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Extended and localized states in the periodic Anderson model
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The renormalized quasiparticle states are derived for a periodic Anderson model with a general
hybridization matrix element between conduction electrons with two degrees of freedom and f
electrons with N degrees of freedom. Only two out of N local f states form the extended quasi-

particle bands while N —2 localized states remain. As an illustration we show that the self-energy

due to the Kondo effect produces quasiparticle bands and a gap as obtained in the Kondo-boson

approach.

Since the earlier work by Martin' the puzzle regarding
the band structure of the periodic Anderson model has be-
come increasingly interesting. Recently several groups
have used either the Kondo-boson approachz or the di-
agrammatic method to derive the coherent quasiparticle
bands. But for simplicity they study the so-called SU(N)
model where both conduction electrons and f electrons
have the same number of degenerate states. And within
the mean-field theory of the Kondo-boson approach the
quasiparticle gap would be formed at Kondo temperature.

In this paper, we report the derivation of quasiparticle
bands and localized states for the periodic Anderson model
with a general hybridization matrix element Vk between
conduction electrons ktr and localized f electrons Jm.
There are total N 2J+ 1 degrees of freedom for f elec-
trons and only two for conduction electrons.

We find out that only two out of the N channels of the f
electron hybridize with conduction electrons and become
extended states. There are N —2 localized states. These
results are in agreement with the variational approach by
Rice and Ueda, s who studied the model with the simpler
hybridization matrix element.

We consider the Anderson-lattice model in the Kondo
regime, namely, where the Kondo effect is more important
than the Ruderman-Kittel-Kasuya-Yosida interaction. In
this regime, we may start with the results for the single-
impurity Anderson model and treat the intersite coupling
perturbatively. By using Dyson's equation we derive the
intersite f-electron and conduction-electron Green's func-
tions in terms of the single-ion on-site f Green s function.
The vertex correction is neglected in the derivation. The
vertex will be discussed elsewhere. To illustrate the result
we use the hybridization matrix element obtained by
Coqblin and Schrieffers for the Ce ion with J

The single-impurity f-electron Green's function can be
evaluated by using the diagrammatic method or the
functional-integral technique. 'z' We then obtain the re-

normalized conduction-electron and f-electron states,
showing a gap at zero temperature, which is ensured by
the Friedel sum rule proved by Langreth. '4 In contrast to
the mean-field theory of the Kondo-boson approach where
the gap is formed abruptly at the Kondo temperature, the
gap in our theory will be formed only at zero temperature
and it is a slowly evolving process.

We study a periodic Anderson model with a Hamiltoni-

~ dQk g Vk Vk Vgb (2)

where Vk is independent of the angle of k. Equation (2) is
used extensively in the single-impurity modeL 's

Let us first define the intersite fGreen's function,

g (Z;, ,r) - (T,X,(r)X;)—. (3)

A simple way to derive the quasiparticle bands is to con-
nect the f-electron Green's function on every site with a
conduction-electron Green's function.

Dyson's equation for the Fourier transform of g can
be easily written down; it is of the form

HA g ~kCkeCka+ g ~f+mj+mj
lr„cr mj

+ g (vk. e'" cd~, +H.c.) . (1)
Ns k,a,mg

The conduction-band dispersion is chosen to be linear in
the range from —D to +D. The projection operator on
site j, X~j, changes the localized f configuration from

~
f',Jrn) to )f ). In the Kondo limit, the bare f level has

energy af &0, and the on-site Coulomb repulsion U has
been set to infinity.

The only symmetry property of the hybridization matrix
element Vk that will be used below is

g (Rj,ta) g 8th + g g g Vk Vk, g, (kct)e " (1 —b;t)g (Rtj,ta),
Pyggyg lJ s Nl 1j Pyg~ TN C7Nl O'Nt I
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g, (ka) -(i ro —eg} (5)

%e emphasize that the vertex correction is not inlcuded in

Eq. (4).
Taking the Fourier transform of Eq. (4), we obtain

II'

g. (k)-g b ++V& g, (k~)+V&,g...(k),

where g is the single-impurity f Green's function in fre-
quency space, and the unrenormalized conduction-electron
Green's function is 1(ro) - g ~ Vg ~'g, (kyar) . (s)

S

We have used Eq. (2) in the derivation given above. I (co}
is independent of quantum number m, and it can be easily
evaluated:

I (c0) —i nhsgnr0, (9)

where

g - [(go) '+I (r0)] (7)

g ~ Vg [2b(co —sg ) .l (io)
S

Equation (6) is a matrix equation and can be easily solved.
The result is

g (k) g 6 +g g g Vf g, (kcr)[Vg (1 —y—,—)+V~ y, —,][det(1 —y)]

where the matrix element of the 2&2 matrix yis given by

y ~ g Vq g Vz ~ g, (ka') . (i2)

The renormalized conduction-electron Green's function is

simply related to g ~ (k), i.e.,

g, (kcro') -g, (kcr) b

+g, (k~) g V&,g..(k)V„'..g, (k~') . (») 7 2ppl
and P

7+ 2@i

14
(is)

element obtained by Coqblin and Schrieffers for Ce, where

Vg Vk J4x( i ) —[b )izP [I 3
' (Qg)]'

+8,—f/zC [Y3 +'i' (Qg)]'] . (17)

Vg —'i (Qg) is the 1 3 spherical harmonic function for
the wave vector k. The quantity Vk only depends on the
magnitude of k. In Eq. (17), a and P are the Clebsch-
Gordon coefficients; they are given by

&/2 i/2

Substitution of Eq. (11) into (13) yields

g, (k,oo') -g, (kyar) (1 —y)
y (k) b —Vjg g, (ka) .

N

We emphasize that, starting with the single-ion f Green's
function, only the symmetry property of Eq. (2) is used in
the derivation.

Equation (11) implies that m is no longer a good quan-
tum number for f electrons. A very important result asso-
ciated with g (k) is obtained by taking the sum,

The renormalized conduction-electron Green's function
now becomes the form

g, (k«') -b, g, (k~) -' ——Vgg . (20)

The f-electron Green's function (11) is simplified to the
formgg (k)-(N —2)g +g Tr[[i —y(k)]-'j . (iS)

In the absence of magnetic field and by using Eq. (16),
y defined by Eq. (12) is simplified to the form

(14)

Equation (15) can be used to calculate the total renormal-
ized f-electron density of states. Since the function g is
independent of k, Eqs. (7) and (15) show that there are
N —2 localized levels and two extended bands for f elec-
trons. Even if there exists a gap for the extended bands, as
an example illustrated below, the localized states will fill
the gap at finite temperatures. Thus the density of states
is similar to a highly doped semiconductor. %'e note that
the procedure used here will lead to the exact result for the
U 0 periodic Anderson model.

Equations (12) and (15) can be further simplified for
the systems with the following symmetry property

QVimVg ' -~o ' VE—a ot aa

This equation is consistent with the hybridization matrix

Vg~ V& g, (kcr)
(k)-g~ b~ '+

' —(N/2) Vgg, (kcr),

and Eq. (15) simply becomes

(2i)

To/Nh
gm &~

i a) —Tp+i (sgnro) xTO/N

+ ny/N

i ro —sf+i (sgnco)xLUV
(23)

g (k)-(N —2)g + 1~
g

-' —(N/2) Vgg, (k~)
(22)

To move forward we need the explicit form for the sin-
gle impurity f-Green's function go. Using the 1/N expan-
sion and noncrossing approximation, we have shown in
Ref. 10 that the f-electron Green's function is given by
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where nf is the f-electron occupation number. The first
term gives the low-frequency Kondo resonance. The
high-frequency charge excitation is given by the second
term. Since we are interested in the electronic states near
the Fermi surface, the second term can be safely neglected
for this purpose. Then Eqs. (7) and (9) lead to

g -T«/Na(im —To) .

The denominators of Eqs. (20) and (21) will be simply
proportional to

[(gg) '+I jg, '(ka) ——Vg

NZ . . T«Vd
(im T«)—(im —ek)—

2h
(25)

Thus we have obtained two quasiparticle bands,
r . i/2

E; -—'(~+T )+. +ak —To T«Vg
2 p

2b,
. (26)

These results agree with those of Rice and Ueda. 6

Using the approximation discussed above, the Green's
functions g, (ka) and g (k) of Eqs. (20)-(22) become
the form

(27)g, (kct)-
(im Ek+—)(im —El, )

QVkelnVk ~ T«/Nh

(k)-. b +
tm To — (im —Ek+)(im Ek )—

.(28)
and

gg (k) -(N -2) .
lN Tp

(im —ak) T«/Nh

(im —Ek+)(im —Ek )
(29)

We note that the results of Eqs. (27)-(29) also can be
obtained by making a mean-field approximation to H~ in
the Kondo-boson approach. But in mean-field theory, the
symmetry is broken and the gap is formed at the Kondo
temperature. On the other hand, in our derivation of Eqs.
(27)-(29), we have neglected the correction to the width
of the Kondo resonance; it has the form m /T«or T /To.
Yet I (m) of Eq. (9) has almost no correction. Thus the
complete cancellation of the width in Eq. (24) most likely
will not happen at temperatures of order To. Without in-

voking other higher-order processes and the charge fluc-

tuation, our approach will predict that the formation of the
gap or the buildup of the coherence is a continuous process
and not a sudden phase transition as predicted by the
mean™fieid theory.

As a consequence of the incomplete cancellation of the
Kondo width, the (N —2) localized states as shown in Eq.
(22), will fill the gap. But at T 0 K the periodicity pre-
vails and it ensures that g~ has no imaginary part at the
Fermt energy. '

Objections might be raised for using the f Green's func-
tion go from an impurity model where the unrenormalized
conduction-electron Green's function is used in calculating
the self-energy. But in fact this result is not changed by
using the renormalized conduction electronic bands of Eq.
(27). A direct calculation with g, of Eq. (27) can easily
verify this. Instead we shall give a simple physical argu-
ment. The characteristic Kondo temperature T« is deter-
mined from the ground-state energy E«af —T«
&& in(T«/D ) in the leading 1/N expansion, where the whole
band contributes in the lnD term. The difference between
the renormalized and unrenormalized bands are within a
small energy range To around Fermi level. The electronic
wave function is also renormalized by a very small factor
(T«/Nh) 'lz. Thus a very small correction is expected.

In summary, using a general form of hybridization ma-
trix element, we have derived the quasiparticle bands for
the periodic Anderson model in the Kondo regime. We
have shown that only two out of N degrees of freedom off
electrons form extended states. There are N —2 localized
states. In our theory the on site f Green's function deter-
mines all other Green's functions. The simplest approxi-
mation, by including only the Kondo effect, leads to fami-
liar coherence bands 6 and localized states. We have
found no evidence for a phase transition from an in-
coherent to coherent state, as obtained by the mean-field
theory of the Kondo-boson approach. Our theory predicts
a continuous and gradual process of building up the coher-
ence. The shortcoming associated with the perturbative
approach presented in this paper seems to be the difficulty
of consistently including the vertex correction in the
Dyson's equation. This may be relatively easy in the
Kondo-boson approach by including the Gaussian fluctua-
tion.

At the last stage of the preparation of this paper, we re-
ceived a copy of work by Z. Zou and P. W. Anderson's
prior to its publication. Essentially the same results for the
hybridization of f electrons are derived there using a dif-
ferent method.
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