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(ABSTRACT)

There has been a great deal of interest in investigating numerious unique types of elec-
trostatic and electromagnetic waves and instabilities in dusty plasmas. Dusty plasmas
are characterized by the presence of micrometer or submicrometer size dust grains im-
mersed in a partially or fully ionized plasma. In this study, a two-dimensional numerical
model is presented to study waves and instabilities in dusty plasmas. Fundamental dif-
ferences exist between dusty plasmas and electron-ion plasmas because of dust charging
processes. Therefore, a primary goal of this study is to consider the unique effects of
dust charging on collective effects in dusty plasmas. The background plasma electrons
and ions here are treated as two interpenerating fluids whose densities vary by dust
charging. The dust is treated with a Particle-In-Cell PIC model in which the dust
charge varies with time according to the standard dust charging model. Fourier spec-
tral methods with a predictor-corrector time advance are used to temporally evolve
the background plasma electron and ion equations. The dust charge fluctuation mode
and the damping of lower hybrid oscillations due to dust charging, as well as plasma
instabilities associated with dust expansion into a magnetized background plasma are
investigated using our numerical model. Also, an ion acoustic streaming instability in
unmagnetized dusty plasmas due to dust charging is investigated. The numerical sim-
ulation results show good agreement with theoretical predictions and provide further
insight into dust charging effects on wave modes and instabilities in dusty plasmas.
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