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(ABSTRACT) 

Volume rendering, the direct display of data from 3D scalar fields, is an area of computer 

graphics still in its infancy. Only recently has graphics hardware advanced to a state where 

volume rendering became feasible. Volume rendering requires the analysis of large amounts 

of data, typically tens of megabytes. As hardware speeds increase, we can only expect the 

datasets to get larger. This thesis describes a reasonably fast, space efficient algorithm for 

volume rendering. The algorithm is device independent since it is written as an X Windows 

client. It makes no graphics calls to dedicated graphics hardware, but allows the X server 

to take advantage of such hardware when it exists. It can be run on any machine that 

supports X Windows, from an IBM-PC to a high-end graphics workstation. It produces a 

perspective projection of the volume, since perspective projections are generally easier to 

interpret than parallel projections. 

The algorithm uses progressive refinement to give the user a quick view of the dataset 

and how it is oriented. If a different orientation or dataset is desired, the user may interrupt 

the rendering process. Once the desired dataset and position have been determined, the 

progressive refinement process continues and the image improves in quality until the greatest 

level of detail is displayed. 

While this algorithm may not be as fast as algorithms written specifically for dedicated 

graphics hardware, its overall rendering time is acceptable. Hardware vendors who develop



X servers that take advantage of their graphics capabilities will only enhance the perfor- 

mance of our algorithm. The device independence this algorithm provides is a major benefit 

for people who work in an environment of mixed hardware platforms.
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Chapter 1 

INTRODUCTION 

1.1 Background 

Volume rendering is defined by Foley et al [Fole90], as “the direct modeling of data rep- 

resented as 3D scalar fields”. Direct volume rendering creates an image by converting the 

data values of the volume directly into pixel contributions. This is generally a slow process, 

yet is amenable to several forms of optimization. To speed image generation times, some 

rendering algorithms produce a polygon mesh, or a collection of polygons that share com- 

mon edges, as an intermediate step. The polygon mesh can then be displayed quickly by 

dedicated graphics hardware. Volume rendering can be used in many applications including 

the following. 

e Visualization of fluid dynamics, such as airflow over a wing. 

e Thermodynamic systems, such as heat transfer. 

e Representing three dimensional volumetric functions. 

e Medical imaging, such as Magnetic Resonance Images (MRI) or Computer Aided 

Tomography (CAT) scans. 

Such a variety of uses has made volume rendering a rapidly growing area of computer 

graphics.
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Three major approaches have been presented in the literature for volume rendering. The 

first is ray tracing, or ray casting [Levo90]. In ray tracing, a ray is cast from the viewer’s 

eye position through each screen pixel and then through the volume. Points or regions that 

a ray passes through contribute to the color and opacity of the pixel corresponding to that 

ray. This approach can be optimized by performing calculations for a ray only until the ray 

reaches some opacity threshold (making it opaque) or the ray exits the volume. The second 

approach to volume rendering is to draw the voxels (three dimensional pixels) as clouds 

of points, or small gausian dots [Max90]. Areas of the volume that have more substance, 

receive more points or dots thus making them more opaque. Areas that are empty receive 

few or no points or dots and therefore appear transparent. The third approach to volume 

rendering is to transform the volume into the viewing coordinate system and project the 

data onto the screen [Wilh91]. A region when projected onto the screen contributes to all 

pixels that it covers. All regions are processed in turn, either from back to front or from 

front to back. 

Combinations of these three approaches are common. For example, ray tracing can 

be used to render semi-transparent density clouds. In another example, surfaces can be 

projected and then rays cast only through the pixels covered by a surface. 

Volume rendering algorithms can also be categorized by how they traverse the volume 

dataset: image order or object order. Image order traversal depends on the screen image. 

Data access is done in whatever order is required to produce a pixel at screen location 2, 

y. Ray tracing algorithms are generally image order traversal algorithms. Object order 

traversal is directed by the data values in the dataset. Traversal is done so that contiguous 

regions of the dataset are accessed together, regardless of what screen locations they will 

map to. Projection algorithms are generally object order traversal algorithms. 

Specialized graphics hardware to speed image generation times is becoming more com- 

mon on graphics workstations. This new hardware is very often a parallel architecture. 

There are two different approaches to parallelization, image-parallel and object-parallel. 

These two approaches are analogous to image order and object order traversals. Image
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parallel architectures assign multiple processors to each pixel or group of pixels, in order 

to derive pixel values faster. Each processor accesses those sections of the data necessary 

to compute the resultant pixel value(s). Object parallel architectures divide the dataset 

into 3D regions and assign a processor to each region. This approach derives multiple pixels 

simultaneously. Each architecture has its advantages and disadvantages. Object parallel ar- 

chitectures divide the dataset among processors so no one processor needs the entire dataset 

in memory. Their disadvantage is that pixels may be computed by one processor that will 

be totally obscured by the pixels computed by another processor. Thus, computational 

power may be wasted. Image parallelism only computes pixels that will be visible to the 

viewer. However, each processor must have access to the entire dataset. 

1.2 Problem Statement 

Some of the problems associated with volume rendering are as follows. 

1) The algorithms that are space efficient generally have slow image generation times. 

2) The algorithms that have fast image generation times are generally space inefficient. 

3) Most attempts to fix problem 1 entail using specific graphics hardware to draw high 

level graphics primatives such as Gouroud-shaded polygons. 

4) Many algorithms produce a parallel projection instead of a perspective projection. 

This thesis describes a reasonably fast, space efficient method of volume rendering. The 

algorithm produces a perspective projection of the volume on any hardware platform that 

runs X Windows. While not requiring any special graphics hardware, the algorithm, since 

it outputs polygons, can take advantage of it if the X server was written to do so. 

1.3 Goal and Approach 

The goal of this research is a fast method for volume rendering to enable real-time user 

interaction. The type of interaction we facilitate is interactive change of user view position. 

By interactive change we mean, allowing the user to move their view position in real time.
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State of the art 3D input devices today are the space-ball and the data glove. Since these 

are not yet in common use, changes to the user’s view position are accomplished via the 

mouse and on-screen controls. Since the user is stationary, object(s) represented by the 

data will appear to move relative to the viewer. In this way the user can make the object(s) 

rotate in any dimension, grow, or shrink by adjusting the view position appropriately. In 

order to support real-time manipulation of the volume, the data must be rendered very 

quickly. 

To obtain the desired speed we exploit the technique of progressive refinement [Cohe88]. 

Progressive refinement begins by displaying a crude representation of the final image as 

quickly as possible. This representation is then improved upon over successive (typically 

slower) iterations, until an acceptable image has been rendered. This technique is used in 

many computer graphics applications, most notably in radiosity algorithms. Progressive 

refinement gives the user some indication of the final output early in the rendering pro- 

cess. We use progressive refinement to allow the user to intuitively identify their location 

in the image space by their orientation to the object(s) being rendered. Even a crude rep- 

resentation should be enough to determine whether the right dataset is being displayed, 

and whether the object(s) are right side up or upside down, for example. Once the user 

has reached the desired view position, the progressive refinement process continues and the 

image improves in quality until the greatest level of detail is displayed or the user moves to 

another view position. 

The purpose of producing a space efficient method of volume rendering is to allow 

volume rendering of large data sets, possibly on computers with memory restrictions. Fast 

algorithms have been developed that require the entire dataset to be loaded into memory. 

This may be acceptable for small datasets. Large datasets do exist however, and are likely 

to become more prevalent as the use of volume rendering increases. The dataset used in this 

thesis is a Magnetic Resonance scan of a human head. Its dimensions are 256x256x109 at 16 

bits per data value. This is equivalent to approximately 14Mb of data. 16 to 32Mb of RAM 

are commonly available for workstations at this time. Problems will arise, however, when
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datasets grow to 256x256x256 at 16 bits per data value. That is 32Mb just for the data. 

Our implementation only requires part of the dataset to be loaded into memory at any one 

time. To keep the rendering time as low as possible our method makes one sequential pass 

through the dataset when reading it from disk. 

1.4 Data Structure 

The octree, a three dimensional extension of the quadtree, is a hierarchical data structure 

based on recursive subdivision of space into eight equal subvolumes [Same90]. A complete 

octree is defined as follows. A three dimensional space is represented by a cube whose 

dimensions are 2” x 2” x 2". The array is subdivided into eight partitions, each of dimension 

2”-1,2"-1x2"-1, Each of these partitions is in turn subdivided. The partitioning continues 

as necessary until each octant meets some decomposition criteria. One way of representing 

this is by a tree of out degree eight. The root represents the entire object. Each of its 

eight children represent one eighth, or octant, of the object. Normally, this would require 

eight pointers for each non-leaf node to locate the children. Since our original dataset 

is at a voxel resolution we will produce a complete octree. The location of children can 

therefore be calculated as in a heap (Bent85]. This allows us to eliminate the pointers. 

This implementation is traditionally called the pyramid [Tani75]. Tanimoto and Pavlidis 

developed the idea of using several lower resolution levels of a 2D image to speed image 

processing time. Their levels were two dimensional matrices, each one quarter the size of 

the previous. All internal nodes of the pyramid contain some combination of the values of 

their children. This combination could be, for example, an average, the maximum value, or 

the minimum value. In our application we store a pyramid of 3D volumes. Parent nodes 

store the minimum and maximum of their child values. The reason for this choice will be 

explained in Chapter 3. Moving from the root down to the lowest level of the pyramid, 

we encounter successively higher resolution representations of the data. The lowest level of 

the pyramid is the actual data. The total storage requirement for the pyramid is 8/7 times
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that required for the base dataset if the internal nodes each require the same storage as one 

of the lowest level nodes. All levels of the pyramid are stored in octree order, described in 

Chapter 3, to facilitate access. This necessitates some preprocessing to convert from raster 

order to octree order, and then to construct the upper portions of the pyramid. 

The remainder of this thesis is organized as follows. Chapter 2 describes previous work 

in the area of volume rendering, common problems encountered by volume rendering al- 

gorithms and the approaches others have taken to solve them. Chapter 3 describes our 

preprocessing and viewing algorithms. It lists problems we encountered and our solutions 

to those problems. Chapter 4 details the rendering routines used in the viewing algorithm. 

It also lists enhancements that were added to speed volume rendering time. Chapter 5 pro- 

vides our results and analysis for different hardware platforms. Chapter 6 is the conclusion 

and includes thoughts about future work in the area of volume rendering.



Chapter 2 

PREVIOUS WORK 

Volume rendering is a young area of computer graphics. Most of the previous volume 

rendering work has been done since 1987. Some of the first papers on volume rendering 

were presented at SIGGRAPH 88. Paolo Sabella presented a paper describing a ray tracing 

algorithm entitled “A Rendering Algorithm for Visualizing 3D Scalar Fields” [Sabe88]. 

Craig Upson and Michael Keeler preseneted a paper entitled “V-BUFFER: Visible Volume 

Rendering” in which he compares ray casting to a simple projection method [Upso88]. 

Robert Drebin, Loren Carpenter, and Pat Hanrahan also presented a paper at SIGGRAPH 

88. Its title was simply “Volume Rendering” [Dreb88]. It is discussed in greater detail 

in a following paragraph. Many problems are still being discovered in volume rendering. 

Some of the problems that others have addressed are image quality, image generation time, 

perspective versus parallel projections, rendering volumes not based on a rectilinear grid, 

and producing isosurface generations from volume datasets. These problems have been 

addressed by the volume rendering community in a variety of ways, some of which are 

presented in this chapter. 

Donald Meagher was a pioneer in the applications of octrees. In 1982 he developed a 

geometric modeling scheme called Octree Encoding [Meag82]. Octree encoding allows for 

the representation of objects of arbitrary complexity (within memory limits) at a specified
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precision, or resolution. In octree encoding the data is stored in a hierarchical tree structure. 

The leaf nodes in an octree encoding represent data that are either entirely inside an object 

or entirely outside an object. Meagher’s octree encoding supports the boolean operations of 

union, intersection, and difference, as well as the geometric transformations of translation, 

rotation, and scaling. Meagher’s algorithm provides an orthographic projection, but de- 

scribes a deformation capability to give the appearance of a perspective projection, though 

this was not implemented at the time this paper was written. Octree encoding provides 

display of the objects with hidden surfaces removed by the simple process of visiting the chil- 

dren nodes in the proper sequence. However, Meagher’s algorithm did not allow arbitrary 

viewing positions. Viewing was only allowed from one of the eight corners of the volume 

at an infinite distance. Aref and Samet [Aref91] continue Meagher’s work by discussing the 

problems involved in perspective projections from an arbitrary view position. In particular, 

they address perspective viewing of objects represented by octrees. They present an algo- 

rithm that correctly displays data stored in an octree in time linearly proportional to the 

total surface area of the objects being viewed (since it processes each octree node once). By 

correctly displays, it is meant that using their algorithm will generate no false artifacts such 

as can be introduced by other perspective projection approaches. Based in view position, 

the algorithm determines, at each level of the octree, what order to process the children 

octants. They implement this ordering by processing the octree in a depth-first, recursive, 

fashion. While depth first processing will generate high quality final images, progressive 

refinement requires a breadth first order of processing. 

Drebin et al [Dreb88] address the problem of image quality. Their algorithm consists of 

several stages. Each stage accepts an input volume and produces an output volume. Each 

input volume is interpreted as a sampled continuous signal. To avoid aliasing problems, 

this interpretation requires the original dataset to be sampled above the Nyquist frequency, 

or that the original continuous signal is low-pass filtered. The original volume is converted 

to a set of material percentage volumes. The material percentage volumes describe the 

percentage of a particular material, like bone, present in a region. Additionally, a composite
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color volume, opacity volume, density volume, surface strength volume, surface normal 

volume, shaded color volume, and transformed volume are produced. One of the problems 

with their algorithm is that it requires a different probabilistic classifier for each type of 

dataset to be viewed. The probabilistic classifier estimates the percentages of each material 

found in a given region. The classifier for a CAT scan dataset, for example, would be based 

on x-ray radiation absorption. The algorithm applys rotations and a perspective transform 

to the volume and projects it onto the viewing plane in a back to front traversal. All of this 

is performed on a PIXAR Image Computer. The resultant images are of very high quality, 

but require large amounts of computation for the various stages. The specialized nature of 

the PIXAR Image Computer may make this algorithm feasible on that platform, and not 

feasible on more common workstations. 

Marc Levoy has been working with volume rendering since at least 1988. In a paper 

entitled “Efficient Ray Tracing of Volume Data” [Levo90], he addressed the problem of 

long image generation times. He presented a front-to-back image-order volume rendering 

algorithm using a pyramid data structure. Levoy assigned a color and opacity to each 

voxel and a 2 dimensional orthographic projection of the resulting semitransparent volume 

was created by a ray tracing algorithm. He discusses two strategies for improving the 

performance of a standard ray tracing algorithm for volume data. The first makes use of 

coherent regions of empty voxels. By employing the pyramid data structure, it is possible 

to determine the largest region defined by a pyramid node that contains all empty voxels. 

It is then possible to stop the ray calculations upon entering such a region, calculate the 

exit point of that ray from the region, and restart the ray calculations from that point. The 

second improvement strategy relies on the accumulated opacity of a ray. Once a ray has 

reached a specified opacity threshold, voxels farther along the ray do not contribute to the 

color of the resultant pixel. It is therefore possible to terminate ray calculations before the 

tay has passed through all voxels in the dataset. Levoy’s algorithm gains time efficiency at 

the expense of space efficiency. He requires that the entire pyramid be stored in memory 

due to the random data access of his algorithm. For large datasets this may not be possible.
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Novins et al [Novi90] address the problem of parallel projection rendering algorithms 

by presenting an efficient ray tracing approach that provides perspective projection. Their 

algorithm, unlike Levoy’s, does not require that the entire dataset be resident in memory. 

This also addresses the problem of space efficiency. They divide the dataset into slabs. A 

slab is two adjacent z-y planes of data. They determine a viewing order before processing 

starts. Slabs are read in one at a time and all rays which pass through the current slab 

are processed. Once a ray has been processed, the next slab it will encounter is calculated. 

The ray is queued to be processed again when that slab becomes the current slab. This 

approach would tend to give the algorithm a progressive refinement look since many rays 

are completed partially as the data is read. 

Wilhelms and Van Gelder [Wilh91] also address the problem of image generation time, 

but use an object-space projection algorithm instead of ray tracing. Projection differs from 

ray tracing by processing the volume region by region instead of ray by ray. They use a co- 

herent projection approach to direct volume rendering. The coherence of the sample data, or 

degree to which large areas have equal or nearly equal data values, can be used by projection 

algorithms to display large flat surfaces faster than general ray tracing algorithms. Their 

paper discusses a projection approach for directly rendering rectilinear, parallel-projected 

sample volumes. It also looks at the issues involved in integration and interpolation of the 

data. They discuss the advantages and disadvantages of using hardware Gouraud-shading 

for volume rendering. The problems with their approach are the parallel projections and 

the dependence on hardware Gouraud-shading. Parallel projections are faster to compute, 

but less realistic in appearance than perspective projections. The speed of their algorithm 

seems to come from the fact that they can recognize large coherent surfaces and let the 

hardware draw it as a Gouraud-shaded polygon. This implies that their algorithm may not 

be suited to machines which do not have such hardware graphics primitives. 

Max et al [Max90] work with density clouds (volumes represented as clouds of points). 

Their goal was to render surfaces and density clouds in the same image. They first scan 

convert and composite the density cloud into a convex polyhedron. Compositing consists of 

10
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adding the colors and opacities of voxels together. They then slice the convex polyhedron 

into other convex polyhedra by the planes that define a surface. These are depth sorted 

and passed to a volume compositor. They take advantage of area coherence by producing 

polygons. If a polygon projects to a large area of the screen, then this can be quite efficient. 

For data where each polygon projects to only a few pixels however, the overhead in gen- 

erating the polygon outweighs the savings. Another problem is the fact that they have to 

sort the polyhedra. If a cycle exists, such that for three polyhedra A, B, and C, A obscures 

B, B obscures C, and C obscures A, then one of the polyhedra must be subdivided. They 

had not developed a method for doing this at the time their paper was published. They 

hoped that such cycles would not occur in real datasets. 

Wilhelms et al [Wilh90a] describe direct volume rendering of curvilinear volumes. They 

address the problems of volume rendering a dataset that is not sampled in a rectilinear grid. 

In particular, they explore the use of direct volume rendering for data from computational 

fluid dynamics. The sample points for such a dataset lie ona curvilinear grid. A curvilinear 

grid is defined to consist of cells, each of which have eight vertices, but whose faces are 

not necessarily planar. In addition, the grid points do not lie on orthogonal axes. Their 

conclusions are that reinterpolation to a rectilinear volume provides a faster method of 

rendering curvilinear volumes. This may introduce errors into the resultant image, however. 

Their results indicate that direct volume rendering of volumes that are not in a rectilinear 

grid is not a time efficient process. 

Wilhelms and Van Gelder [Wilh90b] address the problem of generating isosurfaces from 

volume data and image generation time. Isosurface generation is the generation of a surface 

of uniform value. The dataset is scanned for a particular data value. The locations where 

those values are found are used to form a surface, which is projected onto the screen. 

Isosurface generation is useful for displaying elements of the volume that are in common. 

On an MR scan for example, if the value corresponding to soft tissue is known, an image 

can be displayed that shows the surface of the soft tissue. On the same dataset, a value 

corresponding to bone can be used to produce an image of just the skeleton. Wilhelms 

11
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and Van Gelder introduce a space-efficient design for octree representations that are not of 

dimensions that are a power of two: branch-on-need octrees (BONOs). BONOs are basically 

octrees that are created from the leaves to the root, instead of the other way around. Eight 

children are combined to form one parent. This produces the greatest branching at the 

lowest levels, and hence the smallest tree. 

Laur and Hanrahan [Laur91] address the problem of image generation time by using a 

progressive refinement technique they call hierarchical splatting to perform volume render- 

ing. They use a pyramidal volume representation where the upper levels of the pyramid 

store average data values and an estimated error. Splats are footprints scaled to match the 

size of a projected cell. A footprint is a two dimensional projection of a three dimensional 

function, such as a Gaussian. A splat will typically be brighter in the center, indicating 

more volume of the 3D object projecting to these pixels than at its edges. The splats are 

approximated by RGBA (color and opacity) Gouraud-shaded polygons. The splats are then 

composited on top of each other in back to front order. They have developed a real-time 

rendering algorithm with a few limitations. According to their conclusions, even at full reso- 

lution, the resulting image does not equal other high-quality rendering techniques in picture 

quality. Thus the approximations that were introduced to attain the interactive speed sac- 

rifice the quality of the final image. They also appear to rely on hardware Gouraud-shading 

of polygons to achieve their speed. 

Previous work in the area of volume rendering address the problems of image generation 

times, or space efficiency, or perspective viewing of the dataset. This thesis attempts to 

address all of these problems as well as provide device independence. Our work attempts 

to give the user more information quicker, by using progressive refinement similar to hierar- 

chical splatting. It provides space efficiency that is scalable to the memory available on the 

host machine, like the slab approach. It provides perspective projections of the volume, like 

Aref and Samet’s approach. In addition, it provides device independence by being written 

as an X Windows client. 

12



Chapter 3 

GENERAL DESCRIPTION OF 

THE ALGORITHM 

This chapter provides a general description of the preprocessing and viewing algorithms. 

There are two steps to preprocessing. The data must first be transformed to octree order and 

then the pyramid must be built from this octree ordered dataset. After these preprocessing 

steps have been done the dataset can be viewed. The preprocessing steps only need to be 

done once for each dataset. They produce a view independent pyramid data structure. 

3.1 Preprocessing 

Most 3-D volume datasets that exist today are arranged as a three dimensional raster array. 

The first n elements represent the first row, m rows of n elements each represent the first 

ty -plane, and p zy -planes make up the volume. The first preprocessing step is to change 

this order. Since we want to access this data in octree order, the most efficient way to have 

it stored on disk is in octree order. This allows sequential disk access by octants. In other 

words, octants are stored sequentially on disk, so reading one octant requires one sequential 

disk access. If an octree is described as a tree of degree eight, then octree order is the 

order in which the voxels would be accessed during a traversal of the octree. Figure 3.1 

13
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Figure 3.1: Octree represented as a tree of degree eight 

shows a tree of degree eight with the nodes labeled. Figure 3.2 shows the same octree as 

a cubic volume with the nodes labeled the same as Figure 3.1. A complete octree requires 

that each dimension of the dataset be equal, and a power of two. It may be necessary to 

add empty data elements to the dataset in order to achieve this. Alternatively, there are 

ways to implement the rendering algorithm to deal with non-complete octrees. Such an 

implementation will be discussed later. A recursive routine was created to read the data 

elements from a raster ordered dataset and write them as an octree ordered dataset. This 

routine calculates the z, y, z coordinate for the next voxel in octree order. It then reads 

the element at position (z, y, z) in the original dataset and writes that element to a new 

dataset. 

The second preprocessing step builds the pyramid. The units of subdivision within our 

pyramid are levels and nodes. The octree ordered dataset obtained from step one becomes 

the lowest level, level 0, of our pyramid. Each element of the dataset is a node in level 0. The 

total number of nodes in level 0 is then the total number of elements in the dataset. Each 

node of level 1 in our pyramid is called a parent and is constructed by combining the values 

14
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Figure 3.2: Spatial representation of the octree 
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Figure 3.3: Conceptual picture of the pyramid data structure showing number of nodes at 

each level for a dataset of resolution 64 x 64 x 64 

of the eight nodes from level 0 that would be its children in a pointer based representation 

of the octree. We retain the use of the terms children and parent even though we do not 

store explicit links between them. Since the lowest level is already in octree order, the first 

eight children are the first eight nodes of that level. The procedure continues combining 

eight children of level « and forming one parent on level i+/, until all nodes on level i have 

been processed. When it has completed, level i+/ contains one eighth the number of nodes 

at level 7. These nodes are also in octree order. The procedure then repeats itself, reading 

level i+1 as children and writing level i+2 as parents. This continues until we reach the root 

of the pyramid, where the number of nodes is one. The final result is a complete pyramid 

with each level in octree order. An illustration of a pyramid and the number of nodes that 

are stored at each level is given in Figure 3.3. 

The combination of data values that are stored in the upper levels of the pyramid affect 

the performance and possible applications of the algorithm. We chose to store a quantized 

minimum and maximum value of the eight children. The original dataset contained sixteen 

bit integers, of which the lowest twelve bits are significant. We quantized, or reduced 
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the resolution, to eight bits for the upper levels in order to pack both the maximum and 

minimum into one sixteen bit integer. The lowest level still contains one sixteen bit integer 

for each data value. We have found that storing the minimum and maximum gives the most 

flexibility to our algorithm. The minimum value allows us to safely draw the upper levels 

to the screen without having to erase parts of the picture later. The maximum value allows 

us to terminate processing parts of the octree that contain only empty space. 

Handeling non-complete octrees is accomplished as follows. The octree is built in a 

manner similar to the BONOs described by Wilhelms and Van Gelder [Wilh90b]. The 

octree is constructed from the bottom up instead of from the top down. If eight children 

are not available to be combined into one parent, by the preprocessing, then the necessary 

number of nodes are created. These created nodes contain a special “empty” value that the 

algorithm will handle by not drawing and not breaking down into its children. If a dataset 

is of dimensions 256 x 256 x 128, for example, then building up from the bottom results in 

levels ranging in size from 8,388,608 nodes on the bottom level to 4 nodes at the top level. 

To these are added 4 more “empty” nodes to fill out that level to 8. Finally, 1 more node 

is added as the parent of those 8. This adds only 4 extra nodes to the pyramid. 

3.2 Viewing Algorithm 

We construct the pyramid to support progressive refinement. Progressive refinement allows 

the user to interact with the dataset in real-time. The time required to completely render the 

dataset using progressive refinement is typically greater than that required by using direct 

volume rendering. The advantage comes from being able to change the viewer’s position 

with respect to the object(s) in the image after partial rendering. By quickly giving the user 

a rough approximation of the objects being rendered, the user can determine the orientation 

of the image and change positions if necessary. Ray tracing and direct volume rendering 

without progressive refinement give the user no indication of the entire image until rendering 

is complete. 
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The collection of pyramid levels above the lowest level, or voxel level, will be referred 

to as the internal levels. The internal levels of the pyramid together take up approximately 

one seventh the amount of space required by the lowest level. For datasets common today, 

one seventh is sufficiently small that it can be stored in RAM. The internal levels can be 

read in once at the beginning of the viewing process. This allows us to repeatedly display 

the internal levels and change view positions as many times as we wish without additional 

disk access. The lowest level of the pyramid need not be read until its data is needed. 

The entire lowest level need not be in memory at once, unlike the ray tracing algorithms 

of Levoy, because we know in advance the order in which the nodes will be accessed. The 

amount of lowest level data that is read into memory can easily be changed to accommodate 

the memory availability of the host computer. For our experiments, we chose to read one 

octant of the lower data into memory at a time. The internal levels of the pyramid and one 

eighth of the lowest level then occupy just over one quarter of the memory required by the 

entire volume. With our dataset this amount is approximately 6MB. 

Our viewing algorithm starts with the root of the pyramid. The root level contains 

only one node. It then traverses the pyramid in breadth first order. In other words, all of 

the nodes on one level are processed before moving down to the next level. Our viewing 

algorithm is additive, i.e. it does not draw anything that will have to be erased later. 

This is accomplished by storing the minimum and maximum values as described in the 

preprocessing section. Nodes further down the pyramid can only expand, never decrease 

the image. 

The dataset is a three dimensional volume. There are two traditional ways to interpret 

the data in volume rendering. The data could represent totally opaque material. In this 

case the easiest processing order would be back to front (often referred to as the painter’s 

algorithm). Objects which obscure other parts of the image would be drawn later. Thus 

no hidden surface removal is necessary. The other way to interpret the volume data is 

as a semi-transparent solid. This allows us to see, at least part way, through an object. 

In this case, each voxel contains a color and an opacity. This opacity is a value between 
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zero and one and represents the degree to which it obscures voxels that lie behind it. The 

processing order for semi-transparent solids can be back to front, or front to back. There 

are advantages to each processing order. We have chosen front to back since that will allow 

us to stop processing for a screen pixel that is already opaque. When dealing with semi- 

transparent solids, a compositing function is needed to add colors and opacities together. 

Our algorithm allows for a variety of compositing functions to be inserted. The particular 

function we implement is discussed in Chapter 4. 

Our viewing algorithm approach can be viewed as the inverse of ray tracing. Ray 

tracing casts a ray through one pixel of the screen and follows that ray through the dataset. 

Color and opacity are accumulated for that pixel until its final value is determined. Our 

algorithm traverses the dataset and accumulates partial values for many pixels. The final 

color of any pixel is not known until the last data value is processed. In ray tracing, a 

ray can access any data value in the dataset depending on the view position. Any time 

the view position is changed, the order in which the data is accessed is changed. Thus, 

ray tracing algorithms require random access to the pyramid. For this reason, ray tracing 

algorithms are most efficient when the entire dataset is stored in memory. Our algorithm 

allows sequential access irrespective of the view position. According to timings we have 

performed, sequential disk access accounts for approximately 3% of our total processing 

time, when the volume is completely rendered. More often, the user will stop the rendering 

process before the bottom level must be read in. 
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Chapter 4 

DESCRIPTION OF 

RENDERING ROUTINES 

The steps we have devised to render the volume are as follows. 

1) An octant from the pyramid is identified as the next to be rendered. 

2) If its minimum value is greater than the “empty” intensity threshold, then the eight 

corners of the octant are transformed and projected to the screen by means of a 

perspective projection. 

3) Faces are constructed from the projected corners. Either one, two, or three faces of 

the octant are visible from the view position. 

4) The visible faces are filled as polygons using the minimum value. 

5) The rectangular region containing the visible polygons is composited with the corre- 

sponding pixels in the image. 

This chapter describes four sets of routines used in the volume rendering process. The 

first allows the user to change their view position. The second set transforms the z,y,z 

coordinate system of the volume to the coordinate system defined by the user’s view position. 

The third set of routines projects the data represented by our pyramid onto the screen in 

this new coordinate system. The last set of routines is the compositing process. 
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4.1 View Positioning Routines 

The user interface for the system contains six view positioning buttons. They are labeled 

“Spin +”, “Spin —”, “Direction +”, “Direction —”, “Move In”, and “Move Out”. An 

indicator on the screen shows in which direction the object will rotate. The screen is 

illustrated in Figure 4.1. Clicking the “Spin +” button appears to rotate the volume in 

the direction indicated on the screen. Similarly, clicking “Spin —” will appear to rotate the 

volume in a direction opposite to what is indicated on the screen. The buttons “Direction +” 

and “Direction —” change the direction in which the volume appears to rotate, as well as the 

direction of the indicator. The use of the direction buttons will be described further below. 

The “Move In” and “Move Out” buttons make the image grow and shrink respectively. We 

have used the term “appears to rotate”, because in fact, it is the viewer’s position that 

changes, not the volume. The z,y,z coordinates of the data always remain constant. 

Figure 4.2 illustrates the actions of the buttons. When a “Spin” button is clicked, 

the view position is translated along a great circle of a sphere that surrounds the volume, 

illustrated by the ring in the figure. The “Direction” buttons change the great circle by 

rotating the axis labeled “Direction” in Figure 4.2. The view position is defined by two 

angles, ¢ and @. @ is the angle of rotation of the “Direction” axis. ¢ determines where the 

viewer is on the ring. The “Spin” and “Direction” routines need only increase or decrease 

g and @ to change the view position. Each click of the button changes ¢ or @ by 0.1743 

radians, or approximately ten degrees. The “Move In” and “Move Out” buttons change the 

radius of the great circle. 

The view position is then converted to Cartesian coordinates so that the dataset can be 

projected to two dimensional screen coordinates correctly. The center of the volume and r, 

the radius from the center to the view position, must be known. The radius is controlled by 

the “Move” buttons. “Move In” decreases the radius and similarly “Move Out” increases 

the radius. The spherical to Cartesian coordinate conversion uses the following equations 
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Figure 4.1: User interface controls 
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Figure 4.2: How the “Spin” and “Direction” buttons affect the viewer’s position 
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[Berk84]. 

viewposition, = (rx sind *cosé) + center, 

viewposition, = (r* sing * sin@) + center, 

viewposition, = (r*cosd) + center, 

4.2 Determining the Position of a Node 

The viewing algorithm processes the pyramid in breadth first order to provide the progres- 

sive refinement. To process the next octant, the algorithm must compute the position and 

size of this octant within the volume. Our first approach to achieve a breadth first ordering 

was to use a queue. For each octant we calculated the position and size of its eight chil- 

dren. For those children whose maximum value was greater than the “empty” value, this 

information was added to the queue in the proper order. This allowed us to skip areas that 

contained only empty values and ensure a view consistent ordering of the octants. A view 

consistent ordering means the data is accessed in the same order with respect to the viewer 

from any view position. This ordering could be front to back, for example. The maximum 

length of the queue was the number of octants at the lowest level of the pyramid. Each 

element contained an 2z,y,z, data location, and size. The z, y, and z defined one corner. The 

size allowed us to computer the other corners. The data location was the location in the 

heap of the intensity value. Alternatively, we could have stored the data value itself in the 

queue. This required at least five bytes per element. The resultant queue size was two and 

a half times larger than the original dataset. That was certainly not space efficient. 

The next approach was to calculate the z,y,z location from the position in the heap, 

which was readily available if the pyramid was processed in the same order in which it was 

stored. We developed a routine that would allow us to skip “empty” portions of the pyramid 

by using the minimum and maximum values. If the current node’s minimum value was less 

than the “empty” value, then the parent of that node was calculated and its maximum 

value was compared to the “empty” value. If its maximum value was less than the “empty” 
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value then none of its children would need to be rendered. We continued to move up the 

pyramid until we found a parent with a maximum value greater than “empty”. We then 

chose the next child of this parent, and moved back down to the level at which we started. 

In this fashion we could move up and down the pyramid as we moved across one level. 

This allowed us to skip portions of the data that would not contribute to the image. This 

worked well, until we started compositing colors. Because we allow the user to change view 

positions, we can not insure a front to back or back to front processing order as required 

by the compositing routine. 

The solution we have implemented is a modified recursive approach that ensures a 

view consistent processing order. A normal recursive algorithm, such as Aref and Samet’s 

[Aref91], can ensure a view consistent processing order, but processes the data in a depth 

first manner. Our approach enables breadth first processing, and hence progressive refine- 

ment. Our algorithm consists of a loop that calls a routine named ProcessLevel for each 

level of the pyramid in turn. ProcessLevel is recursive. It accepts three parameters, Cur- 

rentLevel, DrawingLevel, and Octant. ProcessLevelalways starts at the root of the pyramid. 

If CurrentLevel is not equal to DrawingLevel, then the routine subdivides Octant into its 

children and recursively calls itself in the correct order. The correct order is determined as 

follows. The view position is compared to the center of Octant. The view position lies in 

one of eight regions with respect to the center of the node as illustrated in Figure 4.3. The 

view position can be in the Left Upper Front (LUF) region, the Right Upper Front (RUF), 

the Left Down Front (LDF), the Right Down Front (RDF), the Left Upper Back (LUB), 

the Right Upper Back (RUB), the Left Down Back (LDB), or the Right Down Back (RDB). 

The region that the view position is in is used as an index into the Octant Order Table, 

see Table 4.1. The Octant Order Table indicates a view consistent ordering of the children. 

When DrawingLevel is reached, the octants are drawn and composited as described in the 

following sections. This approach achieves two goals. First “empty” areas of the pyramid 

are never processed. If the maximum value of an Octant is less than the “empty” value, 

then that Octant is not subdivided. None of its children are processed. The second goal is 
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LUB RUB 

  

  

LUF RUF 
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LDF RDF   
Figure 4.3: Eight regions that the view position can be in 
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Table 4.1: Octant Order Table used to determine child processing order 

  

  

  

  

  

  

  

  

  

region Octant Order 

LUF LUF | RUF | LDF | RDF | LUB | RUB | LDB | RDB 

RUF RUF | LUF | RDF ; LDF | RUB | LUB | RDB; LDB 

LDF LDF | RDF |} LUF | RUF | LDB | RDB | LUB | RUB 

RDF RDF | LDF | RUF | LUF | RDB | LDB | RUB | LUB 
LUB LUB | RUB j LDB | RDB | LUF | RUF | LDF | RDF 

RUB RUB | LUB | RDB | LDB | RUF | LUF | RDF | LDF 
LDB LDB | RDB |; LUB |} RUB |} LDF | RDF | LUF | RUF 
RDB RDB | LDB | RUB | LUB | RDF | LDF | RUF | LUF                           
  

the proper ordering of octants from any view position. Table 4.1 provides a front to back 

octant ordering. A back to front processing could be accomplished by simply replacing 

Octant Order Table with a back to front version. 

4.3. Projection Of Coordinates 

Several transformations must be done in order to project an octant correctly onto the screen. 

The viewing reference coordinate (VRC) system is defined by three axis. The projection 

plane (or view-plane) is the 2D plane to which the 3 dimensional coordinates of the volume 

are projected to form the image. One axis is the view-plane normal (VPN), a vector that 

is normal to the view-plane. A second axis is found from the view up vector (VUP). The 

projection of the VUP onto the view plane is called the v-axis. The third axis is called 

the u-axis. Its direction is defined such that u,v, and VPN form a right handed coordinate 

system. To a viewer at the view position, the volume is defined by this coordinate system. 

Since the view-plane is defined by the view position, this entire coordinate system changes 

when the view position does. The VRC may or may not coincide with the coordinate system 

of the dataset, or the device coordinates of the computer screen. Thus we must transform 

the VRC to the device coordinates, such that the screen becomes the view plane, and the 

view position is in front of the screen at some distance. To accomplish this, the VRC must 
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be rotated so the VPN becomes the z-axis, the u-axis becomes the z-axis, and the v-axis 

becomes the y-axis. The geometric transformations required for this are consolidated into 

a single matrix. By multiplying each z,y,z coordinate from the volume by this matrix, the 

coordinates are transformed such that a projection routine can project it onto the plane 

z = 0 (equivalent to the screen). The routines to generate this matrix are based on the 

traditional techniques described in Foley et al [Fole90] and Watt [Watt89]. They are given 

in Figure 4.4 and Figure 4.5. 

Each point is multiplied by the resultant matrix to produce a transformed point. This 

transformed point is then projected onto the view-plane. The correct projection point is 

the intersection of a line between the transformed point and the view position, and the 

view-plane. The view-plane is now the z = 0 plane and the view position lies at a distance 

dz from the view-plane on a line that is parallel to the z-axis. The distance dz is equal to 

the center of the object minus the radius. We specify this parametrically as 

point, = viewposition, + t(Trans formedPoint, — viewposition;) 

point, = viewposition, + (TransformedPoint, — viewposition, ) 

where ¢ is defined over the range 0 <= ¢ <= 1 as 

—TransformedPoint,/(dz — Trans formedPoint,) 

4.4 Compositing 

Compositing is required when semi-transparent solids are rendered. Semi-transparent ren- 

dering requires an opacity as well as a color for each voxel. In a semi-transparent solid, 

the color that is mapped to a screen location depends not only on the object that is closest 

to the viewer at that location, but also to a lesser extent on the colors of objects farther 

away also projecting to that location, due to the opacity. Medical imaging devices do not 

record multiple values for each sample position. Most three dimensional datasets contain a 
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void compute_matrices(float matrix3[4][4], Point3D offset, 
int size, Point3D viewposition) 

{ 
FPoint3D Rx,Ry,Rz,VPN,VUP,VRP,DOP; 

float matrixi[4] [4] ,matrix2[4] [4]; 
int i,j; 

/* view reference point is the center of the object */ 

VRP.x = offset.x + (size/2); 

VRP.y = offset.y + (size/2); 

VRP.z = offset.z + (size/2); 
/* compute the view plane normal from the viewposition 

and the view ref pt */ 
VPN.x = viewposition.x ~- VRP.x; 

VPN.y = viewposition.y - VRP.y; 

VPN.z = viewposition.z ~ VRP.z; 

/* set the view up vector to be a unit vector on the y axis */ 

VUP.x = 0; 

VUP.y = 1; 

VUP.z = 0; 

/* retranslate VRP to original coordinates */ 

translate(VRP, matrix2) ; 

/* figure rotations */ 

rotateVRC(VPN, VUP, &Rx, &@Ry, &Rz); 

matrixi[0][0] = Rx.x; 

matrixi[0][1] = Rx.y; 

matrix1[01[2] = Rx.z; 

matrixifi][0] = Ry.x; 

matrixi[1J[i] = Ry.y; 

matrixi({i][2] = Ry.z; 
matrixi[2][0] = Rz.x; 

matrixi[2][1] = Rz.y; 

matrixi(2](2] = Rz.z; 

Figure 4.4: Transformation matrix computation routine, continued on next figure 
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for(i=0;i<3;it+){ 
matrixi[3] [i] 
matrix1 [i] [3] 

} 

matrixi1[3] [3] = 1.0; 

. 0.0; 

0.0 > 

/* multiply translation and rotation matrices */ 

matrix_mult(matrix2, matrix1, matrix3); 

/* translate VRP to origin */ 
translate(VRP, matrix1); 

/* multiply trans*rotate and 2nd trans matrices */ 

matrix_mult(matrix3, matrixi, matrix2); 

  

void rotateVRC(FPoint3D VPN, FPoint3D VUP, FPoint3D *Rx, 

FPoint3D *Ry, FPoint3D *Rz) 

{ 
FPoint3D VUPXRz; 

float lenVPN,lenVUPXRz; 

lenVPN = vector_length(VPN); /* calculate the length of VPN */ 

/* the VPN is rotated onto the z-axis */ 

Rz->x = VPN.x / lenVPN; 

Rz->y = VPN.y / lenVPN; 

Rz->z = VPN.z / lenVPN; 

/* the u-axis is rotated onto the x-axis */ 

VUPXRz = cross._prod(VUP,*Rz); /* u is perpendicular to VUP and VPN */ 

lenVUPXRz = vector_length(VUPXRz) ;/* which is the cross product */ 
Rx->x = VUPXRz.x / lenVUPXRz; 

Rx->y = VUPXRz.y / lenVUPKRz; 
Rx->z = VUPXRz.z / lenVUPXRz; 

/* the v-axis is perpendicular to Rx and Rz so take cross product */ 

*Ry = cross_prod(*Rz,*Rx) ; 

Figure 4.5: Rotation matrix computation routine 
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single value for each discrete voxel location. That value may represent density, temperature, 

color, intensity, or other measurement, depending on the application generating the data. 

It is up to the algorithm designer to decide how to map these values into color and opacity. 

We chose to regard the data values in our test dataset as gray-scale intensities. We assign 

opacities to be proportional to the intensity. Empty space has a low intensity and therefore 

a low opacity. Bone has a high intensity and therefore a high opacity. For this particular 

dataset, an opacity equal to 1/4 of the intensity works well. 

As the internal levels of the pyramid are processed, the minimum data value is read for 

a node. If this value is above the empty threshold, the octant is transformed as described in 

the previous section, and projected onto the screen. The cube projects as either one, two, 

or three polygons. Depending on the view position, the user sees either one, two, or three 

faces of the cube. The polygons are “drawn” to a pixmap, which is an X Windows term 

for a chunk of memory that can be accessed with screen coordinates, but does not exist in 

the frame-buffer and so does not appear on screen. A rectangular section of the pixmap 

denoted by z,y coordinates is compared to a rectangular section, at the same z,y coordinates 

of the image that has been rendered so far. The new pixmap section is composited with 

the existing image. The processing order determines which compositing equations to use. 

Our processing order is front to back so we use: 

Cace = ((1 — Oace) * (Crew ™ Cace)) + Cace 

Oace = (1 — Oace) * Onew) + Oace 

where Cacc is the accumulated color in the existing image, C’,-,, is the new color from our 

pixmap, Oacc is the accumulated opacity in the existing image, and Oney is the new opacity 

from our pixmap. These equations are modified versions of the compositing equations given 

by Wilhelm [Wilh91], Each pixel in the rectangular section must go through these equations, 

since a cube may only partially overlap its predecessor. Current graphics workstations often 

contain a Z buffer which could be used to handle the accumulated color, but hardware 

opacity buffers are not common at this time. 
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When the lowest level of the pyramid is reached, the eight adjoining data values are 

averaged to obtain a cube that can be composited just like those in the upper levels. 

4.5 Modifications to Speed the Rendering Time 

Since we store in each node the maximum data value of that node’s children, we can 

determine if a particular section of the octree can be ignored. If the maximum value in 

a node is below some threshold, then it is assumed that the data in that node and all its 

children represent empty voxels. Thus everything below it need not be processed. The 

threshold value has to be determined for each dataset individually. Medical image datasets 

such as the one we used can contain large numbers of empty voxels. In our dataset voxels 

range in value from 2 to 4095. We have found that voxel values below 480 generally represent 

empty space. This constitutes 59% of the voxels in the original dataset. Skipping these 

voxels through our modified recursion process reduces both the internal level and total 

image generation times significantly. Internal level rendering using this approach takes only 

2.1% of the time it takes to render every internal node of the pyramid. Total rendering time 

using this approach takes only 12.4% of the time to render every node in the pyramid. 

In order to facilitate changing the view position while the rendering process is executing, 

an interrupt routine had to be written. Under X Windows, this is done by polling the X 

event queue to respond to events during the process of rendering the image. If the X event 

queue were not polled by the algorithm, the button clicks that should rotate the volume 

would be queued up and not handled until the entire volume was processed. By polling the 

X event queue, waiting events are dispatched every time the polling routine is executed. 

Initially the X event queue was polled for every data value read from the pyramid. This 

provided excellent response time for changing view position, but increased the rendering 

time of the upper and lower levels. By reducing the polling to one time for every 100 data 

values read, the rendering time for the upper levels was cut by 66%. The total rendering 

time was reduced by 72%. 
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Chapter 5 

RESULTS AND ANALYSIS 

5.1 Hardware Used 

The viewing algorithm was developed in the C language, running under UNIX. The de- 

velopment hardware was an IBM PC compatible 80386 based machine running at 40MHz, 

with a 40MHz math co-processor. The display hardware was an Orchid ProDesigner IIs 

VGA graphics adapter and a Magnavox color VGA display. The program was then ported 

to a DECstation 5000 PXG Turbo. The display hardware on the DECstation is a 24-bit 

Truecolor graphics processor and color monitor. The port was accomplished in less than 

one day, and consisted mainly of modifications relating to the differences between 8-bit and 

24-bit displays. 

5.2 Dataset Used 

The program was used to view a Magnetic Resonance (MR) scan of a human head. The 

original dataset dimensions were z = 256, y = 256, z = 109. Each data element consisted 

of one sixteen bit integer. Total file size was 14,286,848 bytes. To this file were added 

nineteen more z-y planes to make the resultant z dimension equal to 128. This was done to 

simplify the pyramid building process. Since 128 is a power of 2, it will divide completely 
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and evenly into octants. This will require only four additional nodes to be added by the 

pyramid building process. These added data elements were all set to a predetermined value 

that did not exist in the original dataset. They were termed “empty”, and as such, could 

be bypassed by our viewing algorithm. The resulting file size was 16,777,216 bytes. This 

represented the lowest level of our pyramid. The internal levels of the pyramid together 

occupied 2,396,754 bytes. This made a total pyramid file size of 19,173,970 bytes. One 

quarter was chosen as the amount of lowest level data to be stored in memory. Since this 

dataset was a half-cube, with dimensions of 256 x 256 x 128, this would be equivalent to 

one octant of a full-cube of dimensions 256 x 256 x 256. The amount of lowest level data in 

memory at one time was then 4,194,304 bytes. 

5.3 Performance 

Image generation times using our algorithm are not greatly affected by the viewer’s position. 

They are affected by the combination of hardware and X Windows server, however. Perfor- 

mance on the PC was not outstanding, but reasonable considering the task. The program 

could display the internal levels of the pyramid in approximately 2.5 minutes. Display of 

the entire pyramid took approximately 50 minutes. 

Performance on the DEC Station is currently comparable to the algorithms described 

in Chapter 2. Complete display of the internal levels of the pyramid takes approximately 

40 seconds. The total image takes approximately 11.5 minutes. More detailed timings are 

given below. The DEC station is not a high end graphics workstation. Unfortunately, we 

did not have access to such a workstation to perform timings on. 

Special graphics hardware will only help our algorithm when the X server is written to 

take advantage of it. Following are some hardware/server abilities that would speed image 

generation times. 

e Hardware polygon fills would speed image generation times since we do generate a 

significant number of polygons. 
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Table 5.1: Processing statistics per level of the pyramid 

  

  

  

  

  

  

  

  

  

Level | Total Elapsed Time | No of Polygons | No of Points 

1 0 secs 0 0 

2 0 secs 0 0 

3 0 secs 0 0 

4 0 secs 0 0 

5 0 secs 0 0 

6 2 secs 833 19520 

7 38 secs 28,961 176,176 

8 684 secs 650,914 668,196               
  

e Hardware projection from three dimensions to two dimensions could be used since we 

project each octant in the pyramid before it is rendered. 

Hardware compositing would speed image times. Compositing accounts for 5.5% of 

our total processing time. 

e A hardware opacity buffer, and multiple frame-buffers that are directly accessible from 

X Windows would eliminate several time consuming steps. 

Hardware polygon compositing would save even more time. 

Table 5.1 shows the time required to draw the pyramid. The first column indicates the 

level of the pyramid completed. The second column shows the total elapsed time. Entries of 

0 seconds indicate times less than the resolution of our timer. Column three shows the total 

number of polygons drawn. Column four shows the total number of points that have been 

composited. The time in Table 5.1 for level 8 includes disk access time. Total disk access 

time for the lowest level is 16 seconds. Table 5.2 shows the distribution of time spent in 

the various rendering routines. The vast majority of the time, 61.7%, is spent copying the 

rectangular portion of the pixel array (pixmap) that stores the projected polygons into an 

X Windows structure called an Ximage so that it can be composited. This is accomplished 

by one call to an X Windows library function. This copy operation is required because of 

the following two facts about current X Windows image handling routines. 

e Polygons can only be drawn to a window or a pixmap. 
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Table 5.2: Percentage of time spent in rendering routines 

  

  

  

  

  

  

  

  

        

Routine Percentage of Time 

Selecting Octants 0.3% 
Performing Transformations 11.1% 

Projecting Coordinates 2.8% 
Calculating Polygonal Faces 1.5% 

Drawing Polygons to Pixmap 8.8% 
Copying Pixmap to Ximage 61.7% 

Compositing Pixels 5.5% 
Displaying Pixels 6.5%     
  

e Pixels can only be accessed from an Ximage. 

Somehow, the pixmap has to be copied to an Ximage for access by the compositing routine. 

The routine that X Windows provides for this purpose, XGetSubImage, is responsible for 

61.7% of our processing time. A significant time reduction could be achieved if some other 

way were found to copy the information, or direct access to the pixmap were allowed. 

The levels of the pyramid are drawn as projected cubes. From the center front view 

position, which should require the fewest polygons, 650,914 polygons were drawn. Each 

one of those polygons was then composited on a pixel-by-pixel basis. The total number of 

points that were composited was 668,196. This amounts to an average rate of 962 pixels 

composited per second. 

Table 5.3 is a comparison of our new rendering algorithm to some of the rendering 

algorithms discussed in Chapter 2. Levoy’s algorithm is a ray tracing algorithm and Wilhelm 

and Van Gelder’s is an isosurface projection algorithm. These two papers were the only 

ones discussed in Chapter 2 that provided timings for datasets of equivalent sizes. Our 

rendered dataset is shown in Figure 5.1. 
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Table 5.3: Comparison of rendering times 

  

  

  

      

Algorithm Hardware Platform Dataset Size Total Rendering Time 
New Algorithm | DECstation 5000/200 | 256 x 256 x 109 684 secs 

[Wilh90b] Sun Sparcstation 1 | 256 x 256 x 109 391.8 secs 
[Levo90] Sun 4/280 256 x 256 x 113 105 secs             

  
Figure 5.1: MR scan of human head 
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Chapter 6 

CONCLUSIONS AND FUTURE 

WORK 

6.1 Conclusions 

Volume rendering continues to be a fast changing area of computer graphics. Timing results 

on our current hardware do not show our approach to be a faster overall algorithm for volume 

rendering. However, the algorithm could benefit substantially from faster hardware and a 

better X server. At this time, there is not an X Windows standard for accessing the pixmap 

directly. Hardware vendors such as Hewlett Packard are developing routines to allow this 

however. When a standard is implemented, this algorithm could see substantial reductions 

in rendering time by taking advantage of pixmap accessibility. 

The algorithm does currently provide several advantages. These advantages include the 

following. 

e It provides some indication of object orientation quickly. Within 40 seconds, a user 

familiar with the dataset can usually determine the general orientation of the object(s). 

e It can handle large datasets with minimal memory requirements. The algorithm can be 

tuned to take advantage of the memory available. The minimum memory requirement 

is determined by the size of the internal levels of the pyramid. The amount of data 

38



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

from the lower level that is stored in memory can be any size from one page to the 

entire level. 

e Our algorithm provides a perspective view of the volume. A perspective image is 

easier for the viewer to interpret than a parallel projection, since this is what our 

visual system is accustomed to. Objects of a given size that are farther from the 

viewer appear smaller than those of the same size that are nearer the viewer. 

e It provides device independence. Since the algorithm is written to operate under X 

Windows, it can be ported from one platform to another with little or no changes. 

Device independence makes this algorithm especially attractive to many different 

prospective users. A small town doctor can render medical images just like a city 

hospital, but without the expense of a dedicated graphics workstation. University 

departments that can not or will not decide on a single hardware vendor can run the 

same application on different platforms. Businesses that upgrade to different hardware 

platforms can port their application with little or no changes. Porting the application 

from an IBM PC toa DEC Station took less than one day. 

6.2 Future Work 

There are several ways in which this work could be advanced. In the area of compositing 

routines, the user could be allowed to select between several different compositing routines, 

or even write his own. The algorithm was deliberately written to separate the compositing 

routine so that it could be changed if needed. A menu of prewritten compositing routines 

could be supplied. One of the menu options could be “other”, which opens a dialogue box to 

specify a user written routine. The user could be allowed to adjust the opacity. This could 

be handled by an on-screen slider that adjusts the proportionality constant for the opacity. 

Image processing techniques could be incorporated. These could include providing a way 

to adjust the contrast and intensity of the image. This could be accomplished via on-screen 

brightness and contrast “knobs”. The user could be allowed to interactively change the 

color thresholds. A dialogue box would probably be best for this, since the data value range 

is dataset-specific. 

Other areas of future work might entail exploration of parallel processing. Our approach 
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should work well as an object-parallel algorithm as described in Chapter 1. The algorithm 

is readily scalable for different numbers of processors. If only one processor is available, it 

starts at the root and handles the entire pyramid. If eight processors are available, each 

starts at one level below the root and handles one eighth of the pyramid. Adding a factor of 

eight processors allows the processing to start one level lower in the pyramid. A processor 

is assigned to each octant. Each processor produces a two dimensional section of the image 

along with an opacity array for that section. These sections can then be composited together 

to form the complete image. 
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