
The author hereby grants to VPI & SU permission to reproduce and

to distribute copies of this thesis in whole or in part.

DEVICE INDEPENDENT PERSPECTIVE

VOLUME RENDERING USING OCTREES

by

Timothy Lee Ryan

Thesis submitted to the faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Science and Applications

©Timothy Lee Ryan and VPI & SU 1992

APPROVED: ifs,

wha A. Shaffer, Chairman

Kanll Fhe Wee Ky
Roger W. Ehrich Deborah S. Hix

February, 1992

Blacksburg, Virginia

DEVICE INDEPENDENT PERSPECTIVE VOLUME

RENDERING USING OCTREES

by

Timothy Lee Ryan

Committee Chairman: Clifford A. Shaffer

Computer Science and Applications

(ABSTRACT)

Volume rendering, the direct display of data from 3D scalar fields, is an area of computer

graphics still in its infancy. Only recently has graphics hardware advanced to a state where

volume rendering became feasible. Volume rendering requires the analysis of large amounts

of data, typically tens of megabytes. As hardware speeds increase, we can only expect the

datasets to get larger. This thesis describes a reasonably fast, space efficient algorithm for

volume rendering. The algorithm is device independent since it is written as an X Windows

client. It makes no graphics calls to dedicated graphics hardware, but allows the X server

to take advantage of such hardware when it exists. It can be run on any machine that

supports X Windows, from an IBM-PC to a high-end graphics workstation. It produces a

perspective projection of the volume, since perspective projections are generally easier to

interpret than parallel projections.

The algorithm uses progressive refinement to give the user a quick view of the dataset

and how it is oriented. If a different orientation or dataset is desired, the user may interrupt

the rendering process. Once the desired dataset and position have been determined, the

progressive refinement process continues and the image improves in quality until the greatest

level of detail is displayed.

While this algorithm may not be as fast as algorithms written specifically for dedicated

graphics hardware, its overall rendering time is acceptable. Hardware vendors who develop

X servers that take advantage of their graphics capabilities will only enhance the perfor-

mance of our algorithm. The device independence this algorithm provides is a major benefit

for people who work in an environment of mixed hardware platforms.

ACKNOWLEDGEMENTS

I would like to thank my wife Vyneta G. Ryan for her support (both monetary and emo-

tional) for the last year and a half. I could not have done it without her. I would like to

thank my parents for the examples they set for me to achieve this degree. I would like to

express my appreciation to the professors of VPI for the knowledge that they have imparted.

I would like to especially thank my advisor Cliff Shaffer for his advice and encouragement.

Finally, I thank my friends who kept me sane through this entire thing, Loretta, Kim, Bill,

Sarah, Dale, Carrie, and my best friend, Vyneta.

iv

TABLE OF CONTENTS

1 INTRODUCTION

1.1 Background 2... . eee ee ee ee

1.2 Problem Statement... 2... 0. ee ee eee ee et ee es

1.3 Goaland Approach... ... 2.2... 2 ee eee ee ee tee et ee

1.4 DataStructure ee ee ee

2 PREVIOUS WORK

3 GENERAL DESCRIPTION OF THE ALGORITHM

3.1 Preprocessing .. 2.1... ee ee ee

3.2. Viewing Algorithm ... 1... . 2. eee ee ee ee ee ee

4 DESCRIPTION OF RENDERING ROUTINES

4.1 View Positioning Routines... .. 2... 2.0.2.0. eee eee ee ee ene

4.2 Determining the Position ofa Node.2.-2+202064

4.3 Projection Of Coordinates... 1... 2.0... . eee e e e e

4.4 Compositing 0... eee ee ee ee ee ee ee

4.5 Modifications to Speed the Rendering Time

5 RESULTS AND ANALYSIS

5.1 Hardware Used 00. ec eee eee eee ee ee ees

5.2 Dataset Used ... 2... 0. ee te ee a

nan

w
o

Oo
FSF

Fe

13

13

17

20

21

24

27

28

32

CONTENTS

5.3 Performance. 0000 eee eevee eee eee ere ee eee ne

6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions 000 ce eee ee ee ee ee ee ee

6.2 Future Work-..0 ce eevee eee en eee enw ee ae

Vi

LIST OF FIGURES

3.1

3.2

3.3

4.1

4,2

4.3

4.4

4.5

o.1

Octree represented as a tree of degree eight00200. 14

Spatial representation of the octree........ ee ee tee 15

Conceptual picture of the pyramid data structure showing number of nodes

at each level for a dataset of resolution 64x 64x64 16

User interface controls .. 21... eee et et ee ee et 22

How the “Spin” and “Direction” buttons affect the viewer’s position 23

Eight regions that the view position can bein.-0. 26

Transformation matrix computation routine, continued on next figure ... 29

Rotation matrix computation routine...2.2 2020000 30

MR scan of human head... 1... 1... ee ee te ee 37

vii

LIST OF TABLES

4.1

5.1

0.2

5.3

Octant Order Table used to determine child processing order 27

Processing statistics per level of the pyramid4. 35

Percentage of time spent in rendering routines. 36

Comparison of rendering times 000 eee eee eee eee 37

Vill

Chapter 1

INTRODUCTION

1.1 Background

Volume rendering is defined by Foley et al [Fole90], as “the direct modeling of data rep-

resented as 3D scalar fields”. Direct volume rendering creates an image by converting the

data values of the volume directly into pixel contributions. This is generally a slow process,

yet is amenable to several forms of optimization. To speed image generation times, some

rendering algorithms produce a polygon mesh, or a collection of polygons that share com-

mon edges, as an intermediate step. The polygon mesh can then be displayed quickly by

dedicated graphics hardware. Volume rendering can be used in many applications including

the following.

e Visualization of fluid dynamics, such as airflow over a wing.

e Thermodynamic systems, such as heat transfer.

e Representing three dimensional volumetric functions.

e Medical imaging, such as Magnetic Resonance Images (MRI) or Computer Aided

Tomography (CAT) scans.

Such a variety of uses has made volume rendering a rapidly growing area of computer

graphics.

CHAPTER 1. INTRODUCTION

Three major approaches have been presented in the literature for volume rendering. The

first is ray tracing, or ray casting [Levo90]. In ray tracing, a ray is cast from the viewer’s

eye position through each screen pixel and then through the volume. Points or regions that

a ray passes through contribute to the color and opacity of the pixel corresponding to that

ray. This approach can be optimized by performing calculations for a ray only until the ray

reaches some opacity threshold (making it opaque) or the ray exits the volume. The second

approach to volume rendering is to draw the voxels (three dimensional pixels) as clouds

of points, or small gausian dots [Max90]. Areas of the volume that have more substance,

receive more points or dots thus making them more opaque. Areas that are empty receive

few or no points or dots and therefore appear transparent. The third approach to volume

rendering is to transform the volume into the viewing coordinate system and project the

data onto the screen [Wilh91]. A region when projected onto the screen contributes to all

pixels that it covers. All regions are processed in turn, either from back to front or from

front to back.

Combinations of these three approaches are common. For example, ray tracing can

be used to render semi-transparent density clouds. In another example, surfaces can be

projected and then rays cast only through the pixels covered by a surface.

Volume rendering algorithms can also be categorized by how they traverse the volume

dataset: image order or object order. Image order traversal depends on the screen image.

Data access is done in whatever order is required to produce a pixel at screen location 2,

y. Ray tracing algorithms are generally image order traversal algorithms. Object order

traversal is directed by the data values in the dataset. Traversal is done so that contiguous

regions of the dataset are accessed together, regardless of what screen locations they will

map to. Projection algorithms are generally object order traversal algorithms.

Specialized graphics hardware to speed image generation times is becoming more com-

mon on graphics workstations. This new hardware is very often a parallel architecture.

There are two different approaches to parallelization, image-parallel and object-parallel.

These two approaches are analogous to image order and object order traversals. Image

CHAPTER 1. INTRODUCTION

parallel architectures assign multiple processors to each pixel or group of pixels, in order

to derive pixel values faster. Each processor accesses those sections of the data necessary

to compute the resultant pixel value(s). Object parallel architectures divide the dataset

into 3D regions and assign a processor to each region. This approach derives multiple pixels

simultaneously. Each architecture has its advantages and disadvantages. Object parallel ar-

chitectures divide the dataset among processors so no one processor needs the entire dataset

in memory. Their disadvantage is that pixels may be computed by one processor that will

be totally obscured by the pixels computed by another processor. Thus, computational

power may be wasted. Image parallelism only computes pixels that will be visible to the

viewer. However, each processor must have access to the entire dataset.

1.2 Problem Statement

Some of the problems associated with volume rendering are as follows.

1) The algorithms that are space efficient generally have slow image generation times.

2) The algorithms that have fast image generation times are generally space inefficient.

3) Most attempts to fix problem 1 entail using specific graphics hardware to draw high

level graphics primatives such as Gouroud-shaded polygons.

4) Many algorithms produce a parallel projection instead of a perspective projection.

This thesis describes a reasonably fast, space efficient method of volume rendering. The

algorithm produces a perspective projection of the volume on any hardware platform that

runs X Windows. While not requiring any special graphics hardware, the algorithm, since

it outputs polygons, can take advantage of it if the X server was written to do so.

1.3 Goal and Approach

The goal of this research is a fast method for volume rendering to enable real-time user

interaction. The type of interaction we facilitate is interactive change of user view position.

By interactive change we mean, allowing the user to move their view position in real time.

CHAPTER 1. INTRODUCTION

State of the art 3D input devices today are the space-ball and the data glove. Since these

are not yet in common use, changes to the user’s view position are accomplished via the

mouse and on-screen controls. Since the user is stationary, object(s) represented by the

data will appear to move relative to the viewer. In this way the user can make the object(s)

rotate in any dimension, grow, or shrink by adjusting the view position appropriately. In

order to support real-time manipulation of the volume, the data must be rendered very

quickly.

To obtain the desired speed we exploit the technique of progressive refinement [Cohe88].

Progressive refinement begins by displaying a crude representation of the final image as

quickly as possible. This representation is then improved upon over successive (typically

slower) iterations, until an acceptable image has been rendered. This technique is used in

many computer graphics applications, most notably in radiosity algorithms. Progressive

refinement gives the user some indication of the final output early in the rendering pro-

cess. We use progressive refinement to allow the user to intuitively identify their location

in the image space by their orientation to the object(s) being rendered. Even a crude rep-

resentation should be enough to determine whether the right dataset is being displayed,

and whether the object(s) are right side up or upside down, for example. Once the user

has reached the desired view position, the progressive refinement process continues and the

image improves in quality until the greatest level of detail is displayed or the user moves to

another view position.

The purpose of producing a space efficient method of volume rendering is to allow

volume rendering of large data sets, possibly on computers with memory restrictions. Fast

algorithms have been developed that require the entire dataset to be loaded into memory.

This may be acceptable for small datasets. Large datasets do exist however, and are likely

to become more prevalent as the use of volume rendering increases. The dataset used in this

thesis is a Magnetic Resonance scan of a human head. Its dimensions are 256x256x109 at 16

bits per data value. This is equivalent to approximately 14Mb of data. 16 to 32Mb of RAM

are commonly available for workstations at this time. Problems will arise, however, when

CHAPTER 1. INTRODUCTION

datasets grow to 256x256x256 at 16 bits per data value. That is 32Mb just for the data.

Our implementation only requires part of the dataset to be loaded into memory at any one

time. To keep the rendering time as low as possible our method makes one sequential pass

through the dataset when reading it from disk.

1.4 Data Structure

The octree, a three dimensional extension of the quadtree, is a hierarchical data structure

based on recursive subdivision of space into eight equal subvolumes [Same90]. A complete

octree is defined as follows. A three dimensional space is represented by a cube whose

dimensions are 2” x 2” x 2". The array is subdivided into eight partitions, each of dimension

2”-1,2"-1x2"-1, Each of these partitions is in turn subdivided. The partitioning continues

as necessary until each octant meets some decomposition criteria. One way of representing

this is by a tree of out degree eight. The root represents the entire object. Each of its

eight children represent one eighth, or octant, of the object. Normally, this would require

eight pointers for each non-leaf node to locate the children. Since our original dataset

is at a voxel resolution we will produce a complete octree. The location of children can

therefore be calculated as in a heap (Bent85]. This allows us to eliminate the pointers.

This implementation is traditionally called the pyramid [Tani75]. Tanimoto and Pavlidis

developed the idea of using several lower resolution levels of a 2D image to speed image

processing time. Their levels were two dimensional matrices, each one quarter the size of

the previous. All internal nodes of the pyramid contain some combination of the values of

their children. This combination could be, for example, an average, the maximum value, or

the minimum value. In our application we store a pyramid of 3D volumes. Parent nodes

store the minimum and maximum of their child values. The reason for this choice will be

explained in Chapter 3. Moving from the root down to the lowest level of the pyramid,

we encounter successively higher resolution representations of the data. The lowest level of

the pyramid is the actual data. The total storage requirement for the pyramid is 8/7 times

CHAPTER 1. INTRODUCTION

that required for the base dataset if the internal nodes each require the same storage as one

of the lowest level nodes. All levels of the pyramid are stored in octree order, described in

Chapter 3, to facilitate access. This necessitates some preprocessing to convert from raster

order to octree order, and then to construct the upper portions of the pyramid.

The remainder of this thesis is organized as follows. Chapter 2 describes previous work

in the area of volume rendering, common problems encountered by volume rendering al-

gorithms and the approaches others have taken to solve them. Chapter 3 describes our

preprocessing and viewing algorithms. It lists problems we encountered and our solutions

to those problems. Chapter 4 details the rendering routines used in the viewing algorithm.

It also lists enhancements that were added to speed volume rendering time. Chapter 5 pro-

vides our results and analysis for different hardware platforms. Chapter 6 is the conclusion

and includes thoughts about future work in the area of volume rendering.

Chapter 2

PREVIOUS WORK

Volume rendering is a young area of computer graphics. Most of the previous volume

rendering work has been done since 1987. Some of the first papers on volume rendering

were presented at SIGGRAPH 88. Paolo Sabella presented a paper describing a ray tracing

algorithm entitled “A Rendering Algorithm for Visualizing 3D Scalar Fields” [Sabe88].

Craig Upson and Michael Keeler preseneted a paper entitled “V-BUFFER: Visible Volume

Rendering” in which he compares ray casting to a simple projection method [Upso88].

Robert Drebin, Loren Carpenter, and Pat Hanrahan also presented a paper at SIGGRAPH

88. Its title was simply “Volume Rendering” [Dreb88]. It is discussed in greater detail

in a following paragraph. Many problems are still being discovered in volume rendering.

Some of the problems that others have addressed are image quality, image generation time,

perspective versus parallel projections, rendering volumes not based on a rectilinear grid,

and producing isosurface generations from volume datasets. These problems have been

addressed by the volume rendering community in a variety of ways, some of which are

presented in this chapter.

Donald Meagher was a pioneer in the applications of octrees. In 1982 he developed a

geometric modeling scheme called Octree Encoding [Meag82]. Octree encoding allows for

the representation of objects of arbitrary complexity (within memory limits) at a specified

CHAPTER 2. PREVIOUS WORK

precision, or resolution. In octree encoding the data is stored in a hierarchical tree structure.

The leaf nodes in an octree encoding represent data that are either entirely inside an object

or entirely outside an object. Meagher’s octree encoding supports the boolean operations of

union, intersection, and difference, as well as the geometric transformations of translation,

rotation, and scaling. Meagher’s algorithm provides an orthographic projection, but de-

scribes a deformation capability to give the appearance of a perspective projection, though

this was not implemented at the time this paper was written. Octree encoding provides

display of the objects with hidden surfaces removed by the simple process of visiting the chil-

dren nodes in the proper sequence. However, Meagher’s algorithm did not allow arbitrary

viewing positions. Viewing was only allowed from one of the eight corners of the volume

at an infinite distance. Aref and Samet [Aref91] continue Meagher’s work by discussing the

problems involved in perspective projections from an arbitrary view position. In particular,

they address perspective viewing of objects represented by octrees. They present an algo-

rithm that correctly displays data stored in an octree in time linearly proportional to the

total surface area of the objects being viewed (since it processes each octree node once). By

correctly displays, it is meant that using their algorithm will generate no false artifacts such

as can be introduced by other perspective projection approaches. Based in view position,

the algorithm determines, at each level of the octree, what order to process the children

octants. They implement this ordering by processing the octree in a depth-first, recursive,

fashion. While depth first processing will generate high quality final images, progressive

refinement requires a breadth first order of processing.

Drebin et al [Dreb88] address the problem of image quality. Their algorithm consists of

several stages. Each stage accepts an input volume and produces an output volume. Each

input volume is interpreted as a sampled continuous signal. To avoid aliasing problems,

this interpretation requires the original dataset to be sampled above the Nyquist frequency,

or that the original continuous signal is low-pass filtered. The original volume is converted

to a set of material percentage volumes. The material percentage volumes describe the

percentage of a particular material, like bone, present in a region. Additionally, a composite

CHAPTER 2. PREVIOUS WORK

color volume, opacity volume, density volume, surface strength volume, surface normal

volume, shaded color volume, and transformed volume are produced. One of the problems

with their algorithm is that it requires a different probabilistic classifier for each type of

dataset to be viewed. The probabilistic classifier estimates the percentages of each material

found in a given region. The classifier for a CAT scan dataset, for example, would be based

on x-ray radiation absorption. The algorithm applys rotations and a perspective transform

to the volume and projects it onto the viewing plane in a back to front traversal. All of this

is performed on a PIXAR Image Computer. The resultant images are of very high quality,

but require large amounts of computation for the various stages. The specialized nature of

the PIXAR Image Computer may make this algorithm feasible on that platform, and not

feasible on more common workstations.

Marc Levoy has been working with volume rendering since at least 1988. In a paper

entitled “Efficient Ray Tracing of Volume Data” [Levo90], he addressed the problem of

long image generation times. He presented a front-to-back image-order volume rendering

algorithm using a pyramid data structure. Levoy assigned a color and opacity to each

voxel and a 2 dimensional orthographic projection of the resulting semitransparent volume

was created by a ray tracing algorithm. He discusses two strategies for improving the

performance of a standard ray tracing algorithm for volume data. The first makes use of

coherent regions of empty voxels. By employing the pyramid data structure, it is possible

to determine the largest region defined by a pyramid node that contains all empty voxels.

It is then possible to stop the ray calculations upon entering such a region, calculate the

exit point of that ray from the region, and restart the ray calculations from that point. The

second improvement strategy relies on the accumulated opacity of a ray. Once a ray has

reached a specified opacity threshold, voxels farther along the ray do not contribute to the

color of the resultant pixel. It is therefore possible to terminate ray calculations before the

tay has passed through all voxels in the dataset. Levoy’s algorithm gains time efficiency at

the expense of space efficiency. He requires that the entire pyramid be stored in memory

due to the random data access of his algorithm. For large datasets this may not be possible.

CHAPTER 2. PREVIOUS WORK

Novins et al [Novi90] address the problem of parallel projection rendering algorithms

by presenting an efficient ray tracing approach that provides perspective projection. Their

algorithm, unlike Levoy’s, does not require that the entire dataset be resident in memory.

This also addresses the problem of space efficiency. They divide the dataset into slabs. A

slab is two adjacent z-y planes of data. They determine a viewing order before processing

starts. Slabs are read in one at a time and all rays which pass through the current slab

are processed. Once a ray has been processed, the next slab it will encounter is calculated.

The ray is queued to be processed again when that slab becomes the current slab. This

approach would tend to give the algorithm a progressive refinement look since many rays

are completed partially as the data is read.

Wilhelms and Van Gelder [Wilh91] also address the problem of image generation time,

but use an object-space projection algorithm instead of ray tracing. Projection differs from

ray tracing by processing the volume region by region instead of ray by ray. They use a co-

herent projection approach to direct volume rendering. The coherence of the sample data, or

degree to which large areas have equal or nearly equal data values, can be used by projection

algorithms to display large flat surfaces faster than general ray tracing algorithms. Their

paper discusses a projection approach for directly rendering rectilinear, parallel-projected

sample volumes. It also looks at the issues involved in integration and interpolation of the

data. They discuss the advantages and disadvantages of using hardware Gouraud-shading

for volume rendering. The problems with their approach are the parallel projections and

the dependence on hardware Gouraud-shading. Parallel projections are faster to compute,

but less realistic in appearance than perspective projections. The speed of their algorithm

seems to come from the fact that they can recognize large coherent surfaces and let the

hardware draw it as a Gouraud-shaded polygon. This implies that their algorithm may not

be suited to machines which do not have such hardware graphics primitives.

Max et al [Max90] work with density clouds (volumes represented as clouds of points).

Their goal was to render surfaces and density clouds in the same image. They first scan

convert and composite the density cloud into a convex polyhedron. Compositing consists of

10

CHAPTER 2. PREVIOUS WORK

adding the colors and opacities of voxels together. They then slice the convex polyhedron

into other convex polyhedra by the planes that define a surface. These are depth sorted

and passed to a volume compositor. They take advantage of area coherence by producing

polygons. If a polygon projects to a large area of the screen, then this can be quite efficient.

For data where each polygon projects to only a few pixels however, the overhead in gen-

erating the polygon outweighs the savings. Another problem is the fact that they have to

sort the polyhedra. If a cycle exists, such that for three polyhedra A, B, and C, A obscures

B, B obscures C, and C obscures A, then one of the polyhedra must be subdivided. They

had not developed a method for doing this at the time their paper was published. They

hoped that such cycles would not occur in real datasets.

Wilhelms et al [Wilh90a] describe direct volume rendering of curvilinear volumes. They

address the problems of volume rendering a dataset that is not sampled in a rectilinear grid.

In particular, they explore the use of direct volume rendering for data from computational

fluid dynamics. The sample points for such a dataset lie ona curvilinear grid. A curvilinear

grid is defined to consist of cells, each of which have eight vertices, but whose faces are

not necessarily planar. In addition, the grid points do not lie on orthogonal axes. Their

conclusions are that reinterpolation to a rectilinear volume provides a faster method of

rendering curvilinear volumes. This may introduce errors into the resultant image, however.

Their results indicate that direct volume rendering of volumes that are not in a rectilinear

grid is not a time efficient process.

Wilhelms and Van Gelder [Wilh90b] address the problem of generating isosurfaces from

volume data and image generation time. Isosurface generation is the generation of a surface

of uniform value. The dataset is scanned for a particular data value. The locations where

those values are found are used to form a surface, which is projected onto the screen.

Isosurface generation is useful for displaying elements of the volume that are in common.

On an MR scan for example, if the value corresponding to soft tissue is known, an image

can be displayed that shows the surface of the soft tissue. On the same dataset, a value

corresponding to bone can be used to produce an image of just the skeleton. Wilhelms

11

CHAPTER 2. PREVIOUS WORK

and Van Gelder introduce a space-efficient design for octree representations that are not of

dimensions that are a power of two: branch-on-need octrees (BONOs). BONOs are basically

octrees that are created from the leaves to the root, instead of the other way around. Eight

children are combined to form one parent. This produces the greatest branching at the

lowest levels, and hence the smallest tree.

Laur and Hanrahan [Laur91] address the problem of image generation time by using a

progressive refinement technique they call hierarchical splatting to perform volume render-

ing. They use a pyramidal volume representation where the upper levels of the pyramid

store average data values and an estimated error. Splats are footprints scaled to match the

size of a projected cell. A footprint is a two dimensional projection of a three dimensional

function, such as a Gaussian. A splat will typically be brighter in the center, indicating

more volume of the 3D object projecting to these pixels than at its edges. The splats are

approximated by RGBA (color and opacity) Gouraud-shaded polygons. The splats are then

composited on top of each other in back to front order. They have developed a real-time

rendering algorithm with a few limitations. According to their conclusions, even at full reso-

lution, the resulting image does not equal other high-quality rendering techniques in picture

quality. Thus the approximations that were introduced to attain the interactive speed sac-

rifice the quality of the final image. They also appear to rely on hardware Gouraud-shading

of polygons to achieve their speed.

Previous work in the area of volume rendering address the problems of image generation

times, or space efficiency, or perspective viewing of the dataset. This thesis attempts to

address all of these problems as well as provide device independence. Our work attempts

to give the user more information quicker, by using progressive refinement similar to hierar-

chical splatting. It provides space efficiency that is scalable to the memory available on the

host machine, like the slab approach. It provides perspective projections of the volume, like

Aref and Samet’s approach. In addition, it provides device independence by being written

as an X Windows client.

12

Chapter 3

GENERAL DESCRIPTION OF

THE ALGORITHM

This chapter provides a general description of the preprocessing and viewing algorithms.

There are two steps to preprocessing. The data must first be transformed to octree order and

then the pyramid must be built from this octree ordered dataset. After these preprocessing

steps have been done the dataset can be viewed. The preprocessing steps only need to be

done once for each dataset. They produce a view independent pyramid data structure.

3.1 Preprocessing

Most 3-D volume datasets that exist today are arranged as a three dimensional raster array.

The first n elements represent the first row, m rows of n elements each represent the first

ty -plane, and p zy -planes make up the volume. The first preprocessing step is to change

this order. Since we want to access this data in octree order, the most efficient way to have

it stored on disk is in octree order. This allows sequential disk access by octants. In other

words, octants are stored sequentially on disk, so reading one octant requires one sequential

disk access. If an octree is described as a tree of degree eight, then octree order is the

order in which the voxels would be accessed during a traversal of the octree. Figure 3.1

13

CHAPTER 3. GENERAL DESCRIPTION OF THE ALGORITHM

Oe
TINO OUOS

OO GOOOL®

Figure 3.1: Octree represented as a tree of degree eight

shows a tree of degree eight with the nodes labeled. Figure 3.2 shows the same octree as

a cubic volume with the nodes labeled the same as Figure 3.1. A complete octree requires

that each dimension of the dataset be equal, and a power of two. It may be necessary to

add empty data elements to the dataset in order to achieve this. Alternatively, there are

ways to implement the rendering algorithm to deal with non-complete octrees. Such an

implementation will be discussed later. A recursive routine was created to read the data

elements from a raster ordered dataset and write them as an octree ordered dataset. This

routine calculates the z, y, z coordinate for the next voxel in octree order. It then reads

the element at position (z, y, z) in the original dataset and writes that element to a new

dataset.

The second preprocessing step builds the pyramid. The units of subdivision within our

pyramid are levels and nodes. The octree ordered dataset obtained from step one becomes

the lowest level, level 0, of our pyramid. Each element of the dataset is a node in level 0. The

total number of nodes in level 0 is then the total number of elements in the dataset. Each

node of level 1 in our pyramid is called a parent and is constructed by combining the values

14

CHAPTER 3. GENERAL DESCRIPTION OF THE ALGORITHM

Figure 3.2: Spatial representation of the octree

15

CHAPTER 3. GENERAL DESCRIPTION OF THE ALGORITHM

Figure 3.3: Conceptual picture of the pyramid data structure showing number of nodes at

each level for a dataset of resolution 64 x 64 x 64

of the eight nodes from level 0 that would be its children in a pointer based representation

of the octree. We retain the use of the terms children and parent even though we do not

store explicit links between them. Since the lowest level is already in octree order, the first

eight children are the first eight nodes of that level. The procedure continues combining

eight children of level « and forming one parent on level i+/, until all nodes on level i have

been processed. When it has completed, level i+/ contains one eighth the number of nodes

at level 7. These nodes are also in octree order. The procedure then repeats itself, reading

level i+1 as children and writing level i+2 as parents. This continues until we reach the root

of the pyramid, where the number of nodes is one. The final result is a complete pyramid

with each level in octree order. An illustration of a pyramid and the number of nodes that

are stored at each level is given in Figure 3.3.

The combination of data values that are stored in the upper levels of the pyramid affect

the performance and possible applications of the algorithm. We chose to store a quantized

minimum and maximum value of the eight children. The original dataset contained sixteen

bit integers, of which the lowest twelve bits are significant. We quantized, or reduced

16

CHAPTER 3. GENERAL DESCRIPTION OF THE ALGORITHM

the resolution, to eight bits for the upper levels in order to pack both the maximum and

minimum into one sixteen bit integer. The lowest level still contains one sixteen bit integer

for each data value. We have found that storing the minimum and maximum gives the most

flexibility to our algorithm. The minimum value allows us to safely draw the upper levels

to the screen without having to erase parts of the picture later. The maximum value allows

us to terminate processing parts of the octree that contain only empty space.

Handeling non-complete octrees is accomplished as follows. The octree is built in a

manner similar to the BONOs described by Wilhelms and Van Gelder [Wilh90b]. The

octree is constructed from the bottom up instead of from the top down. If eight children

are not available to be combined into one parent, by the preprocessing, then the necessary

number of nodes are created. These created nodes contain a special “empty” value that the

algorithm will handle by not drawing and not breaking down into its children. If a dataset

is of dimensions 256 x 256 x 128, for example, then building up from the bottom results in

levels ranging in size from 8,388,608 nodes on the bottom level to 4 nodes at the top level.

To these are added 4 more “empty” nodes to fill out that level to 8. Finally, 1 more node

is added as the parent of those 8. This adds only 4 extra nodes to the pyramid.

3.2 Viewing Algorithm

We construct the pyramid to support progressive refinement. Progressive refinement allows

the user to interact with the dataset in real-time. The time required to completely render the

dataset using progressive refinement is typically greater than that required by using direct

volume rendering. The advantage comes from being able to change the viewer’s position

with respect to the object(s) in the image after partial rendering. By quickly giving the user

a rough approximation of the objects being rendered, the user can determine the orientation

of the image and change positions if necessary. Ray tracing and direct volume rendering

without progressive refinement give the user no indication of the entire image until rendering

is complete.

17

CHAPTER 3. GENERAL DESCRIPTION OF THE ALGORITHM

The collection of pyramid levels above the lowest level, or voxel level, will be referred

to as the internal levels. The internal levels of the pyramid together take up approximately

one seventh the amount of space required by the lowest level. For datasets common today,

one seventh is sufficiently small that it can be stored in RAM. The internal levels can be

read in once at the beginning of the viewing process. This allows us to repeatedly display

the internal levels and change view positions as many times as we wish without additional

disk access. The lowest level of the pyramid need not be read until its data is needed.

The entire lowest level need not be in memory at once, unlike the ray tracing algorithms

of Levoy, because we know in advance the order in which the nodes will be accessed. The

amount of lowest level data that is read into memory can easily be changed to accommodate

the memory availability of the host computer. For our experiments, we chose to read one

octant of the lower data into memory at a time. The internal levels of the pyramid and one

eighth of the lowest level then occupy just over one quarter of the memory required by the

entire volume. With our dataset this amount is approximately 6MB.

Our viewing algorithm starts with the root of the pyramid. The root level contains

only one node. It then traverses the pyramid in breadth first order. In other words, all of

the nodes on one level are processed before moving down to the next level. Our viewing

algorithm is additive, i.e. it does not draw anything that will have to be erased later.

This is accomplished by storing the minimum and maximum values as described in the

preprocessing section. Nodes further down the pyramid can only expand, never decrease

the image.

The dataset is a three dimensional volume. There are two traditional ways to interpret

the data in volume rendering. The data could represent totally opaque material. In this

case the easiest processing order would be back to front (often referred to as the painter’s

algorithm). Objects which obscure other parts of the image would be drawn later. Thus

no hidden surface removal is necessary. The other way to interpret the volume data is

as a semi-transparent solid. This allows us to see, at least part way, through an object.

In this case, each voxel contains a color and an opacity. This opacity is a value between

18

CHAPTER 3. GENERAL DESCRIPTION OF THE ALGORITHM

zero and one and represents the degree to which it obscures voxels that lie behind it. The

processing order for semi-transparent solids can be back to front, or front to back. There

are advantages to each processing order. We have chosen front to back since that will allow

us to stop processing for a screen pixel that is already opaque. When dealing with semi-

transparent solids, a compositing function is needed to add colors and opacities together.

Our algorithm allows for a variety of compositing functions to be inserted. The particular

function we implement is discussed in Chapter 4.

Our viewing algorithm approach can be viewed as the inverse of ray tracing. Ray

tracing casts a ray through one pixel of the screen and follows that ray through the dataset.

Color and opacity are accumulated for that pixel until its final value is determined. Our

algorithm traverses the dataset and accumulates partial values for many pixels. The final

color of any pixel is not known until the last data value is processed. In ray tracing, a

ray can access any data value in the dataset depending on the view position. Any time

the view position is changed, the order in which the data is accessed is changed. Thus,

ray tracing algorithms require random access to the pyramid. For this reason, ray tracing

algorithms are most efficient when the entire dataset is stored in memory. Our algorithm

allows sequential access irrespective of the view position. According to timings we have

performed, sequential disk access accounts for approximately 3% of our total processing

time, when the volume is completely rendered. More often, the user will stop the rendering

process before the bottom level must be read in.

19

Chapter 4

DESCRIPTION OF

RENDERING ROUTINES

The steps we have devised to render the volume are as follows.

1) An octant from the pyramid is identified as the next to be rendered.

2) If its minimum value is greater than the “empty” intensity threshold, then the eight

corners of the octant are transformed and projected to the screen by means of a

perspective projection.

3) Faces are constructed from the projected corners. Either one, two, or three faces of

the octant are visible from the view position.

4) The visible faces are filled as polygons using the minimum value.

5) The rectangular region containing the visible polygons is composited with the corre-

sponding pixels in the image.

This chapter describes four sets of routines used in the volume rendering process. The

first allows the user to change their view position. The second set transforms the z,y,z

coordinate system of the volume to the coordinate system defined by the user’s view position.

The third set of routines projects the data represented by our pyramid onto the screen in

this new coordinate system. The last set of routines is the compositing process.

20

CHAPTER 4. DESCRIPTION OF RENDERING ROUTINES

4.1 View Positioning Routines

The user interface for the system contains six view positioning buttons. They are labeled

“Spin +”, “Spin —”, “Direction +”, “Direction —”, “Move In”, and “Move Out”. An

indicator on the screen shows in which direction the object will rotate. The screen is

illustrated in Figure 4.1. Clicking the “Spin +” button appears to rotate the volume in

the direction indicated on the screen. Similarly, clicking “Spin —” will appear to rotate the

volume in a direction opposite to what is indicated on the screen. The buttons “Direction +”

and “Direction —” change the direction in which the volume appears to rotate, as well as the

direction of the indicator. The use of the direction buttons will be described further below.

The “Move In” and “Move Out” buttons make the image grow and shrink respectively. We

have used the term “appears to rotate”, because in fact, it is the viewer’s position that

changes, not the volume. The z,y,z coordinates of the data always remain constant.

Figure 4.2 illustrates the actions of the buttons. When a “Spin” button is clicked,

the view position is translated along a great circle of a sphere that surrounds the volume,

illustrated by the ring in the figure. The “Direction” buttons change the great circle by

rotating the axis labeled “Direction” in Figure 4.2. The view position is defined by two

angles, ¢ and @. @ is the angle of rotation of the “Direction” axis. ¢ determines where the

viewer is on the ring. The “Spin” and “Direction” routines need only increase or decrease

g and @ to change the view position. Each click of the button changes ¢ or @ by 0.1743

radians, or approximately ten degrees. The “Move In” and “Move Out” buttons change the

radius of the great circle.

The view position is then converted to Cartesian coordinates so that the dataset can be

projected to two dimensional screen coordinates correctly. The center of the volume and r,

the radius from the center to the view position, must be known. The radius is controlled by

the “Move” buttons. “Move In” decreases the radius and similarly “Move Out” increases

the radius. The spherical to Cartesian coordinate conversion uses the following equations

21

CHAPTER 4. DESCRIPTION OF RENDERING ROUTINES

Message Line

Spin Direction Indicator Spin +

e Spin -

Direction +

Direction -

Move In

Move Out
Image Area

Reset

Quit CE
T

Figure 4.1: User interface controls

22

CHAPTER 4. DESCRIPTION OF RENDERING ROUTINES

T Viewer

Figure 4.2: How the “Spin” and “Direction” buttons affect the viewer’s position

23

CHAPTER 4. DESCRIPTION OF RENDERING ROUTINES

[Berk84].

viewposition, = (rx sind *cosé) + center,

viewposition, = (r* sing * sin@) + center,

viewposition, = (r*cosd) + center,

4.2 Determining the Position of a Node

The viewing algorithm processes the pyramid in breadth first order to provide the progres-

sive refinement. To process the next octant, the algorithm must compute the position and

size of this octant within the volume. Our first approach to achieve a breadth first ordering

was to use a queue. For each octant we calculated the position and size of its eight chil-

dren. For those children whose maximum value was greater than the “empty” value, this

information was added to the queue in the proper order. This allowed us to skip areas that

contained only empty values and ensure a view consistent ordering of the octants. A view

consistent ordering means the data is accessed in the same order with respect to the viewer

from any view position. This ordering could be front to back, for example. The maximum

length of the queue was the number of octants at the lowest level of the pyramid. Each

element contained an 2z,y,z, data location, and size. The z, y, and z defined one corner. The

size allowed us to computer the other corners. The data location was the location in the

heap of the intensity value. Alternatively, we could have stored the data value itself in the

queue. This required at least five bytes per element. The resultant queue size was two and

a half times larger than the original dataset. That was certainly not space efficient.

The next approach was to calculate the z,y,z location from the position in the heap,

which was readily available if the pyramid was processed in the same order in which it was

stored. We developed a routine that would allow us to skip “empty” portions of the pyramid

by using the minimum and maximum values. If the current node’s minimum value was less

than the “empty” value, then the parent of that node was calculated and its maximum

value was compared to the “empty” value. If its maximum value was less than the “empty”

24

CHAPTER 4. DESCRIPTION OF RENDERING ROUTINES

value then none of its children would need to be rendered. We continued to move up the

pyramid until we found a parent with a maximum value greater than “empty”. We then

chose the next child of this parent, and moved back down to the level at which we started.

In this fashion we could move up and down the pyramid as we moved across one level.

This allowed us to skip portions of the data that would not contribute to the image. This

worked well, until we started compositing colors. Because we allow the user to change view

positions, we can not insure a front to back or back to front processing order as required

by the compositing routine.

The solution we have implemented is a modified recursive approach that ensures a

view consistent processing order. A normal recursive algorithm, such as Aref and Samet’s

[Aref91], can ensure a view consistent processing order, but processes the data in a depth

first manner. Our approach enables breadth first processing, and hence progressive refine-

ment. Our algorithm consists of a loop that calls a routine named ProcessLevel for each

level of the pyramid in turn. ProcessLevel is recursive. It accepts three parameters, Cur-

rentLevel, DrawingLevel, and Octant. ProcessLevelalways starts at the root of the pyramid.

If CurrentLevel is not equal to DrawingLevel, then the routine subdivides Octant into its

children and recursively calls itself in the correct order. The correct order is determined as

follows. The view position is compared to the center of Octant. The view position lies in

one of eight regions with respect to the center of the node as illustrated in Figure 4.3. The

view position can be in the Left Upper Front (LUF) region, the Right Upper Front (RUF),

the Left Down Front (LDF), the Right Down Front (RDF), the Left Upper Back (LUB),

the Right Upper Back (RUB), the Left Down Back (LDB), or the Right Down Back (RDB).

The region that the view position is in is used as an index into the Octant Order Table,

see Table 4.1. The Octant Order Table indicates a view consistent ordering of the children.

When DrawingLevel is reached, the octants are drawn and composited as described in the

following sections. This approach achieves two goals. First “empty” areas of the pyramid

are never processed. If the maximum value of an Octant is less than the “empty” value,

then that Octant is not subdivided. None of its children are processed. The second goal is

25

CHAPTER 4. DESCRIPTION OF RENDERING ROUTINES

LUB RUB

LUF RUF

RDB

LDF RDF
Figure 4.3: Eight regions that the view position can be in

26

CHAPTER 4. DESCRIPTION OF RENDERING ROUTINES

Table 4.1: Octant Order Table used to determine child processing order

region Octant Order

LUF LUF | RUF | LDF | RDF | LUB | RUB | LDB | RDB

RUF RUF | LUF | RDF ; LDF | RUB | LUB | RDB; LDB

LDF LDF | RDF |} LUF | RUF | LDB | RDB | LUB | RUB

RDF RDF | LDF | RUF | LUF | RDB | LDB | RUB | LUB
LUB LUB | RUB j LDB | RDB | LUF | RUF | LDF | RDF

RUB RUB | LUB | RDB | LDB | RUF | LUF | RDF | LDF
LDB LDB | RDB |; LUB |} RUB |} LDF | RDF | LUF | RUF
RDB RDB | LDB | RUB | LUB | RDF | LDF | RUF | LUF

the proper ordering of octants from any view position. Table 4.1 provides a front to back

octant ordering. A back to front processing could be accomplished by simply replacing

Octant Order Table with a back to front version.

4.3. Projection Of Coordinates

Several transformations must be done in order to project an octant correctly onto the screen.

The viewing reference coordinate (VRC) system is defined by three axis. The projection

plane (or view-plane) is the 2D plane to which the 3 dimensional coordinates of the volume

are projected to form the image. One axis is the view-plane normal (VPN), a vector that

is normal to the view-plane. A second axis is found from the view up vector (VUP). The

projection of the VUP onto the view plane is called the v-axis. The third axis is called

the u-axis. Its direction is defined such that u,v, and VPN form a right handed coordinate

system. To a viewer at the view position, the volume is defined by this coordinate system.

Since the view-plane is defined by the view position, this entire coordinate system changes

when the view position does. The VRC may or may not coincide with the coordinate system

of the dataset, or the device coordinates of the computer screen. Thus we must transform

the VRC to the device coordinates, such that the screen becomes the view plane, and the

view position is in front of the screen at some distance. To accomplish this, the VRC must

27

CHAPTER 4. DESCRIPTION OF RENDERING ROUTINES

be rotated so the VPN becomes the z-axis, the u-axis becomes the z-axis, and the v-axis

becomes the y-axis. The geometric transformations required for this are consolidated into

a single matrix. By multiplying each z,y,z coordinate from the volume by this matrix, the

coordinates are transformed such that a projection routine can project it onto the plane

z = 0 (equivalent to the screen). The routines to generate this matrix are based on the

traditional techniques described in Foley et al [Fole90] and Watt [Watt89]. They are given

in Figure 4.4 and Figure 4.5.

Each point is multiplied by the resultant matrix to produce a transformed point. This

transformed point is then projected onto the view-plane. The correct projection point is

the intersection of a line between the transformed point and the view position, and the

view-plane. The view-plane is now the z = 0 plane and the view position lies at a distance

dz from the view-plane on a line that is parallel to the z-axis. The distance dz is equal to

the center of the object minus the radius. We specify this parametrically as

point, = viewposition, + t(Trans formedPoint, — viewposition;)

point, = viewposition, + (TransformedPoint, — viewposition,)

where ¢ is defined over the range 0 <= ¢ <= 1 as

—TransformedPoint,/(dz — Trans formedPoint,)

4.4 Compositing

Compositing is required when semi-transparent solids are rendered. Semi-transparent ren-

dering requires an opacity as well as a color for each voxel. In a semi-transparent solid,

the color that is mapped to a screen location depends not only on the object that is closest

to the viewer at that location, but also to a lesser extent on the colors of objects farther

away also projecting to that location, due to the opacity. Medical imaging devices do not

record multiple values for each sample position. Most three dimensional datasets contain a

28

CHAPTER 4. DESCRIPTION OF RENDERING ROUTINES

void compute_matrices(float matrix3[4][4], Point3D offset,
int size, Point3D viewposition)

{
FPoint3D Rx,Ry,Rz,VPN,VUP,VRP,DOP;

float matrixi[4] [4] ,matrix2[4] [4];
int i,j;

/* view reference point is the center of the object */

VRP.x = offset.x + (size/2);

VRP.y = offset.y + (size/2);

VRP.z = offset.z + (size/2);
/* compute the view plane normal from the viewposition

and the view ref pt */
VPN.x = viewposition.x ~- VRP.x;

VPN.y = viewposition.y - VRP.y;

VPN.z = viewposition.z ~ VRP.z;

/* set the view up vector to be a unit vector on the y axis */

VUP.x = 0;

VUP.y = 1;

VUP.z = 0;

/* retranslate VRP to original coordinates */

translate(VRP, matrix2) ;

/* figure rotations */

rotateVRC(VPN, VUP, &Rx, &@Ry, &Rz);

matrixi[0][0] = Rx.x;

matrixi[0][1] = Rx.y;

matrix1[01[2] = Rx.z;

matrixifi][0] = Ry.x;

matrixi[1J[i] = Ry.y;

matrixi({i][2] = Ry.z;
matrixi[2][0] = Rz.x;

matrixi[2][1] = Rz.y;

matrixi(2](2] = Rz.z;

Figure 4.4: Transformation matrix computation routine, continued on next figure

29

CHAPTER 4. DESCRIPTION OF RENDERING ROUTINES

for(i=0;i<3;it+){
matrixi[3] [i]
matrix1 [i] [3]

}

matrixi1[3] [3] = 1.0;

. 0.0;

0.0 >

/* multiply translation and rotation matrices */

matrix_mult(matrix2, matrix1, matrix3);

/* translate VRP to origin */
translate(VRP, matrix1);

/* multiply trans*rotate and 2nd trans matrices */

matrix_mult(matrix3, matrixi, matrix2);

void rotateVRC(FPoint3D VPN, FPoint3D VUP, FPoint3D *Rx,

FPoint3D *Ry, FPoint3D *Rz)

{
FPoint3D VUPXRz;

float lenVPN,lenVUPXRz;

lenVPN = vector_length(VPN); /* calculate the length of VPN */

/* the VPN is rotated onto the z-axis */

Rz->x = VPN.x / lenVPN;

Rz->y = VPN.y / lenVPN;

Rz->z = VPN.z / lenVPN;

/* the u-axis is rotated onto the x-axis */

VUPXRz = cross._prod(VUP,*Rz); /* u is perpendicular to VUP and VPN */

lenVUPXRz = vector_length(VUPXRz) ;/* which is the cross product */
Rx->x = VUPXRz.x / lenVUPXRz;

Rx->y = VUPXRz.y / lenVUPKRz;
Rx->z = VUPXRz.z / lenVUPXRz;

/* the v-axis is perpendicular to Rx and Rz so take cross product */

*Ry = cross_prod(*Rz,*Rx) ;

Figure 4.5: Rotation matrix computation routine

30

CHAPTER 4. DESCRIPTION OF RENDERING ROUTINES

single value for each discrete voxel location. That value may represent density, temperature,

color, intensity, or other measurement, depending on the application generating the data.

It is up to the algorithm designer to decide how to map these values into color and opacity.

We chose to regard the data values in our test dataset as gray-scale intensities. We assign

opacities to be proportional to the intensity. Empty space has a low intensity and therefore

a low opacity. Bone has a high intensity and therefore a high opacity. For this particular

dataset, an opacity equal to 1/4 of the intensity works well.

As the internal levels of the pyramid are processed, the minimum data value is read for

a node. If this value is above the empty threshold, the octant is transformed as described in

the previous section, and projected onto the screen. The cube projects as either one, two,

or three polygons. Depending on the view position, the user sees either one, two, or three

faces of the cube. The polygons are “drawn” to a pixmap, which is an X Windows term

for a chunk of memory that can be accessed with screen coordinates, but does not exist in

the frame-buffer and so does not appear on screen. A rectangular section of the pixmap

denoted by z,y coordinates is compared to a rectangular section, at the same z,y coordinates

of the image that has been rendered so far. The new pixmap section is composited with

the existing image. The processing order determines which compositing equations to use.

Our processing order is front to back so we use:

Cace = ((1 — Oace) * (Crew ™ Cace)) + Cace

Oace = (1 — Oace) * Onew) + Oace

where Cacc is the accumulated color in the existing image, C’,-,, is the new color from our

pixmap, Oacc is the accumulated opacity in the existing image, and Oney is the new opacity

from our pixmap. These equations are modified versions of the compositing equations given

by Wilhelm [Wilh91], Each pixel in the rectangular section must go through these equations,

since a cube may only partially overlap its predecessor. Current graphics workstations often

contain a Z buffer which could be used to handle the accumulated color, but hardware

opacity buffers are not common at this time.

31

CHAPTER 4. DESCRIPTION OF RENDERING ROUTINES

When the lowest level of the pyramid is reached, the eight adjoining data values are

averaged to obtain a cube that can be composited just like those in the upper levels.

4.5 Modifications to Speed the Rendering Time

Since we store in each node the maximum data value of that node’s children, we can

determine if a particular section of the octree can be ignored. If the maximum value in

a node is below some threshold, then it is assumed that the data in that node and all its

children represent empty voxels. Thus everything below it need not be processed. The

threshold value has to be determined for each dataset individually. Medical image datasets

such as the one we used can contain large numbers of empty voxels. In our dataset voxels

range in value from 2 to 4095. We have found that voxel values below 480 generally represent

empty space. This constitutes 59% of the voxels in the original dataset. Skipping these

voxels through our modified recursion process reduces both the internal level and total

image generation times significantly. Internal level rendering using this approach takes only

2.1% of the time it takes to render every internal node of the pyramid. Total rendering time

using this approach takes only 12.4% of the time to render every node in the pyramid.

In order to facilitate changing the view position while the rendering process is executing,

an interrupt routine had to be written. Under X Windows, this is done by polling the X

event queue to respond to events during the process of rendering the image. If the X event

queue were not polled by the algorithm, the button clicks that should rotate the volume

would be queued up and not handled until the entire volume was processed. By polling the

X event queue, waiting events are dispatched every time the polling routine is executed.

Initially the X event queue was polled for every data value read from the pyramid. This

provided excellent response time for changing view position, but increased the rendering

time of the upper and lower levels. By reducing the polling to one time for every 100 data

values read, the rendering time for the upper levels was cut by 66%. The total rendering

time was reduced by 72%.

32

Chapter 5

RESULTS AND ANALYSIS

5.1 Hardware Used

The viewing algorithm was developed in the C language, running under UNIX. The de-

velopment hardware was an IBM PC compatible 80386 based machine running at 40MHz,

with a 40MHz math co-processor. The display hardware was an Orchid ProDesigner IIs

VGA graphics adapter and a Magnavox color VGA display. The program was then ported

to a DECstation 5000 PXG Turbo. The display hardware on the DECstation is a 24-bit

Truecolor graphics processor and color monitor. The port was accomplished in less than

one day, and consisted mainly of modifications relating to the differences between 8-bit and

24-bit displays.

5.2 Dataset Used

The program was used to view a Magnetic Resonance (MR) scan of a human head. The

original dataset dimensions were z = 256, y = 256, z = 109. Each data element consisted

of one sixteen bit integer. Total file size was 14,286,848 bytes. To this file were added

nineteen more z-y planes to make the resultant z dimension equal to 128. This was done to

simplify the pyramid building process. Since 128 is a power of 2, it will divide completely

33

CHAPTER 5. RESULTS AND ANALYSIS

and evenly into octants. This will require only four additional nodes to be added by the

pyramid building process. These added data elements were all set to a predetermined value

that did not exist in the original dataset. They were termed “empty”, and as such, could

be bypassed by our viewing algorithm. The resulting file size was 16,777,216 bytes. This

represented the lowest level of our pyramid. The internal levels of the pyramid together

occupied 2,396,754 bytes. This made a total pyramid file size of 19,173,970 bytes. One

quarter was chosen as the amount of lowest level data to be stored in memory. Since this

dataset was a half-cube, with dimensions of 256 x 256 x 128, this would be equivalent to

one octant of a full-cube of dimensions 256 x 256 x 256. The amount of lowest level data in

memory at one time was then 4,194,304 bytes.

5.3 Performance

Image generation times using our algorithm are not greatly affected by the viewer’s position.

They are affected by the combination of hardware and X Windows server, however. Perfor-

mance on the PC was not outstanding, but reasonable considering the task. The program

could display the internal levels of the pyramid in approximately 2.5 minutes. Display of

the entire pyramid took approximately 50 minutes.

Performance on the DEC Station is currently comparable to the algorithms described

in Chapter 2. Complete display of the internal levels of the pyramid takes approximately

40 seconds. The total image takes approximately 11.5 minutes. More detailed timings are

given below. The DEC station is not a high end graphics workstation. Unfortunately, we

did not have access to such a workstation to perform timings on.

Special graphics hardware will only help our algorithm when the X server is written to

take advantage of it. Following are some hardware/server abilities that would speed image

generation times.

e Hardware polygon fills would speed image generation times since we do generate a

significant number of polygons.

34

CHAPTER 5. RESULTS AND ANALYSIS

Table 5.1: Processing statistics per level of the pyramid

Level | Total Elapsed Time | No of Polygons | No of Points

1 0 secs 0 0

2 0 secs 0 0

3 0 secs 0 0

4 0 secs 0 0

5 0 secs 0 0

6 2 secs 833 19520

7 38 secs 28,961 176,176

8 684 secs 650,914 668,196

e Hardware projection from three dimensions to two dimensions could be used since we

project each octant in the pyramid before it is rendered.

Hardware compositing would speed image times. Compositing accounts for 5.5% of

our total processing time.

e A hardware opacity buffer, and multiple frame-buffers that are directly accessible from

X Windows would eliminate several time consuming steps.

Hardware polygon compositing would save even more time.

Table 5.1 shows the time required to draw the pyramid. The first column indicates the

level of the pyramid completed. The second column shows the total elapsed time. Entries of

0 seconds indicate times less than the resolution of our timer. Column three shows the total

number of polygons drawn. Column four shows the total number of points that have been

composited. The time in Table 5.1 for level 8 includes disk access time. Total disk access

time for the lowest level is 16 seconds. Table 5.2 shows the distribution of time spent in

the various rendering routines. The vast majority of the time, 61.7%, is spent copying the

rectangular portion of the pixel array (pixmap) that stores the projected polygons into an

X Windows structure called an Ximage so that it can be composited. This is accomplished

by one call to an X Windows library function. This copy operation is required because of

the following two facts about current X Windows image handling routines.

e Polygons can only be drawn to a window or a pixmap.

35

CHAPTER 5. RESULTS AND ANALYSIS

Table 5.2: Percentage of time spent in rendering routines

Routine Percentage of Time

Selecting Octants 0.3%
Performing Transformations 11.1%

Projecting Coordinates 2.8%
Calculating Polygonal Faces 1.5%

Drawing Polygons to Pixmap 8.8%
Copying Pixmap to Ximage 61.7%

Compositing Pixels 5.5%
Displaying Pixels 6.5%

e Pixels can only be accessed from an Ximage.

Somehow, the pixmap has to be copied to an Ximage for access by the compositing routine.

The routine that X Windows provides for this purpose, XGetSubImage, is responsible for

61.7% of our processing time. A significant time reduction could be achieved if some other

way were found to copy the information, or direct access to the pixmap were allowed.

The levels of the pyramid are drawn as projected cubes. From the center front view

position, which should require the fewest polygons, 650,914 polygons were drawn. Each

one of those polygons was then composited on a pixel-by-pixel basis. The total number of

points that were composited was 668,196. This amounts to an average rate of 962 pixels

composited per second.

Table 5.3 is a comparison of our new rendering algorithm to some of the rendering

algorithms discussed in Chapter 2. Levoy’s algorithm is a ray tracing algorithm and Wilhelm

and Van Gelder’s is an isosurface projection algorithm. These two papers were the only

ones discussed in Chapter 2 that provided timings for datasets of equivalent sizes. Our

rendered dataset is shown in Figure 5.1.

36

CHAPTER 5. RESULTS AND ANALYSIS

Table 5.3: Comparison of rendering times

Algorithm Hardware Platform Dataset Size Total Rendering Time
New Algorithm | DECstation 5000/200 | 256 x 256 x 109 684 secs

[Wilh90b] Sun Sparcstation 1 | 256 x 256 x 109 391.8 secs
[Levo90] Sun 4/280 256 x 256 x 113 105 secs

Figure 5.1: MR scan of human head

37

Chapter 6

CONCLUSIONS AND FUTURE

WORK

6.1 Conclusions

Volume rendering continues to be a fast changing area of computer graphics. Timing results

on our current hardware do not show our approach to be a faster overall algorithm for volume

rendering. However, the algorithm could benefit substantially from faster hardware and a

better X server. At this time, there is not an X Windows standard for accessing the pixmap

directly. Hardware vendors such as Hewlett Packard are developing routines to allow this

however. When a standard is implemented, this algorithm could see substantial reductions

in rendering time by taking advantage of pixmap accessibility.

The algorithm does currently provide several advantages. These advantages include the

following.

e It provides some indication of object orientation quickly. Within 40 seconds, a user

familiar with the dataset can usually determine the general orientation of the object(s).

e It can handle large datasets with minimal memory requirements. The algorithm can be

tuned to take advantage of the memory available. The minimum memory requirement

is determined by the size of the internal levels of the pyramid. The amount of data

38

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

from the lower level that is stored in memory can be any size from one page to the

entire level.

e Our algorithm provides a perspective view of the volume. A perspective image is

easier for the viewer to interpret than a parallel projection, since this is what our

visual system is accustomed to. Objects of a given size that are farther from the

viewer appear smaller than those of the same size that are nearer the viewer.

e It provides device independence. Since the algorithm is written to operate under X

Windows, it can be ported from one platform to another with little or no changes.

Device independence makes this algorithm especially attractive to many different

prospective users. A small town doctor can render medical images just like a city

hospital, but without the expense of a dedicated graphics workstation. University

departments that can not or will not decide on a single hardware vendor can run the

same application on different platforms. Businesses that upgrade to different hardware

platforms can port their application with little or no changes. Porting the application

from an IBM PC toa DEC Station took less than one day.

6.2 Future Work

There are several ways in which this work could be advanced. In the area of compositing

routines, the user could be allowed to select between several different compositing routines,

or even write his own. The algorithm was deliberately written to separate the compositing

routine so that it could be changed if needed. A menu of prewritten compositing routines

could be supplied. One of the menu options could be “other”, which opens a dialogue box to

specify a user written routine. The user could be allowed to adjust the opacity. This could

be handled by an on-screen slider that adjusts the proportionality constant for the opacity.

Image processing techniques could be incorporated. These could include providing a way

to adjust the contrast and intensity of the image. This could be accomplished via on-screen

brightness and contrast “knobs”. The user could be allowed to interactively change the

color thresholds. A dialogue box would probably be best for this, since the data value range

is dataset-specific.

Other areas of future work might entail exploration of parallel processing. Our approach

39

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

should work well as an object-parallel algorithm as described in Chapter 1. The algorithm

is readily scalable for different numbers of processors. If only one processor is available, it

starts at the root and handles the entire pyramid. If eight processors are available, each

starts at one level below the root and handles one eighth of the pyramid. Adding a factor of

eight processors allows the processing to start one level lower in the pyramid. A processor

is assigned to each octant. Each processor produces a two dimensional section of the image

along with an opacity array for that section. These sections can then be composited together

to form the complete image.

40

REFERENCES

[1] [Aref91] W.G. Aref and H. Samet, Perspective Viewing of Objects Represented by
Octrees, Center for Automation Research CS-TR-2757, University of Maryland,

College Park, Maryland, September 1991.

[2] [Bent85] J. Bentley, Thanks Heaps, Communications of the ACM, 28(3), March
1985, 245-250.

(3] [Berk84] D. Berkey, Calculus, Saunders College Publishing, Philadelphia, PA, 1984,
804-806.

[4] [Cohe88] M. Cohen, S. Chen, J. Wallace, and D. Greenberg, A Progressive Refine-
ment Approach to Fast Radiosity Image Generation, Computer Graphics, 22(4),

August 1988, 75-84.

[5] [Dreb88] R. Drebin, L.Carpenter, and P. Hanrahan, Volume Rendering, Computer
Graphics, 22(4), August 1988, 65-74.

(6] (Fole90] J. Foley, A. vanDam, S.K. Feiner, and J.F. Hughes, Computer Graphics
Principles and Practice, Addison Wesley Publishing Company, Reading, MA, 1990.

(7] [Laur91] D. Laur and P. Hanrahan, Hierarchical Splatting: A Progressive Re-
finement Algorithm for Volume Rendering, Computer Graphics, 25(4), July 1991,

285-288.

[8] [Levo90] M. Levoy, Efficient Ray Tracing of Volume Data, ACM Transactions on
Graphics, July 1990, 245-261.

[9] [Max90] N. Max, P. Hanrahan, and R. Crawfis, Area and Volume Coherence for Ef-
ficient Visualization of 3D Scalar Functions, Computer Graphics, 24(5), November

1990, 27-33.

[10] [Meag82] D. Meagher, Geometric Modeling Using Octree Encoding, Computer

Graphics and Image Processing, 19(2), June 1982, 129-147.

4]

REFERENCES

[11] [Novi90] K.L. Novins, F.X. Sillion, and D.P. Greenberg, An Efficient Method
for Volume Rendering Using Perspective Projection, Computer Graphics, 24(5),
November 1990, 95-102.

[12] [Sabe88] P. Sabella, A rendering Algorithm for Visualizing 3D Scalar Fields, Com-
puter Graphics, 22(4), August 1988, 51-58.

[13] [Same90] H. Samet, Applications of Spatial Data Structures, Addison-Wesley Pub-
lishing Company Inc., 1990.

[14] [Same90] H. Samet, The Design and Analysis of Spatial Data Structures , Addison-
Wesley Publishing Company Inc., 1990.

[15] [Tani75] S. Tanimoto and T. Pavlidis, A Hierarchical Data Structure for Picture
Processing, Computer Graphics and Image Processing, 4(2), June 1975, 104-119.

[16] [Upso88] C. Upson, and Michael Keeler, V-BUFFER: Visible Volume Rendering,
Computer Graphics, 22(4), August 1988, 59-64.

[17] [Watt89] A.Watt, Fundamentals of Three-Dimensional Computer Graphics, Addi-
son Wesley Publishers Ltd., Wokingham, England, 1989.

[18] [Wilh90a] J. Wilhelms, J. Challinger, N. Alper, and S. Raamoorthy, Direct Volume
Rendering of Curvilinear Volumes, Computer Graphics, 24(5), November 1990, 41-

47.

[19] [Wilh90b] J. Wilhelms and A. Van Gelder, Octrees for Faster Isosurface Generation
(Extended Abstract), Computer Graphics, 24(5), November 1990, 57-60.

[20] [Wilh91] J. Wilhelms and A. Van Gelder, A Coherent Projection Approach for
Direct Volume Rendering, Computer Graphics, 25(4), July 1991, 275-284.

42

VITA

Tim Ryan was born in Cedar Falls, Iowa on November 9, 1963. He attended Clemson

University where he graduated with a BS in Computer Science in December 1985. After

graduation he was employed by Information Systems Development, a division of the Clemson

University Computing Center. In 1988 Mr. Ryan went to work for the Naval Surface

Warfare Center in Dahlgren, Virginia. Through NAVSWC(, he began his graduate degree

in Computer Science at Virginia Polytechnic Institute and State University. In August of

1990, Mr. Ryan left the Naval Surface Warfare Center to pursue his degree full-time. After

graduating from Virginia Tech, Mr. Ryan plans to pursue a career with Texas Instruments

in Dallas, Texas.

43

