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Abstract 

 

 Vitamin C (ascorbic acid) is one of the most essential organic compounds required by the human 

body for normal metabolic function.  Unfortunately, this valuable nutrient is not produced in the human 

body but most plants and animal can produce this molecule.  Although ascorbic acid was not isolated until 

the early part of the twentieth century, it was known that eating limes and other citrus fruits could ward off 

the affects of scurvy as early as the 1500’s.  Ascorbate serves many critical functions in plants as well as 

the human body.  In both, it works as a cofactor in the production of hydroxyproline-rich compounds and 

helps protect molecules such as proteins, lipids and fatty acids from oxidation.  Although the biochemical 

pathway in animals has been known since the 1950’s (Jackel et al., 1950), the exact process by which 

ascorbic acid is made in plants has eluded scientists.  It was shown in 1963 that the inversion of the hexose 

carbon chain, which occurs in the animal pathway, is not a possible mode of synthesis in plants (Loewus, 

1963).  As an alternative, a non-inversion pathway was proposed, which achieves ascorbic acid using D-

mannose and L-galactose as intermediates, referred to as the Smirnoff-Wheeler pathway (Wheeler et al., 

1998).  It was shown that transforming lettuce (cv. Grand Rapids and Black Seeded Simpson) and tobacco 

(cv. Xanthi) with the terminal enzyme in the animal biosynthetic pathway (GLO; L-gulono-γ-lactone 

oxidase) increases the ascorbic acid content between 4 and 7 fold.  It was also shown through feeding 

studies that wild type tobacco plants had elevated ascorbate levels when fed the animal precursor (Jain and 

Nessler, 2000).  These data suggest that at least part of the animal pathway could be present in plants, along 

with the Smirnoff-Wheeler (1998) pathway.   

To further investigate this discovery, wild type and ascorbic acid-deficient Arabidopsis thaliana 

were transformed with the glo.  Homozygous lines of these transformants were generated and the ascorbic 

acid levels were compared to the untransformed wild type and mutant plants.  Although the wild type 

plants containing glo did not show a significant increase in ascorbic acid production, all five of the vtc 

mutant lines had an increased ascorbic acid content relative to wild type level.  These data suggest that an 

alternative pathway is present in plants that does not require many of the steps in the published Smirnoff-

Wheeler (1998) pathway to produce ascorbic acid.
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AP-1     Activator protein-1  

cDNA     Complementary deoxyribonucleic acid 

Col-0     A. thaliana Columbia ecotype 

DHA      Dehydroascorbate 

DKG     Diketo-D-gluconate 

DNA     Deoxyribonucleic acid 

EMS     Ethane methyl sulfonate mutation 

ER     Endoplasmic reticulum 

GalDH     L-Galactose dehydrogenase 

GalLD     L-Galactono-γ-lactone dehydrogenase 

GalUR     D-Galacturonic acid reductase 

GDP     Guanine diphosphate 

GLO      L-Gulono-γ-lactone oxidase 

L-AsA     L-Ascorbic acid 

Leu     A. thaliana Landsberg erecta ecotype 

L-Gal      L-Galactono-γ-lactone  

L-Gul      L-Gulono-γ-lactone 

mRNA     Messenger ribonucleic acid 

NAD+     Nicotinamide adenine dinucleotide 

NADP     Nicotinamide adenine dinucleotide phospha te 

NBT      Nitroblue tetrazolium 

PCR     Polymerase chain reaction 

RNA     Ribonucleic acid 

ROS     Reactive oxygen species  

UDP     Uridine diphosphate  

vtc     Vitamin C deficient mutated locus 

WT     Wild type 


