
An Algebraic Approach to Reverse Engineering with an Application
to Biochemical Networks

Brandilyn S. Stigler

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Mathematics

Reinhard C. Laubenbacher, Chair
Christopher Beattie

Abdul Jarrah
Pedro J. Mendes

July 16, 2005
Blacksburg, Virginia

Keywords: Reverse engineering, gene regulatory networks, computational algebra, discrete
modeling, polynomial dynamical systems

Copyright 2005, Brandilyn S. Stigler

An Algebraic Approach to Reverse Engineering with an Application to
Biochemical Networks

Brandilyn S. Stigler

(ABSTRACT)

One goal of systems biology is to predict and modify the behavior of biological networks by
accurately monitoring and modeling their responses to certain types of perturbations. The
construction of mathematical models based on observation of these responses, referred to as
reverse engineering, is an important step in elucidating the structure and dynamics of such
networks. Continuous models, described by systems of differential equations, have been used
to reverse engineer biochemical networks. Of increasing interest is the use of discrete models,
which may provide a conceptual description of the network.

In this dissertation we introduce a discrete modeling approach, rooted in computational
algebra, to reverse-engineer networks from experimental time series data. The algebraic
method uses algorithmic tools, including Gröbner-basis techniques, to build the set of all
discrete models that fit time series data and to select minimal models from this set. The
models used in this work are discrete-time finite dynamical systems, which, when defined over
a finite field, are described by systems of polynomial functions. We present novel reverse-
engineering algorithms for discrete models, where each algorithm is suitable for different
amounts and types of data. We demonstrate the effectiveness of the algorithms on simulated
networks and conclude with a description of an ongoing project to reverse-engineer a real
gene regulatory network in yeast.

This research was supported by the National Institute of General Medical Sciences grant
number RO1 GM068947-01.

Dedication

I dedicate this work

to my dad, who taught me to seize opportunities;

to my advisor, who taught me what it takes to love one’s work;

to my husband, who teaches me to see the best in others and myself.

iii

Acknowledgments

I first offer my humble gratitude to God: it is through His persistence, patience, and love
that have carried me to where I am.

I give utmost thanks to my advisor, Reinhard Laubenbacher. You have been an incredible
mentor and friend through these years. You saw potential in me when my vision was weak
and provided me the encouragement and environment to be successful.

I thank the members of my committee, Christopher Beattie, Abdul Jarrah, and Pedro
Mendes, for their helpful comments and discussions, as well as for their insightful questions
about my work.

I thank the colleagues and friends, whom I have come to hold dear, at the Virginia Bioin-
formatics Institute (VBI). You made my transition to the worlds of mathematical biology,
computational biology, and bioinformatics possible. My experience at VBI has instilled in me
a strong sense of community and respect for all mathematicians and scientists. In particular
I extend my thanks to current and former members of the Applied Discrete Mathematics
Group and the Yeast Systems Biology Group, in particular, Diogo Camacho, Monica Castro-
Simmons Autumn Clapp, Miguel Colón, Omar Colón-Reyes, Alberto de la Fuente, Edgar
Delgado Eckert, Elena Dimitrova, Karen Duca, Dana Eckert, Luis Garćıa, Stefan Hoops,
John McGee, Ana Martins, Karen Schlauch, Wei Sha, Jignesh Shah, Vladimir Shulaev,
Hussein Vastani, Leepika Tuli, and Paola Vera Licona.

I thank the professors at Virginia Tech (VT) and at New Mexico State University (NMSU)
who gave me the education necessary for pursuing my research. I extend a special thanks
to those graduate students in the mathematics departments who enriched my academic and
personal life, especially the members of the revitalized SIAM Student Chapter at Virginia
Tech, including José Maŕıa Menéndez Gómez and Mark Pierson. A special thanks goes to
two women who were instrumental as graduate staff and fiercely competent as female role
models: Rose Marquez (NMSU) and Hannah Swiger (VT).

Without the existence of student research programs, I would not have known how exciting
research could be as a a young mathematician. I first thank Joaquin Loustanau for introduc-
ing such programs to me. I thank all the helping hands with SIMU, especially Ivelisse Rubio
and Herbert Medina. This experience made my transition into graduate school smoother

iv

and showed me the door to the wonderful community that is SACNAS. I also thank Ricardo
Cortez for helping me take my work to a new country. I thank two important women in life,
Rebecca Garćıa for introducing me to research the fun way, and Olgamary Rivera-Marrero,
for helping me realize our own student research program.

Next I give my thanks to the family that raised me, for without my family I would not be
here. To Jesusita and Mamaĺıa, I thank you for providing me a stable home and a solid
foundation. To Dad, Cheri, Sean, Shaina, and J. Allen, I thank you for teaching me how
important Family is; for the love and support to be who I am now; for always demanding
the best from me; and for the joy and peace I have in me to be happy and successful in
life. I could not have asked for a more wonderful and spirited family. To Mom, Mandy, and
Jacqui, I thank you for the love, laughter, and lessons you have given and continue to give
me. To my uncle Terry, I thank you for challenging me: I will never forget how to prove
that

√
2 is irrational.

Finally I give God thanks for the family that will see me through the next stage in life.
To Dustin and Ely, I thank you for your love, your support, your unending patience, and
your ability to see the best in me. I am truly blessed by your presence in my life and am
comforted that we will be together for the upcoming journey.

v

Contents

1 Introduction 1

1.1 The Need for Mathematical Models . 3

1.2 From Systems to Models to Systems . 5

1.3 Reverse Engineering . 5

2 Mathematical Advances in Reverse Engineering 8

2.1 Bayesian Networks . 8

2.2 Boolean Networks . 9

2.3 Ordinary Differential Equations . 10

2.4 Qualitative Networks . 12

3 Biology 14

3.1 Concepts from Molecular Biology . 14

3.2 Gene Regulatory Networks . 15

4 Algebra 17

4.1 Concepts from Ring Theory . 17

4.2 Concepts from Algebraic Geometry . 19

4.3 Concepts from Gröbner Basis Theory . 20

5 Dynamical Systems 27

5.1 Finite Dynamical Systems . 29

5.2 Polynomial Dynamical Systems . 30

vi

6 An Algebraic Approach to Reverse Engineering 33

6.1 A Discrete Formalism of Reverse Engineering 33

6.2 An Algebraic Reverse-Engineering Algorithm 34

6.3 Complexity Analysis of REV-ENG . 36

6.4 Extensions of the General Algorithm . 37

6.4.1 Complexity Analysis . 40

6.5 Some Theoretical Considerations . 41

7 Applications and Results 44

7.1 Application to Simulated Data for Validation 44

7.1.1 REV-ENG-M . 48

7.1.2 REV-ENG-M/REV-ENG-D . 48

7.1.3 REV-ENG-M/REV-ENG-R . 51

7.2 Application to Simulated Data for Discovery 54

7.3 Application to Real Data for Discovery . 58

8 Discussion and Future Work 59

vii

List of Figures

1.1 Two representations of a radio, as presented in [39]. A. A graphical view
of the connections between parts of a radio. B. A formal, quantitative view
which includes size and capacity of the parts. 2

1.2 The number of q-bio articles posted annually on arXiv.org. 4

1.3 A graphical view of the relationship between systems and their models. . . . 6

1.4 A wiring diagram of a system of 5 genes in the fruit fly D. melanogaster,
as presented in Tegnér et al. ([52]). Edges with arrows denote activation,
whereas edges with circles denote inhibition. 7

3.1 Central dogma of molecular biology, as presented in [53]. 15

3.2 Simplified view of a gene regulatory network, as presented in [32]. 15

5.1 The dependency graph for the system in Example 11. 30

5.2 State space for PDS in Example 12. 31

6.1 Dependency graph and state space for S3. 36

7.1 The graph of interactions in one cell of N with cellular interactions, as pre-
sented in [38]. Ovals = mRNAs, rectangles = proteins. SLP denotes a protein
which is believed to activate the segment polarity genes depicted in the model
(Cadigan et al., 1994). PH is a protein complex formed by the binding of HH
to PTC (Ingham and McMahon, 2001). The protein SMO is encoded by the
gene smoothened. Because its transcription is not regulated by any molecular
species in the model, smoothened is not represented. 45

7.2 The dependency graph of the PDS built using REV-ENG-M/REV-ENG-D
with the wildtype and knockout time series, as presented in [38]. Solid lines
are links that appear for all 4 variable orders, whereas dashed lines are links
that appear for 3 of the 4 variable orders. 49

viii

7.3 Comparison of edges predicted using 1, 20, 100 grevlex orders. a. Total
number of predicted edges. b. Number of correct edges. 53

7.4 Comparison of number of occurrences of variables in each function over 20 lex
orderings. Variable indices are on horizontal axes and number of occurrences
are on vertical axes. 54

7.5 A partial wiring diagram for the Claytor network. 56

ix

List of Tables

2.1 A summary of reverse-engineering methods. Each row of the table lists a
sampling of methods that exist for each type of model, as well as indicate some
properties of the models and the methods. c/d refers to the type of model
with c = continuous and d = discrete. F/G refers to what is constructed
by the method where F = dynamic model and G = wiring diagram. A =
existence of an algorithm, RD = application of method to real data. 13

6.1 REV-ENG: General algorithm for one time series 34

7.1 Polynomial representations of the Boolean functions in N , together with the
legend of variable names, as given in [38]. The subscript i denotes a particular
cell of the ring. 46

7.2 Performance of dynamics detection for one cell of N , as given in [38]. Single
interactions = degree-one terms; cooperative interactions = degree-two terms.
4 TO denotes results for all 4 term orders used, whereas 3 TO denotes results
for any 3 of the 4 term orders used. 52

7.3 Comparison of the wiring diagrams of the Boolean model and the recon-
structed model, given in a tabular representation. A number in the table
indicates the index of a variable. For example, line 6 should be interpreted
as “function 6 in the Boolean model is in terms of x5, x15, and in the reverse-
engineered model it is in terms of x5.” Indices in italics represent misidentified
edges. 53

7.4 Reverse-engineered wiring diagram for Claytor network with 20 random lex-
icographic orders. A line with an index in bold represents a variable that
appeared in the interpolating polynomial for every variable order used. . . . 57

x

Chapter 1

Introduction

Biology is the study of life processes of living organisms, from the metabolism of single-celled
amoeba to migration patterns in flocks of birds. The prevalent modes of scientific discovery
in biology in the last two centuries are the so-called reductionist and integrative approaches
([12]). In the reductionist mode, questions at all levels of living organization are reduced to
the molecular level, whereas in the integrative mode, the focus is on the interaction between
parts of an organism at multiple levels ([12], [35]).

In the 20th century, experimental as well as theoretical biologists used reductionist ap-
proaches to model and analyze biological systems ([11]; Ch. 1, [12]). For example, to
understand breeding patterns in fish, one would study their genetic makeup, describe con-
nections between the genes or proteins by way of diagrams, and use the diagrams to infer
a mechanism for breeding. While this approach has been successful, Hiroaki Kitano ([35])
argued that simply knowing the molecular parts of an organism and how they are connected
does not elucidate how the organism behaves, just as identifying the atoms in a dishwasher
does not reveal how it works. The limitations of the reductionist paradigm are that the
focus is on the identification of molecular “parts,” in which the parts are viewed in isolation
from the rest of the system, and that the cataloging of parts does not aid in discovering
mechanisms for control ([35], [54]). Moreover, until recently, technological capabilities have
limited the number of parts that could be studied.

Yuri Lazebnik ([39]) argued further that biologists need a language, similar to that in en-
gineering or mathematics, to formalize the process of modeling and analysis. While math-
ematical models, including those described by systems of differential equations, have been
extremely useful in the reductionist regime, the lack of rigorous mathematics training in life
science curricula have encouraged biologists to use descriptive models over those based on a
formal language ([33], [43]). In [39], Lazebnik illustrated the limitations of using descriptive
models such as those based on graphics, by contrasting a graphical representation of a radio
with a formal model based on engineering principles (see Figure 1.1).

1

Brandilyn S. Stigler Chapter 1. Introduction 2

Figure 1.1: Two representations of a radio, as presented in [39]. A. A graphical view of the
connections between parts of a radio. B. A formal, quantitative view which includes size
and capacity of the parts.

While biologists are still largely being trained in the reductionist paradigm ([11]), advances
in the last two decades in high-throughput technology, such as DNA sequencing ([2], [45]),
have provided experimentalists an ability to view large collections of the biomolecules of an
organism. In fact, at the 2005 Joint Mathematics Meeting of the AMS and the MAA, John
Whitmarsh, Health Scientist Administrator at the National Institute for General Medical
Sciences of the National Institutes of Health, pointed out the transformation that the life
sciences are currently experiencing. He stated that “biology is moving from being a descrip-
tive science to being a quantitative [and ultimately, predictive] science” ([45], [57]). This
paradigm shift is evidence that the purpose for institutes with such goals, including the
Institute for Systems Biology, is being realized ([5]).

Technological advances in the life sciences have triggered an explosion of experimental data,
representing the activity of a variety of biochemicals such as genes, proteins, and metabolites
in living organisms. With this abundance of information has come the ability to gain knowl-
edge about the underlying system, thereby catalyzing the return to an integrative paradigm.
Systems biology focuses on the structure and dynamics of biological systems with an empha-
sis on prediction. The paradigm within this emerging science to develop an understanding
of biological systems is to perturb the system at the molecular level, to accurately monitor
the responses to the perturbations, and to formulate mathematical models that incorporate
diverse data types (observations) and describe the structure and behavior of the system with

Brandilyn S. Stigler Chapter 1. Introduction 3

regard to the perturbations ([33]). Hence systems biology requires continued technological
developments to address questions at the systems level ([35], [50]).

Having a comprehensive understanding of a biological system, as opposed to merely hav-
ing a record of its parts, may be achievable by focusing on the following aspects of the
system ([35]): its biochemical structure, function, and dynamics. In addition, methods for
constructing, modifying, and controlling a biological system may be required for further
understanding. Due to current technology, large amounts of data, such as whole genome
sequences, gene ontologies, and multi-scale structures of proteins, are being collected from
laboratories around the world and stored in ever-growing databases, such as GenBank ([3]),
GEO ([25]), and Swiss-Prot ([46]). Present challenges are to integrate data from multiple
sources and to model and analyze a system at disparate scales ([45]). Success at data in-
tegration and multi-scale modeling may lead to universal data standards, robust predictive
modeling and validation in biomedical research, and scalable modeling methods ([45]).

1.1 The Need for Mathematical Models

The persistent trend in science is to use models to understand systems, particularly for
those that exist in nature. As defined by L. von Bertalanffy in [55] (p.56), a system is a
set of interacting parts, which we also call nodes. In molecular biology, a system may be an
assembly of biochemicals involved in chemical reactions carrying out the cellular life processes
of an organism, such as metabolism. Models must be equipped not only to characterize
the parts of the system, but also the interactions among the parts. Those written in a
formal language, such as mathematics, can be used to simulate the behavior or dynamics
of systems of interest. Such models have strength in their ability to aid the scientist in
formulating hypotheses or making predictions about the system, which can be tested through
experimentation. The importance of this process is the potential for uncovering salient
features of the system.

The shift to integrative biology has brought mathematics to the forefront as an essential
resource for modeling and analysis ([43]). In fact, this can be seen in the increase of quan-
titative biology articles posted on arXiv.org in the last decade (see Figure 1.2). There
is a variety of dynamic modeling tools that are currently being exploited in systems biol-
ogy, which can be categorized as follows ([33]). One class of models consists of systems of
differential equations, which are applied to the modeling of biochemical reactions. In this
setting variables represent continuous concentrations of biochemicals and for each variable,
there is a differential equation that simulates the time evolution of the reaction in terms
of continuous changes of concentrations. Continuous models can encode low-level mecha-
nistic properties of systems. The limitation of continuous approaches is that typically the
systems of differential equations are too complex to be solved analytically. Therefore, only
approximate, numerical solutions can be found, where solutions represent concentrations of
the biochemicals involved in the reactions. Examples of continuous models include ordinary,

Brandilyn S. Stigler Chapter 1. Introduction 4

partial, and delay differential equations (see [33] and [43]).

Figure 1.2: The number of q-bio articles posted annually on arXiv.org.

Measurements from biological experiments contain noise/error, due to biological variability
in the organism or technological constraints of the instruments used for data collection. One
approach to resolve this problem is to quantize or discretize the data into a finite set of labels
representing groupings of continuous values ([21]). It is also the case that experimental data
are discretized when using continuous methods in order to perform model validation (for
example, see [9]).

In response to these issues, a different class of modeling methods has been used, which
consists of discrete circuits characterized by systems of discrete-valued functions. Discrete
models represent biochemical systems through graphs associated to the functions. Vertices
of the graph correspond to biochemicals in the system, which taken on discrete quantities or
levels, and edges depict interactions between the biochemicals affecting their levels. Discrete
models provide a high-level qualitative view of systems. The limitation of discrete approaches
lies in the simplicity of the models, as compared to their continuous counterparts. Another
issue is that in practice, the number of discrete quantities or levels that is often used is two, to
signify “presence”/“absence” or “activity”/“inactivity” of the biochemicals, further limiting
the scope of the models. Examples of discrete models are Bayesian belief networks, neural
networks, Boolean models, including probabilistic and random Boolean models, multi-logic
models, and Glass networks (see [19], [24]).

There are other categories of dynamic mathematical models, including deterministic/stochastic
and linear/nonlinear (for a review, see [19]). Regardless of the framework, mathematical

Brandilyn S. Stigler Chapter 1. Introduction 5

models are an essential component in studying biological systems, as they lend themselves
naturally to explicitly describing the connectivity structure of the nodes in the system, as
well as to methodically analyze the behavior of the nodes ([19]).

1.2 From Systems to Models to Systems

Given a modeling framework, there are a variety of ways to construct a model and can be
broadly characterized as follows. The first type of method constructs a mathematical model
from an existing, yet incomplete “model.” The existing model is oftentimes manifested as a
conceptual description of the system, arising from extensive knowledge and years of research
([20]). With these premises, a skeleton of a model is selected from a family of models, such
as the collection of SIR models which are used in modeling epidemics including influenza and
AIDS. Then a specific model is built by constraining the system so that the model behaves
in a predetermined way. The mathematical model can then be used to simulate the behavior
of the system. Such a method is referred to as forward engineering or bottom-up modeling as
one starts from first principles (the conceptual model) and designs a system (or a simulation
of the system) ([33]). The challenge in this modeling approach is to identify parameters by
which to impose constraints on the system.

The second type of method builds a mathematical model from observations of the system
in response to well-constructed perturbations. In molecular biology the observations may
be measurements of concentrations of biomolecules, recorded at pre-determined time inter-
vals, resulting in time series of experimental data (for example, see [58]). A model is built
from the observations and is adjusted to fit the observations. As in the previous case, the
mathematical model is a representation of the system which can be used to identify key
features, including system dynamics. This process of discovery is called reverse engineering
or top-down modeling: the starting point is the system (the observations) and the result is a
model ([20], [33]). The challenge in this paradigm is the development of algorithmic tools for
constructing models from data, which at present are enumeration techniques (see Chapter
2). The relationship between systems and their models can be seen in Figure 1.3.

Observations of biological systems at the molecular level are ever abundant ([20], [33]). A key
goal within systems biology is to gain insight into the structure and dynamics of systems,
there is a growing need for reverse engineering methods, which by their nature translate
observations into predictive models.

1.3 Reverse Engineering

Informally, reverse engineering is the process of discovering the behavior and connectivity of
the parts of a system, given observations of the system over time ([20], [27], [52], [58]). Local

Brandilyn S. Stigler Chapter 1. Introduction 6

Figure 1.3: A graphical view of the relationship between systems and their models.

behavior of a node in the system, when described in relation to other nodes, may give rise
to relationships or interactions between them. Therefore, reconstructing local interactions
may lead to identification of global, system-level behavior ([55], p.55).

Connectivity information can be depicted in a wiring diagram. These diagrams are typically
represented by graphs, such as Figure 1.4 from [52], where vertices are the nodes of a system
and edges indicate the direction and perhaps the type of interaction between the nodes. As
observations in experimental biology are recorded at pre-determined times, the dynamics of
a biological system is manifested as a time series of values representing the level or amount
of the nodes in the system.

The structure and dynamics of a model can also be discussed and compared to the system
under investigation. As with real systems, a wiring diagram can be associated to a model,
where the diagram is created from the functions defining the model in such a way that
analogies between the system and the model can be made. The dynamics of a model can
also be viewed graphically, where the representation depends on the type of model. If the
model is continuous, the dynamics is typically depicted as the graph of the functions defining
the model, that is, the values of the functions are plotted against time. For discrete models,
this information is stored in a vertex graph, in which vertices are the possible states of the
system and edges represent transition between the states where the transitions are given by
iteration of the functions defining the model.

Here we focus on the reverse engineering of biochemical systems using discrete models, where
the models are discrete-time discrete-state dynamical systems. In this setting the general
reverse-engineering problem can be posed as follows.

Problem 1 (Reverse Engineering). Let T = (s1, . . . , st) be a time series of observations
in a set X for a system with n nodes. Find a function f : Xn → Xn such that

Brandilyn S. Stigler Chapter 1. Introduction 7

Figure 1.4: A wiring diagram of a system of 5 genes in the fruit fly D. melanogaster, as
presented in Tegnér et al. ([52]). Edges with arrows denote activation, whereas edges with
circles denote inhibition.

1. (Connectivity) the wiring diagrams of the system and f are consistent, and

2. (Dynamics) f(si) = si+1 for each i < t.

In this discourse we present a method, from the point of view of computational algebra, to
construct polynomial dynamical systems (PDSs) from time series of discrete data. Next is a
brief review of existing mathematical methods for reverse engineering. In order to provide
an inclusive discussion for the algebraic method, concepts from a variety of fields will be
introduced, which is the objective of chapters 3, 4, 5. In these chapters, we introduce some
basic concepts from molecular biology, computational commutative algebra and algebraic
geometry, and finite dynamical systems theory. Chapter 6 is devoted to the novel method
of reverse engineering. The approach is presented as an algorithm, implemented in the
symbolic computation softwares Macaulay 2 and CoCoA, in which a certain class of PDSs for
biochemical networks described by time series of experimental data is constructed. Chapter
7 contains some applications of the method to simulated biochemical networks and results
are reported. The final chapter closes with a discussion of the implications of the algebraic
method and a plan for future work.

Chapter 2

Mathematical Advances in Reverse
Engineering

In recent years mathematics has come to the forefront as a viable resource for algorithmic
techniques to reverse-engineer systems of interactions among entities in biological systems.
Particular emphasis has been placed on gene regulatory networks, comprised of genes, pro-
teins, and metabolites that regulate each other’s production. Mathematical techniques for
reverse engineering range from the continuous to the discrete. Continuous methods, such
as the one developed in [58], construct all possible linear systems of differential equations
that agree with the data and use some criterion to select a representative model. Many
discrete methods, on the other hand, construct qualitative models, such as those described
by Boolean functions in [7], which take into account the amount of information stored in
the data. Next we present various modeling frameworks and provide a review of existing
methods for each framework.

2.1 Bayesian Networks

A Bayesian network (G, θ) is a representation of a joint probability distribution that is
comprised of a graph G and a probability distribution θ. G is a directed acyclic graph
where vertices correspond to random network variables, whether continuous or discrete,
and directed edges correspond to dependencies between variables. θ describes a conditional
distribution for each variable of the network, given its parents as defined by the relations in
G. Together they capture the conditional independence relations between the variables.

Friedman et al. ([26]) proposed Bayesian networks to infer causal dependencies between
genes in gene regulatory networks. The goal is to estimate the posterior probability of chosen
features being inherent in the network, given the data. Estimation of these probabilities gives
rise to a class of Bayesian networks which are consistent with the data. To minimize the

8

Brandilyn S. Stigler Chapter 2. Reverse Engineering 9

model space, the authors employed bootstrapping methods to generate perturbations of
the original data set, which help to determine the effect of noise on the learning process.
The authors then used learning algorithms to search the model space and select a Bayesian
network based on fixed selection criteria.

They applied this learning approach to 76 mRNA expression measurements of 6177 genes in
yeast. They found that the Bayesian network learned from the data is stable to perturbations
in the data. However, their analysis is sensitive to the choice of Bayesian network from
the selection process. The authors do not provide a complexity analysis of the proposed
algorithm, though they do report that the problem of finding a network with maximal score
is NP-hard.

An extension of this work was proposed in [47] by Pe’er et al. to reverse-engineer significant
subnetworks of interacting genes and was applied to yeast gene expression data. In [29],
the concept of a dynamic Bayesian network (DBN) was introduced by Hartemink et al. to
deal with time-dependent data. Because causal dependencies are viewed as unidirectional in
the Bayesian framework, Bayesian networks are not equipped to model feedback loops, for
example, which can occur over time. Therefore, the authors proposed the use of dynamic
Bayesian networks for reverse-engineering gene regulatory networks from time series data.
They used DBNs to model the galactose metabolic pathway in yeast from gene expression
data with promising results.

2.2 Boolean Networks

A Boolean network G(V, F) is a set V = {v1, . . . , vn} of vertices representing nodes of
the network, together with a collection F = (f1, . . . , fn) of Boolean functions assigned to
each node. Boolean networks were first used in the life sciences in the 1960s, when Stuart
Kauffman introduced them to model regulatory networks as logical switching networks. Since
then Boolean networks have received limited attention in the life sciences, although there
are numerous theoretical results proved about them.

Liang et al. proposed an information-theoretic algorithm for constructing Boolean networks
from Boolean time series data ([40]). The algorithm constructs both the global function as
well as the wiring diagram that carry the maximal amount of information, as defined by the
Shannon entropy and mutual information measures. The Shannon entropy is the measure
of the information stored in a given set of data and is defined in terms of the probability of
observing a particular state in the data. Its closed form is the function

H(x1, . . . , xm) = −
2m∑
i=1

pi log2(pi)

where pi is the probability of observing state i in the data set restricted to the variables
x1, . . . , xm and state i is one of the possible 2m 0-1 combinations for m variables. Given a set

Brandilyn S. Stigler Chapter 2. Reverse Engineering 10

of state transitions, the algorithm REVEAL computes the entropy and mutual information
for all input-output combinations of the form H(input set, output variable), where input set
consists of any set of variables and the mutual information is defined by

M(I, o) = H(I) + H(o)−H(I, o).

for I = input set and o = output variable. For computational feasibility, they restrict the size
of I to be at most 3. For each variable, the I-o pair with the greatest mutual information gives
rise to the most likely Boolean function, on at most 3 variables, associated to the variable
which is consistent with the given data set. The Boolean network is the collection of Boolean
functions selected by the algorithm together with the corresponding wiring diagram.

The worst-case complexity of REVEAL is the computation of the probability of each of the
possible 2n state transitions for every wiring diagram out of the total

(
n
k

)
possibilities, where

n is the number of nodes and k is the maximum number of inputs allowed per node. However,
empirically the authors found that the algorithm performs better than in the worst case. For
a 50-node network and inclusion of up to 100 state transitions for k = 1, 2, 3, the number
e of misidentified solutions obtained by REVEAL decreased exponentially, with e < 10−8

for k = 3 and maximal state transitions. Based on our literature search, we found that
REVEAL has only been applied to synthetic data sets.

In [6], Akutsu et al. proposed the use of gene disruptions (knock-outs) and gene over-
expressions to identify gene networks with Boolean networks. As with [40], the authors
provide theoretical results and have not applied their method to real systems. Other algo-
rithms, together with complexity analyses, are described in [8].

A reconstruction technique that allows for uncertainty in the data is given in [30], in which
Hashimoto et al. introduced probabilistic Boolean networks (PBNs), a Bayesian adaptation
of standard Boolean networks. The authors proposed an algorithm for constructing PBNs
to represent a subnetwork of a larger gene regulatory network. They applied their method
to gene expression data from human melanoma and glioma and were successful at making
inferences about pathways in the networks.

2.3 Ordinary Differential Equations

Systems of ordinary differential equations (ODEs) have played a tremendous role in mod-
eling biological networks. For a network of n nodes, a system of ODEs is a collection of
simultaneous equalities

dx1(t)

dt
= f1(x1(t), . . . , xn(t))

...
dxn(t)

dt
= fn(x1(t), . . . , xn(t))

Brandilyn S. Stigler Chapter 2. Reverse Engineering 11

where each xi(t) is a function of time representing node i.

Yeung et al. described a method to reverse-engineer gene networks with linear ODEs ([58]).
The models are of the form

dX

dt
= AX + B (2.1)

where X is an (n×m)-matrix of m mRNA measurements for n genes; A is an (n×n)-matrix
of strengths of interactions between the genes, including self-degradation rates; and B is an
(n × m)-matrix of external stimuli. In their paper, they describe an algorithm to reverse-
engineer the wiring diagram of a gene network given time series of mRNA concentrations
and values for the external stimuli for systems operating near a steady state. The wiring
diagram is obtained through identification of the entries of A. Since dX

dt
, X, and B are given,

the goal is to solve the equation for A.

If X is invertible (i.e., m = n and X has full rank), then a solution can be found. In
general, however, m ¿ n resulting in a vastly underdetermined system. So, the authors
apply singular value decomposition to X so that

X = V WUT ,

where U and V are orthogonal and W is a diagonal matrix, and Equation 2.1 can be solved
for A. A solution to the equation is then

A = A0 =

(
dX

dt
−B

)
UW−1V T

with nullspace CV T , for some matrix C.

In fact, A = A0 + CV T represents all feasible solutions that are consistent with the given
data, for different choices of C. The last step of their method is to choose one solution from
this set. Since the authors are interested in applying their method to gene networks, which
they assume to be sparse, the selection criterion employed is sparseness of the matrix A;
that is, the entries of C should be chosen so that the number of 0 entries in A is maximized.
They accomplish this through L1 regression on the equation

CV T = −A0 = 0

where 0-entries are maximized.

They applied this reverse-engineering algorithm to in numero experiments for gene networks
of size 10 to 1000 and up to 100 measurements. The data sets included linear and nonlinear
interactions between genes. The authors found that the algorithm requires m = O(log n)
experimental measurements and O(n4) time to correctly identify the wiring diagram.

In the following year the same authors, together with a colleague, presented in [52] an
alternate reverse-engineering algorithm, again using linear ODEs. Tegnér et al. described a

Brandilyn S. Stigler Chapter 2. Reverse Engineering 12

procedure to generate experimental data of perturbations appropriate for their new algorithm
based on selection of genes whose expression changed least, as well as those whose connections
are most uncertain. With the generated data, they used linear algebra techniques to estimate
the entries of A, as above. The authors applied this algorithm to in numero experiments, as
well as to data generated from a nonlinear model of a Drosophila segment polarity network
for which they were able to reconstruct most of the wiring diagram.

Another example of the use of linear ODEs is presented in [17]. Chen et al. proposed four
models for gene and protein expression data: one for both data types, one for gene expression
only, another for protein expression only, and a fourth for gene expression data with time
delays. They describe two algorithms for constructing such models from data. One of their
algorithms is reported to be NP-complete; however, if the number k of inputs per node
is fixed, then the algorithm requires O(nk+1) time. The methods were not applied to real
systems and only theoretical results were provided.

While ODE models represent temporal behavior of entities in a network, they can be ex-
tended to include spatial information of the entities as well. In this setup, such models are
systems of partial differential equations. The additional sophistication comes at the cost
of complexity in solving. Because of their computational expense, they have received little
attention in the life sciences and we do not discuss them in this exposition.

2.4 Qualitative Networks

Qualitative networks are depicted as digraphs G = (V,E), in which the edges (activa-
tion/inhibition) are governed by simple ordinary differential equations. Let the elements
of V = {v1, . . . , vn} represent network nodes and Xi(t) (or Xi, for short) be the expression
value of vi at time t. An activation edge vj → vi is in E iff

dXi

dt
> 0 if Xj > 0 or

dXi

dt
< 0 if Xj < 0.

Similarly an inhibition edge vj (vi is in E iff

dXi

dt
< 0 if Xj > 0 or

dXi

dt
> 0 if Xj < 0.

Akutsu et al. assert that qualitative networks can be used to reverse-engineer gene networks
([8]). Given a set of Boolean time series data, the proposed algorithm QNET-1 constructs
a complete directed graph and removes edges that are not consistent with the given data.
QNET-1 is reported to uniquely identify the Boolean network with probability at least 1− 1

nα ,
for a fixed constant α > 1, in O(n2m) time. For complete identification of the network, the
algorithm requires O(α log n) time series, beginning with initial values chosen uniformly
randomly from {±1}. An extension QNET-2 has been implemented for monotonic functions

Brandilyn S. Stigler Chapter 2. Reverse Engineering 13

Table 2.1: A summary of reverse-engineering methods. Each row of the table lists a sampling
of methods that exist for each type of model, as well as indicate some properties of the models
and the methods. c/d refers to the type of model with c = continuous and d = discrete.
F/G refers to what is constructed by the method where F = dynamic model and G = wiring
diagram. A = existence of an algorithm, RD = application of method to real data.

Modeling framework c/d References F/G A RD

Bayesian network c,d [26], [47] G yes yes
– Dynamic BN c,d [29] G yes yes
Boolean network d [7], [8], [6], [40] F,G yes no
– Probabilistic BN d [51] F,G no no
ODE c [52] F,G yes yes

c [17], [58] F,G yes no
Qualitative network d [8] G yes no

(right-hand sides of the differential equations). Based on our search, we found that both
algorithms have been tested on synthetic data only.

While this exposition is by no means complete, its purpose was to simply provide the reader
with some background in a variety of reverse-engineering methods. Table 2.1 contains a
summary of the methods discussed above. For a review of other existing reverse-engineering
methods, see [20], [19].

Chapter 3

Biology

All definitions provided in this chapter can be found in [15], unless otherwise stated.

3.1 Concepts from Molecular Biology

Biology is the study of all life processes, both chemical and physical. Metabolism, which
refers to the chemical processes that maintain the functioning of an organism, is responsible
for the extraction of energy from nutrients and the biosynthesis of chemicals required for
survival, including DNA and proteins. Metabolic processes are organized into pathways and
can be characterized as catabolism, the destructive phase of metabolism, and anabolism, the
constructive phase. Through these two phases, all other chemical reactions have the energy
available in order to function, including the processing of genetic information.

Deoxyribonucleic acid (DNA) is a cellular molecule whose double helical structure encodes
all of the genetic information of an organism. Genes are sequences of chemicals, called nu-
cleic acids, in DNA which roughly correspond to genetic functions within the DNA. The
molecules that carry out those functions are called proteins. The first step in processing
genetic information is transcription, in which the information is “read” or copied from the
gene and recorded in a molecule, called messenger RNA (mRNA). It is proposed that the
purpose of creating a copy of the gene is to minimize the exposure of DNA and the potential
for DNA damage. The second step is translation, in which a protein is constructed from
building blocks (amino acids) according to the structure encoded in the gene. The rela-
tionship among these molecules is encapsulated in the central dogma of molecular biology,
illustrated in Figure 3.1.

14

Brandilyn S. Stigler Chapter 3. Biology 15

Figure 3.1: Central dogma of molecular biology, as presented in [53].

3.2 Gene Regulatory Networks

While the main flow of genetic information is from DNA to mRNA to protein, proteins
are responsible for the structure, function, and regulation of cells, tissues, and organs of an
organism. In particular proteins play a big part in regulating the expression of genes, that
is, their transcription, either by acting as a mechanism for transcription or by catalyzing
the reaction. Gene regulatory networks (GRNs) are collections of genes and their products,
together with the interactions between them that collectively carry out cellular functions
([49]).

Figure 3.2: Simplified view of a gene regulatory network, as presented in [32].

Brandilyn S. Stigler Chapter 3. Biology 16

The main components of a GRN are the genes, proteins, and metabolites involved in a par-
ticular metabolic pathway; see Figure 3.2 for an overview. As we saw above, both genes and
proteins are derived from DNA, whereas metabolites are small biomolecules (in comparison
to proteins and DNA, for example) that are involved in metabolic processes; including in-
termediate and waste products. Examples of common metabolites found freely available in
cells are water; ATP, a molecule used for storing and releasing energy; and glucose.

Chapter 4

Algebra

Unless otherwise noted, all definitions and theorems in this section were taken from [18] and
[23] and alternatively can be found in most standard commutative algebra, computational
algebra or algebraic geometry textbooks.

4.1 Concepts from Ring Theory

Definition 1. A ring, denoted by (R; +,×; 0, 1), is a set R with two binary operations,
generically called addition and multiplication, and elements 0, 1 of R associated to the op-
erations such that the following hold: R is closed under the operations; the operations are
associative and distributive; R has an additive identity (0) and a multiplicative identity (1);
addition is commutative and all elements of R have additive inverses. A ring is commutative
if multiplication is commutative.

Definition 2. (R; +,×; 0, 1) is a field if it is a commutative ring and all nonzero elements
of R have multiplicative inverses.

We will denote a ring or field by its defining set R, unless it is necessary to specify its
operations and identities.

Example 1. The set of integers, Z, with usual addition and multiplication form a commu-
tative ring, as do the set of rationals, Q. The rationals form a field, whereas Z does not.
The set of integers modulo 4, denoted Z/4Z is a ring, but not a field; however, Z/5Z is a
field. In fact, sets of the form Z/pZ, where p is prime, are fields; these we denote by Fp.

Definition 3. Let R be a commutative ring. A polynomial ring R[x1, . . . , xn] in n indetermi-
nates or variables is the set of finite sums

∑
c∈R cxa1

1 · · · xan
n , called polynomials. Elements

cxa1
1 · · · xan

n are called terms, consisting of a coefficient c, a monomial xa1
1 · · ·xan

n , and a
vector of exponents a = (a1, . . . , an) ∈ Zn

≥0.

17

Brandilyn S. Stigler Chapter 4. Algebra 18

While we do not include the proof, it should be noted that polynomial rings are in fact
rings with usual polynomial addition and multiplication. We will focus on polynomial rings
over fields as they play an important role in this work. For the remaining discussion in
this chapter, we assume that k is a field. For simplicity, we denote {x1, . . . , xn} by x and a
monomial xa1

1 · · · xan
n by xa.

The algebraic structure of a ring induces the following type of subset.

Definition 4. Let R be a ring. A subset I ⊂ R is an ideal if 0 ∈ I, a+ b ∈ I for all a, b ∈ I,
and ra ∈ I for all r ∈ R and a ∈ I.

Example 2. The set 2Z of even integers is an ideal of Z, whereas it is not an ideal of the
reals R. The set 〈x〉 := {xf : f ∈ k[x, y]} of polynomial multiples of x is an ideal of the ring
k[x, y].

In the last example, we introduced the notion of a generating set. We say that an ideal I
of k[x] is generated by polynomials f1, . . . , fs if I = {∑s

i=1 hifi : hi ∈ k[x]}; furthermore we
write I = 〈f1, . . . , fs〉.
The following concepts are required for the main result of this section, which is a ring-
theoretic version of the classic Chinese Remainder Theorem.

Definition 5 (Operations on Ideals). Let I, J ⊂ R be ideals.

• I
⋂

J := {a ∈ k[x] : a ∈ I, a ∈ J}.
• I + J := {f + g : a ∈ I, b ∈ J}.
• IJ := {Σfiniteab : a ∈ I, b ∈ J}.

Each of the above operations results in an ideal of the ring R.

Definition 6. An ideal I ⊂ R is said to be maximal if for any ideal J containing I, either
J = I or J = R. Two ideals I, J are comaximal if I + J = R.

In other words, ideals I, J are comaximal if there are a ∈ I, b ∈ J such that a + b = 1. An
important point is that only the ideal R = 〈1〉 contains the multiplicative identity: if an
ideal contains 1, then any element r can be written as r · 1 and hence the ideal contains all
elements of the ring.

Theorem 1 (Chinese Remainder Theorem). Let R be a ring and I1, . . . , It be pairwise
comaximal ideals of R. Consider the canonical homomorphism

φ : R → R/I1 × · · · ×R/It.

Then φ is surjective with kernel
⋂

Ii = I1 · · · It.

Brandilyn S. Stigler Chapter 4. Algebra 19

While the proof can be found in a standard abstract algebra textbook, for example [23], we
include it here as it presents some concepts that will become useful later.

Proof. First we show that if I, J are comaximal, then IJ = I
⋂

J . By construction of the
product of ideals, IJ ⊂ I

⋂
J . Let c ∈ I

⋂
J . By comaximality, there are a ∈ I, b ∈ J with

a + b = 1. It follows that c = ca + cb ∈ I
⋂

J , achieving equality.

Next we show that the ideals Ii and
⋂

j 6=i Ij are comaximal. As Ii is comaximal with all
other ideals, then choose aj ∈ Ii and bj ∈ Ij, j 6= i such that aj + bj = 1. Then we have that

1 =
∏

j 6=i

(aj + bj).

We notice that all terms of the expanded product are elements of Ii, except for the last term∏
j 6=i bj, which is in

⋂
j 6=i Ij. Therefore 1 =

∏
j 6=i(aj + bj) ∈ Ii +

⋂
j 6=i Ij and the ideals are

comaximal.

To prove surjectivity, let r = (r1 + I1, . . . , rt + It) ∈ R/I1 × · · · × R/It. Let Ji =
⋂

j 6=i Ij.
Then for every Ii, Ji, there are ai ∈ Ii, bi ∈ Ji with ai + bi = 1. Note that since bi ∈ Ji ⊂ Ii

for all j 6= i, then ribi ∈ Ii, therefore ribi = 0 + Ij, j 6= i. It is also true that bi = 1− ai and
so ribi = ri − riai = ri + Ii. It follows then that

φ
(∑

ribi

)
=

(∑
ribi + I1, . . . ,

∑
ribi + It

)

= (r1 + I1, . . . , rt + It)

= r

Since a ∈ ker φ for a ∈ R iff a ∈ Ii for every i, then ker φ =
⋂

Ii = I1 . . . It.

4.2 Concepts from Algebraic Geometry

Algebraic geometry is the study of the relationship between systems of polynomial equations
and the set of their simultaneous solutions. A system is posed as an ideal and the set of
common solutions as a variety. In this section we introduce some properties of ideals and
varieties and present well-known theorems which describe their relationship.

Definition 7. A subset V ⊂ kn is an affine variety if it is the set of all simultaneous zeroes
of some collection of polynomials, f1, . . . , fs ∈ k[x1, . . . , xn].

Example 3. Consider the solutions of the system of equations

x2 + y2 = 1

x2 − 1 = y

Brandilyn S. Stigler Chapter 4. Algebra 20

corresponding to the intersection of the unit circle centered at the origin and the standard
parabola with vertex at x = −1. If we view these equations as polynomials x2 + y2 − 1, x2 −
1− y ∈ R[x, y], then the variety of {x2 + y2 − 1, x2 − 1− y} is V = {(±1, 0), (0,−1)}, that
is, the 3 points of intersection.

For a variety V , let I be the map

I(V) = {f ∈ k[x] : f(a) = 0 for all a ∈ V }
that sends varieties to ideals. For an ideal I, let V be the map

V(I) = {a ∈ kn : f(a) = 0 for all f ∈ I}
that sends ideals to varieties. These maps present a natural relationship between ideals and
varieties. Given a variety V , we always have that V = V(I(V)). However, for an ideal I,
I ⊂ I(V(I)), with equality achieved only for certain types of ideals. For example, consider
the ideal I = 〈x2〉 in Q[x]. The variety of I is the singleton 0. The ideal of 0 is 〈x〉.
Yet,〈x2〉 (〈x2〉. The following theorem summarizes this relationship.

Theorem 2 (Ideal-Variety Correspondence). For any field k, the maps I and V are
inclusion-reversing and I is injective. Moreover, if k is algebraically closed, then I and V
are bijections.

For I, J ideals, if I ⊂ J , then we have that V(I) ⊃ V(J). It also follows that for all varieties
V, W with V ⊂ W , I(V) ⊃ I(W). Intuitively, this means that the larger the system of
polynomials, the fewer the number of common solutions, and vice versa. The second part
of the statement is true since the inclusion relationship gives us that V(I(V)) = V for any
variety V . We also always have that I ⊂ I(V(I) for any ideal I.

The ideal I(V) is called the ideal of points of V and can be interpreted as the set of all
polynomials that vanish on all points in V .

The Ideal-Variety Correspondence also tells us how unions and intersections behave with
respect to the maps I and V, which is summarized in the following statement.

Corollary 1. Let I, J be ideals and V, W be varieties. Then

• V(I
⋂

J) = V(I)
⋃

V(J)

• I(V
⋃

W) = I(V)
⋂

I(W).

4.3 Concepts from Gröbner Basis Theory

Many problems in ring theory and algebraic geometry require knowing whether a ring element
is contained in an ideal, the so-called ideal membership problem. For example, let f = x4−1,

Brandilyn S. Stigler Chapter 4. Algebra 21

g = x + 1, and I = 〈x2 + 1〉. By factoring f , we can see that f ∈ I, but g /∈ I since all
elements of I are polynomial multiples of a quadratic polynomial. Another way to see this
is to divide f and g by x2 + 1. If the remainder is 0, the dividend is in I; otherwise, it is
not. So the ideal membership problem is reduced to polynomial division.

In the polynomial ring k[x] in one variable, monomials have a natural ordering given by the
ordering on the exponents in Z≥0. So comparing monomials is the same as comparing their
exponents: x3 > x2 since 3 > 2. However, when we move to polynomial rings in n > 1
indeterminates, we lose the natural ordering on the exponents in Zn

≥0. Intuitively it is no
longer clear how to order monomials, such as x2y and xy2. Furthermore, long division of
polynomials in several variables is not unique for different choices of monomial orders. To
see how multivariate long division is defined, see Chapter 2.3 in [18]; an example is provided
below.

Example 4. Consider the polynomials f = x2 + x + y and g = x + y in R[x, y]. Division of
f by g yields different remainders given different rules for ordering their monomials. Recall
that division proceeds in descending order. If we use a lexicographic ordering with y > x,
then y is the leading term of f and f ÷ g produces a quotient of 1 and a remainder of
x2. However, if we use a graded ordering, in which high-degree monomials are largest, with
x > y, then x2 is the leading term of f and the division yields a quotient of x − y + 1 and
remainder y2.

The last example demonstrates that polynomial division is dependent on the choice of mono-
mial order, which we now define.

Definition 8. Let k be a field. A monomial ordering (or term order) on k[x1, . . . , xn] is a
relation > on the set of monomials xa such that > is a total ordering,

xa > xb =⇒ xaxc > xbxc

for any monomial xc, and > is a well-ordering; i.e., every nonempty subset of monomials
has a smallest element under >.

Note: Technically, term orders and monomial orderings differ in that the former is an
ordering on the terms (monomial and coefficient) of a polynomial; however, here we make
no distinction.

While there are an infinite number of term orders, we will primarily focus on two types,
whose definitions are below.

Definition 9.

1. (Lexicographic) Let xa,xb ∈ k[x1, . . . , xn] be two monomials. Then xa >lex xb if the
first nonzero entry of the vector difference a− b is positive.

Brandilyn S. Stigler Chapter 4. Algebra 22

2. (Graded Reverse Lexicographic) Let xa,xb ∈ k[x1, . . . , xn] be two monomials with a =
(a1, . . . , an), b = (b1, . . . , bn). Then xa >grevlex xb if

|a| =
∑

ai > |b| =
∑

bi,

or if |a| = |b| and the last nonzero entry of the vector difference a− b is negative.

Example 5. Let k be a field and consider the monomials x2y3, x4, x5 ∈ k[x, y]. Suppose
x > y. In the lex ordering, x4 >lex x2y3 since the first nonzero entry of

(4, 0)− (2, 3) = (2,−3)

is positive. In the grevlex ordering, x2y3 >grevlex x4 since

|(2, 3)| = 5 > |(4, 0)| = 4.

On the other hand x5 >grevlex x2y3 since |(5, 0)| = |(2, 3)| = 5 and the last nonzero entry of

(5, 0)− (2, 3) = (3,−3)

is negative.

Now suppose that y > x. Then y3x2 >grevlex x5 since the last nonzero entry of

(3, 2)− (0, 5) = (3,−3)

is negative.

The ordering of the variables plays a crucial role in determining a term order. For instance,
for every permutation of the variables, there is a corresponding grevlex ordering and there
are n! grevlex orderings for a polynomial ring in n indeterminates. The same is true for
lex, as well as for all other monomial orders. We call the initial ordering of the variables a
variable order.

We also saw in Example 4 that there is a dependence of polynomial division on the choice of
term order. Given a fixed order, then the division of two polynomials proceeds as expected,
producing unique results as there is no ambiguity in the leading terms ; that is, the largest
term of a polynomial under the term order.

Example 6. Consider the division of x5 + yz by x− yz. For illustration purposes, assume
that x > y > z. We will see that the division process is quite different for lex and for grevlex.
To begin, we will divide the polynomials using grevlex.

−yz + x

−1
) x5 + yz

yz
- (yz − x)

x
0

Remainder
−→ x5

−→ x

Brandilyn S. Stigler Chapter 4. Algebra 23

Therefore the remainder of x5 + yz when divided by −yz + x in the given grevlex ordering is
x5 + x.

If we now use lex, we will get a very different quotient and remainder.

x− yz

x4 + x3yz + x2y2z2 + xy3z3 + y4z4

) x5 + yz
- (x4 − x4yz)

x4yz + yz
- (x4yz − x3y2z2)

...
y5zz + yz

0

Remainder

−→ y5zz + yz

In this case, x5 + yz divided by x− yz yields a remainder of y5zz + yz.

One difference between the two term orders is that in lex, any term involving x, the largest
variable, will get divided out first, whereas in grevlex (or any graded ordering, for that
matter) terms of highest degree get divided out first.

A problem encountered when dividing multivariate polynomials, even if a term order has
been established, is that performing successive divisions of a polynomial using different
polynomials often yields nonunique results.

Say we want to divide the polynomial f = x5 + yz from the example above, by g = x− yz
and h = x4 + 1 using lex with x > y > z. If we divide f by g first, we get a remainder that
is a polynomial in y and z only. Since x is the largest variable, division cannot proceed with
h and so f divided by g then h gives a remainder of y5zz + yz. However if we divide in the
opposite order, that is by h first and then by g, we get a remainder of 0.

In terms of the ideal membership problem, this shows that f ∈ 〈g, h〉; though if we had not
divided cleverly, it is possible that we would not have realized it. The problem lies in that
the leading terms of the generators do not divide the leading terms of all elements in 〈g, h〉.
What is needed is a “nice” generating set.

Definition 10. Let > be a monomial order for k[x] and let I be an ideal in the ring. A
finite subset G = {g1, . . . , gm} ⊂ I is a Gröbner basis for I if the leading term of any f ∈ I
is divisible by one of the leading terms LT (gi) under >.

Theorem 3. Let > be a monomial order for k[x]. Every nonzero ideal I ⊂ k[x] has a
Gröbner basis G. Moreover G is a generating set for I.

Example 7. Consider the ideal I generated by the polynomials f = x2 +x+y and g = x+y
from Example 4. The question is to decide whether h = y3 is an element of I. As every
element of I is of the form af +bg for some a, b ∈ R[x, y], then we must check whether h can

Brandilyn S. Stigler Chapter 4. Algebra 24

be written in this way; i.e. divide h by f and g and check for 0 remainder. If x > y, then
division is not possible since the leading terms of f and g involve x. However, it is true that

y3 = yf + (−xy + y2 − y)g.

So we cannot solve the ideal membership problem in this case, because {f, g} is not a Gröbner
basis for I.

Consider the set {x + y, y2}. We know this to be a subset of I and it can even be shown that
the leading term of any f ∈ I is divisible by x or y2. Therefore, G is a Gröbner basis for I
and now it is clear that h ∈ I.

Definition 11. Let G be a Gröbner basis for an ideal I ⊂ k[x] and let f ∈ k[x]. The normal
form of f with respect to G, denoted NF (f,G), is the remainder of f under division by the
elements of G.

To solve the ideal membership problem, we state the following well-known result.

Theorem 4. Let G be a Gröbner basis for an ideal I ⊂ k[x] and let f ∈ k[x]. Then f ∈ I
iff NF (f, G) = 0.

Given a Gröbner basis G of an ideal I ⊂ k[x] with respect to a term order >, the quotient
ring k[x]/I and the set of leading terms not in LT (G) have a special relationship. Viewing
the quotient ring as a vector space over k, the elements {xa : xa /∈ 〈LT (G)〉} form a basis for
k[x]/I; this set is called the set of standard monomials for I with respect to >. In fact, for
the same ideal, there may be a different set of associated standard monomials for different
term orders; however, the number of standard monomials is invariant.

The task of computing Gröbner bases requires the calculation of polynomials that allow for
cancellation of leading terms. Called S-polynomials, they are built from all pairs of elements
in the given generating set for an ideal and added to the set if certain criteria are met. The
näıve approach is known to be exponential in the number of variables ([14]). However, there
are a number of improved algorithms with better complexity. We conclude this chapter with
a well-known algorithm of H. Möller and B. Buchberger ([44]) for computing Gröbner bases,
which is quadratic in the number of variables and cubic in the number of points ([48]). Before
presenting the algorithm, we provide one last definition.

Definition 12. Let {p1, . . . , ps} be a set of distinct points in kn. A polynomial spi
∈ k[x] is

called a separator of pi if spi
(pi) = 1 and spi

(pj) = 0 for all j 6= i.

BM: Algorithm for computing separators for a variety,
a Gröbner basis for the ideal of points, and a set of standard monomials
Input: V = {p1, . . . , ps} variety, σ = term order
Output: S = separators of V , GB = Gröbner basis of I(V),

SM = set of standard monomials with respect to σ

Brandilyn S. Stigler Chapter 4. Algebra 25

Algorithm:
S = ∅; GB = ∅; SM = ∅;
r = 0
L = [1] –L contains candidates for std monom.
while L 6= 0

t = min(L) –smallest monomial in L
L = L \ {t}
f = t -

∑s
i=1t(pπ(i))si –first point for which f does not vanish

if f vanishes on V –then f is in the ideal
GB = GB

⋃
f

L = L \ {multiples of t} –throw away multiples, we want a reduced basis
else

SM = SM
⋃ {t} –the monomial t does not divide any LT in the ideal

r = r + 1
π(r) = min{i : f(pi) 6= 0}
sr = f(pπ(r))

−1f –a partial separator
S = S

⋃ {sr}
for every i = 1..r-1

si = si - si(pπ(r))sr

endfor
L = L

⋃ {xit:i=1..n} \ LT(GB)
endif

endwhile
return S, GB, SM

We compute a small example to illustrate the various steps of the algorithm BM.

Consider the variety V = {(0, 1), (1, 0)} under any term order with x1 < x2. We will execute
each step of the algorithm and show what the value of each variable is.

Brandilyn S. Stigler Chapter 4. Algebra 26

S = 0; GB = 0; SM = 0; r = 0; L = {1}
First pass Second pass Third pass Fourth pass
enter while enter while enter while enter while
t = 1 t = x1 t = x2 t = x2

1

L = ∅ L = {x2} L = {x2
1, x2x1} L = ∅

f = 1 f = x1 − 1 f = x2 + x1 − 1 f = x2
1 − x1

enter if enter if
GB = {x2 + x1 − 1} GB = {x2 + x1 − 1, x2

1 − x1}
L = {x2

1} L = ∅
enter else enter else
SM = {1} SM = {1, x1}
r = 1 r = 2
π(1) = 1 π(2) = 2
s1 = 1 s2 = −x1 + 1
S = {1} S = {1,−x1 + 1}

enter for
s1 = x1

L = {x1, x2} L = {x2, x
2
1, x2x1}

When the algorithm finishes, the following are returned:

S = {s1, s2} = {x1,−x1 + 1}, GB = {x2 + x1 − 1, x2
1 − x1}, SM = {1, x1}.

Chapter 5

Dynamical Systems

In Chapter 2, we described a number of different reverse-engineering methods primarily for
modeling gene regulatory networks, ranging from continuous to discrete. While the behavior
of a biological system may be seen as continuous, in that it moves continuously from one state
to another, the technology to record observations of the system, such as microarray chips, is
most certainly not continuous. In fact, dynamic models constructed from reverse-engineering
methods must fit discrete instances of a continuous process. Moreover, to validate models
that use continuous data often requires discretization of the data so that comparisons may
be made (for example, see [9], [56]).

In this chapter, we explore discrete-time dynamical systems, which we simply call dynamical
systems. We introduce a number of concepts related to this type of system and then the
stage is set for presentation of our algebraic reverse-engineering algorithm.

Definition 13. A dynamical system on n nodes is a triple (N,X, F) with the following
properties:

1. N is a set of n variables;

2. X is a set of values, called states, that the variables can take; and

3. F = (f1, . . . , fn) : Xn → Xn is a function in terms of the variables in N , called the
global function, and each fi : Xn → X is the function, called a transition function,
associated to node i.

In the above definition, the state set can be specialized to a cartesian product of sets X1 ×
· · · ×Xn, in which each Xi is a state set for a node of the dynamical system. For simplicity,
we assume that all nodes have the same state set.

27

Brandilyn S. Stigler Chapter 5. Systems 28

Example 8. Consider a dynamical system S3 = (N,X, F) on 3 nodes with N = {x1, x2, x3}
and X = R. Let F = (f1, f2, f3) be the global function given by

f1(x1, x2, x3) = 0.1x2
1

f2(x1, x2, x3) =
x1 + x3

x2

f3(x1, x2, x3) = 2x2 + 1.

Then F evaluated at the state (1, 1, 1) is calculated as follows:

F (1, 1, 1) = (f1(1, 1, 1), f2(1, 1, 1), f3(1, 1, 1)) = (0.1, 2, 3),

giving the state transition (1, 1, 1) 7→ (0.1, 2, 3).

It is important to notice that state transitions come about through synchronous updating
of the variables. In applications, it may be the case that the variables should be updated
at different times. Such a phenomenon occurs when the nodes of the system operate at het-
erogeneous time scales. The theory of sequential dynamical systems provides an alternative
way to describe these types of systems. For an exposition, see [37].

Two key features are well-characterized by the global function F : the structure, given by
the wiring diagram of F , and the dynamics, arising from iteration of F . If the state set is
finite, then the dynamics can be completely described through a graph called the state space,
which will be defined in Chapter 6. However, if the state set is infinite, then the dynamics
can only be partially identified since the global function is usually too complex and high
dimensional to be studied analytically.

The importance of these features will motivate the particular characterization of reverse
engineering we investigate. Since the input of any reverse-engineering program is a collection
of measurements or observations of a system, we must specify the form of the data. For the
purpose of constructing models from time-dependent measurements, which is often the case
for gene expression data, we focus on special input-output pairs called time series.

Definition 14. A time series T = (s1, . . . , st) for a dynamical system Sn = (N,X, F) is a
sequence of elements of Xn with the following property: for each i ≥ 1, we have F (si) = si+1.
The time points si = (si1, . . . , sin) are n-tuples with coordinates representing the state of each
node at time i. If t < ∞, then we say that the time series has length t.

Example 9. For the dynamical system S3 from Example 8, the following is a time series of
length 4:

(1, 1, 1) 7→ (0.1, 2, 3) 7→ (0.001,
31

20
, 5) 7→ (10−6,

5001

1550
, 21.55 + 1).

Each time point corresponds to an observation of the system at a particular time unit and
each consecutive pair (si, si+1) of time points gives rise to a state transition via iteration of
F :

si 7→ si+1.

Brandilyn S. Stigler Chapter 5. Systems 29

In fact, the time points have a natural ordering: for each i < t, si < si+1, meaning that the
observation at time i occurred before the observation at time i + 1. If there are time series
states si = sj with i < j, then we say that the time series has a limit cycle of length j − i.
In this case, if j = i + 1, then the time series has a fixed point.

Time series of experimental data are collected via technological procedures, in which only a
finite number of samples can be extracted; therefore, in this discourse, we will only consider
time series of finite length.

In applications, if a time series is a sequence of measurements for a biological system in its
natural state, we call this a wildtype time series. Additionally, it is often the case that a
time series comes from observation of a system in a perturbed state. If the perturbation is
one such that one node of the system is completely inactivated, we call such a data set a
knockout time series. These time series can be characterized as those with the property that
there is 1 ≤ j ≤ n, corresponding to the inactive node, such that

si = (si1, . . . , si,j−1, 0, si,j+1, . . . , sin)

for all 1 ≤ i ≤ t. These types of perturbation data will become important in Chapter 4.

5.1 Finite Dynamical Systems

In this section we will explore properties of systems with finite state sets. Under special con-
ditions, the structure and dynamics of such systems can be studied using algebraic methods.

Definition 15. Let X be a finite set. A finite dynamical system (FDS) of dimension n is a
function F = (f1, . . . , fn) : Xn → Xn with each fi : Xn → X called a local function.

Note that F (s) = (f1(s), . . . , fn(s)) for s ∈ Xn. Unless otherwise noted, all FDSs are
n-dimensional, for a fixed integer n > 0.

While general set functions do not have much structure, if there is a constraint on the size of
the state set X, then the local functions of an FDS can be expressed as polynomial functions.
By stipulating that the cardinality of the state set is a power of a prime number, we can
impose the algebraic structure of a finite field on the set. The primality condition allows
us to exploit the following theorem (see [41], p. 369), which characterizes functions defined
over finite fields.

Theorem 5 (Lidl and Niederreiter). Let k be a finite field. Then every function f :
kn → k is a polynomial of degree at most n.

If the state set for an FDS F is a finite field, then we call F a polynomial dynamical system
(PDS). We denote its state set as k to distinguish it as a finite field. Below we will explore
some properties of PDSs.

Brandilyn S. Stigler Chapter 5. Systems 30

Figure 5.1: The dependency graph for the system in Example 11.

5.2 Polynomial Dynamical Systems

Above we saw that the wiring diagram referred to a graph depicting the connectivity struc-
ture of the system. For PDSs, we call this graph a dependency graph. We use both terms
interchangeably. An example of a dependency graph is depicted in Figure 5.1. Dependency
graphs associated to PDSs can be constructed in terms of the support of their local functions;
that is, the collection of variables in the function.

Definition 16. Let f ∈ k[x1, . . . , xn]. The support of f , denoted by supp(f), is a subset
{xi1 , . . . , xim} of {x1, . . . , xn} such that m is the smallest integer with f ∈ k[xi1 , . . . , xim].

Example 10. Let f ∈ k[x, y, z]. If f = x2y + 3y, then supp(f) = {x, y}. If f = a, for some
a ∈ k, then supp(f) = {}.
Definition 17. Let F be an n-dimensional PDS. The dependency graph of F , denoted by
D(F) is a directed graph (V,E) where V := {x1, . . . , xn} and E = {(xi, xj) : xi ∈ supp(fj)}.
Example 11. Let k = F5 and F = (f1, f2, f3) : k3 → k3 be the 3-dimensional PDS with
local functions

f1(x1, x2, x3) = x3
1 + 2x1 + 4

f2(x1, x2, x3) = 3x2
1 + x2x3 + x3

f3(x1, x2, x3) = 2x2 + 1.

The dependency graph of F is given in Figure 5.1.

From the definition, we see that polynomial dynamical systems give rise to directed graphs
on n vertices through the construction of a dependency graph. However the converse is also
true: any directed graph on n vertices can be the dependency graph for a PDS.

Theorem 6. Let D be the mapping from the set of n-dimensional PDSs to the set of directed
graphs on n vertices that associates dependency graphs to PDSs. Then D is a surjective
mapping.

Proof. Let G = (V, E) be a digraph with |V | = n. We can assume that the vertices of V
are labeled as integers 1, . . . , n. Denote by Ei the set {(v1, i), . . . , (vm, i)} ⊂ E of incoming
edges for a vertex i. Define fi ∈ k[x1, . . . , xn] to be the polynomial fi =

∑m
j=1 xvj

. Then
F = (f1, . . . , fn) is a PDS with D(F) = G.

Brandilyn S. Stigler Chapter 5. Systems 31

It is not true that D is injective. Let F1 = (f 1
1 , . . . , f 1

n) and F2 = (f 2
1 , . . . , f 2

n) be two PDSs
with supp(f 1

i) 6= supp(f 2
i) for some i ≤ n. Then their dependency graphs differ on vertex i.

The above representation of PDSs lend them to be viewed as systems, as defined in Chapter
2. Iteration of a PDS produces its dynamics in the same way that iterating the global
function of a system produces the dynamics of the system. Because the state set of a PDS
is finite, we can represent the dynamics through a finite graph with |X|n vertices.

Definition 18. Let F be an n-dimensional PDS. The state space graph of F , denoted by
S(F), is a directed graph (V,E) where V := kn and E = {(a, b) : a, b ∈ V and F (a) = b}.

As with the wiring diagram, the edges of the state space graph (or state space, for short)
represent state transitions of the function F . Below we provide an example of a state space,
generated by the visualization tool DVD ([34]).

Example 12. Let k = F3 and F = (f1, f2, f3) : k3 → k3 be the 3-dimensional PDS with
local functions

f1(x1, x2, x3) = x1

f2(x1, x2, x3) = x1x2x3 + 2x2 + x3

f3(x1, x2, x3) = 2x2
2 + x2 + 1.

Notice that it has the same dependency graph of F in Example 11. Its state space is given
in Figure 5.2.

Figure 5.2: State space for PDS in Example 12.

 0 0 0

 0 0 1

 0 1 1

 0 0 2

 0 2 1

 0 2 2

 0 1 0

 0 1 2

 0 2 0

 1 0 0

 1 0 1

 1 1 1

 1 0 2

 1 2 1

 1 1 2

 1 1 0

 1 2 0 1 2 2

 2 0 0

 2 0 1

 2 1 1

 2 2 1

 2 0 2

 2 1 0 2 1 2

 2 2 0

 2 2 2

PDSs over a finite field k give rise to a second class G of graphs, namely directed graphs on
|k|n vertices such that the outdegree of each vertex is exactly 1. It follows that the indegree
of each vertex is at least 1. We will see that the correspondence between the set Pk of PDSs
over k and G is a bijection.

Brandilyn S. Stigler Chapter 5. Systems 32

Theorem 7. Let S : Pk → G be the mapping F 7→ S(F). Then S is bijective.

Proof. Let F1 = (f 1
1 , . . . , f 1

n), F2 = (f 2
1 , . . . , f 2

n) ∈ Pk with F1 6= F2. Then there is a ∈ kn

such that F1(a) 6= F2(a). This implies that S(F1) 6= S(F2) since (a, F1(a)) 6= (a, F2(a)). So
S is one-to-one.

Let G = (V, E) ∈ G and for 1 ≤ i ≤ n define πi : kn → k to be the i-th projection
a = (a1, . . . an) 7→ ai for each a ∈ kn. Consider the function fi : kn → k defined as
f(a) = πi(b) for each (a, b) ∈ E. By Theorem 5, fi is a polynomial. Hence F = (f1, . . . , fn)
is a PDS with state space G and S is onto, thus concluding the proof.

In summary an n-dimensional PDS F : kn → kn is a system ({x1, . . . , xn}, k, F) with wiring
diagram D(F) and state space S(F). The next chapter is devoted to the construction of
PDSs from discrete time series.

Chapter 6

An Algebraic Approach to Reverse
Engineering

As we saw in the preceding chapter, there have been a number of developments in reverse-
engineering algorithms. In this chapter, we will focus on reverse engineering from the context
of discrete modeling.

Measurements from biological experiments often contain noise or error, due to biological
variability of the organism and technological constraints of the instruments used for data
collection. Furthermore, the number of data samples (i.e., time points) that are collected is
limited because of the sizable costs in conducting biological experiments, rendering statistics
inappropriate. One approach to resolve these issues is to discretize the data ([21]). In fact a
number of reverse-engineering methods require discrete data, as seen in the last chapter. In
this setting, we define the discrete reverse-engineering problem.

6.1 A Discrete Formalism of Reverse Engineering

Problem 2 (Discrete Reverse Engineering). Let T = (s1, . . . , st) be a time series of
values in a finite field k for a system on n nodes. Let G denote the wiring diagram of the
system. Find a PDS F : kn → kn such that

1. (Connectivity) G ⊆ D(F), and

2. (Dynamics) F (si) = si+1 for each i < t.

In this setting, we call fi an i-th interpolator of T, as it interpolates all pairs (sj, sj+1,i); that
is, it interpolates the i-th coordinate of every time point in T .

33

Brandilyn S. Stigler Chapter 6. An Algebraic Approach 34

Table 6.1: REV-ENG: General algorithm for one time series

Input: T = {s1, . . . , st} time series, t-order = term order with variable order
Output: F = PDS for T
Algorithm:

DataPoints := T\{st}
Sep := BM-SEP(DataPoints, t-order)
for each i = 1 . . . n

Values := {s2i, ..., sti}
fi :=

∑t−1
j=1 ValuesjSepj

endfor
return PDS F = (f1, ..fn)

Recall that the goal of a reverse-engineering program is to infer the connectivity structure
and dynamics of a system, given only observations of the system. The observations are
usually time series of state transitions, collected from experimental procedures. They may
also include interactions among the nodes of the system. The complete wiring diagram for
a system may not be known; however, the links or edges that are known should be inferred
by a reverse-engineering method. It may be the case, though, that indirect interactions are
detected by the method. This arises when the data are not sufficient for describing the the
structure and dynamics of a system. Therefore we impose a containment relation between
the dependency graph of f and the wiring diagram G, but not a strict equality.

In this discrete setting we model biochemical systems as PDSs. Below we describe a reverse-
engineering method for building PDSs given time series of discrete data. The algorithm
constructs all PDSs for the data and then uses a minimality criterion to select one PDS from
the set. A unique feature of this method is the ability to construct all PDSs that satisfy the
given time series, as well as some portions of the wiring diagram. It must be emphasized that
the set of PDSs is not constructed via enumeration. On the contrary, this is accomplished by
way of a Gröbner basis, which we discussed in Chapter 4. We will show that each transition
function of a given system may be reverse-engineered individually.

The algorithm is a discrete analog of the ODE method presented in [58] (see Chapter 2.3).
We briefly remind the reader of the general flow of their method: first a particular solution p
to the problem is obtained and then the family of homogeneous solutions, H, is constructed.
Then any solution to the problem is of the form p + h, for some h ∈ H.

6.2 An Algebraic Reverse-Engineering Algorithm

In Table 6.1 are the steps for an algorithm given one time series of discrete states.

Consider the set of time points in T ⊂ kn. The algorithm constructs an interpolating

Brandilyn S. Stigler Chapter 6. An Algebraic Approach 35

polynomial, together with a set of vanishing polynomials on T . First we consider the set V =
T\{st}, which can be viewed as an affine variety in kn. The Ideal-Variety Correspondence
provides a way to associate an ideal to V , namely the ideal I = I(V) of polynomials that
vanish on V .

If we construct one interpolating polynomial fi for each node, then the set

For each node j, we construct one local function fj that maps each time point si to the
corresponding entry si+1,j of the next time point. So (f1, . . . , fn) is one such PDS that
interpolates the time points in T . It follows that the polynomial fj + h is identical to fj as
a function on T , for any vanishing polynomial h ∈ I. Therefore, the set

(f1, . . . , fn) + In := {(f1 + h1, . . . , fn + hn) : hi ∈ I}

represents all PDSs that fit T . The task is then to select a minimal polynomial dynamical
system from this set, which we discuss later in the section.

Let BM-SEP be the BM algorithm where only the set of separators is returned. Recall that
the BM algorithm, described in Chapter 4.3, computes separators for a set {s1, . . . , sm} of
points in kn. Each separator is a polynomial ri(x1, . . . , xn) and is associated to a point si;
that is, ri(si) = 1 and ri(sj) = 0 for all other points sj. So a polynomial f that maps points
si to corresponding values bi can be written as

f(x1, . . . , xn) =
m∑

i=1

birj(x1, . . . , xn). (6.1)

When computed, each separator is reduced with respect to the Gröbner basis G of I(V). In
fact, an interpolator is also reduced if written as in Equation 6.1. Therefore, we say that a
PDS F = (f1, . . . , fn) is minimal if each fi is reduced with respect to G.

We illustrate the algorithm with a small artificial gene network S3 = ({x, y, z},F3, F). The
elements of F3 can be interpreted as the states increase in gene expression (1), no change in
expression (0), and decrease in expression (-1). Consider the following time series of state
transitions for three genes, labeled x, y, and z:

Time x y z
1 -1 -1 -1
2 1 0 -1
3 1 0 0
4 0 1 1
5 0 1 1

Take
V = {(−1,−1,−1), (1, 0,−1), (1, 0, 0), (0, 1, 1)}

Brandilyn S. Stigler Chapter 6. An Algebraic Approach 36

Figure 6.1: Dependency graph and state space for S3.

x1x2

x3
 0 0 0

 0 1 1

 0 0 1

 0 1 0

 0 1 2

 0 0 2

 1 0 0

 1 0 1

 0 2 0

 0 2 1

 0 2 2

 1 0 2 1 1 0

 1 1 1 1 1 2

 1 2 0

 1 2 1

 1 2 2

 2 0 0

 2 0 1

 2 0 2 2 1 0

 2 1 1 2 1 2

 2 2 0

 2 2 1

 2 2 2

and assume that all computations will be performed under the grevlex ordering with x >
y > z. Using the BM-SEP algorithm, the computed separators associated to each point are

r1(x, y, z) = −z2 − y − z

r2(x, y, z) = y − z

r3(x, y, z) = −z2 + 1

r4(x, y, z) = −z2 − z

One can verify that these polynomials are in fact separators of the points in V . Consider the
set of values {1, 1, 0, 0} corresponding to the first column of data; that is, the set of states
for gene x. Then we write

f1(x, y, z) = 1 · r1(x, y, z) + 1 · r2(x, y, z) + 0 · r3(x, y, z) + 0 · r4(x, y, z)

= −z2 + z.

Computing the other two polynomials in this way, we get

f1(x, y, z) = −z2 + z

f2(x, y, z) = z2 − z + 1

f3(x, y, z) = −z2 + y + 1.

While the algorithm REV-ENG does not output the Gröbner basis of the ideal, it is still
computed by BM-SEP and so we include it here for the purpose of illustration.

G = GB(I(V)) = {x + y − 1, yz − z2 + y − z, y2 − z2 + y − z, z3 − z}.
Notice that if we add a polynomial multiple of any element of G to one of the fi produces
another interpolating function.

6.3 Complexity Analysis of REV-ENG

We include the steps of the algorithm REV-ENG for ease of explanation.

Brandilyn S. Stigler Chapter 6. An Algebraic Approach 37

1. DataPoints := T\{st}
2. Sep := BM-SEP(DataPoints, t-order)

3. for each i = 1 . . . n

4. Values := {s2i, ..sti}
5. fi :=

∑t−1
j=1 ValuesjSepj

6. endfor

Let t be the number of time points, n the number of nodes, and p the characteristic of the
field k.

Line 1. Constructing the DataPoints list takes O(nt) time.

Line 2. As stated in [4], this step requires

O(t2(g(t, n) + t)(log p)2 + t2n2)

time, where g(t, n) is O(t
n−1

n) ([13]). Since g is sublinear in t, the worst-case complexity
of this step is quadratic in the number of variables and cubic in the number of data
points ([48]).

Line 4. To construct the set Values requires θ(t) time.

Line 5. Since there are θ(t) separators, construction of each fi requires θ(t) time.

Line 3-6. Execution of the for loop requires θ(nt) time.

In summary, the worst-case complexity of REV-ENG is

O(n) + O(t2(g(t, n) + t)(log p)2 + t2n2) + O(nt).

In practice, n À t and so the complexity is dominated by the quadratic term in n.

6.4 Extensions of the General Algorithm

The algorithm REV-ENG is designed to compute a minimal PDS given a time series of
discrete states, where the minimality condition is subject to a term order. From this PDS,
the connectivity and dynamics can be inferred from the dependency graph and state space.
One drawback of the algorithm is its dependence on a term order, in that an artificial
relationship is imposed on the nodes of a system by way of the variable order. As we saw

Brandilyn S. Stigler Chapter 6. An Algebraic Approach 38

in Chapter 4.3, the normal form of a polynomial can be different for different choices of
a term order. More importantly, the dependency graph of a PDS can change for different
choices of a term order, thereby affecting the process of inference. In this section we present
a modification of REV-ENG to counteract this dependency. We also introduce two other
modifications of the general algorithm to account for multiple time series, including those
from perturbations (knockouts) of the system.

In applications, it may be the case that some information is known about the wiring diagram
of a biological system of interest. This information may simply be the identification of
interaction between nodes of the system, but may also include detailed information about
the strength and type of interaction. The knowledge of interaction can be incorporated
into the reverse-engineering process by specifying a variable order. A variable order can be
assigned for each node x in the following way: the variables that are adjacent to x are ordered
least and the rest of the variables are ordered greatest. Then a lexicographic or elimination
ordering can be used. As we saw in Chapter 4.3, computations using a lexicographic order
will result in normal forms that are in terms of the variables ordered least and potentially
of high degrees.

The following algorithm makes use of this capability and takes as input one time series and
a set of variable orders.

REV-ENG-D: Algorithm for one time series and fixed variable orders.

Input: T = {s1, . . . , st} time series, VOrder = set of variable orders,
t-order = term order

Output: F = PDS for T
Algorithm:

DataPoints := T\{st}
TOrder := {(t-order with vo) : vo ∈ VOrder}
for each i = 1 . . . n

Sep := BM-SEP(DataPoints, TOrderi)
Values := {s2i, ..sti}
fi :=

∑t−1
j=1 ValuesjSepj

endfor
return PDS F = (f1, ..fn)

As mentioned above, fixing a term order imposes relations on the variables. Through the last
example, we saw that the variable order can be chosen appropriately so that the dependency
graph of the reverse-engineered PDS is similar to a given wiring diagram. In the situation
where no information about the wiring diagram is known, then a default variable order is
used by the algorithm REV-ENG. However, it would be advantageous to be able to make
inferences about the structure and dynamics of a system for different choices of variable
orders. The algorithm REV-ENG-R produces a PDS for m random variable orders, for a

Brandilyn S. Stigler Chapter 6. An Algebraic Approach 39

fixed value of m. A slightly modified version of this algorithm was proposed by Allen et
al. in [10], in which only a wiring diagram is constructed from the data. We extended the
algorithm to construct a full PDS.

REV-ENG-R: Algorithm for one time series and random variable orders.

Input: T = {s1, . . . , st} time series, m = #variable orders, t-order = term order
Output: F = PDS for T
Algorithm:

DataPoints := T\{st}
V = n× n matrix
for each c = 1 . . . m

randomvo = random variable order
Sep := BM-SEP(DataPoints, t-order with randomvo)
for each i = 1 . . . n

Values := {s2i, ..sti}
fi :=

∑t−1
j=1 ValuesjSepj

row V [i] = supp(fi)
endfor

endfor
REV-ENG-D(T , V , t-order)

return PDS F = (f1, ..fn)

Up to this point, we have only discussed reverse engineering from a single time series. In
general any one time series will vastly underdetermine a system. Incorporating information
from several experiments is vital for making inferences, especially when those experiments
correspond to perturbations of the system. The last algorithm accepts multiple time series,
where the time series may be wildtype time series, those collected from a system operating
under a normal conditions, or knockout time series, those corresponding to a perturbation
in which the interactions of one node of a system are blocked or “knocked out.”

REV-ENG-M: Algorithm for multiple time series.

Brandilyn S. Stigler Chapter 6. An Algebraic Approach 40

Input: WT = {wt1, .., wtl} set of wildtype time series,
KO = {(j, koj) : j ∈ A ⊂ P(N)} set of knockout time series with indices,
t-order = term order

Output: F = PDS for T
Algorithm:

for each i = 1 . . . n
Data = WT

⋃
(KO\{(i, koi)})

DataPoints = WT
⋃

(KO\{(i, koi)}) minus last time point in each series
Sep := BM-SEP(DataPointsi, t-order)
Values := {ski : k > 1, sk = (sk1, . . . , ski, . . . , skn) ∈ Data}
fi :=

∑
j∈V alues ValuesjSepj

endfor
return PDS F = (f1, ..fn)

All of the algorithms have been implemented in Macaulay2 ([28]) and a toolbox for building
PDSs from discrete time series data is currently under development with Michael Stillman,
one of the authors of Macaulay2. A web-based version of the algorithms is available at [22].

6.4.1 Complexity Analysis

Let t, n, and p be as above, and let m be the number of variable orders.

REV-ENG-D

We have already analyzed the complexity for all steps, except for construction of the set
TOrder. Its construction requires O(nm) time. Overall, this algorithm has worst-case com-
plexity of

O(nt) + O(nm) + O(n)[O(B) + O(t) + O(t)]

= O(nt) + O(nm) + O(nB)

where O(B) is the complexity for the BM-SEP algorithm as reported in Section 6.3. Since
O(nB) is the dominating term, REV-ENG-D is cubic in both n and t.

REV-ENG-R

The construction of the matrix V is O(n2). Creating a random variable order requires O(n)
time, as well as updating row i of V . Therefore, this algorithm has worst-case complexity of

O(nt) + O(n2) + O(m)[O(n) + O(B) + O(n)(O(t) + O(t) + O(n))] + O(RD)

= O(nt) + O(nm) + O(B(n + m)) + O(mnt) + O(mn2)

Brandilyn S. Stigler Chapter 6. An Algebraic Approach 41

where O(RD) is the complexity for the REV-ENG-D algorithm. In practice O(n) = O(m)
and as above, the complexity of REV-ENG-R is dominated by O(nB).

REV-ENG-M

Here we assume that the maximum length of any time series is n data coming from experi-
ments will typically have fewer time points than variables. Construction of the sets Data and
DataPoints requires about the same number of steps, namely O(n2(l + |A|)), where |A| indi-
cates the number of knockout time series. Computation of the set Values takes O(n(l + |A|)
time. The complexity of all other steps has been previously computed. Therefore, we con-
clude that the complexity of REV-ENG-M is

O(n)[O(n2(l + |A|)) + O(B) + O(n(l + |A|)) + O(n(l + |A|))].

with O(nB) being the dominating term, in practice.

In summary, the worst-case complexity of each algorithm is dominated by O(nB), where
O(B) is known to be cubic in t and quadratic in n.

6.5 Some Theoretical Considerations

In this section we provide conditions for determining if the first part of the Reverse-Engineering
Problem can be solved; that is, when the dependency graph of a constructed PDS contains
all known interactions.

Suppose we are given a time series T = (s1, . . . , st) and a wiring diagram (W,E). Consider
the variety V = {si : i < t} of all but the last time point. Let Wi = {xj : (xj, xi) ∈ E}
be the set of edges adjacent to node i in the wiring diagram. Under certain conditions,
the elements of Wi will be standard monomials and thus will have a chance to be in the
support of some polynomial, in particular the interpolator for node i. If the variables in
Wi are ordered least, then either a lexicographic or elimination ordering may be used in the
reverse-engineering algorithms to increase the likelihood of the desired variables appearing
in the i-th interpolator.

Proposition 1. Let X = {x1, . . . , xn} and G be a Gröbner basis for an ideal I ⊂ k[X] with
respect to a fixed term order > and let W ⊂ X. Suppose that for every x ∈ W there is m > 1
such that xm ∈ LT (G) and for every y ∈ X\W , we have y ∈ LT (G). Then W ⊂ SM(G).

Proof. Take x and y as in the statement of the proposition. Recall that LT (G) is the set
of leading terms of the elements of G and SM(G) the set of standard monomials for I with
respect to G. If y ∈ LT (G), then y is not in the set of standard monomials. If xm ∈ LT (G)

Brandilyn S. Stigler Chapter 6. An Algebraic Approach 42

for m > 1 but not for m = 1, then xm′
is a standard monomial for every m′ < m; in

particular x is a standard monomial. Therefore W ⊂ SM(G).

If the support of an interpolator fi is contained in the set Wi of variables adjacent to a fixed
node i, then all edges identified by the function are correct. It may be the case, however,
that not all known edges have been identified, given the data. If supp(fi) (Wi, then more
data points are needed to infer the missing edges (see [36] for more details).

Proposition 2. Let V be a variety and G be a Gröbner basis for the ideal of points in V .
If W ⊂ SM(G) and |W | = |V | − 1, then supp(f) ⊂ W for all nonconstant f ∈ k[x].

Proof. Since |V | = |SM(G)|, then if W has one less element than V , it must be that
W contains all standard monomials 6= id. Therefore, supp(f) ⊂ W for any nonconstant
polynomial f ∈ k[x]/I(V).

Given a system, the data derived from the system can determine local properties of its wiring
diagram. Specifically if there is a node i that is constant on at least all but the last time
point, then that node will have no outgoing edges since the variable xi will not appear in
the normal form for any polynomial under any term order. Similarly if the product of two
columns is constant on at least all but the last time point, then xixj is not a standard
monomial for any term order.

Proposition 3. Let V (kn be a variety and G be a Gröbner basis for I(V). Suppose there
is a coordinate i such that for every a ∈ V , πi(a) = c for some c ∈ k. Then for every
f ∈ k[x1, . . . , xn], NF (f, G) does not contain the variable xi.

Proof. Recall that πi is the mapping of an n-tuple onto its ith coordinate. Suppose there is
i such that πi(a) = c some c ∈ k. This holds iff xi − c ∈ I = I(V). This element is also in
G by definition of a Gröbner basis: there is g ∈ G such that LT (g) divides LT (xi − c) = xi.
Then it follows that xi − c ∈ G iff LT (xi − c) = xi is not a standard monomial. Since the
standard monomials form a basis for k[x1, . . . , xn]/I, then supp(NF (f,G))

⋂{xi} = ∅ for
any f ∈ k[x1, . . . , xn].

Proposition 4. Let V (kn be a variety and G be a Gröbner basis for I(V). Suppose there
are coordinates i, j such that for every a ∈ V , πi(a)πj(a) = c for some c ∈ k. Then for every
f ∈ k[x1, . . . , xn], NF (f, G) does not contain the monomial xixj.

Proof. Suppose that for i, j fixed, xixj(a) = c for all a ∈ V . Let I = I(V). Then xixj ∈
LT (I) iff xixj 6∈ SM(G), the standard monomials for I with respect to G. As xixj is not a
standard monomial, then xixj /∈ supp(NF (f,G)).

When a variable is constant, no information about which other variables it affects can be
extracted from a model. Especially if the constant variable is thought to have a substantial

Brandilyn S. Stigler Chapter 6. An Algebraic Approach 43

impact on the regulation of the system, an experiment in which this variable is changing
should be proposed.

Chapter 7

Applications and Results

Here we focus on the application of the algorithms described in the previous chapter to
two simulated networks. The first application serves to validate the algebraic methods
on a published Boolean network for a gene regulatory network in the fruitfly Drosophila
melanogaster. The second application is for discovery purposes, in which a simulated, but
sufficiently complex system is investigated. We close the chapter with a description of an
ongoing project to apply the algebraic methods to a real GRN in the yeast Sacchromyces
cerevisiae.

7.1 Application to Simulated Data for Validation

When designing modeling tools, it is important to test them on systems for which much is
known so that the amount of information that is identified by the model can be measured. To
this end, we validated our method by applying it to a simulated dataset from a well-studied
network of segment polarity genes in D. melanogaster embryo. In [9] a Boolean model was
proposed for the network of 5 genes and their associated proteins. The network consists of a
ring of 12 interconnected cells, grouped into 3 parasegment primordia, in which the genes are
expressed in every fourth cell. Our goal was to reverse-engineer the network of interactions
between molecular species, as well as the dynamics through identification of additive and
nonadditive interactions. Note that for our purposes, it is irrelevant whether the Boolean
model is indeed correct.

The genes represented in the Boolean model are wingless (wg), engrailed (en), hedgehog
(hh), patched (ptc), and cubitus interruptus (ci). Also included are the proteins encoded
by these 5 genes, as well as 2 other compounds (smoothened protein, denoted by SMO, and
sloppy-paired proteins denoted as one compound SLP), constituting 15 distinct molecular
species. Figure 7.1 depicts the wiring diagram of connections in the Boolean model.

44

Brandilyn S. Stigler Chapter 7. Applications and Results 45

Figure 7.1: The graph of interactions in one cell of N with cellular interactions, as presented
in [38]. Ovals = mRNAs, rectangles = proteins. SLP denotes a protein which is believed to
activate the segment polarity genes depicted in the model (Cadigan et al., 1994). PH is a
protein complex formed by the binding of HH to PTC (Ingham and McMahon, 2001). The
protein SMO is encoded by the gene smoothened. Because its transcription is not regulated
by any molecular species in the model, smoothened is not represented.

hh
hh

ci

ptc

hh
en
wg
WG

PH

PTC

SMO

HH

CIR
CI
CIA

EN
SLP
WG
 WG

HH
 HH

Cell
Neighbor
 Neighbor

Brandilyn S. Stigler Chapter 7. Applications and Results 46

In the graph, nodes represent mRNAs and proteins. An edge between nodes indicates that
the node at the tail is involved in the regulation of the head node. For example, an edge
A→B between protein nodes A and B implies that A regulates the synthesis of B, whereas
an edge A→b from protein A to mRNA b implies that A regulates the synthesis of b, that
is, the transcription of gene b. Note that edges denote the existence of regulation, not the
type, whether activation or inhibition. Table 7.1 lists the polynomial representations of the
Boolean functions that accompany the model in Figure 7.1. The Boolean functions, given
in polynomial form, can be found in Table 7.1.

Table 7.1: Polynomial representations of the Boolean functions in N , together with the
legend of variable names, as given in [38]. The subscript i denotes a particular cell of the
ring.

F1 = x1

F2 = (x15 + 1) (x1x14 + x2 (x1 + x14 + x1x14) + x1x2x14 (x1 + x14 + x1x14))
F3 = x2

F4 = (x16 + x17 + x16x17) (x1 + 1)
F5 = x4

F6 = x5 (x15 + 1)
F7 = x6

F8 = x13 ((x11 + x20 + x11x20) + x21 + (x11 + x20 + x11x20) x21) (x4 + 1)
(x13 (x11 + 1) (x20 + 1) (x21 + 1) + 1)

F9 = x8 + x9 (x18 + 1) (x19 + 1) + x8x9 (x18 + 1) (x19 + 1)
F10 = (x8 + x9 (x18 + 1) (x19 + 1) + x8x9 (x18 + 1) (x19 + 1)) (x20 + x21 + x20x21)
F11 = x8 + x9Y + x8x9Y + 1 + x20 + ((x8 + x9Y + x8x9Y + 1) x20) + x21

+ (x8 + x9Y + x8x9Y + 1 + x20 + (x8 + x9Y + x8x9Y + 1) x20) x21

F12 = x5 + 1
F13 = x12

F14 = x13 ((x11 + x20 + x11x20) + x21 + (x11 + x20 + x11x20) x21)
F15 = x13 (x11 + 1) (x20 + 1) (x21 + 1)

SLPi wgi WGi eni ENi hhi HHi ptci

x1 x2 x3 x4 x5 x6 x7 x8

PTCi PHi SMOi cii CIi CIAi CIRi

x9 x10 x11 x12 x13 x14 x15

WGi−1 WGi+1 HHi−1 HHi+1 hhi−1 hhi+1 Y
x16 x17 x18 x19 x20 x21 (x18 + 1) (x19 + 1)

The Boolean model, denoted by N , consists of 60 nodes: 15 mRNAs and proteins indexed by
each of the four cells. Each cell of the ring is assumed to have the same network of segment
polarity genes. For the purpose of reverse engineering, we consider the network as containing

Brandilyn S. Stigler Chapter 7. Applications and Results 47

15 nodes, representing one of the four cells, and each node has an initial configuration for
each cell. To account for intercellular connections, we include 6 extra variables. We focus
our efforts on inferring the wiring diagram for the 15 variables from time series generated by
the Boolean network, though we also report various findings in relation to the dynamics.

We used the Boolean initializations for the wildtypes published in [9] for the 5 genes and
generated times series using the Boolean functions. All of the initializations terminate in
steady states when evaluated by the Boolean functions in Table 7.1, as reported by [9].
Using these data, we applied the REV-ENG algorithm with the term order grevlex with
x1 > · · · > x21, resulting in the following PDS:

f1 = x1

f2 = x2

f3 = x2

f4 = x16

f5 = x4

f6 = x5

f7 = x12 + 1

f8 = x9 + x11 + x16 + x17 + x18 + x19

f9 = x8 + x17

f10 = x20 + x21

f11 = x8 + x17 + x20 + x21 + 1

f12 = x5 + 1

f13 = x12

f14 = x13 + x17

f15 = x17

Quick inspection reveals that our model from the general reverse-engineering algorithm pro-
duces the following results: 16 of the 44 edges were correctly identified with 10 false positives,
a detection rate of 36%. We note here that the Boolean functions F1, F3, F5, F7, F12, and F13

were completely identified (40% detection rate). The remaining 9 functions were inferred to
be linear, whereas the actual Boolean functions are of higher degree, ranging from 2 to 6.

The size of the state space is 221, involving multiple components. Any single trajectory in
that space vastly underdetermines the network. Therefore we include knock-out time series
for each gene in the network. Altogether we used 24 time series: one for the wildtype for
each cell and one for each gene knock-out for each cell. As the length of each time series is
at most 8 time steps, constituting a total of 127 time points, the data still comprises only a
minuscule fraction of the state space, less than (6.06× 10−3)% of 221 total states.

Brandilyn S. Stigler Chapter 7. Applications and Results 48

7.1.1 REV-ENG-M

To simulate an experiment in which node xi representing a gene is knocked out, we set its
corresponding transition function fi in Table 7.1 to 0 and kept all other functions the same.
When applicable, we also set the corresponding functions in neighboring cells equal to 0.
For example, to simulate the knock out of the hedgehog gene, we set f6 = 0, f20 = 0, and
f21 = 0, where f20 and f21 are the functions associated to the gene in neighboring cells.
We also set the i-th entry, corresponding to the initial mRNA concentration for xi, in the
wildtype initialization to 0. For each knock-out, we generated a new time series, which also
ended in a steady state, by iteration of the functions given the modified initializations.

For this experiment, we used the same term order as above. An application of the REV-
ENG-M algorithm for multiple time series and one term order, resulted in increased true,
as well as false positives. The algorithm detected 51 total edges, where 37 were correctly
identified. The Boolean functions F1, F3, F5, F7, F12, and F13 have been correctly identified
using this one term order. The functions F4 and F6 cannot be completely identified since
they have terms in the Gröbner basis of the ideal of points: these terms cannot be identified
with the given data. This point will be discussed in greater detail in the next section. What
remains to be done is to identify the connectivity relations and dynamics for the other 7
functions.

As we saw in Chapter 4.3, the effect of a variable ordering is that the “cheaper” variables,
those that are ordered least, are used preferentially in computing interpolators. Since we aim
to reverse-engineer the wiring diagram of the Boolean model, it is especially important not
to impose an artificial ordering on the variables. In order to counteract this dependency, we
used the algorithms REV-ENG-M, together with REV-ENG-D for fixed variable orders. We
also applied REV-ENG-M/REV-ENG-R to test the effectiveness of using random variable
orders.

7.1.2 REV-ENG-M/REV-ENG-D

For the REV-ENG-M/REV-ENG-D experiment, we used the following four variable orders
to define four grevlex term orders:

x1 > · · · > x21 (default order)
x1 < · · · < x21 (reverse order)

and two other orders making the “interior” variables greatest and least. The dependency
graph of the PDS that is output has 41 edges, where 33 are common to the wiring diagram
of the Boolean model. If we allow for partial detection, then the results improve slightly. In
3 of the 4 variable orders used, 46 edges are in the dependency graph, where 37 are correctly
identified (see Figure 7.2). For this experiment, we provide a detailed account of some of
the false positives and true negatives.

Brandilyn S. Stigler Chapter 7. Applications and Results 49

Figure 7.2: The dependency graph of the PDS built using REV-ENG-M/REV-ENG-D with
the wildtype and knockout time series, as presented in [38]. Solid lines are links that appear
for all 4 variable orders, whereas dashed lines are links that appear for 3 of the 4 variable
orders.

hh

hh

ci

ptc

hh
en
wg
WG

PH

PTC

SMO

HH

CIR
CI
CIA

EN
SLP
WG
 WG

HH
 HH

Cell
Neighbor
 Neighbor

Brandilyn S. Stigler Chapter 7. Applications and Results 50

In determining which biomolecules affect the transcription of the gene hh, represented by
function 6, we found a polynomial function that involves fewer terms than its counterpart in
the Boolean model. Specifically, the function f6 = x5 is in terms of the variable representing
EN only, instead of both EN and CIR proteins. It correctly interpolates all time points in
the data generated by the corresponding Boolean function F6 = x5(x15+1). The discrepancy
lies in the fact that x15 + 1 is an element of the Gröbner basis G for the ideal of points.
However, links whose effects are not reflected in the given data are not detectable by any
reverse-engineering method unless prior information about the link is given. In this case,
the variable 15, representing the protein CIR, always takes on the value 1 on all data sets,
and its effect on EN is not detectable; we saw this phenomenon in Chapter 6.5. Similarly,
the Boolean function F4 for en also contains such terms that are in G, which accounts for
lack of regulation detection.

In f10 for the protein complex PH, we detected 5 of the 6 of the appropriate molecules as
regulators and failed to identify regulation by x9 = PTC. For every variable order, terms of
the form x9xj + xj or x9xj, for nearly half of the variables xj, can be found in the Gröbner
basis of the ideal of points for f10. We also identified x10 as its own regulator. Here we
refer to the network to understand the discrepancy. PH is a protein complex formed by the
binding of HH from adjacent cells to the receptor PTC. In [9] the authors assumed in their
model that this binding occurs instantaneously since it is known that the reaction occurs
faster than transcription or translation (which they also presuppose to require 1 time unit
for completion). Therefore, we attribute the misidentification to the binding rate not being
properly represented in the data and call this an indirect effect. Similarly for the function
F11, we detected an indirect effect from extracellular hh, as well as the correct direct effects
from 3 other molecules.

Next we focus on reverse-engineering the dynamics of the Boolean network. As pointed out
above, the functions in the Boolean model contain terms that evaluate to 0 on all input data,
and so we are unable to detect the corresponding relationships. To compare the dynamics
predicted by our model with the Boolean network, one approach is to compute the normal
forms of the polynomials in Table 7.1 with respect to the ideal of time points. As the
reduction depends on a term order, for each choice of term order, the normal forms of the
transition functions in the Boolean network and the local functions reverse-engineered PDS
agree exactly. However, this observation occurs for the following reason.

Let D = {(a1, b1), . . . , (at, bt)} be a collection of input-output pairs and suppose that f, g
are two polynomials that interpolate D. For each 1 ≤ i ≤ t, f(ai) = g(ai) = bi. Then the
polynomial f − g vanishes on all ai and f − g ∈ I(a1, . . . , at). Since reduction with respect
to a Gröbner basis is unique, we have that f and g are equivalent after reduction by being
equal on the data.

The dependence of the algebraic methods on a term order may result in the particular form
of the reverse-engineered functions to be not directly interpretable with respect to regulatory
relationships. Here we extract information about network dynamics from terms common to

Brandilyn S. Stigler Chapter 7. Applications and Results 51

the reverse-engineered functions for the multiple term orderings used.

For each term ordering, the model constructed only from the wildtype is linear, whereas
using the 4 term orders mentioned above, we found 19 terms consisting of a single variable,
in which 10 are true positives. These terms, which we call “single interactions,” account for
77% of the linear terms in the Boolean network for one cell of the ring. However, the degrees
of the polynomial functions in N range from 1 to 6. Incorporating knock-out data yields
more comprehensive results, highlighted in the following discussion.

In all models built from the knock-out time series, there are 18 linear terms. Of these, 12
are in one cell of N , accounting for 92% of the linear terms present. Specifically, the linear
terms in the functions for hh and for all the proteins, excluding the complex PH and the
transcriptional forms CIA and CIR of the protein CI, were completely identified. In three of
the four models, we found 21 linear terms, of which 12 are in one cell of the Boolean model.

As distinct from the models built from wildtype data only, there are nonlinear terms in
the models from the knock-out data. These nonlinear or cross terms can be considered as
“cooperative interactions” between nodes. For the protein SMO, we found that its synthesis
depends on the cooperative interaction between the genes ptc and extracellular hh. Specif-
ically, the terms x8x20 and x8x21 appear in the polynomial function for SMO for all term
orders used, of which both appear in the corresponding Boolean function. In the function
describing transcription of wg, the term x1x14 is common to all models and x2x15 appears in
three of the four models. Both of these products are terms in the Boolean function for wg.
In fact, we found 3 nonlinear terms common to all models. In three of the four models, there
are 11 nonlinear terms, of which 8 are in N , accounting for 27% of the quadratic terms.
While N contains polynomial functions of degree as high as 6 involving 77 superquadratic
terms, our method did not find interactions of degree higher than 2. A summary of these
results is displayed in Table 7.2.

Now we apply REV-ENG-M/REV-ENG-R to test the predictions using random variable
orders.

7.1.3 REV-ENG-M/REV-ENG-R

To perform this analysis, we first computed 20 and subsequently 100 lexicographic term
orders with random variable orders. The purpose in fixing the term order is the following:
since we are mostly interested in reconstructing the wiring diagram for the Boolean model
N , choosing a lex ordering will favor the least number of variables in the normal forms of
the interpolators. For each of the two experiments, we computed the matrix V , whose en-
tries (i, j) indicate the number of times a variable xj appeared in an interpolator fi. Using
row j of the matrix, we inferred a variable order for fi. Using these orders, we defined a
grevlex and a lex term ordering and computed local functions for the remaining variables
x2, x8, x9, x10, x11, x14, and x15. Altogether we computed local functions for the seven vari-

Brandilyn S. Stigler Chapter 7. Applications and Results 52

Table 7.2: Performance of dynamics detection for one cell of N , as given in [38]. Single
interactions = degree-one terms; cooperative interactions = degree-two terms. 4 TO denotes
results for all 4 term orders used, whereas 3 TO denotes results for any 3 of the 4 term orders
used.

Total single interactions in N 13
Total cooperative interactions in N 30

Single interactions 4 TO 3 TO
Total predicted 18 21
True positives 12 12
False positives 6 9

Cooperative interactions 4 TO 3 TO
Total predicted 3 11
True positives 3 8
False positives 0 3

ables using the four defined term orders, which we denote by lex20, lex100, grevlex20, and
grevlex100. Since the dependency graph of a polynomial dynamical system is defined by the
support of each local function, we report our findings in this context.

In all four orders, supp(f2) = supp(F2) = {x1, x2, x14, x15}. That is to say that the REV-
ENG-M/REV-ENG-R method identified all 4 incoming edges for x2. In five of the ex-
periments, the edges adjacent to x9 were also identified, namely supp(f9) = supp(F9) =
{x8, x9, x18, x19}, and in the lex100 experiment, supp(f9) = {x8, x9, x11, x20, x21}. Further,
in all experiments, supp(f14) = supp(f15). Since the support for these two variables is the
same, we only consider one of them for the remaining analysis. Therefore, we focus our
attention on the variables x8, x10, x11, and x14.

Using a grevlex order, as we increase the number of variable orders, the number of correct
edges remains the same when compared to the PDS constructed from the wildtype and
knockout time series under 1 grevlex order. However, the total number of edges predicted
decreases as we add more orders. The advantage of incorporating multiple term orders seems
to be that the number of false positives decreases, which supports the hypothesis that the
use of multiple orders counteracts relations imposed by the order. We find similar results
with the lex orders. Figure 7.3 illustrates the findings for the grevlex experiments.

To construct a dependency graph, we use a lexicographic ordering to minimize the number of
edges in the graph. Below is a tabular representation of the dependency graph, in comparison
to that of the Boolean model.

Other results, including the effect of noise on the general algorithm, can be found in [38].

Brandilyn S. Stigler Chapter 7. Applications and Results 53

Figure 7.3: Comparison of edges predicted using 1, 20, 100 grevlex orders. a. Total number
of predicted edges. b. Number of correct edges.

Table 7.3: Comparison of the wiring diagrams of the Boolean model and the reconstructed
model, given in a tabular representation. A number in the table indicates the index of a
variable. For example, line 6 should be interpreted as “function 6 in the Boolean model is in
terms of x5, x15, and in the reverse-engineered model it is in terms of x5.” Indices in italics
represent misidentified edges.

Boolean model
f1 1
f2 1 2 14 15
f3 2
f4 1 16 17
f5 4
f6 5 15
f7 6
f8 4 11 13 20 21
f9 8 9 18 19
f10 8 9 18 19 20 21
f11 8 9 18 19 20 21
f12 5
f13 12
f14 11 13 20 21
f15 11 13 20 21

lex20
1

1 2 14 15
2
16
4
5
6

3 11 13 14 16 20
8 9 18 19
8 10 20 21

8 9 10 11 14 20 21
5
12

3 11 13 14 20
3 11 13 14 20

Brandilyn S. Stigler Chapter 7. Applications and Results 54

Figure 7.4: Comparison of number of occurrences of variables in each function over 20 lex
orderings. Variable indices are on horizontal axes and number of occurrences are on vertical
axes.

Another method to reconstruct the wiring diagram is to use the matrices V for the 20- and
100-variable-order experiments with a lex ordering. If an entry (i, j) exceeds some threshold
of the number of random orders, then we add the edge (xj, xi) to the dependency graph.
If we use a threshold of 75%, then this criterion for selecting edges produces the following
results. In both lex experiments, 18 of the 33 edges are correctly identified. Note that with
this selection process, there are no false positives. Figure 7.4 shows these results.

7.2 Application to Simulated Data for Discovery

A simulated network of 20 genes, 23 proteins, and 16 metabolites was generated in Gepasi
([1]) by Pedro Mendes, director of the Biochemical Networks Modeling Group at the Vir-
ginia Bioinformatics Institute (VBI). This network mimics the response in yeast to oxidative
stress. The network is described by a system of 100+ ordinary differential equations and
wildtype time series of 50 time points was generated from solutions of the ODEs. Seven
mutated networks were created from the original by setting to 0 the differential equation
and initialization associated to one of the 20 genes; these networks simulate the network
with a gene knockout. Similarly, time series of length 50 were generated from the mutant

Brandilyn S. Stigler Chapter 7. Applications and Results 55

networks. Each of the eight networks was subject to three perturbations of two metabolites.
A partial wiring diagram for the network, which for historical reasons we call the Claytor
network, is given in Figure 7.5. What is not included are all interactions of the type gi → pi

which signify that a gene has a regulatory affect on its own protein.

In order to use the algebraic reverse-engineering algorithms proposed in this work, we first
discretized the data using the method described in [21], which uses a graph- and information-
theoretic technique to cluster data points. This method was chosen since it can discretize
data to a prime number of states and is therefore appropriate for algebraic model over finite
fields. The data were discretized to states in F11 and ten nodes were found to be constant:
nodes 1, 3, 19, 23, 44, 45, 50, 57, 58, and 59. Therefore, we restrict our attention to the
remaining 49 nodes.

We applied REV-ENG-M/REV-ENG-R to the wildtype and knockout time series corre-
sponding to one perturbation condition: we did not use the other data since inconsistencies
arose in the state transitions after discretization. We used 20 lexicographic orders with
random variable orders; we did not use other term orders due to computational expense.

By studying the matrix V from the REV-ENG-R algorithm, we were able to detect the
following edges by choosing the variables that appeared most frequently. For this discussion,
the notation i (j) means that i is a label 1..20 for genes, 1..23 for proteins, and 1..24 for
metabolites (some labels are in fact missing for metabolites) and j is a label 1..59 representing
a variable. Below we summarize our results.

• We correctly identified nodes 6, 18, 21, and 36 as having no input.

• Genes 2, 4, and 20, as well as proteins 20 (40) and 22 (42), are regulated by gene 15
and protein 15 (35), all of which are consistent with the given wiring diagram.

• We find that genes 11, 12, 13, 14, 15, and 16 and proteins 2 (22), 4 (24), 5 (25), 11
(31), 14 (34), 15 (35), 17 (37), 21 (41), and 23 (43) regulate themselves; additionally
genes 12 and 17 are regulated by their corresponding proteins.

• Proteins 6, 10, 12, 13, and 18 are regulated by their encoding genes. Protein 19 (39)
is regulated by both itself and it corresponding gene.

• For gene 16, we also find that it is regulated by protein 15 (35), a more direct effect
than what is given in the wiring diagram.

• Metabolites 11 and 12 affect each other, as is reflected in the cycle containing both.

• Metabolites 3, 7, 13, and 17 are affected by gene 11, which currently cannot be sup-
ported from the wiring diagram.

We do not have conclusive results for nodes 5, 7-10, 27-29, 47, 48, 51, and 55. Moreover,
there are other links in the wiring diagram which cannot be supported or ruled out with the
given data.

Brandilyn S. Stigler Chapter 7. Applications and Results 56

Figure 7.5: A partial wiring diagram for the Claytor network.

Brandilyn S. Stigler Chapter 7. Applications and Results 57

Table 7.4: Reverse-engineered wiring diagram for Claytor network with 20 random lexico-
graphic orders. A line with an index in bold represents a variable that appeared in the
interpolating polynomial for every variable order used.

f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25
f26
f27
f28
f29
f30

–
15 22 35
–
15 35
24
0
32
0
22 24
11 12 31
11
12 31 32
13 22 31
13 14 22 25 27 31 52
15 18 21
9 12 16 22 31 32 35
22 37
0
–
15 35
0
11 12 13 14 22 24 25 31 35 37 52
–
22 24 31 34 35
13 22 25 31 33 37
0
31
0
0
10 11 31

f31
f32
f33
f34
f35
f36
f37
f38
f39
f40
f41
f42
f43
f44
f45
f46
f47
f48
f49
f50
f51
f52
f53
f54
f55
f56
f57
f58
f59

12 13 14 16 22 31 33
12 31
13 14 24
24 34
22 35
0
13 22 31 37
0
19 39
15 35
41 52
15 35
22 43
–
–
11
0
0
11
–
53
13 14 22 41 52 53
24 41 51 52 53
11
0
22
–
–
–

Brandilyn S. Stigler Chapter 7. Applications and Results 58

7.3 Application to Real Data for Discovery

The techniques developed in this work are being applied to a project, directed by Reinhard
Laubenbacher, Pedro Mendes, and Vladimir Shulaev at VBI, which involves computational
and theoretical life scientists and mathematicians. This project, funded by an NSF/NIH joint
initiative, is aimed at the design of a mathematical modeling framework for the investigation
of oxidative stress response in the yeast Sacchromyces cerevisiae. Oxidative stress, which
affects all aerobic organisms including humans, has been implicated in a number of human
degenerative conditions, such as Parkinson’s and cardiovascular diseases.

Laboratory experiments are being designed for the sole purpose of generating data for mod-
eling, an uncommon paradigm in life science projects. The data being collected are time
series of concentrations of mRNAs, proteins, and metabolites in wildtype yeast, as well as
yeast mutants corresponding to single gene knockouts.

The central focus of the project is on the discovery of mathematical tools that are appropriate
for the reverse-engineering of biochemical networks. Two modeling techniques will be used
in this project: a continuous method, developed by P. Mendes’ research group, where the
models are linear systems of ordinary differential equations; and a discrete method, namely
our reverse-engineering method based on PDSs. One goal is to develop modeling tools which
can integrate diverse data types. A unique feature of the project is the development of an
interface between the continuous and discrete models.

Chapter 8

Discussion and Future Work

In this dissertation, we presented a collection novel methods for reverse-engineering biochem-
ical networks given discrete time series. The methods made use of algorithmic techniques
in computational algebra, in particular Gröbner basis theory. A distinctive feature of our
approach is the ability to construct all polynomial dynamical systems that interpolate the
data.

To summarize, one PDS that fits the given time series is found. Then the set of local functions
that vanish on the data is constructed by way of a Gröbner basis which does not require
enumeration. A selection protocol based on minimality of the interpolating polynomials
is employed, where the polynomials are minimal with respect to the Gröbner basis of the
ideal of the given data points. The use of PDSs allows for each node of the system to be
reverse-engineered individually, making the method appropriate for execution on distributed
computer networks.

Because we use Gröbner bases to describe the set of all solutions, a term order must be fixed
a priori. This feature allows for certain types of biological information to be built into the
selection process. For example, information revealing the flow of interaction between two
nodes can be incorporated into an ordering of the variables, which affects the reduction by
the ideal of points. If gene A affects the regulation of gene B, then variable xA representing
A will be less than those variables not affecting B in the ordering and the reduced transition
function for B will more likely be in terms of xA than the nonaffecting variables. If there are
further restrictions on the interactions, this information may be encoded in an ordering on
the terms, such as an elimination ordering. In any case, a minimal PDS is chosen, in which
each transition function contains no terms that vanish on all data points.

The use of Gröbner bases in polynomial interpolation has also been explored in algebraic
statistics. In fact, the general algorithm outlined in Chapter 6 is very similar to that in [16].
In their article, the authors describe a theory in which algebraic geometry is applied to a
range of problems in Design of Experiments, a branch of statistics. The novelty of our work

59

Brandilyn S. Stigler Chapter 8. Discussion and Future Work 60

is the application of computational algebra and algebraic geometry to systems biology.

We demonstrated the effectiveness of inferring wiring diagrams for two different simulated
networks. Incorporating multiple types of data, such as wildtype and knockout time series,
dramatically improves the ability of the algorithms to detect correct edges. Using multiple
variable orders minimizes the number of false positives. We also provided some theoretical
results for determining when the reverse-engineering problem can be solved.

An aspect crucial to the performance of the reverse-engineering methods is the “goodness”
of the data. Areas such as Design of Experiments and system identification in engineering
have existing theoretical tools for analyzing data sets. For example, a theory of system
identifiability, described in [42], outlines criteria for determining how effective a data set will
be for the process of identification. Having a complete description of the input will only
increase the applicability of our methods to biological systems by aiding the life scientist in
designing experiments appropriate for modeling.

One goal for the future is to identify properties of data sets that make them suitable for
algebraic reverse-engineering. Some questions to be addressed are the types of data that are
appropriate for the methods, as well as the amount of data that is required for the methods
to be effective. We will also look for improvements to the algorithms, such as decreased time
complexity and scalability.

Finally we leave the reader with a look to the future from [31].

A new generation of empiricists with stronger quantitative skills and of theoreti-
cians with an appreciation for the empirical structure of biological processes will
facilitate a bright future for the application of mathematics to solving biological
problems.

Bibliography

[1] GEPASI, Available at http://www.gepasi.org.

[2] ISCB enters new era, Available at http://www.iscb.org/history.shtml, 2003.

[3] GenBank Database, Available at http://www.psc.edu/general/software/packages/
genbank/genbank.html, 2005.

[4] J. Abbott, A. Bigatti, M. Kreuzer, and L. Robbiano, Computing ideals of points, JSYMC
30 (2000), no. 4, 341–356.

[5] A. Agrawal, New institute to study systems biology, Nature Biotechnology 17 (1999),
no. 8, 743–744.

[6] T. Akutsu, S. Kuhara, O. Maruyama, and S. Miyano, A system for identifying genetic
networks from gene expression patterns produced by gene disruptions and overexpres-
sions, Genome Informatics (Tokyo) (K. Asai, S. Miyano, and T. Takagi, eds.), vol. 9,
Universal Academy Press, 1998, same as ..Identification of genetic networks by strate-
gic gene disruptions and gene orverepressions, Theoretical Computer Science 298 (2003)
235-251, pp. 151–160.

[7] T. Akutsu, S. Miyano, and S. Kuhara, Identification of genetic networks from a small
number of gene expression patterns under the boolean network model, Proceedings of
the Pacific Symposium on Biocomputing (Singapore) (A. Dunker L. Hunter R. Altman,
K. Lauderdale and T. Klein, eds.), vol. 4, World Scientific Press, 1999, pp. 17–28.

[8] , Inferring qualitative relations in genetic networks and metabolic pathways,
Bioinformatics 16 (2000), no. 8, 727–734.

[9] R. Albert and H. Othmer, The topology of the regulatory interactions predicts the ex-
pression pattern of the segment polarity genes in Drosophila melanogaster, Journal of
Theoretical Biology 223 (2003), 1–18.

[10] E. Allen, J. Fetrow, L. Daniel, S. Thomas, and D. John, Algebraic dependency models
of protein signal transduction networks from time-series data, Journal of Theoretical
Biology (2005), In press.

61

Brandilyn S. Stigler Bibliography 62

[11] R. Altman, Challenges for intelligent systems in biology, IEEE Intelligent Systems
(2001), 14–18.

[12] K. Autumn, Performance at low temperature and the evolution of nocturnality in lizards,
Integrative biology, Berkeley, University of California, 1995, 161 pages.

[13] D. Berman, The number of generators of a colength n ideal in a power series ring,
Journal of Algebra 73 (1981), 156–166.

[14] B. Buchberger, A note on the complexity of constructing groebner-bases, Computer Alge-
bra: Proceedings of EUROCAL 83 (J. A. von Hulzen, ed.), Lecture Notes in Computer
Science, vol. 162, Springer, 1983, pp. 137–145.

[15] L. Buehler, What is life?: A lifescience educational forum, Available at
http://www.whatislife.com, 2005.

[16] M. Caboara and L. Robbiano, Families of estimable terms, Proceedings of the 2001
International Symposium on Symbolic and Algebraic Computation (London, Ontario,
Canada) (E. Kaltofen and G. Villard, eds.), ACM Press, 2001, pp. 56–63.

[17] T. Chen, H. He, and G. Church, Modeling gene expression with differential equa-
tions, Proceedings of the Pacific Symposium on Biocomputing (Singapore) (R. Altman,
A. Dunker, L. Hunter, and T. Klein, eds.), vol. 4, World Scientific Press, 1999, pp. 29–40.

[18] D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms, Springer Verlag, New
York, 1997.

[19] H. de Jong, Modeling and simulation of genetic regulatory systems: A literature review,
Journal of Computational Biology 9 (2002), 67–103.

[20] P. D’haeseleer, S. Liang, and R. Somogyi, Genetic network inference: From co-
expression clustering to reverse engineering, Bioinformatics 16 (2000), no. 8, 707–726.

[21] E. Dimitrova, R. Laubenbacher, and J. McGee, Discretization of time series data, Sub-
mitted, 2005.

[22] E. Dimitrova, R. Laubenbacher, B. Stigler, and P. Vera Licona,
Polynome: Polynomial models of biological systems, Available at
http://polymath.vbi.vt.edu/rev-eng/reveng.php, 2005.

[23] D. Dummit and R. Foote, Abstract algebra, Prentice Hall, New Jersey, 1991.

[24] R. Edwards, Analysis of continuous-time switching networks, Physica D 146 (2000),
165–199.

[25] National Center for Biotechnology Information, GEO: Gene expression omnibus, Avail-
able at http://www.ncbi.nlm.nih.gov/geo, 2005.

Brandilyn S. Stigler Bibliography 63

[26] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, Using bayesian networks to analyze
expression data, Journal of Computational Biology 7 (2000), 601–620.

[27] T. Gardner, D. di Bernardo, D. Lorenz, and J. Collins, Inferring genetic networks and
compound mode of action via expression profiling, Science 301 (2003), 102–105.

[28] D. Grayson and M. Stillman, Macaulay 2, a software system for research in algebraic
geometry, Available at http://www.math.uiuc.edu/Macaulay2/.

[29] A. Hartemink, D. Gifford, T. Jaakkola, and R. Young, Using graphical models and ge-
nomic expression data to statistically validate models of genetic regulatory networks,
Proceedings of the Pacific Symposium on Biocomputing (Singapore) (R. Altman,
A. Dunker, L. Hunter, and T. Klein, eds.), vol. 6, World Scientific Press, 2001, pp. 422–
433.

[30] R. Hashimoto, S. Kim, I. Shmulevich, W. Zhang, M. Bittner, and E. Dougherty, Growing
genetic regulatory networks from seed genes, Bioinformatics 20 (2004), no. 8, 1241–1247.

[31] A. Hastings and M. Palmer, A bright future for biologists and mathematicians?, Science
299 (2003), 2003–2004.

[32] Y. Huang, Cellular regulatory network identification and metabolic engineering, Avail-
able at http://chem1.eng.wayne.edu/∼yhuang/BioModeling.htm, Research descrip-
tion.

[33] T. Ideker, T. Galitski, and L. Hood, A new approach to decoding life: Systems biology,
Annual Review of Genomics and Human Genetics 2 (2001), 343–372.

[34] A. Jarrah, R. Laubenbacher, and H. Vastani, DVD: Discrete visualizer of dynamics,
Available at http://dvd.vbi.vt.edu.

[35] H. Kitano, Systems biology: A brief overview, Science 295 (2002), 1662–1664.

[36] B. Krupa, On the number of experiments required to find the causal structure of complex
systems, Journal of Theoretical Biology 219 (2002), 257–267.

[37] R. Laubenbacher and B. Pareigis, Decomposition and simulation of sequential dynamical
systems, Advances in Applied Mathematics 30 (2003), 655–678.

[38] R. Laubenbacher and B. Stigler, A computational algebra approach to the reverse engi-
neering of gene regulatory networks, Journal of Theoretical Biology 229 (2004), 523–537.

[39] Y. Lazebnik, Can a biologist fix a radio? Or, what I learned while studying apoptosis,
Cancer Cell 2 (2002), 179–182.

Brandilyn S. Stigler Bibliography 64

[40] S. Liang, S. Fuhrman, and R. Somogyi, REVEAL, a general reverse engineering algo-
rithm for inference of genetic network architectures, Proceedings of the Pacific Sympo-
sium on Biocomputing (Singapore) (R. Altman, A. Dunker, L. Hunter, and T. Klein,
eds.), vol. 3, World Scientific Press, 1998, pp. 18–29.

[41] R. Lidl and H. Niederreiter, Finite fields, 2nd ed., Encyclopedia of Mathematics and its
Applications, vol. 20, Cambridge University Press, New York, 1997.

[42] L. Ljung, System identification: Theory for the user, 2nd ed., PTR Prentice Hall Infor-
mation and System Science Series, Prentice Hall PTR, 1999.

[43] R. May, Uses and abuses of mathematics in biology, Science 303 (2004), 790–793.

[44] H. Möller and B. Buchberger, The construction of multivariate polynomials with preas-
signed zeros, Computer Algebra, Lecture Notes in Computer Science, vol. 144, Springer,
Berlin, 1982, p. 2431.

[45] R. Morris, C. Bean, G. Farber, D. Gallahan, E. Jakobsson, Y. Liu, P. Lyster, G. Peng,
F. Roberts, M. Twery, J. Whitmarsh, and K. Skinner, Digital biology: An emerging and
promising discipline, TRENDS in Biotechnology 23 (2005), 113–117.

[46] Swiss Institute of Bioinformatics, Swiss-prot protein knowledgebase, Available at
http://us.expasy.org/sprot, 2005.

[47] D. Pe’er, A. Regev, G. Elidan, and N. Friedman, Inferring subnetworks from perturbed
expression profiles, Bioinformatics 17 (2001), S215–S224, Supplement 1.

[48] L. Robbiano, Gröbner bases and statistics, ch. Gröbner Bases and Applications, pp. 179–
204, Cambridge University Press, New York, 1998.

[49] R. Shamir, I. Bogudlov, and V. Koushnir, Genetic networks, Available at
http://www.math.tau.ac.il/∼rshamir/algmb/00/scribe00/html/lec14/.

[50] M. Sherman, Cell by cell: Moving biology toward a more predictive future, Science &
Technology Review, Lawrence Livermore National Laboratory, 2005.

[51] I. Shmulevich, E. Dougherty, S. Kim, and W. Zhang, Probabilistic boolean networks:
A rule-based uncertainty model for gene regulatory networks, Bioinformatics 18 (2002),
no. 2, 261–274.

[52] J. Tegnér, M. Yeung, J. Hasty, and J. Collins, Reverse engineering gene networks:
Integrating genetic perturbations with dynamical modeling, Proceedings of the National
Academy of Science of the United States of America 100 (2003), no. 10, 5944–5949.

Brandilyn S. Stigler Bibliography 65

[53] COMET Development Laboratory at University of Vermont, Cell and molec-
ular biology module: Prokaryotic genomics and proteomics, Available at
http://cats.med.uvm.edu/cats teachingmod/microbiology/courses/genomics/

genomics frameset.html, Online teaching module offered through Department of
Microbiology and Molecular Genetics.

[54] C. Tomlin and J. Axelrod, Understanding biology by reverse engineering the control,
Proceedings of the National Academy of Science of the United States of America 102
(2005), no. 12, 4219–4220.

[55] L. von Bertalanffy, General system theory, 3rd ed., George Braziller, Inc., New York,
1968.

[56] G. von Dassow, E. Meir, E. Munro, and G. Odell, The segment polarity network is a
robust developmental module, Nature 406 (2000), 188–192.

[57] J. Whitmarsh, The need for mathematics in biomedical research, 2005, Presentation in
the Joint Mathematics Meetings of the AMS and the MAA, AMS Special Session on
Mathematical Sciences Contributions to the Biomedical Sciences II.

[58] M. Yeung, J. Tegnér, and J. Collins, Reverse engineering gene networks using singular
value decomposition and robust regression, Proceedings of the National Academy of
Science of the United States of America 99 (2002), no. 9, 6163–6168.

Vita

A native of west Texas, Brandilyn Stigler grew up with second-generational roots in Mexico
and India. The oldest of 6 children, she is the first in her family to earn a graduate de-
gree. Following high school, she attended New Mexico State University, where she received
a B.S. and an M.S. in mathematics, as well as minors in Spanish and computer science. She
continued her education at Virginia Tech, earning a PhD in mathematics in 2005 for her
interdisciplinary work at the Virginia Bioinformatics Institute. She is currently a Postdoc-
toral Fellow at the Mathematical Biosciences Institute at the Ohio State University. She is a
member of American Mathematical Society, Association for Women in Mathematics, Society
for Advancement of Chicanos and Native Americans in Science, and Society for Industrial
and Applied Mathematics.

66

