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I. INTRUDUCTICN AND LITERATURE SURV:Y

It is common practice in comparing the parameters of
two binomial populations (e.g., the probabilities of success
for two drugs) to choose a fixed number of observations and
allocate half of these to samples from each of the two
populations.

Beginning during World War II Wald {(1947) developed the
general technique of sequential analysis which makes the
total number of observations a random variable depending on
the progress of the experiment. This method often reduces
the amount of data required to reach statistically valid
conclusions. The problem of comparing two treatments of
drugs in medical experiments was put into a most convenient
form from the user's point of view in a paper by Bross (1952).

More recently Taylor and David (1962) studied a problem
which is similar in spirit although quite different in approach
to the one considered in this thesis. Their aim is to allo-
cate observations at each stage of a multi-stage experiment
involving several drugs on the basis of results in previous
stages. In order to do this they use weighting functions to
divide up the fixed number of observations at each stage in
such a way that the drug showing the highest number of favor-
able responses is allocated the highest proportion of obser-

vations (i.e., patients). The probability of correctly
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selecting the best drug by this procedure was found, mainly
by simulation, to be generally greater than that for equal
allocation of all drugs. It will be noted that the total
number of observations in the experiment is pre-determined
but that this number is divided up between the various drugs
in a manner which tries to take advantage of knowledge gained
during the experiment.

The general problem considered in this thesis is that of
determining an optimum strategy for deciding how to allocate
the observations in each stage of a multi-stage experimental
procedure between two binomial populations on the basis of
the results of the previous stages. After all of the stages
of this experiment have been performed, one must decide which
of the two populations has the higher probability of success.
The optimum strategy i to be optimum relative to a given
loss function and a given prior distribution for the proba-
bilities of success of the two populations. At first it is
assumed that there are a fixed number of stages in the exper-~
iment, but later in the thesic this restriction is weakened
to the assumption that only the maximum number of stages
possible in the experiment is fixed and the experiment can
be stopped at any stage before the last possible stage is
reached. In any case the total number of observations in
each of the stages is fixed before the experiment.

In addition, the same general problem is considered



when the two populations are normal and the terminal deci-
sion is that one or the other of the two populations has
the higher mean.

Since it turns out that the exact procedure for finding
the optimum strategy is impractical when the number of stages
or the number of observations in each of the stages is at all
large, two alternative approximate procedures are presented
and compared with the exact procedure.

Throughout this thesis it will be assumed that the two
binomial populations are the respective outcomes when two
drugs are administered to patients in a multi-stage testing
procedure and that the observations in each stage are the
numbers of successes of given drugs administered to given
patients. However, it should be emphasized that the proce-
dures developed and studied in this thesis have much wider
applicability than the comparison of twe drugs. For example,
one might want to compare the output of two machines or
processes in a multi-stage testing procedure.

At this point we may mention a somewhat similar problem,
the "Two-Armed Bandit Problem." Here the aim is to allocate
n observations, one at a time, between two binomial popula-

tions so as to maximize the expected number of successes.

Contributors to this subject include Vogel and Robbins as
well as Bradt, Johnson, and Karlin. To obtain results they

impose various additional conditions which we now outline.



Vogel (1960a) considers the following problem:
Let the random variables X and Y, where
Pr(X=1) =1 -Pr(X=0) =p
and
Pr(Y=1) =1 - Pr(Y=0) =q ,
describe the outcomes of two experiments, El and EZ' A
class of strategies is studied which results from a sequen-
tial procedure of n steps, in which either El or B, (but not
both) is performed in each stage. However, this paper has
the additional restriction that in the first 2k steps (k is
a random variable) each of %, and E, is performed k times.
Then the rest of the n - 2k steps are made either with El or
E,e« A loss function based on the expected sum for all n
steps is used.

In another paper (1960b) Vogel derives some asymptotic
results for the Two-irmed Bandit Problem both with and with-
out the additional restriction of his first paper (1960a).

Robbins (1956) considers the problem of successively
choosing one of two ways of action, each of which may lead to
success or failure, in such a way as to maximize the long-run
proportion of successes obtained, the choice each time being
baséd on a fixed number of the previous trials.

In another paper Robbins (1952) proposes and discusses
in general several problems in the sequential design of

experiments. Among these is the problem of how a sample



should be drawn from two populations in order to achieve the
greatest possible expected value of the sum of the sample
results.

Bradt, Johnson, and Karlin (1956) derive some properties
of the Two-Armed Bandit Problem. In addition, they consider
the generalized Two-Armed Bandit Problem of maximizing the
expected number of successes in n trials when at each trial
one is free to chouse between two binomial random variables,
whose probabilities of success, p and g, are unknown but have
a prior distribution F(p, q). Finally, they consider in
detail the situation in which one of the probabilities of
success is unknown but a prior distribution for it is speci-
fied and the other probability of success iz knowm.

Dunnett, Jamuel, and Chernoff have also worked on
problems similar to the cne in this thesis.

Dunnett (1960) uses decision theory methods to decide
if a potential drug, which is assumed to have two levels of
activity, active and inactive, is to be accepted as being
worthy of further experimentation or rejected. A sequential
procedure is derived in which rejection can occur at any
stage. A method for computing critical rejection levels in
each stage when the tecsting errors are normally distributed
is given in detail for one, two, and three stage problems.

Samuel (1961) describes a minimal complete class of

decision rules for sequentially classifying individuale of a
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group which is known to have come from one of two completely
specified populations.

Chernoff (1959) presents a procedure for the sequential
design of experiments where the problem is one of testing a
hypothesis. It is assumed that there are two possible ter-
minal decisions and a class of available experiments. After
each observation the statistician decides whether to continue
experimentation or note. If he decides tc stop, he must se-
lect one of the two terminal decisions. The choice of an
experiment at any stage is based on Kullback-Leibler infor-
mation numbers. This procedure is worked out in detail for
the case in which each of the experiments yield Bernoulli
random variables.

The two most important references for the body of this

thesis are Raiffa and Schlaifert's Applied Decision Theory

and a paper by Amster.

Raiffa and Schlaifer (1961) have a general discussion
of Bayesian decision theory in the first part of their book.
Then they give detailed specific analytical colutions for some
problems in which there are one stage, two (or more) possible
terminal decisions, normal or binomial distributions, and
utility functions (They use utility functions instead of loss
functions.) which are linear in the population means. In
this thesis many of the concepts and results and much of the

terminology and notation developed in their bock will be used.
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Amster (1962) proposes and derives some properties of a
stopping rule for sequential sampling which weighs the cost
of additional observations against the expected gain to be
derived from additional sampling. This rule requires one
more observation to be taken as long as the posterior risk
is larger than the expected posterior risk for any additional
fixed size sample. He shows how this stopping rule can be
applied to both e timation and the testing of two simple

hypotheses.
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IT. EXTENsSIVE-FURM ANALYSIS

2+1 General Procedure

Juppose one desires to compare two drugs, Drug 1 and
Drug 2, in an m-stage test procedure. Let the probability
that Drug 1 results in an improvement in a patient in any of
the stages be 61, and let the corresponding probability for
Drug 2 be ©,. uppose the experimenter has decided prior to
the experiment that he will take Ny observations in the k'th
stage (k = 1, 2, +v., m). However, he wants to partition ny
into Ny and N s the number of observations for Drug 1 and
for Drug 2, respectively, in the k'th stage on the basis of
the results of the cbservations in the previous k-1 stages.
Let the numbers of successes (improvement of patients) of
Drug 1 and of Drug 2 in the k'th stage be 1k and rops Te-
spectively. After the m'th stage, on the basis of his re-
sults for all m stages, he desires to state that either
81 > 62 or that o4 < B,

2
Let 0 = (91, ©,) and let x, = (rlk’ rzk). Let a; Dbe a
decision of what size nj, ( and thus Ny = ny - nlk) should
be. ("a " will be U, 1, 2, +.., or n.) Let b be a decision
(the terminal decision) whether to state that ©, > 8, or
81 < 92, where b = 1 will represent the decision that 61 > 62,

and b = 2 will represent the decision that ©, < 0,
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Define the following "loss"™ function on Xy eees X
8.1, t.‘, 3m, b, e:

L(Xl’ LA Y ] Xrn, al, * e sy a.m, b’ 9)

!
i

0 if b =1 and 8; > 8,
5 B O if b = 2 and el < 82

qq if b = 1 and 8, < 0,

0, if b = 2 and 6, > 9, »
where ¢ and q, are positive constants. In what follows
(2.1) will be called the "constant loss function.”

Notice that L(xl, vees X3 B9y wesy By D, 8) does not
directly depend on By ooy A since it will be assumed that
the costs of making observations with each of the two drugs
ars ecual.

The problem new is first to select ass then a, on the
basis of Xq and 871 then a3 on the basis of 813 @35 Xy, and
X5 s etc., and finally b on the basis of Bys svey By Xqy eeey
X ® In order for this to be done, it is proposed that an
extended and modified form of the "analysis in extensive
form” as precsented by Raiffa and sSchlaifer (1961) be used.

In general, the analysis will proceed as follows!

(1) TFor fixed vaiues of Xqs eees Xy 87y e+, 8, and

b COmpute E (Xl,oo.,.}{ln’al’lno,an‘l,b,e)0

Glxl,...,xm L

(R) TFor fixed Xys eses Xyp 8y, ++., & compute
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1
L( )(Xl""’xm’al’°"’am)

= min E. L
b elxl,...,xm

and cho.se the "b" which gives the minimum.

(Xl""’Xm’al""’am’b’e)

(3) For fixed values of Xog evsy X 7 a0 87, eee, B

(1),
}imlxlyoo.,Jcrn_lL (J{l"")}snyal,ooc,am).

(4) Then for the fixed values of Xqs se+y X _q1, and

compute E

81y evey B 7 compute

2 \
L( )(Xl,--.,xm_l,al,o.;,am_l)

= min E L(l)(

a, Xmlxl’”"xm--l

m

Xl,...,}{m,al,.-.,am)

and choose the "am“ which gives the minimum.

(5) Continue in this manner with each stage until the
first stage.

{(6) Un the first stage choose a; such that

P i (m) 3 3

B, L (xl, al)] is a minimum.

1

2.2 Some Distribution Theory

In order to evaluate the expressions in Section 2.1 we

need a weighting function, or prior distribution, of 6. Let

g e %0

1 (1= el) 0, (1 -9,)

B
8 0
Bla 1, po*1) Blry*I, 5,71)

(2.2) p(8) =
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where Qs 50, Yes and 50 are non-negative integers, B(ao+1,

Bo+l) and B(y,*1, 6G+l) are beta functions, 0 <6, <1, and
e . . .
C=<o, = 1. Since each 1k and ry, has a binomial

distribution,
' k n n.,.
‘ 1k 2i
(2:3) P (X7,-.-,X ) o .TT ( ) ( )
6L KD gmy NP Ny
Q, ~Q, Bi=BAn Yo=Y 5, =&
. k™0 k"0 'k 0 k "0
N (1-0;) 0, 1-9,) ’
k
= b ~+
where o ifl ry4 a, R
k
o - + R
P TN (ny; - ry5) ¥ Bg
k
Za ~ e +
e oGPy Tei Yoo o
k

fOl" k o 1, ?, esey IMe i

0(0) Pe(xl,...,xm)

(2.4) P(E)fxl,..n,xm) = =
j” Jp n(e) Pe(Xl""’xm)del de,
0 0

a Py Y
m i m
- (v -+ +
B(amﬁl, Bm+l) B(ym 1, 6m 1)

6m

Also, let
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1 1
P(xl,...,xk) Z:J( Jﬁ p(8) Pe(xl,...,xk)del e, .
0 0

P(Xl”"’xk-l’xk)

Then

(2.5) P(xkfxl,...,xk_l) =

P(xl, LN ,Xk"'l)

- (nlk) (nZk) B(ak+1} Bk+l) B(Yk+19 6k+1)
ryl Vo Blay %1, By 1 F1) Blv 1*1, 8 o+l

for k = 2, 3, ees, m and

bla) = (nll\] (nﬂ) Blay+l, py+l) Blyy*l, 87+1) .

2.3 Details of the Analysis for a Constant Loss Function

Following the outline of the analysis in Section 2.1
and using (2.4) and (2.5), we obtain?
(1) Ifb =2,

‘_alxl"."zgn L(Xl,.‘c,x ,al,-.-,a ,b 9)

1 6,
jr J[ 4y P lel,...,xm) de,, doy

°1 e (1-8,) " 8," (1-8,)
= L& 2 de,de
42 a L, B IV Bly ¥I, & FI) “T2%°1

6- 6
ﬂ 1 Y .(6 ) .
N %y m m s J{ Mynd

B(am+l, Bm+1) B(Ym+l, am+1)

Il
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®n 5\ Bla_ty, +3+2, p +1)
qz 2.: ("l)J jbl +'+1
B(a, 1, B_71) Bly +1, & +1)

Similarly, if b = 1,

L(xl,...,xm,al,...,am,b,e)

B Y 5
}( J( qy 1” (1-99) ™ 0, (1-08,) ™ do; do,
a 1, B +1) B(Y LTl 6 +1)

B - )
o Am (-1)9d (Em) Blyyta t3+2, §,%1)
R e, J a,titl
Bla +1, p_*1) Bly, +1, & +1)

Thus for fixed XyseeesXy and Ayseeesd chosse b = 1
if

B : o
ol Bm) B(am+ym+342, 6,+1)

S g [P
a3 j:O (-1) (j a F3F1

is less than

) .
i +ae i+ +
T . Sm) B(a.m Yo tites By 1)
+3+ ’
Yy tITL
cho:se either b = 1 or b = 2 if the two expressions
are ecual, and choose b = 2 otherwise. Call the
minimum of the two above expressions G(Xl""’xm’
al,,..,am).
In the rest of this section we shall let



(2.6)

~18-~

Sk(xl,...,xk_l, al,...,ak)

n .,
_ iF <k (nlk) ( nzk)

= = r r
ik Q Tok O 1k 2k

n n
o min l§k+l 2ik+l (nl,k+1) (nz’k+l) .
= — r X Y.
A1 rl,k+l 0 r2,k+l 0 1,k+1 2,k+l

n n
o T ()
am rlm=0 r2m=0 1m Tom

. G(xl,.-.,xm, al,oo-,am) coo}
and
Hk(xl,.o.,xk“l,al,tl-’ak-l)

—

- min Sk(Xl,-..,Xk_l,al,o-.,ak) 2
a
k
where k = 1, 2, sesy Il »

Also, we shall let
I’i]Tl+l(X:L,o . e ,J%n,al’Ott ’am)
= G(xl,...,xm,al,...,am) .

Note that for k = 1, 2, eee, I

n n
1k 2k fn n
b = 1k 2k
S(x e e g X a ...a)= N z ( )( )
g XypeeasXy 1587500058 _ A N

. Hk+l(xl”"’xk’al""’ak) .

Then
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1
}{Inlxl,ltl’xm-l

(l)(xl,.co,xm,al,-.o,am)

= 2 P( Xypeney } L
ali X, X% a1

Sm(xl,...,Xm~l,al,...,am)
B(am_l+l, Bm_l+l) B(Yﬁ-l+l’ o)

m__l+1)

Cho.se am such that Sm(xl,cc-,Xm_lgal,-o-,am) is a
minimum for fixed Xy,eee,X, ¢ a@nd a;,...,8, ; thus
computing Hm(xl s ,Km_l,al’ toe ’am~l) .

At the k'th stage

o (m=-k+1)
ﬁxklxl,...,xk_l L (Xl"",xk_l,al,uco,ak)

‘Sk(xl, LY ’Xk“l,al, o s ’ak)
Blag_ %1, By_1*1) Blyy %1, 8 7*1) .

Choose a; such that Sk(xl,...,xk_l,al,...,ak) is
a minimum, thus computing
Hk(xl’...,Xk*l’al’..",ak-l) *

Finally at the first stage choose a4 such that

ol(al) is a minimumnm.

2.4 Analysis for a Linear Loss Function

In this section we shall assume the same situation as

there was in Sections 2.1, 2.2, and 2.3, except for the loss
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function. Let

(207) L(Xl,-.-,}%ﬂ,al,.-.,am,b,e)
klO -+ kllal + k1282 for b = 1
- ’
ks -+ kzlel + k2282 for b = 2

where klO’ kll’ le’ Konys k21, and k22 are any real numbers.
Then, following the general outline of extensive form of
analysis in Jection 2.1 and using (2.4) and (2.5), we
obtain:

(1) If v =1,

Eijl"“’xm L(xl,...,xm,al,...,am,b,e)

1 1l «a B Y e}
m m m m
9 (1-@1) 8, (1-8,)

Bla, 1, p,+1) B(r_+1, 5 +1)

0 JO

« (kyg + kqy98) F kq,8,) d9; 46,

o + 1 v+ 1
= kyg * kll,(a = vz Tk ( 53/ -
m m Ym m

Similarly, if b = 2,

E@,Xl, .."}{ln L(Xlgto. ,Xm,al,...,am,b,e)

a,. T 1 Y. 1
= k + % ( 1l + K ( m
20 21 Qo + Bm + 2 22 Yo + 5m + 2 *
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(2)

(3)

-21-

Thus we choose b = 1 if

( ) ) (=) ) (22 5)
k,~=k +(k,,~k (—-¢-~ +{k,,=k VT
207710 21 711 am+5m+2 227712 Yﬁ+5m+2
is greater than zero, choose either b ® 1 or b = 2
if it is equal to zero, and choose b = 2 if it is

less than zero. Then

L(l) (Xl’OOQ,Xm,al’..C’am)

(% ) vy, ()
= min k- ~tk o anreadll el 4 PPy
10 ™11 am+Bm+2 12 Ym+6m 2 2

a +1 v+l
kootkag ( <;L'+I;Isl 51 TkKop ( 5 +'2‘]
m m Ym m

L(l) (xl,...,xm,al,...,am)

ji’xm’xl’ L ’Xm—l

n n
~lm 2m ( nm) ( n2m)
= s \ 2 P r
rlmwO rzmwb Im 2m

Bla *1, B +1) Bly *1, & +1)
Blay, %1, B,_1*1) Blyy,_1+1, & _71)

L(l) (xl,...,xm,al,...,am)

1w (72
My Do ( lm)( ~m) G' (X, eeesX 28y 0e00sa )

= 3 Z “in’ Yom
I‘lm:U r2mzo B( +1, Bm-1+l) B(Ym-l+1’ 6m~l+l)

Yne1



.

- Sé (Xl,o-.,xm_l,al,.-.,am)
B(am_l+1, sm_l+1) B(ym_l+1, am_l+1)

where

(2.9) G'(xl,-..,xm,al,...,am)
= Bla,*1, am+1) B(Ym+1, 6m+l)

. L(l) (xl,...,xm;al,...,am) .

The rest of the analysis proceeds exactly as it does
with the constant loss function excépt that the functions G,

S, and H are replaced by G', S*, and H'.

2.5 An Ixample of the Computations

In this section the "decision tree," the diagram showing
all of the possible decisions and outcomes which can occur at
each stage, will be constructed for the following example?

60 = 0 so that

1l for 056, <1and0 <6,=<1

o(0) = .
0O otherwise

Let
L(xl, Xps X3y 815 25y 8g, b’ )

82~ Gl for b = 1

61 - 92 for b = 2
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We shall compute S} (xl""’xk-l’al""’ak) and
H& (xl"“’xk~l’al"‘"ak—l) for k = 1, 2, and 3 ( and for

k = 4 for the function Hi), where Hﬁ and Sﬁ are the same as
defined by (2.6) except that the function G is replaced by
G!', which is defined by (2.9). Then we shall place H} and
Sﬁ on the diagram showing the decision tree without the
primes for the sake of clarity.

For the loss function in our example we find from (2.8)

that

(2.10) L(l) (xl,xz,x3,a1,a2,a3)

(ay+l) (Y3+l)
- +B,+2 + +§5.,+2
%37P3 Y3704

= min

(R3+l) (Y3+l)
q3+ﬁ3+2 - Y3+63+2 ’

where b = 1 or 2 is chosen according as the first expression

is less than or greater than the second. Then from (2.6),
(2.9), and (2.10) we find that (dropping the arguments of
Si and H&)

HL = B(a3+l, 53+1),B(Y3+1, 63+l)

e )
* min - 7
a3¥B3T2 r3TéyTR 7

(Q3+l) (Y3+l)
a3+33+2 Y3+53+2




-2 by

= ,B(a3+2, By*1) Blyy*l, 85+1)

- B(a3+l, 33+1) B(Y3+2, 63+l)! .

Dok

n
(Note that in this example each ( lk) and (r
2k

e ) is 1.)

The possible values of HL and the terminal decisions
corresponding to the possible values of Aqs BB’ Y3 and 63
if we start with nyq ° 1 and ny,, = 0 are given in Table 1.

e are now ready to construct the decision tree. We
shall construct only half of the entire decision tree for
this example since the other half can be obtained by sym-
metry. The diagram starting with ny, = 1, is shown in
Figure 1. The terminal decisions one should take are also
shown in Figure 1.

The decision tree for m = 3 with ny n, = n3 = 1 and

ay = By T vy T 8 = U but with
L(Xl’XZ’XB’al’aZ’a3’b’9)
1if b = 1 and 8, <@, or if b = 2 and 8, ~ 6,
0 otherwise

has also been computed. It turns out that for these quite
small examples the decision trees have exactly the same de-

cisions at each stage for the same outcomes in previous

stages.
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Table 1

putations for Example 1

—

Results of Com

51 o

-25

-25

-25

-25

=27

0

-27

O
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2.6 Numerical Results

As one can see from the example of the previous section,
the computations for finding optimum strategies are long even
for very small examples. For larger examples, the computations
rapidly "get out of hand.”™ With the above example there are
2(1;)3 or 128 "terminal branches™ on the decision treej but if
there were five stages with one observation per stage, one
would have to construct a "decision tree® with 2(&)5 or 2048
terminal branches. Thus two programs for the IBM 1620 com-
puter have been written for computing decision trees. The
first program is for the linear loss function defined by
(2.7), and the second is for the constant loss function
defined by (2.1). Each of these programs has two main op-
tions. One can enter the decision tree at the k'th stage
(k = 1, 2, s+ee, m) with the results of the previous k - 1
stages and have the entire decision tree above the point of
entry punched out on cardsj or one can have only
5y (Xl""’xk—l’al""’ak) punched out for each of the pos-
sible values of Ny Thus, using the second option, one can
find out how many observations should be taken on each drug
in the first stagej perform the experiment} using the data
from the first stage, find out how many observations should
be taken on each drug in the second stagej etc. It should be

emphasized that at each stage the computer has to go through



the entire decision tree above the given stage in the com-
putations even though it may not punch out the entire deci-
sion tree.

A number of examples with various prior distributions
(all basically joint beta-type distributions as defined by
(2.2)) and three different loss functions were considered

for computer calculations. The three loss functions were

i
[

(2011) 62 - Gl fOI‘ b
l. L(X see Px:! ...’a ’b 9) .
1? 1 X087 m? 0 91 _ e, for b = 2

0, - Bl for b =1

2
2o L(X con a es e yd b 9) =
S M A 9, -20, for b = 2

3. L(Xl,.-o’}ﬁn,al,ttt’anlgb,e)

1if el < 92 and b = 1
=4 1 if 81 > 92 and b = 2
7 otherwise .

The examples were as follows?
(1) m =3 with n; =1, n, © 1, and ny = 1, which is the
example which was computed by hand.

{(2) m = 2 with ny <k and n, © 2. Part of the decision

tree was calculated by hand for Uy = BO =Yg T 60 =
and Loss Function 1, and then the entire decision
tree was calculated and punched out on cards by the

computer. Then the best values of nyq for various
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(L)

prior distributions and Loss Functions 1 and 2

were found. Finally the entire decision tree was
punched out for ay = Bg T v T 60 = 0 and Loss
Function 3, and the decisions at each stage were
the same as they were for Loss Function 1.

m = 3 with ny, =3, ny, ¥ 2, ny = 3. The entire de-
cision tree for this example is much too large to
be punched out. There are (2)(20)(10)(20) or 8000
terminal branches on the tree. Not only the results
for the first stage were found, but also results for
assumed values of Nyys Npys Tyqs and r,q were

found for the second stagej and results for assumed
values of N19s Noys Typs Tops Nyns Oooy Tns and
ro, vere found for the third stage.

m = 5 with n; = n, = nyg =m < ong - 1. The entire
decision tree assuming N1 < 1 was punched out for
Loss Functions 1 and 3 with oy = BG = Yo © 60 =
The decisions in the decision trees for the two
loss functions were the same except for a few cases
in the fourth stage in which the linear loss func-
tion gave decisions that nlh = 0 and nlh = 1 were
equivalent and the constant loss function gave de-
cisions that one was better than the other.

m = 2 with ny o 5 and n, - L.

m 1 with nl = 10,
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(7) m =1 with n; = 21.
The results for these examples are shown in Table 2.
The following prior distributions are used in Table 2:

(2.12) (1) (X,O = {50 = 'Y-O = 60 = 0

(5) a, = B
(6) ag = BO = b, Yo O 50 = 8 .

In Table 2 under the heading "Example®” the number of
observations in each stage is listed first, and then the
number of the example as given in this section is listed in
parentheses. For example, 3-2-3 (3) means m = 3 with ny < 3,
n, = 2, and ns = 3, which is EZxample 3.

The results for two other procedures, the stage-by-
stage and the approximate procedures, which are defined in
Chapter III and IV respectively, are also given in Table 2.

As one can see from Table 2, there seems to be good
agreement between the results for Loss Functions 1 and 3 in
these small examples. However, thers does not seem to be any
definite pattern in the results. It shouid be noted that com-
puting an entire decision tree for even a small problem can

become quite time consuming even though one is using a
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computer. For very large problems the decision trees quickly
becomes too large for a computer to handle. For example, if
one added a fourth stage with n) = 3 to Lxample 3, the
resulting decision tree would have twenty times the number

of terminal branchesy and if one assumed that the time necess-
ary for obtaining the results for the first stage was twenty
times longer (which is undoubtedly being conservative), one
would expect the computer to take almost twenty hours to find
the results for the first stage with Loss Function 1 and
Prior Distribution 1. Thus it is apparent that, when the
number of observations per stage or the number of stages is
at all large, using extensive-form analysis becomes quite

impractical even when a computer 1is used.
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III. THE STAGH-BY~STAGE PROCEDURE

3.1 General Procedures

In view of the practical difficulties associated with
extensive~form analysis, we turn to the following simpler
procedure! Suppose that at each stage the experimenter acts
as if he were at the terminal stagej i.e., if he is at the
k'th stage, he assumes that there are only k stages in the
entire procedure and chooses Ny and Ny accordingly. Thus

at the k'th stage (k = 2, 3, ..., m) he evaluates

E in B
Xklxl,--n,xk_l m%n e‘xl’otl,xk

L(xl,-..,Xk,al,...,ak,b,e)

and chooses the "a, " which minimizes the expression. At the
first stage he evaluates

n 3 L e
hxl m;n Eelxl (Xl’al’b’ )

and chooses the "al" which gives the minimum.
For the linear loss function defined by (2.7) (but de-
pendent only on xl,...,xk,al,...,ak,b,e) one would evaluate

at the k'th stage
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n n.

1k 2k (nlk ) (n2k)
== o r r

re=0 Ty -0 1k 2k
Blog 1%y Byog¥1) Blyy 141, 8y ;%1

k (ak+l ) )
« min { k% —— ] k.. (-——a-
10 *11 ak+ﬁk+2 12 Y T6 12 ’

o, *1 v, Tl
k20+k21.("jgr‘fﬁ§) ka2 ( 5
oy By Tk Ok
and choose the Ny which minimized the expression subject to
Mkt Pk T P
For the constant loss function defined by (2.1) (but
dependent only on xl,...,xk,al,...,ak,b,e) one would eval-
uate at the k'th stage
n n
lk)( 2k)
n n (
%k 2k Ty N\

5 .
r =0 1y =0 Blay %1, By_1%1) Blyy 1%L, 8 471)

b . ;
* min{ q g (-1)d (?k)B(ak+Yk+Jﬁ2’ o) R
1 §=0 J aptJTl

=

62 (-1)J (sk)B(“k+Yk+j+2’ Byt1)
2 2 7T\ Yy TIT1
and choose the Ny which minimized the expression subject to
Notice that this procedure is equivalent at

I
each stage to a one-stage procedure in which oy = Qp 19
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Bo T Pgoys To T Ty-ye @nd 85 7 8, ; . Thus at each stage
one has merely a one-stage procedure with an altered prior
distribution. It should also be observed that, for the same
results at the end of the (m-1)th stage, extensive-form
analysis and the stage-by-stage procedure give identical

results for the m'th stage.

3.2 An Example of the Calculations

———y

Consider the example of the computations for extensive-
form analysis in which ay T By T Yy T 60 = 0 and m = 3 with
n, = n, = ny . Suppose that on the first stage one took
nyy ~ 1 and N,y © O and that ryq; O. Then @y 0, Bl =1,
Yy = U, and 61 = 0. It is now desired to determine whether
Drug 1 or Drug 2 should be used on the second stage. The
stage~-by-stage procedure will be used, and Loss Function 1
as defined by (2.11) will be assumed. In Table 3, which

shows the computations, we let

H = B(a2+l, ﬁ2+l) B(Y2+l, 52+1)

aptl vyt il aptl
Yo 18,72 7 Y T8, 72 T ayvh,tR

* min (1.2+ 52-{-2
= -[Blay*2, By*1l) Blyytl, 65%1)

- BlayTl, B,y+l) Blyy+R, 8,%1)] .



~37-

Table 3

Computations for Stage-by-Stage Procedure Example

2 Boom2 % H
1 1 0 0 0
. 1
0 2 0 O -5
L
0 1 1 0 -35
0 1 0 1 0
Thus for this example
Bla,*1, Bl+1) B(yy*1, 61+l)

0 + (~1/12) or -1/12 for ny, = 1

-1/12 + 0 or -1/12 for ny, =1

Thus one could use either Drug 1 or Drug 2 on Stage 2, which
is the same conclusion reached from Figure 1 when extensive-
form analysis was used.

The same example was computed with Loss Function 3 as
defined by (2.11) instead of Loss Function 1. The results
were the same as those which resulted from using Loss Func-
tion 1. Thus in this small example the results were exactly

the same as they were when extensive-form analysis was used
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for both Loss Functions 1 and 3.

As one can see from the example, the stage-by-stage
procedure requires much less computation than extensive-form
analysis does. The computations for a linear loss function
are especially easy to perform. In fact, if one uses a table
of beta functions, and has a small number of observations in
each stage, using a computer is not necessary for the

calculations.

2.3 Numerical Results

If there is a large number of observations in any of the
stages for either type of loss function (linear or constant),
or if one has a constant loss function and Bk and ék are very
large, one will want to use a computer in the stage-by-stage
procedure. However, it is not necessary to write new pro-

grams for this procedure since at the k'th stage one can use

Bo = Pro1s Mo T Mie1e 00 T Ben @1 T O By T By Y1 T Yo
and 61 . ék and assuming that one has only a one stage
procedure.

The same examples computed for extensive-form analysis
and two other examples -- Lxample © with m = 1 and n, = 10
and ixample 7 with m = 1 and ny = 21 -- were considered
using the stagz-by-stage procedure. For &xample 4 decision

trees for Loss Functions 1 and 3 were constructed using the
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stage-by~stage procedure and compared with the decision
trees resulting from extensive-form analysis. The only dif-
ference bhetween the results for the two types of procedures
was that the stage-by-stage procedure in some cases stated
that using one drug was better than using the other drug
while the extensive-form analysis stated that using one of
the drugs was equivalent to using the other. This occurred
twice in the third stage when the constant loss function was
used and eight times in both the third and fourth stages
when the linear loss function was used. It was also noted
that the stage-by-stage decision trees gave the same deci-
sions at each stage for the two loss functions except for
the terminal decisions.

The other results are summarized in Table 2.

These examples indicate that for the symmetric loss

functions and for ay = Py = vg T 85 = 0, myy %(nl~l) and

O B

= %(n;¥1) are best if n; is odd and ny; = 3n,

~“

-~ 1 and
%nl + 1 (but not ny, = %nl) are best if n; is even.
Also, the examples indicate good agreement between the stage-
by-stage procedure decisions and the extensive-form analysis
decisions except on the first stage. However, in these
examples, when extensive-form analysis was used, the values

" . (1’:“1) 3 : .
of Exl L (xl,al)] for different n,, were almost equal

For example, when n, - 5 and n, = L, with agy = BO =Yy T 60 = 0
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and Loss Function 1,

(.27896822 for

-.27865073 for

< - 427825392 for

o ryim) )
;,JX LL (Xl’al)]

1 -.27825390 for

-.2786507L for

L-—.27896822 for

i
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IV. AN APPROXIMATE PROCEDUR:

L.l General Procedure

ouppose again the prior distribution of © is that given
by (2.2). Then from (2.4) at the k'th stage (k = 1,2,...,m)
a IR
6. %(1-8,) 6.%(1-8,)
P(8]x x,) - 1 : 2 2
120000k Bla, +1, B +1){ By 1, &,.F1)

Py Sy

= P{Glfxl,...,xk) P(eglxl,o..,xk) .

Thus
Val" (el - lexl,ooQ,Xk)
Var (Gllxl,...,xk) + Var (ezlxl,...,xk)
Ly 2 . Y- P
(ak+ﬁkT2) (ak+ﬁk+3) (Yk+6k'2) (Yk—t 51{‘3)
_Ppe (2= b ) ppy (1= by )
B3 Y PO T3 ’
where
0y +1 ¥l
—_ -k o ) k
Pl T e and Por © TTETS e
1k akFBkFZ 2k Y 6kl2

We shall now use El,k-l(l - El,k—l) and Eg,k_l(l - Ez,k_l)

as approximations for py; (1 - Pyy) and Doyl = Dy )y

respectively. Then



VB.I" (Gl - eglxlgqu’}{k)

——

CPrie1UPy ) Py (30 )
o1 Py T3 Te1 Opo1 R 3

The approximate procedure will be to choose Ny and n, at
the k'th stage such that Var (8, - szlxl,...,xk) is minimized

(approximately). Thus we shall take

G, L3+ o -D
Oy By T30y P k=1 1Py )

Yiem1 013 Iy -0y )

- . Ryp1
Ppk-1(1-Pp 1)

or

re o101y t3) By g -0 g - By g -3
By 72

(4.1) .

If the value of n,, which satisfies {L.1) to the nearest
integer is negative, we shall take Ny U and Ny = Ty -

If it is greater than n,., we shall take Ny ony and

Nop = O .
After m stages we shall choose the decision 61 < 92 if
Py < Doy the decision 8, ~ 6, if pq > Po,» and either

decision if py. = Dy -

4.2 Some Numerical Results

The approximate procedure outlined above was used in
some of the examples previously considered with the stage-by-

stage procedure and extensive-form analysis. It should be
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noted that the approximate procedure is good only for sym-~
metric loss functions and is independent of the total number
of stages as is the stage-by-stage procedure.

Let us assume we are at the first stage and that

oy = By T ¥y T 8y < C . Then

Thus in this case, if nyy is even, one uses ny4 == %nl for the
first stagej and if n,; is odd, one uses either n,, - %(nl+l)
or %(nl—l) . This result does not, in general, agree with
that of extensive-form analysis, but does agree {at least for
all the exarples considered) with the results of the stage-
by-stage procedure if n. is odd and is close to the results

for ny even.

Other results are shown in Table 2.



V. STAGE-BY-STAGE PROCEDURES ASSUMING
NORMAL DISTRIBUTIONS

5.1 Distribution Theory

In this chapter we shall again assume that we have a
stage~by-stage procedure in which at the k'th stage (k = 1,
2yess,m) we allocate Ny out of ny, observations to Population
1 and Ny ~ Oy = Ny observations to Population 2. However,
this time we shall assume that the random variables we gen-
erate at the k'th stage are the means x, of the sample of

— - , 2
ny and y, of the sample of n,, , where x, ~~N(o,, “l/nlk)
A 2/ bt 4
and ykr\/N(ez, “2/n2k)’ (In other words X and y, are nor-
mally distributed with means el and 82 and known variances
ui/nlk and GS/HZK‘) OQur terminal decisions shall be the
same as before.
e shall also assume that the prior distributions of 61
3 - w2'
and €, pl(el) and pz(ez), are N(xb, “l/an} and
N(§O’ Gg/HZO) respectively.

In order to compute the expected values for the stage-
by-stage procedure as outlined in Section 3.1 for the case
of normal rather than binomial random variables, we shall

need expressions for the following distributions:?

P(ellgl"@"gk)’ P(ezl‘?.l,"‘,&:k), P(Eklil"'.’}gk_l)’
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P(;Ck";{l,o '.,Ek'*l) ’ and P(S;k‘.j;l’ A ’;k__l) .

. 2 _ 2 o
Let hyy = nlk/°1 and hy, = n2k/o2 for k = G,1,2,e00,m.

We shall also assume that all §l"°"§m’ and §1s°~-:§m are

mutually independent.

It is well known (See Raiffa and Schiaifer, pp. 294-297.)

- that for a one stage procedure

10 ¥g T hqq X

1

h
P(0,]|%x,) is N (
1 hyg * hyy

hey- T h
- . - 10 11
P(X ) is N Ky [P s A -
* ( 07 Ry by

* W, * h

and
11

) « Then, if we go to the second

stage and now take P(Slliw) as the prior distribution, we

have that P(ellxl,xz) :

) hy, X T hyq %
11 hyg ¥ hyy

(hy, + h

10

e

Pl Ixq) [x,) is

12 %2

h

hyg * hyy * nq-

hyg xg + hyy X * hyy X,
10th117hy,

at the k'th stage we have that

1

hygthy;Fhy,

k —
FH «
PR B M £
— — . .U l
P(elixl,oodyxk) 15 N lk k
oz hq. 4 hq,
i=0 1i i=0 i

*

h

10"hy11

-

*hys

Then

Also, at

the second stage by assuming ?(e§]§l) is the new prior dis-

tribution we have that



-46-

han X
10 X0
N B

+ h + h

11 X3 hyg * hyq * o hy,
T ’
10 T by hialhy * hyq)

P(—iz‘El) is N Then

at the k'th stage we have that P(Ekiﬁl,...,§k_l) is

k-1 = k
sz hy. x. Z h
. 1=0 1i i 1=0 1i
k-1 4 k-1 *
L h, h % h..

Similar formulas for and statements about

P(Vl¥yseeesyy_q) and P(8,]¥ ,...,7,) also hold.

Thus we see that, if we perform the analysis for the
stage~-by-stage procedure for normal random variables using
the loss functions defined by (2.1) and (2.7), we can again
assume that we have a one stage procedure at each stage and
that we are merely altering the prior distribution of Gl and

9, as we proceed from stage to stage.

5.2 Procedure for a Linear Loss Function

On the basis of the results of Section 5.1 we shall
assume w% have a one-stage procedure at each stage with ny4
on Population 1 and nyy on Population 2, where ny 4 + Nyy = g,
a constant. ‘e also shall assume that the sample means for

Population .| and Population 2 are El and X,, where

- . .2 - . . 52
Pel(xi) is N(al, ul/nll) and Pez(yl) is N(ez, Jz/nzlL and
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that the prior distributions of ©, and 6, are pl(el) and
92(62), where pl(el) is N(EO, Uf/nlo) and 92(62) is
Nygs 93/myg)e Let 6 = (81, 9y), xy = (%), ¥y)» hyy = nyy/9f,

hyy = nzl/dg, hyg = nlo/di, and h,, = nzo/ﬁgo We shall
assume that p(6) - 91(91) pz(ez) and that the decisions a;

and b are defined as in Section 2.1. Then from the previous

section

(5.1)  Ploglxy) is N (hllhi : :ig =y 810 i hll)
P(6,[F,) is N (hglhzi : 1}1122 ) vl B
P(x,) is N(BEO, W) ’

and

We shall in this section let

klg * kll 61 + klz @2 for b=l

(5-2) L(Xl,al,b,e) = . *
We would like to find the optimum aq and, if we are at the
last stage, the optimum b for given a-.

We shall assume without loss of generality that

- o Ers - > . F -+ - .
(5.3) kig Tk Xy T ki Vo 2 kg T Ry X T Kys Vg
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Then we shall let

kG + kl 61 + k2 82 for b~1
(E‘L") L'(Xl’al’b’e) == y
G for b=2
where ky = ky4 = kys for j =0, 1, 2. Then
(5'5) Eelxl L'(Xl’al’b’e)
2
" (h X, * ho X )
- - _ 11 *1 10 *0
M(xy, v7) = k., + k
1? J1 U 1 hll s th
hr y + h. y 5
= | + ky ( ot 200 | ror b=1
21 20
Lo for b=2
v
Thus
m%n Eelxl L*(x,,a,,b,0) = min {M(X;, ¥;), O}.
Then

G

X
1 b o

where P(M) is N(E_ M(xy, ¥4)), Var (M(xl’ y))

1
with
(5.6) = (1(%, 5;)) (h“ ) "o XO)
5.6) £ (I F.)) = k. + k -
x, XL V) otk hy; * g
(hzl EYl(yl) T hag yc)
+ k. :
< hpq * hgg

T ky T ky X5 T ky vy
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and
2
= = 2By ~
(5.7) Var{M(x, ,y-)) = ki Var(x.)
11 L o o )2 1
11%R1¢
2
h _
. 21 Var (5. )
2 (h,o+h,.)° 1
21 hog
2
- k2 hyq , ( h10+h11)
l i h f‘h
he h. +h.
12 21 20 821
2 2 \ Thyohy,
(hgl*hzg) 2
-2 hyy 2 b1

- + k
Lohyplhygthy ) - 72 hpolhyathy )

since M is a linear combination of the normally and inde~

pendently distributed random variables El and ?l, whose dis-

tributions are given by (5.1).

2

ol

e RZ
Let @(z) = . Then
™
(5.8) 5 min E

L' (x, ,2,,b,0)
Xy elxl 1291

0
— -t (=M 2
= . Jf L g 2 (AM-E(M))Z oy
0
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where E(M) =k, *+ kq EO + k, §2 >0 and h = 1 .

Var(M(x,,¥;))

In order to find the values of nyq and N,y subject to
nqyq + N,y < ony which minimize (5.8) we rust find the values

which minimize h, or maximize Var (M(§1,§1)). From (5.7)

v (M(“ ol )) gkz nll + 2k2 n21
ar(M(x, ,y = g 3 G
1271 "1 myglnygng ) 7272 nyp(nygtn,,g )

252 2R GRL2 HRK2
_ uiky | gk ( ik, 2k§
No 120 N0 M1 Peo P21

This is maximized for nyq + N,y = 0y fixed when

!

ky

g

1L
Y2

+
Mo " M1 _

(5.9) _
Ny * Ny

There still remains the question of whether or not using
L'(xl,al,b,e) is equivalent to using L(xl,al,b,e). From

(5-2), (5'3), and (5'#)

| = - :
L (xl,al,b,e) L(xl,al,b,e) (kyp, + kyp 67 F ko 8,) .
" Thus
E@‘Xl L'(Xl’alsb;e) = Ee!Xl L(XlgalJb}e)
» N hllxl+thXO)_%lc (h21Y;+hono)

Therefore,

1 b
= By min Bgpy L(x1,81,0,0) - (kyotkayXgtkoaVo) «



-51-

We see that the same values of Nqq and n21 minimige

B min B

x, T Eolx L(xl,al,b,e) as those which minimized

1

E. min L L*(x,,a,,b,0}).
Xy Glxl 1%

Finally, if we are at the last stage and wish to decide
whether to take b = 1 or b = 2 as the terminal decision, we
see from (5.5) that we should take b = 1 if M(§1,§l) <0,
either b = 1 or b = 2 if M(x,y;) =0, and b = 2 if
M(xq,v,) > 0.

It should be noted that in Chapter 5 of their book
Raiffa and Schlaifer (1961) derive results for a more general
problem than the one considered in this section but for a
somewhat more restricted linear utility function. (The util-
ity of chdosing b = 1 would be linear in el and independent
of 6, in their work.) However, with slight changes in their
arguments one can obtain the results of this section as a
special case of their results. It is felt, however, that
the derivation of this section, which uses some of their

ideas, is more straightforward for this problem.

5.3 Procedure for a Constant Loss Function

In this section we shall assume that the assumptions and
notation of Section 5.2 hold except for the loss function.

We shall let
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1 if b = 1 and 91 < 82

1

L(xl,al,b,e) {1 if b =2 and 6; > 6, .

U otherwise
Then

E L(xl,al,b,g)

Gfxl

r}-m [92
P(6,1x%,) P(e,ly,) do, d6, for b = 1
coo ? —oo 1M 2471 1 “¥2

it

2

jp<x)]~81
P(e,]x.) P(o,]lx,) de, do, for b
e’ 1V %1 21%2 2 4¥1 )}

Let v = 8; - 8,. Then Plv|x;) is N(u_, 02), where from (5.1)

1
(5.11) 5 = By ¥ T Mo *g Pap vy T Bag Vg
hy; * hyg hyy * hyy
and
Ge o2
G2 = 1 + 1 - 1 . 2 .
v hygthyy  hygthyy  nygtngy  npgtngg
Then
~
0 2
]r P(lel) dv for b=l
I L( po) =4 °©
o X 984 3D,0) = y .
elxl 1¢1 ©
JF P(lel) dv for b=2
0 »
-

Let 2z = (v - uv)/U . Then
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~
e
=
v
ﬁ(zl) dz; for b=l
) -0
(5.12) Eelxl L(x-,a1,b,8) =4 - \
¢(zl) dz; for b2
Hy
-5
L J
and
|
m%n belxl L(xl,al,b,e) = ¢(zl) dz) -
-0
Thus
1L D 1 M
) A
+o0 +00 %
= P(xy) Ply;) Pz, )dz,dx,dy; .
-00 -0 -0
ot B o tv o (Pt Mo %o P2 Vi T Pag Yo
5 G h-- F h h.. + h .
v v 11 10 21 20

Then P(R) is N(pp uﬁ) where from (5.1) and (5.11)

—

(5.13) wp = (% - ?O)/GV

and

G

9)

o

2
v

2
- hyq hyy + hyy
hyg + by By Byq
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2 2
N ) s 2 )
Mg \P0 T P11 B \Pec ¥ Pa1
G2 2 2 SR
I T T ( ‘1 . 2 )
Ny Mg nio Ty Mo M
o2 oﬁ
where K = —= + - is a constant at any given stage since
o Mg

we are only going to let nqq and n,, vary subject to

nl:.l -%‘ nzl == Ill »

Thus
. K
(5.14) (5§ i 1
v
and
E. min E L(x- ,a- ,b,8)
X p e]xl 1212
+00 ~-|R|
= P(R) g(z) dz, dr .
-00 - 00

In the rest of this section notation and arguments sim-

ilar to those presented in the Tables of the Bivariate Normal

Distribution Function (1959, pp. XXVIII - XXXII) will be

used.

Let =z, = (R - uR)/uR and let ¢ = op and d = pp . Also,



let Blzq) flz,) = 5 . Then
E mnn @8' Llx l’al’b e)
-ICQ +d |
Plzq) @lz,) dzy dz,
-0
d .
- CZZTd
#(z.) 9(z,) 1 4z,
-0
[o's) —(cz?+d)
+ @(z,) ﬁ(zz) dz, dz,
d
-— E -a)
d ,
W - e —(czz+d) |
z - %(zl) Bz dzq dz,
-0
w czz+d
- )Zj/(zl) %:(Zg) le dZ2 S
d ,
- p G

In all cases c¢

> 0, but in general d can be any real

number. Without loss of generality we let d < 0. (The argu-
ments for d > U are similar to what follows.) Let
d ,
-2 -(czg+d)
-0 0
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-5 m

cz,td
Al o

and let I, = }r Jf ¢(zl) p(uz) dzq dz, . For

d ‘g

c
d < O the areas over which Il and I, extend, along with con-
venient auxiliary lines, are shown in Figure 2. The shaded
area A, is the area over which I, extends and A, is the area
over which I extends.

In Figure 2 we let h = and k =

~d
/1 + c? cvi+c?

Let zi, zﬁ, 22, and z“ be the Z, and z, axes suitably ro-

| h %2
tated. Let V(h, k) J( }r %(z ﬁ(z dz, dz, .

Then from Figure 2 we see that

n min &
‘1 b Slxl

@ . h
arctan %
- |—=5— * V(h, k)+ ¢(zi)¢(zé)dzidzé
G C
arctan % ® o
- | —%7—= * V(h, k)- f(z4)@(28)dzydz!
o ¢

arctan % '
- 2 ST o m— + V(h, k) °

ol

[

27

For fixed hyy, hy,, and EG - §O’ h is a constant since from

(5.13) and (5.14)
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Ev - 50 _ _
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1 c fdﬂ. ] L+ KE ., /Q@F
uv
Thus we shall decreasc Exl mgn :efxl L(xl,al,b,e) by
arctan %
increasing V(h, k) + ——5-— and this will depend only on

values of k.

Consider, without loss of generality, the case in which
h > k with h fixed as shown in Figure 3. In Figure 3 let
AH = HG = CG =AC =h and let AF = HE - CB * k. Then the

volume above triangle ABC is V(h, k) and the volume above

arctan %
the wedge DAJ is s Decrease k by Ak so that

a—

AF* = HE'* = CB' = k - Ak. The volume above triangle ABB!
is the net decrease in V{h, k) resulting from a decrease in
k of Ak units. The volume above the wedge DYAD is the cor-

responding increase in arcgin h/k . Since Angle BAB' =

Angie D'AD and rotation of areas does not affect the volumes
above them, it is seen that there is a net increase in

arctan h/k
217 tv

(h, k) for a decrease in k.

Thus in order to maximize Vih, k) + arcgﬁn h/k one must

minimize k = h/c = h/JR, which means meximizing op. However,

1
+
hy*th

g2 == K ; P .2 2 .
Ie1 EE - ] o
R 63 1 so we must minimize o it N

10¥hyq 21
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FIGURE 3
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i .9

Nyo¥hy)  BygThy

» which is minimized for ny4 + N,y = Dy,
a constant, when

o P07 9

Nog + Npy Yy

(5.15)

It should be noted that this is the same result which
one obtains from (5.9) by making ]kl/k2| = 1,

Also, if we are at the last stage of our stage-by-stage
procedure, from (5.12) we see that we take b=l when Ky > 0,
take either b=l or b=1 when by, = U, and take b=2 when By < 0.

It is interesting to compare the results in (5.15) and
the results of (5.9) when lkl/k2| = 1 with the situation in
which one is making the usual test of hypothesis that 61 > 0,
against el < 62 when the test statistic, the difference of

the two sample means, is normally distributed. In this case

one computes the standardized normal variable

— —

7 = - ~ (taking 6, - 6, = 0)
12
Ny B

and rejects the hypothesis that 61 > 0, if z < Zy, where z.

is a fixed constant. The power of this test for a given

8, - 8, is Pr |z <jz. - ——S——— It is obvious that the
1 2 0 52 52
._.3:_... ~+ ....g....
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power is maximized for each el - 62 <0 if E;“ + is a
11 21

minimum, or if nll/n21 = 01/02. (5.9) (for Ikl/k2] = 1) and
(5.15) give the same result if n;, = ny = O, or if we
assume the prior distributions of 04 and €, have "infinite"

variances.
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VI. THEORETICAL COMPARISON OF
EXTENSIVE-FORM ANALYSIS, THE STAGE-BY~STAGE
PROCEDURE AND THE APPROXIMATE PROCEDURE

6.1 Asymptotic Comparison of the Stage-by-Stage Procedure

and Extensive-Form Analysis

From (2.5) we have that

n 1
- 1k 2k
P(x IX 2o X ) = ( ) ( )

Blog + 1, By ¥ 1) Blyy + 1, 8 + 1)
Bla), _;%1, ﬁk_l+l) B(Yk_l+l, 5k_l+1)

- (ak~l+rlk)"'(ak-l+l)(Bk—l+nlk_rlk)“‘(Bk—l+l)(n1k)
(ay 1By ¥1tngg) oo e loy g *By 1 ¥1+L)

‘Yk-1+r2k)""Yk-1+l)(5k-1+n2k'r2k)"'(5k~1+l)(nzk)
(1 ¥yt ivmgy ) el 3 ¥8y g 1+L)

since (for example)

(Y1 trop) oo (v

Tg-1' Y1t
Assume for k becoming large
a ¥
k-1 k-1
— -)'8 ">e ’
T R O T P
Pr.1 Op-1
e > 1 - 6 and > 1~ 06,5 .
a1 F Pygoa 1’ 81 T Mk-1 <
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m
Assume, further, that for k large z Ny is small relative

i=k
m
to a, 4 and p,_; and that iik n,; 1is small relative to
Yk-1 @nd & 5. Then
n n

: 2k

(6.1) P\x ‘X ee s o X )—> ( lk) ( )
k l’ ? k"‘l I‘lk rzk

*

T Ny, =T r, Ny =1
. 1k 1k “ 1k 2k 2k "2k
=N (1-@1) e, (1-92)
Also, for the loss function defined by (2.7)

E@le’¢¢0’xm L(Xl’.'.,xm’al’.‘.,am’b’e)

( o *1 ) | Y1 )
1011 Vo 7p T2 ’*klz(W for b =1

a +1
k

+k (-~Q-«
20721 \@_¥p_F2

klO + kll 61 + kl2 92 for b = 1

kog * k 0, T k ©

0 21 "1 22 72

for m large, which means that from Section 2.4 and (6.1)



X (1)
bxﬂllxl,""xm—l L (xl,...’xnl,al,...’am)
n. n
R gm gm (nlm) (an) erlm (1-6 )nlm‘rlm
r hg 1 1
1m 2m

rlm:O rzsz

r -1,
2m n2m 2m
6,7 (1-8,) min(kyytky 6,7k 50,5k, 0tk, 10 1k,,0,)

= min(ky 7k 1017k 56,, kygthy 0,7k,58,) o

Similarly we can show that for k large

(m=-k+1)
Pl e amey (Xps0reade 10558150002y )

> minlky gtky 817056, kygtky10,%k,508,) .

Also, for k large and for a linear loss function

min E

Exk'xl""’xk-l b e]xl,...,xk L(xl,..-,xk,al,...,ak,b,é)

n n :
() 02) R
— - r r Bla, -*1, B, *1
B(Yk + l’ Bk + l) ak+l
Yk-l 1, 6k~l 1) 10 11 Q. Bk 2
Yk+l ( ak+l ) ( «(k+l )]
T ko, e Xo~tk S 2 +k
12 Yk+6k+2 ? B20 M21 ak+Bk+2 22 Yk+6k+§
> min(ky 5tk 18,7k 58,5, kyntky18,1ky50,) .
k-1
This means that asymptotically {(k large with 8

————— .
ay 1B
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Tk
and -~5—%—- - 62) extensive-form analysis and the stage-

Y17 %%-1

by~stage procedure are the same in that

B min E

xk’xl""’xk-l b Gfxl,...,xk L(xl""’xk’al""’ak;ue)

L(m~k+l)

= K (xl,.--,xk_l,xk,al,...,ak)

X%y seeenx

for a linear loss function.

6.2 Derivation of the Approximate Procedure as an Approxi-

mation to the Stage-by-Stage Procedure Assuming Normal

Distributions

Let us assume a one stage procedure (at any given stage
of a stage-by-stage procedure as described in Section 3.1).
Let the prior distribution of 8, and 6,, pl@), be defined

by (2.2). We shall then use the bivariate normal distribu-

tion - \2 ~ \2
‘_%((91"‘0) "o . (8-, nyg
02 0—2
il 2

as an approximation fcr e(€) such that by equating the cor-

responding means and variances, we have

— a~tl vATl
- 0 o 0
(6.2) Xy = Ma'g T BQ ;) sy Yo = m0+ O“+“2 )
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g+l Bg*l
2
9f _ %gtBgTR  agFpyte and
H
g L
. Totl 8,+1
02 _ YO+50+2 YO+60+2
"0 Yo*oo+3
so that
nyg Tag F Byt 3 s My Tyt T3,
. (ao + 1 ) ( ag t1 )
17 \gF2 d \ T e TR ’
g () (- k)
an TSI (e — - )
2 Y072 YoT35+2
Gia
In addition, we shall use the normal distributions N(el, ;f-)
11
652
and N(ez,if-) as normal approximations to the actual (binom-
21

ial) distributions of rll/n11 = x, and er/n21 = ¥q-

Actually, of course, if we do this, ciz = 81(1 - Bl) and

oéa = 92(1 - 92). However, we shall use the approximations

GiZm cf and 032 = cg, where Gi and of are given by (6.2).
Note that we are assuming that 6,(1 - el) and 6,(1 - 6,)

are "relatively constant" as el and 62 vary. This assumption
will be appropriate when .2 < 6; < .8 and .2 <6, < .8 but
will not be good very far outside this range.

Using the above normal approximations, we can use the
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results given by (5.9) and (5.15). Then, if we assume in
addition that we are in the k*th stage of a stage-by-stage

~ ag *1 o _
procedure, substitute P1,k-1 for E§¢E6¢§ » P2 k-1 for

;§¢;5i§ » Oy T By TOT og ¥ Bos Moy T 8y Tor v T 8
ny, for n;y, and n, for n,,, assume ikl/kzl =1 in (5.9),
and solve for Dypr W obtain the approximate procedure as

given by (4.1) in both cases. However, if we do not assume
lkl/kzl = 1, we obtain the following "generalized" approx-

imate procedure for the linear loss function given by (2.7):

(Yjq + B T oy T3IRE -0 g = By g =3

(6.3} myy = R, 71 ’
where

by = IE; ‘ P1,1-101"Py 3 1)

k‘l k2 *

P2, k-1¢1"P2 )-1)
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VII. NUMERICAL STUDIES OF EXTENSIVE~FORM
ANALYSIS, THE STAGE-BY~STAGE PROCEDURE,
AND THE APPROXIMATE PROCEDURE

A method of comparing the three different procedures
for given loss functions and prior distributions is desired.
The proposed method for this comparison is to find the exact
probability of making a given decision {(say b = 1) as a func-
tion of 9, and 6,. This can be done for extensive~form
analysis by computing

Pr(choosing b=1)

— v

= 4 Pe(rll,I’Zl,..o,rlm,rzm,nll,nzl,.o.,nlm,nzm)
+ "1§ ut Pe(rll,r‘z]_,.--,rlm,rzm,nll,na,u.,nlm,nzm),

where % is the sum over all values of TyqsTqsecesTTops

NypaBnyseeeslly, olo such that

4 T (-1)7 (n) 2o " Y : ) i 2t T 1)
1 5=0 J a. 3 1
5
o+ g+ +
< g z (-1)d (3a) Blog * vy * 3 7 25 By T 1)
2k j Ty T I I

for the constant loss function defined by (2.1) or such that

o + 1 Y + 1
- e ————— - i ————— e
(kpgkyo)*lkoy=kny) g g2 * tkeakie) w5 70

for the linear loss function defined by (2.7) and where Z' is
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the sum over all values of rypeTgpsee sl asTo Tyl sveey

n,.s0, such that equality holds. (Either b = 1L or b = 2

can be taken.) We can compute

Pe(rll’r21’“"rlm’er’nll'n21""’nlm’an) by computing

Pe(rlm’erlnlm’n2m’r1,m—l’r2,m-l’nl,m—l’nz,m-l’""rlk’rEk’
N yoTpps e e sl aTp1 sl o001 )

) Pe(nlm’nzmlrl,m—l’rz,m—l’nl,m~l’n2,m~l’"”Plk’er’nlk’
Dajess == T 2701 9077507 )

veePolryparyy nyyongyseeesrygoryy a0y snyy)

Pe(nlk’n2k‘rl,k—l’rz,k~l’nl,k-l’n2,k—l""’rll’PZI’nll’nzl)

vee® Polryysryylngysmyy) Polngg,ny)

where PQ(rlk’rZRInlk’HZK"'"rll’er’nll'nZl)

n r Nqq,,~T I r N,y =T
_ ( lk) o 1k (1_g ) 1k 1k ( Zk) o Rk (1_g ) 2k T2k
LN 1 1 Top pd

2
and
Pe(nlk*nzk’rl,k-l’rz,k~1’n1,k~1’n2,k-l""'rll’rzl'nllfnzl)

= l/ni if the value of (n;,,n;, ) minimizes

(m-k+1),
. " & L IR 2N a
Exk'xl"”’xk-l L (Xls 9Ky 989 s ’ k) ’

= (0 otherwise ,
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where n! is the number of (nlk,nZk) combinations which give
equivalent minima to

(m-k+1)
Exk]xl,...,xk_.l L (xl"”’xk’al"“"ak)'

In a similar fashion we can compute the exact probabil-
ity of choosing the terminal decision b = 1 for the stage-by-
stage and approximate procedures.

Computer programs have been written for calculating the
exact probability of b = 1 for extensive-form analysis and
the stage-by-stage procedure with both linear and constant
loss functions in each case and also for the approximate
procedure. The results of the computations with these pro-
grams are shown in Tables L4 and 5. We have, without loss of
generality, taken 61 > 92 so that b = 1 is the correct deci-
sion. Under the columns labeled "ixample" in each of these
tables is given the assumed number of observations in each
stage. Under the columns labeled "Equal Division" is given
the probability of choosing b = 1 if prior to the experiment
it is decided that exactly half of the observations are to
be allocated to Drug 1 and half to Drug 2 no matter what the
results of the intermediate stages are. This probability
was computed with the program for the approximate procedure
by assuming that all of the observations are in one stage
and the prior distribution is rectangular. Some positions

in the tables are left blank either because the examples
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do not apply as is the case in the columns labeled "Equal
Division™ or because the computations take much too long to
be worthwhile.

For the loss functions and prior distributions considered
in Tables 4 and 5 it appears that, in general, for the exam-
ples studied there is little improvement in Pr(b = 1) when
the approximate procedure instead of just equal division is
used. Also, there seems to be relatively little difference
between using the stage-by-stage procedure and extensive-
form analysis. The only difference in Pr(b = 1) for the two
procedures which is greater than .0l is that for the 3-2-3
example with Loss Function 3 (as defined by 2.11) when
91 = .95 and 82 = .80, The greatest differences between the
four procedures arise when 81 = .95, 82 = ,80, and the
approximate procedure is used instead of the stage-by-stage
procedures. For the 3-2-3 example, when 0 <95 and 0, ~ .80
and Loss Function 3 is used, the loss in Pr(b = 1) when the
approximate rather than the stage-by-stage procedure is used
is almost .03. However, for 61 and 82 symmetric about .5,
in general, the approximate procedure is a bit better than
the stage-by-stage procedure or extensive~form analysis.

It should be noted that in the smaller examples there
is no improvement at all in using the approximate procedure
rather than just equal division of the observations. We can

easily derive an expression for the range of values of g
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at any given stage in the approximate procedure for which
this reduces to equal division. From (4.1) (assuming gy
can be any real number)

o =Tt A) R - Ay
1k E_; 1

where Ay =y 4 7 8 1t 3

and A2 = 6k»l + 5k—l + 3 .
Equal division will be used if

%nk'%snlkS%nk+% ?

-3 < -3 < &
or 2 > 2 — R H

Rk-l + 1 k
or

- R ~1-2R A +24 R +1-2R A, t2A

k-1 k-1"1 2 k-1 k=171 2 . :

(7.1) <n < if R, .~1
and

T A e W G Rl Y B N

< n < if R, <l.

Let us now consider the example in Table 2 which has n, - L
and n, = 2. In thé first stage nqq = 2 and n,, = 2 so that
for the second stage Al = 5, A2 = 5, the largest possible
value of Ry is ¥ 4/3 , and the smallest possible value of
R, is ¥ 3/4L . 1In either case from (7.1l) we see that we

1
shall have equal division for n2=2; i.e., for any possible
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Rl, Ny, = 1 and Ny, -~ 1. In addition, for n, even we shall
not be able to avoid equal division unless n, > e

Since the differences between the probabilities in
Tables 4 and 5 for the approximate procedure were so small
for the relatively small examples studied and since the time
necessary for computing much larger examples would be pro-
hibitively long, a program for a simulation study of the
approximate procedure was written. An example which had
thirteen stages with two observations in each stage, 61 = 495,
9, = .30, and g = By T Yo T 60 = ¢ in the prior distribu-
tion of 91 and @2 was run with this program. From Table 4
one can see that, if there is equal division of the 26
observations before the experiment, the probability of
choosing b = 1 is .878466. When the example was run, the
proportion of times b = 1 was chosen out of 1365 repeti-
tions was .877, which is even less than .878466. Certainly
one could not conclude that the approximate procedure gave
a higher probability of choosing b = 1 than equal division
did for this example.

It is interesting to compare equal division and the
approximate procedure for very large examples. If the total

m

number of observations N = L n; is large (e.gs, N > 100) and
-i:
= = =§ = 0 N, = % d N, = %
% TP T T % Y 1 My 8¢ N2t

i=1 i=1
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will in the approximate procedure be quite close to satisfy-

ing the following relationship:
Nl/Né = o‘l/c;'2 ,

<2 =
where of Gl(

of choosing b = 1 for the approximate procedure will be

l»@l) and G% = 92(1—82). Thus the probability

close to
8, - ©
Pr Z 22 zl - ’

wnere z is the N(C,l) variable. Equal division of the ob-
servations is covered by the special case Nl = Né = 4N,

Table 6 gives the estimated probability of choosing b = 1

Table 6

Approximate Probability of Choosing b = 1

N ° 62 By DIk aton
100 .95 .90 .8328 .8298
100 .80 .75 7257 7257
200 .95 91 .8691 .8669

200 .80 .76 «7530 «7528
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As onz can sce from Table €, thers is a little im-
provement in using the approximate procasdure over equal divi-

sicn for 9, anc ﬁ2 close to 1 lor ), but sherc is practi-

*

and a) are closge to .

-
' -

o



79

VIII. STOPPING RULES FOR THE
STAGL-BY-STAGE AND APPROXIMATE PROCEDURES

8.1 Stopping Rules for the Stage-by-Stage Procedure

Suppose we have a stage-by-stage procedure in which it
is specified there will be a maximum of m stages but the
actual number of stages is not fixed. Thus we might want to
stop before taking all m stages. Suppose we have run k - 1
stages and want to decide whether or not to take the k'th
stage (k = 1,2,...,m). In order to define our stopping rule

k?
we shall let N, = iik n, (k' = kyktl,e0.,m), Njye be
the number of observations out of Nkk' allocated to Popula-
tion 1, N5, , (where Nopr © Nipe = Noppe) be the number of
observations out of Nkk' allocated to Population 2, Ryjy.

and R,,, ¢ be the numbers of successes out of Nyyper and N2kk'

respectively, a,, = a1 P Ryppr 0 By T Bt lek' - lek"

+ N

2kt ~ &

Tt T Yee1 T Bopkr 0 Ok T 03 2kk? ?

Xt = (Ryppes Boppe)s G5 be the cost of the i'th stage, and
LI be the decision of what lek' to take (lek’ = 142 pse0y

RZkk" Xkt ? aqgagkk, reduce to gy Mypes Noys Tips Topo and
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ay s respectively.) Also, since in this chapter we shall be
using only the general constant (2.1) or linear (2.7) loss
functions and these depend directly only on b and ©, we
shall denote the loss function by L(8,b).

Using Amster's (1962) modified Bayes stopping rule
(itself modified and adapted to the problem in this thesis),

we have the following rule:d

If
k'
8.1 in B L(e,b) < mi L G, +
(8:1) S R e I
min E min E L(o,b) |,
akk' xkk'lxl,OOO,xk-l b e]xl,lot’xk-l,xkk'

do not take the k'th stage.
If each Ci is relatively quite small, the stopping rule
becomes approximately:

Stop sampling if

m%nEelxl,...,xk_l L(9,b)
= min B min E L(e,b) .
akm kaixl’onn,xk~1 b e'xl,lﬁh,xk”l’ka 4

For the linear loss function {(2.7)

min E

B L
b e[xl,...,xk_l (8,b)

o +1 Y, 11
. k-1 ) [ M )
“ min k- ~tk +k
10 %11 (ak_l+ﬁk_l+2 12 Wy 17817R [
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+ +
kyotky aE-l l+2 ky ( Y§31 l+2)
@y 1 Brog 2 | Y11

and

min E L(e,b)

gkt

E
ka,‘Xl,-.-,xk_l m%n elxl,o-o,xk_lgxkk'

N N |
1kk? 2kk" N N
- min k k ( lkk') ( 2kk')

R Rypke/ \Ropper

et Bixkr ™0 Roppe ™0

(ak—l‘}-l’ Bk-‘l-‘—ly B(Yk-l+l’ 6k-l+1)

B
"B

. @yl Tir L
Pming Kotk G vEL 2 ) Fiz \Tateaie )

oy +l Yo+l
k2021 \ o 7B, 72 | TKez | v 76,72 .

For the constant loss function (2.1)

min E

b elxl,tuo’xk__l L(e’b)

= 1
Blay_37Ls By y*1) Blyy 3+, 8y %1

Pr-1

« min { q4 '§U (-1)J (
3

5 .
5 (e1)d (6k—l} Blay.1 #1732 By *1) .}

q. % :
R J Y1791

Bk-l) Blay 177y 1737258, _171)
J ak~l+j+1

’



and
min E min E L{e,b)
akk‘ ka' 'Xl,...’xk-l b e,xl,O."xk_l,xkk' ’
. . <lek' ) (N?.kk' )
ogn R ERE Byger 7 \Boppe
() B(“k-l+l’ﬁk—l+l)B(Yk~l+l’5k~l+l)

Bypr Bppe U Roppe

b (-1)d (ﬁk') Blog vt rye 7342, 8y 1)

s mi 2 -
S i Rty j 4y TITL ’
b . .
a £ () (ékk') Blag s vy t3*2, Byytl)
2 e J Ykg+j+l ¢

8.2 A Stopping Rule for the Approximate Procedure

In this section a stopping rule for the approximate pro-
cedure will be derived by the use of normal approximations.
Of course, this stopping rule will also be applicable to a
stage~by-stage procedure in which normal random variables
with unknown variance are generated. The general stopping
rule will be that defined by (8.1), and the loss function
used in this section will be the linear loss function as de-
fined by (2.7).

It has been seen in Chapter 5 that in the stage-by-stage
procedure for normal random variables one can consider his
ktth stage (k = 1,2,...,m) as the only stage of a one stage

procedure with a prior distribution which is altered as one
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proceeds from stage to stage. It has also been seen in Sec-
tion 6.2 that the approximate procedure can be derived from
the results for the stage-by-stage procedure for normal
random variables. In view of the results of Chapter 5 and
Section 6.2 we may suppose that we have at the k'th stage a
one-stage procedure which generates normal random‘variables
El and ?l and has prior distributions (altered at each stage)
of ©; and 6, which are N(EU, ci/nle) and N(y, cg/nzo).
Although our notation does not show it, the parameters are

functions of k. 1In fact, we have

(8.2) XO = pl,k—l ) YO - pz,k-l ’ nlo ak-l+ﬁk~l+3 '

B - B ‘*--
Nog & Tee1T0k-12 0 93 T Py (1P pg) o

o~ oy
and 93 7 P11 P n)
Also, let
(8:3) mgy T Npgee 5 oy T Mo 5 Py T Ngers
ng T omyg thag s Xy 7 Byga/Nygees V107 Boyga /Moy
k'
Xy (xl, yl) , and C§ = iik C; -

With these substitutions and assumptions we can use the results
of Sections 5.2 and 6.2. We shall assume further, as in Sec-

tion 5.2 that klO + k1% + k12y02 kog * kyxy F kon¥q

Using the above assumptions and (5.1) we see that the left
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hand side of the inequality of (8.1) is equivalent to

Eg L(®,b) with the altered prior distribution of © and is

koo, * kZlEO + k22§0‘ Similarly, using the above assumptions,

(5.8), the arguments leading to (5.9), and (5.10) we can find
the expression for the right hand side of the inequality of
(8.1) and thus obtain for our stopping rule:
Do not take the k'th stage if
k2 \ k21xo k22y0 < min [Ci
@
- —t (z -~ VB E(M)) Bz

YR o in
hmin /_—""hmin E(M)

kg T kpxg F kzzyo)J
IOI’

Do not take the kt'th stage if

/ /_——hminL(M) )B(z)ageo

min

where hmin is the minimized value of h in (5.8). It will be

seen from (5.8) and the arguments leading to (5.9) that

2 1 1
l/hmin, l k (nlo n10+nll)
+ u% k% { L L

Nog  Npothpy



where nyq and n,, are chosen so that (5.9) is satisfied, and

that (5.8) is minimized when h = hmin‘

If we let u = v hmin E(M), then we can let
®

Lyp(w) = (z - u) g(z) dz
u
which Raiffa and Schlaifer {(1961) call the "linear loss inte-
gral" and tabulate in their book. Thus by using their table
one can apply this stopping rule without resorting to a dig-
ital computer. The computations are simplified if we make
the following observations and assumptions:

From (5.9) it is seen that we obtain hmin when

Mo TH3 | K J Tog .
N + Mgy ko 9 1

Let us also assume nlO/n20 = RY. (This assumption will most
likely be good after the first few stages.) Then
Ny = Ry npp and nyy T Ry mpg * Ry nmyy - 1y T Ry 0y o

0y Riny
Thus R L and nyq = §§¥T . Also, since we let

Ring Ny
NG = nyg Yt nyes Dy MA§§¢I and nyy = R+L Then
~ M ny oy

Ry ¥ Mo TOREL (ML T Ro) and myy *ompg © ppEr 4 amd
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10
(Ri+1 Ri+l
ng n0+nl

. [o1 KT 1 1
B ( RY o3 k3 ) (R§+1) (nO ~ ngytn, )

Ri+l Ri+l
1/h . = o2 k% — -
min 171 Efn Ri(no+nl)

Rizczkz
- 22 + 62 k2 | (R +l)( 1 1 )
Ri 2 "R i ng n0+nl
= 32 12 2 1 _ 1 )
-.)2 k2 (Ri+l) ( no n -+ nO

_ o el 1 1
= Ukgloy + lkylop)? (r%) - n0+nl) ‘

By adapting the above results to our stopping rule, and
making the substitutions of (8.2) and (8.3) we obtain:

4
Do not take the k'th stage if

ket 1 1
(8:5)  miny = G =Ky [T - kI
2 ongt6 L ongtetN,
1=1 i=1
[tk Py g1 KoPs ey |
"L 1 1 zZ 95
BT CET -
K L n, + &4 ng+otN

wnere K3 7 2 51 /By o1 (1P )

and where lko +klpi,k-1 * kzpz,k-ll
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is used so that the case in which

+k >k +k

Koo ¥21P1,k-1"%22P2, k-1 = K10"K11Py k- 17K12P2 k1
is also included.

For the special case in which

ki + (62-61) for b = 1

10
L(e,b) = )

so that kO = U, kl = =2, and kz = 2 the stopping rule
becomes:

Do not take the k'th stage if

k?
. ) 1 L
(8.6)  minf» C - ey ST Tk
* Eomgte Lo on tetNg,

g1 1 1=1 kk

‘pz ,k"’l - plgk"ll

1 i} I
k-1

ni+6+Nkk'

i=l

2
7] ) iz 5 - _*

We would like to have a better method for evaluating
(8.5) than enumeration over the possible values of k'. Let

C be the cost per observation and assume that it remains the
kt

same from stage to stage. Then by Ci = G Nkk* . Suppose
i=k

we wanted to find Nkk" where the possible values of NKK' are

it

1,2,+44,N _, such that the expression in brackets in (8.5)
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k-1
was minimized. If we let n=N_,,, nt*t = Z n,%6 ,
kk j=1 =
- \ = o B ES 2 =
Iy = m*l = kg * kyPy g + kpBp,penls b 7 WK 45 kg = 1,
and k, = C in Equation 5-38a on page 115 of Raiffa and
Schlaifer (1961), we have

1 1
‘o) el T ET
v¥ie ) = -~} CN - K 4 n,t L n;totN
n Y AP S R 5
L ko * %3Py 1 * BpPo pen|
10
T I
L TED
K £ n+6 L n,t6+N
k-1 [ .5 P70 5 M e

Thus our problem is equivalent to finding n such that v*(en)
is maximized, which is the problem solved by Raiffa and
Schlaifer. Let n® be the optimal value of n. Graphical
methods are used to find n°. Chart I in the back of their
book gives no for given values of Dco and Z, where by sub-

stituting into their expressions for ﬂQ, Da>’ and Z we have

n° = no(C/Kk_l)z/3 ’

—

kg T kyDy g gt koD,
- ) %
Kpe1/ (.L “146)

Do




K 1/3
and Z = k-1
n k-1 32 .
C ( % ni+6)
i=1

Thus with the use of the chart our stopping rule procedure
becomes:
(1) Compute Do and = and refer to Figure 5.10 on page
118 of Raiffa and Schlaifer's book, which has Zo
graphed as a function of D', where D' =D _ . If

o0

Z < Z, for the given Doo’ do not take the kt'th

C
stage but make the terminal decision (b = 1 or
b = 2) on the basis of the results for the first
k - 1 stages.

(2) Ifz> ZC’ refer to Chart I, find the 1° (and thus
the no) which corresponds to the given Z and Doo’

and continue as follows:

(3) 1Ifn° > e Compute

i 1
CNyy = K1 [ %23 ) T kI o
L n,t L n,Tot
j=1 1 =1 1 km
- Ik + K9Py y1 * KoPp gl
g T 3 T
BT TR
K £ n,+ 5 n,+6+N
k-1 j=1 *+ j=1 km

with the aid of Table II on page 356 of Raiffa and

Schlaifer's book. If this expression is greater
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than or equal to zero, do not take the kt'th stage
but make the terminal decision. Otherwise take
the k'th stage.

o _- s - .0
(4) If n® <N and if Nkkb <n°® < N kg2

where k < ké <m - 1, do not take the k'th stage

if
T 1
CN. K 'k 6 s &
min - L n,t L  n,to+N,
k' kk' k"'}. A i.__.:l i i_:l i kk'
« T, lko i klplgk"‘l i k2p2 9k"‘l‘ -0
Pk —
1 1
k-1 T k-1
5 . +6+
Kk-l iil ni+6 iil ni%é Nkk’

where in this case k' is either ké or ké + 1.

(5) Ifn® <N andif o= kiy s Where k Sky sm,

take the k'th stage.
(6) 1Ifrn°< n, s do not take the ktth stage if

1 ) 1
k-1 6 k-1 6
Cn, - K L n,+t L n.totn
L ke *kyPy i1 * KaPp e | > 0.
W o T T
k-1 = k-1
Kk— L n,tC X ni+6+nk
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8.3 Results of Simulation Studies

o]

A program for studying by simulation the approximate
procedure with the stopping rule given by (8.6) has been
written. In this program it is assumed that the cost per
observation C is the same for every stage so that

kt

Zk Ci = CNkk" The program generates rectangular random
i;—;

variables between O and 1. Then at the k'th stage, for a
given Nyps Oyg random numbers are generatedy and the number
of these random numbers less than a given el is rig® Simi-
larly, the number of Noy random numbers which are less than
a given 6, is Tor® Also, ties between two equivalent values
of nqy or between the terminal decisions b = 1 and b = 2 are
broken by generating a random number, taking one decision if
it is greater than .5, and taking the other if it is less
than .5.

| The process of going through the stages and simulating
the experimental outcomes of these stages until a terminal
decision is made is repeatea & given number of times. How-
ever, instead of going through all m possible stages before
arriving at a terminal decision in a given repétition, the
program has the procedure stop at the k'th stage and make

the terminal decision if (8.6) holds. After all the repeti-

tions of the vrocedure have been made, the program has the
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computer punch out the number of repetitions which gave b = 1
as the terminal decision and for each stage (including the
"O"th stage, which means that the terminal decision was made
without any experimentation at all) the number of repetitions
in which the terminal decision was made immediately after the
stage was performed. The linear loss integral LN*(M), which
is needed in the computations is computed by interpolation in
Table II on page 356 of Raiffa and Schlaifer's book (1961).
Table II is read into the computer as data before the compu-
tations begin. Since Table II gives values of Ly, (m) for
O <# < 4.0 only and Ly, (u) becomes quite small for
b > 4.0, Ly, (p) is assumed to be zero for 4 > 4.0.

Tables 7 and 8 give the results of the application of
the computer program to two examples. These tables show
that the average number of observations decreases as 191-621
increases for a given example. Alsc, as one would expe-t,
the average number of observations decreases for a given
el, 62 combination as the cost per observation C increases.
The assumption that Ly,(m) = O for u > 4.0 does not affect
the results for these examples unless the cost per observa-
tion is zero or very small. In each case that the cost is
zero the number of repetitions which stop before the last

stage can be explained by the false assumption that LN*(M)=O
for p = 4.0
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IX. GENLRAL DISCUSSION OF THE RESULTS
AND RECOMMENDATIONS

In the numerical studies done in this thesis almost all
of the examples have assumed a prior distribution with @y =
ﬁo =Yy 60 = 0. This prior distribution is the one a per-
son would use if he knew little or nothing about the values
of 61 and 82 prior to the experiment. Thus he would weight
all combinations of 9, and U, in which O 5’9115 1 and
0 < 6, < 1 equally. Also, in almost all of the examples
Loss Functions 1 and 3 as defined by (2.11) have been used.
These loss functions are symmetric in that they penalize the
experimenter equally if he makes either of the two possible
wrong terminal decisions (b = 1 when 91 < 8, or b = 2 when
]

>0 However, in Loss Function 1 one has a "bonus" for

1 2)'
making the right decision and a penalty for making the wrong
decision which are proportional to 8, - 6, with the constant
of proportionality for one terminal decision the negative of
the other. On the other hand, Loss Function 3 applies in the
situation in which one has a loss for making the wrong deci-
sion which is independent of 91 - 92 once it is determined
that 81 > 62 or 91 < 82.

It must be admitted that in the examples studied in

Tables L and 5 the gains in using even the optimum procedure,

extensive-form analysis, over merely using half of the



of the observations on Drug 1 and the other half on Drug 2
cannot be considered "tremendous." In fact, when el and 92
are both close to .5, equal division seems better in general.
Nevertheless, if 61 and 62 are close to either C or 1, then
the differences in the probability of choosing the correct
terminal decision are large enough that they cannot be ig-
nored -~ especially if the loss for making the wrong deci-
sior is large.

However, extensive-form analysis is completely imprac-
tical for examples which are at all large even if one has
access to a digital computer so that approximations must be
used. The results indicate that, if one has a computer and
is not certain that 91 and 92 are both close to .5, he should
use the stage~by-stage procedure. In practically all of the
examples studied in Tables 4 and 5 there was relatively little
loss of probability of choosing the correct terminal deci-
sion when the stage-by-stage procedure was used instead of
extensive-form analysis. In addition, the results of Section
6.1 give some weight to the arguments for using the stage-by-
stage procedure instead of extensive-form analysis when one
has a linear loss function. Finally, as was pointed out in
Chapter 3, if one has a linear loss function and only a few
observations in each stage, it is quite possible to do the
computations for the stage-by-stage procedure by hand with

the aid of a table of beta functions. (A Table of besta



el

functions is given by Tables of the Incomplete Beta Function
(1934).)

The results for the approximate procedure for the exam-

ples studied are disappointing. There seems to be little ad-
vantage in using the approximate procedure over equal divi-
sion of the observations when the prior distribution is rec-
tangular and the loss functions are symmetric. In addition,
there are sizable losses of probability of choosing the cor-
rect terminal decision when the approximate rather than the
stage-by-stage procedure is used. However, the computations
for the approximate procedure are quite simple and certainly
do not require a computer; and there are small gains over
equal division when the total number of observations and
stages is large and @l and 9, are close to O or 1. Thus the
approximate procedure should be used if one requires only
simple, unsophisticated computations to perform. The
"generalized approximate procedure" as given by (6.3) can be
used as an approximation for the stage-by-stage procedure
(and thus extensive-form analysis) for the general linear
loss function (2.7). However, the author was unable to de-
rive a "generalized approximate procedure™ for the general
constant loss function (2.1) so that it appears that, when
one has a constant loss function, he should use the approx-
imate procedure only when his loss function is symmetrice.

The results of Chanter 5 are not only interesting in
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that they lead to the approximate procedure but also are of
interest in that they are solutions to another general prob-
lem besides the principal one considered in this thesis.

They give the procedure one would use in a stage-by-stage
procedure if two normal random variables were generated at
each stage rather than two binomial random variables. Again,
results are available for the general linear loss function
and for a symmetric constant loss function.

If the costs of sampling are relatively large or if the
total possible number of observations is large, it is quite
possible (and probable) that one will want to stop and make
his terminal decision before he reaches the last possible
stage. In fact, if the costs of sampling are very large
relative to the possible terminal losses, one might want to
make his terminal decision without any sampling at all.

Thus stopping rules for the stage-by-stage procedure for

both linear and constant loss functions are derived in Sec-
tion 8.1. However, it is obvious that they are most unwieldy
and are useful only for very small examples even if one has

a digital computer available. In Section 8.2 a stopping rule
for the approximate procedure when one has a linear loss
function is developed. It is shown in Section 8.3 for two
examples that this stopping rule bshaves satisfactorily. Of
course, this stopping rule can be adapted to the case in

which one has a stage-by-stage procedure which generates



the normal random variables at sach stage instead of binomial
random variables. Also, it is recommended that it be used

as an approximation when one has a stage-by-stage procedure
which generates binomial random variables at each stage in-
stead of using the stopping rule for linear loss functions
developed in Section 8.1.

Thus the following final recommendations are made if
one wants to decide in a multi-stage procedure which of two
binomial populations has the higher probability of success
and has symmetric linear or constant loss functions and
rectangular prior distributions:

(1) The approximate procedure should be used if one
must have simple uncomplicated computations or if
one is quite confident 91 and 8, are close to or
syrmetric about .5.

(2) If one is not sure 6, and @, are cliose to or sym-
metric about .5 and if a digital computer is avail-
able, he should use the stage-by-stage procedure.
(If one has a linear loss function and only a few
observations in each stage, a computer will not be
necessary.)

(3) If one feels that his costs of sampling are not
very small compared to the possible losses of the
terminal decision, has a linear loss function, and

is using either the stage-by-stage or approximate
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procedures, he should use the stopping rule

developed in Section 8.2.
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X. SUGGESTIONS FOR FUTURE RES:ARCH

It is obvious that many extensions to the work done in

this thesis could be made. For example, the author hopes to

do more computer work with non-symmetric loss functions and

prior distributions which are not rectangular to determine

how changing the prior distribution and the loss function

affects the probability of choosing the correct terminal de-

cision. It will also be of interest to compare extensive-

form analysis, the stage-by-stage procedure and equal divi-

sion for these loss functions and prior distributions.

In addition, for the cases in which one does not have

symmetric loss functions or a rectangular prior distribution

one might compare these four procedures with the following:

In the k'th stage (k ® 1, 2, ..., m) take Ny, and nyy

(subject to nyy + ny = 1) such that

n., +oa.+t B+ 3 R, when the loss function is
1k 0 9 o constant and symmetric
Mo T Yo T g T3 R! when the loss function is

U .
linear

where Ry and R! are as defined in (4.1) and (6.3) when k =

0.

If the loss function is linear and the prior distribution is

rectangular, take Ny and Ny such that

K
ky

Ny + 3
Ny + 3

s
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Of course, one might study thess procedures when the
random variables gensrated at each stage are other than nor-
mal or binomial (e.g., Poisson or exponential). Also, the
case in which one has normal random variables with unknwon
variance generated in a stage-by-stage procedure would be of
interest.

Two problems connected with this thesis for which the
author has so far been unable to find a workable solution are
extensive~-form analysis when the random variables generated
at each stage are normal with known variance and the stage-
by-stage procedure with normal random variables with known
variance and a constant but non-symmetric loss function
(ql / q2)'

The author hopes to do more work on the proposed stop-
ping rule. A stopping rule for the approximate procedure
with a symmetric constant loss function would not be diffi-
cult to derive, However, the computations necessary for it
might be rather long if there are many stages. It would be
interesting to determine if the corresponding stopping rule
for the linear loss function can be used as a rough approxi-
mation.

In addition, since some of the greatest gains in using
the procedures proposed in this thesis can be achieved by
reducing sampling costs by the use of the stopping rule,

these procedures with the stopping rule should be compared
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with other procedures in which the total number of observa-
tions is a random variable such as the sequential analysis

procedure proposed by Bross (1952).
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XI. SUMMARY

The general problem considered in this thesis is the
following:

Suppose one desires to compare two drugs, Drug 1 and
Drug 2, (or any two binomial populations) in a m-stage test
procedure. The probability that Drug 1 results in an im-
provement in a patient in any one of the stages is 61, and
the corresponding probability for Drug 2 is 62. We assume
that it has been decided prior to the experiment that n,
observations will be taken in the kfth stage (k = 1,2,..0,m),
Welwant to partition n, into nyy and Ny s the number of obser-
vations allocated to Drug 1 and Drug 2, respectively, on the
basis of the results of the observations in the previous k-1
stages. After the last stage is taken, we wish to make the
terminal decision that either 61 > 0, or 81 < 62.

We let & = (0, 9,) and let x, = {r,,, ry), vhere oy

and To are the numbers of successes out of Ny and Ny, re-
spectively. We let a, be the decision of what size nqy (and
thus Nop = Oy = nlk) should be and let b be the terminal deci-
“sion, where b * 1 represents the decision that 61 : 92 and
b = 2 represents the decision that 91 < 62.

We assume a prior distribution, or weighting function,

for 6 of
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@ Br ¥ 8
6. (1 -9,)%0.9(1-0,)0
(10.1) 0(8) = =1t L 2 2
. f Blagtl, Byrl) Blr,Tl, 8,71) ’

where ags ﬁo, Yo and 60 are non-negative integers, 0 < 61.5 1,
and 0 < 82‘5 1. We wish to find strategies for finding ay,
Bnyeeesd s and finally b, which are optimum relative to either
the constant loss function

(1002) L(Xl,-..,xm,al,...,am,b,e)

a7 if b = 1 and Gl < 0,

={ a, if b =2 and 6, > 9, ,

U otherwise
where q; and g, are positive real numbers, or the linear loss
function

(1003) L(Xl’l..,xm,al,OQt’aﬂl,b’e)

+ kll @l + k12 e, if b1

-
(]

+ k2l Bl + k22 62 if b= 2

where each kij (i = 1,2,% j = 0,1,2) is a real number. In
order to do this we use extensive-form analysis, which pro-
ceeds as follows:

(1) For fixed values of XqgewesX s8yseeerd , and b

compute L(xl,...,xm,al,...,am,b,e).

EG'XI,...,Xm
(2) For fixed XppesesX 5875000 ,8 cCOmpUtE

L(l)(xl,...,xm,al,...,am) =
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min E
b GIXl,Q.',){Yn

and choose the "b" which gives the minimum.

L(xl,...,xm,al,...,am,b,e)

(3) For fixed values of XyseeesX 7 and @y,ee.,a,

(1)

compute E (Xl""’xm’al""’am)'

xmfxl,...,xm
(4) Then for fixed values of XysesesXy 1987 pe0es8 7
compute

(2)
L (xl,...,xm_l,al,...,am_l}

— i (1)
mgr’; xpseeerx, o T (%75 00esXp 8 500058,)

and choose the “am" which gives the minimum.

(5) Continue in this manner with each stage until the
first stage.

(6) On the first stage choose a; such that

- (m) .
ﬁxl L (xl,al) is a minimum.

Expressions for the expected values in Steps 1 to 6 are given
in Sections 2.3 and 2.4 of this thesis. A program for exten-
sive-form analysis was written for the I.B.M. 1620 computer,
and some examples were worked out with the use of this pro-
gram. It was found that, even with the computer, only small
examples could be handled because of the time required.
Because of this difficulty the stage-by-stage procedure

was proposed. In this procedure it is assumed that at the

k'th stage (k = 1,2,...,m) there are only k stages iua the
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entire procedure and that one is at the terminal stage. Thus

at the k'th stage (1 = 2,3,...,m) one evaluates

E min &,

L(X ,...,X ,a PR a ,b 9)
xklxl,...,xk_l b elxl,...,xk 1 k?71 WK
and chooses the "ak" which minimizes the expression. At the

first stage one evaluates Exl m%n Eelxl L(xl,al,b,e) and

chooses the "al" which gives the minimum. Lxpressions for
these expected values are given in Section 3.1 for both the
linear and constant loss functions. It is shown that, when
we are at the k'th stage, we can assume we really have only
a one stage procedure with an altered prior distribution. If
we have a linear loss function with only a few observations
in each stage, we can do the computations for the stage-by-
stage procedure without a digital computer. With a computer
much larger examples can be worked when the stage-by-stage
procedure is used than when extensive-form analysis is used.
Finally, the approximate procedure, which requires very
simple computations and certainly does not require a computer,
was proposed. It consists of minimigzing Var(el—ezlxl,...,xk)
at each stage. It is shown that this is approximately equiv-

alent to taking

(10.4) LR S T L S . S . S N
b myg * Rq ¥ 1 ’
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k:l
where Qe < iil ry4 + g ’
k:l
k-
Te-1 T LE P Yo o
kjl
O -1 1 (ny; = rp3) * 85

IS

Proroq (1 =D o )
ang Ry - |okakel 1,k-1 )

Py k-1 (1 = Pp yoq)

— a1t 1
where P1,k-1 G 1 T Bpq T2
- kel 1
and Po,k-1 " ¥ ] T o1 72 .

The approximate procedure and the stage-by-stage proce-
dure were compared in several different examples with exten-
sive-form analysis and equal division of all the observations
between Drug 1 and Drug 2 by the computation of the proba-
bility of choosing b = 1 for different combinations of el and
62° It was assumed for these computations that the prior
distributions of ©; and 0, were rectangular (g = By = vy ™
60 = (0}, the constant loss function had 97 T 9 ¢ 1, and the

linear loss function had ki45 = ky = 0O, kll'z ky, = -1, and
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It was found that for 0 = .6 and 6, * .4, the approx-
imate procedure and equal division of the observations gave,
in general, the highest probability of choosing the terminal
decision b = 1. For &; = .95 and 8, = .80 extensive-form
analysis gave in practically every case the highest proba-
bility of choosing b = 1. The decrease in probability of
b = 1 from extensive~form analysis to the stage-by-stage
procedure was, however, relatively quite small in general
whereas the decrease from the stage-by-stage procedure to the

approximate procedure was relatively large. In addition, in
all the examples studied there was very little to no decrease

when equal division rather than the approximate procedure
was used. Thus it appears that, if one has a computer, he
should use the stage-by-stage procedure but that, if one
must have relatively simple computations, he should use the
approximate procedure since there are some gains over equal
division in large examples for which 9, and ©, are close to
O or 1 even though these gains are small.

The stage-by-stage procedure for the case that normal
variables with known variances rather than binomial variables
are generated at each stage and the prior distributions of
91 and 62 are normal was derived for the general linear loss

function and for the constant loss function with @ T A T 1.

It was shown that the optimum stage-by-stage procedure for
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the linear loss function is to take Ny such that

(10.5)  phak=1 " Pk S a4 ,
Ny k-1 7 g - Mg ko | 9
k-1 k-1

where Nl,k"l = ii;o nli ’ Nz,k“"l = i_bo n2i ’ nlO and nZO are

parameters of the normal prior distributions of el and 92,
g = 4 + N5 kj = klj - ij for j = 1, 2, and 9y and Uy

are the standard deviations of Populations 1 and 2. For the
constant loss function with q; T ap T 1 the optimum stage-by-

stage procedure is to take 0y such that

N T G
24k-1 k 1k 2

The approximate procedure (10.4) was then derived from
(10.5) with lkl/k2]=land (10.6) as a normal approximation
to the binomial distribution. However, if one left the term
Ikl/kgl in (10.5) in the derivation, one would obtain the
"oeneralized" approximate procédure with Rk-l replaced by
A D VAN

If the costs of sampling are large compared with the
losses associated with the possible terminal decisions, we
shall most likely want to stop the experimental procedure
before reaching the last possible stage and make our terminal
decision at that point. Suppose we have run k-l stages and

want to decide whether or not to take the k'th stage
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(k = 1,2,0040,m). The stopping rule used for the stage-by-
stage and the approximate procedures in this thesis tells us

not to take the k*'th stage if

Iﬂ%n E‘lel,c e ,Xk”—l L(Xl,' ) ’Xk__l,al,o.-,ak"l’b,e)
kt
< min L C, *tmin I

k* | ikt oa, Kpger | Xy 0o sy

* min E

o elxl’ .o ’Xk_l}xkk' L(Xl, se ,Xk_l,al,c . ,ak""l’akk"b’e)

k?
where N, , = Z n.,
kk i+

lek' is the number of observations on
Population 1 out of Nkk" Nékk' is the number of observations
on Population 2 out of Ny, ,, Biyper @nd Ry oy are the numbers
of successes out Qf lek’ and N2kk" respectively, C; 1is the
cost of the i'th stage, 81+ 1o the decision of what lek'

to take, and k' = k, k+tl, «se, m. This decision rule is
applied to the stage-by-stage procedure for both the linear
and constant loss functions. It is also applied to the
"generalized" approximate procedure when a linear loss func-
tion is assumed. In this case one can apply the stopping

rule without using a computer when he uses charts which are

given in Raiffa and Schlaifer's book (1961).
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ABSTRACT

The general problem considered in this thesis is to
determine an optimum strategy for deciding how to allocate
the observations in each stage of a multi-stage experimental
procedure between two binonial populations (e.g., the num-
bers of successes for two drugs) on the basis of the results
of previous stages. After all of the stages of the experi-
ment have been performed, one must make the terminal deci-~
sion of which of the two populations has the higher probabil-
ity of success. The optimum strategy is to be optimum rela-
tive to a given loss functiony and a prior distribution, or
welghting function, for the probabilities of success for the
two populations is assumed. Two general classes of loss
functions are considered, and it is assumed that the total
number of observations in each stage is fixed prior to the
experiment .

In order to find the optimum strategy a method of anal-
ysis called extensive-form analysis is used. This is essen-
tially a method for enumerating all the possible outcomes
and corresponding strategies and choosing the optimum strat-
egy for a given outcome. However, it is found that this
method of analysis is much too long for all but small exam-
ples even when a digital computer is used.

Because of this difficulty two alternative procedures,



which are approximations to extensive-~form analysis, are
proposed.

In the stage-by-stage procedure one assumes that at
each stage he is at the last stage of his multi-stage proce-~
dure and allocates his observations to each of the two popu-
lations accordingly. It is shown that this is equivalent to
assuming at each stage one has a one stage procedure.

In the approximate procedure one (approximately) mini-
mizes the posterior variance of the difference of the pro-
babilities of success for the two populations at each stage.
The computations for this procedure are quite simple to
perform.

The stage-by-stage procedure for the case that the two
populations are normal with known variance rather than bino-
mial is considered. It is then shown that the approximate
procedure can be derived as an approximation to the stage-by-
stage procedure when normal apprbximations to binomial dis-
tributions are used.

The three procedures are compared with each other and
with equal division of the observations in several examples
by the computation of the probability of making the correct
terminal decision for various values of the population param-
eters (the probabilities of success}). It is assumed in these
computations that the prior distributions of the population

parameters are rectangular distributions and that the loss



functions are symmetricj i.e., the losses are as great for
one wrong terminal decision as they are for the other.

These computations show that, for the examples studied, there
is relatively little loss in using the stage-by-stage pro-
cedure rather than extensive-form analysis and relatively
little gain in using the approximate procedure instead of
equal division of the observations. However, there is a
relatively large loss in using the approximate procedure
rather than the stage-by-stage procedure when the population
parameters are close to O or 1.

At first it is assumed there are a fixed number of
stages in the experiment, but later in the thesis this re-
striction is weakened to the restriction that only the max-
imum number of stages possible in the experiment is fixed and
the experiment can be stopped at any stage before the last
possible stage is reached. Stopping rules for the stage-by-

stage and the approximate procedures are then derived.



