
SECURITY BY DESIGN

by

M. James Tanner

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

University of Advancing Technology

August 10, 2009

© M. James Tanner, 2009

SECURITY BY DESIGN

by

M. James Tanner

has been approved

August 10, 2009

APPROVED:

VICTORIA SCHAUFUSS, PhD (ABD), Chair

GREG MILES, PhD, CISSP, CISA, CISM, IAM, IEM, Independent Reviewer

SHELLEY KEATING, MSIT, IEM, IAM, CCNA, MCSE+l, Network+, A+, CTT+, Independent

Reviewer

AL KELLY, MSIS, MCSA, MCSE 2000m /2003, IEM, IAM, Network+, A+, MCT,

Independent Reviewer

ACCEPTED AND SIGNED:

__
VICTORIA SCHAUFUSS, PhD (ABD)

Abstract

Securing a computer from unwanted intrusion requires astute planning and effort to

effectively minimize the security invasions computers are plagued with today. While all of the

efforts to secure a computer are needed, it seems that the underlying issue of what is being

secured has been overlooked. The operating system is at the core of the security issue. Many

applications and devices have been put into place to add layers of protection to an already weak

operating system. Security did not used to be such a prominent issue because computers were not

connected 24/7, they used dialup and did not experience the effects from connecting to multiple

computers. Today computers connect to high speed Internet and seem useless without access to

email, chat, Internet, and videos. This interconnectedness of computers has allowed the security

of many computers to be compromised because they have not been programmatically secured.

The core component of computer security might best be done through security layers protecting

the operating system. For this research, those who work in the computer field were asked to

complete a survey. The survey was used to gather information such as the security layers and

enhancements implemented on Linux computers and networks their surrounding network. This

research is a stepping stone for further research as to what can be done to further improve upon

security and its current implementations.

Acknowledgements

Thanks goes out to all of the professors at the University of Advancing Technology who

have brought so much information to the table and been available throughout this process.

Professor Greg Miles thanks for all the information that has been shared in the information

security classes. Professor Shelley Keating and Professor AL Kelly, thanks for the guidance and

assistance with refining this thesis to make it what is today. Thanks also goes to those who

assisted in the revision and editing processes namely Dad, Jose-Miguel Maldonado, and UAT

Assistant Professor, Nathan Hamiel. Professor Victoria Schaufuss thanks for the assistance with

each step of the thesis process. Most of all Onalisa is greatly appreciated for her unending

support of both this thesis and the graduate classes.

v

Table of Contents

CHAPTER 1. INTRODUCTION...9
Introduction to the Problem...9
Statement of the Problem..10
Purpose of the Study..10
Research Questions...11
Significance of the Study..11

CHAPTER 2. LITERATURE REVIEW...12
Introduction...12
Current Security Solutions..14
Why does it matter that a computer is infected or hacked? ..16
What can be done to protect computers? ..16
Frameworks...21
Architecture Design of the Operating System ..22
Kernels...25
Conclusion...33
Statement of Thesis...33

CHAPTER 3. METHODOLOGY..35
Research Expectations...35
Research Design..36
Participants..36
Sampling Strategy...37
Process of Data Collection..38
Research Questions...39
Data Processing and Analysis...39
Study Limitations..41
Validity and Reliability...42
Ethical Assurances..43

CHAPTER 4. RESULTS..45
Demographics..45
Variable Selection...49
Conclusion...53

CHAPTER 5. DISCUSSION, IMPLICATIONS, AND RECOMMENDATIONS......................54
Implications...57
Recommendations...58
Conclusions...59

REFERENCES..61
APPENDIX A. DATA COLLECTION INSTRUMENT ..68

vi

List of Tables

Table 1. Pearson Correlation Coefficients Matrix...51
Table 2. Fechner Correlation Matrix...52
Table 3. Analysis of Covariance...53

vii

List of Figures

Figure 1. Security Solutions..13
Figure 2. Level of Education...45
Figure 3. Operating Systems...46
Figure 4. Linux Flavors...47
Figure 5. Visible Effects of Malware..48
Figure 6. Frequency of Buffer Overflow Errors..48
Figure 7. Security Layers..49

viii

CHAPTER 1. INTRODUCTION

Introduction to the Problem

Operating systems are the core component of computer security. Computers have been

designed for optimal use which is great for speed and ease of use but at the same time it could be

the reason why computer security has become such a perplexing issue. Security by Design

changes the mentality of making a computer secure because security starts with the operating

system and continues on to each piece of software. Well built operating systems will have fine

grained permissions which control access rights to specific files, folders, and applications on a

user by user basis. Fine grained permissions are time consuming and slow down everything until

all the rules and account permissions are defined; the user will be locked out of security aspects

of the root program that in the past were easily accessible. However, correctly designed

programs will not require the user to have full rights to the program and all related directories.

Secure systems consist of protections at all points of connections. Each device that is

connected to a computer could introduce malicious code, so an antivirus program must be

installed to compensate for the vulnerability. Another point of connection is the Internet; layers

can be implemented to compensate for the vulnerabilities that occur. The layers consist of

antivirus software, firewalls, intrusion detection, proxy server, and demilitarized zone. Even with

all of these security layers deployed, intruders are still able to get past the most advanced

systems. Many firewalls are configured with settings to deny inbound traffic unless requested or

defined, and allow any outbound traffic. The default settings to allow any outbound traffic are a

significant security risk. To have maximum security, a firewall should have the default set to

deny unless permission is granted to enter or exit the network. Maximum security is not always

9

possible and should be setup in a manner that maintains confidentiality, integrity and availability

of the information.

Statement of the Problem

Security layers are critical because they protect the computer and network from

intrusions. Security needs to be designed around the entire operating system, because it will

provide another essential layer that will help minimize the exploitation of computers.

Applications that require users to have full access to programs, and associated files may leave the

computer open to exploitation. As a result, system administrators must limit users rights to allow

each person to perform their functions while still giving them flexibility to use the computer. The

implementation of security layers has yet to fully protect computers from all vulnerabilities.

Purpose of the Study

The overall goal of this analysis provides academic thought by exploring what can be

done to improve the overall security of computers systems. The answer to this question would

give a good perspective to the Linux community as to what would best improve security. This

study will also provide businesses who are considering switching to Linux with a reason to do

so. This research will be a benefit to those companies because it will show what is being done to

protect Linux computers and networks. The summary results will be offered to the respondents,

and the thesis as a whole will be submitted to the networked digital library of theses and

dissertations.

10

Research Questions

The questions this thesis attempts to answer are listed here. Has AppArmor enhanced

fine grained application controls and as a result helped secure Unix based computers? Has the

incorporation of SELinux into the Linux Kernel been a security enhancement? Does a hardened

version of Linux lower compromises of the operating system? What other security layers have

been implemented to enhance the level of security?

Significance of the Study

If Linux is found to be more secure because of modifications to the basic Linux install,

and the implementation of security layers such as AppArmor, SELinux, PaX, GRSecurity and

User Account Controls (UAC), then this study will point out the correlations. These results will

help the system administrators know where to focus their efforts to continue to improve Linux

security as the digital age moves forward. The businesses who will be a part of this study use

both terminal server and terminal client so overall Linux security will be included to help the

administrator improve security in a network environment. The results also may be of worth to the

programmer so they can see the effects of their work and more effectively improve the security

after seeing the results through the eyes of the Linux administrator.

11

CHAPTER 2. LITERATURE REVIEW

Introduction

Computers that do not have proper security measures in place will most likely be affected

by security threats. Why does it matter that a computer is infected? Computer infections can

affect the end user by causing the computer catastrophic hardware malfunction or the invasion of

personal data which can ultimately allow criminal behavior such as identity theft. Some

computers can become infected which enables malicious users to use a computer without the

owner's knowledge. What can be done to protect computers? Currently, the most effective

solution to computer security is to implement security layers. Computer security layers can be

either proactive or reactive. Proactive computer security examples are policies, procedures,

training, firewalls and regular monitoring of the network. Reactive computer security examples

are up-to-date Anti Malware protection, and Intrusion Detection Systems. But these security

measures only protect from a distance, they do not solve the vulnerabilities that exist. Software

and operating systems should be redesigned so that they have built in security layers thus

providing a “belt and suspenders” approach to fortify existing measures. The belt and

suspenders approach will not allow software to interact directly with each other but rather with a

separate program that deals with the resource coordination (Bunnell & Weinberg, 1996)? Before

a software program comes to market it must be created. Security should be a part of the software

creation process but is often skipped or the software comes insecure by default thus leaving users

and administrators with security vulnerabilities from the start.

12

Both Linux and Unix are built upon the kernel architecture;

the kernel accomplishes all these tasks by providing an interface between the other

programs running under its control and the physical hardware of the computer; this

interface, the system call interface, effectively insulates the other programs on the UNIX

system from the complexities of the computer (Indiana University, 2003, ¶ 1).

In addition, Unix runs as a low level user except for when access is needed to root. Root is

similar to administrator on a Windows machine. What can be done to improve the security of

Linux and make it secure by design?

13

Figure 1. Security Solutions

Note. From Security Solutions. (n.d.). Layered
Model. Retrieved April 2, 2009, from
softwaresecuritysolutions.com/PDF/layeredMod
el062308.pdf

Current Security Solutions

Security is a process by which computers something become less vulnerable

(Granneman, 2003). It can be a process of eliminating the holes in a computer. The Internet

allows all computers to become so interconnected that it becomes almost impossible to know

where to start to implement security. The more security that is implemented, the more complex

they become which makes them even more difficult to maintain. Each user, resource and trust

relationship must be defined to correctly allow or place limitations on what can be done

(Lampson, 2004). Keeping these relationships limited while still allowing the connection to exist

between organizations really makes security hard to establish and coordinate. Security really

provides nothing, other than protecting data or computers (Lampson). Because of the complexity

with security implementation, it has been implemented in a limited fashion so computers can

continue to be useful. Network security is currently implemented through intrusion tools, which

includes Anti-virus programs, Intrusion Detection Systems (IDS), Intrusion Prevention Systems

(IPS), and penetration testing. OS security is implemented through access control such as

Mandatory Access Control (MAC) or Role Based Access Control (RBAC). Patching has also

become a necessary part of security because as software flaws are detected they are repaired; the

most common option available is to patch the vulnerabilities. Patching often times does not

remove the need to identify and fix security flaws because the vulnerabilities may just be getting

covered up. Think of patching like a band-aid; it is not better yet it may take more patches or the

software may need to be completely rewritten in the next version.

Computer security affects every user on a daily basis; passwords are one method used to

authenticate users. Bardram (2005) talks about the problems logging in either with 1-factor

14

authentication such as passwords or 2-factor authentication such as smart cards and encourages

the use of biometric devices. It is easier to place a fingerprint on a device than type a user name

and password, and it can be secure. George Waller is also convinced that security on computers

would increase if consumers got rid of username and PIN or password combinations (Germain,

2005). The method Waller refers to is using one biometric device and a non-network device such

as a phone. This method is supposed to verify a user in a much more secure way than a username

and password that can be cracked, or be susceptible to man-in-the-middle attacks. Biometric

devices will not solve phishing and keylogging completely because computers still have

keyboards which are used to enter information other than user names and passwords. Acceptance

of biometric devices is also slow because of the cost, and complexity. It is not quite ready for full

blown usage, biometrics may only work on the local computer and not over the Internet.

It is very interesting to note that just because malware protection is implemented it feels

like there is a safety net even without proof that it is working. Antivirus programs, the very

program that users feel protects them actually does the opposite of what is expected. Antivirus

coders have a quick reaction time to find solutions to malware. This could be the cause of a

decrease in the quality of the software. Nevertheless the more the program parses files the more

susceptible the computer can become because the antivirus solution becomes a target as it opens

these files (Danchev, 2008). The antivirus program actually has to understand many file formats,

parse them, and by doing so, the files get split up into recognizable formats which increases the

infiltration from the viruses and makes the antivirus program itself a target for attacks.

15

Why does it matter that a computer is infected or hacked?

It takes less than five minutes to get infected, according to Richie Lai who was cited in a

post about zombie PCs (Taylor & Nusca, 2008). Zombie computers are computers that get

infected and run programs in the back-ground to gather financial information, send Spam, and

spread the infection to other computers. These computers are joined to other computers in the

same purpose “into systems called 'botnets' and forced to do a shadowy figure’s bidding, namely

in the form of automated programs” (Taylor & Nusca, ¶ 1). The information security field was

created because there is a need to protect the information that is stored on computers. Infected

computers lead to data loss and data loss results in businesses leaking out information. Data loss

usually represents customer data, or information that is specific to their organization which could

lose them money and customers. More recently the FBI has warned that there are “'a couple

dozen' countries ... eager to hack U.S. government, corporate and military networks” (Noyes,

2008, ¶ 1). Hackers can be either good or bad; some hackers hack for the challenge and then

report the information so the bugs can get fixed while other hackers can be malicious, like the

hackers that would like to get into the U.S. Government networks.

What can be done to protect computers?

When best practices are the ideal, it is more important to actually see results that a

network is more secure than to state a business is following best practices. Use best practices to

the company's advantage but do not expect a network to be secure because every step has been

followed. Security takes constant monitoring, patching, and consistent effort by securing the

vulnerabilities. Keeping software up to date is very important; each new version of the operating

16

system attempts to increase the overall security level. Security is often an afterthought; it is

commonly not planned into software. As a result it is important for system administrators to

implement security on each network as a layer of protection. Security is improved or at the very

least maintained as patches are applied to the operating system, and its accompanying software.

Patches fix exploits and vulnerabilities of software (Williams, 2007). Software is constantly

under scrutiny for an acceptable level of security; however, a majority of the time there is always

a vulnerability that needs to be fixed. By the time it gets deployed to the public many computers

may have been compromised thus it is important to apply the updates as quickly as possible.

Software designers should have a quality assurance process where they find bugs and

vulnerabilities in their code. This whole process should be a regular part of all software

development life cycles. Obscuring or protecting code will not work because someone will

always want to hack the code and find vulnerabilities.

The publication of source code actually improves security because the program or

operating system can be peer-reviewed by anyone who cares to read it. Many security

bugs that are overlooked in other operating systems have been caught and repaired in

Linux, because of its extensive peer-review process (Perens, 1998, ¶ 6).

A secure network includes hardened clients, servers and firewalls. The use of firewalls

and Intrusion Prevention Systems (IPS) enhances a networks protection and takes it to the next

level especially when they are tested and monitored regularly. Well written enforceable security

policies can also aid in the maintenance of a secure network. However, an experienced hacker

can get past what was thought to be a secured network . Big mistakes companies make is to not

17

hire skilled professionals or at least have them trained in the use of IPS. Security professionals

should know what regular network traffic looks like and help detect network intrusions (Parker,

2008).

Another important layer of protection is the hardening of computers which consists of the

removal of unused programs, and disabling any unnecessary services. Many programs open the

computer by listening on well known ports, which gives more attack surface to that computer.

Some distributions come with local root login disabled, this makes root more of a group. The

security comes from not having a root user that will be targeted. If the administrative account is

not named root or administrator it may be more difficult to decipher who has administrative

privileges especially when these privileges can be revoked easily. Another security aspect of not

sharing a central administrative account it becomes more difficult to discover an unknown

password. Entering the root password allows the user to temporarily escalate privileges to

perform administrative functions. The use of the “sudo” command is one example of temporarily

privilege escalation to perform administrative tasks (Hamid, 2008).

Williams (2007) recommends the use of Bastille, an open source program for automating

the hardening process, because it analyzes the system and asks a series of questions with

explanations of what will occur if each task is done. As a result Bastille “will disable

unnecessary services and install operating system updates as well as configure a firewall, enforce

password policies, create a second root-level account and more” (Williams, p. 2). A hardened

system regardless, of the operating system is an important part of a secure computer. The best

solution to security, according to Ranum (2005), is default deny. Default deny, also known as

least privilege, blocks access until given explicit permissions to each resource on the network

18

(Woods Hole Oceanographic Institution, 2007). Implementing this kind of policy is much more

challenging but in the long run it will save a lot of time and effort. The application of least

privilege would lock every user out until each user is given rights to each piece of the network or

system. Other items mentioned by Chuvakin (2002) to harden a Linux system are to patch

software, secure file permissions and S*ID binaries, improve login and user security, set controls

on physical devices and boot settings, secure daemons, increase logging and audits, and

configure security software.

A hardened system would also include the use of secure FTP, HTTPS, encryption and

other security methods to limit the ease of access to information that is transmitted or stored on a

server or client computer (Perrin, 2007). Encryption takes readable files and makes them

unreadable until they are unencrypted. Encryption can be done by different mathematical

algorithms, and through the use of many different programs. Once the user enters the key or

gives their certificate then the information can be used (Cherry & Imwinkelried, 2008). Linux

Unified Key Setup (LUKS) can encrypt hard drives. LUKS is a standardized way to encrypt a

disk because it is not vendor specific and can encrypt any operating system (Fruhwirth, 2006).

One of the main reasons to encrypt hard drives is to make sensitive information unreadable.

However, while the hard drive or files are unencrypted then they are completely readable by the

user, and anyone who can gain access to the system (Absolute Software, n.d.). An encrypted

volume has its limitations for example while the data is being accessed the key and other data are

stored in memory. It is possible that an attacker could get the keys while the computer is on or in

standby mode. MacIver (2008) suggests hibernation while the computer is not in use.

Hibernation stores the information to the hard drive and powers the computer off completely

19

where placing the computer in standby would leave the information in memory so an attacker

could potentially get to the key.

Encryption can also help secure the network traffic. It takes coordination but is worth the

effort because it adds one layer of protection to the data being transmitted. The Linux kernel 2.6

includes IPsec support:

Without kernel support, Linux would have continued to be perhaps the only enterprise-

wide platform that could not do IPsec out of the box -- a definite shortfall. Not only will

it increase the overall reliability and performance of the product, but it also adds to the

overall perception that Linux is truly an enterprise-ready platform for the future (Milberg,

2004, ¶ 10).

Encryption protects the Confidentiality and Integrity of the information transmitted on the

network. Perrin (2007) gives an example that something as simple as a user name and password

could be seen if the traffic is not encrypted which would add a vulnerability to the FTP server

and the FTP server could become another porn site.

A hardened system also includes a comprehensive security policy. Without a policy users

can have blank passwords, leave the computer unlocked, and create a security nightmare. Cisco

did a study to find out the perceptions of 2,000 security professionals. Cisco found that 42%

believed that security did not fit with how they did their job. If users choose not to follow

security policies they are leaving the network open to intrusions (Kerner, 2008). Many IT people

blame the users of the network for security when the policy could have been created without

thinking about the user and the company culture. Kerner goes on to state that when users

20

understand the business consequences of their actions they are more likely to comply with the

security policy.

Security breach disclosure may not sound like a good idea but “full disclosure helps to

ensure that when bugs are found the 'window of vulnerability' is kept as short as possible” (De

Groot, 2006, ¶ 9). Disclosure helps people become informed that there is a security problem; it

makes it so other software creators can fix similar issues and in general it is a good idea because

it actually decreases security risks. For example, airliners must disclose errors. Similar to open

source, the industries that are under public scrutiny such as pharmaceutical companies and the

airline industry have improved. Doing a similar thing with security breaches will at first be a big

deal, but as time goes on, disclosing security breaches will become common practice and as a

result the information that can be gathered from these breaches will provide a learning

opportunity for other organizations to make improvements on their security (Shostack & Stewart,

2008). In addition to disclosing security breaches, knowing what dependencies operating systems

are going to have could make a computer more secure if the information is used by the software

vendors to tie their software into the security system of the operating system. Additionally, as

more demand security built into the operating system more research and development will occur

(Loscocco, Smalley, Muckelbauer, Taylor, Turner & Farrell, 1998).

Frameworks

Frameworks can be very difficult to follow because these guidelines are very general and

can be applied in many ways. Keeping things general makes it harder to implement security

because security is more lax in these conditions. Checklists are great to make sure that the bare

21

minimum is done, but in reality security needs to go way beyond generalities and checklists

(Baskerville, 1993). Security frameworks if used as a guideline will assist in creating security

from the Internet that comes into the organization to the databases (Frazier, n.d.). Which

frameworks provide the guidance needed to secure a network? Rothman (2007) believes Control

Objectives for Information and related Technology (CobiT) is one of two leading frameworks.

CobiT is a framework for IT governance to help effectively control each IT process. “Effective

controls reduce risk, increase the likelihood of value delivery and improve efficiency because

there will be fewer errors and a more consistent management approach” (IT Governance

Institute, 2007, p. 15). Frameworks are just guidelines and do not actually secure software

unless proof can be shown that the systems actually had improvement. A before and after

snapshot or a vulnerability scan could prove that there was an actual difference.

Architecture Design of the Operating System

Architecture of an operating system has much to do with why there are security flaws.

Software needs to be designed and tested for security throughout the creation process (Yodaiken,

2004). Software including the operating system should be designed with security in mind as each

user will be affected by the design of the operating system. Halkidis, Tsantalis, Chatzigeorgiou,

and Stephanides (2008) did a study on secure and non-secure e-commerce systems. They found

out that all else being equal the non-secure application was at a much higher risk than the secure

application of being affected by STRIDE attacks (Halkidis et al.). In addition to lower risks, the

expenses were lower when security was a part of the design phase rather than after the software

22

was designed (Halkidid et al.). Lower costs could be one incentive to implement security early in

the development stage.

Linux keeps a separation between the operating system and the applications that are run

on Linux. Integration of applications with the operating system appears to make things more

functional and user friendly, but at the same time security is greatly reduced because all

programs can affect any other program. For example, while browsing the Internet a script could

be ran which states the anti-virus program is out of date, a user would then click to update the

program. The program runs as administrator and infects the computer. Although this is a devious

way of infecting a computer it happens. What are the problems with this scenario? The default

user should not be administrator, and programs should be given limited access to the rest of the

computer. One method of limiting programs access to a computer is through user access controls

(UAC):

Rather than merely acting as containers and dispensers of data and functionality, software

objects may become actively responsible for the protection of those resources. By basing

the design of SAAs on the SDO concept, the provision of application-specific usercentric

access control is simplified by localizing the access control mechanisms (Holford, 2006,

p. 9).

Security is a software design choice and many security precautions are not taken because

implementing them takes more effort from the software designers and the network

administrators.

23

The principle of least authority (POLA) as another access control but it only worked at

the level of the user. It would be better implemented this at the level of the processes or objects

within a process. Using POLA would limit the damage that a virus could have on a computer

because it would stop it at the process level instead of the user level (Karp, 2003). Users are

given more access to a computer than a process. POLA greatly restricts what processes can and

cannot do. Mandatory access control (MAC) could also limit the extent malicious software could

have on a computer. MAC forces separation, and adds security to a computer because of this

separation. It is missing on the popular OS and as a result application security suffers because it

can be tampered with until patched (National Security Agency, 2007). Mandatory access controls

restrain programs from getting administrative access to the operating system. In order to increase

overall security, it is important to implement the principle of least privilege which means that

course grained policies should be replaced with fine grained permissions (Loscocco et al., 1998).

The principle of least privilege is similar to not trusting anyone until trust is deserved. Trusted

applications should be limited by POLA because it controls what each application gets to do

regardless of if it is trustworthy. Administrative rights to some features such as the installation of

printers, approved patches, setting up email, the modification of power settings and other little

tasks can be set by groups thus relieving network administrators to their important tasks.

However, this relief needs to have limitations, otherwise root access in the wrong hands could

allow the following issues:

Machine Misconfiguration — Users with root access can misconfigure their machines

and require assistance or worse, open up security holes without knowing it. Run Insecure

Services — Users with root access may run insecure servers on their machine, such as

24

FTP or Telnet, potentially putting usernames and passwords at risk as they pass over the

network in the clear. Running Email Attachments As Root — Although rare, email

viruses that effect Linux do exist. The only time they are a threat, however, is when they

are run by the root user (Administrative Controls, n.d., ¶ 4).

 Role based access control (RBAC) is another method to improve security. PaX uses

RBAC to prevent and contain exploitation; it does so through a patch to Linux. Attacks can come

from three main levels: (1) introduce/execute arbitrary code, (2) execute existing code out of

original program order and (3) execute existing code in original program order with arbitrary

data. Stack smash protection can come from PaX. PaX is implemented by either the hardened

Gentoo project or GRSecurity (Documentation for the PaX project, 2006).

Kernels

Kernels can be either monolithic, macro or micro (Linux-friendly microkernel OS

tightens mobile security, 2008). For example some phones run OKL4 which is a microkernel OS

whereas Linux is a macrokernel OS. Microkernels run with a minimalistic kernel mode and let

the rest run at the user level. The dilemma with microkernels is that they can be slower

(LinuxDevices.com, 2007). The advantage to microkernels are that they tend to be more secure

because of the complete separation between address spaces and user-mode (Device management

| Channel 9, n.d.).

Although Linux uses a macrokernel it tends to adopt the best design from multiple Unix

Kernels (Bovet & Cesati, 2005). Some design features of Linux include the default user is not

25

root (administrator), but root access could be gained through privileged escalation. Each time a

user needs to do administrative work the root password must be entered. What makes this an

improved security feature is the fine grained permissions and a kernel controlling what processes

get access to each piece of the system. Linux splits permissions into three levels user, group and

everyone else (Jones, 2008).

Linux is divided into what is called a user-space and a kernel-space. The kernel is the

core of the operating system; all applications are able to talk to the hardware and programs after

going through the kernel. “The kernel actually runs several processes concurrently, and is

responsible for mediating access to hardware resources so that each process has fair access while

inter-process security is maintained” (Bowman, 1998, ¶ 10). User space, also known as user

land, is where programs are run. Dividing the processes from the user applications help to secure

the operating system. Linux also has five main subsystems: The process scheduler, memory

manager, virtual file system, network Interface, and inter-process communication. All processes

including the subsystems depend upon the process scheduler. Bovet and Cesati (2005) state that

running an operating system in user mode and placing a level between the user and the operating

system makes programming easier. Programming for this type of operating system makes it

easier because the programmer does not have to learn low level code. Security is also enhanced

because there is a check and balance system. The Linux kernel can verify the validity of the

request at the interface before allowing it to proceed (Bovet & Cesati). Some examples of kernel

security issues are denial of service vulnerabilities such as the '/ipc/shm.c' “There is a race

between sctp_rcv() and sctp_accept() where we have moved the association from the listening

26

socket to the accepted socket, but sctp_rcv() processing cached the old socket and continues to

use it” (Kroah-Hartman, 2009, ¶ 1).

AppArmor is another option which restrains programs from having unlimited access to

the operating system through the use of policies or profiles. It does not stop vulnerabilities but it

does mitigate the affects of intrusions by implementing access controls on applications. It uses a

learning based system similar to IPS which can learn the network traffic, yet AppArmor restricts

the access each program has to the system. Although AppArmor has its benefits, it is not a silver

bullet.

Another option or implementation of the separation of programs from privileges is

PolicyKit. PolicyKit is a framework for allowing privilege processes to interact with non

privileged processes. PolicyKit assumes that a program is split in two parts one part called the

mechanism that can run with elevated privileges while the policy part can run in the user session

with limited privileges. The hardware abstraction layer (HAL) and NetworkManager work under

this model. The important part of this separation is that the mechanism should verify all requests

it receives from the application to prevent misuse (Policy Kit Library Reference Manual, 2008).

Sandboxing has been introduced by Apple in Mac OS X Leopard. Sandboxing is similar

to the functionality of AppArmor, any process or program running in a sandbox has limitations

on what effects it can have on the other processes. For example, a process called soso is run in a

sandbox, any subprocesses of that game can only see processes within the same container. Yet

the main process, called soso in this instance, can see all processes running on the computer. The

security concept behind sandboxes is to contain or place limitations on what processes can do. So

27

if a process is malicious in nature it will be contained to the sandbox and not affect the whole

computer (Singh, 2004). Although Sandboxing has been included in Leopard it is not used as it

should be used:

By default, the provided sandbox policies aren't even used by OS X to protect many of

the daemons which run by default: such as syslog or ntpd. To enable sandbox protection

on these services, the files /System/Library/LaunchDaemons/com.apple.syslogd.plist

and /usr/libexec/ntpd-wrapper have to be edited (Ruoho, 2007, ¶ 7).

Sandboxing is yet another example of applications that come insecure by default. Using either

AppArmor, PolicyKit or Sandboxing together with MAC will help contain the effects of an

attack. AppArmor will aid in the separation process and mandating the policies of the computer

together make for a more secure computer. MAC only protects resources not what application

rights exist on a computer. MAC can also be applied to databases by restricting tables and other

contents of the database. However, anyone who gains access to the system will most likely have

control of the database (Runesson, 2006). MAC is just one portion of the security layers needed

to keep computers secure. Another security layer is role based access control (RBAC) which has

been studied by the National Security Agency (NSA). They have also studied MAC and the

feasibility of their implementation in commercial operating systems (Holford, 2006) The

feasibility of RBAC being truly effective depends upon its implementation and constant updates

to keep the access control in compliance with the current state of the file and operating system

structure.

28

Support for RBAC will significantly increase the security provided by the system,

however the ability to take this option is reliant upon the provision of an appropriate

budget and availability of highly skilled personnel, to support the design the role

hierarchy, appropriately configure the operating system and continued maintenance of a

secure configuration despite changing organizational requirements (Holford, p. 226).

Address space layout permutation (ASLP) could secure a computer from malicious code.

Kil, Jun, Bookholt, and Xu (n.d.) analyzed ASLP; ASLP randomizes the address location for

programs that are run on a computer. The randomization can be done from the user or kernel

level. The benefit of ASLP is that it makes it difficult for an attacker because the location where

the program is being run is random and because of the randomness it makes it difficult to do a

callback to the program. (Shacham, Page, Pfaff, Goh, Modadugu, and Boneh, 2004)

Randomization helps keep an attacker from knowing where the program is running.

Three programs that use the ASLR features are Position Independent Executables (PIE), PaX and

NX. It is much harder to exploit if the memory address is unpredictable. PIE makes it possible

for applications to load to a different memory address at startup (Sundaram, n.d.). PaX also

randomizes the addresses a program uses each time a task is created which causes the attacker to

have to guess where the program is running. If the attacker chooses to use brute force the

program will most likely crash the attacked application. Crash detection and reaction mechanism

is not a part of PaX however, it would be a good thing to because it could stop attacks

completely (Documentation for the PaX project, 2006). NX takes protection to the next level by

allowing the system to flag data and application memory as non-executable (Sundaram). Without

the ability to write to memory exploitations will not function properly.

29

Another enhancement to the security design of Linux came from the NSA. SELinux is in

an enhancement that has become a part of the Linux kernel. Originally SELinux was

implemented as single-access control architecture but it was then adapted to the Linux Security

Module which allowed hooks to be used to enforce a specific security policy. SELinux allows

policies to be defined to allow or disallow items from taking place. The protection behind

SELinux comes from the ability to make limitations on what can or cannot be done especially

with core operating system components (Jones, 2008). Each process that asks for permission to

run has to be checked against known programs. SELinux policy server makes it possible for

user-space applications and daemons to integrate into SELinux (Tresys Technology, 2007) . The

policy management server allows object classes to be dynamically registered (Jones).

Linux is open source which is the opposite of security through obscurity. Opening the

source code makes it easier to find and make corrections to flaws in applications. This is because

there is a broad community of individuals willing to test and make suggestions to improve the

code (Lettice, 2004). Linux is not secure just because it shares its source code. If Linux source

code were to undergo an audit of the FAA it would not last five minutes (O'Dowd, 2004).

Security for Green Hills software occurs because it undergoes testing by authorities and then

improvement is made for those security problems. Green Hills software publishes their source

code similar to Linux. Security through obscurity is a label tagged on to vendors who do not

open their code up to the community. Typically this label is for those who hide their source code

to prevent attackers from finding vulnerabilities in their applications. However, it is a mode of

survival for many commercial vendors because without keeping their code secret many others

could take the code and improve upon it similar to what has been done with Linux (O'Dowd).

30

Linux is not secure because the source code is open; it takes rigorous testing by hackers,

coders and users to take it to the level it has achieved. Open source coders give their code to a

community of people who are willing to make adjustments, corrections or suggestions because

the open source community thrives on sharing with others. This follows the thinking by O'Reilly

and Raymond (2001) where it is suggested to release early and often so the open source

community can reply and help fix bugs before the official software is released. This type of

releasing of source code works well with the open source community. It could be one of the best

ways to correct errors because the bugs can be fixed before the public start using the same

version of the software. This type of testing is called beta testing.

Guardian Digital has created EnGarde Secure Linux using open source software with a

top priority to make security ingrained in all every part of the operating system. One of the

methods used is the principle of least privilege which by default only gives users, programs, and

services the least access necessary to the system (Secure By Design, 2006). This fine grained

security model of least privilege is very time consuming but it is needed to help contain the

affects of intrusions. If an operating system never gives an application full rights to the computer

then security is greatly enhanced because without the resources malicious code might not have

the ability to control the computer or the network.

EnGarde has revamped the security policies for their version of Linux. This is a very

hardened operating system because not even the root user has unlimited power. Policies define

the scope of what can or cannot be done with each user, process or program. Access must be

granted deliberately, in other words this operating system is secure by default and has fine

grained permissions (Secure By Design, 2006). EnGarde Linux has created fine grained UAC

31

which could be part of the solution to repair security problems. Dividing the operating system so

that multiple subsystems need to be compromised before the attacker can have any effect on the

system or the information it holds. In addition each system and subsystem should default to

secure instead of insecure because less systems would be left open to undesired intrusions (De

Groot, 2006). Fine grained UAC also makes it difficult to do much to the computer because

gaining root access to one part of the computer does not give full access to the whole computer.

Each function would be separated into user functions, and making a computer insecure would

need to be deliberate rather than the default. “The specific policy that is enforced by the kernel is

dictated by security policy configuration files which include type enforcement and role-based

access control components” (National Security Agency, 2009, ¶ 1). Role based access control is

addressed by Loscocco and Smalley (2004).

Operating system security is only part of the security model. Having fine grained security

that locks out programs and users from malicious intent is another portion of the solution to

computer security. Additionally it takes application-specific security that builds upon the OS

A highly secure operating system would be insufficient without application-specific

security built upon it. Certain problems are actually better addressed by security

implemented above the operating system. One such example is an electronic commerce

system that requires a digital signature on each transaction. An application-space

cryptographic mechanism in the transaction system protected by secure operating system

features might offer the best system security solution (Loscocco et al., 1998, ¶ 78).

Security needs to be well rounded for security to be effective on the system as a whole.

32

Conclusion

Computer security is a fairly recent field of research and is being developed as new ideas

are introduced. Security issues can be greatly minimized by implementing access controls.

Currently the solution to security issues is to patch and cover issues when in reality the software

needs to be designed with more security. Updates are released on a regular basis to secure one

more security issue with the Linux kernel, or one of the installed software applications and

remote executable code. No operating system, computer or network is completely secure.

Operating systems architectures are designed differently. The analysis in this literature

review shows that some flaws have not been properly addressed. These flaws need to be

improved to properly secure computers. Some options for further research include investigating

ASLP. “Although ASLP can mitigate many types of memory corruption attacks, current

implementation of ASLP does not support stack frame randomization. This can be achieved by

adding pads among elements [1] in the stack frame” (Kil, Jun, Bookholt, & Xu, n.d., p. 9). In

addition operating systems need to have proper auditing as well as proper controls on what

software restrictions (National Security Agency, 2007). Auditing and control could be done

through more fine grain permissions, but optimally should be done in combination with other

security layers like MAC, NAC, AppArmor or sandbox, ASLP.

Statement of Thesis

Security layers must be added to an already weak operating system to make the system

secure by design. Operating systems will never be completely secure and as such they need

33

layers of protection. Security layers such as Anti-malware programs, firewalls, and intrusion

prevention systems have been implemented to decrease the attack front of computers; however,

these layers are not enough to protect an already weak operating system. Incorporating security

layers into the operating system involves implementing access controls. Computers were built to

have maximum usability such that applications come insecure by default and must be setup for

the environment. Networks also provide insecurities because they connect multiple computers

together. Network devices are set insecure by default which permits anything that is not defined

to be allowed. Clearly there has been a choice to set the default settings to minimal security

which gives maximum usability of the operating system and its accompanying applications to the

users.

34

CHAPTER 3. METHODOLOGY

Security layers are critical because they protect the network and computer, but what

about the operating system? Security needs to be designed into the entire operating system,

because it will provide another essential layer that will help minimize the exploitation of

computers. Zhang (2006) did research on the subject of software security. Zhang did case

analyses on Microsoft IIS 6.0, and Apache from the perspective of the software

vendor/programmers. Research should also be done from the perspective of those who install and

maintain software. For this very reason a survey was conducted on businesses that install and

maintain operating system software. Vulnerabilities exist in each operating system. This research

has attempted to answer the following question: What do system administrators do to improve

overall security in a Linux operating system environment? If the research showed that Linux

security has improved then this research has potentially discovered what improved the security.

The analysis was done using a quantitative analysis in an Ex post facto design format.

Research Expectations

It was expected that of the 474 possible respondents listed on http://hitachi-id.com/linux-

biz/ and the LinkedIn group of “Linux System admins” that maybe one third would have

responded. Of those who responded some may not have the experience desired and the results

would vary greatly from those who have both experience and knowledge in the information

security field. As further motivation and to keep the sample size reasonable the summary results

were offered to those who take the survey.

35

http://hitachi-id.com/linux-biz/
http://hitachi-id.com/linux-biz/

Research Design

The survey was hosted by http://www.kwiksurveys.com due to the ability to restrict

surveys by IP address, and automatic survey result statistics are calculated. Research was

gathered through the survey that was sent to IT staff members who have experience installing

and maintaining operating system security on the Linux OS. A list of businesses that use Linux is

maintained at http://hitachi-id.com/linux-biz/. This list was used to invite those businesses to

participate in the survey. The survey consisting of 26 questions was available online for

respondents to take once. The first questions asked were to understand the survey participant and

what level of experience they had with security and the information technology field. The next

series of questions asked what operating systems and additional security enhancements were run

on their computers, such as psad, AppArmor, or SELinux. Each security enhancement was

evaluated for its effectiveness in securing the Linux computers and reported in the results

section. Lastly, an analysis of UAC, fine grained permissions and overall computer security was

included in the survey. The changes analyzed were the inclusion of SELinux into the Linux

kernel, and if AppArmor had been implemented. GRSecurity & PaX provide restrictions on

applications in a UNIX environment and it was desired to know if it had been implemented.

Finally, it was desired to know if any of these layers could be correlated to a decrease in

malware, kernel crashes or memory exceptions.

Participants

The participants of this survey were IT staff members who had experience installing and

maintaining operating systems and security mechanisms in a Linux or mixed operating system

36

http://hitachi-id.com/linux-biz/
http://www.kwiksurveys.com/

environments. Businesses who use Linux may run in a mixed operating system environments

with both Linux and a variety of other operating systems. The operating system that was

included in this survey was any Linux distribution using a kernel before or after 2.6.

Sampling Strategy

Businesses were chosen as respondents instead of home users because security rules and

regulations are on the rise and they are legally required to comply. Therefore, they have a more

vested interest to attend to security enhancements. Convenience sampling was used because it is

virtually impossible to acquire a list of all businesses that use Linux for daily operations. Without

an all encompassing list of businesses it was impossible to pick a random sample. Instead a list

of sufficient size has been provided by Hitachi ID systems INC who maintains a list of

businesses who use Linux to support their daily operations. This list contains 425 businesses

from worldwide locations who operate in the following fields; Aerospace, agriculture,

automotive, business services, computer vendors, other consultants, educational and research,

engineering, environmental, financial, government, health care, instrumentation, Internet,

network services, Internet service providers, law firms, manufacturing, media companies,

military, non-profit/charity, oil and gas, publishers, real-estate and construction, software

developers, sports and recreation, technical support, telecoms, tourism and travel, transportation,

wholesale and retailers. IT departments from each industry were invited to take the online

survey. A vast majority of the listing was out of date and as a result there were only 425 of the

original 717 on the list. LinkedIn was also used to contact Linux system administrators as a

result of the decreased sample size. The group “Linux System admins” found on LinkedIn were

37

contacted individually with a request to take the exact same survey as the previous group. Some

of the group members did not currently work in IT as a result they were not invited to take the

survey. The group had 61 members not including myself, however, subtracting those who were

in other fields such as marketing or recruitment the total survey invitations sent out were 49. Gay

and Airaisan (2003) suggest that for any population of 5,000 or more 400 should be adequate.

The Local Program Evaluation in Tobacco Control (2003) confirms this information because for

a population of 100,000 the sample size should be 398 for a 5% precision level. 474 is a

reasonable sampling size of IT staff members.

Process of Data Collection

The survey was available on the Internet where each business was able to take the survey

once. Email messages and telephone calls were the method used to asked businesses to take the

survey. Due to the fact that most of the list was outdated it was much faster to go to each

business website and find an updated contact such as an email address. Then an an email was

sent to them with the invitation link to the survey. Any IT staff member, preferably managers or

department heads of information technology were invited to a secure web based survey. These

web surveys were used to find out what security layers are used to enhance the Linux operating

system. Some questions were yes or no, multiple choice, fill in the blank, or based on a five point

scale from daily to yearly. Before beginning the survey the following introduction was posted.

Just to give you a brief run down on how the questions go: The first questions are to

understand what angle of the IT field with which you have experience. The questions will

then be directed to see what Linux Distributions are used on servers and workstation

38

computers. Following those questions the security layers will be addressed because as IT

professionals we are constantly addressing the security flaws of the operating system.

Please be aware that the survey is anonymous and any information directly related to

your company cannot be tied back to you nor will it be be disclosed if it isn't anonymous.

After extending the initial invitation to take the survey each respondent received a follow

up email, unless they sent an email as notification that the survey had been taken. The follow up

email was to remind and re-invite each person in the sample to take the survey.

Research Questions

Has AppArmor enhanced fine grained application controls and as a result helped secure

Unix based computers? Does a hardened version of Linux lower compromises of the operating

system? What other security layers have been implemented to enhance the level of security? Has

the incorporation of SELinux into the Linux Kernel been a security enhancement?

Data Processing and Analysis

Data analysis consisted of preparation, exploration, analysis, representing, and validating

the data (Clark, & Creswell, 2006). The data was the basis for proving if the hypothesis is

correct. Preparing the collected data was done by exporting the survey data into excel

Exploration consisted of reading through all of the surveys to get an idea what the general idea of

the survey results. The results were automatically tabulated after the surveys are taken. This

allowed each question total to be seen, and the overall results were viewed at a glance.

Abbreviations or code names were then created; codes made it easier to analyze the data. In

addition to coding the data, labels were assigned to the codes. The information was grouped into

39

themes. Excel and StatPlus was used to further analyze the data, which transfered over into

representing the data. The data was represented by creating graphs, tables and figures. Validating

the data is described below in the results section. The survey results were evaluated for

correlations between the changes made by the IT staff members with the implementation and

analysis provided by each respondent.

Measurements/Instrumentation

Correlation between two differing variables was a desired result from this survey. As a

result, the different security questions asked were tested for correlation to the overall operating

system security level. If the security of the operating system according to the respondents had

increased the variables that influenced this result were tested for correlations. As an example if

businesses in general felt that the overall computer security had improved a correlation may be

drawn to the fact that the operating system was switched from one distribution of Linux to

another or the computers were upgraded to the latest Linux distribution with an updated kernel

and security updates. The aforementioned example applied to statistics was tested for a

correlation coefficient in both direction and strength, as well as all other security enhancements

that could be correlated to improved overall security (Leedy & Ormrod, 2004). Multiple

correlation tests were performed to see if two or more variables are correlated. Partial correlation

tests were also used to verify the consistency of variables in their correlations. What partial

correlation tests do is factor out the correlation with a third variable which allows one variable to

be held consistent (Leedy & Ormrod). Controlling variability was completed through partial

correlation tests and an analysis of covariance.

40

Methodological Assumptions

It was assumed that all participants were capable of evaluating the security on their

computers or the network they oversee. This assumption was made if they were in a position

within the IT field and they had been in IT sufficiently long enough to be competent. The length

of time that was long enough varies greatly for each person as some people gather and retain

information at a faster pace than others. The fill in the blank answers also aided in the evaluation

process because an incompetent person will be unable answer the questions.

Since computers are hard to predict and they have random acts take place; it was assumed

that the events recorded have a cause and effect relationship. For example, if a network

administrator had many issues with a systems getting DoS'ed and it stopped it could be

correlated to actions that have been taken such as the installation of better endpoint protection,

the application of patches, and blocking of the attackers ip address. However, each relationship

was tested for correlation to verify that the two items really have a cause and effect relationship.

Also it was assumed the participants in the survey represent a good portion of the

businesses who use Linux. Thus if the participants in the survey were improving security by

keeping up to date with patches, installing endpoint protection such as firewalls, anti-virus, and

using a sandboxing technique to protect files and program access then it could be concluded

many businesses are most likely doing likewise.

Study Limitations

A survey is a method to gather information quickly but is completely dependent upon the

participants' memory. The survey participants may have been unable to recall specific events

41

while taking the survey. Some participants may have been unable to improve security or the

results may be so minuscule that it is hard to record the results in the survey. The information

acquired from surveys may not be enough evidence to prove that security had improved. Lack of

rock solid evidence occurred because the hard core evidence is seen over a length of time and

can go unnoticed until a realization hits that past security problems have gone away.

Validity and Reliability

Valid information stems from setting proper controls. One of the methods to ensure

validity is to limit one survey per public IP address. This control has verified that one

organization has not filled out the survey more than once. After gathering the information the

data needs to be validated. One method employed was the use of multiple methods to confirm

that the variables are highly correlated. Also since the survey results came back from many

experts in the field of information technology then the information is more likely reliable data.

An expert in the field gains their expertise through experience (Expert, 2006). For the purposes

of this thesis an expert had a good mixture of time in the field, as well as a degree or certificate

to go along with their experience. However, it is not necessary to have a degree or certificate if

they have been in the field of information technology at least 5 years. A high correlation between

time in the field of information technology, and understanding of the topics in the survey

confirmed if the survey takers were experts. It was also possible that there were different levels

of experience and specialists for each of the areas within the IT field who took the survey.

Reliability was also important; as a result the survey has been administered in a

standardized fashion with no changes made to the survey between respondents. All Linux

42

distributions were included in the survey results because choosing one distribution of Linux may

skew the data. Test-retest and internal consistency reliability was used in testing data. Test-retest

is where the same test gets the same results at different times. Internal consistency reliability is

where instruments yield similar results. Bias was most likely be a part of the results because it is

virtually impossible to remove all bias, but bias has been reduced as much as possible. For

example all participants were unknown to the researcher which greatly aided in the removal of

bias from the survey results (LearnHigher Centre for Excellence in Teaching and Learning,

2008). Bias is discussed further in the analysis section of this thesis paper. Finally any other

discrepancies or negative information that is found was discussed in the analysis section.

Ethical Assurances

 Confidentiality, data access and ownership, and risk assessment all need to be addressed

as a part of ethics. The participants of the survey have been informed of the purpose of the study

which will include the risks and benefits for being a participant in the survey (Royal District

Nursing Service, 2007). Personally identifiable information has not been a part of the survey. If

any of the questions result in more specification than is needed it has not been included in the

survey results, especially if it would in any way identify or compromise security of any

respondent. Confidentiality of trade secrets, open ports, rules, group policy or any other

information disclosed in communications related to the survey has not been included in any

documentation without prior consent. Any information that is included in the results has been

summarized which will remove the details that could compromise the security of any business

who has chosen to participate. Although information may be withheld for confidentiality

43

purposes, the data has been analyzed and reported as accurately as possible. It is expected that

the results may be used for further research and as a result the information must be as accurate as

possible.

As an incentive for participation the survey results were offered to survey takers. In order

to send these results to the participants their contact information was gathered in a format such as

an email or a physical address. The contact information has not been used to identify the

participant or company. The information was gathered apart from the survey which has aided in

the separation of personal information from the survey itself. The information contained in this

thesis is credited to the author in the references section below. Credit for survey participants was

given, but without names of individuals or businesses.

44

CHAPTER 4. RESULTS

71 completed survey responses were received. 70 of the respondents use Linux. This

gives a response rate of 15% which is lower than average. Average online surveys typically are

around 30% (IAR: Assess teaching > Response rates, 2007). Surveys with low response rates

have shown insignificant differences when compared to surveys with a higher response rate. In

addition bias tends to be reduced when there is a lower response rate (AAPOR | Response rates -

An overview, 2007). The results are broken down into three main sections.

Demographics

Figure 2 lists the Education of the respondents. 94% have spent a total of 5 years or more

in IT. 4% have spent 1-5 years in IT, 1% has never worked in IT. 58% of the respondents have

spent greater than 5 years at their current employer. 28% have spent 1-5 years with their current

employer, 11% less than 1 year and 3% are not employed. 97% install, upgrade or maintain

45

Figure 2. Level of Education

GED
Associates

Bachelors
Masters

PHD
N/A

0

5

10

15

20

25

Degree

software for their organization. When asked about certificates 49% responded with a yes, 51%

answered no. For those who have certificates: 17% have a Linux+, 10% have an A+ and 73%

have other types of certificates.

Operating System Information

Figure 3 shows the operating systems used by the businesses surveyed. The questions

about the kernel versions of Linux before and after upgrading have been thrown out mostly

because 37% did not even know what version of the kernel they used before upgrading. Using

this question would introduce inconsistencies, thus it was thrown out. Please see the discussion

in the next chapter for more information about Linux kernels. In addition the version of each

distribution currently in use is not listed since it was only used to gather information to better

understand the background of each respondent. The distributions of Linux used by the

respondents are displayed in Figure 4.

46

Figure 3. Operating Systems

Linux MacOS
Unix

Windows Sun
Other

The statistics for those who upgraded their Linux operating systems within the past year

is 79%. Patches are applied daily 13%, weekly 32%, monthly 18%, quarterly 23%, yearly 4%,

and never 10% of the time.

Security layers and issues

70% of the respondents, have installed software that was not signed. 44% would continue

installing software if they were in the process of installing Linux updates and received an error

that the software was not signed. 56% would not install the software if they were told it was not

signed. The changes in the effects of malware before and after upgrading is shown in Figure 5.

Viruses affect the uptime of the Linux systems 4% quarterly, 13% yearly and 82% answered

never. The frequency of buffer overflow errors is shown in Figure 6.

47

Figure 4. Linux Flavors

0

5

10

15

20

25

30

35

40

45

50

Redhat/Fedor
a Core

Debian/Ubunt
u

Slax

Knoppix

SUSE

CentOS

Gentoo

Linspire
Other

The other security layers implemented on Linux systems were as follows: 72% have not

turned on NSA Security-Enhanced Linux (SELinux), whereas 27% have turned SELinux on and

configured it. The question about the use of the SELinux policy must not have been interpreted

incorrectly. The question was vague as to what “it” was referring to because 30 people responded

that they used the example policy, and 19 started from scratch to configure the SELinux policy,

yet only 19 configured and turned SELinux on. As a result the question about SELinux

configuration has been removed from any analysis. Role based access control (RBAC) was

48

Figure 6. Frequency of Buffer Overflow Errors

Daily
Weekly

Monthly
Quarterly

Yearly

0

10

20

30

40

50

60

Before
upgrade
After
upgrade

Figure 5. Visible Effects of Malware

Yes No

0

10

20

30

40

50

60

70

Before
upgrading
After
Upgrad-

implemented by 8% of the respondents. The kernel crashes quarterly for 1% of the respondents,

yearly for 28%, and never for 71%. The question about all other security layers was answered as

displayed in Figure 7.

Variable Selection

The variables were chosen from these research questions: Has AppArmor enhanced fine

grained application controls and as a result helped secure Unix based computers? Has the

incorporation of SELinux into the Linux Kernel been a security enhancement? Does a hardened

version of Linux lower compromises of the operating system? What other security layers have

been implemented to enhance the level of security? In order for any of the analysis to be

statistically significant a p-value approximating 0.05 or higher was determined to be significant

for the calculations of the results.

The variables chosen for analysis are coded by the question number. The following

questions were analyzed in various ways to aid in answering the research questions mentioned

49

Figure 7. Security Layers

Firewall
IDS

IPS
IPSec

Apparmor
UAC

Proxy
Password

DMZ
None

0

10

20

30

40

50

60

70

above. Q12 refers to upgrades of the Linux OS in the past year. Q14 refers to the frequency of

patching. Q18 since upgrading have the computers been affected by viruses, worms, trojans,

malware or other malicious software? Q20 refers to buffer overflow errors since upgrading. Q22

has SELinux been turned on and configured? Q24 Role Based Access Control, was it used? Q25

How often has the kernel crashed? Q26 looks to see if AppArmor was used as a application

restriction. The variable held constant was (Q12) upgrades to the Linux OS in the past year.

The first test applied to these variables was the Pearson correlation coefficient matrix as

seen in Table 1. This table shows the correlations that exist between Q12, Q14, Q18, Q20, Q22,

Q24, Q25, and Q26. The closer the Pearson Correlation Coefficient is to 1 the more probable that

there was a correlation between the two variables. Additionally at the 5% significance interval

each test is written in red if the variables were accepted. Further discussion will take place in the

next chapter.

50

51

Table 1

Pearson Correlation Coefficients Matrix
Sample size 71 Critical Value(5%) 1.9949

Q12 Q14 Q18 Q20 Q22 Q24 Q25 Q26 Apparmor
Q12 Pearson Correlation Coefficient 1

R Standard Error
t
Significance Level
Ho (5%)

Q14 Pearson Correlation Coefficient 0.4411 1
R Standard Error 0.0117
t 4.0824
Significance Level 0.0001
Ho (5%) rejected

Q18 Pearson Correlation Coefficient 0.1087 0.0522 1
R Standard Error 0.0143 0.0145
t 0.9084 0.4346
Significance Level 0.3668 0.6652
Ho (5%) accepted accepted

Q20 Pearson Correlation Coefficient 0.0979 0.0037 -0.0809 1
R Standard Error 0.0165 0.0167 0.0166
t 0.8172 0.031 -0.6746
Significance Level 0.4166 0.9753 0.5022
Ho (5%) accepted accepted accepted

Q22 Pearson Correlation Coefficient 0.0837 0.1555 0.188 0.2558 1
R Standard Error 0.0146 0.0144 0.0142 0.0137
t 0.6979 1.3078 1.5901 2.1977
Significance Level 0.4876 0.1953 0.1164 0.0313
Ho (5%) accepted accepted accepted rejected

Q24 Pearson Correlation Coefficient 0.0402 0.0565 -0.0668 0.0962 0.1724 1
R Standard Error 0.0151 0.0151 0.0151 0.015 0.0147
t 0.3343 0.4699 -0.5558 0.803 1.4536
Significance Level 0.7392 0.6399 0.5801 0.4248 0.1506
Ho (5%) accepted accepted accepted accepted accepted

Q25 Pearson Correlation Coefficient 0.0452 0.0233 0.0107 0.0148 0.1157 0.2259 1
R Standard Error 0.0151 0.0151 0.0151 0.0151 0.0149 0.0144
t 0.3762 0.194 0.0887 0.1227 0.9679 1.9261
Significance Level 0.7079 0.8468 0.9296 0.9027 0.3365 0.0582
Ho (5%) accepted accepted accepted accepted accepted accepted

Q26 Apparmor Pearson Correlation Coefficient 0.1628 0.0722 0.3604 -0.1106 -0.0744 -0.0357 -0.1672 1
R Standard Error 0.0749 0.0765 0.0669 0.076 0.0765 0.0768 0.0748
t 1.3708 0.601 3.2097 -0.9242 -0.6193 -0.2969 -1.4091
Significance Level 0.1749 0.5498 0.002 0.3586 0.5377 0.7675 0.1633
Ho (5%) accepted accepted rejected accepted accepted accepted accepted

Some other correlation tests have been performed besides the Pearson Correlation test to

see if two or more variables are correlated as described in the methodology section. Testing for

correlation using different methods helps verify that the correlations truly exist. As a result the

Fechner correlation coefficients matrix has also been included. The calculations were done with

StatPlus using the formula r = (C-H) / (C+H). For the purpose of the analysis of the Fechner

correlation matrix analysis anything over .50 will be considered correlated. Although the closer

to 1 that the correlations are the higher the probability that they were correlated.

An analysis of covariance (ANCOVA) has also been performed to see if the variables

move together. The results of ANCOVA removes variability and gives another angle to look at

the data. If the variables do move together then then the numbers will be either positive or

negative but not close to zero. A positive number is because a large number of one item moves

with a large number of another time. Negative numbers are from variables moving together

where one variable is a small group and the other variable is a large group.

52

Table 2

Fechner Correlation Matrix
Q12 Q14 Q18 Q20 Q22 Q24 Q25 Q26 Apparmor

Q12 1
Q14 0.2222 1
Q18 -0.4722 0.0833 1
Q20 -0.2222 0.1111 0.4167 1
Q22 -0.1667 0.1667 0.4722 0.3889 1
Q24 -0.3611 0.1389 0.6667 0.5278 0.5278 1
Q25 -0.1389 0.1389 0.3333 0.25 0.3056 0.4444 1
Q26 Apparmor 0.0278 0.0833 0.0556 0.3056 0.1944 0.2778 0.2778 1

Conclusion

There was a 15% response rate which is not bad for an online survey. There was a 99%

usage of Linux. This was because the respondents that were sought out needed to use Linux in a

production environment. The demographics, operating system information and security layers all

were reported in this section. In addition an analysis of Q12, Q14, Q18, Q20, Q22, Q24, Q25,

and Q26 was performed. The analysis consisted of a Pearson correlation, and a Fechner

correlation. The correlations between variables were really low but not low enough for a

majority of the correlations to be rejected. Additionally to remove variability an analysis of

covariance was performed which checked to see which variables moved together.

53

Table 3

Analysis of Covariance
Q12 Q14 Q18 Q20 Q22 Q24 Q25 Q26 Apparmor

Q12 0.1844
Q14 0.3083 2.2081
Q18 0.0413 0.0963 0.0924
Q20 -0.0388 -0.1466 -0.0121 0.6022
Q22 0.0202 0.1492 0.0157 0.206 0.2365
Q24 0.0107 0.0809 -0.005 0.1044 0.0422 0.1315
Q25 0.0271 0.1878 -0.0025 0.3278 0.0863 0.1865 0.702
Q26 Apparmor 0.0195 -0.3516 -0.0586 -0.0195 0.2344 -0.0195 0.2539 1.4648

CHAPTER 5. DISCUSSION, IMPLICATIONS, AND RECOMMENDATIONS

The demographics for the survey respondents showed that the respondents are experts

because they have 5 or more years in the field of Information Technology (the methodology

section defined this level as an expert). Thus the respondents were able to provide good feedback

because of their status. Overall it looks as if the computer systems that run Linux at these

locations are very secure. It may be that bias was introduced since the survey was basically a self

analysis and the respondents believed their Linux environment to be secure. It could also have

been lack of knowledge about security incidents that may have occurred on their Linux

computers.

Noticeable trends from the results were that minimal changes occurred after upgrading

with relationship with viruses, kernel crashes and buffer overflow errors. There could be many

reasons for there to have been little improvements from upgrading. Some of the unknown

variables are the firewall rules, and the location of the computers in relation to the Internet. Not

knowing where the computers were in relation to the Internet as well as what firewall rules they

have make it hard to make an educated guess on why the system administrators believe their

Linux computers to be so secure. One factor of increased security could be that a majority (45%)

of the respondents apply patches on a daily or weekly basis.

Some other important information received from experts in the field helped clarify why

upgrading the kernel is irrelevant. This is because the fixes are backported to old versions of the

kernel. Meaning that the long term Linux distribution releases get security patches backported to

them. This means that the long term releases typically have less bugs because they run on older

54

kernels, yet they also get the security patches to keep them up to date. As a result of this

information the kernel questions have not been included in the analysis.

The correlations between the variables were very low. For the purposes of this analysis a

Pearson correlation coefficient of .50 or greater was highly correlated. The closer that the

Pearson correlation was to one the stronger the correlation between the two variables. However,

none of the correlations came close to one. This is because they may be correlated but they do

not have a cause and effect relationship. Stockburger, gives clarity on this subject by stating that

“Calculators and computers will produce a correlation coefficient regardless of whether or not

the numbers are 'meaningful' in a measurement sense” (2006, ¶ 34). Looking at the survey

results and the analysis data gives a better idea of what may be going on. The questions about

buffer overflow errors had a minuscule change from before upgrading and after upgrading. This

could be because outside of a controlled environment this is not monitored. Actually

remembering and linking buffer overflow errors to the events that occurred on their Linux

computers could be more difficult than should be required for a survey. Especially since the

administrators may not have seen these events occur on the computer. Malware before (Q17) and

after (Q18) upgrading also had little change, the little change could have been for many reasons.

An unknown variable is what anti-virus solution was currently implemented and how up to date

the definitions are kept. It could be that the system administrators did not know the system had a

virus. Resident virus protection does not exist in Linux; meaning that a scan does not run

automatically unless scheduled as a cron job. The system administrator may just have seen

quirky things occur on the system which may have gone away or the computer was re-imaged.

55

The Fechner correlation matrix showed that RBAC (Q24) is highly correlated to a

decrease in computers that are affected by viruses, worms, trojans, malware or other malicious

software (Q18). RBAC can limit the effects malware on a computer because malicious software

can have free reign on a computer that has root or administrative privileges. Linux prevents this

by nature because many distributions require even a user with root privileges to enter the

credentials before privileges can be elevated. RBAC can place further limitations on what effects

malware can have through the separation of duties. Similarly RBAC (Q24) is also highly

correlated to buffer overflow errors since upgrading (Q20). This correlation could mean that the

use of RBAC can reduce the amount of buffer overflow errors that occur on a Linux machine.

The Fechner correlation also shows that RBAC (Q24) and SELinux (Q22) were highly

correlated. The correlation between RBAC and SELinux could mean that if the two layers were

both used and configured that there would be an increased level of security on the computers.

The ANCOVA test showed that upgrades (Q12) and frequency of patching (Q14) tend to

move together. The fact that upgrades and patching move together could mean that the more

upgrades and patching that takes place tends to improve overall security. AppArmor (Q26) and

frequency of patching (Q14) also move together in a negative way meaning that small values of

Q26 move with large values of Q14. The results show that only 21% of the respondents actually

use AppArmor which is the reason why there is a negative relationship between AppArmor and

Q14.

56

Implications

Overall it appears as if patching the Linux OS and the implementation of security layers

helps increase security. The null hypothesis is not rejected for most of the variables. The factors

in increased security include the frequency of patching, the implementation of SELinux, Role

Based Access Control such as PaX and GRsecurity, and the use of AppArmor. The

implementation of these controls, with the exception of AppArmor, were correlated with the

decrease in the effects viruses, worms, trojans, malware or other malicious software could have

on a Linux computer.

The information that was seen as correlated is not enough proof to solidly state that

security has improved because of one effect or another. The answers to the research questions

definitely have been addressed and can be further addressed in by performing more focused

research. AppArmor was only implemented on few computers (21%) which made it hard to tell

if it had much of any effects on the Linux computers. AppArmor may have a relationship with

patching which means that patched systems which use AppArmor could be more secure. Yet

AppArmor was specifically rejected from any correlation to malware after upgrading. SELinux

and RBAC may enhance security on the overall Linux system especially when used together

because they were shown to be correlated. Buffer overflow errors and the frequency of kernel

crashes can be reduced through the implementation of RBAC, and patching. SELinux did not

show that it would reduce the number of buffer overflow errors after upgrading.

57

Recommendations

A more refined research in a controlled environment would make it easier to view the

effects of certain variables. Another idea is to pick a small focus group of system administrators

and monitor the way their Linux computers function with patching, the implementation of

SELinux, Role Based Access Control such as PaX and GRsecurity, and the use of AppArmor.

This would allow the researcher to actively see what effects each layer has on the overall system.

This type of research would make it possible to keep some variables constant while making

changes to the other variables. This would be an improvement upon the research done for this

thesis, especially since the respondents memory was put to the test while taking the survey.

Actually remembering events that occurred for up to a year can be difficult to do especially

without proper documentation to aid in the process of remembering exactly what happened.

Further research could look deeper into the effects on security when access controls are

implemented. Such questions for exploration could be why AppArmor, SELinux or RBAC are

used so little. An even deeper question could be used to focused not on the controls themselves

but rather the item that security helps maintain. That is to say data, and how often information

gets lost. Doing research on data leakage will be a challenge because it is not desirable for

businesses to give out that type of information unless it is absolutely necessary. This also may be

the reason that so many results came back looking as if the companies networks are perfectly

secure. A highly secure computer is something very desirable but it is more likely that some

information has been lost due to a virus, improper firewall rules, or another vulnerability either

in the network or computer.

58

Conclusions

It takes many layers to protect a network, its devices and all of the computers from

unwanted invasions. This research focused solely on Linux operating systems and looked at

these systems from the system administrators perspective. Although no rock solid evidence was

found to state that one device or application keeps the computer secure it can be said that those

who were surveyed did believe their networks to be secure. The security applications and

techniques used to secure these Linux computers and their surrounding networks were: patching,

firewalls, IDS, IPS, AppArmor, SELinux, RBAC, IPsec, UAC, proxy server, complex password

policies, and DMZ.

The stronger correlations found between layers and the minimized effect of security

intrusions was AppArmor although it has been implemented on few computers it may have a

relationship with patching which means that patched systems that use AppArmor could be more

secure. It could be said that AppArmor enhances fine grained permissions and help secure

computers that run Linux. SELinux and RBAC also enhance security on a Linux system. Buffer

overflow errors and the frequency of kernel crashes can be reduced through the implementation

of RBAC, and patching. The use of RBAC, AppArmor, or SELinux are a part of hardening a

Linux system which in turn lowers the compromises of the operating system.

The information gathered in this survey provides a good basis of information that has not

been documented which will provide a good basis for further research. As such this research is a

stepping stone for a further in an depth analysis of access controls. In fact it might be possible to

59

use the same control group using other testing methods which would further improve this thesis

and give a much clearer picture of these Linux security layers and their implementations.

60

REFERENCES

AAPOR. (2007). Response rates: An overview. Retrieved July 25, 2009, from
http://www.aapor.org/responseratesanoverview

Absolute Software. (n.d.). Protecting data on laptops: Why encryption isn't enough. Retrieved
March 12, 2009, from
http://www.webbuyersguide.com/Resource/ResourceDetails.aspx?id=11431

Aitoro, J. (2008, August 11). Top IT cops say lack of authority, resources undermine security.
Retrieved September 27, 2008, from http://www.govexec.com/story_page.cfm?
filepath=/dailyfed/0808/081108j2.htm

Anonymous. (2005). FTC: 'Reasonable & appropriate' measures to protect digital assets.
International Journal of Micrographics & Optical Technology, 23(4), 7. Retrieved
September 29, 2008, from ProQuest Computing database.

AppArmor - openSUSE. (n.d.). AppArmor. Retrieved November 6, 2008, from
http://en.opensuse.org/Apparmor

Bardram, J. (2005). The trouble with login: On usability and computer security in ubiquitous
computing. Personal and Ubiquitous Computing, 9(6), 357-367. Retrieved October 2,
2008, from ProQuest Computing database.

Baskerville, R. (1993). Information systems security design methods: Implications for
information systems development. ACM Computing Surveys, 25(4), 375. Retrieved
September 30, 2008, from Research Library Core database.

Bowman, I. (1998, January). Conceptual architecture of the Linux kernel. Retrieved October 24,
2008, from http://docs.huihoo.com/linux/kernel/a1/index.html

Bovet, D., & Cesati, M. (2005). Understanding the Linux kernel. Sebastopol, CA: O'Reilly
Media, Inc.

Bunnell, M., & Weinberg, W. (1996, December). Kernel modules tailor small-OS solution.
Electronic Engineering Times 932, 76-78. Retrieved September 29, 2008, from ProQuest
Computing database.

Center for Internet Security, The: (2008, September). The center for internet security announces
industry's first consensus based metrics for information security. Internet Business
Newsweekly, 14. Retrieved September 24, 2008, from Sciences Module database.

61

Cherry, M. & Imwinkelried, E. (2008). Internet theft is avoidable. Judicature, 92(1), 7.
Retrieved September 30, 2008, from Law Module database.

Chuvakin, A. (2002, January 23). Linux Kernel Hardening. Retrieved March 4, 2009, from
http://www.securityfocus.com/infocus/1539

Clark, V., & Creswell, J. (2006). Designing and conducting mixed methods research. Thousand
Oaks, CA: Sage Publications, Inc.

Danchev, D. (2008, July 7). Approximately 800 vulnerabilities discovered in antivirus products.
Posted to http://blogs.zdnet.com/security/?p=1445

De Groot, D. (2006). Computer security: Article on computer security. Retrieved October 2,
2008, from http://bluefive.pair.com/articles_computer_security.htm

Device management | Channel 9. (n.d.). Microkernel vs Macrokernel (aka Monolithic kernel).
Retrieved June 17, 2009, from http://channel9.msdn.com/wiki/devicemanagement/

Documentation for the PaX project. (2006, April 26). Aslr. Retrieved June 16, 2009, from http://
pax.grsecurity.net/docs/aslr.txt

Documentation for the PaX project. (2006, April 26). Pax. Retrieved June 16, 2009, from
http://pax.grsecurity.net/docs/pax.txt

Expert. (2006, December 14). Online Etymology Dictionary. Retrieved August 11, 2009, from
Dictionary.com website: http://dictionary.reference.com/browse/expert

Frazier, R. (n.d.). Security frameworks. Retrieved November 3, 2008, from www.hackerz.ir/e-
books/127%20Security%20Frameworks.pdf

Fruhwirth, C. (2006, February 18). LUKS on disk format specification. Retrieved November 8,
2008, from luks.endorphin.org/LUKS-on-disk-format.pdf

Garfinkel, S. (2005). DSpace@MIT : Design principles and patterns for computer systems that
are simultaneously secure and usable. Retrieved February 7, 2009, from
http://dspace.mit.edu/handle/1721.1/33204

Gay, L. R., & Airasin, P. (2003) Educational research: Competencies for analysis and
application (7th ed.). Upper Saddle River, NJ: Merrill/Prentice Hall.

Germain, J. (2005, February 19). Computer security comes of age. Retrieved September 23,
2008, from http://www.technewsworld.com/story/40686.html?wlc=1222693994

62

http://dictionary.reference.com/browse/expert

Granneman, S. (2003, October 2). Linux vs. Windows viruses. Posted to
http://www.securityfocus.com/columnists/188

Halkidis, S., Tsantalis, N., Chatzigeorgiou, A., & Stephanides, G. (2008, July - September).
Architectural risk analysis of software systems based on security patterns. IEEE
Transactions on Dependable and Secure Computing, 5(3), 129. Retrieved October 1,
2008, from ProQuest Computing database.

Hamid, S. (2008, April 16). How to login to Ubuntu as root user? Retrieved April 2, 2009, from
http://www.sizlopedia.com/2008/04/16/how-to-login-to-ubuntu-as-root-user/

Harrington, J. (2005). Network security: A practical approach. San Francisco: Morgan
Kaufmann.

Holford, J. W. (2006). The concept of self-defending objects and the development of security
aware applications. Retrieved March 12, 2009, from
eprints.qut.edu.au/16227/2/02whole.pdf

Hsu, C. & Backhouse, J. (2002). Information systems security education: Redressing the balance
of theory and practice. Journal of Information Systems Education, 13(3), 211-218.
Retrieved October 2, 2008, from Education Module database.

IAR. (2007, July 16). Response rates. Retrieved July 25, 2009, from
http://www.utexas.edu/academic/diia/assessment/iar/teaching/gather/method/survey-
Response.php

Indiana University. (2003, February 26). The UNIX system kernel. Retrieved October 11, 2008,
from http://www.uwsg.iu.edu/usail/concepts/

IT Governance Institute. (2007, October 14). COBIT 4.1 executive summary and framework.
Retrieved February 11, 2009, from http://www.isaca.org/AMTemplate.cfm?
Section=Downloads&Template=/ContentManagement/ContentDisplay.cfm&ContentID
=34172

Jones, M. (2008, April 29). Anatomy of security-enhanced Linux (SELinux). Retrieved November
6, 2008, from http://www.ibm.com/developerworks/linux/library/l-selinux/index.html

Karp, A. (2003). Enforce POLA on processes to control viruses. Association for Computing
Machinery. Communications of the ACM, 46(12), 27-29. Retrieved September 29, 2008,
from Research Library Core database.

Kerner, S. (2008, October 29). InternetNews realtime IT news - security problem? Blame the
human element. Retrieved October 31, 2008, from

63

http://www.internetnews.com/security/article.php/3781426/Security+Problem+Blame+t
he+Human+Element.htm

Kil, C., Jun, J., Bookholt, C., & Xu, J. (n.d.). Address space layout permutation. Retrieved
October 31, 2008, from http://discovery.csc.ncsu.edu/pubs/acsac06a.pdf

Krebs, B. (2006, July 19). Hacked ad seen on MySpace served spyware to a million - security fix.
Retrieved October 4, 2008, from
http://blog.washingtonpost.com/securityfix/2006/07/myspace_ad_served_adware_to_mo
.html

Kroah-Hartman, G. (2009, February 12). ChangeLog-2.6.28.5. Retrieved June 17, 2009, from
kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.28.5

Lampson, B. (2004, February 25). Computer security in the real world. Retrieved October 2,
2008, from research.microsoft.com/lampson/64-SecurityInRealWorld/Acrobat.pdf

LearnHigher Centre for Excellence in Teaching & Learning. (2008) Learning to analyze
quantitative data. Retrieved April 2, 2009, from
http://www.learnhigher.ac.uk/analysethis/main/quantitative1.html

Leedy, P. D., & Ormrod, J. E. (2004). Practical research: Planning and design (8th Edition).
Alexandria, VA: Prentice Hall.

Lettice, J. (2004, October 22). Windows v Linux security: The real facts. Retrieved September
28, 2008, from http://www.theregister.co.uk/2004/10/22/linux_v_windows_security/

LinuxDevices.com (2008, May 2). Linux-friendly microkernel OS tightens mobile security.
Retrieved November 5, 2008, from
http://www.linuxdevices.com/news/NS3442674062.html

LinuxDevices.com. (2007, November 30). Virtualization microkernel supports ARMv6.
Retrieved November 5, 2008, from
http://www.linuxdevices.com/news/NS8552513536.html

Local Program Evaluation in Tobacco Control. (2003, September 25). Sample Size Selection
Chart. Retrieved July 23, 2009, from
http://www.uwex.edu/ces/tobaccoeval/resources/surveychart.html

Loscocco, P., & Smalley, S. (2004, July 19). Meeting critical security objectives with security-
enhanced Linux. Retrieved November 3, 2008, from
www.nsa.gov/selinux/papers/ottawa01.pdf

64

Loscocco, P., Smalley, S., Muckelbauer, P., Taylor, R., Turner, S., & Farrell, J. (1998, October).
The inevitability of failure: The flawed assumption of security in modern computing
environments. Retrieved November 3, 2008, from
http://www.cs.utah.edu/flux/fluke/html/inevitability.htm

MacIver, D. (2008, February 25). System integrity team blog: Protecting BitLocker from cold
attacks (and other threats). Posted to http://blogs.msdn.com/si_team/archive/2008/02/25/
protecting-bitLocker-from-cold-attacks-and-other-threats.aspx

Milberg, K. (2004, January 19). Commentary: Addition of IPsec locks down 2.6 kernel.
Retrieved May 14, 2009, from
http://searchenterpriselinux.techtarget.com/news/article/0,289142,sid39_gci944836,00.ht
ml

National Security Agency. (2007, August 27). Security-enhanced Linux. Retrieved November 3,
2008, from http://www.nsa.gov/research/selinux/index.shtml

National Security Agency. (2009, January 15). Security policy abstractions. Retrieved January
15, 2009, from http://www.nsa.gov/research/selinux/policy.shtml

Noyes, A. (2008, October 15). NextGov - FBI warns of sweeping global threat to U.S.
cybersecurity. Retrieved October 16, 2008, from
http://www.nextgov.com/nextgov/ng_20081015_7578.php

O'dowd, D. (2004, May 24). Linux security: Unfit for retrofit - Green Hills software. Retrieved
October 24, 2008, from http://www.ghs.com/linux/unfit.html

O'Reilly, T., & Raymond, E. (2001). The cathedral & the bazaar: Musings on Linux and open
source by an accidental revolutionary. Sebastopol, CA: O'Reilly.

Parker, D. (2008, March 12). Catch them if you can. Retrieved June 5, 2008, from
http://www.securityfocus.com/columnists/468

Perens, B. (1998, July 20). Slashdot Feature: Security through obscurity. Retrieved January 22,
2009, from http://slashdot.org/features/980720/0819202.shtml

Perrin, C. (2007, July 22). Myth: I'm not really at risk. IT Security. Retrieved October 4, 2008,
from http://blogs.techrepublic.com.com/security/?p=259

Policy Kit Library Reference Manual. (2008, January 16). PolicyKit model. Retrieved March 12,
2009, from http://hal.freedesktop.org/docs/PolicyKit/model.html

65

Redhat (2003, April 8). Administrative controls. Retrieved March 28, 2009, from
www.redhat.com/docs/manuals/linux/RHL-9-Manual/security-guide/s1-wstation-
privileges.html

Rothman, M. (2007, August 27). Frameworks just part of security plan. Retrieved November 3,
2008, from http://searchcio-
midmarket.techtarget.com/news/column/0,294698,sid183_gci1269420,00.htm

Royal District Nursing Service. (2007). Guidelines for researchers seeking ethics approval for
research projects. Retrieved March 27, 2009, from
www.rdns.com.au/research_and_innovation/Assets/REC%20Guidelines%20for
%20researchers.pdf

Ranum, M. (2005, September 1). The six dumbest ideas in computer security. Retrieved October
2, 2008, from
http://www.ranum.com/security/computer_security/editorials/dumb/index.html

Raymond, E. (2003). The art of UNIX programming. New York: Addison-Wesley Professional.

Runesson, M. (2006, May 21). AppArmor. Retrieved November 6, 2008, from
https://wiki.ubuntu.com/AppArmor

Ruoho, C. (2007, October 30). Leopard's sandbox feature. Posted to
http://www.laconicsecurity.com/leopards-sandbox-feature-just-for-play.html

Secure by design (2006, October 15). How Guardian Digital secures EnGarde secure Linux.
Retrieved October 21, 2008, from
http://www.engardelinux.org/doc/other/wmes/wmes.html

Security Solutions. (n.d.). Layered Model. Retrieved April 2, 2009, from
softwaresecuritysolutions.com/PDF/layeredModel062308.pdf

Shacham, H., Page, M., Pfaff, B., Goh, E., Modadugu, N., & Boneh, D. (2004, October 25). On
the effectiveness of address-space randomization. Retrieved March 12, 2009, from
www.stanford.edu/~blp/papers/asrandom.pdf

Shostack, A., & Stewart, A. (2008). The new school of information security. New York:
Addison-Wesley Professional.

Singel, R. (2008, April 9). Zombie computers decried as imminent national threat. Posted to
http://blog.wired.com/27bstroke6/2008/04/zombie-computer.html

Singh, A. (2004, June). Sandboxing. Retrieved November 8, 2008, from
http://www.kernelthread.com/publications/security/sandboxing.html

66

Stockburger, D. W. (2006, July 6). Correlation. Retrieved July 27, 2009, from
http://www.psychstat.missouristate.edu/introbook/sbk17m.htm

Sundaram, R. (n.d.). Security/Features – FedoraProject. Retrieved March 12, 2009, from
http://fedoraproject.org/wiki/Security/Features

Taylor, J., & Nusca, A. (2008, October 21). Zombie PCs: Time to infection is less than five
minutes. Posted to http://blogs.zdnet.com/gadgetreviews/?p=441

Tresys Technology. (2007, March 17). SELinux policy server. Retrieved November 6, 2008,
from oss.tresys.com/projects/policy-server

Venema, W. (1998, December 5). Murphy's law and computer security. Retrieved October 3,
2008, from http://insecure.org/stf/wietse_murphy.html

Warren, S. (2002, March 5). Would you hire a hacker to help protect your network? Posted to
http://articles.techrepublic.com.com/5100-10878_11-1039747.html?tag=sc

Whoriskey, P. (2008, April 8). Every click you make - washingtonpost.com. Retrieved Oct. 16,
2008, from http://www.washingtonpost.com/wp-
dyn/content/article/2008/04/03/AR2008040304052.html

Williams, D. (2007, August 12). iTWire - Hardening Linux. Posted to
http://www.itwire.com/content/view/13976/53/

Woods Hole Oceanographic Institution. (2007, November 21). CIS. Retrieved November 25,
2008, from http://www.whoi.edu/cis/security/news/firewall-annc.html

Xu, D. & Nygard, K. (2006). Threat-driven modeling and verification of secure software using
aspect-oriented petri nets. IEEE Transactions on Software Engineering, 32(4), 265-278.
Retrieved September 30, 2008, from Sciences Module database.

Yodaiken, V. (2004, July 19). Guest editorial: Thoughts on secure operating systems. Retrieved
October. 24, 2008, from http://www.linuxdevices.com/articles/AT6311679886.html

Zhang, C. (2006). DSpace@MIT : Designing security into software. Retrieved January 31, 2009,
from http://dspace.mit.edu/handle/1721.1/35098

67

APPENDIX A. DATA COLLECTION INSTRUMENT

 The questions asked in a survey to businesses who use Linux are:

Questions: Answer choices:

How many years have you worked in IT? • Never

• Less than 1 year

• 1-5 years

• Greater than 5 years

How long have you been at your current place
of employment?

• Not Currently Employed

• Less than 1 year

• 1-5 years

• Greater than 5 years

Do you install, maintain or upgrade software
for your organization?

• Yes

• No

What is the highest level of education have you
achieved?

• High School Diploma or GED

• Associates

• Bachelors

• Masters

• PHD

• N/A

Are any of your degrees in IT? • Yes

• No

Do you have any certifications? • Yes

• No

Please select which certifications you have
attained.

• Linux+

• A+

68

• Security+

• CISSP

• SSCP

• Other

Which operating systems are currently in use
on the network?

Select all that apply:

• Linux

• MacOS

• Unix

• Windows

• Sun

• Other

What kernel version(s) of the Linux operating
system is/are currently deployed? • 2.2.26

• 2.4.37

• 2.6.27

• 2.6.28

• 2.6.29

• Other

What distributions of Linux do you use? Please select all that apply:

• Redhat/Fedora Core

• Debian/Ubuntu

• Slax

• Knoppix

• SUSE

• CentOS

• Gentoo

• Linspire

• Other

69

Which version of each distribution do you use? Fill in the blank

Have any of the Linux operating systems at
your organization been upgraded in the past
year?

• Yes

• No

What was the Kernel version before the
upgrade?

Please choose the closest match:

• 2.2.26

• 2.4.37

• 2.6.27

• 2.6.28

• 2.6.29

• Other

How often do you patch the Linux software? • Daily

• Weekly

• Monthly

• Quarterly

• Yearly

• Never

Linux updates are signed which protects a
computer from installing malicious software.
Have you ever installed software that wasn't
signed?

• Yes

• No

If you were in the process of installing Linux
updates and you got an error that the software
wasn't signed, would you continue with the
installation?

• Yes

• No

Before upgrading have any Linux computers
on your network been affected by viruses,
worms, trojans, malware or other malicious
software within the past year?

• Yes

• No

After upgrading have any Linux computers on
your network been affected by viruses, worms,
trojans, malware or other malicious software

• Yes

• No

70

within the past year?

How often do viruses affect the uptime of your
systems?

• Daily

• Weekly

• Monthly

• Quarterly

• Yearly

• Never

How often since an upgrade have there been
buffer overflow errors such as a memory
exception within the past year?

• Daily

• Weekly

• Monthly

• Quarterly

• Yearly

How often did buffer overflow errors occur
before upgrading the Kernel within the past
year?

• Daily

• Weekly

• Monthly

• Quarterly

• Yearly

NSA Security-Enhanced Linux (SELinux) was
merged in Kernel 2.6 but the default setting is
off. Has it been turned on and configured?

• Yes

• No

Did you use the example policy or start from
scratch?

• Example Policy

• Started from scratch

PaX provides Role based Access Control
(RBAC) one of the controls provided is
prevention against stack smashing. Do you use
RBAC either through PaX, GRSecurity, or a
hardened version of Gentoo?

• Yes

• No

How often does the kernel crash? • Daily

• Weekly

71

• Monthly

• Quarterly

• Yearly

• Never

What other security layers have been
implemented either on your network or on the
Linux computers specifically?

• AppArmor or application restrictions

• Demilitarized Zone (DMZ)

• Firewall

• IPsec or other network encryption

• Intrusion Detection System

• Intrusion Prevention System

• None

• Password policy that requires complex
passwords

• Proxy Server

• User Account Controls

72

	CHAPTER 1. INTRODUCTION
	Introduction to the Problem
	Statement of the Problem
	Purpose of the Study
	Research Questions
	Significance of the Study

	CHAPTER 2. LITERATURE REVIEW
	Introduction
	Current Security Solutions
	Why does it matter that a computer is infected or hacked?
	What can be done to protect computers?
	Frameworks
	Architecture Design of the Operating System
	Kernels

	Conclusion

	Statement of Thesis
	CHAPTER 3. METHODOLOGY
	Research Expectations
	Research Design
	Participants
	Sampling Strategy
	Process of Data Collection
	Research Questions

	Data Processing and Analysis
	Study Limitations

	Validity and Reliability
	Ethical Assurances

	CHAPTER 4. RESULTS
	Demographics
	Variable Selection
	Conclusion

	CHAPTER 5. DISCUSSION, IMPLICATIONS, AND RECOMMENDATIONS
	Implications
	Recommendations
	Conclusions

	REFERENCES
	APPENDIX A. DATA COLLECTION INSTRUMENT

