THREE-DIMENSIONAL ANALYSIS OF MOORED CYLINDERS USED AS BREAKWATERS

by

Timothy Wayne Mays

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in

ın

Civil Engineering

APPROVED:

Dr. Raymond H. Plaut, Chairman

Dr. Stergios I. Liapis, Co-Chairman

Dr. Kamal B. Rojiani

December, 1997

Blacksburg, Virginia

Keywords: Breakwater, Cylinder, Vibration, Wave, Mooring

THREE-DIMENSIONAL ANALYSIS OF MOORED CYLINDERS USED AS BREAKWATERS

Timothy Wayne Mays

(ABSTRACT)

For oblique and normal water waves at various frequencies, the use of moored cylinders as breakwaters is considered numerically using linear three-dimensional analysis. The breakwater can be used by itself for protection of small structures or as a series of cylinders to protect a harbor, shoreline, or moored vessel from the destructive energy associated with incident water waves. The breakwater is completely submerged below the free surface and is attached to the ocean floor with six symmetrically configured mooring lines. The cylinder is filled with air and the mooring lines remain taut during the structure's motion. Six degrees of freedom describe the motion of the breakwater and additional degrees of freedom are introduced as the cables are modeled with the use of lumped masses connected with springs. The fluid is assumed to be inviscid and incompressible, so that the velocity field can be written as the gradient of the velocity potential. A boundary integral method is used to solve the integral equations that define the external fluid flow. Free vibrations of the cylinder in both air and water are considered and "dry" and "wet" natural frequencies are computed. Motions caused by water waves are studied to establish the effect of certain parameters on the effectiveness of the breakwater. The transmission coefficient is shown to be somewhat misleading when compared to plots that show the spatial variation of the wave amplitude.

ACKNOWLEDGMENTS

There are several individuals who greatly influenced the work of this thesis. Firstly, I would like to thank Dr. Plaut for allowing me to work on this topic and providing me the guidance and assistance which I needed to complete the task. I truly appreciate his patience with me and the "open door" policy he holds for all of his students. Dr. Liapis also helped guide me through the research. His expertise in ocean engineering proved instrumental in helping to efficiently solve problems that often arose. I would also like to thank Dr. Rojiani for being on my graduate committee, Dr. J.Y. Kim for his help with FORTRAN, and Fata Dewi for her help with the fluids code. Lastly, I would like to thank my family for their continued support, faith, and prayers, and God for His continued blessings.

This research was supported by the National Science Foundation under Grant No. BES-9521425. Support from the Via Endowment Fund is also greatly appreciated.

TABLE OF CONTENTS

Chapter 1	Introduction		1
1.1	Pu	rpose	1
1.2	Proposed Breakwater		1
Chapter 2	Literature Review		2
2.1	Flo	pating Breakwaters	2
2.2	Mo	oored Structures Used as Breakwaters	3
	2.2.1	Williams and McDougal Breakwater	3
	2.2.2	Yamamoto and Yoshido	4
2.3	Mo	oored Cylindrical Breakwaters	5
	2.3.1	Evans' Cylinder	5
	2.3.2	Bristol Cylinder	6
2.4	Fle	xible Cylinders Used as Breakwaters	6
2.5	Mo	poring Systems	7
2.6	Ne	ed for Further Research	7
Chapter 3	Static Equ	ilibrium and Lumped Masses	9
3.1	Bre	eakwater Configuration	9
3.2	Mo	ooring Lines Modeled as Massless Springs	9
3.3	Mo	ooring Lines Modeled as Springs with One	11
		Mass Per Cable	
3.4	Mo	ooring Lines Modeled as Springs with N-1	13
		Masses Per Cable	
3.5	Re	sults	14
Chapter 4	Free Vibra	tion of Breakwater in Air	20
4.1	Ini	tial Configuration	20
4.2	Ge	neral Configuration	20
4.3	Су	linder Rotation (Euler Angles)	20
4.4	An	gular Velocities	23
4.5	Mo	ooring Line Energy	24
4.6	En	ergy of the Cylinder	25
4.7	La	grange's Equations	26

4.8	Small Motions About Equilibrium	38
	(Linearized Equations)	
4.9	Standard Case	46
4.10	Case A (Massless Lines)	47
4.11	Case B (One Mass Per Line)	49
4.12	Case C (Two Masses Per Line)	50
Chapter 5	Problem Theory and Development	60
5.1	General Overview	60
5.2	Linear Wave Theory and Fluid Behavior	61
5.3	External Fluid Characteristics	62
5.4	Determination of Force, Added Mass, and	64
	Damping Elements	
5.5	Solving for Response Amplitudes of the	64
	Breakwater in Water	
5.6	Procedure Validation	65
Chapter 6	Analysis of the "Standard Case" Breakwater	75
6.1	Breakwater Modeling	75
6.2	Free Vibration in Water	75
6.3	Forced Vibration of the Breakwater	78
6.4	Hydrodynamic Coefficients: Added Mass	78
	and Damping	
6.5	Hydrodynamic Forces	79
6.6	Structural Response: Response Amplitude	79
	Operator (RAO)	
6.7	Influence of Structure on Water Waves	80
6.8	Free Surface Elevation Amplitude	80
6.9	Free Surface Elevation Plots	82
Chapter 7	Analysis of Two "Standard Case" Breakwaters in Series	186
7.1	Introduction to Using Multiple Cylinders	186
7.2	Transmission Coefficient and Free Surface	186
	Elevation Amplitudes	

7.3	Free Surface Elevation Plots	188
Chapter 8	Conclusions and Recommendations for Further Work	232
References		234
Vita		241

LIST OF FIGURES

Figure 3.1	The Inflatable Breakwater	17
Figure 3.2	System Profile (Massless Mooring Lines)	17
Figure 3.3	System Elevation (Massless Mooring Lines)	18
Figure 3.4	System Profile (One Mass Per Mooring Line)	18
Figure 3.5	System Elevation (One Mass Per Mooring Line)	19
Figure 3.6	Relationship Between Net Buoyant Force and	19
	Equilibrium Height for Different Cable Diameters	
Figure 4.1	"Unstretched Springs" Configuration – General System	52
Figure 4.2	General Configuration During Motion	52
Figure 4.3	Euler Angles	53
Figure 4.4	Cylinder Dimensions	53
Figure 4.5	Mooring Line Identification	54
Figure 4.6	Mode Shape (First Eigenvector – Case A)	54
Figure 4.7	Mode Shape (Second Eigenvector – Case A)	55
Figure 4.8	Mode Shape (Fourth Eigenvector – Case A)	55
Figure 4.9	Mode Shape (Sixth Eigenvector – Case A)	56
Figure 4.10	Natural Frequency (Nondimensional) vs. L/R – Case A	56
Figure 4.11	Natural Frequency (Nondimensional) vs.	57
	K (Nondimensional) – Case A	
Figure 4.12	Mode Shape (First Eigenvector – Case B)	57
Figure 4.13	Mode Shape (Second Eigenvector – Case B)	58
Figure 4.14	Mode Shape (Fourth Eigenvector – Case B)	58
Figure 4.15	Mode Shape (Fifth Eigenvector – Case B)	59
Figure 4.16	Mode Shape (Sixth Eigenvector – Case B)	59
Figure 5.1	New Coordinate System for Breakwater Showing	67
	Incident Wave Direction β	
Figure 5.2	Amplitude of Free Surface Elevation for	68
	$\omega = \omega_n = 1.25 \text{ rad/s} (304.8 \text{ m Breakwater}, \beta = 0^\circ)$	
Figure 5.3	Free Surface Elevation for $\omega = \omega_n = 1.25$ rad/s	69
	(304.8 m Breakwater, $\beta=0^{\circ}$)	

Figure 6.1	Nondimensional Added Mass Matrix Element	85
	A(1,1) vs. kR	
Figure 6.2	Nondimensional Added Mass Matrix Element	86
	A(2,2) vs. kR	
Figure 6.3	Nondimensional Added Mass Matrix Element	87
	A(3,3) vs. kR	
Figure 6.4	Nondimensional Added Mass Matrix Element	88
	A(4,4) vs. kR	
Figure 6.5	Nondimensional Added Mass Matrix Element	89
	A(5,5) vs. kR	
Figure 6.6	Nondimensional Damping Matrix Element	90
	C(1,1) vs. kR	
Figure 6.7	Nondimensional Damping Matrix Element	91
	C(2,2) vs. kR	
Figure 6.8	Nondimensional Damping Matrix Element	92
	C(3,3) vs. kR	
Figure 6.9	Nondimensional Damping Matrix Element	93
	C(4,4) vs. kR	
Figure 6.10	Nondimensional Damping Matrix Element	94
	C(5,5) vs. kR	
Figure 6.11	Nondimensional Hydrodynamic Forces vs. kR, β =0°	95
Figure 6.12	Nondimensional Hydrodynamic Forces vs. kR, β =15°	96
Figure 6.13	Nondimensional Hydrodynamic Forces vs. kR, β =30°	97
Figure 6.14	RAO's vs. kR, $\beta=0^{\circ}$	98
Figure 6.15	RAO's vs. kR, $\beta=15^{\circ}$	99
Figure 6.16	RAO's vs. kR, β =30°	100
Figure 6.17	Transmission Coefficient vs. kR	101
Figure 6.18	Amplitude of Free Surface Elevation for	102
	$\omega = \omega_n = 1.25 \text{ rad/s} (9.144 \text{ m Breakwater}, \beta = 0^\circ)$	
Figure 6.19	Amplitude of Free Surface Elevation for	103
	ω=1.85 rad/s (9.144 m Breakwater, β =0°)	

Figure 6.20	Amplitude of Free Surface Elevation for	104
	ω=2.05 rad/s (9.144 m Breakwater, β=0°)	
Figure 6.21	Amplitude of Free Surface Elevation for	105
	$ω = π/2$ rad/s (9.144 m Breakwater, $β = 0^\circ$)	
Figure 6.22	Amplitude of Free Surface Elevation for	106
	$\omega = \omega_n = 1.25 \text{ rad/s} (9.144 \text{ m Breakwater}, \beta = 15^\circ)$	
Figure 6.23	Amplitude of Free Surface Elevation for	107
	ω=1.85 rad/s (9.144 m Breakwater, β=15°)	
Figure 6.24	Amplitude of Free Surface Elevation for	108
	ω=2.05 rad/s (9.144 m Breakwater, β=15°)	
Figure 6.25	Amplitude of Free Surface Elevation for	109
	$ω = π/2$ rad/s (9.144 m Breakwater, $β = 15^\circ$)	
Figure 6.26	Amplitude of Free Surface Elevation for	110
	$\omega = \omega_n = 1.25 \text{ rad/s} (9.144 \text{ m Breakwater}, \beta = 30^\circ)$	
Figure 6.27	Amplitude of Free Surface Elevation for	111
	ω=1.85 rad/s (9.144 m Breakwater, β=30°)	
Figure 6.28	Amplitude of Free Surface Elevation for	112
	ω=2.05 rad/s (9.144 m Breakwater, β=30°)	
Figure 6.29	Amplitude of Free Surface Elevation for	113
	$\omega = \pi/2$ rad/s (9.144 m Breakwater, $\beta = 30^{\circ}$)	
Figure 6.30	Free Surface Elevation for $\omega = \omega_n = 1.25$ rad/s	114
	(9.144 m Breakwater, $\beta=0^{\circ}$)	
Figure 6.31	Free Surface Elevation for ω =1.85 rad/s	120
	(9.144 m Breakwater, $\beta=0^{\circ}$)	
Figure 6.32	Free Surface Elevation for ω =2.05 rad/s	126
	(9.144 m Breakwater, $\beta=0^{\circ}$)	
Figure 6.33	Free Surface Elevation for $\omega = \pi/2$ rad/s	132
	(9.144 m Breakwater, $\beta=0^{\circ}$)	
Figure 6.34	Free Surface Elevation for $\omega = \omega_n = 1.25$ rad/s	138
	(9.144 m Breakwater, β =15°)	

Figure 6.35	Free Surface Elevation for ω =1.85 rad/s	144
	(9.144 m Breakwater, β =15°)	
Figure 6.36	Free Surface Elevation for ω =2.05 rad/s	150
	(9.144 m Breakwater, β =15°)	
Figure 6.37	Free Surface Elevation for $\omega = \pi/2$ rad/s	156
	(9.144 m Breakwater, β =15°)	
Figure 6.38	Free Surface Elevation for $\omega = \omega_n = 1.25 \text{ rad/s}$	162
	(9.144 m Breakwater, β =30°)	
Figure 6.39	Free Surface Elevation for ω =1.85 rad/s	168
	(9.144 m Breakwater, β =30°)	
Figure 6.40	Free Surface Elevation for ω =2.05 rad/s	174
	(9.144 m Breakwater, β =30°)	
Figure 6.41	Free Surface Elevation for $\omega = \pi/2$ rad/s	180
	(9.144 m Breakwater, β =30°)	
Figure 7.1	Two Breakwaters in Series Showing	189
	Incident Wave Angle β	
Figure 7.2	Amplitude of Free Surface Elevation for	190
	$\omega = \omega_n = 1.25 \text{ rad/s}$ (Two 9.144 m Breakwaters,	
	1.22 m Gap, β=0°)	
Figure 7.3	Amplitude of Free Surface Elevation for	191
	$\omega = \omega_n = 1.25 \text{ rad/s}$ (Two 9.144 m Breakwaters,	
	1.22 m Gap, β=15°)	
Figure 7.4	Amplitude of Free Surface Elevation for	192
	$\omega = \omega_n = 1.25 \text{ rad/s}$ (Two 9.144 m Breakwaters,	
	1.22 m Gap, β=30°)	
Figure 7.5	Amplitude of Free Surface Elevation for	193
	$\omega = \omega_n = 1.25 \text{ rad/s}$ (Two 9.144 m Breakwaters,	
	6.1 m Gap, β=0°)	
Figure 7.6	Amplitude of Free Surface Elevation for	194
	$\omega = \omega_n = 1.25 \text{ rad/s}$ (Two 9.144 m Breakwaters,	

	6.1 m Gap, β=15°)	
Figure 7.7	Amplitude of Free Surface Elevation for	195
	$\omega = \omega_n = 1.25$ rad/s (Two 9.144 m Breakwaters,	
	6.1 m Gap, β=30°)	
Figure 7.8	Free Surface Elevation for $\omega = \omega_n = 1.25 \text{ rad/s}$	196
	(Two 9.144 m Breakwaters, 1.22 m Gap, $\beta=0^{\circ}$)	
Figure 7.9	Free Surface Elevation for $\omega = \omega_n = 1.25 \text{ rad/s}$	202
	(Two 9.144 m Breakwaters, 1.22 m Gap, β =15°)	
Figure 7.10	Free Surface Elevation for $\omega = \omega_n = 1.25 \text{ rad/s}$	208
	(Two 9.144 m Breakwaters, 1.22 m Gap, β =30°)	
Figure 7.11	Free Surface Elevation for $\omega = \omega_n = 1.25 \text{ rad/s}$	214
	(Two 9.144 m Breakwaters, 6.1 m Gap, $\beta=0^{\circ}$)	
Figure 7.12	Free Surface Elevation for $\omega = \omega_n = 1.25 \text{ rad/s}$	220
	(Two 9.144 m Breakwaters, 6.1 m Gap, β =15°)	
Figure 7.13	Free Surface Elevation for $\omega = \omega_n = 1.25 \text{ rad/s}$	226
	(Two 9.144 m Breakwaters, 6.1 m Gap, β =30°)	

LIST OF TABLES

Table 3.1	Equilibrium Height (D=0.75 inches, W/W0=150)	14
Table 3.2	Angles Made with Horizontal by Cables Shown	15
	in Figure 4.5	
Table 6.1	Comparison of Dry and Wet Natural Frequencies	76
Table 7.1	Transmission Coefficients for ω =1.25 rad/s	187