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I. INTROUDUCTICN AND LITERATURE SURV::Y 

It is common practice in comparing the parameters of 

two binomial populations (e.g., the probabilities of success 

for two drugs) to choose a fixed number of observations and 

allocate haif of these to samples from each of the two 

populations. 

Beginning during World War II Wald (1947) developed the 

general technique of sequential analysis which makes the 

total number of observations a random variable depending on 

the progress of the experiment. This method often reduces 

the amount of data required to reach statistically valid 

conclusions. The problem of comparing two treatments of 

drugs in medical experiments was put into a most convenient 

form from the user's point of view in a paper by Bross (1952). 

More recently Taylor and David (1962) studied a problem 

which is similar in spirit although quite different in approach 

to the one considered in this thesis. Their aim is to allo- 

cate observations at each stage of a multi-stage experiment 

involving several drugs on the basis of results in previous 

Stages. In order to do this they use weighting functions to 

divide up the fixed number of observations at each stage in 

such a way that the drug showing the highest number of favor- 

able responses is allocated the highest proportion of obser- 

vations (i.e., patients). The probability of correctly



selecting the best drug by this procedure was found, mainly 

by simulation, to be generally greater than that for equal 

allocation of all drugs. It will be noted that the total 

number of observations in the experiment is pre-determined 

but that this number is divided up between the various drugs 

in a manner which tries to take advantage of knowledge gained 

during the experiment. 

The general problem considered in this thesis is that of 

determining an optimum strategy for deciding how to allocate 

the observations in each stage of a multi-stage experimental 

procedure between two binomial populations on the basis of 

the results of the previous stages. After all of the stages 

of this experiment have been performed, one must decide which 

of the two populations has the higher probability of success. 

The optimum strategy i:: to be optimum relative to a given 

loss function and a given prior distribution for the proba- 

bilities of success of the two populations. At first it is 

assumed that there are a fixed number of stages in the exper- 

iment, but later in the thesis this restriction is weakened 

to the assumption that only the maximum number of stages 

possible in the experiment is fixed and the experiment can 

be stopped at any stage before the last possible stage is 

reached. In any case the total number of observations in 

each of the stages is fixed before the experiment. 

In addition, the same general problem is considered



when the two populations are normal and the terminal deci- 

Sion is that one or the other of the two populations has 

the higher mean. 

Since it turns out that the exact procedure for finding 

the optimum strategy is impractical when the number of stages 

or the number of observations in each of the stages is at all 

large, two alternative approximate procedures are presented 

and compared with the exact procedure. 

Throughout this thesis it will be assumed that the two 

binomial populations are the respective outcomes when two 

drugs are administered to patients in a multi-stage testing 

procedure and that the observations in each stage are the 

numbers of successes of given drugs administered to given 

patients. However, it should be emphasized that the proce- 

dures developed and studied in this thesis have much wider 

applicability than the comparison of two drugs. For example, 

one might want to compare the output of two machines or 

processes in a multi-stage testing procedure. 

At this point we may mention a somewhat similar problen, 

the "Two-Armed Bandit Problem." Here the aim is to allocate 

n observations, one at a time, between two binomial popula- 

tions so as to maximize the expected number of successes. 

Contributors to this subject include Vogel and Robbins as 

well as Bradt, Johnson, and Karlin. To obtain results they 

impose various additional conditions which we now outline.



Vogel (1960a) considers the following problem: 

Let the random variables X and Y, where 

Pr(X=1) =1- Pr(X=0) =p 

and 

il Pr(Y = 1) L- Pr(y=o0) =a =, 

describe the outcomes of two experiments, Eig and Boe A 

class of strategies is studied which results from a sequen- 

tial procedure of n steps, in which either By or By (but not 

both) is performed in each stage. However, this paper has 

the additional restriction that in the first 2k steps (k is 

a random variable) each of Hu and E, is performed k times. 

Then the rest of the n - 2k steps are made either with Ba or 

E ge A loss function based on the expected sum for all n 

steps is used. 

In another paper (1960b) Vogel derives some asymptotic 

results for the Two-Armed Bandit Problem both with and with- 

out the additional restriction of his first paper (1960a). 

Robbins (1956) considers the problem of successively 

choosing one of two ways of action, each of which may lead to 

success or failure, in such a way as to maximize the long-run 

proportion of successes obtained, the choice each time being 

based on a fixed number of the previous trials. 

In another paper Robbins (1952) proposes and discusses 

in general several problems in the sequential design of 

experiments. Among these is the problem of how a sample



should be drawn from two populations in order to achieve the 

greatest possible expected value of the sum of the sample 

results. 

Bradt, Johnson, and Karlin (1956) derive some properties 

of the Two-Armed Bandit Problem. In addition, they consider 

the generalized Two-Armed Bandit Problem of maximizing the 

expected number of successes in n trials when at each trial 

one is free to choose between two binomial random variables, 

whose probabilities of success, p and q, are unknown but have 

a prior distribution F(p, q). Finally, they consider in 

detail the situation in which one of the probabilities of 

success is unknown but a prior distribution for it is speci- 

fied and the other probability of success is known. 

Dunnett, samuel, and Chernoff have also worked on 

problems similar to the one in this thesis. 

Dunnett (1960) uses decision theory methods to decide 

if a potential drug, which is assumed to have two levels of 

activity, active and inactive, is to be accepted as being 

worthy of further experimentation or rejected. A sequential 

procedure is derived in which rejection can occur at any 

stage. A method for computing critical rejection levels in 

each stage when the testing errors are normally distributed 

is given in detail for one, two, and three stage problems. 

Samuel (1961) describes a minimal complete class of 

decision rules for sequentially classifying individuals of a
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group which is known to have come from one of two completely 

specified populations. 

Chernoff (1959) presents a procedure for the sequential 

design of experiments where the problem is one of testing a 

hypothesis. It is assumed that there are two possible ter- 

minai decisions and a c.ass of available experiments. After 

each observation the statistician decides whether to continue 

experimentation or not. If he decides to stop, he must se- 

lect one of the two terminal decisions. The choice of an 

experiment at any stage is based on Kullback-Leibler infor- 

mation numbers. This procedure is worked out in detail for 

the case in which each of the experiments yield Bernoulli 

random variables. 

The two most important references for the body of this 

thesis are Raiffa and schlaifer's Applied Decision Theory 

and a paper by Amster. 

Raiffa and Schlaifer (1961) have a general discussion 

of Bayesian decision theory in the first part of their book. 

Then they give detailed specific analytical solutions for some 

problems in which there are one stage, two (or more) possible 

terminal decision:, normal or binomial distributions, and 

utility functions (They use utility functions instead of loss 

functions.) which are linear in the population means. In 

this thesis many of the concepts and results and much of the 

terminology and notation developed in their bock will be used.
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Amster (1962) proposes and derives some properties of a 

stopping ruie for sequential sampling which weighs the cost 

of additional observations against the expected gain to be 

derived from additional sampling. This rule requires one 

more observation to be taken as long as the posterior risk 

is larger than the expected posterior risk for any additional 

fixed size sample. He shows how this stopping rule can be 

applied to both e timation and the testing of two simple 

hypotheses.
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If. EXTENSIVE-~FURM ANALYSIS 

vel General Procedure 

Suppose one desires to compare two drugs, Drug 1 and 

Drug 2, in an m-stage test procedure. Let the probability 

that Drug 1 results in an improvement in a patient in any of 

the stages be Or» and let the corresponding probability for 

Drug 2 be O0,+ suppose the experimenter has decided prior to 

the experiment that he will take ny, observations in the k*th 

stage (k = 1, 2, .+., m). However, he wants to partition ny. 

into Ni; and No,» the number of observations for Drug 1 and 

for Drug 2, respectively, in the k'th stage on the basis of 

the results of the observations in the previous k-1 stages. 

Let the numbers of successes (improvement of patients) of 

Drug 1 and of Drug 2 in the k'th stage be ry, and ro,. re- 

spectively. After the m'th stage, on the basis of his re- 

sults for all m stages, he desires to state that cither 

8, > 85 or that 04 < 0, 

Let 9 = (9,, 85) and let x, = (Papo Po) Let a, be a 

decision of what size n,, ( and thus nj, =n, - nj,) should 

be. ("a," will be 0, 1, 2, «+, or ny) Let b be a decision 

(the terminal decision) whether to state that 0, > ®, or 

Q, < 85, where b = 1 will represent the decision that 8, 7 8.55 

and b = 2 will represent the decision that ©, < O5 +
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Define the following "loss" function on Xp9 sees Xie 

ais eeey an? b; O8 

L(x, 5 oomy Xn? ais ee ey an? by 8) 

Gif b= 1 and 0, > 8, 

OC if b = 2 and 8, <@ 
(2.1) = 1% 

q, if b= 1 and 0, < 85 

Oo if b = 2 and 8, > 85 ’ 

where q and Qo are positive constants. In what follows 

(2.1) will be called the "constant loss function.” 

Notice that L(x, , tees Xs Gps cers Ay Dd, 8) does not 

directly depvend on Bye sees A since it will be assumed that 
m 

the costs of making observations with each of the two drugs 

are ecual. 

The problem now is first to select ays then a> on the 

basis of xy and Bas then ay on the basis of Qa,» Ags Xy> and 

Xo, ebce, and finally b on the basis of Ayr cosy Aig Kyo sees 

Xe In order for this to be done, it is proposed that an 

extended and modified form of the "analysis in extensive 

form" as presented by Raiffa and schlaifer (1961) be used. 

In general, the analysis will proceed as follows: 

(1) For fixed values of Kye sees Xoo Ape ceee Any and 

b compute PQ |xy yee 9X, L(Xy 500 sX,28p eee 2G 2d10)« 

(2) For fixed Xp sees Kye Aye eee» A, compute 
ae
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BN) (x, eee yK sap oee eg) 

=min E, L 
b O[X, 40+ 5%, 

and cho.se the "b" which gives the minimum. 

(Xp p26 9X54, 900038, 96,8) 

(3) For fixed values of X,9 eee, X43 and ays eee, A, 

compute E BT) (oc pane pK yrOz pee erdg) 
XI Xpeee eX 

(4) Then for the fixed values of Xy2 see, X72 and 

Aye eres Any compute 

a . 
L! (ype ee eX qr eees 98g) 

=min E 
a HI Rp hy 

Mm 

ENT) (35 pene pK qoQq yee 9p) 

and choose the "a" which gives the minimum. 

(5) Continue in this manner with each stage until the 

first stage. 

(6) On the first stage choose a, such that 

by, TH (ox, a,)] is a minimum. 

2.2 Some Distribution Theory 

In order to evaluate the expressions in Section 2.1 we 

need a weighting function, or prior distribution, of 6. Let 

a; Ye 6 

O O GO 
p 

3 ye 
} + 

Bla tl, Both) Blyoti, a 1) 

(2.2) p(8) =
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where Ces Po» Yos and 56 are non-negative integers, Bla,tl, 

Bot) and Blyytl, 6.41) are beta functions, 0 <9, <1, and 

OS 8 Si. Since each rj, and rj, has a binomial 

distribution, 

| k n iL, - 
| k 21 (2.3) Palxygeeeax,) ~ TH ( L ! ( } 

ol KY get MPa \ Pog 

Q, a, B,-B Yon e 5, -5 
. k “G k *O k [0 } k ~O Q, (1-0, ) 8., (1-9,) , 

k 
m= > “+ where Oy, 1 Ze ’ 

: ( ) By = 2 n,. - r,,) * B 
k ge 1 Li G ? 

k 

x 4 Yo, + ¥ ; k al ai C 

: ( ) and. 5 = a nN * ~~ xr “a = + 8 f 5 3 

k 121 21 A / 

for k “ Ll, Dy eney Tile Then 

0(0) Po (xX, p04 5X) 
  (2-4) P(O[ x, +++ 5X,) oy 

[ i 9(6) Poy (xz ye0+ 2X) d8, de. 

QO OQ 

ct. B v 5 
Ya m o'm m 

Oo, (1-9, ) 8. (1-9,) 

+ + Cae of + Bla +1, Bt) Bly, +1, 6,*1) 

ry 

  

Also, let
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L L 
P(Xy 900+ 9X) -f i 0(@) Pol Xz a-++ 5X, )d0, do, - 

0 0 

P(x eee Xk x ) | = Met en (2.5) P(x )34 929% 9X7) P(X, 9e0+5X,_4) 

Then 

  

= (72%) (ax Bla, tl, 6,41) Bly, tl, 5,41) 
Prd apf Bla, tls Byiy Fh) Bly tds 5,7) 

for k = 2, 3,3 eee, m and 

P(x.) = ( 1) 2 Bla tl, B,7*1) Bly, tL, 6,41) 

1 Pq) Woy Blagtl, Botl) B(yotl, 6ytl) 
  

203 Details of the Analysis for a Constant Loss Function 

Following the outline of the analysis in Section 2.1 

and using (2.4) and (2.5), we obtain! 

(1) Ifb=2, 

"Oy pee aX, L(x, 5 eee yX meaty rse te m2?» 9) 

“fo I, do P(O[X,4+-+5x,) a9. do, 

8 fp Y¥ 
a a, (1-8,) “6,7 (1-8,) ® 

= do ts ti, Bl) BUY, tl, 6,41) do,do) 
§ 

B 1 ‘* “Mm (" . 
y Orn m Ms If Mya] we 6, (1-8) re 8. eo} j 95 d0,d0, 

- Bla, +1, B,+1) Bly,,t1, +1)
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(f> 5 Bla ty, t5+2s Bytt) 
Yn? jeri 

Bla, tl, Bt) Bly, +1, 6tt) 

Similarly, if b=1, 

ad L(X5 p02 9X98, 900+ 98,9058) 
A 

Bh 5 ae m m m . ; 

(a mite B, tt) Bly, +l, 6, wth) 
  

Boa 
  

  

C 2 (-1) J (=) B( Yay JT ; ord 

1 so j a FFF 
B( a, tL ’ BA te) Bl Yai t : 6) 

(2) Thus for fixed KyyperesX, ANd ay yoo ya, chouse b= 1 

if 

  

in) Bla ty, +3t2, 6,41) 

at dtd 

  

5 wae 
a ; =) Bla, tY,tIt2 » BtL) 

do 4 (-2)5 [ j ; * $20 J Yt ITL 

cho. se either b = 1 or b = 2 if the two expressions 

are ecual, and choose b = 2 otherwise. Call the 

minimum of the two above expressions G(x, pe+esX, > 

Ayreresd,)- 

(3) In the rest of this section we shall let
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(2.6) Sy (ky peee eX ye Ay sere say) 

n n., 

- sf €k (Pax' ( Pax 
al ~ r Lr Ti. O ro, 0 lk 2K 

rh n 1,k+l  -"2,k41 r ? 2 ( pk) (2 era) . *§ min di 2 r r 

Mey TL ykt1O Taj 0  bsktit eked 

Mim Nom 
*<¢min py a (. ) ("2m 

an lam © Pon em 

° G(x XypoeeesKis Apreeesd, ) of 

Hy (Xz eee eX 5 9p eee yy) 

and 

— ov 
ne Sy (Xs eee eX 3 pGq vee sty) i 

k 

where k = 1, 2y eee, M o 

Also, we shall let 

Hitp (Kp seee Xp apeeee sa) 

= G(X) p66 9X 28, 9000 98,) * 

Note that for k = 1, 2, eee, m 

n n 
Lk ak n n 

- = ~ lk 2k 
S,(K, ,0+05X A.peee,8,) = Z z ( \f Kp ores Xe 7 97 vee dy _ _n \roz fir 

ray QO Po, O lk ak 

° Hy py (Xp 9 eee 2X 987 9000 sd, ) ® 

Then
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(1) ; 
Xp lXpseee eX y L (Xp p00 2K 98, s000 58.) 

( = ¢f P(x, [xy 900+ 2X%,3) L LN xg pees aK pep ee ee aay) 

Sa! X12" ee 9% 247» ees 22,,) 

Bla yt, Py-1 tt) Blyth, Sey t) 

(4) Cho -se a, Such that SiR aes eX py Apes sea, ) is a 

minimum for fixed Ay seee eX a and Ay see s8 7 thus 

computing H 6X 9089 2X7 peed 4) ° 

(5) At the k'th stage 

= (m-k+1) 
WX [Xa eee eX 7 L (2X p00 X45 2z eee 2a) 

Sy (xy » ees aX 9419 ee? 2a,) 

Blo 3tl, By_y tl) Blyy,_ytl, 6,771) - 
ee 
  

Choose a, such that Syl Ky pee e pK 4 2Az eee 2a) is 

&@ minimum, thus computing 

Hy (Xy se 9+ Xp 7 Ap sees s8y_9) . 

(6) Finally at the first stage choose a, such that 

Sy (az) is a minimun. 

eek Analysis for a Linear Loss Function 

In this section we shall assume the same situation as 

there was in Sections 2.1, 2.2, and 2.3, except for the loss
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function. Let 

(2.7) L(x) p00 6 9X, 28, 904298, 90,9) 

Kig “b+ ky49) + Ky 985 for b= 1 

+ koi0, + k.8 for b = 2 , *20 24°71 22°2 

where Kio» Kaye Kyo» Kags Koy) and Koo are any real numbers. 

Then, following the general outline of extensive form of 

analysis in Section 2.1 and using (2-4) and (2.5), we 

obtains 

(1) Ifb#l, 

O [xy p00 6 9X, L(X) 9006 9X94 2000 28, 9b,9) 

1 Ll @ B ’ § 
m m m m 8, (1-8)) “ 85° (1-85) 

Bla, tl, Bi+1) Bly, +1, 6,1) 

i 

O F9 

. (kig + kj19, + ky 29) de, de®, 

eo +t dL vw Fd 

= Kig * ky (<" Fah + ky (. Feces) 
m m Ym m 

Similarly, if b= 2, 

MO [1 p00 6 2X L(Xy p06 2K 98] 9006 58,9059) 

+ + ~ tog * ken (Se) + ep (ee) . 
20 al an + Ba tT 4 ar Yn + Sn + 2
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(2) Thus we choose b = 1 if 

a FL | Ym + ) 

(kooky) +(k2)-kyy) (= “ep FR) *(Kga- ky 2) (p55 -F2 

is greater than zero, choose either b* lorb=2 

if it is equal to zero, and choose b = 2 if it is 

less than zero. Then 

(2.8) i {1) (X] se005X,, p25 peed, ) 

“) 3 Yin" + 
© mn) Kio" (Ea “12 (Re , 

a orl vootd 

kag" kay ( 575) ty. (2 +2 | 
Gn Pn Yn m 

(3) iit) (Xp 000 2X 28, 900058, ) iy 
Kyl Xpress M7 

n ns 
_ am ( rus Nom 
Pam 8 Yom © Pim Porn 

Bla mo B.. yy mae tl, 6 ne 
  

m=1 +1) 

. a (X} 9000 9X28, 9000 04,,) 

Om 2 
“1m "am ( 2”) (2°) G*(X) p06 9% 28y eee 2a) 

és 
=) Po 0 Bla, _yti, Baevl) Bly, itl, 8g 7H)
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7 St (X5 pee s%,_y 98z 200 2a,) 

Bla itl, 6,11) Bly,3tl» §,.771) 

where 

(2.9) G(x) peo 6 pK saz aeee sa) 

= Bla, +1, Bath) Bly,t1, 6 atl) 

. ptt) (5 5000 5X 8p e000 5a,) . 

The rest of the analysis proceeds exactly as it does 

with the constant loss function except that the functions G, 

S, and H are replaced by Gt, S*, and H*. 

2£e5 An Uxample of the Computations 

In this section the "decision tree," the diagram showing 

all of the possible decisions and outcomes which can occur at 

each stage, will be constructed for the following example: 

Let m= 3 with n, * ny = n= 1. Let a, ~ By = Yo = 

6 = QO so that 

1 for O50, SlandOS% <1 

0(6) = ° 
O otherwise 

Let 

L(x, ; a » X39 ay» aos a3 3 dD 8) 

O5- a5 for b=Fl 

9, - G5 for b= 2& 
i
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We shall compute S} (Xy pee KX _ 7 vay rere say) and 

Ht CX) 006 X45 Az eeee sayy) for k ~~ 1; ay and 3 ( and for 

k = 4 for the function Hh) where HP and St are the same as 

defined by (2.6) except that the function G is replaced by 

Gt, which is defined by (2.9). Then we shall place HR and 

39 ae 
primes for the sake of clarity. 

on the diagram showing the decision tree without the 

For the loss function in our example we find from (2.8) 

that 

(2.10) ptt) (X} »XqyXq 281 985283) 

(a,+1) . (y,+1) 
= min 4 -« ————- 

a3*P3t2 1z753t2 

atl +1 

3 °3 3 °3 

where b = 1 or 2 is chosen according as the first expression 

is less than or greater than the second. Then from (2.6), 

(2.9), and (2.106) we find that (dropping the arguments of 

Ss}. and Ht) 

HJ = Blaztl, gt) Blygtl, 85*1) 

(a.+1) . (yal) 
* min se semen eramneeerene 7 

A37B3he  ¥3TOgte 
(agtl) - (y3tt) 

Ce ¥3t54%<
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= [Bla3zt2, 6341) Blygtl, 63+2) 

- Blas*i, B3t1) Bly3t2, 6441) | : 

"1k 2k (Note that in this example each (— and (. is 1.) 
1k 2k 

The possible values of Hh and the terminal decisions 

corresponding to the possible values of Ae» B35 Y3) and b, 

if we start with ny, * 1 and No, ~ Q are given in Table l. 

We are now ready to construct the decision tree. We 

shall construct only half of the entire decision tree for 

this example since the other half can be obtained by sym- 

metry. The diagram starting with ni, * 1, is shown in 

Figure 1. The terminal decisions one should take are also 

shown in Figure 1. 

The decision tree for m = 3 with ny = 7 and ne Ny 

—— — Ao Bo =o * 5G = QO but with 

L (xq pXq 2X3 221 222 283 5d,9) 

lif b= 1 and Oo, < 0. or if b = 2 and Oo, > 9. 

QO otherwise 

has also been computed. It turns out that for these quite 

small examples the decision trees have exactly the same de- 

cisions at each stage for the same outcomes in previous 

stages.
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26 Numerical Results 
  

As one can see from the example of the previous section, 

the computations for finding optimum strategies are long even 

for very small examples. For larger examples, the computations 

rapidly "get out of hand.” With the above example there are 

2(4)? or 128 "terminal branches” on the decision tree} but if 

there were five stages with one observation per stage, one 

would have to construct a "decision tree” with 2(4)? or 2048 

terminal branches. Thus two programs for the IBM 1620 com- 

puter have been written for computing decision trees. The 

first program is for the linear loss function defined by 

(2.7), and the second is for the constant loss function 

defined by (2.1). Each of these programs has two main op- 

tions. One can enter the decision tree at the k'th stage 

(k = 1, 2, «e., m) with the results of the previous k - l 

stages and have the entire decision tree above the point of 

entry punched out on cardsy or one can have only 

S, (Xp 000 eX, 7 Ap aeee ray) punched out for each of the pos- 

Sible values of Nye Thus, using the second option, one can 

find out how many observations should be taken on each drug 

in the first stages perform the experiment using the data 

from the first stage, find out how many observations should 

be taken on each drug in the second stages etc. It should be 

emphasized that at each stage the computer has to go through



the entire decision tree above the given stage in the com- 

putations even though it may not punch out the entire deci- 

sion tree. 

A number of examples with various prior distributions 

(all basically joint beta-type distributions as defined by 

(2.2)) and three different loss functions were considered 

for computer calculations. The three loss functions were 

(2.11) 8, - 0, for b= 1 

1. L(x eee a eee gah b 9) "= 

1 me? omens 8, - 9, for b= « 

Re L(x ese a eeeoga b,8) = 

perry es een @, -20, for b = 2 

Be L(Xy 900+ 9X 9819006 98,2050)     
1ifo< 8, and b = 1 

1 

Lif o, * G5 and b= 2 
1 

om 
. otherwise . 

The examples were as follows? 

(1) m = 3 with n, = 1, n, * 1, and ny = 1, which is the 

example which was computed by hand. 

(2) m = 2 with n, =~ 4 and ny = 2. Part of the decision 

tree was calculated by hand for ao = Bo = Yo ™ 8 = 0 

and Loss Function 1, and then the entire decision 

tree was calculated and punched out on cards by the 

computer. Then the best values of Nyy for various



(3) 

(4) 

(5) 

(6) 

prior distributions and Loss Functions 1 and 2 

were found. Finally the entire decision tree was 

punched out for ao = Bo = Yo = 56 = QO and Loss 

Function 3, and the decisions at each stage were 

the same as they were for Loss Function 1. 

m = 3 with ny = 35 ny * 25 ny = 3. The entire de- 

cision tree for this example is much too large to 

be punched out. There are (2)(20)(10)(20) or 8000 

terminal branches on the tree. Not only the results 

for the first stage were found, but also results for 

assumed values of Ny 9 Noy» Ti and fo, were 

found for the second stage} and results for assumed 

values of Myze Moye Tyy» Faz9 Myo» Noor Tyo» and 

Poo were found for the third stage. 

m= 5 with nn, * Ng ~ Ry = ny “= ns =]. The entire 

decision tree assuming ny. = 1 was punched out for 

Loss Functions 1 and 3 with ao = By = > = 5, = QO, 

The decisions in the decision trees for the two 

loss functions were the same except for a few cases 

in the fourth stage in which the linear loss func- 

tion gave decisions that Ny > QO and ny > lL were 

equivalent and the constant loss function gave de- 

cisions that one was better than the other. 

m-° 1 with ny = 10.
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(7) m= 1 with n, = 21. 

The results for these examples are shown in Table 2. 

The following prior distributions are used in Table 2: 

(2.12) (1) % = Bo * Yo = 8 * 0 

(2) a9 = By“ YG ~ 8 * 2 

(3) a, ™ Bo mt Yo 2 89 — 9g 

() ag © By = to" 2s 8g = 8 

(5) 4, = Bo “21 9 ~ 89 = 8 

(6) Qo - Bo = Ls Yo =a bo m2 3 . 

In Table 2 under the heading "Example" the number of 

observations in each stage is listed first, and then the 

number of the example as given in this section is listed in 

parentheses. For example, 3-2-3 (3) means m = 3 with n, = 3, 

Ny * 2, and ns = 3, which is sxample 3. 

The results for two other procedures, the stage-by- 

stage and the approximate procedures, which are defined in 

Chapter III and IV respectively, are also given in Table 2. 

As one can see from Table 2, there seems to be good 

agreement between the results for Loss Functions 1 and 3 in 

these small examples. However, thers does not seem to be any 

definite pattern in the results. It shouid be noted that com- 

puting an entire decision tree for even a small problem can 

become quite time consuming even though one is using a
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computer. For very large problems the decision tree quickly 

becomes too large for a computer to handle. For example, if 

one added a fourth stage with ny = 3 to ixample 3, the 

resulting decision tree would have twenty times the number 

of terminal branches} and if one assumed that the time necess- 

ary for obtaining the results for the first stage was twenty 

times longer (which is undoubtedly being conservative), one 

would expect the computer to take almost twenty hours to find 

the results for the first stage with Loss Function 1 and 

Prior Distribution 1. Thus it is apparent that, when the 

number of observations ver stage or the number of stages is 

at all large, using extensive-form analysis becomes quite 

impractical even when a computer is used.
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III. THE STAGE-BY-~STAGE PROCEDURE 

3.1 General Procedures 
  

In view of the practical difficulties associated with 

extensive-form analysis, we turn to the following simpler 

procedure: Suppose that at each stage the experimenter acts 

as if he were at the terminal stage} i.e., if he is at the 

k*th stage, he assumes that there are only k stages in the 

entire procedure and chooses Ny and No, accordingly. Thus 

at the k'th stage (k = 2, 3, «s+, m) he evaluates 

E in & 
X1 Xp eee eX 7 se [x,y 00 0 5%, 

U(X p00 9X98, 000 98, 9d,0) 

and chooses the "ay" which minimizes the expression. At the 

first stage he evaluates 

E min & 

x “pel 
L(x, »a, »b,0) 

and chooses the "a," which gives the minimum. 

For the linear loss function defined by (2.7) (but de- 

pendent only on Kj pee yXygAz 9002 phy 9d,9) one would evaluate 

at the k*th stage
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n tn 

te 8k ( Ps (Pax 
= =. r P Pik 0 Po, O ik 2k 

Blay +1, Bt) Blythy 6,41) 
Blay tts Byig th) By atts 6,542) 
  

ay rl yt 
smin y kyo tk) (5 *kyp (eas a, +B te Vy, 75, 72 

a, +1 V1 
k. tk (= } +k (K 
20°“21 \ a, tp, 42 22 \}, 78,72 

k 

and choose the Ni, which minimized the expression subject to 

Nin * Ra, * My + 
For the constant loss function defined by (2.1) (but 

dependent only on Kz oes yX 97 9006 28 9D59) one would eval- 

uate at the k'th stage 
n n 1k\f Mex 

Mk Nok (oF) eo) 

2 2 FT TITY BU TFT 8D) P4470 Po,70 Blay atl, Byly Yeepit> S404 

  

Pc) Plex 6,41) Pre 
"mingq, 2 (~i)9 (| apt gr , 

  

fo aes a B,+1) 
q x (-1)4 (“ : 

2 j=0 J Y, tit 

and choose the Nit which minimized the expression subject to 

Ni; + No, 7 My - Notice that this procedure is equivalent at 

each stage to a one-stage procedure in which 1 ~ Oy, iys
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Bo ~ Bplas Yo * Yyz2 and 6, ~ 6, . Thus at each stage 

one has merely a one-stage procedure with an altered prior 

distribution. It should also be observed that, for the same 

results at the end of the (m-1)th stage, extensive-form 

analysis and the stage-by-stage procedure give identical 

results for the m'th stage. 

3.2 An Example of the Calculations 

Consider the example of the computations for extensive- 

form analysis in which an = Bo * Yo = 59 = 0 and m = 3 with 

My, ~My * Ny - Suppose that on the first stage one took 

Nyy” L and No, ° O and that ry” O. Then Qa) QO; By = 1, 

Ty = O, and 54 = 0. It is now desired to determine whether 

Drug 1 or Drug 2 should be used on the second stage. The 

stage-by-stage procedure will be used, and Loss Function 1 

as defined by (2.11) will be assumed. In Table 3, which 

shows the computations, we let 

H = Blast, Bol) Blyotl, §,%1) 

atl Toth Ygtl art 
min Gxt Byte - Yotbyt2 > T8442 ~ AotBot2 

ms -|Blag+2, Botl) Blygtl, 6511) 

- Blagtl, Botl) Blyot2, 6.71) | .
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Table 3 

Computations for Stage~by-Stage Procedure Example 
  

  

“2 Pe ¥2 0 fg K 
L i O 0 0 

- 1 
O 2 QO OQ “TS 

L 0 i 1 0 “75 

0 1 0 1 0 

Thus for this example 

Bla,+1, Bath) B(y, +1, 6,41) 

e FP j 4 

O + (-1/12) or -1/12 for ny. = 1 

-1/12 + 0 or -1/12 for nj, 7 1 

Thus one could use either Drug 1 or Drug 2 on Stage 2, which 

is the same conclusion reached from Figure 1 when extensive- 

form analysis was used. 

The same example was computed with Loss Function 3 as 

defined by (2.11) instead of Loss Function 1. The results 

were the same as those which resulted from using Loss Func- 

tion 1. Thus in this small example the results were exactly 

the same as they were when extensive-form analysis was used
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for both Loss Functions 1 and 3. 

As one can see from the example, the stage-by-stage 

procedure requires much less computation than extensive-form 

analysis does. The computations for a linear loss function 

are especially easy to perform. In fact, if one uses a table 

of beta functions, and has a small number of observations in 

each stage, using a computer is not necessary for the 

calculations. 

3.3 Numerical Results 

If there is a large number of observations in any of the 

stages for either type of loss function (linear or constant), 

or if one has a constant loss function and By and é. are very 

large, one will want to use a computer in the stage~by-stage 

procedure. However, it is not necessary to write new pro- 

grams for this procedure Since at the k'th stage one can use 

the programs for extensive-form analysis by letting Ao “ Oy ys 

Po ~ Peer? To” Year? So ~ Onze 4 Mee Py Pee Yee 
and Oy = Oy, and assuming that one has only a one stage 

procedure. ) 

The same examples computed for extensive-form analysis 

and two other examples -- Example © with m = 1 and n, = 10 

and iixample 7 with m~* 1 and n, = 2l~- were considered 

using the stagy2-by~-stage procedure. For uxample 4 decision 

trees for Loss Functions i and 3 were constructed using the
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stage-by-stage procedure and comparec with the decision 

trees resulting from extensive~form analysis. The only dif- 

ference between the results for the two types of procedures 

was that the stage-by-stage procedure in some cases stated 

that using one drug was better than using the other drug 

while the extensive-form analysis stated that using one of 

the drugs was equivalent to using the other. This occurred 

twice in the third stage when the constant loss function was 

used and eight times in both the third and fourth stages 

when the linear loss function was used. It was also noted 

that the stage-by-stage decision trees gave the same deci- 

sions at each stage for the two loss functions except for 

the terminal decisions. 

The other results are summarized in Table 2. 

These examples indicate that for the symmetric loss 

i. 
functions and for a) ~ By * Yo ™ 65 = 0, ny, = g(n,-1) and 

Nyy 2(n,71) are best if n, is odd and n,, * en, -~ 1 and 

My * any + 1 (but not My = any) are best if n, is even. 

Also, the examples indicate good agreement between the stage- 

by-stage procedure decisions and the extensive-form analysis 

decisions except on the first stage. However, in these 

examples, when extensive-form analysis was used, the values 

: 7 (m) : . of EB, ib (x, 24,) 4 for different n,, were almost equal 
L 

For example, when n, “ 5 and no = 4 with ag = by * Tg = So = 
0
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and Loss Function 1, 

wad 

al 

4 (27896822 for 

~ «27865073 for 

| | .27825392 for 
c (m a 

Tee Gy) ~ 627825390 for 

~.2786507h for   L - .27896822 for 

ll 
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IV. AN APPROXIMATE PROCEDUR:: 

Lel General Procedure 

ouppose again the prior distribution of 9 is that given 

by (2.2). Then from (2.4) at the ktth stage (k = 1,2,...,m) 

a fp v 8 
k k ,'k ; k 

o7 (1-8, ) So (1-9,) 
P eee - 
(elx,, 2X.) Bla, +1, B,rd) Bly, tL, 6 t1) 

  
  

zt P(O, 1X) 9 +++ 5X,) P(G5 1x, 502+ 5%) s 

    

    

Thus 

Var (@, ~ 05 1X1 9+++5%,) 

Var (0, [xy 90+5s%,) + Var (8.5| x1 502+ 9X,) 

_ Cot) (6, +1) ; (yy 1) (6, +1) 

Ty rn Ve 
(a, +B, +2) (a, +6, 43) Cy, +5, 42 ) (¥, 45,43) 

_ Pup (= Prd | Pox (= ey) 
~ ~. os ; 3 

O47 PTF YOK"? 
where 

a, tL WPL 
— _ .K _ k 
Py, oS and Po, ° WEETTS lk ~ G +B, 2 2k, F8F2 

Yay, * m 7 rt .. - n We shall now use Py K-14 1 k-1) and Po apt Po end? 

as approximations for p1,(1 - P4,) and po, (1 - Poy), 

resvectiveiy. Then



Var (8, ~ [Xi <0 2X) 

~ Payken'*-Pr na) Payeea bP aa) 
+f ty, +3 v +8 TN, F3 Cy ed Peet MK kel x1 Box 

The approximate procedure will be to choose My and No, at 

the k'th stage such that Var (9, - Go| x, 5+++5%,) is minimized 

(approximately). Thus we shall take 
  

    

  

+6, ,+3+ a -~0 ; 
Oy Py Ay Payer '* Pr yea) _ 2 

= + Lo . 
=~ 3 Yee" Oy 37 ( ny ny;,) < (1-3 ke-1 

#2 k-1 717 Pe kel 

or 

me Mn On 8) By Sy 7 By 7 3 
Reed 

If the value of n., which satisfies (4.1) to the nearest 
Lk 

integer is negative, we shall take Nye O and Noa, ~ My s 

If it is greater than Ny» we shall take ny, ° ny, and 

No, ~ O. 

After m stages we shail choose the decision 8, <q 8, if 

Pim < Dis the decision 85 > 85 if Pim > Pow? and either 

decision if Pim ~ Pom ° 

4e2 Some Numerical Results 

The approximate procedure outlined above was used in 

some of the examples previously considered with the stage-by- 

Stage procedure and extensive-form analysis. It should be



~43= 

noted that the approximate procedure is good only for 

metric loss functions and is independent of the total 

of stages as is the stage-by-stage procedure. 

Let us assume we are at the first stage and that 

ae “- Bo = Yo “= do as O ° Then 

  

  

tol
e 

Thus in this case, if Ny is even, one uses Naq ny 

first stage3 anc if Nyy is odd, one uses either n 1 

—
 

or g(n,-1) . This result does not, in general, agree 

sym~ 

number 

with 

that of extensive~form analysis, but does agree (at least for 

all the examples considered) with the results of the stage- 

by-stage procedure if n, is odd and is close to the results 

for ny even. 

Other results are shown in Table 2.



V. STAGE-BY-~STAGE PROCEDURES ASSUMING 

NORMAL DISTRIBUTIONS 

5.1 Distribution Theory 

In this chapter we shall again assume that we have a 

stage~-by-stage procedure in which at the k'th stage (k * Il, 

Qyeee3m) we allocate nj, out of ny, observations to Population 

1 and No, My, - Nay observations to Population 2. However, 

this time we shail assume that the random variables we gen- 

erate at the k'th stage are the means X, of the sample of 

~~ ~ 7 2 
nj, and y, of the sample of n,,, where x,-N(9,, v{/n4,) 

and ¥,~ Ne, 5 /no,) « (In other words X, and Y,. are nor- 

mally distributed with means 0, and 0. and known variances 

S/n, and o5/ ty, +) Our terminal decisions shall be the 

Same as before. 

We shall also assume that the prior distributions of 05 

.) . — 2; and 65; p,(6,) and Po(85), are N(x, , F7/Ny 6) and 

NY» 05/1) respectively. 

In order to compute the expected vaiues for the stage- 

by-stage procedure as outlined in Section 3.1 for the case 

of normal rather than binomial random variables, we shall 

need exoressions for the following distributions? 

P(Q, 1X, ae 20%) PO, 1, +229), P(X, [Xys089 s%j_1)
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P(X, [Xy yee0 eX, a) and PUY LY 208 s¥,_7)> 

_ a _ 2 oo 
Let bik ™ ny, / oF and No, — No,/ 95 for k . gd 25 ee0 5M 

We shall also assume that all Ky see 0 sXns and Ypres are 

mutually independent. 

It is well known (See Raiffa and Schiaifer, pp. 294-297.) 

that for a one stage procedure 

  

  

_ hi, xX + hi, X 
P(0, |x, ) is N ( LO — ~ = J. , oot 5 and 

" LO ll 10 LL 

_ . hy, *h 
P(x, ) is WN 5. Te - Then, if we go to the second 

- UT 1 

stage and now take P(O, |X, ) as the prior distribution, we 

have that P(@, 1x, x5) : P(@, fx, ) 1x.) is 

hig X¥g F Ayy *y _ 
  

  

  

(hi. % ho) + hi, Xx 10 Ll ha, 7+ A 12 *2 , 

N hi, + h oS na = 2 oth, th 10 1 Le 10° 711° "712 

ho, X, + hi, x, thi, X 10 *o ti *1 12 *2 1 
or N wy » Then 

( Byothy Ay 2 * by "hy *hy2 

at the k*th stage we have that 

k _ 

_ Wo Mg 
P(O, |X) 506+ 5X) is N “kT 3 “kk * Also, at 

mo ha. ao has 

gag 2 eg 

the second stage by assuming P(®, [x,) is the new prior dis- 

tribution we have that
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Big X> * By, X  Byg * Aya t hye P{x,|x,) is N - . Then 
at Mig * Byy 7? BygiBig * Ay) 

at the k'th stage we have that P(X, 1X, 9+0+ 5X7) is 

k~1 _ k 
&a ha, X. 2 hao. 

n 4=0 Li “i i=0 Li 

k=1 ; k~1 . 
2 ha. h u ho. 

4=0 li Lk 4-0 Li 

Similar formulas for and statements about 

PUY L¥y9++°s¥__y) and P( O14 5+++s9;) also hold. 

Thus we see that, if we perform the analysis for the 

stage~by~-stage procedure for normal random variables using 

the loss functions defined by (2.1) and (2.7), we can again 

assume that we have a one stage procedure at each stage and 

that we are merely altering the prior distribution of 0, and 

95 aS we proceed from stage to stage. 

5.2 Procedure for a Linear Loss Function 

On the basis of the results of Section 5.1 we shall 

assume we have a one-stage procedure at each stage with ny 

on Population 1 and No, on Population 2, where Nyy + No, = Ny» 

a constant. ‘Je also shall assume that the sample means for 

Population | and Population 2 are x, and xX», where 

= 2 on | a = . <2 
Po a) is NCO,» f/m, ,) and 9, Vy) is N(@, 05 /ng4) and
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that the prior distributions of 8, and 65 are p,(0,) and 

P5(85), where p,(8,) is N(Xq, o#/ny 6) and pj(@,) is 

Myos oB/Ngq)+ Let @ = (8), 92), xy = (Kyo ¥y)s byy = myy/of, 
= ‘ot = co 2 = re 2 Tal 

Boy Ny 4/3 2 Hao Ny o/ 1 3 and hoo Ng o/ 2 ® we shall 

assume that 0(6) = ep, (9,) Po5(85) and that the decisions ay 

and b are defined as in Section 2.1. Then from the previous 

  

  

section 

h,, x, + hi, x- 
— . li “1 10 “CO 1 

(5.1) P(e.{x,) is N —— 
peel Bay FB 7 Ay * Byy 

ho, ¥. + hon ¥- 
— al “1 20 70 1 P(8,ly,) is N 

aeel ho, * Bag hog * Boi J’ 

h,,. + h 

LO “LL 

and 
h + Rh 

—_ . ~ 20 od 
Ply.) is Nly oe : 

1 Q? Nog hoy 

We shall in this section let 

Kio + Ku1 95 “+ Kyo 8.5 for bel 

(52) L(x, a, ,b,8) = - 7 7 . 
Ko + Kay 95 “ Koo 95 for be2 

We would like to find the optimum ay and, if we are at the 

last stage, the optimum b for given a)- 

We shall assume without loss of generality that 

emir (5.3) 6 + ki 1% r Ky Vo > Koy + Koy Xo + K59 Yo °



Then we shall let 

Ke +k, 6, * k, 9, for b*1 

  

  

  

1 “1 2-2 
(5.4) L(x, ,a, »b,9) = ; 

QO for b=2 

where K, ss Kis ~- Koy for j = 0, 1, 2. Then 

(5-5) 9 [24 L* (x, ,81 ,b,9) 

> 

h,, X, +hi,x 
= oO = Li “1 10 “0 M(x,, y,) =k. +k | 

1? “1 G L hoy + hig 

h- y + h, Vo 
a + ko ( a + < — = for bl 

al 20 

O for b=2 
a 

Thus 

min Bela, L* (x, 8, 2b,9) = min iM(x,, Yy)> oO}. 

Then 
ry 

U 

"x men 9 lx, L* (x, 54, 5b,9) = [ MP(M) dM , 

- OO 

where P(M) is N(B, (M(x), ¥,)), Var (M(X,, ¥,))) 

  

  

1 
with 

(5.6) 5, (WR, FD) (= 4 *) 5.6) 8 (M(x, ¥,)) =k, +k - x, ys Fy o* ky hip? yo 

("2 By (yz) * Bao a 
+k. : 

a hai * Bag 

~ ko * Ky Xp * Kp Yo



  

  

ana 

2 
- = 2 Pn (5.7) Var(M(x,5,y.)) = ky Var(x, ) 19} L hth e 1 

iv ®i¢ 
2 hi 

+ 2 £i_ varl7,) 
* (ho, +hy,.)* t 21 hee 

ne h,,th ng th (4% (hy 4*hy 9) 1O"11 

né hth +2 21 20'P21 
2 (ho tho,)* \ Beoher (ho "hg 

2 Ayy hoy 2 = i‘ +k 
L Ayg(ayg*hy,) 2 Boo (hygthgy) 

since M is a linear combination of the normally and inde- 

pendently distributed random variables xy and Vy whose dis- 

tributions are given by (5.1). 

  

Lae 2 
-32Z 

Let @(z) == . Then 
V att 

(5.8) By min Fo lx, L* (x, 58, »b,8) 

¢ @) 
one ~2( OM. 2 

-- | es Wh a7 | M-E(M)) dM 

O
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1 where E(M) = k, + k, X) + ky X20 and h* : 
Q 

In order to find the values of Ny and N54 subject to 

Ni, * Mo, * ny which minimize (5.8) we must find the values 

which minimize h, or maximize Var (M(x, s¥,))- From (5-7) 

  

Var (M(x. ,y-)) 242 Mad 242 Noy 
ar\MU xX, sy = Of + US 

Lend LL nyolmyotnyy) © 922 nog(ng4*ng,) 

242 242 22 22 

Nig N20 Mig, Bag Bear 

This is maximized for Ny + Noy == ny fixed when 

“1 
Ka 

“4 

%2 

+ 

Mo” fh 
(5.9) 

Nog * Boy   

  

There still remains the question of whether or not using 

L* (x, a, »b,8) is equivalent to using L(x, ,8,9b,0).« Fron 

(5.2), (5.3); and (54) 

L* (x, ,a,,b,9) = L(x, ,a,,b,9) - (ky, + Ky, 9, + kg 5) - 21 91 * Ke2 9% 

Thus 

*@ [xy Lt (x, ,a,»b,9) = Pala, L(x, 2a, »b,9) 

— a —_— + — 

. ta ay, | un ®1o%o bk ( hay *20¥] | 5 20 * Kar \~hyofing 22\ —“hyothy, 

  

Therefore , 

(5.10) Be min Bel x L# (x, 94, sb,9) 
1 b 

= By min Baja, bry saz+bs8) ~ (kao*ka1%o"kg2Vo! «
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We see that the same values of Nyy and N57 minimize 

Be min Fe lx, L(x, a, »b,8) as those which minimized 

ERE. min & L*(x, 5a, 56,9). Xb lx, 1eFy 

Finally, if we are at the last stage and wish to decide 

whether to take b * 1 or b = 2 as the terminal decision, we 

see from (5.5) that we should take b ~ 1 if M(x,,¥,) <0, 

either b =~ 1 or b = 2 if M(x,,y,) = 0, and b = 2 if 

M(x, s¥,) > 0. 

It. should be noted that in Chapter 5 of their book 

Raiffa and Schlaifer (1961) derive results for a more general 

problem than the one considered in this section but for a 

somewhat more restricted linear utility function. (The util- 

ity of choosing ® = 1 would be linear in O1 and independent 

of 9, in their work.) However, with slight changes in their 

arguments one can obtain the results of this section as a 

special case of their results. It is felt, however, that 

the derivation of this section, which uses some of their 

ideas, is more straightforward for this problem. 

5.3 Procedure for a Constant Loss Function 

In this section we shall assume that the assumptions and 

notation of Section 5.2 hold except for the loss function. 

We shall let
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Ht 1 and 8, <9. lif b 1 2 

L(x, 28, »b,8) “(lif b= 2 and 6, > 85 : 

QO otherwise 

Then 

"a |x L(x, a, »b,9) 

f° po P(e,{|x,) Ple,ly,) de, de, for b= 1 co 2-00 1'*1 2'yy 1 “2 

      ry 
p(e.{x,) P(@,}x,) de, de, for b = 2 

7 007-00 LA. 2i*Xs 2 “V1 J 

Let v * 8, - 8,+ Then P(vix,) is Nluoy of). where from (5.1) 

    

      

‘ ~~ “+ — L ~ “— 

(6.11) = SBR SL Bao *o _ Bai Ya * Peo Yo 
V hii * Ayo ho, * hao 

and 

yee bg Sg 
Vo Biot By, Bag thay yoy B02 

Then 
_ 

0 " 
/ P(vix,) dv for b=1 

R LI b,9) f -© Sh Ky y+ 9Dy = . 81x, Leer oo 

/ P(v{x, ) dv for b=2 

0 J    
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~ 

_ fy 5 
V 

D(z) dz, for b=1 

OO 
(5.12) Mel, L(x, ,8,,b,8) =4 ~o r 

P(2,) dz, for b=2 

fy 
) 

G a 

and 

_ fey 
~ oy 

min "ol x, L(X, 2, 2b,9) p(z,) dz, - 

-CO 

Thus 

1 Ly 

OO TOO Oy 

= P(x,) P(y,) D(z, )dz, dx, dy,- 

-00 00 ~OO0 

; hy a fan 1 7 B10 %o B21 1 * Bao Yo 
et RG hy, + h - “ho, 11 7 Bro 21 * Bao G G 

<t < 

Then P(R) is N( bp » UR) where from (5.1) and (5.11) 

wee 

(5413) Up = (Ky = ¥Q)/s, 

and 

J
y
 

Q 
r
o
t
 i 

a . 
hay Ayo * yy 

Aig * Ay Rio By
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G2 2 ,2 2 
1,2” ( “1 “ 2 

- a + + Mg = Rag Mic * Baa P20 * Bai 

= K .~ g@ ; 

of Os 
dk 2 . . . 

where K = —=- + - is a constant at any given stage since 
Mo | Bag 

we are only going to let Nyy and No, vary subject to 

Nyy + N+ == ny ° 

Thus 

2. K 
(5-14) Op ge ™ L 

Vv 

and 

+00 ~|R| 
= P(R) pz.) dz, dk. 

-0O ~0O 

In the rest of this section notation and arguments sim- 
\ 

ilar to those presented in the Tables of the Bivariate Normal 

Distribution Function (1959, pp. XXVIII - XXXII) will be 

used. 

Let 2, = (R - Me) /Yp and let c = o, and d=, - Also,



- Then 

By min i x. _ X1 0a, 2b, Q) 

-|cz,td| 

af | B(2,) Play) dz, dz, 
-00 

CZ, 70 

J [ Q(z.) P(25) dz, dz, 

00 ~(cz,+d) 

° B(2,) blz.) dz, dz. 
~~ 

oO 
1o
. 

-(cz,+d) 

    

p(z,) Dz) dz, dB, 

- p/( 24) gz) dz, dz. . 

G 

O
1
2
.
 

In all cases c > 0, but in general d can be any real 

number. Without loss of generality we let d <0. (The argu- 

ments for d > © are similar to what follows.) Let 

I, = p(2,) plz.) dz, dz, 

-©O 0
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CZ5+d 
2 Ne 

and let I. fe J £(2,) $25) dz. dz, - For 

ad “g ~'¢ 

d <0 the areas over which I, and I, extend, along with con-~ 

venient auxiliary lines, are shown in Figure ~. The shaded 

area A, is the area over which I, extends and Ay is the area 

over which I, extends. 

, -d -d 
In Figure 2 we let h = ——ee=o and k= -—-—S=. 

. Ji + c* cv + 2 

Let ats on 2% and Zo be the By and Zo axes suitably ro- 

k 
h 72 

tated. Let V(h, k) -f J’ ¢( 21) p( 25) dz, dZ5 - 

Then from Figure 2 we see that 

_ min & L(x, 58, yb,9) “xy 5 lx, Hy 9190s 

he 
i
 

co ,~h 
arctan p 

- [ae * st Oh, k)+ P(2t)P(2¥)dztdzs 
0 "C 

“
e
g
”
 

h @ h 
arct ~ 
arowan k + V(h, k)- Z( 1) A\ Wydgtdgt aT ; at (2h d2vdzs 

0 76 
h 

arctan & 
~ 2\——se-—= + <V(h, k) . ni

e 

For fixed hig» Hoos and X ~ Vos h is a constant since from 

(5.13) and (5.14)
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Xe ~ Jy 

h = ~ Rh. ~v vo, 
° = ce 1+ oF 

ft 1 + oe 

ue 

Thus we shall decrease oe ain “olx, L(x, 4, 2b,@) by 

arctan ip 
increasing V(h, k) + —~5=-—* and this will depend only on 

values of k. 

Consider, without loss of generality, the case in which 

h > k with h fixed as shown in Figure 3. In Figure 3 let 

AH = HG = CG = AC = h and let AF = HE « CB: k. Then the 

volume above triangle ABC is V(h, k) and the volume above 

h 
arctan ik 

the wedge DAJ is —3y Decrease k by Ak so that 

AF’ = Het = CBt = k - Ak. The volume above triangle ABBt 

is the net decrease in V(h, k) resulting from a decrease in 

k of Ak units. The volume above the wedge D'AD is the cor- 

responding increase in arctan b/k - Since Angie BABt = 

Angie D*AD and rotation of areas does not affect the volumes 

above them, it is seen that there is a net increase in 

arcean Bik + V(h, k) for a decrease ink. 

Thus in order to maximize Vth, k) + arctan b/k one must 

  

minimize k ~ h/e m= h/ Sp» which means maximizing One However, 

of #2 4 -~ 1 so we must minimize vs < of 5 i +E fe 

a 1 Ld 20 “21
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FIGURE 3 
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m OC 

2 “ya 
G oO 1 4 22 

“ which is minimized for n rn = n 
M9743 Noo tNo7 , 11 21 1? 

a constant, when 

(5.15) w10 7 "11 “ - . 
20 21 2 

It should be noted that this is the same result which 

one obtains from (5.9) by making [k,/k| =. 

Also, if we are at the last stage of our stage-by-stage 

procedure, from (5.12) we see that we take b=1 when > 0, 

take either b=l or b=1 when = O, and take b*2 when H <0. 

It is interesting to compare the results in (5.15) and 

the results of (5.9) when [k,/k,| = ] with the situation in 

which one is making the usual test of hypothesis that 05 > O5 

against 8, < 8, when the test statistic, the difference of 

the two sample means, is normally distributed. In this case 

one computes the standardized normal variable 

X, - ¥z ~ (8) - 4) 
  = Q, - =O g 2 52 (taking 8, - 8) ) 

i 4 22. 
My Paz 

and rejects the hypothesis that 8,” 85 ifa< Zo» where Zo) 

is a fixed constant. The power of this test for a given 

8, - 85 is PrJla< Zoq ~ = It is obvious that the 
Oo G 

1 2
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o2 ok 

power is maximized for each 8, ~ G5 <0 if —. + =f is a 
ll 721 

minimum, or if Nj 4/No1 ee y/Gy. (5.9) (for [k,/k, | = 1) and 

(5.15) give the same result if No = Noy, * O, or if we 

assume the prior distributions of 05 and Q5 have "infinite" 

variances.
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VIe THEORETICAL COMPARISON OF 

EXTENSIVE-FORM ANALYSIS, THE STAGE~BY-~STAGE 

PROCEDURE AND THE APPROXIMATE PROCEDURE 

6.1 Asymptotic Comparison of the Stage-by-Stage Procedure 
  

and Extensive-Form Analysis 

From (2.5) we have that 

n n 
- Lk 2k 

P(x ix eee gt ) “— ( ( 

Bla, + 1, Bb + 1) Bly, +1, 8 + 1) 

Bla, 4+, By 4t1) Bly, 4th, 6472) 
  

nm 
a 

- aca Ege 91 Ngo" ica ee (P| 
A eT cg 

| 
A
 

Migs Pay ger een Pai Fan Seen (2 

(yyy Fh yt) eee yy Fh td) k 
Pos 

x 

since (for example) 

  

(vy, atro)t ,% 
k-l “2k - kK 

(y tyr )eeel¥ +1) ETC AAA 

k-1 2k k-1 Yi’ Yeoit 

Assume for k becoming large 

a Y¥ k-1 k-1 

M2 7 Bey ob? Mt Pee 

Peed Oke 
Me. * Pend 1 1 * The a
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rm 
Assume, further, that for k large a Nyy is small relative 

i=k 
m 

to a,_, and 6), and that 4 no, is small relative to 
ink 

n Nn 
, Lk 2k 

(6.1) Pix Ix eae gd _ ( } ( 
k 1 ; ; k=1 Pik rok 

r N4,°r r Nnoa,w7r 
. 1k lk “1k 2k ak “2k 
a (1-9, ) 85 (1-9, ) o 

Also, for the loss function defined by (2.7) 

"OLX, 9000 9% L(Xy 9000 )X 28, 900058, 950) 

+e, (B= ( ‘g?) _ 
Kio Ky a, tp 42 *Kig 778 72 for b= 1 

( a, th ( ‘nth 
kontks, | ——_ess) +k, | —-B) for b= 2 20°"21 \a +p 42 22 \y F842 

Kio + kia a + Ki 2 9. for b* 1 

Koo + Koy 95 + Koo 05 for b= 2@ 

for m large, which means that from Section 2.4 and (6.1)



5 
X,1 Xp 908 2% 7 m m 

n. n 
am am n n r 
ok z ( tn | ( 2m | @,7" (1-¢ 

Pom 
jl ~T 
2m em 

° 6°" (1-95) min( ky otk, 4 1 7k, 999 ska tk2 10, tkg 289) 

= min(kj otk; 101 +k; 2895 kyotk219,tk282) 

Similarly we can show that for k large 

(m=k+1) 
Ma [kyo ey (2 pene sy 7 Maz seer ay) 

> min(ky otk) 1&1") 969% kgotk, 16) tk285) 

Also, for k large and for a linear loss function 

min & 
Mag leo ee 2X7 b © [x4 9000 9%, L( xy ye ee sy 2z ae ee 9p 99) 

  

are 
= ds 

n nN : 

_ i “sk ( P| (Pk | Bla, + 1, By FL 

  

=r = r r Bla, ,tl, 8, 4+*1) 

Bly, + Ll, Oy + 1) atl 

° min k + k — Bly, _j tls 6,472) 10 11 \ay Fp Fe 

ving Ae eaten (aS) eel Ki2 78,72 0° Kao"Kar \aapa/ “Na2lyrat 

> min(ky otk, 19) 7k) 2991 kootk218,tk2292)  - 

| . CKD This means that asymptotically (k large with 8, emcee hy 

Oy PRL
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ia ang ——Koi 
Yer ke 

+ 8,) extensive-form analysis and the stage- 

by~stage procedure are the same in that 

B min E 
Xj 1Xq 9299 9X7 b 01x, 606 5X, L(x) p00 + 2X 92y oe os By, 200) 

Moy [a ose 9X7 L (2X) 900% 9X7 9X 9Ay see 9A,) 

for a linear loss function. 

6.2 Derivation of the Approximate Procedure as an Approxi- 

mation to the Stage-by-Stage Procedure Assuming Normal 

Distributions 

Let uS assume a one stage procedure (at any given stage 

of a stage-by-stage procedure as described in Section 3.1). 

Let the prior distribution of 85 and 85» 0(@), be defined 

by (2.2). We shall then use the bivariate normal distribu- 

  

            

tion _ _ 

, (Sl Mo , (8g-¥o)* Nao 
o2 2 

19) = No Noo e 1 a 

P of g2 et 
1 2 

as an approximation fczx ¢(&) such that by equating the cor- 

responding means and variances, we have 

~~ antl +1 
(6.2) = 0 ¥V YO x omteneneiepcaevtngt 

oO ‘ y = +5 -}- 3 aytByte 3 0 Yo 0 2
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agtd Bott 

2 
a AotPote _ AotPot and a 

Rio oF BgTS 

Toth 61 
2 nn 

OF Xoo ¥QT EO 
N29 Yo'eo*? 

so that 

Np ~% FBG FT 3 5 My *%o * S73, 

a, tl a, + 1 

oF = ( or 73 (1 - SETS , 
0° Po AO TPU 

2 (20 ‘i ( Yo * 1 and SR | ere 1 - . 
2 Yotigte Yorogt2 

of4 
In addition, we shall use the normal distributions N(@, » zs) 

il 
o$* 

and N(@, »==~) as normal approximations to the actual (binom- 
21 

jal) distributions of P4/9q1 = X, and Pp4/N24 = Yy° 

Actually, of course, if we do this, oe i = 8, (1 - 8,) and 

a = @,(1 - 6.) . However, we shall use the approximations 

ope= oF and o}* = of, where oF and of are given by (6.2). 

Note that we are assuming that 6, (1 - 8,) and 6,(1 - 8.) 

are "relatively constant" as 9, and 8. vary» This assumption 

will be appropriate when .2 90, $ .8 and 256) 8 but 

will not be good very far outside this range. 

Using the above normal approximations, we can use the
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results given by (5.9) and (5.15). Then, if we assume in 

addition that we are in the k'th stage of a stage-by-stage 

~ GM tl. 
procedure, substitute Pl k-1 for Saas , P2 kel for 

a yy Byny Por ag * Bos Yy_1 * S424 FOF Yo * So» 

nj, for n,,, and n,, for nj,, assume Ik, /ky | =] in (5.9), 

and solve for yj» we obtain the approximate procedure as 

given by (4.1) in both cases. However, if we do not assume 

[k,/ka| = 1, we obtain the following "generalized" approx- 

imate procedure for the linear loss function given by (2.7): 

Yyany * d¢.y tT Mp + ZIRRLY ~ M7 7 Bye 7 3 ( 
(6.3) ~ Ria $-T ’ Nk 
  

where 

Kt | Py xea'4-Py xe ! 
kl” lmd = = 

2 Pz xn 1-P2 ed?
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VIt. NUMERICAL STUDIES OF EXTENSIVE~FORM 

ANALYSIS, THE STAGE-BY-STAGE PROCEDURE, 

AND THE APPROXIMATE PROCEDURE 

A method of comparing the three different procedures 

for given loss functions and prior distributions is desired. 

The proposed method for this comparison is to find the exact 

probability of making a given decision (say b = 1) as a func- 

tion of 9, and 6,- This can be done for extensive~form 

analysis by computing 

Pr(choosing b=1) 

4 

=] Paley yoPgq eee Tyg slag My yay 999 My Maen) 

+ 4 ut PoltyyePoy? eee am hy Boe? ° 1)? Non) 3 

where 2 is the sum over all values of Pyy9ho 9880 ol yn lam? 

Ny y2No,» eon 9M Bow such that 

  

  

B . 

1 3=0 dj a7 4 L 

5 5 8 Bla, + Ym + 5+ 2, Ba + 1) 
< q xu (-1) (Sa) ; 

2 4=0 J Yo 7 GT 

for the constant loss function defined by (2.1) or such that 

On + 1 yo ot) 
- + - ee ~ _ Upo7Kyo)*Ukgy-kq) a FBR (Kag-Ky2) 7 Fa 72 

for the linear loss function defined by (2.7) and where it is
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the sum over all values of P13 9Tap 92 e lym Tomy eMopecees 

Nj) ?Mo, Such that equality holds. (Either b = lorb=e 

can be taken.) We can compute 

Pa lryy Poy 9829 Pym 2P on 9M Moy 2824 9My py Mo) by computing 

Pal Pane am! Ban? Mam eh gL? 2 jma1? ML mal? M2 pm? 8 PT ek? 

My jp oMgq a eee oT yy 2PQq My 7 Mgy) 

° Po (ym 2 Mom IP] mad ?82 smal? yma1? M2 yma? PP Pek MLK? 

Nye se T 4 2T27 Nyy gq) 

ree Paley iat gil My aMags eet oF 11921 M1921) 

° Polnyy Mol Py reno ke PL ede ke PPL Par Br M21) 

where Po lta pePoyl My, Maye ees ely P27 9244 2M5}) 

n r no, -?r- n r N5,-r = (*) atk (1-0,) HU (72 | 9,2 (1.9,) 2 "2k 
ik 2k 

and 

Pol my Maly papel 2 kel Ly kad M2 kel? Pia P en My Me1) 

= 1/nt if the value of (nj, sNo,) minimizes 

(m-kt+1), 
Boge IX po ee 4 L (Xp pee eK say reee ray) 

= Q otherwise ,
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where nf is the number of (ny 1 2Mp,) combinations which give 

equivalent minima to 

(m-k+1) 
Bay [kya eee 9% L (Hy pee 9X By oe00 9A, )- 

In a similar fashion we can compute the exact probabil- 

ity of choosing the terminal decision b = 1 for the stage~by- 

stage and approximate procedures. 

Computer programs have been written for calculating the 

exact probability of b = 1 for extensive-form analysis and 

the stage~by-~stage procedure with both linear and constant 

ioss functions in each case and also for the approximate 

procedure. The results of the computations with these pro- 

grams are shown in Tables 4 and 5. We have, without loss of 

generality, taken O, a 8, so that b ~ 1 is the correct deci- 

Sion. Under the columns labeled "ixample" in each of these 

tables is given the assumed number of observations in each 

stage. Under the columns labeled "Equal Division" is given 

the probability of choosing b = 1 if prior to the experiment 

it is decided that exactly half of the observations are to 

be allocated to Drug 1 and half to Drug 2 no matter what the 

results of the intermediate stages are. This probability 

was computed with the program for the approximate procedure 

by assuming that all of the observations are in one stage 

and the prior distribution is rectangular. Some positions 

in the tables are left blank either because the examples
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do not apply as is the case in the columns labeled "Equal 

Division" or because the computations take much too long to 

be worthwhile. 

For the loss functions and prior distributions considered 

in Tables 4 and 5 it appears that, in general, for the exam-~ 

ples studied there is little improvement in Pr(b = 1) when 

the approximate procedure instead of just equal division is 

used. Also, there seems to be relatively little difference 

between using the stage-by-stage procedure and extensive- 

form analysis. The only difference in Pr(b = 1) for the two 

procedures which is greater than .01 is that for the 3-2-3 

example with Loss Function 3 (as defined by 2.11) when 

9, = +95 and @, ~ -8C. The greatest differences between the 

four procedures arise when 8, = 95; 8, = -80, and the 

approximate procedure is used instead of the stage-by-stage 

procedure. For the 3-2-3 example, when 8, = -95 and 85° 80 

and Loss Function 3 is used, the loss in Pr(b = 1) when the 

approximate rather than the stage-by-stage procedure is used 

is almost .03. However, for cn and 8. symmetric about .5, 

in general, the approximate procedure is a bit better than 

the stage-by-stage procedure or extensive~form analysis. 

It should be noted that in the smaller examples there 

is no improvement at all in using the approximate procedure 

rather than just equal division of the observations. We can 

easily derive an expression for the range of values of ny
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at any given stage in the approximate procedure for which 

this reduces to equal division. From (4.1) (assuming nj, 

can be any real number) 

ne = ot 7 AD) Pea = Ag 
  

where A, 7 ¥,_, 7 5,_4 + 3 

and Ay = Op + Oo +3 «4; 

Egual division will be used if 

am, - 25, San, +3 ? 

  

    

    

-3 < i <i. or 2 > 2amh.> 58 » Rpt ot k 

or 

~ Rk ~1-2R A,+2A R +1-2R A. +2A 
ke=1 kel 1 2 kel k— J. Qs . 

(7.1) <n, < if R, 4.71 

and 

< n < if R <1. 

Let us now consider the example in Table 2 which has n, * A 

and Ny = 2. In the first stage ny > 2 and No, ~ 2 so that 

for the second stage Ay = 5, A, = 5, the largest possible 

value of R, is v 4/3 , and the smallest possible value of 

R, is v3/h . In either case from (7.1) we see that we 
L 

shall have equal division for Ny =24 i.e., for any possible
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Ry» No, ~ 1 and Noo © ls. In addition, for nN. even we shall 

not be able to avoid equal division unless ny > he 

Since the differences between the probabilities in 

Tables 4 and 5 for the approximate procedure were so small 

for the relatively small examples studied and since the time 

necessary for computing much larger examples would be pro- 

hibitively long, a program for a simulation study of the 

approximate procedure was written. An example which had 

thirteen stages with two observations in each stage, 01 = 495, 

85 * «80, and Gy = Bo ~ Yo = 89 = GO in the prior distribu- 

tion of 8, and 8, was run with this program. From Table 4 

one can see that, if there is equal division of the 26 

observations before the experiment, the probability of 

choosing b = 1 is .878466. When the example was run, the 

proportion of times b = 1 was chosen out of 1365 repeti- 

tions was .877, which is even less than .878466. Certainly 

one could not conclude that the approximate procedure gave 

a higher probability of choosing b = 1 than equal division 

did for this example. 

It is interesting to compare equal division and the 

approximate procedure for very large examples. If the total 

TH 
number of observations N = a n, is large (e.g, N > 100) and 

i= 

m m 
= = smn oe = “ = > a B v 6 0; No oy ny and N, 1 no;
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will in the approximate procedure be quite close to satisfy- 

ing the following relationship: 

N,/N, = J4/ 95 ; 

where oF = @, (1-9 and of = 0,(1-8,). Thus the probability 
1? 2 

of choosing b = 1 for the approximate procedure will be 

close to 

  

where Zz is the N(0,1) variable. Equal division of the ob- 

servations is covered by the special case N, = N, * aN. 

Table 6 gives the estimated probability of choosing b = 1 

Table 6 

Approximate Probability of Choosing b= l 

Ns *Breeadure —=»-dDivitsion 
100 £95 £90 +8328 .8298 

100 «80 £75 67257 £7257 

200 £95 Ol 8691 8669 

200 »80 «76 07530 07528
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n2 can see from Table 6, there is a Little im- 

provement in using the approximate procedure over equal divi- 

Sion for oy anc. 85 close to 1 for U), but thers is practi- 

eally no difference when Oy and 9. are close tO 5.
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VIII. STOPPING RULES FOR THE 

STAGE~BY-STAGE AND APPROXIMATE PROCEDURES 

8.1 Stopping Rules for the Stage-by-Stage Procedure 

suppose we have a stage-by-stage procedure in which it 

is specified there will be a maximum of m stages but the 

actual number of stages is not fixed. Thus we might want to 

stop before taking all m stages. Suppose we have run k - 1 

Stages and want to decide whether or not to take the k'th 

stage (k = 1,2,...,m). In order to define our stopping rule 

kt 

we shall let Ny, = ie ny (k? = k,ktl,...,m), Nie be 

the number of observations out of N,, allocated to Popula- 

tion 1, Novy, (where Novis = Mane - Nags) be the number of 

observations out of N,,, allocated to Population 2, Ry) 1.5 

and Roe be the numbers of successes out of Noe and Nove 

respectively, Mee ~ Oy oy + Rant ’ Bie = Bod + Novice - Rage 

N ~ & 5 = § ‘Okk? 3 Yee Vee * Boye 2 One ~ Oy * None 

Xe ~ (Ripper Royer)» Cy be the cost of the itth stage, and 

a,,1 be the decision of what Nj,,,_ to take (Nipye ~ Litaeees 

Ne): (Note that, if k* = ky Mugs Nipper Noppee Ranges 

Roxke? %yre ANd Apps reduce GO My, Myys Naxe Tie» Taqs and
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ays respectively.) Also, since in this chapter we shall be 

using only the general constant (2.1) or linear (2.7) loss 

functions and these depend directly only on b and 0, we 

shall denote the loss function by L(9,b). 

Using Amster's (1962) modified Bayes stopping rule 

(itself modified and adapted to the problem in this thesis), 

we have the following rule: 

if 
kt 

8.1 in E L(8,b) < min u C6, + 
802) Mp Ol passe s%oy (990) “et faa t 

min 5 min E L(@,b) |, 
Brit Kiet Kr e eee Olea +e My Maes 

do not take the k'th stage. 

If each C5 is relatively quite small, the stopping rule 

becomes approximately: 

Stop sampling if 

mink 
b O]x4 ye6+ eX, _4 L(@,b) 

min E L(6,b) . 
~ min "Xn! Epo ® 99% b O]x, >. ee 9X in 

Shem 

For the linear loss function (2.7) 

min & L(6,b) 5 O([Xy yee 0 sX_y 

a +1 +1 
: k-1 k-1 

ne: min k +k canta erireareeterameermlinaNn aeRO Ses +k SreUefaheema enim ERICACEAE RANI 

LO “ll ( Gy By 12 te ;



-~81- 

+ + 

kaqTkay “kl, *Ko | ta | On Kad Teel Kal 

and 

min E min B L(0,b) 
Act Xppel Xp oeee Xe b [x pee 6 eX 7 Xp , 

N N 
a Ukk# ack Nixxt\) (Nange 
“=- min és _ bes - R ' R , 

Bays + 1, By + 1) BlYy tly 54 + 1) 

Bla, pets Byly tt) Bly tts Oy yt) 

+ cr +k Yat mind Kio"Ki1 lop the te} 12 tyre |? 

° 
  

Qe Yue 

+k Snr | Yr"? *20"K21 \ Gy *Bye te K22 \ Yet 8p Fe ° 

For the constant loss function (2.1) 

min E 
b O[ x, o+2 9X9 L(@,b) 

zn L 

Peel 
*min4 q, 2% (-1)4 ( 

en] Boy M1 S42 2 Oy th) 
gre j M1 JFL 
  

5 | 
So (aad ('«-1) Bly Ye 54? By yt) 

q a : 
& j= J Yy,-yrstt



  

and 

min E min E L(@,b) 

“Kkt Hace l Xpress rey op Olkp eee sXe 7 eae , 

nN N ( let (2k! 
— Lick akk Rayict Paice 

a 
2) Bla, 3 71,8, 5 tLIBlyy 3 bydy 47h) 

Bre Riper © Rayye 

  " (-1)4 (te Bla ter tTt2 9 Sy Ft) 

  

* mi 2s 
mee VAL Zo j Ca a , 

5 . 

a (ea) ("| Blas tyr tdt2> Byy th) 
2 36 j Yyet gti ° 

8.2 A Stopping Rule for the Approximate Procedure 

In this section a stopping rule for the approximate pro- 

cedure will be derived by the use of normai approximations. 

Of course, this stopping rule will also be applicable to a 

stage-by~stage procedure in which normal random variables 

with unknown variance are generated. The general stopping 

rule will be that defined by (8.1), and the loss function 

used in this section will be the linear loss function as de- 

fined by (2.7). 

It has been seen in Chapter 5 that in the stage-by-stage 

procedure for normal random variables one can consider his 

k'th stage (k = 1,2,...,m) as the only stage of a one stage 

procedure with a prior distribution which is altered as one
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proceeds from stage to stage. It has aiso been seen in Sec- 

tion 6.2 that the approximate procedure can be derived from 

the results for the stage-by-stage procedure for normal 

random variables. In view of the results of Chapter 5 and 

Section 6.2 we may suppose that we have at the k'th stage a 

one-stage procedure which generates normal random variables 

xy and vy and has prior distributions (altered at each stage) 

of ®, and 8, which are N(X,,5 08 /n49) and N(y,, 08/ny9)- 

Although our notation does not show it, the parameters are 

functions of k. In fact, we have 

(842) Xo Pyyker ? Yo° Paykea * "io %K-17Bq-1"? » 

M99 Yn yt3 9 CE = Py yey Py ya) 

and of = Po paq(4-P2 ya) > 

Also, let 

(863) yy Maye > M21 7 Noxge 2 2” Mace 

My ~ Mo t Meg eX ~ Ryyaee/Nyacee V2 ~ Rarace/Nonaces 
kt 

x, * (x45 y,) » and CY} = iz C, - 
i-k 

With these substitutions and assumptions we can use the results 

of Sections 5.2 and 6.2. We shall assume further, as in Sec- 

tion 5.2 that kj, + Kyy%X t ky o¥o2 Koy + Ko Xo + Kog¥o 

Using the above assumptions and (5.1) we see that the left
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hand side ef the inequality of (8.1) is equivalent to 

Eg L(8,b) with the altered prior distribution of 9 and is 

ko, + K57% + kooVoe Similarly, using the above assumptions, 

(5.8), the arguments leading to (5.9), and (5.10) we can find 

the expression for the right hand side of the inequality of 

(8.1) and thus obtain for our stopping rule? 

Do not take the k*th stage if 

    

Kag * KgyX + kga¥Q S min [cy 

~ a= J. v Dain E(M)) Zz 

a0) 

+ (ko * ko1% * k2a¥o) | , 

. or 

Do not take the ktth stage if 

(84) min[ oy - —— J (2-7, 9B) ) Bl z)dap 0 
V Bain 

Wn, B(M) 

where han is the minimized value of h in (5.8). It will be 

seen from (5.8) and the arguments leading to (5.9) that 

  

  

=- «2 42 L L 
1/d in °F ky Ni ¢ No 

1 + o2 2 (4 
22 "N99 Rag ™MQ]



where Nyy and nj, are chosen so that (5.9) is satisfied, and 

that (5.8) is minimized when h * hoin' 

If we lebu=Vh E(M), then we can let 

oD 

Liye (u) = (2 -u) O(z) dz, 

u 

which Raiffa and Schlaifer (1961) call the "linear loss inte- 

gral" and tabulate in their book. Thus by using their table 

one can apply this stopping rule without resorting to a dig- 

ital computer. The computations are simplified if we make 

the following observations and assumptions? 

From (5.9) it is seen that we obtain hain when 

  

Mo 7 71 _ 2 | ‘Lop 
Nog FT Ngq ko} Sg 2 

Let us also assume Ny o/Nag = RY. (This assumption will most 

likely be good after the first few stages.) Then 

Myo ~ RY Meg and nyy = RY nag * RE ng, - Myo * RL ny) 

ny Rin, 
Thus No, * BRITT and ny * REI - Also, since we let 

  

Rin n 
= mh am 0 

fo ~ Pio * Pace? Pio ~ REFIT 2R¢ B20 “ RAFT + Then 

= ial nytNy 

M1 7 Myo ~ RyFT (my * Mo) and nay * Nag © RYT + and
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ifh = g2 2 a 
min 1 “1 Ryn R¥(notn,} 

    

= 52 {2 a a —-} 8 xg (Rp)? 2 

  

Ny n+Nno 

ws sg 5.2 { . it (1k, }o, 4 [k]o5) (x ata) ° 

By adapting the above results to our stopping rule, and 

making the substitutions of (8.2) and (8.3) we obtain: 
i 
Do not take the k'th stage if 

  

  

  

  

  

k? 1 1 (8.5) a ok Co - Rey JT ~ kel 
x n, +6 z n, FOTN 

i=l imi 

Iko*ky Py 11K 2P2 oJ . 
* Lape 7 _ 1 aU: 

kei é kel é 
K zon, + 4 n,tOtNn k-1 $=] i i= 4 kk 

  é = =—_—— 
where Ba” oy LL As yeaa (2-Py a) 

re 

and where [ko TKyPa Key + KeP 2 kat!



~37- 

is used so that the case in which 

+k +k +k Kako 1Py ena keaP2 unr = Bro 1P1 ye-1*12"2,k-1 

is also included. 

For the special case in which 

kj, + (85-0, ) for b= 1 16 
L{@,b) = 

+ (8 ) for b* 2 Kio 172 

so that Ky = Oy kj = m2, and ke = 2 the stopping rule 

becomes? 

Do not take the ktth stage if 

  

  

  

  

  

kt 

(8.6) min] = C, = 2KP_, a ~ 5 a 
Kt fark ~ ke Zonjt6 2 n tO, 

qe1 (+ i=1 (+ 

e L [Po yoy ~ Py eel! — O 

NF >O, 
I T 

ke1 Me ki . 
3 +64N 

ia g=y bk" 

  

  2 
where Kp 1 “= a Ps ke1't-Py ker! . 

We would like to have a better method for evaluating 

(8.5) than enumeration over the possible values of kt. Let 

C be the cost per observation and assume that it remains the 
kt 

same from stage to stage. Then 4 OC, ~ © Nit ° Suppose 
i=k 

we wanted to find N ‘a? where, the possible values of N.,. are 

Ly2,eee,N iy such that the expression in brackets in (8.5)



k-1 
was minimized. If we let n= Ny, n*? = 42 n.+6, 

kk i=1 2 

-~ mt] = KH a - 1/72 = 

Hoy - ml = Ike + kyPy yt kyPo ale b= U/KE = 1, 

and k, * C in Equation 5-38a on page 115 of Raiffa and 

Schlaifer (1961), we have 

  

  

  

  

    

———t : ee) kT eT 
v¥le_) = =| CN -~ K 2 ont 4 n,totN n kk! 7 kerf 2, MO oy MTOM 

it Iko * ¥yPa yer * KeP2 401! 
N* 

i i 
i 

K 2 nt & n,totNn kel fo 42 ME gh EO 

Thus our problem is equivalent to finding n such that v*(c_) 

is maximized, which is the problem solved by Raiffa and 

Schlaifer. Let n° be the optimal value of n. Graphical 

methods are used to find n®. Chart I in the back of their 

book gives n? for given values of Doo and 4, where by sub~ 

stituting into their expressions for n°; DD? and Z we have 

n° = n°(C/K,_,)*/? ; 

  

> [ky + kyPy yy + KoPo yy 
c / k-1 é L ; 

K ( = nt )



and 

Thus with 

becomes: 

(1) 

(2) 

(3) 

1/3 
Keen 
k-1 2 

C ( x n, +6) 
i=l 

the use of the chart our stopping rule procedure 

Compute Doo and 4 and refer to Figure 5.10 on page 

118 of Raiffa and Schlaifer's book, which has Zo 

graphed as a function of Dt, where D*? = Deo * if 

B< Zo for the given Deo? do not take the kfth 

Stage but make the terminal decision (b * 1 or 

b = 2) on the basis of the results for the first 

k - 1 stages. 

If Z> 2, refer to Chart I, find the n° (and thus 

the n°) which corresponds to the given 4 and Dy, 

and continue as follows? 

If n° > Nem? compute 

  

  

  

  

  

I L 
CN 7 Keer / HT ne ~ EI an 

> on > net 

i=1 + i=) i km 

of To F Payee * *eP2 yet! 
iv lL. T 

k-1 ; k-1 , 
K & newt a ne. FON 
k-1 j=1 2 j=l 2 km 

with the aid of Table II on page 356 of Raiffa and 

Schlaiferts book. If this expression is greater



(4) 

(6) 

we Ce 

than or equal to zero, do not take the ktth stage 

but make the terminal decision. Otherwise take 

the k*th stage. 

If n° <N_ and if N <n? < Ny, 
km kk§ gkXtl? 

where k <k! <m- 1, do not take the k'th stage 
Q 

if 
  

i. I 
k-1 k=1 

min |CN 1, - K z n,+6 me n, tO7N, 
k? k-l a=. 3 i=l 

[ko + kyPy yy * KoPo y yl 
W* tC I 

kT k-1 ; 
= n,teé % n, torn 

kel] y=; 7H i=1 1 

  

  

K kkt 

where in this case k* is either kh or kt + i. 

If n° <N, and if n° = km » where k < k kk} 

take the k'th stage. 

if n° < nm, do not take the k*'th stage if 
  

  

  

  

  

eI - eI 
Cn, - Ky 4 2a n, +6 2 n,t6tn, 

+ Lae Heo Hey Py ea * KeP2 eet! 
faa I 

k-1 k-1 

i=i + 1=1



8.3 Results of Simulation Studies 
ae TTA 

  

A program for studying by simulation the approximate 

procedure with the stopping rule given by (8.6) has been 

written. In this program it is assumed that the cost per 

observation C is the same for every stage so that 

k? 
ak C. = CN es The program generates rectangular random 

variables between O and 1. Then at the k*tth stage, for a 

given Niye Thy random numbers are generated} and the number 

of these random numbers less than a given eo, is Tie Dimi- 

larly, the number of Noy random numbers which are less than 

a given 9, is rz,- Also, ties between two equivalent values 

of Ny, oF between the terminal decisions b = 1 and b = 2 are 

broken by generating a random number, taking one decision if 

it is greater than .5, and taking the other if it is less 

than .5. 

The process of going through the stages and simulating 

the experimental outcomes of these stages until a terminal 

decision is made is repeuted a given number of times. How- 

ever, instead of going through all m possible stages before 

arriving at a terminal decision in a given repetition, the 

program has the procedure stop at the k*th stage and make 

the terminal decision if (8.6) holds. After all the repeti- 

tions of the orocedure have been made, the program has the



computer punch out the number of repetitions which gave b = 1 

as the terminal decision and for each stage (including the 

"O'th stage, which means that the terminal decision was made 

without any experimentation at all) the number of repetitions 

in which the terminal decision was made immediately after the 

stage was performed. The linear loss integral Lipa (He) » which 

is needed in the computations is computed by interpolation in 

Table II on page 356 of Raiffa and Schlaiferts book (1961). 

Table II is read into the computer as data before the compu- 

tations begin. Since Table II gives values of Longa (1) for 

OSHS 4.0 only and Ly,.(u) becomes quite small for 

> &eO, L(t) ig assumed to be zero for b> 4.0. 

Tables 7 and 8 give the results of the application of 

the computer program to two examples. These tables show 

that the average number of observations decreases as |0,-9,| 

increases for a given example. Also, as one would expect, 

the average number of observations decreases for a given 

9 8, combination as the cost per observation C increases. ? 

The assumption that Lave (M4) =O for ut > 4.0 does not affect 

the results for these examples unless the cost per observa- 

tion is zero or very small. In each case that the cost is 

zero the number of repetitions which stop before the last 

stage can be explained by the false assumption that Lipa (H) =O 

for uw ~ &eO.
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IX. GENGRAL DISCUSSION OF THE RESULTS 

AND RECOMMENDATIONS 

In the numerical studies done in this thesis almost ail 

of the examples have assumed a prior distribution with to = 

Bo a Yo = 8 = O. This vrior distribution is the one a per- 

son would use if he knew little or nothing about the values 

of oF and 95 prior to the experiment. Thus he would weight 

all combinations of a5 and G5 in which O s %s 1 and 

O< 95 8 1 equally. Also, in almost all of the examples 

Loss Functions 1 and 3 as defined by (2.11) have been used. 

These loss functions are symmetric in that they penalize the 

experimenter equally if he makes either of the two possible 

wrong terminal decisions (b = 1 when 6, < 8, or b = 2 when 

8 * 98 However, in Loss Function 1 one has a “bonus” for 1 * 9)> 
making the right decision and a penalty for making the wrong 

decision which are proportional to 8, - 8, with the constant 

of proportionality for one terminal decision the negative of 

the other. On the other hand, Loss Function 3 applies in the 

Situation in which one has a loss for making the wrong deci- 

sion which is independent of Oo, - @, once it is determined 

that Oo, > G5 or O5 < G5 

It must be admitted that in the examples studied in 

Tables 4 and 5 the gains in using even the optimum procedure, 

extensive-form analysis, over merely using half of the



of the observations on Drug 1 and the other half on Drug 2 

cannot be considered "tremendous." In fact, when Oo, and o5 

are both close to .5, equal division seems better in general. 

Nevertheless, if o7 and 8 are close to either © or 1, then 

the differences in the probability of choosing the correct 

terminal decision are large enough that they cannot be ig- 

nored -~ especially if the loss for making the wrong deci- 

sior is large. 

However, extensive-form analysis is completely imprac- 

tical for examples which are at all large even if one has 

access to a digital computer so that approximations must be 

used. The resuits indicate that, if one has a computer and 

is not certain that o5 and 85 are both close to .5, he should 

use the stage~by-stage procedure. In practically all of the 

examples studied in Tables 4 and 5 there was relatively little 

loss of probability of choosing the correct terminal deci- 

sion when the stage-by-stage procedure was used instead of 

extensive-form analysis. In addition, the results of Section 

6.1 give some weight to the arguments for using the stage-by- 

stage procedure instead of extensive-form analysis when one 

has a linear loss function. Finally, as was pointed out in 

Chapter 3, if one has a linear loss function and only a few 

observations in each stage, it is quite possible to do the 

computations for the stage-by-stage procedure by hand with 

the aid of a table of beta functions. (A Table of beta
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functions is given by Tables of the Incomplete Beta Function 

(1934) .) 

The results for the approximate procedure for the exam- 

ples studied are disappointing. There seems to be little ad- 

vantage in using the approximate procedure over equal divi- 

sion of the observations when the prior distribution is rec- 

tangular and the toss functions are symmetric. In addition, 

there are sizable losses of probability of choosing the cor- 

rect terminal decision when the approximate rather than the 

Stage-by-stage procedure is used. However, the computations 

for the approximate procedure are quite simple and certainly 

do not require a computer; and there are small gains over 

equal division when the total number of observations and 

Stages is large and 0, and 8. are close to 0 or 1. Thus the 

approximate procedure should be used if one requires only 

simple, unsophisticated computations to perform. The 

"reneralized approximate procedure" as given by (6-3) can be 

used as an approximation for the stage-by-stage procedure 

(and thus extensive-form analysis) for the general linear 

loss function (2.7). However, the author was unable to de- 

rive a "generalized approximate orocedure™ for the general 

constant loss function (2.1) so that it appears that, when 

one has a constant loss function, he should use the approx- 

imate procedure only when his loss function is symmetric. 

The results of Chanter 5 are not only interesting in



that they lead to the approximate procedure but also are of 

interest in that they are solutions to another general prob- 

lem besides the principal one considered in this thesis. 

They give the procedure one would use in a stage-by-stage 

procedure if two normal random variables were generated at 

each stage rather than two binomial random variables. Again, 

results are available for the general linear loss function 

and for a symmetric constant joss function. 

If the costs of sampling are relatively large or if the 

total possible number of observations is large, it is quite 

possible (and probable) that one will want to stop and make 

his terminal decision before he reaches the last possible 

stage. In fact, if the costs of sampling are very large 

relative to the possible terminal losses, one might want to 

make his terminal decision without any sampling at all. 

Thus stopping rules for the stage-by-stage procedure for 

both linear and constant loss functions are derived in Sec- 

tion 8.1. However, it is obvious that they are most unwieldy 

and are useful only for very small examples even if one has 

a digital computer available. In Section 8.2 a stopping rule 

for the approximate procedure when one has a linear loss 

function is developed. It is shown in Section 8.3 for two 

examples that this stopping rule behaves satisfactorily. Of 

course, this stopping rule can be adapted to the case in 

which one has a stage-by-stage procedure which generates



the normal random variables at each stage instead of binomial 

random variables. Also, it is recommended that it be used 

aS an approximation when one has a stage-by-stage procedure 

which generates binomiai random variables at each stage in- 

stead of using the stopping rule for linear loss functions 

developed in Section 8.1. 

Thus the following final recommendations are made if 

one wants to decide in a multi-stage procedure which of two 

binomial populations has the higher probability of success 

and has symmetric linear or constant loss functions and 

rectangular prior distributions: 

(1) The approximate procedure should be used if one 

must have simple uncomplicated computations or if 

one is quite confident 9, and 9, are close to or 

symmetric about .5. 

(2) If one is not sure Oy and ©, are cose to or sym- 

metric about .5 and if a digital computer is avail- 

able, he should use the stage-by-stage procedure. 

(If one has a linear loss function and only a few 

observations in each stage, a computer will not be 

necessary.) 

(3) If one feels that his costs of sampling are not 

very small compared to the possible losses of the 

terminal decision, has a linear loss function, and 

is using either the stage-by-stage or approximate
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procedures, he should use the stopping rule 

developed in Section §.2.
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X. SUGGESTIONS FOR FUTURE RESSARCH 

It is obvious that many extensions to the work done in 

this thesis could be made. For example, the author hopes to 

de more computer work with non-symmetric ioss functions and 

prior distributions which are not rectangular to determine 

how changing the prior distribution and the loss function 

affects the probability of choosing the correct terminal de- 

cision. It will also be of interest to compare extensive- 

form analysis, the stage-by-stage procedure and equal divi- 

Sion for these loss functions and prior distributions. 

In addition, for the cases in which one does not have 

symmetric Loss functions or a rectangular prior distribution 

one might compare these four procedures with the following: 

In the k'th stage (k = 1, 2, ..., m) take Ni, and no, 

(subject to n,, + no, = n,) such that 

  

a 1. . R, when the loss function is 
n ra, + B. + 3 O : 
lk O U “ constant and symmetric 

Na, * Yo FT 8 * 3 R! when the loss function is 
A ? 

linear 

where R, and R! are as defined in (4-1) and (6.3) when k = Q. 

If the loss function is linear and the prior distribution is 

rectangular, take Nik and No, such that 

nena 
ky 
Ko 
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Of course, one might study theses procedures when the 

random variables generated at each stage are other than nor- 

mal or binomial (e.g., Poisson or exponential). Also, the 

case in which one has normal random variables with unknwon 

variance generated in a stage-by-stage procedure would be of 

interest. 

Two problems connected with this thesis for which the 

author has so far been unable to find a workable solution are 

extensive-form analysis when the random variables generated 

at each stage are normal with known variance and the stage- 

by-stage procedure with normal random variables with known 

variance and a constant but non-symmetric loss function 

(qy / Qo) + 

The author hopes to do more work on the proposed stop- 

ping rule. A stopping rule for the approximate procedure 

with a symmetric constant loss function would not be diffi- 

cult to derive. However, the computations necessary for it 

might be rather long if there are many stages. It would be 

interesting to determine if the corresponding stopping rule 

for the linear loss function can be used as a rough approxi- 

mation. 

In addition, since some of the greatest gains in using 

the procedures proposed in this thesis can be achieved by 

reducing sampling costs by the use of the stopping rule, 

these procedures with the stopping rule should be compared
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with other procedures in which the total number of observa- 

tions is a random variable such as the sequential analysis 

procedure proposed by Bross (1952).
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XI. SUMMARY 

The general problem considered in this thesis is the 

following: 

Suppose one desires to compare two drugs, Drug 1 and 

Drug 2,(or any two binomial populations) in a m-stage test 

procedure. The probability that Drug 1 results in an im- 

provement in a patient in any one of the stages is Or» and 

the corresponding probability for Drug 2 is 9. « We assume 

that it has been decided prior to the experiment that ny, 

observations will be taken in the k'th stage (k ~ 1,2,-.+,m). 

We want to partition ny into Ny and Nop» the number of obser- 

vations allocated to Drug 1 and Drug 2, respectively, on the 

basis of the results of the observations in the previous k-l 

Stages. After the last stage is taken, we wish to make the 

terminal decision that either 0 > 9, or 9, < O5 + 

We let © = (8), 3.5) and let x, = (ro. Por)» where ae 

and Yo, are the numbers of successes out of Nip and No, re- 

spectively. We let a, be the decision of what size nj, (and 

thus No, ~ ny - Ny! should be and let b be the terminal deci-~ 

“sion, where b* 1 represents the decision that oy ° 9. and 

b- 2 represents the decision that 0, < O.° 

We assume a prior distribution, or weighting function, 

for 9 of
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orc Bo _Y, 86 
(1 = 0) 9 0° (1 - 8) © 

(10-1) (8) = a Botl) Blyotl> 6; ST) , 

where des Bos Yo? and 56 are non-negative integers, 0 < oS Ll; 

and O< 95 8 l. We wish to find strategies for finding ays 

Agreresd sy and finally b, which are optimum relative to either 

the constant loss function 

(10.2) L(x 920+ sX, pA, 200028 Ds Q) 

qy if b = 1 and Oo, < 85 

= q, if b = 2 and 6, > 6, , 

U otherwise 

where q, 4nd qo are positive real numbers, or the linear loss 

function 

(10.3) setae 

2 

+ kay 04 F Kio 5 if b* 1 

9, + Kyo 8, if b* 2 kao 7 Ka1 91 2 

where each Ks; (i - 1,2,3 j * ©0,1,2) is a real number. In 

order to do this we use extensive-form analysis, which pro- 

ceeds as follows: 

(1) For fixed values of Kp aeee eX 98, e000 s and b- 

compute L(Xy 9000 9X28) 200058, 90,8) 
POL, p00 6 2X, 

(2) For fixed Xz oeees% 28, 900098, compute 

DD (xe pee e pK yrq eee 2p) =
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min & b O[X, pee 9x 7 L( XX) 9000 9X7 900298, yb,08) 

and choose the "b" which gives the minimum. 

(3) For fixed values of XyoeeesX 7 and ay yee0 5a, 

(1) compute FE (X] p20 2% 28, 200098) « 
% {Xp se8 Xp 

(1) Then for fixed values of Ky gee 2K _ 7 phy eere sa a] 

compute 

(2) 
L (X) 9060 yX 7 28 a0e0 8,7) 

11) 
= min 

2 

an Xpaeee yh 7 
Ky see 9% 98) eee 7a) 

and choose the "an which gives the minimum. 

(5) Continue in this manner with each stage until the 

first stage. 

(6) On the first stage choose a, such that 

m (m) +s Ba L (x, 22,) is a minimum. 

Expressions for the expected vaiues in Steps 1 to 6 are given 

in Sections 2.3 and 2.4 of this thesis. <A program for exten- 

sive-form analysis was written for the I.B.M. 162G computer, 

and some examples were worked out with the use of this pro- 

gram. It was found that, even with the computer, only small 

examples could be handled because of the time required. 

Because of this difficulty the stage-by-stage procedure 

was proposed. In this procedure it is assumed that at the 

k’th stage (k = 1,2,-..,m) there are only k stages in the
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entire procedure and that one is at the terminal stage. Thus 

at the k'th stage (1 = 2,3,...,m) one evaluates 

B min & L eos A+, gear b,0 
XH IXp se e8 sXe 7 b O [x1 see sX, (x5 sX9 1? ry3 ; 

and chooses the Man which minimizes the expression. At the 

first stage one evaluates E, min Bg [oe L(x, a, ,b,8) and 
iL ob 1 

chooses the "a," which gives the minimum. ixpressions for 

these expected values are given in Section 3.1 for both the 

linear and constant loss functions. It is shown that, when 

we are at the k'th stage, we can assume we really have only 

a@ one stage procedure with an altered prior distribution. If 

we have a linear loss function with only a few observations 

in each stage, we can do the computations for the stage-by~ 

stage procedure without a digital computer. With a computer 

much larger examples can be worked when the stage~by-stage 

procedure is used than when extensive-form analysis is used. 

Finally, the approximate procedure, which requires very 

simple computations and certainly does not reguire a computer, 

was proposed. It consists of minimizing Var(0,-951X, +++ sX,) 

at each stage. It is shown that this is approximately equiv- 

alent to taking 

(10-4) cna * Seen * Me * 3) Been 7 en 7 Pee 7? 
“4 yh © Roa 2 3
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k-1 
where 1 = a lig + A ; 

k-1 
Peel 4 (my - Tay) t BQ 

k-1 
Yel” 42, "ea TYG 9 

k-1 
One a4 (ng, - a3) + Ss 

| 

nu
e 

— {Pret (4 - Py yed) 
  

  

  

and R = k-1 = = , 
Po ner $1 - P2 yey!) 

a + 1 _ SK 
where Pleel  G,, * By? 2 

—_ ' Vrel +] 

and P2,k-1” 7 7 2 

The approximate procedure and the stage-by-stage proce- 

dure were compared in several different examples with exten- 

Sive-form analysis and equal division of all the observations 

between Drug 1 and Drug 2 by the computation of the proba- 

bility of choosing b * 1 for different combinations of G1 and 

O56 It was assumed for these computations that the prior 

distributions of @, and 8, were rectangular (a4 = Boy = Yo ~ 

65 = QO), the constant loss function had 4, = Go ° 1, and the 

linear loss function had kj, = ko, = 0; kj, = kyo = -1, and
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It was found that for 8, = .6 and 8, - .h the approx- 

imate procedure and equal division of the observations gave, 

in general, the highest probability of choosing the terminal 

decision b= 1. For 9, = .95 and ®, ~ -80 extensive-form 

analysis gave in practically every case the highest proba- 

bility of choosing b = 1. The decrease in probability of 

b = 1 from extensive~-form analysis to the stage-by-stage 

procedure was, however, relatively quite small in general 

whereas the decrease from the stage-by-stage procedure to the 

approximate crocedure was relatively large. In addition, in 

all the examples studied there was very little to no decrease 

when equal division rather than the approximate procedure 

was used. Thus it appears that, if one has a computer, he 

should use the stage-by-stage procedure but that, if one 

must have relativeiy simple computations, he should use the 

approximate procedure since there are some gains over equal 

division in large examples for which 9, and ©, are close to 

O or 1 even though these gains are small. 

The stage-by-stage procedure for the case that normal 

variables with known variances rather than binomial variables 

are generated at each stage and the prior distributions of 

4 and ©, are normal was derived for the general linear loss 

function and for the constant loss function with qd, * I * 1. 

It was shown that the optimum stage-by-stage procedure for
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the linear loss function is to take Mk such that 
- 

N k 
  

    

L,k-1 Lk L L 
(10.5) > ¥. ~ Tks C5 No yk-1’ ": ~ "ix a 

k-1 k-1 
where Ny k-1 = ao Ny3 > No kel = so No; » Tyo and Noy are 

parameters of the normal prior distributions of o5 and 85» 

= ky ~ Ko 4 for j = 1, 2, and Oy and So 

are the standard deviations of Populations 1 and 2. For the 

constant loss function with 4, °° 4p = 1 the optimum stage-by- 

stage procedure is to take Nik such that 

(10.6) take - nk — = “2 
2 ,k-1 k 1k 2 

The approximate procedure (10.4) was then derived from 

(10.5) with [k,/k,|=land (10.6) as a normal approximation 

to the binomial distribution. However, if one left the term 

|k,/ky| in (10.5) in the derivation, one would obtain the 

"Yeeneralized" approximate procedure with Roy replaced by 

Rey Wey Jeg IR + 

If the costs of sampling are large compared with the 

losses associated with the possible terminal decisions, we 

shall most likely want to stop the experimental procedure 

before reaching the last possible stage and make our terminal 

decision at that point. Suppose we have run k-1 stages and 

want to decide whether or not to take the k'th stage



~lli- 

(k = 1,2,...,m). The stopping rule used for the stage-by- 

Stage and the approximate procedures in this thesis tells us 

not to take the ktth stage if 

min & 
b [x see 9X, 5 L(X) 9000 5X4 sz ase e 2,3 d,0) 

kt 

< min & C, + min £ 
kt | i-k * ayy, “kkt [Xp oer oy 

* min E. 
b Olx,, see Xj Xue L(x,» eee eX 244 ees 227 2 Ayes D9) 

k? 
sy 

where N,v, = 4 Nay 
kk i= ot 

Noe is the number of observations on 

Population 1 out of N14, Noy, is the number of observations 

on Population < out of Niigs Rijs and Roy, are the numbers 

of successes out of Ny,,_ and Noyes respectively, C, is the 

cost of the ith stage, Bat is the decision of what Ny yact 

to take, and k' =~ k, kil, ...e, m» This decision rule is 

applied to the stage-by-stage procedure for both the linear 

and constant loss functions. It is also applied to the 

"“seneralized" approximate procedure when a linear loss func- 

tion is assumed. In this case one can apply the stopping 

rule without using a computer when he uses charts which are 

given in Raiffa and Schlaifer's book (1961).
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ABSTRACT 

The general problem considered in this thesis is to 

determine an optimum strategy for deciding how to allocate 

the observations in each stage of a multi-stage experimental 

procedure between two binonial populations (e.g., the num- 

bers of successes for two drugs) on the basis of the results 

of previous stages. After all of the stages of the exveri- 

ment have been performed, one must make the terminal deci- 

sion of which of the two populations has the higher probabil- 

ity of success. The optimum strategy is to be optimum rela- 

tive to a given ioss function} and a prior distribution, or 

weighting function, for the probabilities of success for the 

two populations is assumed. Two general classes of loss 

functions are considered, and it is assumed that the total 

number of observations in each stage is fixed prior to the 

experiment. 

In order to find the optimum strategy a method of anal- 

ysis called extensive-form analysis is used. This is essen- 

tially a method for enumerating all the possible outcomes 

and corresponding strategies and choosing the optimum strat- 

egy for a given outcome. However, it is found that this 

method of analysis is much too long for all but small exam- 

ples even when a digital computer is used. 

Because of this difficulty two alternative procedures,



which are approximations to extensive-form analysis, are 

proposed. 

In the stage-by-stage procedure one assumes that at 

each stage he is at the last stage of his multi-stage proce- 

dure and allocates his observations to each of the two popu- 

lations accordingly. It is shown that this is equivalent to 

assuming at each stage one has a one stage procedure. 

In the approximate procedure one (approximately) mini- 

mizes the posterior variance of the difference of the pro- 

babilities of success for the two populations at each stage. 

The computations for this procedure are quite simple to 

perform. 

The stage~by-stage procedure for the case that the two 

populations are normal with known variance rather than bino- 

mial is considered. It is then shown that the approximate 

procedure can be derived as an approximation to the stage-by- 

Stage procedure when normal approximations to binomial dis- 

tributions are used. 

The three procedures are compared with each other and 

with equal division of the observations in several examples 

by the computation of the probability of making the correct 

terminal decision for various values of the population param- 

eters (the probabilities of success}. It is assumed in these 

computations that the prior distributions of the population 

parameters are rectangular distributions and that the loss



functions are symmetric} i.e., the losses are as great for 

one wrong terminal decision as they are for the other. 

These computations show that, for the examples studied, there 

is relatively little loss in using the stage-by-stage pro- 

cedure rather than extensive-form analysis and relatively 

little gain in using the approximate procedure instead of 

equal division of the observations. However, there is a 

relatively large loss in using the approximate procedure 

rather than the stage-by~-stage procedure when the population 

parameters are close to 0 or l. 

At first it is assumed there are a fixed number of 

Stages in the experiment, but later in the thesis this re- 

striction is weakened to the restriction that only the max- 

imum number of stages possible in the experiment is fixed and 

the experiment can be stopped at any stage before the last 

possible stage is reached. Stopping rules for the stage-by- 

Stage and the approximate procedures are then derived.


