx

] 2
(t) + w (t) = (3.12)
n b % o, [ ¢m2(X)dx
m=1,2,3 ¢« ¢« ¢« ¢« *
and
w(x) = qm(t) ¢m(x) (3.13)
~ m=]
where

&la intergration over the valve length

x = point along the length of the valve

The term in the numerator on the right side of the equality in Eq.

(3.12) 1is commonly called the generalized force, F and the

m?

denominator; the generalized mass, M. With these simplification Eq.

(3.12) becomes

F
g (e) + mmzqm(t) -2 = 1,2,3 « o o o® (3.14)
m

where

F = IL P(x,t) ¢m(x)dx (3.15)
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and
- 2
M= po,h fL¢m (x)dx (3.16)
Although there is very 1little damping internal to the valve
material, Hamilton [5] reports that previous experimental investigations
have correlated the valve damping to the valve velocity. Hamilton
further states that this damping arises from the working fluid
interacting with the valve. Hamilton accounts for the damping by
including an equivalent modal damping, as follows:

F
‘Em+ Zn “n &m(t) +wm2qm(t) =ﬁﬂ m=1,23 ... .0 (3.17)
m

h mode.

where ¢ is the damping factor for the mt

The solution of the valve dispacement function, w(x), per Eq.
(3.13) requires the solution of an infinite number of differential
equations in the form of Eq. (3.17). In actuality only the lower modes
are required to solve w(x) with reasonable accuracy. This will be
elaborated upon in later sections.

The solution of Eq. (3.17) requires both the natural modes and the
pressure function P(x,t). The determination of both quantities will be

discussed in later sections after the boundary conditions of the valve

are treated.
3.1.1 Treatment of Valve Boundary Conditions

The ideal valve opens and closes quickly and experiences small

displacements yielding small stresses and a corresponding long fatigue
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life, however, quick response and small displacements are competing
valve features. A quick acting valve requires a low valve stiffness and
small displacements require a large valve stiffness. Therefore, most
compressors have valve stops (Fig. 3.2) that 1limit the maximum
displacement of a low stiffness valve go produce an ideal valve (quick
acting and small displacements). However, valve stops complicate the
valve dynamics since the stops cause nonlinear boundary conditions.
Modeling the nonlinear boundary conditions require the mathematical
treatment of the following elastic configurations:

1. The valve leaves the seat.

2. The valve hits the stop and stays at the stop.

3. The valve leaves the stop and returns to the seat.

4. The valve bounces on a hard surface.

When the valve leaves the seat at time, t the valve is at rest.

0o?

The initial conditions for Eq. (3.17) are, therefore, as follows:

i
o

‘qm(to) =
m= 1’2,3 e & o o @ (3.18)

]
o

q,(t,)

The boundary conditions for the valve in this elastic configuration are
fixed at one end and free at the other.

At time ty when the valve hits and stays at the stop, the boundary
conditions change to fixed at one end and hinged at the other. The

displacement of the valve is now the superposition of the valve
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displacement at time t, g(x), plus any further displacement. This is

displayed graphically in Fig. 3.3 and mathematically below:

w(x,t>t,) = g(x) + nfl Tn(t) ¥ (%) (3.19)

where
tpn(x) = nth mode shape function of the new boundary conditions.
Tn(t) = participation factor for th mode of the new boundary
conditions.
and
™
g(x) = mfl q (tg) ¢ (x) (3.20)

Placing Eq. (3.19) and (3.20) into Eq. (3.1) and repeating the

steps that produced Eq. (3.17) yields the following equation:

2
. X ) LA AL U [ 6, v (x)
Tn(t) +gw 'rn(t) +w Tn(t) ol vl f 2( N
n L xpn x
m = 1,2,3 e o o o X t> tH (3021)
where
F = fL P(x,t) lbn(x)dx (3.22)

2
M= pvh IL ¥, (x) dx (3.23)
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and

w. = ntP natural frequency of the valve under its new
boundary conditions

Ly = damping ratio for the nth mode

The solution of the series of equations in the form of Eq. (3.21) yields
the valve displacement function from Eq. (3.19) when t > ty-

The initial conditions for Eq. (3.21) are obtained by equating
displacements and velocities of the new and old boundary conditions at
time ty. Equating displacements

oo -]

I oqulty)eg(® = 8(0) + I T (£)v (%) (3.24)
m=1 n=1
Substituting Eq. (3.20) into Eq. (3.24) yields
T () =0 n=1,23....0 (3.25)

Equating velocities

z Ity o500 =

T (ty) v, (%) (3.26)
m=1 -

z
m=1

using the orthogonal properties shown in Eq. (3.10)

Iqnep) [ 6,(®) v (x)dx
Tn (tH) =27l 5 n=1,2,3 .. .o (3.27)
1 ¥y (x) dx
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The valve leaves the stop and returns to the seat at time tg, when
the pressure force is less than the dynamic and elastic forces. Stated
in equation form, the valve returns to the seat when the following

inequality is true:

*

RO TR R R A RO UK I NOSPNCS
n=1 n=1 n=1
) 2 P(x,t)
+ nﬁl 0 qm(tH)¢m(x) > __S;E__ (3.28)

At the time tr» the valves boundary conditions return to fixed at
one end and free at the other. The initial conditions are again found

by equating displacments and velocities, yielding

s 2
n§1 T (t) fLwn ¢m(x)wn(x)df
qm(tL) = g(x) +

3 (3.29)
fL¢m (x) dx
m=1,2,3 . . .0

nflin(tL) [, (¥ (x)dx
q (t) =— (3.30)
L IL ¢“12 (x) dx

Valve bouncing occurs when a point xp on the valve impacts and
bounces off a hard surface, such as the valve stop or seat. When valve
bouncing occurs at time tg, the velocity, %(xb), of the point of impact

is reversed in direction and decreased in magnitude (Eq. 3.31), and the
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points position, w(xB), is held to the position of the obstruction (Eq.

3.32).
w(xg) = - C. w(xp) (3.31)
X(XB) =Y, (3.32)
where
_ﬁ(xB) = velocity of point X, after impact.
Cr = coefficient of restitution.
&(xB) = velocity of point Xy before impact.
‘Z(XB) = the new position of the point Xp e
Yo = the position of the obstruction.

New participatidn factors that correctly describe the new
displacement and velocity functions of the valve, w(x)
and_ﬁ(x), respectively are required. Applying the orthogonality
principles presented in Eq. (3.10), the new participation factors are

calculated as follows:

f LH(0) ¢ (x)dx
[ 657 (x)dx
[L ®(x) ¢, (x)dx

[l 4g (0 dx

Iplty) =

4 (tg) =

m=1,2,3 .. (3.33)

m=1,2,3 .. (3.34)

* ©O
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where -
w(x) = the displacement function of the valve after impact
_Q(x) = the velocity function of the valve after impact.
gm(tB) = participation factor of the mth mode after impact

ém(tB) = derivative of the participation factor for the

mth mode after impact.

3.1.2 Determination of the Pressure on the Valve

llamilton [5] presents a method to calculate the pressure function,
P(x,t), which is necessary for the solution of Eq. (3.17). Hamilton

defines the force on the valve in Fig. 3.4 as follows:

o« 2
mv ( A? + };_
va (KVAV)2 a

F(t) = (3.35)

) - F,

where

ﬁv = mass flow rate through the valve

p = density of the working fluid
AP = port area
A0 = bore area

A = area under the valve
K = flow coefficient for the area under the valve

F., = elastic preload on the valve in terms of force

Hamilton made the following assuptions in deriving Eq. (3.35):
1. The valve displacements are small.
2. The flow changes direction by 90° as it meets the valve.
3. The flow is steady.

4. The flow is stagnated at the valve opening.
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— VALVE

Figure 3.4: Display of the physical parameters used in the
force on the valve calculation.
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A simplified mass flow rate equation 1is presented by Hamilton
[5]-. Hamilton assumes that each flow system in a compressor may be
modeled as a system of orifices. Therefore, the following equation for

flow through an orifice may be used:

ﬁv = (kM) Y V20 (B; - P) (3.36)

ﬁv = mass flow rate through the valve

(KA)e = equivalent flow area for the valve system
Y =.compressibility factor

p = working fluid density

Py = downstream pressure

Pu = upstream pressure

Hamilton then assumes the fluid is incompressible (Y = 1), and goes on
to develop equations to calculate (KA),. Since in this research effort
the working fluid is air, the incompressible assumption is invalid.
However, in most compressors the greatest obstruction to the flow occurs
at the valve. Therefore, it is assumed the equivalent flow area for the
flow system is approximately the equivalent flow area under the valve.

Expressed mathematically

(KA), = KA, (3.37)
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utilizing Eq. (3.36)

m = (RAY) 72 (Py-P) (3.38)
and
F(t) = (KA Y)> (AP +.l-J(p - )-F (3.39
vv (KvAVJE Ao d u v -39)

Assuming that the pressure distribution 1is constant over the valve

length that covers the valve port in Fig. 3.5.

F(t)
TE;'=‘I;75; 28 <x< QF
P(x,t) = (3.40)
0 x < Z'x , X O QF
The'generalize force, F,, in Eq. 3.15, therefore becomes
F(t) o
L RN T [ v (x)dx (3.41)
F 8' v ls

where P(t) is calculated by Eq. (3.39). In order to utilize Eq. (3.39)
and (3.38) the pressure drop across the valve must be known. This will

be treated in a later section.
3.2 Determination of the Free Vibration Modes of the Compressor Valves

The valve dynamics equations developed in Section 3.1 require the
natural frequencies and mode shapes of the valves at their various
boundary conditions. In the past, the natural modes have been found

experimentally or by the finite element method. The finite element



26

‘uoj3ouny aAjeA ayj uo eunssasd eyy BuljesBeju; uy pesn s}iwy| ey3y jo uoyjjuiseq

G'g eunbi4



27

method has the disadvantage of considerable difficulties in interfacing
the finite element program with the compressor simulation program.
Experimental determination of the mode shapes is typically hampered by
the valves small size. Also, experimental methods require time,
facilities, and physical parts; all disadvantages for the analytical
development of a compressor model. An alternative method is the
transfer matrix method.

Since finger valves are commonly thin pieces of. sheet metal of
constant cross-sectional area, the valve can be modeled as a series of
lumped masses connected by massless beams (Fig. 3.6). With such a model
the transfer matrix method can be used to determine the bending natural
modes.

As Thomson {12] presents the transfer matrix method, the méthod is
ideal for lumped parameter systems made of several subsystems. The
method formulates a matrix that solves the state (displacement and
forces) of one end of the subsystem knowing the state of the other
end. The combination of the matrices of each subsystem of a total
system yields a matrix that describes the total system.

To determine the natural modes of the valve modeled in Fig. 3.6 by
the transfer matrix method, the matrices describing a point mass and a
massless beam are required. The matrices are called field and point
matrices for the massless beam and point mass, respectively. The field
matrix and point matrix label indicate whether the subsystem has length
or not, respectively.

The matrices are derived using the free body diagrams of the point

mass and the massless beam shown in Fig. 3.7. The subscripts indicate
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Figure 3.6: Lumped mass model of a finger valve.
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the point or field to which the variable is associated and the
superscript, the dide of the point. The superscript L is for the left
side of the point and R, the right side.

Thomson [l12] writes the following equations from the free body

diagram of the massless beam in Fig. (3.7)

VL R”

141 - Vi+lo (3.42)
L _ R _
Mh o= v e, (3.43)
L _ R % L
341 = % ¥ MIi‘+1 (ED)s * Vin (3.44)
L R, .R & % A
Vi =Vttt ML GEp)i t Vin(3ED): (3.45)
where
V = shear

M = moment

2 = beam length

E = modulus of elasticity

I = area moment of inertia
0 = angular beam deflection

w = displacement

Substituting Eqs. (3.42) and (3.43) into Eq. (3.44) and (3.45) and

arranging into matrix form



i+l

e

-1
L
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0
1

22/251 2/E1
23/651 22/231

0
0
1
L

= O O O

The column vectors are known as state vectors,

(3.46)

i

and the four by four

matrix is known as the field matrix, [F]y, for the itP beam.

Thomson [12] repeats the same process for the point mass in Fig.

3.7 and yields the following matrix equation:

_V R

M

where

w

© O o +

S o = O

o =~ O O

HOOE

‘circular excitation frequency.

~v )12

M

8 (3.47)
V)i

The four by four matrix is the point matrix, [P];, for a point mass.

Substituting matrix Eq. (3.47) into matrix Eq. (3.46) yields

i+1

1 0
L 1
22/2EI 2/EI

£3/6EI zz/zzx

mm2 N -V L
mwzz M
mwzzz/EI 8
2.2
mw £
1+ —=g) s v/g

(3.48)
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The resulting four by four matrix 1is the transfer matrix since 1t

ith 1 th

transfers the state vector into the i+ state vector.
For the valve model shown in Fig. 3.6, the transfer matrix model is
produced by successive multiplications of fileld and point matrices, as

shown below:

_VR -V
M M
= [P14[F]4[P]3[F13[Plz[FlzlP]1[F11 6 (3.49)
Wl‘ Wo
Letting
Y1 Y12 "13 Y14

(e],[(F],(P],(FI,[P],[F],[P] [F], = (3.50)
4 4 3 3 2 2 1 1 u31 u32 033 Us,
Ys1 Y2 Y43 Yss
Matrix Eq. (3.49) becomes
)
-V R -u u u u 7] -V
11 12 13 14
M =| U1 Uy Upz Uy M
9 u u u u ) (3.51)
31 32 33 34
s | Y1 Y2 M3 Ys_ Y)o
The boundary conditions for the model in Fig. 3.6 are
R N
M4 = 0
vy =0
> )
g = '
w =O)
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Applying the boundary conditions to matrix Eq. (3.51) yields

R
u u -V 0
1 { - (3.53)
Uy Uy Mg - 0

Since

= 0 (3.54)

for only the trivial solution of Eq. (3.53), which is when there is no

motion of the valve,
DET = 0 (3.55)

The solution of Eq. (3.53) yields the natural frequencies. The mode
shapes are then found by solving for the displacement, w, for each point
at each of the natural frequencies.

In order to ascertain the accuracy of the transfer matrix method,
the method was compared to the solution of Thomson's [13], Fuler's
Equation for beams and results from a finite method analysis of a beam
with dimensioms (1.24) cm x (.1969) cm x (5.906 x 1073) ecm. In the
transfer matrix method analysis, the beam was modeled as 20 successive

and equal massless beam-point mass elements. In the finite element
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method solution the beam was modeled with 40 rectangular shell elements
using the code ANSYS [14]. The comparision of the first three bending
natural frequencies is shown in Table 1, and the comparison of the mode
shapes is shown in Figs. 3.8-3.10.

Since all three methods have underlying assumptions and
inaccuracies that cause their results to deviate from the true modes,
the only conclusion that can be made is that the traunsfer matrix method
ylelds results comparable to other commonly accepted methods.

Although the transfer matrix method has been displayed for only two
types of subsystems, point masses and massless beams, Pestel and Leckie
[15] show many more cases where the transfer matrix can be used. The
use of the transfer matrix method can be used to analyze a multitude of
elastomechanical systems, and the method's capabilities are only

dependent on the enthusiasm of the analyst.
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Table 1: Comparison of the Calculated Bending
Natural Frequencies

Transfer Finite
Matrix Euler's Element
Me thod Equation Method
Mode (Hz) (Hz) (Hz)
1 47.05 49.45 49.90
2 295.25 309.08 314.50
3 827.71 866 .85 8838.13
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3.3 Compression Chamber Thermodynamics

As stated earlier the pressures on each side of each valve are
required. Therefore, the cylinder pressure is required.

For many simple compression and expansion processes the pressure
volume relationship of Eq. (3.54) is valid. Such processes are

PV" = constant (3.54)

where

P = pressure

V = volume

n = polytropic index

called polytropic processes. The plot of the logarithm of pressure
versus the logarithm of volume for such a process is a straight line of
slope n (Fig. 3.11). The value of n depends on the type of
thermodynamic process. For an 1isothermal process n=1, and for an

adiabatic process n i3 commonly described as follows:

=]
]

(¢}
[

(3.55)

(o}

vo
where

Cpo = constant—-pressure specific heat
Cyo = constant-volume specific heat
Assuming that the thermodynamic cycle in a compressor undergoes is
polytropic, the following equations may be used to calculate the

cylinder temperature and pressure at time t:
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log P

y

log V

Figure 3.11: Log P vs. log V plot for a polytropic process.
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P (1) = B, (%%)“ (3.56)

n-1

n

(o =1, L) (3.57)
(o]

where

Pc(t) = cylindet¢ pressure at time t

T(t) = cylinder temperature at time t

V(t) = cylinder volume

m(t) = mass in the cylinder at time t

Po = initial density of the working fluid
Py = initial cylinder pressure

T, = initial cylinder temperature

The mass flow rate shown in Eq. (3.38) is used to determine m(t), and

the cylinder volume calculation is presented in the next section.
3.3.1 Cylinder Volume Calculation
The cylinder volume for the simple compressor shown in Fig. 3.12 is

calculated as follows:

V(t) = X(t) - A+ Ve (3.58)
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Figure 3.12: The basic kinematic components of a single
cylinder compressor.
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where

X(t) = piston position relative to top dead center

cylinder bore area

&
]

cylinder volume at top dead center

The position of the piston with respect to top dead center, X(t),

(Fig. 3.12) is éresented by Mabie and Ocvirk [16],

x(ti = - R cos y - [L2 - R? s:lnzy]l/2 + (R + L) (3.59)
where
R = crank radius
L = coanecting rod length
Yy = crank angle

Assuming a constant speed compressor, the crank angle, vy, is

calculated as follows:

(3.60)

where

? = crank angular speed.

t = time



4. VERIFICATION OF THE MATHEMATICAL MODEL

Model verification was performed by writing a computer program that
incorporated the compressor theory presented in Chapter 3, then
comparing the program's results to measurements made on an actual

compressor.
4.1 Experimental Measurements

Experimental data was obtained from the first stage of an Ingersoll
Rand Model 242 two-stage air. compressor. The physical parameters
measured were exhaust valve positions at two points on the valve, the
intake wvalve positions at two points, the cylinder pressure, and the
exit plenum pressure. The exhaust valve and intake valve positions were
measured at’ the points shown iIn Figs. 4.1 and 4.2, respectively.
Appendix A details the methods used in acquiring the data.

The exhuast valve positions at the two points, the cylinder
pressure, and exit plenum pressure were measured at two different
exhaust valve stop heights, Sy (Fig. 4.4). The stop height was changed
by changing the gasket thickness between the first stage cylinder head
and the valve plate as shown in Fig. 4.3 (the exhaust valve stop is an
integral part of the cylinder head). The two exhaust valve stop
heights, Sy, were .35 mm and 1.0 mm, respectively. The intake valve
stop height was 1,65 mm in both cases. The intake valve position was
not measured in the higher exhaust valve stop height configuration due
to experimental limitations.

It is noted that the first stage of the Ingersoll Rand Model 242
compressor has two 1identical intake and two identical exhaust valves.

The position of only one valve of each set was measured.

44
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NN NN

Figure 4.1: Points on the exhaust valve where the valve
positions were expermentially measured.
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Figure 4.2: Points on the intake valve where the valve
positions were expermentially measured.
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Figure 4.3: Basic setup of the Ingersoll-Rand Model 242 compressor.
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Figure 4.4: Definition of the valve stop height.
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4.2 Compressor Simulation Program

Using the theory presented in Chapter 3, a single stage compressor
simulation program was written. The flow chart of the program is shown
in Fig. 4.5. As seen iIn Fig. 4.5, the program has two basic modes of
operation: using experimentally measured cylinders pressures, or using
the theory presented 1in Section 3.2 to calculate the cylinder
pressure. The ability to wuse measured cylinder pressures was
incorporated to test the wvalve dynamics theory free of any errors
1nduced‘by the analytical cylinder pressure calculation.

Since the simulation program is for a single stage compressor, the
experimentally measured first stage exit plenum pressures were used in
the program to take iInto account the second stage of the Model 242
compressor, The theory presented in Chapter 3 is vnot l1imited to a
single stage compressor, but the program was limited to a single stage
for the following reasons:

1. The exteunsion of the program to two stages made theoretical

deficiencies too difficult to solve.

2. To limit computer run time.

For clarity the assumptions made in the theory presented in Chapter

3 are repeated below:
1. The pressure 1s constant over the portion of the valve that
covers the valve port (Fig. 3.5), and zero every where else.

2. The thermodynamic process iIin the compression chamber is

polytropic.
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Figure 4.5: Flow chart of the simulation program
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The exit and entrance flow systems of the cylinder may be
modeled as flow through a system of orifices.

The intake and exhaust valves are the greatest obstfuction to
the flow in and out of the cylinder, respectively.

The flow changes direction by 90° upon impaét with the valve.
The valve displacements are small. ‘
The torsional modes of the valves. contribute 1little to the
valve motion.

The transfer matrix method correctly determines the bending
natural modes of the valve.

The compressor operates at a constant speed
Further assumptions made in the computer program are as

Each of the two intake valves and two exhaust valves displace
identically.

The damping factor, Zm? is the same for each natural mode and
constant throughout the process. The optimum value being
found by experimentation.

The polytropic index is constant (varying the polytropic index
was found to <cause the simulation program to behave
unstably). The optimum index was found by experimentation.
The flow coefficients, and other factors in the mass flow rate
and pressure equations (Eqs. (3.38) and (3.39), respectively)
are constant throughout the process. The optimum values were

found by experimentation.
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5. Since the first stage 1intake plenum 1is exposed to the
atmosphere, the intake plenum préssure is always equal to the
atmospheric pressure.

6. Using the first stage exit plenum pressure takes into account

the influence of the second stage on the first.

Another assumption in the simulation program is associated with the
nature of the valve stops in the Model 242 compressor shown in Fig.
4.6. As seen the actual.valve stops are blocks that start before the
tip of the vaive. When the valve hits the stop, the valve is
counstrained at a point before the tip. Therefore, the valve length used
in the program is that from the point at which the valve is bolted to
the beginning of the valve stop, fe in Fig. 4.6. Linear interpolation
was used to determine the positions of the valve at points beyond ge.

The justification for using the shorter length rests in the fact
that the distance from the valve seat to the valve stop is very ;mall:
less than or equal to 1.65 mm for all configurations and all valves.
Therefore, the valve spends a large part of the cycle time pinned to the

stop rather than between the stop and seat.
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Figure 4.6: The actual valve stop on the Ingersoll Rand
Model 242 compressor. ’



5. RESULTS AND DISCUSSION

In the section to follow the results of the simulation program are
compared to the experimental results. The program was run using
experimental cylinder pressures at both exhaust valve stop heights, and
with the calculated cylinder pressures at only the lower exhaust valve
stop heights.

For simplicity, the comparison points on the valves will be
referred to as Point 1 and Point 2 as shown in Fig. 4.1 and 4.2 for the
intake and exhaust valves, respectively. . Also, Case 1 and'Case 2 will

refer to the smaller and larger exhaust valve stop heights respectively.
5.1 Results Using Measured Cylinder Pressures

As stated earlie?, the purpose of using the measured cylinder
pressures in the simulation program is to determine deficiencies in the
valve dynamics theory free of errors induced by an analytical pressure
calculation.

In the analysis of both cases it was found that only three natural
modes were necessary to describe the valve motion. The disadvantage of
using only three modes is that valve bouncing cannot be predicted. This
phenomena will be elaborated on in the discussion of the intake valve

results were valve bouncing is evident.
5.1.1 The Exhaust Valve Results

The figures displaying the analytical and experimental comparisons

are listed below:
Fig. 5.1) Comparison of the analytical and experimental exhaust

valve positions for Case 1, Point 1.

53



54

Fig. 5.2) Comparison of the analytical and experimental exhaust
valve positions for Case 1, Point 2.

Fig. 5.3) Comparison of the analytical and experimental exhaust
valve position for Case 2, Point 1.

Fig. 5.4) Comparison of the analytical and experimentai exhaust

valve positions for Case 2, Point 2.

An observation made in running the simulation program, which is unot
evident in the figures, 1is that the exhaust valve experiences
substantial o;l stiction. Figures 5.1-5.4 were produced with oil
stiction taken into account by increasing the valve preload, Py, (Eq.
3.39). In Fig. 5.5 the exhaust valve position at Point 1, Case 1 is
shown with no increaée in the preload. The delay is shown to be
approximately 12.5 crank angle degrees, or 2.53 thousands of a second
(rotational speed of the crank is 85.9 r/s). Giacommeli, et al. [10]
observed oil stiction induced delays of 5 to 20 thousands of a second in
their bench test analysis of oil stiction. Also, the effects of oil
stiction seem to vary along the length of the valve. This can be
observed in both the Case 1 and Case 2 comparisons (Figs. 5.1 and 5.2
and Figs. 5.3 and 5.4, respectively). In both cases increasing P, has
eliminated the effects of oil stiction at Point 1 but not at Point 2.

The comparison of the Case 1 experimental and analytical results at
Points 1 and 2 show a reasonable comparison. The largest discrepancy is
that the analytical valve stays open approximately 12.5 crank angle
degrees. This indicates that theoretical pressure on the valve (Eq.
3.39) overpredicts the pressure on the valve in the latter part of

exhaust valve cycle.
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In the Case 2 comparisons at Point 1 and 2, the discrepancy in the
latter part of the valve cycle is much greater than the discrepancy seen
in Case 1. At both Points 1 and 2 in Case 2 the actual valve
displacement begins to drop off much earlier than the analytical model
predicts. Before the start of the discrepancy in Case 2, however, the
~comparison in the analytical and experimental results is very good.

In FPigure 5.6 the calculated pressure on the valve is compared to
" the actual valve position for Case 2, Point 1. As seen the calculated
pressure holds relatively constant when the valve 1s actually starting
to close. Since the pressure on the valve calculation is mainly based
on steady flow through the wvalves, it is hypothesized that there is an
.unsteady flow phenomena that causes the pressure to drop and the valve
to close. One explanation for this unsteady flow phenomena ls_ the
second stage flow dynamics are adversely affecting the first stage flow
dynamics. Since the first stage exit plenum 13 counected to the secoand
stage inlet plenum by pipe work, closure of the second stage intake
valve can cause the flow between the stages to stagnate. Therefore, due
to the stagnation of the flow, flow forces develop on the exhaust valve
which may cause the first stage exhaust valve to close,

Another interesting observation Is that the valve damplng decreases
with increasing valve stop height. This is seen by comparing the Case 1
(lower stop height) and Case 2 (higher stop height) experimentél results
at Point 1. As seen the valve in the Case 2 configuration 1is wvisibly
less damped. Since a lightly damped valve undergoes more fatigue cycles
in a given time period, this suggests a lower stop height increases the

fatigue life of finger valves.
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5.1.2 1Intake Valve Results

As stated earlier, due to experimental limitations the intake valve
position could not be measured in the increased exhaust valve stop
configuration (Case 2), so only Case 1 comparisons will be made in this
section. The comparisons are shown in Figs. 5.7 and 5.8 for Points 1
and 2, respectively.

The results in Figs. 5.7 and 5.8 show that the analytical intake
valve stays open much longer than the actual valve. 1In Fig. 5.9 the
piston velocity 1is plotted along with the actual intake valve
displacement at Point 2. As seen, the actual valve closes very quickly
after the piston reverses direction. Therefore, it is theorized that
reversal of the piston induces a flow force on the valve that is not
predicted by the theory.

Applying a large force to the analytical intake valve after the
piston reverses direction, the positions for Points 1 and 2 are shown in
Fig. 5.10 and 5.11, respectively. As seen the analytical intake valve
closure, although wmore abrupt than the actual valve, now occurs at
approximately the same time as the actual intake valve. However, the
analytical valve stays at too high of a level before closure.

In order to further improve the correlation the following relation

was used:

B() = g k()% B() (5.1)
where
P(t) = corrected pressure on the valve
%(t) = piston velocity

P(t) = uncorrected pressure on the valve (Eq. 3.39)
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Equation 5.1 is not meant "to depict a physical relation but instead to
be a means of varying the flow coefficients in Eq. (3.39) thch are
otherwise assumed to be constant.

The combined effects of applying a large force on the valves and
using Eq. 5.1 are seen in Figs. 5.12 and 5.13 for Points 1 and 2,
respectively. As seen the general trend of the motion is now predicted
well, but the large oscillations in motion are still not predicted.
These oséillations in the motion are hypothesized to be due to
‘oscillations in the flow.

An important observation to make about Fig. 5.13 is that the peaks
that occur at the end of the actual valves cycle are not predicted by
the analytical model. These peaks are assumed to be the valve bouncing
on the seat as the valve closes.

As mentioned earlier, the valve positions are described with only
the first three natural nodes. When valve bouncing occurs it was found
that three modes are insufficient to correctly describe the motion. In
fact, the truncated set of modes yielded extraneous results. 350, bounce
analysis, as presented in Chapter 3, requires the higher modes.
However, extending the model to just 5 modes provided no improvement to
the results while making the program computationally slow.

Also, the intake valve was found to experience no effects of oil
stiction. It is theorized that since the intake port brings in air from
the atmosphere, the air contains no oil and, therefore oil is not
deposited on the valve and its seat eliminating any delay due to oil
stiction. On the other hand, the exhaust valve experiences the effects

of oil stiction since the valve is exposed to air with a significaant oil
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content. The air that exits the exhaust port obtains oil while it is in
the cylinder cavity. O0il is scraped off the cylinder walls by the

piston motion and partially carried away by the air.

5.2 Results Using Calculated Cylinder Pressures

[ 4

In the analysis using calculated pressures, the analysis used the
same coefficients and factors that were used in the analysis using
measured pressures. Also, this analysis used the adjustments in the
force on the intake valve used to produce Figs. 5.12 and 5.13. The
justification in doing so was to reproduce the intake valve position in
order to minimize the errors introduced into the thermodynamic and fluid
mechanics equations.

Also, only three modes were found necessary to reproduce the valve
motion.

Due to the fact that the intake valve position could not be
measured at the higher exhaust valve stop height (Case 2), the
analytical analysis using calculated cylinder pressures was performed
only in the Case 1 configuration.

The figures comparing the analytical results to the actual results
are listed below:

Fig. 5.14) Cylinder pressure comparison

Fig. 5.15) Comparison of intake valve positions at Point 1

Fig. 5.16) Comparison of intake valve positions at Point 2

Fig. 5.17) Comparison of exhaust valve positions at Point 1

Fig. 5.18) Comparison of exhaust valve positions at Point 2
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Figures 5.15 and 5.16 show that the analytical intake valve position
predictions are comparable to the predictions shown in Figs. 5.12 and
5.13, which were produced using measured cylinder pressures. Figs. 5.17
and 5.18, the exhaust valve comparisons, show that the model predicts
premature closure of the exhaust valve.

This premature closure of the exhaust valve is due to the poor
correlation between the analytical and experimental curves during the
expansion part of the compression process (Fig. 5.14). As stated
earlier, the compression process 1is assumed to be polytropic.
Therefore, the plot of logarithm of the actual cylinder pressure versus
the logarithm of the actual cylinder volume (Fig. 5.19) should have a
straight line relationship as originally shown in Fig. 3.11. As seen in
Fig. 5.19, the slope varies. However, Fig. 5.19 shows the combined
effects of the thermodynamic and fluid mechanic processes. So, a
varying slope could be due totally to ‘the fluid processes.
Determination of the correct method to model the thermodynamic process,
therefore, requires an extensive experimental analysis of the fluid as
well as the thermodynamic processes that occurs inside the cylinder

volume.
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6.0 CONCLUSIONS AND RECOMMENDATIONS

In the sections to follow, the conclusions will be drawn from the
comparisons of the analytical model with the actual compressor. Based

on these conclusions, recommendations for further research will be made.

6.1 Conclusions

In the previous chapters a theoretical compressor model was
presented. Results of the computer implementation of the theory were
compared to data from an Ingersoll Rand Model 242 compressor. The
positive conclusions that can be drawn from the comparisons are as
follows:

1. The use of plate theory to describe the valve motion 1is

effective.

2. The use of the transfer matrix method is an efficient method to

determine the valves natural modes.

3. The equivalent viscous damping usee to model the valve damping

appears valid.

4. The model predicts the exhaust valve motion for a small valve

stop height with reasonable accuracy.

5. Valve damping tends to decrease with increasing valve stop

height.

6. The effect of oil stiction is evident in the operation of the

exhaust valve.

7. Although not substantiated, the effects of oil stiction vary

along the length of the valve.

8. Only three modes are necessary to describe the displacement of

the valve under most of its elastic configuratioms.

79
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An area of considerable discrepancy 1is the determination of the
forces on the valve. In all cases there were unexplained oscillations
ia the valve motion. The theory assumes steady flow through the
valve. Therefore, the unexplained oscillations are either due to
unsteady flow or other unexplained flow forces or a combination of both.

The determination of the oscillations in the valve motion may have
a direct parallel to the areas of poor correlation between the
analytical and calculated cylinder pressure curves. Both the valve
motion and the cylinder pressure depend heavily on the mass flow rate
calculation.

Although there were definite discrepancies found in the simplified
compressor model, there was a significant amount of correlation to

justify further research.
6.2 Recommendations

The recommendations for further research are as follows:

1) Experimentally study the flow dynamics of the compressor.

2) Experimentally study the thermodynamic process that occurs in
the compressor.

3) Inclusion of the second stage of the compressor in the
analytical mode or use of a single stage compressor.

4) Analytical investigation of the proper modeling of bounce

analysis.
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The schematic of the experimental setup is shown in Fig. A.1. A
complete list of the equipment is shown below. (The numbers in the list
correspond to the number showﬁ in Fig. A.l):

1. Compressor:

Manufacturer: Ingersoll Rand Two Stage Air Compressor
Model: 242-Two-stage air compressor

. 8/N (serial number): 493670

2. Proximity Probes Used to Measure Valve Position:
Manufacturer: Electro Corp.
Model: 4947F Electro Mike Sensor

- Quantity: 4 (one for each point measured)

3. Electronics to Decode Signal.From the Proximity Probes:
Manufacturer: Electro Corp.
Model: PAl12D47 Electro Mike Displacement Transducer
System
Quantity: 1 (same system used for all probes)

S/N: 607428

4. Pressure Transducer Measuring the Qutlet Plenum Pressure:
Manufacturer: PCB
Model: 111A27-62 Piezoelectric Pressure Transducer

Serial Number: 607
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5. Outlet Pressure Transducer's Conditioning Amplifier:
Manufacturer: PCB
Model: 480D09 Power Unit

Serial number: 438

6. Pressure Transducer Measuring the Cylinder Pressure:
Manufacturer: PCB-
Model: 111A26 Piezoelectric Pressure Transducer

Serial number: 2773

7. Cylinder Pressure Transducer Signal Conditioner:
Manufacturer: PCB
Model: 480D09 Power Unit

Serial Number: 439

8. Digital Oscilliscope:
tlanufacturer: Norland
Model: 3001 Processing Digital Oscilliscope

Serial Number: 0134

9. Data Acquisition System:
Manufacturer: DEC
Model: PDP 11/23-AX Data System

Serial Number: WM 820121089U
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10. Data Acquisition System Terminal:
Manufacturer: DEC
Model: 440 WF GIGI Terminal

Serial Number: WF 11341

11. Terminal Monitor:
Manufacturer: GBC
Model: MV-12 Closed Circuit Monitor

Serial Number: S8002

12. Computer Where Simulation Program Was Executed
Manufacturer: DEC

Model: VAX 11/780 computer

As the schematic of the experimental setup shows (Fig. A.1) the
proximity probes were used to measure the valve position. These
proximity probes emit a low level radio frequency field In front of the
sensor. As a metallic material approaches the sensor, the
characteristics of the field change and the change can be decoded by
electronics to yleld a voltage. This voltage can then be multiplied by
a sensitivity factor to yield the position of the body being
monitored. Since the proximity probes were mounted in the cylinder
head, the cylinder head was made out of aluminum, a non-ferrous
ma terial. The valve positions could then be measured without
substantial interference from the cylinder head. 1In some instances the
sensors were mounted in the cylinder head such that aluminum completely

surrounded the sensor. Those sensors had to be recalibrated since the
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manufacturer's sensitivity measurements were performed with the sensor
surrounded by air.

As shown In Fig. A.l, the cylinder pressure was measured using
plezoelectric pressure transducers. It was found that the driving motor
transmitted 60 Hz noise to tﬁe pressure transducer. To eliminate this
nolise the pressure transducers were 1isolated from the compressor by
Teflon adapters.

The analog signals from the transducers and probes were signaled
averaged and digitized using a digital oscilliscope using 150 samples at
a sample rate of 200 us. Then using a RS 232 data 1link and an
interface program, the data was transferred from the digital
oscilliscope to a data acquisition system Ffor storage (Fig. A.l1). The
data was then copled from the data acquisition system to the simulation

computer for future comparisons with analytical results.
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