
SMA-Induced Deformations in General Unsymmetric Laminates

Marie-Laure Dano

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in 

partial fulfillment of the requirements for the degree of

Doctor of Philosophy 

in

Engineering Mechanics

M. W. Hyer, Chair
O. H. Griffin, Jr.

E. R. Johnson
F. Lalande

D. H. Morris

April 22, 1997

Blacksburg, Virginia

Keywords: Shape Control, Modeling of Smart Structures, Instability, Snap Through

Copyright 1997, Marie-Laure Dano



SMA-Induced Deformations in General Unsymmetric Laminates

Marie-Laure Dano

(ABSTRACT)

General unsymmetric laminates exhibit large natural curvatures at room temperature.
Additionally, inherent to most unsymmetric laminates is the presence of two stable
configurations. Multiple configurations and stability issues arise because of the geometric
nonlinearities associated with the large curvatures. The laminate can be changed from one stable
configuration to the other by a simple snap-through action. This situation offers the opportunity to
use shape memory alloys (SMA) attached to the laminate to generate the snap-through forces and
change the shape of the laminate on command. Presented is a model which can predict SMA-
induced deformations in general unsymmetric laminates and, particularly, the occurrence of the
snap through. First, a methodology is developed to predict the deformations of flat general
unsymmetric epoxy-matrix composite laminates as they are cooled from their elevated cure
temperature. Approximations to the strain fields are used in the expression for the total potential
energy, and the Rayleigh-Ritz approach is used to study equilibrium. To further study the
laminate deformations, finite-element analyses are performed. Experimental results are presented
which confirm the predictions of the developed theory and the finite-element analyses regarding
the existence of multiple solutions and the magnitude of the deformations. Results are compared
with those of several other investigators. Next, the deformation behavior of general unsymmetric
laminates subjected to applied forces is studied. The principle of virtual work is used to derive the
equilibrium equations relating the laminate deformations to the applied forces. By solving the
equilibrium equations as a function of the force level, relations between the laminate
deformations and the applied force are derived, and the force level at which the laminate changes
shape is determined. Finally, an existing SMA constitutive model is implemented into the
developed theory to predict the deformations of simple structures to SMA-induced forces.
Experiments on a narrow aluminium plate with an externally attached SMA actuator are
conducted. The experimental results show good agreement with the predictions from the
developed theory. Next, the deformation behavior of general unsymmetric laminates subjected to
SMA actuators is predicted using the developed theory. Experiments using SMA actuators to
generate the snap through of unsymmetric laminates are conducted. Good correlation with the
developed theory is obtained.
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Chapter 1 Introduction 

1.1  Concept

A significant amount of research is being conducted to design flexible structures that can
adapt to a changing environment. Interest lies, especially, in the use of strain actuation to control
structural deformations. Strain actuation can be induced by so-called smart materials like
piezoelectric ceramics and shape memory alloys. Shape memory alloys, commonly denoted
SMAs, are alloys that are able to engender large displacements and large actuation forces when
heated. Piezoelectric ceramic materials, on the other hand, are limited to small displacement and
force levels. Because of their unique features, shape-memory alloys can be used as actuators to
generate large deflections in structures, and thus they can be used to actually control the shape of
structures. 

Interest grows also in the use of unsymmetric laminates in structures. Unsymmetric
laminates offer the advantage of exhibiting natural large curvatures at room temperature. The
curvatures develop during the cooling of a flat laminate from the elevated cure temperature to
room temperature. During the cooling process, differences in thermal expansion in the different
layers cause the laminate to warp out of plane. The resulting out-of-plane deflection can become
quite large at room temperature, possibly up to one hundred times the laminate thickness. Because
of their naturally curved shape, unsymmetric laminates offer interesting potential in structural
applications. For example, they offer an inexpensive alternative to manufacturing curved panels.
Rather than using expensive curved molds, only flat caul plates are necessary to manufacture
curved panels. Another feature inherent to most unsymmetric laminates is the presence of two
stable configurations at room temperature. Most familiar, perhaps, are the shapes of a cross-ply
unsymmetric laminate. At room temperature this laminate can assume one of two configurations.
One configuration has a cylindrical shape with its generator parallel to the y axis. The other
configuration has another cylindrical shape with a curvature equal in magnitude but opposite in
sign to the first cylinder, and with its generator parallel to the x axis. The laminate can be changed
from one cylindrical configuration to another by a simple snap-through action. There is actually a
third configuration, namely one with a saddle shape, with the curvature in the y direction equal
and opposite to the curvature in the x direction. However, a stability analysis indicates that the
saddle shape corresponds to an unstable configuration and is thus never observed in practice.
Figure 1-1 depicts these three equilibrium configurations for a [02/902]T graphite-epoxy 12 in.
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square laminate. The vertical scale is the out-of-plane displacement, w, normalized by the
laminate thickness, H. The two horizontal scales are normalized by laminate side length, L. Note
the large out-of-plane deflections of the cylindrical shapes relative to the deflections of the saddle
shape. The existence of two equilibrium configurations with significantly different shapes
presents interesting opportunities. It may be possible to use SMAs as a means of providing the
snap-through forces and changing the shape on command. The simplest way to use SMA to
generate forces on the laminates would be to attach SMA in wire form on the laminate surfaces, as
depicted in Fig. 1-2. This figure shows two pairs of supports fastened to the unsymmetric
laminate, one pair on the top surface (in the y-z plane) and one pair one the bottom surface (in the
x-z plane). Plastically stretched SMA wires are attached to each pair of supports. When resistively
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heated by applying voltage, the plastically deformed SMA wire tends to recover its original shape
and shrinks. Since the wire is restrained, it is not able to contract freely and thus forces are
generated in the wire. These forces, as shown in Fig. 1-3 (a), produce moments. When the
actuated force reaches a certain level, the laminate will snap to the other cylindrical shape, Fig. 1-
3 (b). Then, by activating the SMA wire fastened on the top surface, the laminate will snap back
to its initial shape, Fig. 1-3 (a). This could result in a system that suddenly changes stiffness. For
example, with the configuration of Fig. 1-1 (b) and with forces F which act in the x direction
applied to the edges of the laminate, as depicted in Fig. 1-4 (a), the bending stiffness D11 is the
primary source of resistance to the forces. On the other hand, with the configuration of Fig. 1-1c,
forces in the x direction are resisted by the extensional stiffness A11, as illustrated in Fig. 1-4 (b).
Since A11 is much larger than D11, if the configuration changes from that of Fig. 1-4(a) to that of

x

z
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x-z plane

F F
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Fig. 1-2. SMA wire attached to an unsymmetric laminate
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Fig. 1-4 (b), then the stiffness of the system suddenly increases. A change back to the
configuration of Fig. 1-4 (a) suddenly reduces the stiffness again. Other potential applications
include using one or more unsymmetric cross-ply laminates as portions of a conduit transporting a
fluid, as shown in Fig. 1-5. A sudden change in the configuration of the conduit is possible by
snapping the laminate from one configuration to another. This change in wall geometry could
change the flow in the conduit on command. The feasibility of using SMA actuators to change the
shape of cross-ply unsymmetric laminates has been demonstrated by Dano [1]. In this work the
author developed a theory to predict the deformations of cross-ply unsymmetric laminates
subjected to simple applied forces [2]. Experiments with SMA actuators to generate the snapping
force were successfully conducted and proved that SMA actuators can be used efficiently to
change the shape of cross-ply unsymmetric laminates.

The present work is an extension of the work originally done by Dano [1], which was
restricted to cross-ply unsymmetric laminates. The work presented in this document focuses on
the use of SMA in conjunction with the inherent shape characteristics of general unsymmetric
laminates at room temperature. Specifically, the overall objective is to obtain a good
understanding of the mechanics involved when using SMA actuators to provide the snap-through
forces necessary to produce a change of shape of general unsymmetric laminates. To achieve this,

Fig. 1-4. Example of application: Unsymmetric laminates used as a bi-stiffness spring
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the following steps should be accomplished. First, the shapes of general unsymmetric laminates
that occur during cooling from cure should be clearly understood by developing an appropriate
model. Especially important is the occurrence of several equilibrium configurations during
cooling, and the room-temperature shapes. Second, the deformation behavior of general
unsymmetric laminates subjected to applied actuation forces should be correctly described,
particularly the snap through which occurs at a certain applied force level. The third step consists
of having SMA wires used as actuators to generate the forces applied on the unsymmetric
laminates. This involves combining a constitutive model for SMAs with the model of the
unsymmetric laminates theory so the deformations induced by the SMA actuators on the
unsymmetric laminates can be predicted as a function of the temperature of the SMA wire. By
controlling the voltage in the SMA wire, and thus its temperature, the shape of unsymmetric
laminates can be modified. At a certain temperature, the forces induced by the SMA actuators will
be large enough to make the laminate snap into another configuration. Finally, the several
representative unsymmetric laminates should be fabricated and SMA wires attached. The
observed configuration changes of the laminate as a function of wire temperature or voltage
should be compared with predictions. 

To follow are reviews of the work to date in the areas of research relevant to the current
work. Following these, specific objectives are defined, and the organization of this document is
described. 

flexible material

flow

flow

unsymmetric laminate

Fig. 1-5.  Example of application: Conduit made with cross-ply unsymmetric laminates



Chapter 1  Introduction 6

1.2  Unsymmetric laminates

Historically, unsymmetric laminates have been mostly used to evaluate the stress-free
temperature of a material system, or to evaluate the influence of environmental factors like
moisture or temperature on material behavior. For example, Pagano and Hahn [3] used the shape
of unsymmetric laminates to determine the stress-free curing temperature. Starting at room
temperature, a condition for which unsymmetric laminates exhibit large curvatures, they raised
the temperature until the laminates were completely flat, corresponding to curing temperature.
Since the curvature of unsymmetric laminates is directly due to thermal residual stresses,
Crossman, Mauri, and Warren [4] used the curvature of unsymmetric laminates to study the
effects of temperature, humidity, and time on thermal residual stresses. Thus, a change in thermal
residual stresses of unsymmetric laminates can be easily quantified by measuring the resulting
change in the magnitude of the laminate curvature. 

Unsymmetric laminates have also been used by several researchers [5-7] to study the effects
of bending-stretching coupling on static deflection, vibration frequencies, and buckling loads of
composite plates. In these works classical lamination theory was used to predict the behavior of
unsymmetric laminates. Classical lamination theory [8] is a linear theory using the following
assumptions:

• the displacements are continuous throughout the laminate

• the Kirchhoff hypothesis is assumed valid

• the strain-displacement relationships are linear

• the material response is linearly elastic

• the through-thickness stresses are small compared to the inplane stresses (the plane stress 
assumption)

Hyer [9] investigated the shapes of several families of unsymmetric laminates and observed
that the room-temperature shapes of unsymmetric laminates do not always conform to the
predictions of classical lamination theory. Instead of being a saddle shape, as predicted by the
classical theory, many unsymmetric laminates have cylindrical shapes. In addition, a second
cylindrical shape can sometimes be obtained by a simple snap-through action, as was discussed in
connection with Fig. 1-1. Hyer observed that the deformation occurring during the cooling to
room temperature of unsymmetric laminates can cause out-of-plane deflections large enough to
violate the assumption of the linear strain-displacement relationships inherent to classical
lamination theory. Hyer felt that incorporating geometric nonlinearities into the classical theory
was necessary to explain this behavior. To correctly predict the room-temperature shapes of
cross-ply laminates, Hyer developed a nonlinear theory [10, 11, 12] based on polynomial
approximations to the displacements, extended classical lamination theory to include geometric
nonlinearities, and used a Rayleigh-Ritz minimization of total potential energy. In the theory
inplane shear strain was assumed to be negligible. Jun and Hong [13] modified Hyer’s theory by
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including more terms in the polynomials to account for inplane shear strain. They found that shear
strain was indeed negligible for square laminates with very large or small length-to-thickness
ratios. However, for intermediate length-to-thickness ratios, shear strain can be significant.
Recently, Schlecht, Schulte, and Hyer [14] performed finite-element analyses to calculate the
room-temperature shapes of square unsymmetric cross-ply laminates. The finite-element analysis
calculations compared very well with the predictions from Hyer’s theory. 

The various investigations demonstrate that the deformation behavior of unsymmetric
laminates with cross-ply lay-ups is now well understood. The behavior of unsymmetric laminates
with arbitrary lay-ups, however, is still not fully understood, though there has been work in this
area. Dang and Tang [15] modified Hyer’s theory to predict the room-temperature shapes of more
general unsymmetric laminates. They generalized Hyer’s theory by introducing more
sophisticated polynomial displacement functions. Approximations of the displacements in the
principal curvature coordinate system were used as a starting point. Through coordinate
transformation, the displacements in the structural coordinate system were computed. The
distinction between the two coordinate systems used for the computation of the displacements is
illustrated in Fig. 1-6, the structural coordinates being the x and y axes aligned with the edges of
the laminate. Geometric nonlinearities were considered and a Rayleigh-Ritz approach based on
the total potential energy was used to compute shapes. The assumed displacements were not
specified correctly and only the sum of two coefficients in the assumed displacement functions
could be solved for, as opposed to solving for each coefficient separately. None-the-less, the
comparisons with limited experimental data from Hyer [9] were good.

Adopting the same approach, several investigators have proposed different versions of the
Dang and Tang theory [15]. Jun and Hong [16] modified Dang and Tang’s approximate

x

y

Φ

x-y: Structural (laminate) coordinate system

n

t

Φ: Principal curvature direction
n-t: Principal curvature coordinate system

z

Fig. 1-6. Principal curvature and structural coordinate systems
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displacement functions by adding more polynomial terms. They obtained fairly complex
generalized displacement expressions and used several changes of variables and trigonometric
relations to simplify these expressions. The modifications brought to Dang and Tang’s theory
appeared to affect the predicted shapes for small length-to-thickness ratios. For larger length-to-
thickness ratios, the predicted differences were negligible. To validate the theory, a few
experimental results for the principal curvature direction from Hyer [9] were presented. No
experimental results were presented for the magnitudes of the principal curvatures. Recently,
Peeters, Powell, and Warnet [17] developed a theory for square angle-ply laminates based on the
work of Jun and Hong [16]. They modified the displacement functions of Jun and Hong by using
a more complete set of third-order polynomials. To compute the total potential energy, Peeters,
Powell, and Warnet fixed the value for the principal curvature direction, Φ in Fig. 1-6, assuming
it was 45o relative to the laminate edge for all laminates. This assumption is based on classical
lamination theory which predicts that angle-ply laminates exhibit equal curvatures in the x and y
directions, and therefore have the principal curvature direction equal to 45o. They arbitrarily
forced the elongation strains in the principal curvature coordinate system to be independent of the
coordinate variables in a certain fashion. They also treated the laminate as if it was square in the
principal curvature coordinate system, the coordinate system which they assumed was oriented
45o relative to the edge of the square laminate! Experimental results from a single ±30o angle-ply
laminate were presented to compare with the theoretical model. The comparison between
experiment and predictions was reasonable, but the authors went on to explain how
manufacturing problems, material property uncertainties, and material inhomogeneities could
have influenced their experimental results. The present work will demonstrate that angle-ply
laminates actually do not all have the same principal curvature direction. Rather, the principal
curvature direction should be considered as a variable, and not be constrained a priori. 

The theories developed so far to predict the shapes of general unsymmetric laminates follow
the same approach used originally by Dang and Tang. This approach leads to expressions and
procedures for obtaining the strains that seem to be unnecessarily complex. It was felt a
theoretical model could be developed using a more straightforward approach and experiments
could be conducted on a variety of laminates to compare with the model. Thus one objective of
the present work is to develop a theory to predict the temperature-deformation behavior of general
unsymmetric laminates as they are cooled from their processing temperature to room temperature.
As a check on the theory developed, and to gain additional insight into the behavior of
unsymmetric laminates, finite-element calculations using the commercial code ABAQUS are
made to study the deformations behavior. Additionally, another objective is to conduct
experiments with a variety of laminates to verify the develop theory. 

1.3  Shape memory alloys

Since their discovery in the 1950’s, SMAs have received increasing interest. These
materials, after being plastically deformed, regain their original shape when heated. The strain
recovery process is associated with a solid-to-solid martensite phase transformation, which is
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activated when the temperature reaches the phase transformation temperature. Plastic strains up to
8% can be recovered by heating the shape memory alloy. In the recovery process, a very large
stress can be generated by the SMA. This stress can be used as an actuator force. 

The most common alloy to exhibit shape recovery is a nickel-titanium alloy, called Nitinol,
for Ni-(Nickel)-Ti-(Titanium)-Nol-(Naval Ordnance Laboratory, which developed it). Nitinol
exhibits phenomenal recovery of plastic strains. Moreover, Nitinol exhibits high corrosion
resistance and good fatigue behavior. Thus, Nitinol is an excellent mechanical actuator. 

The shape-memory effects particular to these materials make SMA suitable to use in many
applications. In the medical field [18] SMAs are employed for connecting bones and healing
fractures, as well as for orthodontic wires and dental castings. SMAs are also used as switches and
grips in robotic and automotive applications [19]. SMAs have been considered in structural
applications, such as in an adaptive rotor blade for a helicopter [20] or in a torque box for an
aircraft wing [21]. Considering SMAs for such applications implies being able to understand and
describe extremely well the mechanics involved in these adaptive structures. Specifically, it is
essential to be able to model the deformations induced in the structures by SMA actuators. This
requires a very good understanding of the constitutive behavior of SMA. Also, the mechanics
involved at the interface between the SMA actuators and the structure have to be clearly
understood. 

1.3.1  Constitutive models of SMAs

Since the discovery of Nitinol, numerous efforts have been made to explain and describe
shape memory behavior. In particular, various constitutive models have been proposed to predict
the thermomechanical response of SMAs by several investigators, such as Μüller [22], Tanaka
[23], Liang and Rogers [24, 25], Brinson [26], Bo and Lagoudas [27], and Boyd and Lagoudas
[28]. 

These different models are composed of two equations which may be coupled. One is a
constitutive equation relating the stress σ to the strain ε, temperature T, and the martensite
fraction, denoted ξ. The second equation is an evolutionary equation, also called a kinetics
equation, which governs the phase transformation. This equation relates the martensite volume
fraction, ξ, to the stress, σ, and the temperature, T, in the SMA. 

The existing models fall into two categories. They are either phenomenological models such
as Tanaka’s [23], Liang and Rogers’ [24, 25] or Brinson’s [26] models, or thermodynamic
models, such as the Bo and Lagoudas’ [27] or Boyd and Lagoudas’ [28] models. 

Phenomenological models

The form of the equations in these phenomenological models are mostly determined from
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experimental observations. The one-dimensional constitutive equation obtained from Tanaka’s
work [23] can be written as

(1.1)

where D(ξ) is the extensional modulus of the SMA material, Θ the thermoelastic tensor and Ω(ξ)
the transformation tensor. The variables with the subscript “o” represent the initial conditions of
the SMA. The form of the kinetics equation, ξ=ξ(σ, T), governing the phase transformation, may
vary from one model to the other. Tanaka [23] expressed the kinetics equation using an
exponential function of the form . Liang and Rogers [24, 25] modified Tanaka’s
model by selecting a cosine based kinetics equation. Brinson [26] extended Liang and Rogers’
model by including nonconstant material functions and by separating the martensite volume
fraction into a thermally-induced part and a stress-induced part. The model developed by Brinson
described more adequately the thermomechanical behavior of SMA than the previous models. 

Thermodynamic models

Thermodynamic models, such as those by Bo and Lagoudas [27] and Boyd and Lagoudas
[28], use a kinetics equation which is derived from the first law of thermodynamics to describe the
energy conservation and the second law of thermodynamics to describe the energy dissipation
occurring during the phase transformation. The resulting equation is complex and cannot be
rearranged to obtain a simple expression of the form , similar to the one used by
Tanaka, and Liang and Rogers. The constitutive equation is a simple generalized Hooke’s law,
relating the stress to the strain, temperature, and martensite fraction. 

Bo and Lagoudas [27] compared their thermomechanical models with the ones derived by
Tanaka, and Liang and Rogers. They showed that the models are related to each other under the
theory of thermodynamics. Bo and Lagoudas’ model, by using appropriate assumptions, can be
simplified to obtain models similar to Tanaka, and Liang and Rogers. Thus, the differences in the
existing models come from the assumptions initially used.

Thus it would appear that there are two possible models of SMA that can be used for the
present investigation, the Tanaka-based model, or Bo and Lagoudas model. The next section will
provide information on which model was chosen for the present investigation. 

1.3.2  SMAs in structures

Due to their ability to recover large strains and generate forces, SMAs can be used to
advantage in many structural applications. SMAs used as actuators can control the shape of
flexible structural systems. Several investigators have studied the interaction of SMA wires
attached externally to a simple cantilever beam. This structural system was chosen by a number of
investigators because beam theory leads to structural equations that are relatively simple. Also,

σ σo– D ξ( ) ε εo–( ) Θ T To–( ) Ω ξ( ) ξ ξo–( )+ +=

ξ ξ σ T,( )=

ξ ξ σ T,( )=
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SMA wires using as external actuators, as opposed to embedded actuators, simplify the
mechanics involved between the actuators and the structure. 

Chaudhry and Rogers [29] showed that external SMA actuators were capable of inducing
large deflections in beams. Brand, et al. [30] and Boller, et al. [31] combined Brinson’s SMA
constitutive model with linear and nonlinear beam theory equations to obtain a model which
predicts the deformations induced in the beam as the SMA wire is heated above the phase
transformation temperature. Specifically, the model predicts the strains in the beam induced by
the SMA actuator as a function of the temperature in the wire. Experiments using known weights
to deflect the beam were conducted and confirmed the necessity of using geometrically nonlinear
beam theory to predict the deformations when large forces were applied. No experiments were
presented to confirm the validity of the SMA-beam model. Xu et al. [32] also developed a model
predicting the deformations of a beam subjected to external actuators. The major difference
between their model and the model used by Brand et al. [30] or Boller, et al. [31] was in the
choice for the SMA constitutive model, as Xu et al. used Bo and Lagoudas’ SMA model. Using
different models should not, however, lead to dramatic changes in the predicted response of the
structure. Xu et al. also modeled the heat transfer taking place in the wire as the wire was heated
resistively by applying voltage. Thus, the model was able to predict the strain in the beam as a
function of temperature, electrical current, or time. Finally, Xu et al. conducted experiments to
validate the developed model. A cantilever beam with externally attached SMA wires was
deflected as the wires were heated using electrical current. Using a data acquisition system, they
recorded the strains induced in the beam, the force generated by the SMA wire, the wire
temperature, and the electrical current. Good correlations were obtained with the model
predictions. Since Xu et al. have proven experimentally the adequacy of their model to predict
accurately the deformations induced by shape memory alloys actuators, their model will be
favored in the present work over the other existing model, and will be used to compute the
deformations of unsymmetric laminates subjected to SMA actuators.

1.4  Summary of the research objectives

The overall goal of the research, modeling the mechanics involved when using SMA
actuators to change the configuration of unsymmetric laminates, is achieved by accomplishing the
following specific steps:

• Develop a theory to predict the temperature-deformation behavior of general unsymmetric 
laminates as they are cooled from curing temperature to room temperature.

• Compare the developed theory with theories developed previously by other investigators.

• Conduct finite-element analyses using the commercial code ABAQUS to obtain additional and 
more detailed predictions for the room-temperature shapes of unsymmetric laminates.
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• Manufacture a variety of unsymmetric laminates, measure their room-temperature shapes, and 
compare the experimental results with the predictions from the developed theory and 
ABAQUS.

• Develop a theory to predict the deformation behavior of general unsymmetric laminates to 
simple applied forces, particularly the snap through which occurs at a certain force level.

• Investigate existing constitutive models for SMAs and select the one which seems the most 
appropriate for the present study.

• Combine the selected SMA constitutive model with the developed theory so that the 
deformations induced by SMA actuators on the unsymmetric laminates can be predicted as a 
function of the temperature in the SMA.

• Attach SMA wires on the laminate surface, measure the SMA-induced deformations in the 
laminates as a function of the temperature in the SMA wire, and compare the experimental 
results with the predictions of the model.

1.5  Outline of the document 

The theory which was developed to predict the temperature-deformation behavior of general
unsymmetric laminates is presented in Chapter 2. This chapter also describes the finite-element
computations which were conducted using ABAQUS. Comparisons of the developed theory with
previously developed theory are also provided. The procedures to manufacture the laminates and
to measure their shapes are described in Chapter 3. Comparisons are established between the
experimental measurements and the predictions from the developed theory and from ABAQUS.
Chapter 4 presents the theory that was developed to predict the deformation behavior of general
unsymmetric laminates to simple applied forces. The mechanics involved as the laminates snap
through are discussed in particular. After Chapter 4, attention is focused on SMAs. In Chapter 5, a
constitutive model is described and implemented into the theory developed in Chapter 4 to predict
the deformations of simple structures to SMA-induced forces. The particular example of a narrow
aluminium plate subjected to SMA actuators is modeled and experiments are conducted to
validate the model. In Chapter 6, the deformation behavior of unsymmetric laminates due to
SMA-induced forces is predicted using the model described in Chapter 5. Chapter 7 presents
experiments that were conducted to check the accuracy of the model. Conclusions and
suggestions for further research are stated in Chapter 8. 
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Chapter 2 Deformation behavior of unsymmetric 
laminates due to a temperature change

This chapter presents the model that has been developed in this study to predict the
deformation behavior of general unsymmetric laminates subjected to a temperature change,
especially the cooling from the elevated cure temperature to room temperature. The model is
based on a geometrically nonlinear structural theory and accounts for the laminate characteristics
(stacking sequence, elastic and thermal properties, length, width, and thickness) and the ambient
temperature. A Rayleigh-Ritz approach is used to find conditions that render the total potential
energy stationary. Accordingly, conditions are sought which make the first variation of the total
potential energy zero. Stability of equilibrium is studied by examining the second variation of the
total potential energy. The net result is that laminate curvatures are predicted as a function of
temperature. To further study unsymmetric laminates and to verify the Rayleigh-Ritz approach,
finite-element analyses are conducted using the commercial code ABAQUS. Details on these
finite-element computations are presented in this chapter. 

2.1  Problem formulation

Consider an unsymmetric laminate of dimension Lx by Ly, as shown in Fig. 2-1. The
thickness of the laminate is denoted by H, and the thickness of a single ply by h. Upon cooling to
room temperature, the laminate, which was flat at cure temperature, warps out of plane, assuming
a cylindrical shape. For example, at room temperature a cross-ply unsymmetric laminate, as in
Fig. 1-1, will develop one of the two cylindrical shapes represented in Fig.1-1(b) and Fig. 1-1(c).
The laminate can be changed from one shape to the other by a simple snap-through action. Figure
1-1 shows that the laminate exhibits large out-of-plane deflections. In addition, at a given
temperature the laminate can have several shapes. Thus, in the study of the laminate
deformations, geometric nonlinearities should be incorporated in the analysis by way of the
strain-displacement relations. The analysis should also be able to find the multiple solutions, each
associated with a different shape. The presence of multiple solutions and geometric nonlinearities
implies that the study of the deformation behavior of unsymmetric laminates involves stability
issues. 
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The x-y-z laminate coordinate system used to analyze the laminate is shown in Fig. 2-1. The
z-axis is associated with the out-of-plane direction and the x and y axes are in the plane of the
laminate when it is flat at its cure temperature. The displacements of the midplane surface in the x,
y, z directions are, respectively, denoted uo, vo, wo.

2.2  The Rayleigh-Ritz approach

The key in using the Rayleigh-Ritz approach is to obtain good approximations for the
displacement functions to be used in the computation of the total potential energy. However, for
the present problem these displacement functions are only used to obtain expressions for the
strains needed to compute the laminate strain energy. There is no external work term in the total
potential energy. Thus, instead of using approximations for the displacements, as other
investigators [15-17] have done, the present theory directly uses approximations for the laminate
midplane strains, expressed in the laminate coordinate system.

2.2.1  Computation of the total potential energy

Assuming a plane-stress formulation, the total potential energy of the laminate, Π, can be
expressed as a function of the material and geometrical properties of the laminate, the applied
temperature change, ∆T, and the total strains by,

y

z

x

vo

wo

uo

h
H

Ly

Lx

Fig. 2-1. Laminate geometry and coordinate system
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(2.1)

where the Qij’s are the transformed reduced stiffnesses of the individual layers [8] and the total
strains , ,  are given by

. (2.2)

The quantities , ,  and , ,  are the total midplane strains and curvatures,
respectively, defined by

(2.3)

, (2.4)

where it is seen that geometric nonlinearities in the sense of von Karman are included. Here the
extensional midplane strains are approximated using the following set of complete polynomials:

(2.5)

where the cij’s and dij’s are to-be-determined coefficients. The inplane shear strain is more
difficult to assume, as it must be consistent with the strains  and . To assure consistent
strains, the inplane shear strain is determined using the strain-displacement relations. The out-of-
plane displacement, wo, can be easily approximated by 

(2.6)

where a, b, c are to-be-determined coefficients which represent, respectively, the negative of the
curvatures in the x and y directions and the negative of the twist curvature, as
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(2.7)

It is seen that the curvatures are predicted to be a constant throughout the laminate. Alternatively,
the curvatures a, b, and c can be thought of as average curvatures. The form of wo(x, y) in eq.
(2.6) is felt to represent the out-of-plane displacements for a large percentage, if not all, of the
unsymmetric laminates observed. 

Using the expressions for the extensional strains  and , and the out-of-plane displacement
wo, the inplane displacements uo and vo can be determined by integrating the rearranged strain-
displacement relations given by 

(2.8)

and 

(2.9)

Integrating eq. (2.8) and (2.9) with respect to x and y leads to

(2.10)

and 

(2.11)
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where h(y) and g(x) are a result of partial integration. To have , ,  each be complete
polynomials to order three, h(y) and g(x) were chosen to be of the following form,

(2.12)

In the above e1, e2, e3, e4, e5 and e6 are unknown coefficients. To eliminate rigid body rotation in
the x-y plane, e6 should be equal to e1. Therefore the displacements uo(x, y) and vo(x, y) can be
simply expressed as 

(2.13)

The inplane shear strain can then be easily computed by the third strain-displacement relation,
namely, 

(2.14)
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the recent investigators [15-17] studying more general unsymmetric laminates appeared to have
taken this simple approach. The approximations obtained for the midplane strains use a total of 28
to-be-determined coefficients. Back-substituting the midplane strains and curvatures into the total
strains, eq. (2.2), and into the definition of the total potential energy, eq. (2.1), the spatial
integrations in the expression for the total potential energy can be conveniently carried out. The
final result is an algebraic expression for the total potential energy of the laminate of the form

(2.15)

Obviously, Π is also a function of the laminate material properties and geometry, but here interest
centers on the unknown coefficients and the temperature change.

2.2.2  Variation of the total potential energy

As the problem is now posed in eq. (2.15), the variation of the total potential energy is
accomplished by allowing variations of the 28 displacement coefficients in eq. (2.15). From the
variation of the total potential energy, the first variation, δΠ, is obtained and can be expressed as

(2.16)

Equating the first variation to zero results in 28 equilibrium equations for the laminate. By solving
the 25 equations =0, =0, =0, expressions for the 25 coefficients cij, dij, and ek, are
obtained as a function of a, b, and c, namely,

(2.17)

Substituting eq. (2.17) into the remaining equations, fa=0, fb=0, fc=0, leads to a set of 3 nonlinear
equations which are functions of the curvatures a, b, c, and the temperature change ∆T. They are
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defined by

 (2.18)

Solving these equations as a function of ∆T using the Newton-Raphson technique gives the
equilibrium configurations of the laminate as it cools from the flat curing stage. The stability of
the equilibrium configurations can be analyzed by studying the second variation of the total
potential energy. Alternatively, the Jacobian of fa, fb, and fc needed in the Newton-Raphson
technique can be used. Here the latter approach is used and is described next. 

2.2.3  Stability analysis

In the computation of the equilibrium solution using the Newton-Raphson technique, the
Jacobian of fa, fb, and fc is computed for each temperature increment and is given by

. (2.19)

The equilibrium solution is stable if and only if the matrix J given by eq. (2.19) is positive
definite. By calculating the eigenvalues of the Jacobian matrix, the stability of the equilibrium
solution can be assessed. When one eigenvalue is equal to zero or negative, the matrix is not
positive definite and the equilibrium solution is unstable. 

2.3  Finite-element analyses 

Finite-element analyses using ABAQUS were conducted to simulate the cooling of the
laminate from cure temperature to room temperature. The objective was to obtain predictions for
the laminate deformations using a different approach and be able to compare with the results from
the Rayleigh-Ritz theory. Finite-element analyses also provide more detailed results for the
laminate deformations. The main difficulty in analyzing the laminate deformation behavior with
finite-element analyses is the presence of multiple solutions. Because there are multiple
equilibrium configurations, ABAQUS must be coaxed to continue on a particular path to obtain
the different shapes at room temperature. To force ABAQUS to follow a particular path, a slight
geometrical imperfection was introduced in the initial shape of the laminate. The imperfection,
δ(x, y), was chosen to give the laminate an initial cylindrical shape, and was defined by the

fa a b c ∆T, , ,( ) 0= fb a b c ∆T, , ,( ) 0= fc a b c ∆T, , ,( ) 0 ⋅=

J

a∂
∂fa

b∂
∂fa

c∂
∂fa

a∂
∂fb

b∂
∂fb

c∂
∂fb

a∂
∂fc

b∂
∂fc

c∂
∂fc

=



Chapter 2 Deformation behavior of unsymmetric laminates due to a temperature change 20

function

, (2.20)

where A is equal to 0.1% of the total laminate thickness H, and β is approximately equal to the
principal curvature direction. Without any imperfection ABAQUS usually converged to the
unstable shape. With the imperfection, ABAQUS would converge to one of the two stable shapes.
Thus, to obtain the three shapes, three series of finite-element calculations were conducted. For
each finite-element analysis a mesh of 100 4-nodes-shell elements was used, as shown in Fig. 2-2.
Each element had four nodes with five degrees of freedom each. Since free edge conditions were
assumed, only the node at the center of the laminate was constrained. Namely, at x=0, y=0, 

(2.21)

A constant temperature change was applied at the nodes. The displacement field and the
curvatures , , and  of the laminate were computed by ABAQUS at every node.

2.4  Numerical results

The thermally-induced deformation behavior of three families of unsymmetric laminates
with stacking sequences [-Θ4/Θ4]T, [(90-Θ)4/Θ4]T, and [(Θ-90)4/Θ4]T were analyzed. The last
family is cross-ply laminates that are rotated in the z-axis of the structural coordinate. The

δ x y,( ) A x β y βsin+cos( )2=

u v w
x∂

∂w
y∂

∂w 0 ⋅= = = = =

κx
o κy

o κxy
o

x

y

constrained
node

4 node-shell
element

Fig. 2-2. Finite-element mesh for the laminate
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particular laminates studied are square, approximately 11.5 by 11.5 in., and made of eight 0.005
in.-thick plies of graphite-epoxy prepreg, resulting in a total thickness H=0.040 in. The material
properties of the graphite-epoxy used in the predictions, and the experiments to be discussed later,
are assumed to be 

(2.22)

2.4.1  Solution procedure used for the developed theory

The set of three equations given by eq. (2.18) was solved to predict the curvatures of the
unsymmetric laminates as a function of temperature change, ∆T. Solving the set of equilibrium
equations by the Newton-Raphson technique was sometimes difficult, particularly if multiple
solutions were expected. Good initial values were required to obtain a meaningful converged
solution. The stacking sequences of the laminates studied were chosen judiciously to overcome
this difficulty. Each stacking sequence family has at least one value of Θ for which the laminate
curvatures are known. At Θ=0, the laminate of the first family is flat, and the laminates of the two
other families are cross-ply. For the latter two families, with Θ=0, the shapes could be computed
using Hyer’s theory [10, 11, 12]. Then, by increasing the value of Θ slightly, the curvatures
computed at Θ=0o could be used as initial values to solve the equilibrium equations at this
increased value of Θ. This procedure was repeated for increasing Θ, using the solution for the
previous value of Θ as initial values for the curvatures to solve the new set of equations. To
simulate the cooling of the laminate, the equilibrium equations were solved for a temperature
change ∆T starting from zero, corresponding to the curing temperature, and decreasing to -280 oF,
corresponding to room temperature. Stability of the predicted solution was checked for each ∆T.
With three families of laminates and a range of Θ and ∆T for each family, a number of numerical
calculations were required to understand the behavior of the laminates. The symbolic
manipulation package Mathematica® [33] was used to compute the set of three equations given
by eq. (2.18). To solve the set of equations as a function of ∆T and assess the stability of the
solutions, a Fortran program was developed.

2.4.2  Finite-element results post-processing

For every finite-element analysis performed, the displacement field and the curvatures ,
, and  of the laminate were computed at every node and at different temperature

increments. Counter to the assumption of the developed theory, the curvatures were not constant
over the laminate surface, as for the case of a [604/304]T laminate illustrated in Fig. 2-3. The
largest deviations from being constant occurred at the edges. To be able to compare the values for
the curvatures computed by ABAQUS with the curvatures predicted by the developed theory, an
average value for value for the finite-element curvatures was obtained by fitting the out-of-plane
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deflections computed by ABAQUS to an equation of the form

, (2.23)

which is identical to the form assumed in eq. (2.6). The average values for the curvatures , ,
and  of the laminate were thus determined by the coefficients c1, c2, and c3. In the case shown
in Fig. 2-3, the average curvatures evaluated by using the finite-element results are represented by
the planes, labeled FEA, cutting through the three-dimensional surfaces representing the local
curvatures. The curvatures predicted by the developed theory are indicated by the planes labeled
Ritz. Good correlations can be observed for that particular laminate, and thus the curvatures
computed by the developed theory are good estimates for the average curvatures of the laminate.

2.4.3  Predicted curvatures for the three families of unsymmetric laminates

The results from the developed theory obtained for each family are presented in Figs. 2-4 to
2-6 in the form of curvatures, i. e., (-a), (-b), and (-c), vs. ∆T. The curvatures of only two
laminates per family are shown so the figures are not cluttered. The average curvatures computed
by the finite-element analyses are represented by the diamonds and correspond to the room-
temperature shapes of the laminate (∆T=-280oF). Referring to the figures, at the curing
temperature (point A) the curvatures are all zero since the laminate is flat. As the temperature is
decreased slightly, some of the curvatures begin to have nonzero values, while other curvatures
remain zero.

Considering first the laminates from the [-Θ4/Θ4]T family in Fig. 2-4, it is noticed that as the
temperature is decreased slightly below the cure temperature, only the twist curvature  has a
nonzero value. As the temperature is further decreased to point B, the temperature-curvature
relations bifurcate. They follow either path BC, path BE, or path BD. With path BC the curvatures
in the x and y directions start increasing with decreasing temperature, while the twist curvature
continues to increase but with a higher rate. For Θ=45o the curvatures  and  are equal, but
for Θ=30o the curvature  is slightly smaller than . This result is in contradiction with the
assumption used by Peeters, Powell, and Warnet [17], that states the curvatures  and  are
equal for all square angle-ply laminates. This point will be discussed again later. Path BD is very
similar to path BC. The curvatures in the x and y directions on path BD are equal in magnitude but
opposite in sign to the curvatures on path BC. The twist curvature on path BD is exactly the same
as the twist curvature on path BC. With path BE the curvatures in the x and y directions remain
zero as the laminate is cooled. The twist curvature gradually increases but with a much smaller
rate than for the two other paths. The stability analysis shows paths BC and BD are stable. Path
BE is unstable and thus the corresponding shape is never observed at room temperature. The
average curvatures computed from the finite-element results agree very well with the predictions
of the developed theory for the two stable shapes. However for the unstable shape, the finite-
element average twist curvature is larger than the predicted twist curvature. The right portion of
Fig. 2-4 shows the three equilibrium shapes of the [-454/454]T laminate at room temperature (∆T=-
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280oF) as predicted by the developed theory. With these shape illustrations, uo, vo and wo are
taken to be zero at the geometric center of the laminate. It is important to note the differences in
the magnitude of the out-of-plane deflections for the unstable saddle shape compared to the two
stable cylindrical shapes. 

Considering the graphs obtained for the second family, [(90-Θ)4/Θ4]T, in Fig. 2-5, as the
temperature decreases slightly from curing temperature, the curvatures in the x and y direction
take nonzero values. Specifically,  is positive and  is equal in magnitude to  but is
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negative. Since the twist curvature remains equal to zero, the shape of the laminate is a shallow
saddle shape. As the temperature is further decreased to point B, the temperature-curvature
relations bifurcate into three possible paths, as was observed for the first family. Along path BC
curvature  increases while curvature  decreases, though it was not that large at the
bifurcation temperature. At room temperature curvature  has virtually disappeared. The twist
curvature remains equal to zero down to room temperature for Θ=0o, as the laminate is a cross-
ply, the shape being cylindrical with its curvature in the x direction. For Θ=30o,  increases in
magnitude along path BC as the temperature is decreased below the bifurcation temperature. The
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shape of the laminate corresponding to this path is cylindrical with a large positive curvature in
the x direction but the generator of the cylinder is rotated by a small angle relative to the y axis.
With path BD  and  increase in magnitude with decreasing temperature, while 
decreases, reaching a value close to zero at room temperature. The shape of the laminate at room
temperature is cylindrical with a large negative curvature in the y direction equal in magnitude but
opposite in sign to the first shape. The generator of this cylinder is rotated slightly relative to the x
axis. With path BE  remains zero but  and  both increase in magnitude, but they are
relatively small, and they are opposite in sign. This corresponds to a saddle shape. The stability
analysis shows that paths BC and BD are stable and path BE is unstable. The only two possible
shapes at room temperature are thus the two cylindrical ones. The two stable shapes and the
unstable one, all at room temperature, are shown in the right portion of Fig. 2-5. The average
curvatures computed from the finite-element analyses are slightly smaller, in magnitude, than the
ones predicted by the developed theory. 

Finally, the cooling of the laminates of the third family, [(Θ-90)4/Θ4]T, is illustrated in Fig.
2-6. As the laminate is cooled from curing temperature it begins exhibiting small curvatures in the
x and y directions which are equal in magnitude but opposite in sign, as well as some positive
twist curvature. After bifurcation, with path BC  increases along with , except for the case
of the cross-ply laminate, where Θ=0o. The curvature  is influenced by the value of Θ. For
Θ=0o the magnitude of  decreases to become close to zero for all temperatures. As Θ is
increased, curvature  increases and takes a positive value. When Θ is 45o, the stacking
sequence of the laminate becomes [-454/454]T, which is common to the first family. For this case
it has been observed that the curvature in the x direction is equal to the curvature in the y direction.
Along path BD in Fig. 2-6, the curvatures  and  are equal in magnitude to, respectively, the
curvatures  and  of path BC, but are opposite in sign. The twist curvature on path BD is
identical to the twist curvature on path BC. With path BE all curvatures show a minimal increase,
with curvatures  and  remaining equal in magnitude and opposite in sign. A stability
analysis shows that path BE is unstable, while paths BC and BD are stable. Actually, all laminates
studied exhibited two stable cylindrical shapes and one unstable saddle shape at room
temperature. These equilibrium configurations are discussed in detail for the three families of
laminates in the section to follow.

Good correlations can be observed between the curvatures predicted by the developed
theory and the finite-element analyses for the two cylindrical shapes. For the saddle shape
however, differences can be noticed between the twist curvature predicted by the finite-element
analysis and the developed theory. Reasons for the difference in the twist curvature magnitude for
some of the laminate unstable shapes are so far not clear.

2.4.4  Room-temperature shapes for the three families of unsymmetric laminates

To illustrate more clearly how the laminates look at room temperature, contour plots of the
function wo(x, y) were obtained for each laminate of the three families. These plots are
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represented in Figs. 2-7 to 2-9. In these figures the two stable shapes and the unstable shape,
corresponding respectively to point C, D, and E in the previous figures, are depicted. Looking at
the contour plots, the darkest areas correspond to the lowest values for wo(x, y) while the lightest
areas correspond to the highest values. In addition the principal curvatures, denoted K1 and K2,
and the principal curvature direction, denoted Φ, of each shape are indicated in the figures. So far
the equilibrium configurations have been described using the curvatures , , and . But it
is actually quite difficult to visualize how the laminates look like using these characteristics. It
was found more convenient to describe the laminates shapes by using the principal curvatures and
principal curvature direction. In the chapters to follow, the use of K1, K2, and Φ to describe the
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shapes will be favored over , , and . The principal curvatures and principal curvature
direction were evaluated from the laminate curvatures , , and , by

(2.24)

To obtain consistent results for all laminates, the principal curvature direction Φ was arbitrary
chosen to be associated with the principal curvature which had the largest magnitude. Thus, it was
in some cases necessary to add or subtract π/2 to or from the value of Φ obtained from eq. (2.24). 

Considering first the laminates from the [-Θ4/Θ4]T family in Fig. 2-7, it is interesting to note
that the principal curvatures and principal curvature directions of one stable cylindrical shape are
equal in magnitude but opposite in sign to the principal curvatures and principal curvature
directions of the second stable cylindrical shape. Of the two principal curvatures of a given
cylindrical shape, one is virtually zero while the other increases in magnitude with Θ. On the
other hand, for any unstable shape curvatures K1 and K2 are equal but opposite in sign. As a result
there are two possible values for the principal curvature direction of the unstable saddle, i. e., plus
or minus 45o. It is important to observe that the magnitude of the principal curvature direction for
the cylindrical shapes are different from one laminate to the other. Starting at 60o for Θ=15o the
magnitude of Φ decreases to 45o when Θ=45o. The present results conflict with the assumption
used by Peeters, Powell, and Warnet [17] to calculate the shapes of angle-ply laminates. As
discussed in Chapter 1, they assumed in their theory that the principal curvature direction Φ was
equal to 45o for all angle-ply laminates. From the present results it seems that their basic
assumption is incorrect. This issue will be further discussed in the following chapter where
experimental measurements of the laminate shapes will be presented. 

Considering the laminates from family [(90-Θ)4/Θ4]T, Fig. 2-8, again one of the two
principal curvatures for the stable shapes is close to zero. The other one decreases with Θ,
becoming zero at Θ=45o, which corresponds to a flat laminate. As with the first family, the
principal curvatures for the unstable shapes are equal in magnitude but opposite in sign. This
results in two possible values for the principal curvature direction of the unstable saddle, 0o or -
90o. As can be observed in the contour plots and in the numerical computations, the principal
curvature direction of the cylindrical shape corresponding to point C increases in magnitude with
Θ, while the principal curvature direction of the cylindrical shape corresponding to point D
decreases in magnitude with Θ.
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Fig. 2-7. Contour plots of the room-temperature shapes of [-Θ4/Θ4]T laminates
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Finally, the contour plots and numerical results for the [(Θ-90)4/Θ4]T family are presented in
Fig. 2-9. As observed for the previous families, the principal curvatures for the unstable saddle
shape are equal in magnitude and opposite in sign. Thus, two values for the principal curvature
direction Φ are possible. Whereas for the first two families the saddle shape was the same for any
Θ, it is interesting to note that the saddle shape for this family is rotated by an angle equal to Θ as
Θ increases. Concerning the stable cylindrical shapes, while one of the two principal curvatures
remains close to zero, the other takes a large value which remains basically unchanged as Θ
increases. For Θ=0, the laminate is a cross-ply. The major principal curvature is equal to 0.0723
in-1, and the principal curvature direction is equal to zero. As Θ increases, the laminate becomes a
cross-ply rotated in the laminate coordinate system by an angle equal to Θ. The major principal
curvature stays close to the curvature of the cross-ply laminate. The principal curvature direction,
Φ, is actually equal to Θ or Θ-90 depending on the cylindrical shape considered. It is interesting
to note that laminates in this family have the particularity to have the same principal curvature
axes for all equilibrium configurations independent of whether the configuration is stable or
unstable. This was not observed for the first two families of unsymmetric laminates.

2.5  Remarks on the developed theory

For all the laminates studied, several coefficients in the expressions for the midplane strains
appeared to always take zero values. For the midplane extensional strains, c10, c01, c30, c12, c21, c03,
and d10, d01, d30, d21, d12, d03 were always exactly zero. In the midplane shear strain, coefficients e2

and e4 were also zero. Looking at eqs. (2.5) and (2.14), and the Pascal triangle shown in Fig. 2-10,
it is seen that the zero-value coefficients correspond to the second and fourth row. It seems that
the polynomial for the midplane strains only needs to contain powers in x and y that add to an
even number. In fact, then, the present model uses an unnecessary high number of unknown
coefficients. From these observations, it seems that approximating the laminate midplane strains
by polynomials using only 14 coefficients is sufficient. The midplane strains can thus be
expressed as

(2.25)
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Fig. 2-9. Contour plots of the room-temperature shapes of [(Θ-90)4/Θ4]T laminates
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It is interesting to note that the order of these polynomials is the same as the order of the
polynomials used by Jun and Hong [16]. However, whereas the above form has 14 independent
coefficients, Jun and Hong began their analysis using only 11 independent coefficients in their
assumed displacements. They needed only 11 coefficients because they assumed some of the
coefficients in uo(x, y) also appeared in vo(x, y). In addition, they developed relations among the
11 coefficients by defining combinations of coefficients, thereby reducing the number of
independent coefficients to 7. In the present study, based on the numerical values of the 14
coefficients in eq. (2.25), there were no coefficients in uo(x, y) that were always common to vo(x,
y). For some laminates and temperatures, the coefficients appeared similar, while for other
laminates and temperatures the coefficients were quite different. Thus the use of some of the same
coefficients in uo(x, y) and vo(x, y) would seem to impose an artificial constraint on the problem.

To highlight the effects of having more spatial variables in the expressions for the strains, a
comparison between the curvatures predicted by Jun and Hong’s theory [16] and the present
theory is presented in Fig. 2-11. The curvatures of a 7-in.-square [02/302]T unsymmetric laminate
were computed using the Jun and Hong theory and the present theory. The diamonds in the
figures correspond to results from finite-element analyses. The laminate corresponds to one of the
families of unsymmetric laminates Jun and Hong studied in their paper. The material properties
used are the same as the ones used in the previous computations. They are given by eq. (2.22).
(Note: These are not the properties used by Jun and Hong). Referring to the figure, as with the
past cases discussed, upon cooling, the temperature-curvature relations of the laminate bifurcate.
Differences exist between the theories in the prediction of the bifurcation temperature. Jun and
Hong predict the bifurcation temperature to be about -25oF, whereas the developed theory and the
finite-element analysis predict it to be between -40 and -50oF. Although the temperature where
the finite-element analysis predicts bifurcation agrees well with the bifurcation temperature
predicted by the developed theory, some differences exist around the bifurcation temperature
between the curvatures predicted by the finite-element analyses and those predicted by the
developed theory. As the temperature is further decreased, the results from the developed theory
tend to agree with the results from the finite-element analyses. However, along path BE a slight
difference in the curvatures remains. The predictions from the Jun and Hong theory come closer
to the developed theory and the finite-element results as the temperature is decreased to room

1

x y

x2 xy y2

x3 x2y xy2 y3

2

4

Fig. 2-10. Pascal’s triangle 
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temperature.

As observed for the laminates presented previously, paths BC and BD are stable and path
BE unstable. The laminate exhibits two stable shapes at room temperature, corresponding to point
C and point D, but the shapes do not exhibit any kind of symmetry relative to one another. At
room temperature the curvatures , , and  of one shape are not equal in magnitude to any
of the curvatures of the second shape. This is different than the cases considered in Figs. 2.4 to
2.6, where there was an equal but opposite character to the two cylindrical shapes. 

The most noticeable differences between the predictions from the Jun and Hong theory and
the present theory are around the bifurcation temperature. Differences can also be observed in the
prediction of the curvatures for the unstable path, namely path BE. For the two stable shapes at
room temperature, however, the two theories agree. Thus, adding more variables in the strains
influence the predicted bifurcation temperature as well as the curvatures of one of the three
shapes, specifically the unstable shape. The finite-element analyses performed on this laminate
show that for temperatures near cure, the present theory seems to give more accurate results than
the Jun and Hong theory. Specifically, the Jun and Hong theory does not seem to predict the
bifurcation temperature as accurately.

In the chapter to follow, experimental measurements of the shapes of unsymmetric
laminates will be described. Also correlations between the experimental results and the
predictions from the developed theory and ABAQUS will be presented. 
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Fig. 2-11. Comparison of the present theory with Jun and Hong [16] theory: Temperature-curvature 
relations for a [02/302]T laminate
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Chapter 3 Experimental measurements of the shapes of 
unsymmetric laminates

To validate the present theory, laminates from the three families, [-Θ4/Θ4]T, [(90-Θ)4/Θ4]T,
and [(Θ-90)4/Θ4]T, were manufactured, Θ ranging from 0o to 45o in 15o increments. Due to the
stacking sequence chosen for the families, it was not necessary to increase Θ beyond 45o. With
reorientation relative to the laminate coordinate system, the laminates corresponding to Θ
between 45o and 90o were equivalent to the laminates obtained with Θ between 0o and 45o. The
laminates were made of 8 plies of Hercules IM7/8551-7A graphite-epoxy preimpregnated
material. The material properties of the manufactured laminates were as given by eq. (2.22). The
material properties had been determined by measurements on unidirectional specimens (see Dano
[1] for details). 

3.1  Initial coordinates

The main issue in measuring the shapes of the laminates was to obtain experimental data
that could be compared with the predictions of the developed theory. In the developed theory the
displacement field is measured using the initially flat laminate as a reference. For example,
referring to Fig. 3-1, the displacement functions uo(x, y), vo(x, y), and wo(x, y) measure the
displacement, respectively, in the x, y, and z directions of a point P’ which was initially at the
coordinates (x, y) measured when the laminate was flat, namely point P. Ideally the shape of the
laminate, actually the out-of-plane deflection, should be measured from the same reference state
as used in the theory. Thus, for out-of-plane deflection measurements it was necessary to know
what the initial coordinates of the point were. To achieve this, Kevlar® fibers were laid at one
inch intervals to form a reference grid that was used to indicate the initial coordinates of 121
points on the flat uncured laminate surface. The deflections of these points could then be
measured and compared with the displacements predicted by the function wo(x, y) from the
theory.
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Fig. 3-1. Problem description

3.2  Manufacture of the laminates

A total of 8 laminates were actually manufactured, some of them being used for more than
one family. After the 8 plies of graphite-epoxy preimpregnated materials were laid up, the
laminate was placed on an aluminium plate slightly larger than the laminate. The Kevlar fibers
were laid at one inch intervals across the top surface of the laminate, and were kept in position by
taping the ends of the fibers on the aluminium plate, as illustrated in Fig. 3-2. The laminate on the
aluminium plate was cured in a hot press at 350oF. After curing, the laminates were flatten
between two stiff plates and cut along the four edges to be 11.5 by 11.5 in. square. To ensure that
the laminates did not contain any moisture, which would have affected the magnitude of the
curvatures, the laminates were kept in an oven at 130oF for a few days. After cooling the
laminates to room temperature, the out-of-plane deflections were measured.

3.3  Measurement description

The out-of-plane deflections of each laminate were measured using two different methods.
One method consisted of using a simple dial-gage, moved around by hand, to measure the out-of-
plane deflections. Another method was used six months later to check these measurements. This
time, the out-of-plane deflections as well as the inplane displacements, were measured using a
automated shape-measuring instrument. 

Two sets of measurements were made for each laminate, each set corresponding to one of
the two room-temperature shapes. The deflections were fit to a polynomial equation of the form

(3.1)

x

z

P (x, y)

P’

wo(x, y)

uo(x, y)

laminate at ∆T=0oF

laminate at ∆T=-280oF

w x y,( ) c1x2 c2y2 c3xy c4x c5y c6 ⋅+ + + + +=
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The measurements of the 121 points were used in a least-square fit to determine the 6 coefficients
of the polynomial. The curvatures , , and  of the laminate were determined by the
coefficients c1, c2, and c3. The coefficients c4-c6 represented rigid body rotations and
displacement of the laminate relative to the measurement fixture. From the values of these
curvatures, the principal curvatures, K1 and K2, and principal curvature directions, Φ, of the
laminates were evaluated using the same procedure as the one outlined in section 2.4.4 of Chapter
2. As a result, the principal curvature direction Φ was again always associated with the principal
curvature which had the largest magnitude. 

3.4  Comparison of the measurements with the predictions

Comparisons were established using the measured principal curvatures and principal
directions, as well as using directly the measured out-of-plane deflection of each point. 

3.4.1  Principal curvatures and principal curvature directions

The measurements were compared with predictions obtained with the developed theory and
ABAQUS. The results obtained for the principal curvatures and principal curvature directions of
each family are presented in Figs. 3-3 to 3-5. 

Figure 3-3 presents the predicted and measured results for both stable shapes for the [-Θ4/
Θ4]T family. The measured principal curvatures follow the same trends as the predictions from

rulers

tape

aluminium
plate

laminate

Kevlar fiber

Fig. 3-2. Set-up to lay the Kevlar fibers
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the present theory, denoted as Ritz, and from the finite-element analysis, denoted as FEA. Some
differences between the magnitudes of the predicted and measured principal curvatures exist. The
measured principal curvatures are almost always smaller than the predicted curvatures. It is also
interesting to notice that the curvatures measured the second time six months later, and labeled
exp 2, are systematically lower that the initial measurements, which are labeled exp 1. The
measured principal curvature directions agree very well with the present analysis and the finite-
element analysis. As already mentioned in Chapter 2, it is obvious from the measurements and the
predictions that the principal curvature direction is different for every angle-ply laminate. It is
equal to 45o only for the [-454/454]T laminate. Thus, the assumption used by Peeters, Powell, and
Warnet [17] to calculate the shapes of angle-ply laminates is incorrect. The principal curvature
direction for angle-ply laminates should be considered as a variable and, not be constrained a
priori.

For the [(90-Θ)4/Θ4]T family, good correlation is established between the predictions and
the experimental data measured the first time, as illustrated in Fig. 3-4. The curvatures measured
during the second experiment do not correlate as well. The measurements for the principal
curvature direction correlate fairly well with the predictions. 

Finally, the results for the [(Θ−90)4/Θ4]T family are presented in Fig. 3-5. The correlations
between the present theory, the finite-element analysis, and the first experimental results are
good. The curvatures measured during the second experiment are, as observed previously,
smaller.

3.4.2  Comparisons of the overall shapes

As mentioned, the measured curvatures in Figs. 3-3 to 3-5 were evaluated using a function
fit with the out-of-plane displacements. It is of valuable to directly compare the out-of-plane
displacement measurements with the displacements wo(x, y) computed by the theory. For each
laminate, using Mathematica [33], a three-dimensional surface plot was created directly from the
measured out-of-plane deflection data. This surface plot was superposed on a three-dimensional
representation of the function wo(x, y) using predicted values of a, b, and c. An additional three-
dimensional plot representing the out-of-plane deflection computed by ABAQUS was added in
the figures to compare further the measurements with the predictions. The results for a few
laminates are shown in Figs. 3-6 to 3-9. In the figures the scale chosen exaggerates the out-of-
plane deflections so the surface shapes are not representative of the actual shapes. Also, the
breakup of the surface grid in the figures is due to the slight overlap of the surfaces in certain
regions. 

Figure 3-6 represents the out-of-plane deflection for the cross-ply [904/04]T laminate. The
predictions by the present theory correlate very well with the deflections measured during the first
experiment. Some differences in the magnitude can be noted at the edges. The deflections
measured six months later are lower, as noted previously. Reasons for these differences are not
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Fig. 3-3.  Comparisons between predictions and experiments for [-Θ4/Θ4]T laminates
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Fig. 3-4.  Comparisons between predictions and experiments for [(90-Θ)4/Θ4]T laminates
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obvious. It may be possible that relaxation of the epoxy matrix occurred during the elapsed time,
leading to a decrease in the laminate curvatures. 

The predicted and measured out-of-plane deflections for the [-304/304]T laminate are
presented in Fig. 3-7. In this and the following figures, the results from the second experiment are
not presented. The theory predicts very well the out-of-plane deflections of the laminate. It is
actually difficult to distinguish between the different surfaces. The surface plots for the [604/304]T
laminate are presented in Fig. 3-8. Some differences between the measured and predicted out-of-
plane deflections can be noticed at the edges. Figure 3-9 represents the out-of-plane deflections of
the [-304/604]T laminate. Good correlations are observed between the predictions and the
measurements. 

Figures 3-10 to 3-12 compare the photographs of a few laminates with the shapes predicted
by the theory. The predicted shapes were oriented to obtain a view similar to the ones shown in
the photographs. The shapes predicted by the theory exhibit the same characteristics as the ones
shown in the photographs. From all the results presented in this Chapter, it is obvious that the
developed theory is successful in characterizing the shapes of general unsymmetric laminates.
Also the key assumption of Peeters, Powell, and Warnet [17] has been shown to be incorrect.
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Fig. 3-8. Predicted and measured out-of-plane deflections for the [604/304]T laminate
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Chapter 4 Mechanics of general unsymmetric laminates 
subjected to known applied forces

This chapter presents the theory that was developed to predict the room-temperature
deformation behavior of general unsymmetric laminates subjected to applied forces. The principle
of virtual work will be used to derived the equilibrium equations relating the laminate curvatures
to the applied forces. By solving the equilibrium equations as a function of the force level,
relations between the laminate curvatures and the applied force can be derived and the force level
at which the laminate changes shape can be determined. This simple approach has been
previously used by the author and has proven to quite accurately predict the response of cross-ply
unsymmetric laminates to applied forces [1, 2]. Understanding the effects of applied forces on the
response of unsymmetric laminates is an important step in using SMAs to cause a change in the
configuration.

4.1  Problem description

As described in Chapter 2, general unsymmetric laminates usually exhibit twist curvature as
they are cooled to room temperature. This aspect needs to be taken into consideration when
applying forces on the laminates. For a cross-ply unsymmetric laminate the twist curvature is zero
and the forces can be simply applied either along the x or y direction, depending upon whether the
major curvature is  or . This was illustrated in Fig. 1-3 in the introduction. On the other
hand, for a general unsymmetric laminate the twist curvature is non-zero. This means that to be
the most efficient the forces should be applied along the principal curvature direction of the
laminate.

Another aspect to consider is the fact that the model should simulate the effect of forces
which eventually will be generated by SMA wires attached to the laminate, as was illustrated in
Fig. 1-2. This implies that the forces will be applied along the line passing through the tips of the
two supports shown in that figure. As these forces are applied on the laminate, the laminate
curvatures should decrease, which, in turn, should induce small displacements of the support tips.
As a result, the direction of the force may change from its initial orientation. This aspect has to be
taken into account in the theory.
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From these preliminary considerations, it was decided to fastened the supports along the
direction of the larger principal room-temperature curvature, as illustrated in Fig. 4-1 (a). As was
indicated in Chapter 2, this principal curvature direction is noted Φo, where the subscript “o”
indicates that this value corresponds to the principal curvature of the laminate at room
temperature and with no forces applied. Thus, Φo is the principal curvature direction computed in
Chapter 2. The distance between the two supports is equal to 2Ls. The location of the supports is
given by the coordinates 

(4.1)

Figure 4-1(b) shows an unsymmetric laminate subjected to forces F applied on supports attached
to the laminate. The forces acting at a perpendicular distance e from the laminate surface are
oriented along the line defined by the two support tips, denoted l, which is at an angle β with
respect to the x axis. Note that β is equal to Φo when no force is applied. The forces exert a
moment on the laminate which has a magnitude proportional to F and e. The response of the
laminate to this force will be determined using the principle of virtual work. 

4.2  Principle of virtual work 

The principle of virtual work states that a structure is in equilibrium if and only if the total
virtual work vanishes for every virtual displacement consistent with the constraints. This
statement can be written as 

, (4.2)

where  is the total virtual work,  the first variation of the strain energy, and  the
virtual work done by the applied force. The first variation of the strain energy was computed in
Chapter 2. Therefore, only the virtual work of the applied force needs to be determined.
Considering the laminate in a deformed configuration, the virtual work of the applied force is
defined as the work done by the force F as the laminate is given a virtual displacement. The
resulting virtual displacement of the force is denoted as , as illustrated in Fig. 4-2. The figure
represents half of the cross section of the laminate along the l axis, which is oriented at an angle β
with the x direction. Similar effects occur at the other support. Note that during the virtual
displacement the force remains parallel to the x-y plane. The total virtual work of the force F
acting on the two supports can be expressed as,

. (4.3)

xs L± s Φocos=

ys Ls± Φo ⋅sin=

δWT δΠ δWF– 0= =

δWT δΠ δWF

δRF

δWF F δRF x Ls Φocos=
y Ls Φosin=

F δRF x L– s Φocos=
y L– s Φosin=

⋅+⋅=
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The virtual displacement  is evaluated by first computing the position vector  of the force,
relative to the origin of the coordinate system, and then taking its variation. The position vector

 can be expressed as the sum of the position vector to the base of the support, , and the vector
directed from the base of the support to the tip of the support, , as illustrated in Fig. 4-3, i. e., 

. (4.4)

The vector , can be written as,

(4.5)

where the expressions for the displacements uo and vo in terms of the unknown coefficients a, b, c
are obtained by substituting eq. (2.17) into eq. (2.13). Since the vector  is normal to the surface,
it can be expressed as 

(4.6)

where  is the unit vector normal to the laminate surface at the support locations ( ,
) and  is the distance from the laminate reference surface to the tip of the

support. By definition [34], the unit vector  at a point (x, y) on the laminate surface is given by, 

, (4.7)

where the vectors  and  are tangent to the surface at point (x, y). Using the definition of 
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given by eq. (4.5) to compute the unit vector , vector  can then be evaluated. Substituting the
expressions for  and  into eq. (4.4), the force position vector  can be expressed as a
function of a, b, and c, by

(4.8)

Next, the virtual displacement  can be computed by taking the variation of eq. (4.8), namely,

(4.9)

The applied force  can be expressed in terms of its components in the x-y-z coordinate system
by,

(4.10)

where the cos β and sin β can be evaluated using the expression for  given by eq. (4.8). Let 
define the unit vector along the l-axis. Then  can be expressed as a function of  by,
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, (4.11)

where the vector defined by  represents the vector pointing from the tip
of the support at (-LscosΦo, -LssinΦo) to the tip of support at (LscosΦo, LssinΦo), as described in
Fig. 4-4. Then the expressions for cosβ and sinβ needed in eq. (4.10) can be deduced from eq.
(4.11) since,

. (4.12)

By substituting eq. (4.10) and eq. (4.9) into eq. (4.3), and carrying out the dot product, the virtual
work of the force can be expressed as,

(4.13)

Obviously, , ,  are also functions of the variables Φo, L, and e, which define the
geometry associated with the supports on the laminate. Substituting eq. (4.13) into eq. (4.2), the
total virtual work can be expressed as,

(4.14)

The laminate is in equilibrium if the total virtual work vanishes, i. e., , for every
admissible virtual displacement δa, δb, δc. Equating  to zero results in 3 equilibrium
equations relating the coefficients a, b, c to ∆T and F. These equations are given by

(4.15)

Note that the equations of eq. (4.15) become the same as the ones in eq. (2.18) when the force F is
equal to zero. By setting the temperature change ∆T equal to -280oF and the force F to zero,
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solving the equilibrium equations gives the cured shapes of the laminate at room temperature. By
increasing F and keeping ∆T at -280oF, the solutions of the equilibrium equations give the
configurations of the laminate as it is deformed by the force F at room temperature. 

4.3  Numerical results

The set of three equations given by eq. (4.15) is solved for the 8 laminates from the three
families. The geometric and material properties for the laminates are the ones used in Chapters 2
and 3. The force is applied according to the configuration given in Fig. 4-1, with e=0.55 in., Ls=4
in., and Φo taking the value for each laminate according to the results from Chapter 2. The value
of e was chosen based on considerations of the force levels attainable with SMA wires, recovery
strain levels in the SMA wires, and the moment levels needed to affect snap through. This will be
discussed later. The temperature change is set equal to -280oF, while the force is increased from
zero to a level at which the snap through of the laminate occurs. For every force level the
equilibrium equations are solved, giving the curvatures , ,  of the deformed laminate.
From the values of the curvatures, the principal curvatures and principal curvature directions are
computed using eq. (2.24). In addition, the angle β was computed as a function of F. All these
computations were performed using Mathematica [33]. The results for the various laminates are
represented in Figs. 4-5 to 4-10. 

The deformation behavior of the laminates from the [-Θ4/Θ4]T family is illustrated in Fig.
4.5. When no force is applied the initial shapes of the laminates are cylindrical, with a large

z

R– F xs ys–,–( )

el

x

y

0
RF xs ys,( )

Fig. 4-4. Computation of unit vector el

κx
o κy

o κxy
o



Chapter 4 Mechanics of general unsymmetric laminates subjected to known applied forces 56

principal curvature K1 and a negligible principal curvature K2. This corresponds to point C in the
three parts of the figure. At F=0 the equilibrium equations have two other solutions for the
laminates configuration. One corresponds to the unstable shape, point E, and the other
corresponds to the second stable cylindrical shape, point D. Points C, D, and E are the same points
denoted in Fig. 2-4. As the force is increased, curvature K1 of the laminates decreases. When the
force is large enough, point G in the figure, the laminates reach an unstable configuration and
snap into the other cylindrical shape. The snap through is indicated by the arrow from G to D’.
During the application of the force, the principal curvature direction Φ of the laminates decreases
from its initial value Φo, except for the [-454/454]T laminate, for which Φ remains constant. At
point G the principal curvature direction is equal or close to 45o. This corresponds to the principal
curvature direction for the unstable shape, as noticed in Fig. 2-7. To become unstable and snap, it
seems that the laminate has to be brought back to a configuration similar to the initial unstable
shape, corresponding to point E in Fig. 2-4. Thus, the principal curvature direction Φ has to
decrease from its initial value Φo to become closer to the direction associated with point E, which
is equal to 45o for the laminates of this family. Since the principal curvature direction for the [-
454/454]T is initially 45o, it remains constant through the application of the force. Note that the
snapping force increases with Θ, the highest value being for the [-454/454]T laminate.
Considering now Fig. 4-6 representing the angle β as a function of the applied force, it can be
noticed that this angle remains virtually the same as its initial value, Φo, throughout the
application of the force, i. e., the direction the force is applied remains the same. 

The force-curvature relations for the laminates from the [(90-Θ)4/Θ4]T family are presented
in Fig. 4-7. At F=0 the laminates are initially in the configuration given by point C. Points C, E,
and D in Fig. 4-5 correspond to these same points in Fig. 2-5. As the force increases, curvature K1
decreases. Except for the cross-ply laminate (Θ=0o), the principal curvature direction Φ also
decreases. When a certain force level is reached, the laminate becomes unstable, point G, and
snaps into the other stable configuration D’. At point G the principal curvature direction Φ has
become equal or close to zero. This corresponds to the value for the principal curvature direction
of the unstable shape, as can be observed in Fig. 2-8, where the twist curvature for the unstable
shape is equal to zero, and therefore Φ is also equal to zero. Note that for this family the snap-
through force is maximum for the [904/04]T laminate and decreases with increasing Θ. Looking at
the force-angle β relation depicted in Fig. 4-8, it is interesting to note that β remains essentially
invariant with force level.

Figure 4-9 represents the force-induced behavior of the laminates from the [(Θ-90)4/Θ4]T
family. As for the first two families, at F=0 the initial shape of the laminates is given by point C.
As the force is applied, laminate principal curvature K1 decreases. When the force is large enough
the laminates reach an unstable configuration, point G, and suddenly change shape to the
configuration giving by point D’. For this family the principal curvature direction remains the
same up to the snap through. This is expected since it was observed in Fig. 2-9 that the stable
cylindrical shapes had the same principal axes as the unstable saddle shape. The snapping force
for the laminates from this family do not vary as much as for the first two families. However, as
for the [(90-Θ)4/Θ4]T family, the [904/04]T laminate requires the largest force. This laminate is
actually the one which requires the largest snapping force among all the unsymmetric laminates
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considered in this work. Considering now the relation force-angle β represented in Fig. 4-10, it
can be noticed that the angle β remains equal to its initial value Φo. Thus, as was observed for the
first two families, the direction of the force is applied remains constant as the force level
increases.

From the results presented in this chapter, it seems that the magnitude of the force
generating the snap through is somewhat proportional to the magnitude of the angle between the
fibers. For example, referring to Fig. 4-5, a [-154/154]T laminate, where the angle between the
fibers is equal to 30o, requires a smaller snapping force than a [-304/304]T or [-454/454]T laminate,
where the angle between the fibers is, respectively, 60o and 90o. This relation is understandable,
since the larger the angle between the fibers is, the larger the major principal curvature at room
temperature is, as can be observed in Figs. 3-3 to 3-5. From these results it can be concluded that
the snapping force is proportional to the room-temperature major principal curvature of the
laminate. 

4.4  Concluding remarks

The theory developed in this chapter appears to be able to model the deformation behavior
of unsymmetric laminates subjected to applied forces, particularly the snap-through phenomenon
occurring when the force reaches a certain value. Experiments conducted by the author [1,2] on a
simple cross-ply [02/902]T graphite-epoxy laminate show that the developed theory predicts quite
accurately the force-induced deformation of that laminate, as illustrated in Fig. 4-11. In the figure
the strains at the top and bottom surface are represented as a function of the force applied on the
laminate. The sudden change in the strains near F=5 lb is associated with the snap-through event.
The magnitude of the measured snap-through load correlates well with the predicted snap-through
load. Also, correlation of the strains between the theory and experiments is quite good except for
force levels just prior to snap through. The deviations in the strains are thought to be due to local
deformations occurring at the supports locations and to the unstable nature of the laminate as the
force reaches the level for snap through. Despite the differences in the strains around the snap
through, the developed theory appears to model the fundamental phenomenon correctly. It is
anticipated that the theory just presented for more general unsymmetric laminates will be as
accurate. This, of course, will be verified in the ensuing chapters. 
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Fig. 4-5.  Force-deformation relation for [-Θ4/Θ4]T laminates
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Fig. 4-7. Force-deformation relation for [(90-Θ)4/Θ4]T laminates
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Fig. 4-9. Force-deformation relation for [(Θ-90)4/Θ4]T laminates
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Fig. 4-11. Measured1 and theoretical strains: Case of a [02/902]T laminate
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Chapter 5 Shape memory alloys in structures

In this chapter an existing constitutive model of SMAs will be briefly presented and
implemented into the theory presented in Chapter 4 to predict the deformations of simple
structures to SMA-induced forces. The discussed work in this chapter is viewed as somewhat of a
calibration of the SMA wire used in the study.

5.1  Phenomenological approach

As was stated in Chapter 1, SMAs are alloys which, when plastically deformed and
subsequently heated, are able to regain their original shape. The mechanism responsible for the
shape recovery is a phase transformation of the material from martensite to austenite. In the
martensitic phase the SMA is soft and can be plastically deformed with low stress levels. As the
alloy is heated, austenitic transformation occurs between a certain temperature range, starting at
temperature As (austenite start) and ending at temperature Af (austenite finish), as illustrated in
Fig. 5-1. As the alloy has reached the full austenitic phase at T>Af, the martensite volume
fraction, denoted ξ, takes a zero value. The phase transformation is reversible and can be initiated
by lowering the temperature below temperature Ms (martensite start). A martensite volume
fraction of one is reached when the alloy is cooled below Mf (martensite finish). The phase
transformation from martensite to austenite is associated with the process of strain recovery. If the
SMA is restrained by, for example, being attached to a structure, a force is generated in the SMA
which, in turn, induces deformations in the structure. Figure 5-2 illustrates the particular example
of a SMA wire attached on a narrow flat plate by way of short supports. As the SMA wire is
heated above temperature As, strain recovery associated with the austenitic transformation is
initiated and a force F is generated in the SMA wire. The force causes the plate to deform,
specifically, to develop curvature. 

To be able to predict the deformation behavior of a structure subjected to SMA-induced forces,
the interaction of the SMA wire with the structure needs to be clearly understood, as well as the
thermo-mechanical constitutive modeling involved in the strain recovery of the SMA. 



Chapter 5 Shape memory alloys in structures 66

 

Fig 5-2. SMA wire attached on a simple narrow flat plate

5.2  Constitutive model of SMAs

As detailed in Chapter 1, the work here will be based on the SMA model developed by Boyd
and Lagoudas [28]. The model uses a set of several equations relating the stress, strain,
temperature, and martensite volume fraction in the SMA wire. The constitutive law is a simple

Temperature T

M
ar

te
ns

ite
 fr

ac
tio

n 
ξ

As Af

1

0

MsMf

Fig 5-1. Phase transformation phenomenon in SMA

austenite
to

martensite

martensite 
to 

austenite

plate

SMA wire

support

T<As

T>As

F F



Chapter 5 Shape memory alloys in structures 67

generalized Hooke’s law, specifically, 

, (5.1)

where, σ, εe, ε, and εt are the uniaxial stress, elastic strain, total strain, and transformation strain,
respectively. The quantities T and To are, respectively, the current and reference temperature. The
extensional modulus E and thermal expansion coefficient α both dependent on the martensite
volume fraction ξ, and are assumed to follow a rule-of-mixtures relationship, namely,

(5.2)

where EA, αA and EM, αM are the properties of the SMA in, respectively, a pure austenitic
(subscript A) and pure martensitic (subscript M) phase. The transformation strain εt is directly
related to the martensite volume fraction by

, (5.3)

εo being the initial plastic strain in the SMA wire. At ξ=1 the SMA wire is fully martensitic and
the transformation strain is equal to the initial strain εo. As transformation from the martensitic to
the austenitic phases occurs, the initial strain is recovered and therefore strain εt decreases. The
constitutive equation eq. (5.1) is used in parallel with a kinetic equation governing the phase
transformation which has been derived by using the first and second law of thermodynamics (see
Boyd and Lagoudas [28] for more details). This kinetic equation can be expressed as

, (5.4)

where ρ is the SMA density, ∆a1=1/EM-1/EA, ∆α=αM-αA, σeff=σ-ρb2εt, b2 being the kinetic
hardening parameter,  is the difference of the entropy between the martensite and the
austenite phases at the reference state, Y is the threshold value of transformation, ,
b1 being the isotropic hardening parameter. Parameter b2 is assumed to be zero. Parameters ρ∆a4,
Y, and b1 take different values, depending on the direction of the transformation, martensite-to-
austenite or austenite-to-martensite. For a martensite-to-austenite transformation,

(5.5)

whereas for a austenite-to-martensite transformation,
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(5.6)

In the above expressions Mso, Aso, Mfo, and Afo are the start and finish temperatures at zero stress
for, respectively, the martensitic (M) and the austenitic (A) transformation. The parameter CA and
CM are the slopes of the curves of the so-called critical stress versus temperature. The stress in the
SMA wire should stay within a certain interval for a transformation of phase to take place. For
transformation to martensite, 

, (5.7)

and for transformation to austenite,

, (5.8)

the expressions on the left and right side of each inequality being referred to as the critical
stresses. Fig. 5-3 represents the latter equation. As the wire is heated above Aso, the austenitic
transformation is initiated and the SMA wire starts recovering strain. As long as the stress σ
greater than one critical stress and less than the other critical stress, the transformation and the
strain recovery processes continue. As the stress reaches the critical value, the transformation
ends and the recovery process is terminated, even though the initial strain may not be totally
recovered. As the phase transformation can only take place when

, the use of eq. (5.4) is valid only in this stress interval. 

Substituting eqs. (5.1) and (5.3) into eq. (5.4) leads to a nonlinear algebraic equation expressed in
terms of variables ε, T, and ξ, namely, 

. (5.9)

The thermomechanical response of the SMA wire can be characterized by solving eq. (5.9),
relating the stress, strain, martensite volume fraction, and temperature in the wire. 

This constitutive model can be used to predict the deformations of structures actuated by
SMAs. In the following section the case of a simple narrow aluminium plate being deformed by
an externally attached SMA wire will be discussed. 

5.3  Modeling of a narrow aluminium plate deformed by a SMA wire

The motivation for studying SMA actuators on a simple narrow aluminium plate is to make
sure that the interaction between the structure and the SMA actuators is correctly understood, and
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to check the accuracy of the SMA model by performing actual experiments. Accordingly, the
SMA wire was attached to the plate in a manner similar to that to be used on the unsymmetric
laminates. The idea was to obtain similar conditions for using the SMA wire so that the results
obtained with the narrow aluminium plate could be used to understand the response that the
unsymmetric laminate subjected to a similar wire would have. Moreover, using a similar method
for attaching an SMA wire to the plate would allow the use of the equations that were derived in
Chapter 4, eq. (4.15), to describe the deformations of the laminates due to applied forces. These
equations, given by

(5.10)

relate the laminate curvatures (-a), (-b), and (-c) to the applied force F and temperature change
∆T. In Chapter 4 the forces were applied to the unsymmetric laminate at room temperature.
Therefore, ∆T was set equal to -280oF, as illustrated in Fig. 5-4 (a). To study the effect of the
forces on a flat unsymmetric laminate, eq. (5.10) can still be used by setting ∆T to zero, Fig. 5-4
(b). Additionally, by changing the geometrical and material properties of the laminate, the
deformations of a narrow aluminium plate, Fig. 5-4 (c) can be studied using the same set of
equations.
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In the above spirit, then, the set of equations in eq. (5.10) is solved using 

(5.11)

for the properties of the aluminium plate, and

(5.12)

for the force configuration, as illustrated in Fig. 5-5. The equations are solved as a function of F in
terms of a, b, and c representing the plate curvatures, , , and . The results are shown in
Fig. 5-6. As expected, when forces are applied, the plate develops a large negative curvature , a
small positive curvature , and no twist curvature . From the values for a, b, c, the remaining
25 coefficients (cij, dij, ek) of eq. (2. 17) can be computed and the strains in the plate evaluated.
The strains induced at the center of the plate (x=y=0) are given by

(5.13)

The strains at the top (z=+H/2) and bottom (z=-H/2) surface of the plate are represented in Fig. 5-
7. Note that the strain at the top surface is negative. The quantity -εx(+H/2) is represented on the
graph so that the magnitude of the two strains can be conveniently compared. It is interesting to
note that the top and bottom strains are not equal in magnitude. The strain at the top surface
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εx(+H/2) is actually larger in magnitude than the strain at the bottom surface εx(-H/2). This is due
to the combined effects of the compressive force F and the geometric nonlinearities, the latter
actually having the largest contribution. 

F F

eH
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y

xs

narrow aluminium

SMA wire z  plate

Fig 5-5. Set-up for aluminium plate experiment
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Considering the forces induced by a SMA wire: The stress and total strain in the wire are
related to the plate deformations by

(5.14)

(5.15)

where ASMA is the SMA wire cross section area, and ∆LSMA, LSMA, and are respectively, the
change in length, current length, and length of the SMA wire just after it has been deformed to
strain level εo. As illustrated in Fig. 5-8, ∆LSMA can be computed for a given force F using the
support displacements. These can be evaluated from the plate deformations (see Chapter 4),
namely, 

(5.16)

In the above xs is the horizontal distance from the center of the plate to the base of a support, and 
 is the position vector to the tip of the support, where the force F is applied. Thus, the strain in 

the SMA wire can be expressed by

(5.17)
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Using an iterative process, the deformations of the plate can be predicted as a function of the
temperature in the SMA wire. Assuming values for the total strain in the wire, ε, and the
temperature of the wire, T, the nonlinear equation Ψ=0, eq. (5.4), can be solved for the martensite
volume fraction ξ. Substituting this value into eq. (5.3), the transformation strain εt is evaluated.
Substituting the values for ε, T, and εt into eq. (5.1) the stress in the SMA wire is determined.
Using eq. (5.14), the force F applied on the plate is obtained and the curvatures of the plate are
computed by solving eq. (5.10). From the values for a, b, and c,  can be evaluated. Substituting
these values into eq. (5.17), a new value for the strain in the SMA wire, ε, is computed. The same
computations are performed another time with the new value for ε. This procedure is followed
until the value computed for ε has converged. Using Mathematica [33], this iterative process is
performed for every increase in the SMA wire temperature. The computation method is
summarized in Fig. 5-9.

The computations are performed using the following material properties and initial plastic strain
εo for the SMA wire, 

(5.18)

where d is the diameter of the SMA wire. The results are presented in Figs. 5-10 to 5-12. In Fig. 5-
10 the predicted actuation force generated by the SMA wire is represented as a function of the
temperature in the wire. As the temperature reaches the austenite start temperature Aso, the
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austenitic transformation is initiated and strain recovery in the wire begins to generate a force. As
the wire is further heated, the force continues to increase. The phase transformation should finish
as soon as the force F reaches the critical value (dotted line on right), or when the strain is fully
recovered.

The predicted strains at the top and bottom surface of the plate induced by the SMA wire are
represented in Figs. 5-11 and 5-12. No strains are induced in the plate as long as the SMA wire is
not heated above Aso. When the temperature exceeds Aso, strains start to develop as the SMA-
actuated force increases.

From these theoretical results, it is predicted that the SMA wire is able to induce reasonable
strain levels in the plate. To check the validity of the predictions, experiments were conducted on
a narrow aluminium plate with an SMA wire attached in the manner assumed in Fig. 5-5.
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Fig 5-10. Temperature-actuation force relation
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5.4  Experimental verification of the model

5.4.1  Description of set-up

The aluminium plate used in the experiments had the same characteristics as given in eq.
(5.11). The SMA wire was stretched to generate an initial plastic strain εo of 5%. It was then
attached to the plate using the same configuration as given by eq. (5.12). The properties of the
SMA wire were assumed to be the same as the ones given in eq. (5.18). However, the material
properties related to the austenitic phase transformation (Aso, Afo, and CA) are strongly influenced
by the manufacturing process and may not be exactly equal to the expected “standard” properties.
As illustrated in Fig. 5-13, which illustrates the experimental set-up, one strain gage was bonded
at the center of the top and bottom surface of the plate. The SMA wire was heated resistively by
applying voltage. Two thermocouples were bonded to the wire to measure the temperature at two
locations along the SMA wire. The temperature in the wire was evaluated by computing an
average value of the two measurements. 
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5.4.2  Measurements

The SMA wire was heated progressively by slowly increasing the voltage. For each voltage
increment, the temperature in the wire and the strains in the plate were measured. The voltage had
to be increased slowly in order to catch the beginning of the austenitic transformation,
temperature Aso. As the austenitic start temperature was reached, the phase transformation
occurred quite fast and it was actually difficult to simultaneously measure the strains and the
temperature. As the voltage was further increased, the strains in the plate reached a stationary
value, indicating that the phase transformation was finished. 

Fig 5-13. Description of aluminium plate set-up

5.4.3  Experimental results

The strains measured as a function of temperature are represented in Figs. 5-14 and 5-15.
Predictions of the model are also indicated in the figures. As the wire is heated from room
temperature, the strains remain close to zero. After the temperature has reached about 30 oC, the
strains start increasing at a high rate. When the temperature equals 60 oC, the strains stop
increasing and remain constant, even though the SMA wire continues to be heated. Comparing
the experimental results with the predictions computed previously (dotted lines, which are the
solid lines from Figs. 5-11 and 5-12), it can be observed that the austenitic start temperature Aso is
actually slightly less than its theoretical value of 34.6 οC used in the prediction. Furthermore, the
rate of increase of the measured strains is different than predicted. In the experiments, the strains
increase at a higher rate than predicted and reach a plateau at about 60 oC, whereas the predictions
indicate that the strains are still increasing after that temperature. From these observations it
seems that the austenite finish temperature (Afo) in the experiments was actually less than the

V

T

ε

thermocouples

strain gage on
top surface

strain gage on 
bottom surface



Chapter 5 Shape memory alloys in structures 78

theoretical value of 49 oC. Using a simple method of trial and error on the value for Afo, it was
found that using 38 oC for Afo and 30 oC for Aso in the model gave predictions which were quite
close to the experimental measurements, as illustrated in Figs. 5-14 and 5-15. 

Predictions for the total strain of the SMA wire during the phase transformation are shown
in Fig. 5-16. As can be seen, the SMA wire has actually not quite recovered all its initial plastic
strain when the phase transformation is interrupted due to the SMA wire becoming saturated with
stress, i. e., ξ in eq. (5.3) did not reach zero. 

Photos were taken during the experiment. One photo, Fig. 5-17 (a), shows the plate before
voltage was applied to the SMA wire. The SMA wire was not generating any force and thus the
plate is completely flat. The other photo, Fig. 5-17 (b), was taken after the SMA wire had
saturated with strain (note that the voltage is now non-zero in the picture). The force generated by
the SMA wire is maximum and the plate has reached its greatest deflection. 

From the experimental results presented in this chapter, it appears that the constitutive
model of Lagoudas and co-workers adequately represents the behavior of SMA wire within the
context of usage in the current study. The theoretical temperatures associated with the phase
transformation, Aso and Afo, provided by the manufacturer had to be decreased by a few degrees to
match the ones observed experimentally. After this adjustment, reasonably good correlations
were established between the experiments and the predictions. Since the behavior of SMA wire
on a simple structure like this aluminium plate seems to be understood and correctly predicted,
using SMA wires on more complex structures like unsymmetric laminates can now be considered.
This is the subject of the next chapter. 
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Fig 5-14. Strain at the top surface: Comparison of the measurements with the predictions
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Fig 5-15. Strain at the bottom surface: Comparison of the measurements with the predictions
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Fig 5-16. Total strain-temperature relation in the SMA wire
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Fig 5-17. Plate during the experiment: (a) before voltage is applied, (b) after the SMA wire has saturated 
with strain

(a)

(b)
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Chapter 6 Use of SMAs with unsymmetric laminates

6.1  Preliminary design considerations

When using SMAs with highly curved unsymmetric laminates, several important issues
have to be considered. First, the SMA wire should be attached on the laminate close enough to its
surface so that the strain needed for recovery to make the laminate snap does not exceed the
maximum recovery strain of 8% [31], i. e., εo<8%. However, the supports to which the SMA wire
is attached should be long enough, i.e., the dimension e in Fig. 4-1 (b) large enough, so that the
SMA wire does not touch the laminate, as illustrated in Fig. 6-1. The issue is to find a good
combination for xs and e which satisfies the strain recovery and the geometric conditions. Since
the cross-ply laminate exhibits the largest curvature, this laminate will require the largest SMA
strain recovery when compared to the other laminates. Therefore, the [904/04]T laminate is a good
case for determining the design of the wire support geometry.

The second issue to consider is the force level necessary for snapping. As was seen in
Chapter 4, the force level needed for snapping depends on the laminate family and on Θ within
the family. Also, as observed during the experiment with the aluminium plate, discussed in
Chapter 5, the SMA wires can become saturated with stress. As the [904/04]T laminate requires
the most force to produce snapping, this laminate can also be used to study force level
requirements. Both issues are discussed below.

6.1.1  Geometric considerations

To obtain a geometry for which the SMA wire just touches the laminate, it can be seen from
Fig. 6-1 that e has to be equal to

. (6.1)e
a xs

2

2 axscos
--------------------=
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Additionally, the SMA wire should be allowed to recover enough strain so that the laminate can
reach an unstable configuration thus snap through. For the case of the [904/04]T laminate, the
unstable shape is a shallow saddle shape. The strain needed to be recovered, noted εr, is computed
so that the laminate reaches the unstable saddle shape, a=as at force level F=Fs, as illustrated in
Fig. 6-2. Using eq.(5.16), the strain εr is given by

. (6.2)

However, the unstable saddle configuration curvature with force applied (point G on Figs. 4-5, 4-
7, and 4-9) is slightly greater than the unstable saddle configuration curvature without force
applied (point E on Figs. 4-5, 4-7, and 4-9). Furthermore, the configuration with force applied
depends on xs, e, etc. To have a conservative estimate of necessary recovery strain, the saddle
configuration with no force applied is used to compute strains, i.e., the value of as used
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corresponds to the one of point E in Figs. 4-5, 4-7, and 4-9. Using the conservative estimate of
curvature change, using the expression for , eq. (4.8), and substituting e as a function of xs
from eq. (6.1), the strain recovered εr in eq. (6.2) can be computed as a function of xs. The strain
εr is represented as a function of xs in Fig. 6-3. According to the figure it appears that the
recovered strain does not exceed 5.5% for the range of values that xs can take (0<xs<Lx/2).
Therefore, with Lx equal to approximately 6 in., a choice of 4 in. for xs will result in a
configuration whereby the wire spans a considerable portion of the dimensions of the laminate.
By eq. (6.1), this results in e=0.55 in.

6.1.2  Force level considerations

From Fig. 4-7, the force required to snap the [904/04]T laminate is equal to 45.9 lb. This
force is quite large but can be generated by using several SMA wires as opposed to one, as was
the case for the narrow plate. Based on the results from that experiment, where a single wire was
able to generate about 13 lb, it appears that four SMA wires would be needed to generated a force
of 45.9 lb. 

In summary then, for the unsymmetric laminates, up to four SMA wires will be used, and
the geometry of the supports will be given by

(6.3)
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6.2  Modeling the SMA-induced deformations of the [904/04]T laminate 

The laminate deformations induced by the SMA wires are computed using the same
iterative process as described previously. The computations are performed using the properties for
the laminate and the SMA wire given, respectively, by eqs. (2. 22) and (5.18), except the SMA
wire area which is taken to be four times larger than the one used in the narrow aluminum pate
computation to account for the use of four wires instead of one. Thus,

(6.4)

The results are represented in Figs. 6-4 and 6-5 in the form of the curvature of the laminate and
the actuated force versus the temperature in the SMA wire. As can be observed in the figures, the
SMA wire has to be heated above 52 oC to generate enough force (F ≥ 46.9 lb) to make the
laminate snap. Note in Fig. 6-5 that the force actuated by the SMA wires is well below the level
given by the upper critical force line.

 

Considering the total strain in the wire represented in Fig. 6-6, it is interesting to observe
that the SMA wire has only to recover a small amount of strain to make the laminate snap.
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Based on these results obtained for the cross-ply [904/04]T laminate, and given that this
particular laminate requires the largest SMA strain recovery and SMA-actuated force level, it
seems that using SMA wires to change the configuration of the other unsymmetric laminates
should be successful. 
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6.3  Modeling the SMA-induced deformations of general unsymmetric 

laminates

6.3.1  Design considerations

Since the set-up geometry chosen for the [904/04]T laminate, eqs. (6.3), leads to satisfactory
results, the values for e and xs are kept the same for the other unsymmetric laminates considered.
The area of the SMA wire can be changed according to the number of wires required to snap the
laminate. Table 6-1 outlines for each laminate what force level the SMA wire has to induce, and
how many wires should be used to produce that force. 

6.3.2  Theoretical results

The results for each laminate, except the [904/04]T which has already been studied, are
presented in Fig. 6-7 to 6-13, in the form of the major principal curvature, the actuated force, and
the SMA wire total strain versus the temperature in the SMA wire. Reflecting Table 6-1, it is seen
from the figures that the smallest force level for snapping, about 12 lb, occurs for the [-154/154]T

Family Lay-Up
Snapping 
force (lb)

Min. 
number 
of wires

[-Θ4/Θ4]T

[-154/154]T 11.7 1

[-304/304]T 33.5 3

[-454/454]T 43.8 4

[(90-Θ)4/Θ4]T

[904/04]T 45.9 4

[754/154]T 35.0 3

[604/304]T 12.2 1

[(Θ−90)4/Θ4]T

[-904/04]T 45.9 4

[-754/154]T 45.3 4

[-604/304]T 44.2 4

Table. 6-1. Determination of the number of SMA wires to be used for each 
laminate
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and [604/304]T laminates, both of which have 30o between fiber orientations. The [904/04]T,
discussed previously, and the [-454/454]T, [-754/154]T, and [-604/304]T laminates require
somewhat over 46 lb, all of these laminates having 90o between fiber orientations. An
intermediate level of about 35 lb is required for the [-304/304]T and [754/154]T laminates,
reflecting the 60o angle between fiber orientations. The total strain in the wire at snapping is
nowhere near the maximum recovery level of 8% for any of the laminates, the recovery being not
over 2% in all cases. From these figures it seems that it will be possible to design the number of
wires and the geometry of the wire supports so that the configuration of unsymmetric laminates
can be changed using SMA. There are adequate margins for necessary force levels and recovery
strain for the SMA to operate properly and predictably. 

The next chapter presents experiments that were conducted to check the accuracy of this
model.



Chapter 6 Use of SMAs with unsymmetric laminates 89

20 25 30 35 40 45 50 55
0

0.01

0.02

0.03

0.04

0.05

P
rin

ci
pa

l c
ur

va
tu

re
 K

1 
(in

-1
)

Temperature T (oC)

A
ct

ua
te

d 
fo

rc
e 

F
 (

lb
)

Fig. 6-7. SMA-induced response of the [-154/154]T laminate
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Fig. 6-9. SMA-induced response of the [-454/454]T laminate
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Fig. 6-10. SMA-induced response of the [754/154]T laminate
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Fig. 6-11. SMA-induced response of the [604/304]T laminate
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Fig. 6-12. SMA-induced response of the [-754/154]T laminate
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Fig. 6-13. SMA-induced response of the [-604/304]T laminate
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Chapter 7 Experiments using SMA to induce snap 
through of unsymmetric laminates

The culmination of the efforts described in the previous chapters was experiments designed
to measure the response of unsymmetric laminates forced to change configuration by attached
SMA wires. Experiments on one laminate per family, specifically the [-304/304]T, [604/304]T, and
[-604/304]T laminates, were conducted. In addition, the cross-ply laminate [904/04]T was also
tested. The results of these experiments and correlation with the predictions are described below.
Details of the wire attachments and some of the practical issues of working with SMA and
unsymmetric laminates are also discussed. 

7.1  Preliminary considerations

7.1.1  SMA wire attachment

In Chapter 5 it was discussed that more than one wire was needed to generate the force level
required to produce the laminate snap through. To simulate the effects of several wires, a single
wire was used, stretched back and forth across the laminate surface between multiple supports, as
illustrated in Fig. 7-1 (a). As seen in the figure, there were two types of supports, end supports and
sliding supports. The single SMA wire was attached at the end supports but was free to slide
around the sliding supports. The forces generated by a wire attached in this fashion were statically
equivalent to the ones that several individual wires would produce, as shown in Fig. 7-1 (b).
Using configuration (a) over (b) offered the advantage of obtaining a force in the SMA wire
which would be uniform along the length of the wire. In configuration (b) the SMA wires would
have to be attached with the same initial tension to generate the same force when heated. This
could actually be difficult to achieve in practice. 
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7.1.2  Measurement of the laminate deformations

Another aspect to consider was how to measure the response of the laminate as forces in the
SMA wire were generated. In Chapter 5 the laminate response was represented by the change in
the principal curvatures and principal curvature direction. However, these variables could not be
easily measured directly during the experiment. Rather, it was found more convenient to measure
the strains in the laminate to characterize the laminate response. The strains were measured along
three different directions, specifically along the x and y axes, and along the axis oriented at 45o

from the x axis. Back-to-back gages were used. With this arrangement, the strains in any
direction, e. g., the principal curvature directions, could be computed as a function of SMA wire
temperature.

7.2   Description of experiments

7.2.1  Strain gage locations and details regarding the supports and the thermocouples

Six back-to-back strains gages were bonded on the laminate surfaces along the three
different directions, as illustrated in Fig. 7-2. The gages were positioned to be as close as possible
to the center of the laminate center. Supports were fastened to the top surface of the laminate. A
different support configuration had to be used for each laminate since the number and location of
supports depended on the laminate principal curvature direction Φo and the laminate snapping
force level Fs. Figure 7-3 depicts the support configuration that was selected for each laminate.
Note that for the [-304/304]T and [604/304]T laminates the support configuration simulated the

(a) one SMA wire (b) four SMA wires

statically
equivalent

Fig. 7-1.  SMA wire attachment

end support

“sliding” support
end support

end support
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effect of, respectively, two and four SMA wires, whereas it was discussed in Chapter 6 that,
respectively, one and three wires were enough. It was found to be more convenient to use a
configuration simulating the effect of an even number of wires. Note also the similarity of Fig. 7-
3 and Figs. 2-7, 2-8, and 2-9. 

The distance between two adjacent supports, denoted d in the figure, and the distance
between two opposite supports, denoted L, were the same for all laminates. Distance L was
chosen to be equal to 8 in. according to the design considerations stated in Chapter 6, eq. (6.3). As
illustrated in Fig. 7-4, distance d was computed from the radius of the support, denoted rs, and
was equal to 0.75 in.

It should be mentioned that the supports were fabricated from aluminium, an electrically
conducting material. The SMA wires were attached directly to the supports with no electrical
insulation.The carbon fibers in the laminates were also electrically conducting. To prevent any
unwanted electrical effects, the supports were attached to the laminates with nylon screws, and a
nylon washer was used between the base of the support and the laminate, as illustrated in Fig. 7-5.

Before being attached to the supports, the SMA wire was elongated plastically to generate a
5% initial strain, and unloaded. The wire was then attached to one end support, around the sliding
supports, and back to the other end support, as was illustrated in Fig. 7-1. Finally, the ends of the
SMA wire were connected to a power supply and two thermocouples were taped on the SMA
wire. Since the SMA wires were electrically conductive and the thermocouple wires were
electrically conductive, the thermocouple was electrically insulated from the wire with a small
piece of cellophane tape. It is feared there could be some thermal insulation effect from the tape
and the thermocouple would not measure exactly the SMA wire temperature. However, electrical
isolation was important.

45o x

y

Fig. 7-2.  Strain gage orientations

unsymmetric 
laminate

strain
gages
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[-304/304]T  [604/304]T

[-604/304]T [904/04]T

L

d

L

d
L

d

L

d

Φo

Φo

Φo

Fig. 7-3.  General configuration of the supports
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d=4rs
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Fig. 7-4. Definition of the support geometry 
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7.2.2  Experimental measurements

The six strains gages and one of the two thermocouples were connected to a data acquisition
system, programed to record the strains and temperature every 60 milliseconds. The second
thermocouple was read manually at regular intervals during the experiment. The voltage in the
SMA wire was increased gradually using small voltage increments. Between each voltage
increment it was necessary to allow some time for the thermocouples and the strain gages to
stabilize. The experiments on each of the four laminates, specifically the [-304/304]T, [604/304]T,
[-604/304]T, and [904/04]T, laminates were conducted twice to assess repeatability of results.
Results from both sets of measurements are shown. 

7.3  Presentation of the results

The experimental results obtained for each of the four laminates are presented in Figs. 7-6 to
7-17. For each laminate, the two sets of measurements are depicted in the form of the strains in
the laminate and the temperature in the wire versus time. Also, the results from the two
experiments are compared by illustrating the laminate strains as a function of the temperature in
the wire. The strains along the x, y, and 45o axes are denoted in the figures respectively by, ε0, ε90,
and ε45. When examining the figures it can be noticed that some strain measurements are more
noisy than others. However in some cases the strains may seem more noisy because of the scale,
as the scale is not the same for all the plots. Also, the strains in the laminate are generally not
equal to zero before the wire is heated. The strain gages were calibrated before the supports and

aluminium
support

nylon washer

nylon screw
hole in
laminate

laminate

Fig. 7-5. Details of attachment of supports to the laminate
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the wire were attached to the laminate. Screwing the supports on the laminate created some initial
strain in the laminate. In addition, the SMA wire was fastened to the supports under a small initial
tension to prevent it from being slack. The combined effects of the attachment of the supports and
the SMA wire caused initial strains in the laminate. It can also be noticed in the figures that the
temperature measurements are not as smooth as the strain measurements. This difference is due to
the resolution of the data acquisition system, which was limited to 2.5 mV. This resolution was
not high enough to obtain smooth data for the temperature, since the range for the output voltage
of the thermocouple was small, i. e., about 80 mV. On the other hand, since the output voltage for
the strain gages ranged from about 0.5 V to up to 1.8 V, the data acquisition system was able to
record the strains in a smoother fashion. To obtain a smooth representation of the strains versus
the temperature, the data for the temperature were smoothed by using Mathematica to perform a
convolution on the temperature data. (For more details, see section 3.8 entitled Numerical
Operations on Data in the Mathematica manual [33]). In the figures to follow, the smoothed data
are presented by the continuous line drawn over the original measurements. The triangles in the
figures represent the temperature recorded manually using the second thermocouple. 

 [-304/304]T laminate

As can be observed in Figs. 7-6 and 7-7, for the [-304/304]T laminate the strains increase at a
very slow rate, or not at all, as the SMA wire is first heated above room temperature. As the SMA
wire is further heated, the rate of increase of the strains changes continuously, reaching its
maximum value when the snap through occurs. The snap through is characterized by a sudden
jump in the strains to larger values and a small drop of the temperature in the wire. Note that the
strain along the 45o axis, ε45, changes the most before the snap through occurs. This is actually
excepted, since the 45o axis, compared to the x and y axes, is the closest to the principal curvature
direction, along which the strain should undergo the largest increase. Looking at the ε45 time-
strain relation, it is interesting to observe that this strain increases as soon as the temperature
increases a few degrees. Note also that the strains at the top surface (z=+H/2) are negative since
the top surface is in compression when forces are applied. The strains at the bottom surface (z=-H/
2) are positive since the bottom surface is in tension during the deformations. After the laminate
snaps, it is interesting to note that the strains ε0(+H/2) and ε90(+H/2) at the top surface and the
strains ε0(-H/2) and ε90(-H/2) at the bottom surface are, respectively, equal in magnitude.
Referring to the time-temperature relations, it can be observed that the temperatures measured by
the manually recorded and automatically recorded thermocouples are within half a degree from
each other. 

 Figure 7-8 presents the measurements from the two experiments in the form of the laminate
strains versus the wire temperature. As can be noticed, relative to the first heating, the laminate
response follows similar trends as the SMA wire is heated a second time. Also, in each heating
case, the strains reach the same magnitude before and after the snap through. The major
difference is in the magnitude of the temperature in the wire when the snap through occurs. From
the first to the second experiments, the temperature at the snap through decreases from 39.8 oC to
36.8 oC, a difference of about 3 oC. 
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 [604/304]T laminate

As illustrated in Figs. 7-9 and 7-10, for the [604/304]T laminate the response follows the
same characteristics as observed for the [-304/304]T laminate, i. e., the rate of change of the strains
increases with time and then the strains suddenly jump at the snap through to large positive values
at the bottom surface, and to large negative values at the top surface. For this laminate the strain
ε0 has the largest change before the snap through. This can be explained by the fact that ε0 is the
strain along the direction which is the closest to the principal curvature direction. It is interesting
to observe that the strain at the bottom surface ε90(-H/2) becomes negative as the temperature in
the wire is increased, whereas the two other strains on the bottom surface are positive. However
as the snap through occurs, ε90(-H/2) suddenly changes to a large positive value. After the snap
through, note that the strains ε0(+H/2), ε90(+H/2), and ε45(+H/2) at the top surface are,
respectively, similar in magnitude but opposite in sign to the strains ε90(-H/2), ε0(-H/2), and ε45(-
H/2) at the bottom surface. Referring to the time-temperature relation of Fig. 7-9, a small drop in
the temperature can be observed as the laminate snaps, as it was the case for the [-304/304]T
laminate. 

The temperature-strains relations obtained from the two experiments are illustrated in Fig.
7-11. As can be observed, the temperature-strains relations correlate very well with one another
until the temperature in the wire reaches about 34 oC. When the wire is heated further, the strains
of the experiment conducted the first time increase at a higher rate than the strains of the second
experiment. As a result, the snap through in the first experiment occurs at a temperature equal to
35.8 oC whereas in the second experiment the snap through occurs as the temperature reaches
37.7 oC. This represents a 2 oC difference. After the snap through the strains reach similar levels
in both experiments. 

 [-604/304]T laminate

The laminate strains and SMA wire temperature versus time for the [-604/304]T laminate are
illustrated in Figs. 7-12 and 7-13. As observed for the previous laminates, the strains increase at a
higher rate as the temperature increases. As the snap through occurs, the strains jump suddenly to
reach large values, which are positive for the strains at the bottom surface and negative for the
strains at the top surface. The largest strains before the snap through are the strains measured
along the 45 o axis, because this particular axis is the closest to the principal curvature direction.
After the snap through it is interesting to note that the strains ε0(+H/2) and  ε90(+H/2) at the top
surface are equal in magnitude but opposite in sign to, respectively, the strains  ε90(-H/2) and  ε0(-
H/2) at the bottom surface. Referring to the time-temperature relations, a small drop in the
temperature right after the snap through can be again noticed. 

The temperature-strain relations obtained for the two experiments are illustrated together in
Fig. 7-14. From the figure it can be observed that the initial strain is not exactly the same for both
experiments. This is probably due to a difference in the tension applied on the SMA wire as the
wire was attached to the supports. However, the general trends are the same. The temperature at
the snap through is different by about 2 oC, being equal to 43.4 oC in the first experiment and to
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41.1 oC in the second. This is quite good given that the initial conditions were not exactly
identical. 

 [904/04]T laminate

The strains and temperature measured versus time for the [904/04]T laminate are presented
in Figs. 7-15 and 7-16. As observed previously for the other laminates, the strains ε0 and ε45
increase at a higher rate as the SMA wire is heated. The strain ε0 is the strain which undergoes the
largest increase, since the x axis is the principal curvature direction for that laminate. The strain in
the y direction, ε90, has an interesting behavior before the snap through. At the top surface  ε90
increases slightly at first to take a small positive value, and then decreases back to about zero
before jumping suddenly to a large negative value at the snap through. On the other hand, at the
bottom surface, ε90 decreases slightly to reach a small negative value, and then jumps to a large
positive value at the snap through. The evolution of the  ε90 strain seems to indicate that a small
anticlastic curvature may be developing along the y direction as the forces are applied along the x
direction. As observed previously for the other laminates, after the snap through the strains at the
top surface are negative since the laminate top surface is under compression, and the strains at the
bottom surface are positive since the laminate bottom surface is under tension. In particular, the
strains ε0(+H/2) and  ε90(+H/2) are equal but opposite in sign to, respectively, the strains  ε90(-H/
2) and ε0(-H/2). Referring to the time-temperature relation, a small drop in the temperature can be
observed as the laminate snaps.

Looking at Fig. 7-17, it is striking how well the data from both experiments correlate. The
only difference lies, as observed for the other laminates, in the temperature at which the laminate
snaps. For the first experiment this temperature is equal to 41.7 oC whereas it was equal to 41 oC
for the second experiment, a difference of 0.7 oC.

These experimental results show that the response of the laminate is very similar from the
first to the second experiments, for all the laminates that were tested. Also it can be noticed in the
figures that for all laminates the strains in the laminate are changing as soon as the temperature in
the SMA wire increases above room temperature. This was, in fact, not expected since the
austenite start temperature had been determined to be 30 oC in Chapter 5. Since the strains start to
change before the temperature in the wire has reached 30 oC, it is probable that the austenite start
temperature has decreased since the time the SMA wire was calibrated. This issue is discussed in
detail in the next section.

7.4  Issues on predicting the measured laminate response

7.4.1  Change in the thermal properties of the SMA wire

Thermal properties of SMAs, especially the phase transformation temperatures, can
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influence greatly the shape recovery process by governing the phase transformation occurrence.
Thus, the accuracy of the model predictions depends strongly on the precision with which the
phase transformation properties can be determined. Since the austenite start transformation
temperature is suspected to have changed over the course of the experiments, a period of about 6
months, the experiment on the narrow aluminium plate was conducted a second time, after all the
experiments on the unsymmetric laminates were finished. The results of this experiment are
presented by the diamonds shapes in Fig. 7-18 in the form of the strains measured at the top and
bottom surfaces of the plate as a function of the temperature measured in the SMA wire. Results
from the original experiment are depicted by the triangles. As can be observed, the major
differences occur at the beginning of the phase transformation. It seems that the austenitic
transformation was initiated at a temperature that was lower in the second experiment than it was
in the original experiment. The phase transformation the second time began as soon as the SMA
wire was heated above 25 oC, whereas earlier the wire had to be heated above 30 oC to initiate the
phase transformation. From these observations, it seems that the austenite start temperature, Aso,
decreased from 30 oC to 25 oC with time and repeated usage of the SMA wire. After the
temperature in the SMA wire reaches about 45 oC, the two sets of experimental results correlate
well. The austenite finish temperature, Afo, does not seem to have changed from the original
experiment to the second. Predictions from the model are also illustrated in the figure. The dashed
line and the full line represent, respectively, the model predictions using Aso=30 oC and Aso=25
oC, Afo being equal to 38 oC in both cases. It is obvious that the full line captures better than the
dashed line the experimental data from the second experiment. To further demonstrate the change
in the start austenite temperature, results from an experiment which was conducted on the [904/
04]T laminate right after the original experiment on the narrow aluminium plate are presented.
During that experiment, a different data acquisition system was used to record the strains in the x
direction at the top and bottom surfaces of the laminate, and the temperature in the SMA wire.
The results of that original experiment are presented in Fig. 7-19 in the form of the strain along
the x direction, ε0, and the temperature in the wire versus time. In addition, the strains ε0 are
depicted as a function of the temperature in the wire in Fig. 7-20. The strains ε0 measured during
the later experiments and presented in Fig. 7-17 are also presented in the figure. It is interesting to
note that the strains from the two later experiments increase with temperature in a very different
manner when compared to the original experiment. During the original experiment the wire
needed to be heated above 30 oC to begin to induce an increase of the strains. During the two later
experiments, the strains increased as soon as the temperature in the wire was above 25 oC. It
seems that the austenite transformation during the original experiment started to occur at a
temperature which was higher than the temperature at which the phase transformation started in
the two later experiments. Since the phase transformation started at a more elevated temperature
in the original experiment, the wire needed to reach a higher temperature to generate enough force
to make the laminate snap. Thus, in the original experiment the laminate snapped as the
temperature reached about 48 oC, whereas the snap through was activated in the later experiments
as the temperature reached about 41 oC. From these observations, it appears that the thermal
properties of the SMA wire may have changed relative to the time when the wire was calibrated
during the original experiments with the narrow aluminium plate. 

In Fig. 7-21 the original temperature-strain relations from Fig. 7-20 are represented along
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with the predictions from the developed theory using Aso=30 oC. As can be observed, the
measured strain levels correlate fairly well with the predicted strains and the occurrence of the
snap through is predicted quite accurately. However, the measured strains increase at slower rate
than predicted. 

 Hence, because of the differences in results between the original experiments and the later
experiments, with both the narrow aluminium plate and the [904/04]T unsymmetric laminate,
further numerical calculations will use the lower value of Aso, specifically, 25 oC.

7.4.2  Relaxation effects in the laminates and initial forces

Another important aspect to consider when using the developed theory to predict the
laminate response to SMA-induced force is the fact that the laminate curvatures decreased since
the time they were cured, as was discussed in Chapter 3. The decrease was presumably due to
relaxation effects in the epoxy matrix. The decrease in the laminate curvatures may have an
important influence on the laminate response as forces are applied. In particular, a decrease of the
snapping force would be expected. This would mean that the SMA wire may not need to be
heated to the temperatures predicted in Chapter 6.

 In order to obtain predictions that reflect as much as possible the actual SMA-induced
deformations in the laminate, the developed theory should ideally predict quite accurately the
initial laminate curvatures when no force is applied. If the predicted initial curvatures do not
correlate well, the SMA-induced deformations are unlikely to be predicted accurately. In order to
obtain valid predicted curvatures, the temperature change ∆T was decreased from its initial -280
oF to reflect relaxation effects. The value of ∆T which was used for each laminate and the changes
it made in the predicted curvature and the snapping force magnitudes are presented in Table 7-1.
Table 7-1 also presents the laminate curvatures that were measured just after cure and then again
after a six-month period.

As can be observed from Table 7-1, for the [-304/304]T, [604/304]T, [-604/304]Τ, and [904/
04]T laminates, the temperature change has to be changed to, respectively, -236 oF, -197 oF, -235
oF and -239 oF to obtain good correlations between the predicted and measured initial curvatures.
For the [604/304]T laminate the magnitude of the temperature change has to be decreased more
than for the other laminates because even just after cure the curvatures of the laminate were
already smaller than the predicted curvatures computed using ∆T=-280 oF. For the other three
laminates the curvatures just after cure were very close to the predicted curvatures computed
using ∆T=-280 oF. Thus, for the [604/304]T laminate the temperature change has to decrease as
low as -197 oF to account for the difference in the curvatures right after cure in addition to the
relaxation effects. Decreasing the magnitude of the temperature change affects the response of the
laminate to applied forces by, especially, decreasing the level of the snapping force as observed in
Table 7-1. 
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Another aspect to consider in computing the predictions is the fact that during the
experiments, a small initial force was applied on the laminate, as was observed in Figs.7-6 to 7-
17, to prevent the SMA wire from being slack. This initial force was evaluated using the
measured initial strains and was taken into account in the SMA model by adding an initial stress
in the equations.

7.5  Comparisons of the experimental results with the predictions of the 

developed theory

The theory presented in Chapters 4 and 5 is used to obtain predictions of the strains at the
laminate surfaces as a function of the temperature in the SMA wire for the four laminates that
were tested. In this section, the strain predictions from the theory are compared with the
experimental results just presented. The predicted strains in the x and y directions, ε0(z) and

Laminate

Measured curvatures (in-

1) ∆T=-280 oF  New ∆T

Just 

after cure

After 6 
months

Predicted 
curvatures 

(in-1)

Predicted 
Fs (lb)

∆T
 (oF)

Predicted 
curvatures 

(in-1)

Predicted 
Fs (lb)

[-304/304]T

=0.0236 =0.0224 =0.0246 =0.0207

=0.0385 =0.0364 =0.0452 33.5 -236 =0.0379 25.2

=0.0603 =0.0573 =0.0672 =0.0566

[604/304]T

=0.0399 =0.0322 =0.0463 =0.0232

=5.6 10-4 =-5.6 10-4 =2.9 10-3 12.2 -197 =1.7 10-3 6.5

=-0.0181 =-0.0123 =-0.0251 =-0.0173

[-604/304]T

=0.0539 =0.0454 =0.0540 =0.0453

=0.0188 =0.0150 =0.0178 44.2 -235 =0.0149 33.7

=0.0659 =0.0528 =0.0627 =0.0526

[904/04]T

=0.0719 =0.0619 =0.0723 =0.0616

=-3.5 10-4 =-2.6 10-4 =-1.4 10-4 45.9 -239 =-1.6 10-4 36.2

=-3.0 10-4 =2.4 10-4 =0.0 =0.0

Table. 7-1. Effect of changing ∆T on the predictions of the laminate curvatures and snapping forces
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ε90(z), are simply equal to, respectively, εx(z) and εy(z), which were defined in Chapter 2 by eq.
(2.2). The predicted strain along the 45o axis was computed using a standard strain transformation
equation given by 

, (7.5)

where γxy(z) was defined in eq. (2.2). In the definitions of the strains  ε0(z), ε90(z), and ε45(z), z is
set equal to +H/2 for the computation of the strains at the top surface and is set equal to -H/2 for
the computation of the strains at the bottom surface.

The predicted and measured wire temperature-laminate strain relations are presented for the
four laminates in Figs. 7-22 to 7-25.   

[-304/304]T laminate

 As can be observed from Fig. 7-22, the predicted and measured strains for the [-304/304]T
laminate follow the same trends. The magnitudes of the strains before and after the snap through
correlate well. The temperature at which the snap through occurs is also quite close. However,
some differences can be noticed as the wire is heated above room temperature. The measured
strains increase at a much slower rate than the predicted strains. As the laminate approaches the
snap through, however, the increase is much more rapid for the measured strains than it is for the
predicted strains. 

 [604/304]T laminate 

The predicted and measured wire temperature versus laminate strain relations for the [604/
304]T laminate   are presented in Fig. 7-23. It can be observed in the figure that the overall
deformation behavior is captured by the theory. However, the strain levels before and after snap
through do not correlate as well as for the previous laminate. The predicted snap-through strains
are smaller than the measured strains along the x and 45o axes. Along the y axis the correlation
between the measured and predicted snap-through strains is better, but the negative values that the
ε90(-H/2) takes before the snap through are not captured by the model. 

 [-604/304]T laminate

The predicted and measured strains for the [-604/304]T laminate are presented in Fig. 7-24.
The predicted and measured strains follow similar trends, but the measured strains increase at a
smaller rate than the predicted strains do as the temperature increases. The predictions for the
temperature associated with the snap through are quite accurate. The temperatures at which the
laminate snapped during the experiments are within the range of temperatures determined by the
predictions. Note that the measured strains before the snap through are smaller than the predicted
strains, but after the snap through the measured strains and predicted strains correlate well.

ε45 z( )
εx z( ) εy z( )+

2
-------------------------------

εx z( ) εy z( )–

2
------------------------------ 2 45

o( )( )
γxy z( )

2
-------------- 2 45

o( )( )sin+cos+=
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 [904/04]T laminate

Figure 7-25 presents the response of the [904/04]T laminate which was measured during the
two later experiments and the response predicted by the model. Referring to the figure, the overall
response of the laminate is predicted quite accurately. Except for ε0(+H/2) after snapping, the
strain levels before and after the snap through are well predicted. Note that the small relative
decrease of the strain ε90 before the snap through is captured by the model at the bottom surface,
but not at the top surface.

7.6  Observations and concluding remarks

A SMA wire was successfully used to change the configuration of four unsymmetric
laminates. Each laminate was tested twice and the results from both experiments correlated well
for all laminates. It is excepted that similar results would have been obtained with the remaining
four laminates, i. e., the [-154/154]T, [-454/454]T, [154/754]T, [-154/754]T laminates. It was
observed from the experimental results that the start austenite temperature had changed since the
time the SMA wire was calibrated. New predictions reflecting as closely as possible the
experimental conditions, i. e., initial stress in the SMA wire, initial curvatures of the laminates,
new austenite start temperature, were computed and compared with the experimental results.
From the correlations it was observed that the overall laminate response is generally
predicted quite well. The strain levels before and after the snap through are generally quite close,
and the temperature at which the laminate snaps is predicted within a few degrees. Given that the
snap through of the laminate is a dynamic and unstable event, which can be influenced by small
unwanted perturbations, the correlation between the experiments and the predictions is thought to
be quite good. It would, in fact, have been quite exceptional to obtain correlations as good as the
ones obtained with the narrow aluminium plate, since the mechanisms involved in the laminate
snap through are much more complex. One major difference between the experiments and the
predictions are in the rate of increase of the laminate strains with respect to the temperature in the
SMA wire. During the experiments it was observed that the strains were increasing at a rate
slower than predicted. On the other hand, in the experiment with the narrow aluminium plate the
measured and predicted strains increased at a similar rate. However, the experiments on the
unsymmetric laminates were quite different than the experiment on the narrow aluminium plate.
First, the configuration used for the attachment of the SMA wire was not exactly the same. For the
unsymmetric laminates the SMA wire was stretched around several supports whereas for the
aluminium plate the wire was simply stretched between two end supports. Second, unsymmetric
laminates are a more complex structure than the narrow aluminium plate. It is possible that the
theory developed in Chapter 4 is not able to fully represents the mechanics involved in the
response of unsymmetric laminates to applied forces. Experiments which were previously
conducted on a [02/902]T laminate and were briefly presented at the end of Chapter 4 showed that
the strains in the laminates induced by known applied forces were very well predicted by the
developed theory. However, it is possible that the function which was selected in Chapter 2 for
the out-of-plane displacement, wo(x, y), may not be able to fully represent the shape of the
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laminate as forces are applied, even though this function was found to correlate well with the
measured room-temperature shapes of the laminates, as observed in Chapter 3. Since the
displacements of the laminate are directly used to evaluate the recovery strain of the SMA wire, a
small discrepancy between the actual shape and the predicted shape would affect the relations
between the laminate strains, the recovery strain, and the temperature in the SMA wire. The
recovery strain is used in the SMA constitutive model to evaluate the force generated by the wire
at a given temperature. The deformations of the laminate are then computed for the corresponding
force level. This solution procedure was described in detail in Chapter 5. Thus the relations
between the strains in the laminate, the recovery strains, and the temperature in the wire involve
complex phenomenon, which may be quite difficult to capture precisely. But as observed, the
developed theory is able to predict the overall laminate response to SMA induced forces quite
well.
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Fig. 7-6. Strain and temperature measurements: [-304/304]T laminate, first experiment

0 2 4 6 8 10 12

25

30

35

40

45

 S
tr

ai
n 

ε 0
(+

H
/2

)

S
tr

ai
n 

ε 0
(-

H
/2

)
S

tr
ai

n 
ε 9

0(
-H

/2
)

S
tr

ai
n 

ε 9
0(

+
H

/2
)

S
tr

ai
n 

ε 4
5(

-H
/2

)

S
tr

a
in

 ε
45

(+
H

/2
)

Time (min.)

S
M

A
 w

ire
 te

m
pe

ra
tu

re
 (

o C
)

0 2 4 6 8 10 12

- 800

- 600

- 400

- 200

0

0 2 4 6 8 10 12

- 1750

- 1500

- 1250

- 1000

- 750

- 500

- 250

0 2 4 6 8 10 12

- 700

- 600

- 500

- 400

- 300

- 200

- 100

0 2 4 6 8 10 12
0

200

400

600

800

0 2 4 6 8 10 12

250

500

750

1000

1250

1500

1750

0 2 4 6 8 10 12

250

500

750

1000

1250

1500

1750

Time (min.)Time (min.)

Temperature measured automatically

Temperature recorded manually

Smoothed temperature 
measurements



Chapter 7 Experiments using SMA to induce snap through of unsymmetric laminates 111

Fig. 7-7. Strain and temperature measurements: [-304/304]T laminate, second experiment
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Fig. 7-8. Wire temperature-laminate strain relations from the first and second experiments: 
 [-304/304]T laminate
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Fig. 7-9. Strain and temperature measurements: [604/304]T laminate, first experiment
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Fig. 7-10. Strain and temperature measurements: [604/304]T laminate, second experiment
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Fig. 7-11. Wire temperature-laminate strain relations from the first and second experiments: 
[604/304]T laminate
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Fig. 7-12. Strain and temperature measurements: [-604/304]T laminate, first experiment
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Fig. 7-13. Strain and temperature measurements: [-604/304]T laminate, second experiment
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Fig. 7-14. Wire temperature-laminate strain relations from the first and second experiments:
 [-604/304]T laminate
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Fig. 7-15. Strain and temperature measurements: [904/04]T laminate, first experiment
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Fig. 7-16. Strain and temperature measurements: [904/04]T laminate, second experiment
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Fig. 7-17. Wire temperature-laminate strain relations from the first and second experiments: 
 [904/04]T laminate
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Fig. 7-19. Strain and temperature measurements: [904/04]T laminate, original experiment
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Fig. 7-21. Measured and predicted wire temperature-laminate strain relations: 
[904/04]T laminate, original experiment
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Fig. 7-22. Measured and predicted wire temperature-laminate strain relations:
 [-304/304]T laminate 
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Fig. 7-23. Measured and predicted wire temperature-laminate strain relations: [604/304]T laminate 
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Fig. 7-24. Measured and predicted  wire temperature-laminate strain relations : 
[-604/304]T laminate
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Fig. 7-25. Measured and predicted wire temperature-laminate strain relations: [904/04]T laminate
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Chapter 8 Closure

8.1  Summary of the work accomplished

1. A theory to predict thermally-induced deformation behavior in unsymmetric laminates 
was developed. 

A nonlinear theory, based on polynomial approximations to the midplane strains and out-of-
plane displacements and a Rayleigh-Ritz approach to represent the total potential energy, has
been develop to predict the deformation behavior of general unsymmetric laminates subjected to a
temperature change, especially the cooling from the elevated cure temperature flat condition to
room temperature. To further study unsymmetric laminates and to verify the Rayleigh-Ritz
approach, finite-element analyses were conducted using the commercial code ABAQUS. Also the
predictions obtained with the developed theory were compared with predictions obtained with
previously developed theories, especially, Peeter, Powell, and Warnet’s theory [17] and Jun and
Hong’s theory [16]. The comparisons of the predictions from the developed theory with
predictions from ABAQUS and previously developed theories demonstrated that:

• The curvatures of the laminates at room temperature predicted by the developed theory 
correlate well with the finite-element predictions.

• The theory developed by Peeter, Powell, and Warnet to predict the thermally-induced 
deformations of angle-ply unsymmetric laminates is based on an incorrect assumption, i. e., 

that the principal curvature direction for all angle-ply laminates is 45o.

• The laminate deformations predicted by the developed theory are more accurate around the 
bifurcation temperature than the predictions from Jun and Hong. Being able to predict the 
deformations near the bifurcation point correctly is important for studying the snap-through 
phenomenon associated with unsymmetric laminates. 

2. The shapes of a wide range of unsymmetric laminates were measured experimentally. 
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A total of eight different unsymmetric laminates were manufactured. Their room-
temperature shapes were measured twice, one time right after curing and a second time six
months later. The experimental results from the first measurement correlated well with the
predictions from the theory and the finite-element program ABAQUS. The measurement
conducted the second time revealed that the curvatures of all laminates had decreased. Reasons
for the curvature change is not obvious. It may be possible that relaxation of the epoxy-matrix
occurred during the elapsed time, leading to a decrease in the laminate curvatures. From these
experiments it can be concluded that:

• The developed theory predicts quite accurately the shapes of unsymmetric laminates at 
room temperature.

• The room-temperature shapes of unsymmetric laminates may change with time, depending 
on fluctuations of the environmental conditions (temperature, humidity) or depending of the 
aging of the material (matrix relaxation).

3. The developed theory was extended to predict the laminate response to simple applied 
forces.

 The effects of forces applied on unsymmetric laminates were modeled and implemented in
the developed theory so that the laminate deformations could be predicted at any temperature
change ∆T and applied force level F. In particular the deformation behavior as the laminates
reached the snap through was studied. As the applied force was increased, the laminate shape
changed to become similar to the unstable shape at the snap through. As a result, the principal
curvature direction gradually decreased to become close to the one of the unstable shape. It was
also noted that the force level required to generate the snap through was proportional to the
magnitude of the initial laminate curvatures, which were themselves proportional to the angle
between the fibers in the plies. From these predictions, it seems that:

• The developed theory is able to capture the snap-through phenomenon correctly.

• Changing the configuration of the cross-ply unsymmetric laminate requires the largest 
applied force. 

4. A SMA constitutive model was implemented in the developed theory.

Since the ultimate objective of this work was to model the deformation behavior of
unsymmetric laminates to SMA-induced forces, an existing SMA constitutive model was
implemented in the developed theory. Preliminary experiments were conducted on a narrow
aluminium plate on which a SMA wire was attached. The measurements of the strains induced in
the plate as a function of the temperature in the SMA wire showed that the phase transformation
temperatures, Aso and Afo, supplied by the manufacturer were not representative of the phase
transformation temperatures of the actual material. In addition, the temperatures could change
with time and material usage. After these temperatures were modified, good correlations were
obtained between the measurements and the predictions of the developed theory applied to the



Chapter 8 Closure 132

aluminium plate. The theory was then used to predict the response of unsymmetric laminates to
SMA-induced forces. From the preliminary experiment conducted on the narrow aluminium plate
and the simulations computed using the theory, it can be concluded that:

• The thermal properties of SMA specified by the manufacturer are not necessary 
representative of the thermal properties of the actual material.

• The theory predicts quite accurately the SMA-induce deformations of the aluminium 
narrow plate.

• SMAs should be able to actuate sufficient force and recover enough strain to change 
successfully the laminate configuration.

5. The configuration of unsymmetric laminates was successfully changed in experiments by 
using a SMA wire as actuator.

A pre-strained SMA wire was attached on the laminate surface. By applying voltage, the
SMA wire was resistively heated until the wire had actuated enough force to induce the laminate
snap through. During these experiments the strains in the laminates and the temperature in the
SMA wire were measured. The experimental results showed that the austenite start temperature
had decreased since it was evaluated during the original experiment on the narrow aluminium
plate. After adjusting the theory to account for the start austenite temperature decrease, the
laminate curvature decreases, and the initial pre-stress in the SMA wire to reflect as much as
possible the experimental conditions, the predictions obtained for the laminate response as the
SMA wire is heated were quite close to the experimental measurements. The temperature in the
SMA wire at which the laminate snapped through is predicted within a few degrees. The predicted
strains in the laminate before and after the snap through correlate quite well. The main differences
between the predictions and the experimental measurements are in the rate of increase of the
laminate strains versus the temperature in the SMA wire. As the SMA wire is heated, the
measured strains increase at a rate slower than predicted. The reasons for the difference are not
obvious since the relations between the strains in the laminate and the temperature in the wire
involve complex mechanics. It is possible that the assumed function for the laminate out-of-plane
displacement is not adequate to represent the out-of-plane deflection of the laminate as forces are
applied. But as observed, the developed theory is able to predict the overall laminate response to
SMA induced forces quite well, especially after and before the snap through. This is a significant
contribution to the literature.

8.2  Suggestions for further research

From the work that was accomplished and presented in the previous chapters, the following
suggestions for future research are proposed:

1. The decrease in the unsymmetric laminate curvatures after cure should be studied more 
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fully.

It was observed during the measurement of the room-temperature shapes of the laminates
that the laminate curvatures had decreased in magnitude since the time the laminates were cured.
The reason for the decrease is not obvious. The laminates were kept in a dry environment so that
moisture absorption would not be a factor. A possible    explanation is that the epoxy matrix had
relaxed with time. This is only an assumption which should be further investigated.

2. The laminate response to applied forces could be checked experimentally.

The experiments using an SMA wire to generate forces on unsymmetric laminates showed
that the developed theory could predict quite accurately the overall response of the laminate.
However, as the SMA wire is heated, it was observed that the strains in the experiments increased
at a rate slower than predicted. The reasons for the differences are not obvious. To understand
why the developed theory does not capture the increase of the strains better, it would certainly be
valuable to check experimentally the laminate response to known applied forces. Measuring the
strains in the laminate and the displacements of the supports as a function of known applied force,
not necessarily generated by SMA wires, would provide a check on the accuracy of the developed
theory. 

3. The SMA wire should be trained.

It was observed during the experiments with the SMA wire that the properties of the wire
changed since the time the wire was originally used. The change in the response of SMAs as
cyclic loading is applied is a phenomenon that has been observed previously by some
investigators [35-36]. In order to stabilize the SMA response, a so-called thermomechanical
training can be performed. The training consists in performing a cycling thermal and/or
mechanical loading on the SMA until the response of the SMA has stabilized. In addition, by
using a proper thermomechanical cycling, a two-way shape memory alloy can be obtained [37]. A
two-way shape memory alloy, as opposed to a one-way shape memory alloy, which was used in
this research, has the advantage of exhibiting a reversible shape-memory effect. A two-way shape
memory alloy is able to recall both undeformed and deformed shapes when, respectively, heated
above the austenite finish temperature and cooled below the finish martensite temperature. Thus,
using a two-way shape memory alloys could be more convenient than using a one way-shape
memory alloys to control the shape of structures. 
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Appendix A Additional comparisons of the experiments 
with the developed theory

To illustrate how the change in the SMA thermal properties affects the predictions from the
developed theory, the predicted laminate response obtained using the values of 25 oC and 30 oC
for the austenite start temperature is presented in Figs. A-1 to A-4, along with the experimental
results presented in Figs. 2-22 to 2-25. 

From the figures it can be observed that the occurrence of the laminate snap through is more
accurately predicted when the value of 25 oC for Aos is used to compute the predictions, except for
the [604/304]T laminate. For this particular laminate, the temperature at which the snap through
occurs seems to be better predicted with Aos equal to 30 oC. However, it is important to recall that
the temperature change at which the predictions were computed was set equal to -197 oF to obtain
good initial predicted curvatures, as was indicated in Table 7-1. This temperature change was
lower by about 40 oF compared to the temperature change selected to compute the predictions for
the other laminates. This represents quite a large difference in magnitude. It is not clear how such
a decrease in the temperature change can affect the laminate response to applied forces. It may be
possible that the predicted response of the laminate using Aos equal to 30 oC is closer to the
experimental results than the predictions using Aso equal to 25 oC because  the temperature
change was smaller in magnitude.
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Fig. A-1. Measured and predicted wire temperature-laminate strain relations:
 [-304/304]T laminate 
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Fig. A-2. Measured and predicted wire temperature-laminate strain relations:
 [604/304]T laminate 
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Fig. A-3. Measured and predicted wire temperature-laminate strain relations:
 [-604/304]T laminate 
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Fig. A-4. Measured and predicted wire temperature-laminate strain relations:
 [904/04]T laminate 
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