
A Taguchi-Based Approach to Tune Bio-Inspired Guidance Systems
for Tactical UAVs

Shardul N. Amrite

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master’s of Science

in

Mechanical Engineering

Dr. Andrea L’Afflitto, Chair

Dr. Kwok Tsui

Dr. Steve Southward

Dr. Kaveh Akhbari Hamed

December 9, 2021

Blacksburg, Virginia

Keywords: Taguchi Analysis, ANOVA, UAV, Design of experiments

Copyright 2022, Shardul N. Amrite



A Taguchi-Based Approach to Tune Bio-Inspired Guidance Systems
for Tactical UAVs

Shardul N. Amrite

(ABSTRACT)

This thesis aims to tune the control parameters of a bio-inspired guidance system de-

signed to confer a tactical behavior to unmanned aerial vehicles (UAVs). This bio-inspired

guidance system is capable of reducing exposure to threats, while traversing previously un-

charted, and potentially hostile territories. UAVs employing this guidance system may ex-

hibit a more or less tactical behavior by tuning 9 user-defined parameters within specified

intervals. Although the UAV’s behavior can be easily forecasted whenever all parameters

are set to exhibit the most cautious behavior or the most reckless behavior, it is difficult to

devise a taxonomy of flight behavior whenever these parameters are not set at the boundaries

of their admissible intervals. The scope of this thesis is to analyze and forecast the UAV’s

behavior as a function of these user-defined parameters. To this goal, the Taguchi analysis

method is employed to deduce those parameters that affect the UAV’s behavior more than

others. Successively, 81 software-in-the-loop simulations have been performed to analyze the

UAV’s behavior as a function of the most influential user-defined parameters. Finally, 10

flight tests were performed to validate the numerical results.



A Taguchi-Based Approach to Tune Bio-Inspired Guidance Systems
for Tactical UAVs

Shardul N. Amrite

(GENERAL AUDIENCE ABSTRACT)

This thesis aims to tune the control parameters of a bio-inspired guidance system de-

signed to confer a tactical behavior to unmanned aerial vehicles (UAVs). This bio-inspired

guidance system is capable of reducing exposure to threats, while traversing previously un-

charted, and potentially hostile territories. UAVs employing this guidance system may ex-

hibit a more or less tactical behavior by tuning 9 user-defined parameters within specified

intervals. Although the UAV’s behavior can be easily forecasted whenever all parameters

are set to exhibit the most cautious behavior or the most reckless behavior, it is difficult to

devise a taxonomy of flight behavior whenever these parameters are not set at the boundaries

of their admissible intervals. The scope of this thesis is to analyze and forecast the UAV’s

behavior as a function of these user-defined parameters. To this goal, the Taguchi analysis

method is employed to deduce those parameters that affect the UAV’s behavior more than

others. Successively, 81 software-in-the-loop simulations have been performed to analyze the

UAV’s behavior as a function of the most influential user-defined parameters. Finally, 10

flight tests were performed to validate the numerical results.
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Chapter 1

Introduction

1.1 Scope of study

Unmanned aerial vehicles (UAVs) are becoming increasingly popular for the versatility of

their application. Surveillance and mapping of hostile territories is one such application,

where employing a UAV mitigates the risk to human life. At the Advanced Control Systems

Lab at Virginia Tech, a guidance system for UAVs to perform such tasks has been created.

This novel guidance is inspired by the cautious behavior of prey animals, and tactics used by

ground troops while traversing hostile territories, and it is capable of performing this task

without prior knowledge of the surrounding environment. This guidance system instills a

tactical behavior by instructing the UAV to seek cover around obstacles and coast walls while

moving toward their goal. The degree of tactical behavior conferred to the UAV depends

on nine user-defined parameters characterizing the two subsystems of this guidance system,

namely, the path planning subsystem and the trajectory planning subsystem.

The goal of this research is to analyze and forecast the UAV’s behavior as a function

of the tunable parameters underlying this guidance system for tactical operations. It is

analytically impossible to compute the effect of a parameter on the behavior of the UAV,

and thus an experimental approach is needed. For this purpose, we implement the Taguchi

methodology, which is a variation of DOE introduced by Genichi Taguchi [2]. This method is

particularly beneficial over the full factorial design of experiments as it reduces the number
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CHAPTER 1. INTRODUCTION

of experiments required to analyze the effect of the main control parameters. Subsequently,

this thesis proposes the use of a specific mathematical response parameter to analyze the

degree of tactical or cautious behavior shown by the UAV, irrespective of the environment

traversed. Furthermore, we attempt to analyze the influence of different control parameters

on the behavior of this system by applying tools proposed by Taguchi, such as the column

effect method, plotting analysis, and ANOVA. The numerical results obtained by applying

the Taguchi analysis are then validated experimentally.

1.2 Thesis Outline

This thesis is outlined as follows. Chapter 2 provides an overview of this novel guidance

system for tactical UAVs. Concurrently, the role of user-defined parameters in setting the

UAV’s level of cautiousness or recklessness is explained. Chapter 3 provides an extensive

literature review on the Taguchi methodology and its applications in different domains. This

chapter also explains the procedures undertaken to apply the Taguchi method, while con-

currently applying them to this particular research. Finally, Chapter 3 explains tools used

to analyze the data obtained through experimentation, in particular, ANOVA (analysis of

variance). Next, Chapter 4 begins by explaining the methodology undertaken while perform-

ing experimentation for this particular research. This includes an exposition on the UAV,

the architecture of software implementation of this GNC system, the setups for simulations

and flight tests, and the maps used in this research. Subsequently, this chapter displays the

results of this research, and the results obtained via numerical analysis. Lastly, the results

presented in this thesis and future work directions are outlined in Chapter 5.

2



Chapter 2

Overview of a Tactical Guidance

System

The primary goal of this research is to study the effect of tuning the design parameters of

a novel guidance system for a multirotor UAV developed at the Advanced Control Systems

Lab at Virginia Tech under the guidance of Dr. Andrea L’Afflitto. This chapter describes

the details of this novel guidance system as described in [1], and begins with an overview of

the necessity of such a guidance system, followed by the nomenclature used to describe the

different subsystems of this guidance system. Subsequently, the path planning, trajectory

planning, and collision avoidance subsystems are explained in detail. Concurrently, this

chapter also explains the expected effect of altering different control parameters.

2.1 Overview of Guidance System

2.1.1 Introduction to the bio-inspired guidance system

This research is based on an original guidance system that can confer a ‘tactical’ behavior

to multi-rotor UAVs, such as quad-copters that operate in potentially hostile, unknown,

cluttered environments [1]. This guidance system allows an autonomous vehicle to reach

a goal set, whose position relative to the vehicle’s initial position is given, without any

3



CHAPTER 2. OVERVIEW OF A TACTICAL GUIDANCE SYSTEM

prior knowledge of the environment [1]. It is inspired by the cautious behavior of animals,

especially house mice [3], while reaching their goal set by minimizing the exposure to threats

and by the tactics of ground troops while stealthily traversing hostile territories [4]. It

does not depend on external sources for information about the UAV’s position, velocity, or

attitude.

This guidance system comprises a path planner, which implements an optimization-

based algorithm, an algorithm to reconstruct collision avoidance constraints from voxel maps,

which implements a discrimination algorithm based on quadratic programming, and a tra-

jectory planner, which implements a fast model predictive control algorithm. Both the path

planner and trajectory planner underlie a cost function, which influences the decision to

move toward the goal or to seek shelter by coasting obstacles.

2.1.2 Nomenclature for tactical guidance system

Path planning subsystem’s notation

Let the orthonormal inertial reference frame centered at O and with axes X,Y, Z ∈ R3 be

denoted by I ≜ {O;X,Y, Z}. The path planning algorithm in this guidance system generates

the UAV’s reference path, which is a sequence of waypoints {r̂k}np
k=0 ⊂ R3 \O for the UAV

expressed in the inertial reference frame I. The UAV’s initial position as defined by the user

and is denoted by r̂0. The goal position in the inertial reference frame I is denoted by r̂np

and r̂np ∈ G, where G ⊂ R3 denotes the goal set. The obstacles’ set is denoted by O and

O ⊂ R3 . The obstacles’ set O is the union of those voxels produced by the navigation

system, which have an occupancy probability higher than a user-defined threshold. The

integer k ∈ {0, . . . , np} is employed as an index to denote a generic waypoint and to express

functional dependencies on waypoints.

4



2.1. OVERVIEW OF GUIDANCE SYSTEM

Trajectory planning subsystem’s notation

Time is denoted by t ≥ 0, and we assume that the UAV is able to fly from r̂k, k ∈ {0, . . . , np−

1}, to r̂k+1 in nt∆T time units, where both nt ∈ N and ∆T > 0 are user-defined. In

general, both nt and ∆T are different for each pair of consecutive waypoints. The UAV’s

position is captured by rk : [0, nt∆T ] → R3 \ O in the inertial reference frame I, where

rk(0) = r̂k and rk(nt∆T ) = r̂k+1. The UAV’s roll angle is denoted by ϕk : [0, nt∆T ] → [0, 2π),

k ∈ {0, . . . , np−1}, the UAV’s pitch angle is denoted by θk : [0, nt∆T ] →
(
−π

2
, π
2

)
, the UAV’s

yaw angle is denoted by ψk : [0, nt∆T ] → [0, 2π), the UAV’s velocity with respect to I is

denoted by vk : [0, nt∆T ] → R3, and the UAV’s angular velocity with respect to I is denoted

by ωk : [0, nt∆T ] → R3. The total thrust force produced by the UAV’s propellers is denoted

by u1,k(·), k ∈ {0, . . . , np −1}, the roll moment produced by the UAV’s propellers is denoted

by u2,k(·), the pitch moment produced by the UAV’s propellers is denoted by u3,k(·), and the

yaw moment produced by the UAV’s propellers is denoted by u4,k(·).

The UAV’s state vector is given by

xk(j∆T ) ≜
[
rT
k (j∆T ), ϕ(j∆T ), θ(j∆T ), ψ(j∆T ), v

T
k (j∆T ), ω

T
k (j∆T )

]T, j ∈ {i, . . . , nt},

i ∈ {0, . . . , nt}, k ∈ {0, . . . , np−1}. The trajectory planner generates reference states for the

state vector xk(j∆T ) and corresponding control input uk(j∆T ) ≜ [u1,k(j∆T ), u2,k(j∆T ),

u3,k(j∆T ), u4,k(j∆T )] ∈ R4.

The reference state and control inputs (xk(·), uk(·)), are calculated by applying the

model predictive control algorithm and are recomputed at each time step j∆T , starting

from current time step i∆T . The integer i ∈ {0, . . . , nt} is used to count iterations of the

model predictive control algorithm for a given pair of waypoints, and j ∈ {i, . . . , nt} is used

to indicate the time step j∆T within the interval [i∆T, nt∆T ].

The proposed guidance algorithm allows generating reference trajectories for a UAV,

5



CHAPTER 2. OVERVIEW OF A TACTICAL GUIDANCE SYSTEM

whose degree of cautiousness can be imposed by tuning the user-defined parameters µq ∈ R,

q ∈ {1, . . . , 9}. Additional user-defined parameters, which do not affect directly the UAV’s

degree of cautiousness, are denoted by νq ∈ R, q ∈ {1, . . . , 4}.

2.1.3 Overview of the path planning subsystem

The path planning subsystem generates a solution to an optimization problem by applying

the A∗ search algorithm in a map. This map is assumed to be divided into cubical sections

of equal size (voxels). The obstacles’ set is represented by occupied voxels and the UAV is

free to move to any unoccupied voxel cluster adjacent to the voxels currently occupied by

the UAV. The reference path is a sequence of unoccupied voxels adjacent to one another

starting from the UAV’s initial position to the goal set and minimizing a user-defined cost

function.

The cost function underlying the path planning algorithm is given by

fk ≜ gk + hk, k ∈ N, (2.1)

where

gk ≜
k∑
q=1

[κ(d2(r̂q,O))d2(r̂q, r̂q−1)] (2.2)

denotes the cost-to-come function,

hk ≜ (1− µ2)d2(r̂k,G) (2.3)

6



2.1. OVERVIEW OF GUIDANCE SYSTEM

denotes the heuristic function,

κ(α) ≜ 1− µ2e
4µ1µ3−[µ3α+µ1α−1]

2

, α > 0, (2.4)

denotes the weighing function, and µ1, µ3 > 0 and µ2 ∈ [0, 1) are user-defined parameters.

Practically, (2.1) is the weighted sum of the distance traveled by the UAV, and an

under-estimate of the Euclidean distance between the voxel occupied by the UAV and the

goal set. The weighting function κ(·) in (2.4) instills a tactical behavior by rewarding paths

closer to obstacles. From (2.2) and (2.4), it can be concluded that smaller values of µ2 reduce

the attractive effect of the obstacles’ set and the UAV displays a more reckless behavior. For

a smaller µ2 value, the algorithm investigates a smaller number of voxels and is thus faster.

Also, (2.2) and (2.4) show that for smaller values of µ1µ
−1
3 and consequently larger values

of µ3, the algorithm produces paths that are closer to the obstacles, thus providing a more

tactical path.

2.1.4 Overview of the trajectory planning subsystem

The path planner provides waypoints but does not take into account the dynamics of the

motion between two waypoints provided by the path planner. It also can not control the

velocity of the UAV in between obstacles and while coasting obstacles. For this reason,

the trajectory planner is employed to compute reference trajectories as a solution to an

optimal control problem solved by a fast model predictive control algorithm, which uses the

waypoints from the path planner as points to interpolate between.

7



CHAPTER 2. OVERVIEW OF A TACTICAL GUIDANCE SYSTEM

Cost Function

The cost function used to obtain tactical reference trajectories is given by

J̃ [r̂k, uk(·)] ≜ ℓf(rk(nt∆T )) +
nt−1∑
i=0

ℓ̃(rk(i∆T ), uk(i∆T )), k ∈ {0, . . . , np − 1}, (2.5)

where

ℓ̃(rk, uk) ≜

r̃k
uk


T

R̃

r̃k
uk

+ q̃T
r r̃k + q̃T

u uk, (rk, uk) ∈ R3 × R4, (2.6)

ℓf(rk) ≜ (rk − r̂k+1)
T Rr,f (rk − r̂k+1) + qT

r,f (rk − r̂k+1) , (2.7)

R̃ ≜

 R̃r R̃r,u

R̃T
r,u Ru

, R̃r ∈ R3×3 is symmetric, R̃r,u ∈ R3×4, and Ru ∈ R4×4 are user-defined

and such that Ru is positive-definite and

R̃r − 2R̃T
r,uR

−1
u R̃r,u > 0, (2.8)

Rr,f ∈ R3×3 is symmetric and nonnegative-definite, q̃r ∈ R3, qr,f ∈ R3, and q̃u ∈ R4 are

user-defined,

r̃k(i∆T ) ≜ µ4 [rk(i∆T )− r̂k+1] + (1− µ4)fsat (µ5(r̂k − rO)) [rk(i∆T )− rO] ,

i ∈ {0, . . . , nt − 1}, (2.9)

µ4 ∈ (0, 1] and µ5 > 0 are user-defined,

Mayer’s term in equation (2.7) captures the UAV’s need to reach the next waypoint.

8



2.1. OVERVIEW OF GUIDANCE SYSTEM

The first term on the right-hand side of (2.9) captures the UAV’s distance from the next

waypoint and the second term captures the UAV’s distance from the obstacles’ set. Thus the

Lagrangian function (2.6) portrays the UAV’s competing needs to get to the next waypoint

and to get closer to the obstacles’ set.

Setting µ4 = 1 minimizes (2.5) and induces a reckless behavior to the UAV maximizing

the priority to reach the goal. Minimizing µ4 causes the UAV to give higher priority to

coasting obstacles. The user-defined parameter µ5 affects the distance from the UAV to

which an obstacle’s attractive effect is experienced. The attractive effect of obstacles beyond

µ−1
5 is diminished.

2.1.5 Equations of motion and dynamic constraints

To capture the UAV’s linearized equations of motion, let m > 0 denote the UAV’s mass,

g > 0 the gravitational acceleration, Ix, Iy, Iz ∈ R the UAV’s principal moments of inertia

about the roll, pitch and yaw axes respectively. The discrete-time, linearized equations of

motion of the quadcopter are given by

xk((j + 1)∆T ) = Axk(j∆T ) +Buk(j∆T ) (2.10)rk(i∆T )
vk(i∆T )

 =

rinit − re

vinit

 ,
rk(nt∆T )

vk(nt∆T )

 =

r̂k+1 − re

vend

 ,
j ∈ {i, . . . , nt − 1}, i ∈ {0, . . . , nt − 1}, k ∈ {0, . . . , np − 1}, (2.11)

where A = eÃ∆T , and B =
∫ ∆T

0
eÃσdσB̃, Ã ∈ R12×12 is such that Ã1,7 = Ã2,8 = Ã3,9 =

Ã4,10 = Ã5,11 = Ã6,12 = 1, Ã7,5 = g, Ã8,4 = −g, Ãi,j denotes the element of the ith row

9
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and jth column of Ã, every other element of Ã is equal to zero, B̃ ∈ R12×4 is such that

B̃9,1 = m−1, B̃10,2 = I−1
x , B̃11,3 = I−1

y , B̃12,4 = I−1
z , every other element of B̃ is equal to zero,

re = [0, 0, he]
T ∈ R3, he ≥ 0 denotes the hover altitude for the UAV.

2.1.6 Collision avoidance, yaw angle, and saturation constraints

The guidance system presented in [1] guarantees collision avoidance, constraints on the

maximum yaw angles, and saturation constraints on the control input. To find solutions to

the trajectory planning problem, these constraints are captured by

Fk(i∆T )

xk(j∆T )
u(j∆T )

 ≤≤ fk(i∆T ),

j ∈ {i, . . . , nt}, i ∈ {0, . . . , nt}, k ∈ {0, . . . , np − 1}, (2.12)

where Fk(i∆T ) ≜


Fr,k(i∆T ) 0l×2 0l×1 0l×6 0l×4

02×3 02×2 Fψ(i∆T ) 02×6 02×4

08×3 08×2 08×1 08×6 Fu(i∆T )

 ∈ R(l+10)×16,

l denotes the number of collision avoidance constraints,

fk(i∆T ) ≜


fr,k(i∆T )

fψ,k(i∆T )

fu(i∆T )

 , Fr,k(i∆T ) ∈ Rl×3, Fψ,k(i∆T ) ∈ R2, Fu(i∆T ) ∈ R8×4, fr,k(i∆T ) ∈

Rl, fψ,k(i∆T ) ∈ R2, and fu(i∆T ) ∈ R8.

To enforce collision avoidance constraints on the UAV’s reference trajectory, the UAV’s

10
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trajectory is outlined within closed ellipsoids defined by

Ek(i∆T ) ≜
{
w ∈ R3 : (w − rk(i∆T ))

TPk(i∆T )(w − rk(i∆T )) + ck(i∆T ) ≤ 0
}
,

i ∈ {0, . . . , nt}, k ∈ {0, . . . , np − 1},

(2.13)

where Pk(i∆T ) ∈ R3×3 and ck(i∆T ) ∈ R are solutions of the quadratic discrimination

problem, whose cost function is given by

min eT
8,8bk(i∆T ). (2.14)

By computing the hyperplanes tangent to ∂Ek(·), k ∈ {0, . . . , np − 1}, at user-defined sam-

pling points, collision avoidance constraints are captured by

Fr,k(i∆T ) ≜
[

l∑
q=1

eq,l ⊗ (sq(i∆T )− rk(i∆T ))
T

]
Pk(i∆T ),

i ∈ {0, . . . , nt}, k ∈ {0, . . . , np − 1}, (2.15)

fr,k(i∆T ) ≜
l∑

q=1

[
eq,l ⊗ (sq(i∆T )− rk(i∆T ))

TPk(i∆T )sq(i∆T )
]
. (2.16)

The optical axes of the UAV’s cameras are aligned with the UAV’s roll axis. The

reference yaw angle ψk(·), k ∈ {0, . . . , np − 1}, is constrained in a way that the end point

r̂k+1 is always in the cameras’ field of view. This requirement is captured by

−ψk(j∆T ) ≤ −ψ̂k(i∆T ) + ψmax, j ∈ {i, . . . , nt}, i ∈ {0, . . . , nt}, k ∈ {0, . . . , np − 1},

(2.17)

ψk(j∆T ) ≤ ψ̂k(i∆T ) + ψmax, (2.18)

11
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where ψ̂k(i∆T ) ≜ tan−1

(eT
2,3 (r̂k+1 − rk(i∆T ))

eT
1,3 (r̂k+1 − rk(i∆T ))

)
, ψmax > 0 denotes the cameras’ half field

of view, and tan−1(·) denotes the signed inverse tangent function. Therefore,

Fψ(i∆T ) ≜ [−1, 1]T , i ∈ {0, . . . , nt}, (2.19)

and

fψ,k(i∆T ) ≜
[
ψmax − ψ̂k(i∆T ), ψmax + ψ̂k(i∆T )

]T
, k ∈ {0, . . . , np − 1}. (2.20)

The saturation constraints on the control input uk(·) are captured by

−uk(j∆T ) ≤≤ umax, j ∈ {i, . . . , nt}, i ∈ {0, . . . , nt}, k ∈ {0, . . . , np − 1}, (2.21)

uk(j∆T ) ≤≤ umax, (2.22)

where umax ∈ R4 is user-defined and such that umax ≥≥ 0. Therefore,

Fu(i∆T ) ≜ [−14,14]
T, i ∈ {0, . . . , nt}, k ∈ {0, . . . , np − 1}, (2.23)

fu(i∆T ) ≜ [uT
max, u

T
max]

T. (2.24)

2.1.7 Soft Constraints

Constraints that can not be violated are known as hard constraints. To ensure that the

trajectories of the UAV verify user-defined safety margins and to avoid a sudden increase in

control inputs due to the activation of hard constraints, soft constraints are introduced in

the cost function of the hard constraints. In particular, the reference state vector xk(j∆T )

and control input uk(j∆T ) are computed as solutions of the optimization problem given by

12
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the cost function

Îi,k,lb(zi,k) ≜ Ii,lb(zi,k) +

(l+10)(nt−i)∑
q=1

1

ν4,i,k,q
log

(
1 + eν4,i,k,q[pi,k,qzi−ĥi,k,q]

)
,

zi,k ∈ R16(nt−i), i ∈ {0, . . . , nt − 1}, k ∈ {0, . . . , np − 1}. (2.25)

The user-defined parameter ν4,i,k,q, i ∈ {0, . . . , nt − 1}, k ∈ {0, . . . , np − 1}, q ∈

{1, . . . , (l+10)(nt−i)}, is defined as follows. If there exists di,k ∈ N (Pi,k), i ∈ {0, . . . , nt−1},

k ∈ {0, . . . , np − 1}, q ∈ {1, . . . , (l + 10)(nt − i)}, such that ∥di,k∥∞ < 1 and di,k >> 0, then

ν4,i,k,q ≜
1

ĥi,k,q
log

[
1

di,k,q
− 1

]
, (2.26)

otherwise we set ν4,i,k,q = 200. Setting a high value of ν4,i,k,q guarantees that there is no

control offset induced.

2.2 Conclusion

This chapter has briefly recalled the guidance system presented in [1]. In this thesis, those

multiple user-defined parameters that characterize this guidance system will be tuned and

their effects on the behavior of the UAV will be analyzed. The next chapter presents an

overview of the Taguchi method employed to tune and analyze the effect of these parameters.
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Chapter 3

Overview of the Taguchi Methodology

In this chapter, we briefly outline the Taguchi method, which is the principal tool used in this

research to study the effect of various user-defined parameters on a UAV’s behavior. This

chapter presents a brief overview of the Taguchi method, followed by a literature review of

the application of this methodology in various industries. Successively, a detailed explanation

of the procedure followed in the Taguchi analysis is provided. Concurrently, we present how

this procedure is applied to analyze the performance of the guidance system outlined in

Chapter 2. Additionally, multiple interpretations of the Taguchi analysis and ANOVA are

presented. In the next chapter, experimental results are analyzed by applying the theoretical

results outlined in this chapter.

3.1 Literature Review of the Taguchi Method

DOE is a powerful experimental tool used by researchers to plan, conduct, analyze, and

interpret the effect of different control factors on the outcome of a process. The DOE

method was first conferred by Sir R. A. Fisher in the 1920s in the UK [5]. The primary

method in the DOE is the full factorial design. The full factorial design gives a complete

understanding of the effects of main factors and the interaction effects of these factors on

the outcome of the process. For a full factorial design with n control factors and k levels of

each factor, kn experiments must be performed [6]. This method requires a large number
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of experiments, which in many cases is particularly time-consuming and expensive. For

example, an experimental setup with 5 control factors and 3 levels per control factor requires

35 = 243 experiments. Statisticians have thus developed fractional factorial (FFEs) or partial

factorial experiments (PFEs). These techniques use only a fraction of all possible experiments

and estimate the main factor effect and some interaction effects. FFEs are often represented

by their respective orthogonal arrays (OA). Orthogonal arrays have been used as early as

1897 by a French Mathematician called Jaques Hadamard [2].

The ‘Taguchi Method’ was developed in 1954 at the Electrical Communication Labora-

tory in Japan by Dr. Genichi Taguchi [6]. Several Japanese companies have since explored

the Taguchi method to achieve higher productivity and better resulting products. Since

the mid-1960s, this method is widely taught to engineers in Japan. In 1980, Dr. Taguchi

received a grant from Aoyama-Gakuin University to lecture on his methods in the United

States, before which there was little knowledge of his ideas in the Western world. He vis-

ited several institutions and companies like Xerox and Bell Labs, AT&T. These companies,

along with Ford and organizations like the American Supplier Institute were instrumental

in promoting this philosophy in the United States. The two Monhonk Conferences in 1984

and 1985, which the Quality Assurance Center of AT&T Bell Labs organized, exposed these

ideas to a larger statistics and engineering community [2]. The Taguchi philosophy has two

cornerstones, which are

• the reduction in variation of a product or process represents a lower loss to society;

• proper strategies can be developed to reduce variation in process or products to reduce

variation [6].

The main objective of this method is to design systems that are robust under external,

uncontrolled disturbances. Taguchi proposed an 8 step process to optimize a process or a
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product to get better results [6, 7]:

1. Identify the main function, side effects, and failure mode;

2. Identify the noise factors, testing conditions, and quality characteristics;

3. Identify the objective function to be optimized;

4. Identify the control factors and their levels;

5. Select the orthogonal array matrix experiment;

6. Conduct the matrix experiment;

7. Analyze the data and predict the optimum levels and performance;

8. Perform the verification experiment and plan the future action.

In the Taguchi approach, the design of a product is viewed as a three-phase process,

namely system design, parameter design, and tolerance design. System design is the initial

phase, where new processes, plans, ideas, and designs are developed to obtain a product

with superior quality. Parameter design, which is the main focus of Taguchi’s study is

an experimental method to determine what level of control factors deliver the best result

with minimum variation for a process or a product [7, 8]. By exploring the interactions

between control parameters and noise parameters, parameter design aims at finding optimal

settings of the control parameters so that the system’s performance is robust [2]. Tolerance

design is the last part of the process, where the product or process quality is improved by

tightening the tolerances on a control parameter. Appropriate parameter designing often

makes tolerance designing easier or more cost-efficient [6].

The Taguchi method relies on partial factorial experiments, which reduce the number

of experiments required to investigate the effect of main control factors as compared to a full
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factorial design. Instead of using the full factorial designs, Dr. Taguchi developed his partial

factorial designs and provided orthogonal arrays for them. These orthogonal array designs

allow the selection of a subset of combinations of multiple factors at multiple levels to produce

a design with equally balanced levels for all of the factors [9, 10]. Orthogonality allows

separating the effects of individual control factors at each level [11]. For example, applying

the Taguchi method to a problem with 5 control factors and 3 levels per control factor

requires only 18 experiments (by using the L18 OA) instead of 243. Although the Taguchi

method reduces the number of required experiments, it only gives a partial understanding

of the effects of factor interactions.

Since the 1980s, the Taguchi method has largely been used to optimize manufacturing

processes [12, 13]. For instance, Venu Gopal et al. have used the Taguchi method to

investigate the maximum permissible material removal rate while maintaining the surface

finish and material damage as constraints for a brittle SiC work-piece. They observed that

with an increase in grit size and a decrease in depth of cut, feed rate, and grit density, the

tangential grinding force, and surface roughness decreased, which was in accordance with

their expectations from their literature review. They concluded that the feed rate, depth

of cut, and grit size were the primary contributing factors to surface finish while grinding

silicon carbide [14].

A product manufactured by fused deposition modeling (FDM) with higher dimensional

accuracy and mechanical strength was obtained by Alafaghani et al. by setting ideal levels

of building direction, infill ratio, layer height, extrusion temperature, printing speed, and

infill pattern by using the Taguchi method [15]. Anitha et al. conducted their independent

analysis on the factors influencing FDM using the Taguchi techniques and found optimal

settings for speed of deposition, road width, and layer thickness [16]. In [17], the effects of

hybridization of carbon fiber reinforced polymer composite laminates were investigated on
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high-velocity responses of laminates using a validated FEM model, the Taguchi analysis, and

artificial neural networks. Mahapatra et al. optimized the wire electrical discharge machining

process by applying this method to the process parameters [18].

The Taguchi method has also been applied to processes in the biotechnology domain.

For instance, Shahavi et al. have applied this method to study the antibacterial effects

of clove oil nano-emulsions. Xylitol production using anaerobic bacteria Candida sp. was

optimized by Rao et al [19]. Concurrently, Hou et al. have applied the Taguchi method

to investigate the factors affecting the droplet density of insecticides sprayed from UAVs on

citrus trees [10]. This methodology has also been used in economics. Wang et al. have

applied the Taguchi method to find ideal configurations for the controllable factors of a

forecasting model [20].

The Taguchi analysis also finds applications in the aerospace industry. For instance,

Kapsalis et al. have used the Taguchi analysis with computational fluid dynamics to optimize

design parameters of a blended wing body UAV, like quarter-chord sweep, aspect ratio, and

taper ratio to achieve desired performance characteristics on maximum velocity, required

runway length, and gross take-off weight [21]. Soylak et al. used the Taguchi method to

analyze the effects of aerofoil shape, wing angle of attack, and Reynolds’s number on the wing

performance at low speeds [22]. In [23], Abhiram et al. improved design parameters like rotor

radius, tip chord, blade linear twist, and rotor speeds to obtain better hover performance for

small unmanned helicopters.

For its ability to efficiently extrapolate relevant information from systems characterized

by numerous parameters, the Taguchi analysis is a potentially promising candidate to study

the effects of altering different control parameters of the guidance system on the behavior

of the UAV. It can also be a powerful tool to determine levels of different user-defined

parameters in the guidance system, presented in Chapter 2, to obtain desired (tactical or
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reckless) behaviors.

3.2 Overview of the Taguchi Methodology

This section contains a detailed exposition of the methodology associated with the Taguchi

philosophy. This section also serves as the basis for the setup of the design of experiments

used in this research.

3.2.1 Selection of factors and interactions

In the Taguchi method, the primary classification of the factors is done between noise factors

or control factors. A factor, which can be altered at will is referred to as a control factor. A

noise factor, on the other hand, is an uncontrolled factor that has an effect on the process

or the product’s performance. An ‘interaction’ is a condition wherein the effect of one factor

on the result is dependant on the level of another factor [5]. This subsection provides details

on how to select control factors.

Control factors can be selected in two ways, namely, knowledge of the system or cause-

effect diagrams. Generally, factors to be investigated are decided by brainstorming and

finding the factors that affect the system response. If the significant control factors are

unknown, then it is recommended that preliminary experiments be done with a large number

of factors, and with 2 levels each [6]. From these results, it is possible to narrow down the

factors which are not in contention. Once the significant factors are confirmed, then the

Taguchi analysis can be performed to investigate the effects and interactions in depth.

In this research, factors are selected based on the knowledge of the system, namely

the factors that directly affect the path planning subsystem described in Section 2.1.3, the
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trajectory planning subsystem described in Section 2.1.4, and the soft constraints described

in Section 2.1.7 are selected. The selected factors include three factors from the path planner

subsystem, which are µ1, µ2, and µ3, five factors from the trajectory planner subsystem,

which are µ4, µ5, R̃r, R̃u, and T , and one factor from the soft constraints, which is ν4. The

rationale behind the selection of these parameters is given in this subsection.

One of the most important user-defined parameters in the path planning subsystem is

µ2. This user-defined parameter influences the κ(·) function in (2.4), which ultimately affects

the cost-to-come function in (2.2). Altering the value of µ2 directly affects the attractiveness

of obstacles and the number of voxels investigated for potential paths. This is expected to

have a large effect on the paths generated by the path planner and is thus a significant factor

for this study.

Apart from µ2, both µ1 and µ3 also have an effect on the κ(·) function in (2.4). As

described in the Section 2.1.3, the ratio of µ1/µ3 has an effect on the paths generated. For a

small value of this ratio, paths closer to obstacles are generated. To investigate this effect,

µ1 and µ3 are included in this study. The user-defined factors µ4 and µ5 are employed in

(2.9) of the trajectory planner subsystem. The UAV’s need to reach the next waypoint is

influenced by µ4. The other user-defined factor, µ5, captures the need of the UAV to coast

the obstacles’ set more closely. These factors are included in the study for the following

reasons. Firstly, both these factors directly affect the trajectories planned for the UAV.

Secondly, these parameters allow us to study the behavior of the UAV when the potentially

competing needs of getting to the next waypoint and getting closer to the obstacles, are both

set high or low.

The positive-definite matrices characterizing the optimal control problem solved by the

fast model predictive control algorithm are given by R̃r and R̃u. Specifically, the penalty

imposed on the trajectory tracking error is altered by changing the values of the coefficients of
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R̃r, a diagonal matrix in R12×12. Of these 12 coefficients, in this study, we modify only those

coefficients that correspond to the lateral position (x), longitudinal position (y), vertical

position (z), and the yaw angle (ψ). The user-defined coefficient R̃u is a diagonal matrix in

R4×4, which induces a penalty on the control input of the UAV. In this thesis, we alter the

coefficients of R̃u corresponding to the control inputs on the roll, pitch, and yaw moments.

Altering R̃r and R̃u will influence the trajectory and the behavior of the UAV between two

waypoints. Another factor from the trajectory planner which is included in this study is the

time horizon T .

As mentioned in Section 2.1.7, soft constraints are included to avoid the UAV from

reaching hard constraints, which would result in a sudden change in the control effort of

the UAV. The user-defined parameter ν4 is used to include these constraints into the cost

function of the optimization problem (2.25), whose solutions provide the reference state xk(·)

and the control inputs uk(·).

Parameter Brief Description Range

µ1 Affects path’s distance from the obstacles. Used to calculate κ(·) in (2.4) µ1 > 0

µ2 Alters the attractive effect of obstacles. Used in equations (2.4),(2.3) µ2 ∈ (0, 1]

µ3 Affects path’s distance from the obstacles. Used to calculate κ(·) in (2.4) µ3 > 0

µ4 Influences the UAV’s need to get to the next waypoint. Used in equation (2.8) µ4 ∈ (0, 1]

µ5 Affects the distance beyond which the attractive effect of obstacles is diminished µ5 >0

R̃r Induces penalty on trajectory tracking error R̃r>0

R̃u Induces penalty on control input in optimal control R̃u >0

T Time horizon of model predictive control T>0

ν4 Soft constraint coefficient introduced while calculating state and control input ν4 >0

Table 3.1: Factors For Taguchi Analysis

The Taguchi method provides an opportunity to investigate the interactions among

selected parameters. In this research, we investigate the presence of interactions between

factors from the trajectory planning subsystem with a factor from the path planning sub-
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system. Since the user-defined path planner factor µ2 directly affects the attractive effect

of the obstacles’ set, it has been selected as a factor from the path planning subsystem. On

the other hand, from the trajectory planning subsystem, the factors µ4 and µ5 have been

selected to study their respective interactions with µ2. The interaction µ2 × µ4 is an inter-

esting one to study as µ2 has the capacity to define how ‘tactical’ or ‘reckless’ the paths

generated by the path planner are, and altering µ4 affects how ‘tactically’ or ‘recklessly’ the

UAV will behave in between those waypoints. An interesting condition would be where, due

to µ2, ‘tactical’ paths are generated but µ4 induces a reckless behavior in-between waypoints.

Similarly, µ2×µ5 is an interesting interaction because there could arise scenarios, where the

paths may be reckless and the trajectory tactical.

To conclude this subsection, nine factors have been selected for their various traits,

out of which, three are from the path planner subsystem, five from the trajectory planning

subsystem, and a factor from the soft constraints. Furthermore, the study of two interactions

are proposed, which are, µ2 × µ4 and µ2 × µ5. The factors selected are presented in Table

3.1 with brief descriptions and their ranges. These, along with the two interactions (µ2 × µ4

and µ2 × µ5) will be studied using the Taguchi method.

3.2.2 Selection of the number of levels of factors.

Once the factors and interactions for the study have been picked, it is necessary to determine

the number of level settings for each factor necessary to analyze the effect on the response.

There are two kinds of factors involved in the testing, namely continuous and discrete.

Continuous factors are the ones that can vary to their extremes and assume any value in

between. Discrete factors are the ones that can only assume particular values.

All the factors selected for this research are continuous. The selected factors have been
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studied at three levels to analyze the possibility of quadratic or higher-order effects of the

factors. Table 3.2 provides the level settings of all the selected factors. For factors that are

defined over a compact interval, the levels have been selected in a manner that Level 1 is

just above the minimum value, Level 2 is near the middle of the interval and Level 3 is just

below the maximum permissible value.

Parameter Level 1 Level 2 Level 3 Range
µ1 0.01 1.00 5.00 µ1 > 0
µ2 0.10 0.50 0.95 µ2 ∈ (0, 1]
µ3 0.01 1.00 5.00 µ3 > 0
µ4 0.20 0.05 0.95 µ4 ∈ (0, 1]
µ5 0.10 0.30 0.60 µ5 > 0

R̃r 350.00 700.00 1000.00 R̃r>0
R̃u 100.00 300.00 500.00 R̃u>0
T 10.00 50.00 100.00 T>0
ν4 10.00 100.00 1000.00 ν4>0

Table 3.2: Level settings for factors

3.2.3 Selection of orthogonal array

Selecting the appropriate OA is an extremely important part of the Taguchi method. Or-

thogonal arrays are named with ‘L’ followed by the number of trials in the respective OA.

Thus, for example, an OA with 8 experiments is tagged as L8. The arrays provided by

Taguchi qualify as ‘orthogonal’ as they satisfy the following conditions: firstly, they are in-

ternally balanced, which means that every column (representing a parameter) has an equal

number of experiments at each level. For example, each column of the L8 array depicted in

Table 3.3 has 4 experiments at Level 1 and Level 2. Secondly, any two columns, together, are

balanced, which means any two columns will have the same level-combinations as any other

two columns. For instance, in an L8 array, if we analyze the levels prescribed for different

experiments for any two columns, then we will obtain similar pairs, which are Level 1 - Level
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1, Level 1 - Level 2, Level 2 - Level 1, Level 2 - Level 2. By satisfying these two conditions,

an array is said to be orthogonal [5].

The above-mentioned OAs are also referred to as ‘inner arrays’, as it only accommodates

control parameters. It is possible to repeat each experiment several times, assuming the

error variation is an aggregate of all noise factors equally distributed in all conditions [6].

To incorporate the noise factors into the design strategy, the noise factors are included in an

‘outer array’. This design approach separates the control factors from the noise factors. By

using an outer array, each experiment is performed at various levels of the external noise. It

is then possible to find control factors and their specific levels, which are not highly sensitive

to the noise factors.

Table 3.3 provides an example of the application of an outer array to accommodate 3

noise factors (X,Y, Z) to an L8 experiment with 7 control factors. This would provide a

total of 28 separate conditions. Including an outer array often greatly increases the number

of experiments to be conducted, and thus usually only one, or two noise factors are included

at their extreme (minimum and maximum) conditions.

The selection of an appropriate OA depends on the number of factors and interactions,

and the number of levels associated with each factor and interaction. Given the Factors

A and B, the following formulas provide details on how the degrees of freedom (DoF) of

individual factors and interactions are calculated

dofA = KA − 1, (3.1)

dofB = KB − 1, (3.2)

dofA×B = dofA × dofB, (3.3)
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L4 outer array
X 1 2 2 1
Y 1 2 1 2
Z 1 1 2 2

L8 inner array
A B C D E F G Result
Column Number

Trial 1 2 3 4 5 6 7 y1 y2 y3 y4
1 1 1 1 1 1 1 1 * * * *
2 1 1 1 2 2 2 2 * * * *
3 1 2 2 1 1 2 2 * * * *
4 1 2 2 2 2 1 1 * * * *
5 2 1 2 1 2 1 2 * * * *
6 2 1 2 2 1 2 1 * * * *
7 2 2 1 1 2 2 1 * * * *
8 2 2 1 2 1 1 2 * * * *

Table 3.3: L8 Inner Array with L4 Outer Array

where KA and KB denote the levels of A and B respectively. To select an OA, it is necessary

to know the total DoF required for the proposed experiment, which is denoted by dofOA.

The total DoF required for the experiments, dofOA, is defined as the sum of the individual

DoF of each factor and interaction. Once the required DoF is known, an appropriate OA

can be selected from the OAs provided by Taguchi’s method, which can accommodate for

required number of levels and satisfies the following condition

dofOA ≥ dofexperiment, (3.4)

where

dofOA = N − 1 (3.5)

and N denotes the number of experiments in the orthogonal array.

It is possible to modify OAs to accommodate factors that have a different number of

levels than the ones prescribed in the OA. This can be done by merging columns, that is,
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accommodating a four-level factor in a two-level OA, by dummy treatment, that is, accom-

modating a three-level factor in a two-level array, by idle column method, that is, accom-

modating multiple three-level factors in a two-level OA, or by combination method, that is,

accommodating two-level factors in a three-level OA [6].

Following the guidelines stated above, the total DoF for the experiment is calculated

for this research. So, from (3.1), each control factor in this research will have 2 DoF, since

each control factor has 3 levels. As there are nine factors involved in this study, the total

DoF of factors is equal to 18 (two DoF per factor). From (3.3), the DoF of interaction for

an interaction of two factors will be 4, since each interacting factor has a DoF of 2, that is,

dofµ2×µ4 = dofµ2 × dofµ4 = 2× 2 = 4. (3.6)

Next, the total DoF required for this study is the sum of DoF of all factors and interactions,

that is,

dof = doffactors + dofinteractions = 18 + 8 = 26. (3.7)

This L27 OA, which has 27 experiments and 26 DoF, satisfies the condition stated in

(3.4). This OA also has a provision to accommodate 3 levels for each factor. Since the

available DoF matches the required DoF and has the required number of levels, the L27 OA

has been selected as the basis for this research. The L27 OA has 13 columns, which means

it can support up to 13 individual 3-level factors and prescribes a total of 27 experiments.

Table 3.4 provides a structure of this OA.
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Column 1 2 3 4 5 6 7 8 9 10 11 12 13
Factors A B C D E F G H I J K L M
Trial
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 2 2 2 2 2 2 2
3 1 1 1 1 3 3 3 3 3 3 3 3 3
4 1 2 2 2 1 1 1 2 2 2 3 3 3
5 1 2 2 2 2 2 2 3 3 3 1 1 1
6 1 2 2 2 3 3 3 1 1 1 2 2 2
7 1 3 3 3 1 1 1 3 3 3 2 2 2
8 1 3 3 3 2 2 2 1 1 1 3 3 3
9 1 3 3 3 3 3 3 2 2 2 1 1 1
10 2 1 2 3 1 2 3 1 2 3 1 2 3
11 2 1 2 3 2 3 1 2 3 1 2 3 1
12 2 1 2 3 3 1 2 3 1 2 3 1 2
13 2 2 3 1 1 2 3 2 3 1 3 1 2
14 2 2 3 1 2 3 1 3 1 2 1 2 3
15 2 2 3 1 3 1 2 1 2 3 2 3 1
16 2 3 1 2 1 2 3 3 1 2 2 3 1
17 2 3 1 2 2 3 1 1 2 3 3 1 2
18 2 3 1 2 3 1 2 2 3 1 1 2 3
19 3 1 3 2 1 3 2 1 3 2 1 3 2
20 3 1 3 2 2 1 3 2 1 3 2 1 3
21 3 1 3 2 3 2 1 3 2 1 3 2 1
22 3 2 1 3 1 3 2 2 1 3 3 2 1
23 3 2 1 3 2 1 3 3 2 1 1 3 2
24 3 2 1 3 3 2 1 1 3 2 2 1 3
25 3 3 2 1 1 3 2 3 2 1 2 1 3
26 3 3 2 1 2 1 3 1 3 2 3 2 1
27 3 3 2 1 3 2 1 2 1 3 1 3 2

Table 3.4: L 27 OA (313)
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3.2.4 Assignment of factors and interactions to columns of an OA

Once an OA is selected, the factors need to be assigned to the OA in a particular order. The

assignment of factors to columns is specific to the experiment. To aid this process, Taguchi

provided two tools to assign columns and interactions in an OA. These tools are linear graphs

and triangular tables. This subsection briefly presents these tools.

Linear graphs

A linear graph provides a graphical method to represent the interactions available in an OA;

for an example of a linear graph, see Figure 3.1. In linear graphs, the dots at the end of a line

represent the interacting columns. The numbers specified over the line segment represent the

columns in which the interaction effect is seen. For 2 level factors, there is a single column

that represents the interaction, since the DoF of the interaction is one (each column has 1

DoF in a two-level OA). Similarly, for 3 level factors, 2 columns represent the interaction

since it has 4 DoF (each column has 2 DoF in a three-level OA). Some methods allow to

alter these linear graphs and either reduce or add an interaction to the OA. However, the

sum of DoF of all interactions and factors can not exceed the DoF of the OA. According to

the linear graphs, the factors, whose interactions are to be studied, are assigned.

Figure 3.1 provides an example of a linear graph for an L8 OA; the L8 OA has 2 levels

per factor and 7 columns. According to this figure, the interaction between Columns 1 and 2

can be seen in Column 3. The interaction between Columns 1 and 4 can be seen in Column

5. The interaction between Columns 2 and 4 can be seen in Column 6. Lastly, Column 7

does not support interactions.

Consider an experimental setup that has 4 control factors A,B,C, and D, and the

interactions A×B and A× C are to be investigated. One could place Factor A in Column
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1, Factor B in Column 2, and Factor C in Column 4. Factor D will be assigned to Column

7 since it does not interact with any other factors. The interaction A × B can be observed

in Column 3, and the interaction A× C can be observed in Column 5.

6

1

2 4

3 5

7

Figure 3.1: Example of a linear graph for L8 OA.

Col No.
Col No. 2 3 4 5 6 7

1 3 2 5 4 7 6
2 - 1 6 7 4 5
3 - - 7 6 5 4
4 - - - 1 2 3
5 - - - - 3 2
6 - - - - - 1

Table 3.5: Triangular table for an L8 OA

Triangular tables

Triangular tables provide an alternative method to assign factors to the columns of an OA

and provide a list of all the possible interacting columns in the OA. To check for columns

representing the interaction between a selected pair of factors, the row in the triangular

table representing the first interacting factor is selected. The entry in this row, which lies

in the column represented by the second interacting factor, will provide the columns where

interactions are observed.
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Referring to the L8 OA, the associated triangular table is portrayed in Table 3.5. To

check for interaction between Column 1 and Column 4, we have to access the third column

of the first row, which indicates Column 5 contains the interaction information. Since these

interactions have only one DoF, there is a single column represented there. For OAs with

3 level-factors, there are two columns representing an interaction, since it has 4 DoF (each

column has 2 DoF in a three-level-factor OA).

In this research, the L27 OA and its associated linear graphs and triangular tables are

used. From the linear graph in Figure 3.2, it can be seen that the interaction of Columns 1

and 2 is captured by Columns 3 and 4, the interaction of Columns 1 and 5 are captured by

Columns 6 and 7, and the interaction of Columns 2 and 3 are captured by Columns 8 and

11. Columns 9, 10, 12, and 13 are reserved for individual factors and do not represent any

interaction. As we need to study two interactions, and not three, the linear graph needs to

be modified to accommodate only two interactions. This can be done by ‘borrowing’ four

DoF (2 columns) from one of the interactions. The modified linear graph for this research

is shown in Figure 3.3. Columns 8 and 11, which represent the interactions of Columns 2

and 5 in Figure 3.2, are now represented as individual factors, which do not represent any

interactions. So, in the modified linear graph, Columns 8, 9, 10, 11, 12, and 13 are used for

individual factors, while Columns 1, 2, and 5 house factors for which interaction effects are

going to be studied. The interaction effect of Columns 1 and 2 is seen in Columns 3 and 4.

The interaction effect of Columns 1 and 5 is seen in Columns 6 and 7.

Using this information from the linear graph in Figure 3.3, we start assigning factors to

respective columns. Since the interaction of factor µ2, with µ4 and µ5, is of interest, µ2 is

assigned to Column 1 (as it interacts with Columns 2 and Column 5). The factor µ4 is then

assigned to Column 2 and the effects of its interaction with µ2, are seen in Columns 3 and

4. Similarly, the user-defined factor µ5 is placed in Column 5. By doing so, its interaction
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8,11

1

2

3,4 6,7

9

5

10 13 12

Figure 3.2: Linear Graph for L27 OA.

1

2

3,4 6,7

9

5

10 13 12

8 11

Figure 3.3: Modified linear graph for L27 OA employed in this research.

effect with µ2 can be observed in Columns 6 and 7. Since we are only studying the main

factor effects of the rest of the factors, they are placed in Columns 8, 9, 10, 11, 12, and 13.

The factor µ1 is placed in Column 8, µ3 in Column 9, R̃r in 10, R̃u in 11, T in 12, and finally

ν4 in 13. In this manner, the total table is occupied and the DoF adds up to 26, which is

equal to the DoF of the OA. The final column assignment, with level settings, is represented

in Table 3.6.
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3.2.5 Conducting tests

While conducting tests, various trials should be randomized to protect the experiment from

any uncontrolled factors. In this research, a bulk of the tests are performed through simu-

lations, and thus randomization is not necessary. The tools for the analysis of results are

provided in the subsequent section. Following the analysis, the parameter combination which

results in the optimum result is deduced. This parameter combination is used to perform

experiments or ‘confirmation tests’; this is the final step of the Taguchi methodology. Usu-

ally, it is recommended to perform several runs of the confirmation experiments. The results

of confirmation tests are then compared to the anticipated averages.

3.3 Analysis of Results

The methods of analyzing the data gathered from the experiments are explained in this

section. These methods allow us to deduce the optimal level settings of the factors, the

influence of each factor and interaction toward the response, and estimates of the response

at the optimal level setting. Since the Taguchi philosophy revolves around the reduction

of variation in a product or a process, it is important to analyze the sources of variance.

Furthermore, since the OAs provided by Taguchi’s method are partial factorial experiments,

it is necessary to analyze the confidence associated with the results [5]. These analyses can

be achieved through a statistical tool called the analysis of variance (ANOVA). ANOVA

can be used to analyze any differences in the average performance of groups of items to be

tested [6]. This section provides details on the response parameter used in this thesis, the

methodology followed in ANOVA, and we conclude this section by describing two methods

prescribed by Taguchi to interpret the results.
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3.3.1 Response parameter

The response parameter is a measure of the performance of the process. In the Taguchi

analysis, only one response parameter is used. Other methods, such as the grey-Taguchi

method, consider multiple response variables and condense them to a single response param-

eter through a weighting function [24]. The response parameters are usually of three types,

which are lower the better, higher the better, and target values.

Taguchi prescribes the use of signal-to-noise ratio (SNR) to analyze the sources of vari-

ance in the process or product. The change in response due to the alteration of a control

factor is referred to as a ‘signal’. The SNR measures the sensitivity of the quality characteris-

tic being investigated in a controlled manner to those influencing factors, such as noise, that

are not under control [5]. A high SNR indicates that a control parameter is more robust

against noise [10]. The SNR of different experiments can be used to determine optimum

settings for the desired result since the experiment with the highest SNR gives the optimum

level setting for the control factors among all the combinations prescribed in the selected

OA. A higher SNR also implies that the experiment has the minimum variance, and the

higher the SNR, the lower the deviation of the respective experiment [5].

There are three primary approaches to calculate the mean square deviation (MSD),

which is required to calculate the SNR, according to the desired nature of the result. These

approaches are

• Lower the better (LB) response: This condition is used when the response with low

values provides an ideal scenario for the functioning of the system. In this case, the

MSD is computed as

MSD =
(y21 + y22 + y23 + ...+ y2n)

n
, (3.8)
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where yi denotes the result of the ith repetition of the kth experiment and n denotes

the total number of repetitions.

• Higher the better (HB) response: This condition is used when the response with high

values provides an ideal scenario for the functioning of the system. In this case, the

MSD is computed as

MSD =
(1/y21 + 1/y22 + 1/y23 + ...+ 1/y2n)

n
. (3.9)

• Target value or nominal is best condition (NB): This condition is used when the re-

sponse is required to tend to a predetermined value. In this case, the MSD is computed

as

MSD =
(y1 − y0)

2 + (y2 − y0)
2 + (y3 − y0)

2 + ..+ (yn − y0)
2

n
. (3.10)

Using the MSD calculated according to the above conditions, the SNR is then calculated as

SNR = −10× log10(MSD). (3.11)

As this research aims at examining how ‘tactical’ the behavior of the UAV is, which is

an intangible quality, we have defined a dedicated response parameter, R, for this research.

The main aim of the guidance system is to protect the UAV in hostile territories. One

way in which this is achieved is by flying close to obstacles, thus minimizing the exposure to

threats from any direction. For this reason, the average distance from the UAV to the closest

obstacle, at every time step, over the entire flight is considered as a part of the response

parameter, R. The average distance from the UAV to the closest obstacle is henceforth

denoted by davg. Since it is desirable to have lower values of the average distance to the wall,

the ‘lower the better’ condition is used. To calculate the average distance to an obstacle, it
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is necessary to have the topology of the environment in which the UAV flying. Since the

UAVs employed in this research are equipped with a simultaneous navigation and mapping

system, which creates in real-time a map of the environment, it is possible to obtain this

information. From the diagnostic logs recorded for each flight or simulation by the UAV, the

coordinates of the UAV at every time step are obtained. Then, at every time step through

the duration of the flight, the distance to the closest occupied voxel is found by comparing

the Euclidean distances to the occupied voxels from the UAV’s position. The average of all

the minimum obstacle distances at each time step is then used as a part of the response

parameter.

In this research, we are interested in characterizing the ability of the given guidance

system to produce tactical behaviors, irrespective of the map employed to perform numerical

simulations and flight tests. For this reason, in this research, we account for the density of

obstacles and the obstacle distribution in the given simulation or flight test scenarios as noise

factors. The obstacle density of a map is the ratio of the total volume occupied by obstacles

in a map and the total volume of the map.

To capture the obstacle distribution and the obstacle density of the map, we calculate

the ‘moment of inertia’ of the map. This notion of moment of inertia, which is borrowed

from computer graphics [25], is analogous to calculating the moment of inertia of an object.

It would convey both how spread are the obstacles and the obstacle density of the map. The

average obstacle distance is then ‘normalized’ for the map by dividing by the moment of

inertia of the map. By doing this, we are essentially making the response parameter more

immune to the obstacle in the map. This can be looked at as a scaling factor for the response

parameter, which depends on the nature of the map being used.

To calculate the moment of inertia of a map, the following methodology is applied.

Firstly, the ‘mass’ of the map is calculated, which is the zero-order moment; the order of
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the moment is the sum of powers of x, y, and z distances. The powers are represented by

the superscripts i, j and k for x, y, and z distances, respectively. The zero-order moment is

the sum of the ‘mass’ of all the occupied voxels over the entire map. An occupied voxel is

assumed to have a mass of 1, and an unoccupied voxel is assumed to have a mass of 0. The

zero-order moment is defined as

m000 ≜
∑
x

∑
y

∑
z

x0y0z0I, (3.12)

where I denotes the indicator function, that is,

I = 1, (3.13)

if the voxel is occupied, and

I = 0, (3.14)

if the voxel is unoccupied. In a similar manner, the first order moments are calculated for

each obstacle individually, along the three axes by the using following expressions

m100 ≜
∑
x,y,z

xy0z0I =
∑
x,y,z

xI, (3.15)

m010 ≜
∑
x,y,z

x0yz0I =
∑
x,y,z

yI, (3.16)

m001 ≜
∑
x,y,z

x0y0zI =
∑
x,y,z

zI, (3.17)

where m100,m010, and m001 denote the first order moments along the three axes, and x, y,

and z denote the distances to the voxel from the origin in an orthonormal reference frame.

Using the zero order moment and the first order moments, the centroid of a map is calculated
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for individual obstacles as follows

x̄ ≜ m100/m000, (3.18)

ȳ ≜ m010/m000, (3.19)

z̄ ≜ m001/m000. (3.20)

Using the centroid, the central moments (moments of inertia) of each individual obstacle is

calculated about their centroid as

cpi,j,k ≜
∑
x

∑
y

∑
z

(x− x̄)i(y − ȳ)j(z − z̄)kI, (3.21)

where i, j, and k can take the values of 0, 1, and 2, and the sum of i, j, and k is always

equal to 2, and the index p denotes the pth obstacle. The distances of the obstacle from the

origin are represented by x, y, and z in the respective directions. The second order moments

constitute the inertia matrix, which is given by

Cp ≜


cp200 cp110 cp101

cp110 cp020 cp011

cp101 cp011 cp002

 . (3.22)

This inertia matrix is calculated for all obstacles individually. The Frobenius norm of the

inertia matrices is used to calculate the ‘magnitude’ of the inertia of each obstacle as

Mp ≜ ∥Cp∥F , (3.23)

where Cp denotes the inertia matrix of the pth obstacle and Mp denotes its Frobenius norm.
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Similarly, the Frobenius norm of the inertia matrix is calculated for the entire map as

a single entity. For this calculation, the indicator function I allows to define the occupancy

of the map by eliminating the effect of the voxels that are not occupied. This is analogous

to calculating the moment of inertia of an object with internal voids. The ratio of the sum

of the Frobenius norms of inertia matrices of all obstacles and the Frobenius norm of the

inertia matrix of the entire map is given by

M ≜
∑n

p=1M
p

M t
, (3.24)

where n denotes the total number of obstacles, and M t denotes the Frobenius norm of the

inertia matrix of the entire map as a single object. This quantity provides a measure of how

scattered the map is and how densely populated it is with obstacles.

This map dependant quantity, M , is used to normalize the average distance from the

UAV to the nearest obstacle (davg). Thus, the response parameter for this research, R, which

represents the measure of how ‘tactical’ the behavior of the UAV is defined as

R ≜ davg
M

, (3.25)

where davg denotes the average distance from UAV to closest obstacle over the entire flight

andM is the moment of inertia of the map, obtained from (3.24). Following the experiments

and simulations, the value of R will be computed for every experiment in Section 4.4.1. This

will then be used to calculate the SNR and perform ANOVA to investigate the effects of

varying different control parameters.
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3.3.2 Analysis of variance

Several types of ANOVA can be used to investigate the effect of factors and interactions

depending on the number of factors and the number of levels of the factors. ANOVA per-

formed on the raw data identifies control factors that affect the means, whereas ANOVA

performed on the SNR identifies control factors that affect the variance [6]. Based on these

two ANOVAs, the control factors can be classified into 4 groups, which are as follows

• Class 1: Factors affecting both average and variance;

• Class 2: Factors affecting only variation;

• Class 3: Factors affecting only average;

• Class 4: Factors with negligible effect.

For experiments with two or more factors with two or more levels, the ‘two-way ANOVA’

is used. This subsection provides details on the steps used in this research to perform the

two-way-ANOVA.

Sum of squares

First, we introduce the ‘sum of squares’, which provides a measure of the deviation of the

responses from the average of the response. This quantity is defined as

ST ≜
n∑
i=1

(yi − ȳ)2, (3.26)

where yi denotes the response of the ith experiment and ȳ denotes the mean of all responses.

There are alternative ways to calculate the sum of squares. For instance, the correction
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factor (CF) can be used to calculate the sum of squares, and it is defined as

CF ≜ T 2/n, (3.27)

where T denotes the sum of all results and n denotes the number of experiments. Using the

correction factor, the sum of squares is calculated as

ST ≜
n∑
1

y2i − CF. (3.28)

It is also necessary to calculate the sum of squares of individual factors and interactions.

The sum of squares of an individual factor, in this example, Factor A, is defined as

SA ≜
k∑
i=1

A2
i /NAi

− CF, (3.29)

where k denotes the number of levels of Factor A, NAi
denotes the number of experiments

where Factor A has Level i, and Ai denotes the sum of all responses where the Factor A is

at Level i. In the case where Factors A and B interact, their sum of squares is given by

SA×B ≜
c∑
i=1

[(A×B)2i /NA×B]− CF − SA − SB, (3.30)

where (A×B)i represents the sum of responses of the ith combination of the interactions in

the OA, N(A×B)i denotes number of experiments where ith combination exists, and c denotes

the total number of combinations of the interacting factors at different levels. For a two-

factor interaction with two levels each, the combinations would be A1×B1, A1×B2, A2×B1,

and A2 ×B2, and thus c = 4. Similarly, for a two-factor interaction with 3 levels per factor,

c = 9. In this manner, the sum of squares of all factors and interactions are calculated. For

an intuitive example, consider Table 3.4, which is a three-level per factor OA. Assuming the
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first column is Factor A and second column is Factor B, the response (A × B)1, which is

basically A1 × B1, is calculated as the sum of the first three experiments as the entries in

the first and second column denote the Level 1 for both the factors. Similarly, if one were to

calculate the sum of A3 × B1, they would add the responses of the experiments 19, 20, and

21 since for these experiments, Factor A has Level 3 and Factor B has Level 1.

Degrees of freedom

For further calculations, it is necessary to calculate the DoF of the total experiment, indi-

vidual factor, and each interaction. The expression used to calculate the total DoF of the

experiment is portrayed in (3.5). The expressions used to calculate the DoF of a factor and

an interaction are represented in (3.1) and (3.3), respectively.

Mean squares

Mean square is a measure of the distribution of responses about the mean of the response.

Once the sum of squares and DoF of each factor and interaction are calculated, the mean

squares are calculated for each factor and interaction. The mean square of a factor or an

interaction is defined as

VA ≜ SA/fA, (3.31)

where SA denotes the sum of squares of Factor A and fA denotes the DoF of Factor A.

Percentage contribution

Percentage contribution represents the ability of the factor or interaction to reduce the

total variation. The portion of the total variation observed in the experiment from each
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factor or interaction is reflected in the percentage contribution. In general, if the total of

the percentage contributions of the significant factors is greater than 75%, then this is an

indicator of the fact that appropriate factors have been selected for experimentation [6]. The

percentage contribution for a Factor A is defined as

PA ≜ SA
ST

× 100, (3.32)

where SA denotes the sum of squares of Factor A and ST denotes the total sum of squares.

F-ratio

As the number of repetitions of the experiment is increased, it is easier to predict accurate

responses, but for a small number of repetitions, and considering the fact that Taguchi’s

method uses partial factorial experiments, it is important to verify the results. The F-ratios

or variance ratios can be used for this purpose, and are defined as

FA ≜ VA/Ve, (3.33)

where Ve denotes the mean square of the error term, VA denotes the mean square of Factor

A. The values of the F-ratios are then compared to the standard values provided in the

F-tables at various significance levels. If the F-ratio is lower than the value at the selected

level of confidence in the F-table, then it does not contribute to the sum of squares at that

confidence level.

Generally, if the DoF of the error term is zero, then Taguchi’s method prescribes ‘pool-

ing’ terms together which have low contributions. It is recommended to pool factors to

account for nearly half the total DoF of the experiment. So, for an experiment with 10 DoF,
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factors with the lowest percent contributions will be pooled together to form an error term

with approximately 5 DoF.

Estimation of results

With the help of the above analyses, the parameter combination at which the process or

product has the most optimum response is identified. If this combination of level settings

is one prescribed by an experiment in the OA, then the expected mean of the optimum

conditions is directly calculated as a mean of repetitions of that experiment. If the required

condition does not match any experiment prescribed in the OA, then the mean of that can be

estimated. To calculate the estimated mean, the averages of the responses of the contributing

factors and interactions, at the selected levels, are summed, and a term kT is subtracted

from this, where k denotes a term which is equal to the number of factors or interactions

involved in the estimation minus 1, and T denotes the average response of all experiments.

For example, consider a condition, where factor levels are A1, B2, C1, D1, and Factors A and

B are interacting, the estimated mean is calculated as

E(m)A1×B2C1D1 = A1 ×B2 + C1 +D1 − kT , (3.34)

where A1 ×B2 represents the average of responses in case A1 and B2 exist together, C1 and

D1 denote the average of responses where Factors C and D are at Level 1, respectively. In

this case, k = 2, since we are considering 3 individual factors or interactions (A×B,C,D).

Column effect method

There are several other methods, which are complementary to ANOVA, to interpret the data

of the experiments due to the structure of the orthogonal array. One of such methods is the
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‘column effects method’. For each column (factor), the difference between the averages of the

level with the highest average response and the lowest average response is calculated. This

difference is directly proportional to the effect that factor has on the response. The column

with the largest difference in absolute value has a stronger effect on the response parameter.

A positive or negative sign conveys a positive or negative correlation of the factor with the

response of the process. This method is used in conjunction with ANOVA to develop a

deeper understanding of the effects of factors and interactions. In this research, the column

effect is calculated using both the average response and the SNR.

Plotting analysis

Plotting analysis is a graphical method to investigate interactions among factors. The means

of the response are plotted at each level setting present in the analysis. The x-axis contains

the levels of the first interacting factor and the y-axis contains the average of the response or

the SNR. The individual levels of the second interacting factor are represented by individual

line segments. If these lines intersect, then the factors interact with each other. The magni-

tude of interaction is proportional to the angle between these two lines. If lines are almost

parallel, then it can be assumed that there exists no interaction at any level between the

two factors. Figure 3.4 has been provided as an example to aid this exposition. The average

of responses for the four different conditions (A1B1, A2B1, A1B2, A2B2) are plotted, and the

responses where Factor B is at the same level are connected by the line segment. It can

be noted that in the first case, the lines representing the response do not intersect. In this

condition, the factors are assumed to show no interaction. In the second case, represented

on the right-hand side, the lines representing the interacting factors intersect. Thus it can

be concluded that the Factors A and B are interacting in case two and not in case one.
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Figure 3.4: An example of plotting analysis

3.4 Conclusion

In this chapter, a detailed explanation of the Taguchi method was provided. Specifically,

Section 3.1 provided various applications of Taguchi’s method in the industry and presented

the work undertaken by other researchers related to this domain. Subsequently, a detailed log

of the process undertaken in Taguchi’s method was provided. Following the guidelines stated

in the methodology, the L27 OA was selected for this research and in the subsequent chapters,

serves as the basis for experimentation. Following the experimentation, the methodology

provided in the Section 3.3.2 will be used to analyze and interpret the results in the following

chapters. As the foundation for the experimentation has been laid, the next chapter describes

the process of experimentation, the different maps used for experimentation, and the results

associated with these tests.

46



Chapter 4

Experimentation and Results of the

Taguchi Analysis

In the previous chapters, the experiments for this research were designed. Additionally,

the L27 OA, which has 13 columns and 3 levels for each column, has been employed. As

per Taguchi’s methodology, the next step in this process is conducting experiments and

gathering data. This chapter provides the details of the procedures undertaken during the

experimentation process. Furthermore, this chapter presents the maps used for this research,

the architecture of the navigation system as portrayed in [1], and the UAV used for this

research, along with an explanation of the setup used for flight tests. Subsequently, we

will perform the Taguchi analysis and interpret the data gathered via simulations. Using the

results of this analysis, we will deduce the parameter level settings for which the UAV exhibits

a highly tactical behavior. Additionally, the results of ANOVA, performed as presented in

Section 3.3.2, will be employed to obtain a quantitative estimate of the effect of each control

factor on the behavior of the UAV. Lastly, to verify the behavior exhibited by the UAV

in the simulations, the results of flight tests will be investigated for the presence of similar

trends encountered in the simulations.
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Figure 4.1: UAV used in this research.

4.1 Overview of the UAV

A UAV similar to the one used in [1] has been employed in this research, and is shown

in Figure 4.1 This multi-rotor UAV has been designed in the Advanced Control Systems

Lab at Virginia Tech. The length, width, and height of the UAV are 0.4m, 0.4m, and 0.3m

respectively. The frame used in this UAV is an iFlight XL7 V4 True X, which is a full 3k

carbon fiber frame. The supporting components of the UAV are 3D printed in polyethylene

terephthalate glycol. Using a high-fidelity CAD model, the mass of the UAV is found to be

2.0 kg and the principal moments of inertia are Ix = 0.0205kg ·m2, Iy = 0.0143kg ·m2, and

Iz = 0.0281kg · m2. The Intel NUC 7i7DNBE single-board computer is used by the UAV

to implement the GNC system. This single-board computer has a 4.20GHz Intel i7-8650

processor and 4 GB RAM. This tactical GNC system is coded in C++ on the Ubuntu 18.04

operating system. The Intel RealSense D435i camera serves as the depth camera and has

an 86.00◦ horizontal field of view and a 57.00◦ vertical field of view. For tracking, an Intel
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RealSense T265 camera is used, which has a 69.40◦ horizontal field of view and a 42.50◦

vertical field of view. Both these cameras are equipped with BMI055 inertia measurement

units. The Pixhawk PX4 autopilot serves as an inertia measurement unit, controls the

propellers, and has an ST Micro L3GD20H gyroscope on board. The autopilot communicates

with the single-board computer using a USB FTDI serial line. The motors used are AirA1,

200kV motors, on which 7 × 4.5 dual-blade propellers are mounted.

As inferred from [1], the tactical guidance system described in Chapter 2 is supported by

a vision-based navigation system. This navigation system is capable of detecting obstacles,

creating a binary occupancy map, and localizing the UAV relative to the environment. A set

of stereo depth and tracking cameras detect obstacles and track the position of the UAV with

respect to an initial position provided by the user. The tracking camera can also estimate the

UAV’s attitude, angular displacement, and transnational velocity with respect to the inertial

reference frame I. Finally, the environment is captured by a voxel map. If the probability

of a voxel to be occupied is higher than some user-defined threshold, then it is marked as

occupied. Hence, a binary occupancy map is employed by the guidance system to outline

reference trajectories.

The architecture of the software underlying this tactical GNC system, as described in

[1], is shown in Figure 4.2. The ‘flight stack’ is central to the implementation of this GNC

system. The navigation system provides estimates of the UAV’s position and yaw angle

to the flight stack at approximately 20 to 60 Hz. Concurrently, the Pixhawk autopilot also

provides the estimates of the UAV’s pitch angle, roll angle, translational velocity, and angular

velocity to the flight stack. The estimated accuracy of the attitude, angular velocity, and

angular acceleration are ±0.05◦,±0.004◦/s, and ±7◦/s2 respectively. Using estimates of the

obstacles’ positions and the position of the UAV provided by the navigation system, the path

planning subsystem generates a reference path from the UAV’s position to the goal point
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Figure 4.2: Software architecture of the tactical GNC system as shown in [1].

of the mission. As stated in Section 2.1.3, the number of voxels scanned while generating

paths depend on the user-defined parameters µ1, µ2, and µ3, thus altering the rate at which

reference paths are generated (between 0.5 and 20 Hz). The semi-definite programming

algorithm (SDPA) used by the collision avoidance subsystem, with the knowledge of the

obstacles’ positions, generates a constraint set for collision avoidance, that is subsequently

used while generating reference trajectories. Reference trajectories are generated by the

trajectory planning subsystem at around 50 Hz and are sent to the Pixhawk at a rate of

(nt∆T )
−1. With the knowledge of the state of the UAV and the reference trajectory provided

by the trajectory planning subsystem, the Pixhawk autopilot uses a PID controller to actuate

the motors.
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4.2 Flight Maps and Simulations

4.2.1 Simulations

In this research, we investigate the effect of the obstacle distribution, which is considered

as the noise factor, by simulating the behavior of the UAV over three different maps with

varying obstacle densities and configurations. This approach is analogous to using an outer

array, as explained in Section 3.2.3. Therefore, a total of 81 experiments are required to

complete this study (as the L27 OA prescribes 27 experiments per map). In this section, we

explain how the Taguchi method is applied in a software-in-the-loop simulation environment.

To gather data for this research, the experiments were performed through software-in-

the-loop simulations using an Intel NUC 7i7DNBE. The parameter levels to simulate each

experiment are read by the flight stack through two different text files. It is cumbersome to

manually change these values in two different text files for the 81 simulations. To overcome

this, the L27 OA was generated in MATLAB, with the values of the parameter level settings

as per Table 3.6. This OA was then used to generate the two-parameter text files required

according to each experiment. The C++ codes were modified to receive an input, that spec-

ified which experiment was being simulated. According to the input, the specific parameter

files were read, thus expediting the simulation process and avoiding manual error.

4.2.2 Maps Employed in Simulations

To perform the simulations mentioned in the previous subsection, voxel maps of the different

environments were generated in MATLAB. The dimensions and layout of the testing facility

at the Advanced Control Systems Lab at Virginia Tech served as a basis for these maps. By

adding a unique obstacle set, each with significantly different obstacle density, positioning,
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Figure 4.3: Obstacle configuration used in Map 1

and scattering, three maps with a varying moment of inertia were generated. The obstacle

configurations used in this research can be seen in Figures 4.3, 4.4, and 4.5. By visually

inspecting the different obstacle configurations, it can be observed that Map 1, shown in

Figure 4.3, has the lowest number of obstacles and the lowest obstacle density among the

three maps. Map 2, shown in Figure 4.4, represents a configuration that has a higher obstacle

density and the obstacles are relatively more scattered than Map 1. It can also be observed

that Map 3, shown in Figure 4.5, has the highest obstacle density, and has obstacles scattered

all over the footprint of the map.

Following the generation of these maps, their moment of inertia was calculated according

to the procedure presented in Section 3.3.1. The inertia matrices of each obstacle were

calculated and the sum of the Frobenius norms of these inertia matrices was obtained to

calculate the moment of inertia of the map, as per (3.24). Table 4.1 provides the resulting
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Figure 4.4: Obstacle configuration used in Map 2

moment of inertia for these maps, and shows that Map 1 has the lowest moment of inertia.

Map 2 and Map 3 have a significantly larger moment of inertia, with Map 3 having the

largest value.

Subsequently, for the simulations performed on these maps, the initial position of the

UAV was set at (1, 2.2, 1)m in (x, y, z) directions, and it is represented by the green marker

in Figures 4.3, 4.4, and 4.5. The goal for these missions is set at (12, 15, 0.6)m, and it is

represented by the orange marker in Figures 4.3, 4.4, and 4.5. The start and goal points

are kept same for all the maps to observe the difference in behavior for similar missions as

environment varies.
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Figure 4.5: Obstacle configuration used in Map 3

Map 1 Map 2 Map 3
Sum of Frobenius norms of individual obstacles 21613.043 35558.939 66178.060
Frobenius norm of the entire map as one entity 170395.8 174995.9 204234.5

Moment of inertia of map 0.1268 0.2031 0.3240

Table 4.1: Moment of inertia of maps

4.3 Flight Tests

Following the simulations, we perform flight tests for a few selected experiments to confirm if

similar trends are observed in the actual flights. The maps employed for the Taguchi analysis

through software-in-the-loop simulations are reproduced at the Advanced Control Systems

Lab at Virginia Tech, and flight tests are performed. In this thesis, we present the results

of 4 flight tests, whose goal is to validate the realism of the numerical simulations employed

for the Taguchi analysis. Flights for Experiments 5, 15, 21, and 26, from Table 3.6, were

performed over the three maps shown in Figures 4.3, 4.4, 4.5, using the UAV described in
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Section 4.1. To calculate the average distance of the UAV to the closest obstacles for these

flight tests, maps were recorded with the help of the navigation system, as the UAV uses

this same navigation system to localize and detect obstacles. The start and goal positions

were kept the same as the simulations to maintain uniformity in the mission and to analyze

differences, if any, between the simulations and flight tests. Whenever possible, multiple

repetitions of each flight test were done to get a larger data set to analyze the behavior. The

flight tests were completely autonomous from take-off to landing, and the coordinates of the

position of the UAV at each time step were recorded.

4.4 Simulation Results

4.4.1 Results of Taguchi analysis

This subsection presents the results of the data acquired through the simulations performed

in Section 4.2. Figures 4.6 and 4.7 show the different paths taken by the UAV over Map

1. Similarly, Figures 4.8 and 4.9 represent the paths taken by the UAV over Map 2, and

Figures 4.10 and 4.11 represent the paths taken by the UAV over Map 3. Table 4.2 presents

the results of these simulations. The average distance from UAV to the closest obstacle for

Maps 1, 2, and 3 are represented by davg1 , davg2 , and davg3 , respectively, expressed in meters.

This table also shows the resulting response parameter R, calculated by applying (3.25), and

SNR, calculated using (3.11), for each experiment. Subsequently, the averages of R and SNR

for each factor, at each level are calculated, as explained in Section 3.3.2, and presented in

Tables 4.3 and 4.4.

To begin the analysis of these results, we select the experiment with the highest SNR

from Table 4.2, as it provides the optimal parameter combination from the given set of exper-
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Exp no. davg1 davg2 davg3 R1 R2 R3 SNR
1 1.7738 1.6579 0.9801 13.9845 8.1596 3.0251 -19.563
2 2.0022 1.7101 0.9993 15.7853 8.4165 3.0841 -20.408
3 2.0303 1.7240 1.0145 16.0071 8.4847 3.131 -20.518
4 1.8938 1.6915 1.0205 14.9309 8.325 3.1497 -20.031
5 1.9140 1.7992 1.0460 15.0898 8.8548 3.2285 -20.233
6 1.9623 1.6686 0.9785 15.4708 8.212 3.0201 -20.224
7 2.0662 1.7177 0.9754 16.2896 8.4535 3.0106 -20.618
8 1.9885 1.6602 0.9164 15.6771 8.1708 2.8283 -20.288
9 1.9156 1.5895 1.0579 15.1026 7.8225 3.2652 -19.999
10 1.9376 1.6569 0.9025 15.2759 8.1547 2.7856 -20.109
11 1.8822 1.7202 1.0254 14.8395 8.4658 3.1649 -20.027
12 2.1563 1.5061 1.0010 17.0000 7.4123 3.0864 -20.712
13 1.9202 1.5746 1.1109 15.1389 7.7493 3.4288 -20.014
14 2.1294 1.5465 0.9736 16.7882 7.6111 3.0049 -20.655
15 1.8872 1.6570 0.8544 14.8786 8.1549 2.637 -19.925
16 2.1851 1.5522 1.0299 17.2274 7.6391 3.1787 -20.855
17 2.0023 1.6712 0.9166 15.7861 8.2247 2.8290 -20.346
18 1.8087 1.5049 1.0757 14.2600 7.4064 3.3201 -19.530
19 1.0001 1.3740 1.4639 7.8840 6.7623 4.5182 -16.311
20 1.192 1.1259 1.0691 9.3975 5.5410 3.2997 -16.365
21 1.8511 1.4539 1.3251 14.5939 7.1553 4.0897 -19.714
22 1.5005 1.3506 1.2125 11.8300 6.6468 3.7422 -18.198
23 1.7759 1.7311 1.6474 14.0012 8.5197 5.0845 -19.919
24 1.1899 1.1230 1.1210 9.3809 5.5271 3.4598 -16.386
25 1.2979 1.1358 1.1038 10.2326 5.5897 3.4069 -16.918
26 1.4476 1.2683 2.6202 11.4128 6.2419 8.0869 -18.932
27 1.6191 1.6254 1.4578 12.7652 7.9994 4.4994 -19.159

Table 4.2: Results of 27 numerical simulations. The columns denoted by davg show the
average distance to the closest obstacle, and the columns denoted by R show the response
over the three maps, respectively. The experiment with the largest SNR (most tactical),
Experiment 19, has been highlighted in green. Experiment 16, which has the smallest SNR
(most reckless), has been highlighted in red. It can be seen that, from Experiment 19
onward, larger SNR values are observed. This can be chalked down to the fact that all these
experiments have a high value of µ2. We can also see a generally decreasing trend in davg
values from Map 1 to Map 3, since Map 1 has the smallest obstacle density.
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iments. For this design of experiments, Experiment 19 provides the highest SNR (-16.311

dB), and thus displays the most tactical behavior from the set of experiments prescribed

by the L27 OA. As explained in Chapter 3, OAs provided by Taguchi are partial facto-

rial OAs, and there is a possibility that the optimal combination of level settings might

not be one of the experiments provided in the L27 OA. Therefore, we deduce a parameter

combination, that is expected to provide the most tactical behavior. For individual factors

(µ1, µ3, R̃r, R̃u, T, and ν4), the level that shows the highest SNR in Figure 4.13 is selected.

For the interactions µ2 × µ4, the largest SNR can be observed when µ2 is at Level 3 and µ4

is at Level 1, and for µ2×µ5, the largest SNR is observed when µ2 is at Level 3, and µ5 is at

Level 1, as observed in Figure 4.15. The optimal parameter combination thus deduced, can

be seen in Table 4.6, along with a comparison of the parameter settings used in Experiment

19.

Level µ2 µ4 µ5 µ1 µ3 R̃r R̃ T ν4
1 4.950 4.658 4.602 4.650 4.711 4.776 4.808 4.477 4.885
2 4.903 4.747 4.907 4.667 4.804 4.766 4.517 4.906 4.899
3 4.399 4.847 4.743 4.936 4.738 4.711 4.927 4.870 4.469

Delta 0.551 0.189 0.305 0.286 0.093 0.065 0.410 0.429 0.431
Rank 1 7 5 6 8 9 4 3 2

Table 4.3: Average R for each level

Level µ2 µ4 µ5 µ1 µ3 R̃r R̃u T ν4
1 -14.45 -13.75 -13.64 -13.73 -13.91 -13.97 -14.01 -13.36 -14.23
2 -14.44 -13.91 -14.23 -13.75 -14.07 -13.97 -13.47 -14.31 -14.22
3 -12.93 -14.15 -13.95 -14.34 -13.84 -13.88 -14.35 -14.16 -13.37

Delta 1.53 0.40 0.59 0.61 0.22 0.10 0.88 0.95 0.86
Rank 1 7 6 5 8 9 3 2 4

Table 4.4: Average SNR for each level
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Figure 4.6: Top view of the simulations on Map 1

Figure 4.7: Side view of the simulations on Map 1
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Figure 4.8: Top view of the simulations on Map 2

Figure 4.9: Side view of the simulations on Map 2
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Figure 4.10: Top view of the simulations on Map 3

Figure 4.11: Side view of the simulations on Map 3
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Figure 4.12: Averages of R per level

Subsequently, using this optimal level-set, the confirmation experiments are performed

to verify if the deduced level-set, is in fact, the most tactical. A comparison of the simulations

performed using this combination, deduced from the Taguchi analysis, with Experiment 19,

the most tactical of the 27 experiments performed, is shown in Table 4.5. It can be seen that

the optimal level-set deduced from the Taguchi analysis provides a marginally larger SNR (-

16.163 dB), than that of Experiment 19 (-16.311 dB), and thus a more tactical behavior. As

explained in Section 3.3, the parameter combination that results in the highest SNR is also

the most resistant to external noise, which in this research is the obstacles’ configuration. We
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Figure 4.13: Averages of SNR per level

can thus conclude, that with the help of Taguchi analysis that the level-settings portrayed in

Table 4.6 provide the most tactical behavior, and are the least influenced by the obstacles’

configuration.

Further investigating the optimal level-settings seen in Table 4.6, the path planner

parameters, µ1, µ2, and µ3, follow the trends forecasted in Section 2.1.3. The user-defined

parameters, µ2 and µ3 are at Level 3, and µ1 is at Level 1. For a higher value of µ2, the

attractive effect of the obstacles is increased and the path planning algorithm scans a higher

number of voxels, thus achieving a more tactical behavior. Since the lowest level-setting of
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Figure 4.14: Interaction plots for average R

Level-set davg1 davg2 davg3 R1 R2 R3 SNR
Experiment 19 1.0000 1.3740 1.4639 7.8840 6.7623 4.5182 -16.311
Optimal settings 1.1654 1.1056 0.9833 9.1879 5.4412 3.03487 -16.136

Table 4.5: Comparison of results of Experiment 19 and confirmation experiment

µ1 and the highest level-setting of µ3 are used, the lowest possible value for µ1/µ3, for this

particular study, is obtained. Consequently, paths that are closer to obstacles are generated,

which results in a more tactical behavior.

While investigating the results of the trajectory planner parameters, we find that the

user-defined parameter µ4 is at Level 1, the lowest level setting. This result follows the

expectations stated in Section 2.1.4, since minimizing µ4 gives a higher priority to coasting

obstacles. Level 1, the lowest level setting, is also observed to be optimal for µ5, which

confirms that the attractive effect of obstacles that are at a greater distance from the UAV

will also be considered while generating trajectories between two waypoints, thus providing

a more tactical behavior.
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Figure 4.15: Interaction plots for average SNR

We can also confirm the most suitable coefficients for the optimal control problem by

observing at the levels of R̃r and R̃u. It can be observed that a higher penalty is associated

with the trajectory tracking error, than the penalty on the control input. This implies that

the trajectories generated by the UAV’s trajectory planner provide a highly tactical behavior,

and as the deviation increases from these trajectories, the UAV tends to be more reckless.

Furthermore, the UAV displays a tactical behavior when T is at Level 1, that is, when the

MPC algorithm generates references for only 10 time steps. Lastly, the optimal level for ν4 is

found to be Level 3. A high value of ν4 helps in a better approximation of the obstacles’ set

in the trajectory planner, and thus trajectories closer to the obstacles’ set can be achieved.

Lastly, we compare the level settings used in Experiment 16, the trial with the smallest

SNR (-20.855 dB), with the optimal level settings. For the path planner subsystem, the

parameter µ1 is at Level 3, and µ3 is at Level 1. This results in the largest possible value of

µ1/µ3, for this study, thus inducing reckless behavior. It is interesting to note that for the

reckless behavior displayed by Experiment 16, µ2 is at Level 2, and not at Level 1, which is
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Exp. 19 Optimal set
Factor Level Value Level Value
µ2 3 0.95 3 0.95
µ4 1 0.2 1 0.2
µ5 1 0.1 1 0.1
µ1 1 0.01 1 0.01
µ3 3 5 3 5
R̃r 2 700 3 1000
R̃u 1 100 2 300
T 3 100 1 10
ν4 1 100 3 1000

Table 4.6: Comparison of parameter settings of Experiment 19 and optimal level-settings

supposed to generate highly reckless paths. The trajectory planner parameter µ4 uses Level

3, which confers a highly reckless behavior. A peculiar observation is that µ5 uses Level 1,

which is supposed to confer a tactical behavior, and thus, an anomaly to our expectations.

This reckless parameter set also uses Level 1 for ν4, thus providing an inferior estimate of

the obstacles’ set. The MPC algorithm generates trajectories for 100-time steps, as opposed

to 10 for the optimal parameter settings. Using this information, we can conclude that

a more tactical behavior is observed when the MPC algorithm generates trajectories for a

smaller number of time steps. This conclusion can be further strengthened by inspecting the

SNR plot of T , which loosely shows an inverse proportionality between T and SNR. Lastly,

Experiment 16 uses the same level setting for R̃r as Experiment 19 (Level 3). Considering

the fact that the most tactical, and the most reckless experiments, both have the same value

of R̃r, suggests that it has a small degree of influence on the response of this system. This can

be further confirmed by observing the SNR plot in Figure 4.13, which shows no significant

differences in SNR over three levels.
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4.4.2 Results of plotting analysis and column effect method

To study the column effect method, as described in Section 3.3.2, the difference between

the response of the level with the highest and lowest average R and SNR is portrayed in

Tables 4.3 and 4.4, respectively. The last row of these tables assigns a rank to the factors

to ascertain a comparative degree of influence on R and SNR, based on the column effect

method.

By observing the ranks assigned in these tables, it can be concluded that the path

planner parameter µ2, is the highest contributing factor towards both, R and SNR. This can

be further observed by analyzing Figure 4.13, where µ2 encounters a large spike in average

SNR at Level 3, as compared to the first two levels. Furthermore, it can be seen that factors

ν4, T, R̃u, µ5, and µ1, also have a significantly large influence on R and SNR. Analyzing

their respective SNR plots shows considerable differences in response at different levels. The

user-defined factors µ3, µ4, and R̃r show a relatively small influence on the responses of the

system. This result can again be observed in Figure 4.13, where the SNR of these factors

does not vary significantly over the three levels. The column effect method further confirms

the hypothesis stated in the previous subsection, that R̃r has a low contribution toward

the response R and SNR (ranked last for both). To obtain a quantitative estimation of the

factor’s influence on the response of the system, their percentage contributions are calculated

using ANOVA in the subsequent section.

Lastly, to perform a plotting analysis, as described in Section 3.3.2, a graphical repre-

sentation of the data provided in Tables 4.3 and 4.4 is portrayed in Figures 4.12 and 4.13,

respectively. Similarly, Figures 4.14 and 4.15 are used to support the analysis of the in-

teractions µ2 × µ4 and µ2 × µ5. The primary intention of using plotting analysis, in this

research, is to investigate the presence of interactions, and the relative degree of interaction
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for µ2 × µ4 and µ2 × µ5.

By analyzing the interaction plot representing µ2×µ4, in Figure 4.15, it can be observed

that the line segments representing Level 1 and Level 3 of µ4, intersect between Levels 1 and

2, and again between Levels 2 and 3 of the user-defined parameter µ2. Thus, there exists

an interaction between µ2 and µ4. Similarly, inspecting the interaction plot representing

µ2 × µ5 in Figure 4.15, the intersection of the line segments representing Level 1 and Level

3 of µ5, can be observed between Levels 1 and 2, and between Levels 2 and 3 of the user-

defined parameter µ2, thus confirming the presence of an interaction between µ2 and µ5.

Furthermore, by inspecting the angle formed by these intersecting segments, we can confirm

that there exists a significantly larger interaction between µ2 and µ5, as compared to µ2 and

µ4.

Thus, from the plotting analysis, we can conclude, that the effect of µ4 and µ5 on the

response R and SNR, depends on the level-setting of the user-defined parameter µ2, and vice

versa. Finally, the effect of µ5 has a higher degree of co-relation with µ2, than the co-relation

observed between µ2 and µ4.

4.5 ANOVA Results

In this section, we apply the methodology explained in Section 3.3.2, to perform ANOVA

and investigate the effects of different control parameters on the response of the system.

To begin, the sum of squares, percentage contributions, and mean squares are calculated

for all control parameters and the interactions. Subsequently, to validate these results, we

calculate the F-ratios and compare them to the 95% confidence threshold. As stated in

Section 3.3.2, ANOVA performed on the SNR provides information on factors affecting the

variance, whereas ANOVA performed on the response R, provides details on factors affecting
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Factors Sum of Squares Mean Squares % contributions
µ2 30.002 15.001 59.433
µ1 4.029 2.014 7.981
T 3.914 1.957 7.754
ν4 3.409 1.705 6.753
R̃u 2.749 1.374 5.445

µ2 × µ5 2.201 0.681 4.361
µ3 1.361 0.636 2.696
µ5 1.272 0.55 2.52

µ2 × µ4 0.852 0.242 1.687
µ4 0.484 0.213 0.959
R̃r 0.207 0.103 0.409

Table 4.7: ANOVA table based on SNR

the mean of the response. In this research, ANOVA has been performed on both, R and

SNR, to study the effects of control factors on the behavior of the UAV.

Inferring from the results of ANOVA performed on SNR, as displayed in Table 4.7,

factors µ2, µ1, T, ν4, R̃u, and the interaction µ2 × µ5 have a comparatively large effect on

reducing variance in the SNR, as conveyed by their percentage contributions. The path

planner factor µ2, has an overwhelmingly large effect on SNR (59%), as compared to the

other factors. This result validates the hypothesis drawn from the column effect method in

Table 4.4, which stated µ2 was the highest contributing factor to SNR. Furthermore, the

control parameters µ5, µ3, µ4, R̃r, and the interaction µ2 × µ4 are found to have a relatively

small effect on SNR. These results are again, in accordance with the results of the column

effect method. Subsequently, these inferences drawn from the percentage contributions are

further verified by analyzing the corresponding F-ratios.

In this research, since the DoF of the error term is zero, we pool factors with the lowest

percentage contributions to form the error term. As per Section 3.3.2, Taguchi prescribes to

form an error term, that has approximately half the DoF of the selected OA. Thus, in this
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Factor / interaction DoF F-ratio 95% confidence threshold Contributing factor
µ2 2 43.107 3.89 Yes

µ2 × µ5 4 1.581 3.26 No
µ1 2 5.788 3.89 Yes
R̃u 2 3.949 3.89 Yes
T 2 5.624 3.89 Yes
ν4 2 4.898 3.89 Yes

Table 4.8: F-ratios of contributing factors based on SNR

research, we pool the least contributing factors till we obtain an error term, that has 12 DoF

(the selected OA has 26 DoF). According to the percentage contributions shown in Table

4.7, R̃r, µ4, µ2 × µ4, µ5, and µ3 are pooled to form an error term with 12 DoF. The sum of

squares of error is equal to the total sum of squares of these pooled terms. Subsequently,

the mean square of the error term is calculated as

Ve ≜ Se/fe, (4.1)

where Se represents the sum of squares of the error term and fe represents the DoF of the

error term.

Finally, the F-ratios of the un-pooled terms, also referred to as the contributing terms,

are calculated using (3.33), and presented in Table 4.8. The factors or interactions with an F-

ratio higher than the threshold value at 95% confidence level, are considered as significantly

contributing to the SNR. It is observed that all the un-pooled factors, apart from µ2 × µ4,

have an F-ratio larger than the threshold. Thus, µ2, µ1, ν4, and T are considered significantly

contributing to the SNR of the system, in turn verifying the results of the column effect

method and the percentage contributions.

Finally, ANOVA is performed on the response parameter R to investigate the relative
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Factors Sum of squares Mean squares % contribution
µ2 12.243 6.121 46.868
T 2.830 1.415 10.835
ν4 2.787 1.394 10.671
µ1 2.212 1.106 8.467
R̃u 1.929 0.964 7.383

µ2 × µ5 1.685 0.520 6.452
µ5 1.041 0.421 3.985

µ2 × µ4 0.649 0.182 2.483
µ3 0.365 0.163 1.397
µ4 0.327 0.162 1.25
R̃r 0.054 0.027 0.207

Table 4.9: ANOVA table based on R

Factor / interaction DoF F-ratio 95 % confidence threshold Contributing factor
µ2 2 30.164 3.89 Yes
µ1 2 5.449 3.89 Yes
T 2 6.973 3.89 Yes
R̃u 2 4.751 3.89 Yes
ν4 2 6.868 3.89 Yes

µ2 × µ5 4 2.076 3.26 No

Table 4.10: F-ratios of contributing factors based on R

influence of factors on R and the mean of the response, and the results are presented in Table

4.9. Similar to SNR, µ2 remains the highest contributing factor toward R. It can be observed

that µ1, ν4, and T have significantly large contributions toward the response. The user-

defined parameters µ3, µ4, µ5, R̃r, and the interaction µ2 × µ4 have the lowest contributions

toward the response and are pooled to form an error term of 12 DoF, similar to the previous

ANOVA. Lastly, the F-ratios are calculated, and the results are shown in Table 4.10. Similar

to SNR, the factors µ2, µ1, ν4, R̃u, and T are found to be significantly contributing to the

response.

By observing the percentage contributions obtained from the two ANOVAs, we can

see that, in general, a similar trend is observed for a factor’s or interaction’s contribution.
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Figure 4.16: Comparison of percentage contributions towards SNR and R

A comparison of the percent contributions of factors toward R and SNR can be seen in

Figure 4.16. It can be observed that µ2 has a larger effect on SNR (59.43%), as compared

to R (46.86 %). Whereas, the other significant contributing factors, µ1, ν4, T , and R̃u, all

have a comparatively higher effect on the response R. The factors µ4 and R̃u are the two

least contributing factors in both cases. It can also be confirmed from this research, that

the penalty associated with the trajectory tracking error, R̃r, does not largely affect how

tactical the behavior of the UAV is. While investigating the implications of these results

on the trajectory planner, it can be observed that the behavior of the UAV is significantly

dependant on the number of time steps considered while generating the reference trajectory

(T ), and the soft constraints used to approximate the obstacles’ set (ν4).
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4.6 Flight Tests Results

As explained in Section 4.3, flight tests have been used to validate the realism of simulations

and verify the accuracy of the results obtained by analyzing the outcomes of numerical sim-

ulations. This section analyzes the results of flight tests performed for Experiments 5, 15,

21, and 26, over the three obstacle configurations. To limit the effect of non-deterministic

factors each experiment was performed multiple times, and the average results have been

analyzed. The results of these flight tests are shown in Tables 4.11, 4.12, and 4.13, for the

three obstacle configurations, respectively. In these tables, each entry in the column labeled

‘Flight’, denotes the average of davg, expressed in meters, over multiple flights. Similarly, the

columns labeled ‘Sim’ denote davg obtained for the respective experiment through simula-

tions. Figures 4.17, 4.18, and 4.19 provide a graphical representation of the trends observed

in Tables 4.11, 4.12, and 4.13, over the respective obstacle configurations. These figures also

show the individual davg observed for individual flight tests. The paths taken by the UAV

for different flight tests, along with the corresponding simulations, can be seen in Figures

4.20, 4.21, and 4.22, respectively, for the three obstacle configurations.

It must be noted that several factors, that are not considered in the simulations, have

an influence on the behavior of the UAV while conducting these flight tests. The turbulence

generated when the UAV is hovering close to an obstacle or wall is an example of such

an external influencing factor. This turbulence has the capacity to destabilize the UAV.

Altering the probability threshold set for a voxel to be occupied also changes the way the

UAV behaves. Finally, there are instances, where due to the parameter settings of the

guidance system, the UAV tends to go extremely close to the obstacles, often causing it

to crash into them. Due to the interference of such external factors, gathering data for

Experiment 5 for Map 3, and Experiment 26 for Map 2 was met with persistent difficulties.
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Experiment 5 Experiment 15 Experiment 21 Experiment 26
Sim Flight Sim Flight Sim Flight Sim Flight

Map 1 1.9140 1.8846 1.8872 1.8376 1.8511 1.3187 1.4476 1.167

Table 4.11: Comparison of davg between flight test and simulation over Map 1

Exp 5 Exp 15 Exp 21 Exp 26
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Figure 4.17: Trends observed in flight tests and simulations over Map 1

We begin by investigating the trends observed over the flight tests on Map 1. As ob-

served in Table 4.11, for simulations performed over Map 1, Experiment 5 has the highest

davg, followed by Experiment 15, Experiment 21, and finally Experiment 26, thus showing a

gradually decreasing trend. This trend is represented by the red line in Figure 4.17. While

comparing the trends displayed by the flight tests, represented by the blue line in the same

figure, we can observe, a decreasing trend, similar to that shown by the simulations is ob-

served. Subsequently, we can note that the average results of the flight tests for Experiments

5 and 15 are very close to those of the simulations. For Experiments 21 and 26, the difference

between the results of the flight tests and simulations marginally increases, with Experiment
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26 showing a difference of 0.28 m between the flight tests and simulations, as compared to

less than 0.1 m for Experiment 5. Even though a higher difference is witnessed, the gen-

eral trends are followed throughout these tests. Thus a similar trend can be confirmed for

simulations over Map 1.

Exp 5 Exp 15 Exp 21

Experiments

1.4

1.5

1.6

1.7

1.8

1.9

2
Comparison of flight tests and simulations for Map 2

Average Flight Test Results

Simulation Results

Test 5

Test 15

Test 21

Figure 4.18: Trends observed in flight tests and simulations over Map 2

Experiment 5 Experiment 15 Experiment 21
Sim Flight Sim Flight Sim Flight

Map 2 1.7992 1.6165 1.6570 1.5143 1.4539 1.5020

Table 4.12: Comparison of davg between flight test and simulation over Map 2

Similarly, we analyze the behavior displayed by the UAV over Map 2 by analyzing the

results portrayed in Table 4.12 and Figure 4.18. For Map 2, a prominently decreasing trend,

for davg, is seen through Experiments 5, 15, and 21, as portrayed by the red line in Figure

4.18. Compared with the results of the flight tests, a similar decreasing trend is witnessed.
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Experiment 5 has the highest davg, followed by Experiment 15, and lastly Experiment 21. It

must be noted though, that for this obstacle configuration, the flight tests for Experiment

21 result in marginally smaller values (difference of 0.12m) with that of Experiment 15. In

contrast, the simulations show a larger difference (0.20m) between Experiments 15 and 21.

Thus, although a high degree of correlation can be seen in the behavior over Experiments 5

and 15, due to external influences, we observe a higher-than-expected davg for flight tests of

Experiment 21, even though a decreasing trend is observed.

Experiment 15 Experiment 21 Experiment 26
Sim Flight Sim Flight Sim Flight

Map 3 0.8544 1.3762 1.3251 1.5746 2.6202 1.5846

Table 4.13: Comparison of davg between flight test and simulation over Map 3

Exp 15 Exp 21 Exp 26
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Figure 4.19: Trends observed in flight tests and simulations over Map 3

Lastly, through Table 4.13 and Figure 4.19, we compare the results of the flight tests and

simulations over Map 3. Inspecting the results of the simulations, a progressively increasing
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Figure 4.20: Paths observed for Experiments 5, 15, 21, and 26 over Map 1

trend is seen in davg, as represented by the red line in Figure 4.19. While comparing the

corresponding results of the flight tests, we can see a similar behavior over Experiments 15

and 21. Flight tests performed over Experiment 26 show a davg result that is almost similar

to that of Experiment 21. This is an anomaly to our expectations.

Hence, out of the 10 resulting comparison points (four over Map 1, three over Map 2,

and three over Map 3), we can see clear co-relation for 8 of these points. Furthermore, the

two points which do not closely follow the expectations, still display the expected (increasing

or decreasing) trends. Thus, with the help of these flight tests, we can confirm the realism

of the simulations.
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Figure 4.21: Paths observed for Experiments 5, 15, and 26 over Map 2

4.7 Conclusion

In this chapter, the architecture of the guidance system was presented. The implementa-

tion of this tactical guidance system was explained with the specific details of the UAV’s

components in Section 4.1. Subsequently, the process of generating maps for simulations,

along with the nature of these maps was presented in Section 4.2. This chapter also recalls

the procedure of simulating the behavior of the UAV. Furthermore, the rationale behind

conducting the flight tests was explained followed by its procedure.

Subsequently, the results of the simulations performed in Section 4.2 were presented in

Table 4.2, and Experiment 19 was observed to be the most tactical out of the 27 experiments

performed in this research. The behavior of the UAV observed through these simulations,
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Figure 4.22: Paths observed for Experiments 15, 21, and 26 over Map 3

over the three maps, have been portrayed in Figures 4.5, 4.4, and 4.3, respectively. The

averages of SNR and R as shown in Tables 4.4 and 4.3, and their graphical representation in

Figures 4.13 and 4.12, were used to deduce an optimal parameter combination. This optimal

level set, shown in Table 4.6, was used to perform confirmation experiments. Based on the

results of these confirmation tests, represented in Table 4.5, the level settings exhibited in

Table 4.6 were concluded to provide the most tactical behavior to the UAV.

Furthermore, the column effect method was used to get a primary estimation of the

degree of influence of the factors on the response of the system. Concurrently, plotting

analysis was used to confirm the presence of interaction between µ2 and µ4, and between µ2

and µ5. Interactions were observed in both cases, with µ2 × µ5 showing a higher degree of
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interaction. Subsequently, ANOVA was performed on SNR and R, to quantitatively estimate

the contributions of the factors and interaction, and the results were shown in Tables 4.7 and

4.9. Several hypotheses developed from the inferences of plotting analysis were confirmed

by referencing the percentage contributions and the F-ratios, generated via ANOVA.

It was found that µ2, µ1, T, R̃u, ν4, and µ2×µ5 were contributing toward both the mean

and the variance of the results. Concluding from the F-ratios deduced by performing ANOVA

on the SNR, µ2, µ1, T, R̃u, and ν4 were the significant contributing factors. Similarly, based

on the F-ratios deduced from the ANOVA performed on the response R, factors R̃u, µ2, µ1,

and T qualify as significantly contributing at 95% significance threshold. Lastly, the results

of the flight tests performed were analyzed to examine if similar trends were displayed by

flight tests and simulations. It was found that the flight tests follow the results expected

from the simulations, even though the davg for the flight tests is generally higher than that

expected in the simulations.

Finally, this chapter presented the trends observed in flight tests through Tables 4.11,

4.12, and 4.13. Figures 4.17, 4.18, and 4.19 showed a graphical representation of this data,

where similar trends were observed between flight tests and simulations.
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Conclusion

The goal of this thesis was to analyze and forecast the behavior of autonomous UAVs im-

plementing a novel, bio-inspired guidance system designed to confer a tactical behavior to

the vehicle, while exploring unknown and potentially hostile areas. To undertake this task,

we outlined the provided an overview of this guidance system’s architecture and described

the role of 9 user-defined parameters, whose role is to confer a tactical or reckless behavior

to the UAV. As it is analytically impossible to predict the effect of each parameter on the

behavior of the system, the use of Taguchi design of experiments has been implemented.

As a first step in the proposed Taguchi analysis, 9 parameters were selected for their

more significant effect on the vehicle’s behavior. Based on the guidelines set by Taguchi,

the L27 OA was selected for this research, which can accommodate these nine factors and

study the interactions among two of them. Next, to quantify the intangible quality of being

tactical, we developed a specialized response parameter R. This response parameter depends

on the average distance of the UAV to the closest obstacle throughout the flight davg, and it

also considers the effect of the obstacle configuration, which is a noise factor in this research.

The noise factor was subsequently quantified by calculating the moment of inertia of these

obstacle configuration.

To analyze the effect of the obstacle configuration, we simulated the behavior of the

UAV over three obstacle configurations with a significantly varying moment of inertia, which

was analogous to using an outer array. By analyzing the results of these simulations, we
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deduced a parameter combination that was expected to confer a highly tactical behavior to

the UAV. We performed confirmation tests using this deduced parameter set, over the three

obstacle configurations and compared it to the results of the most tactical experiment, out of

the 27 experiments performed, which showed that using the optimal parameter set resulted

in a more tactical behavior. This optimal parameter set was further used to deduce the

ideal values for all the control parameters. The path planner parameters and the trajectory

planner parameters followed the trends forecasted during our literature review. Lastly, we

observed that a more tactical behavior was obtained when the MPC generated trajectories

for a smaller number of time steps. Thus, using the Taguchi method, we deduced a parameter

combination that confers a highly tactical behavior to the UAV irrespective of the topology

of the map it is flying in.

Subsequently, using the column effect method, we deduced that path planning param-

eters have a relatively high influence on the behavior of this system. Successively, using

plotting analysis, we concluded that there exists an interaction effect between the parame-

ters belonging to the path planning subsystem and the trajectory planning subsystem. By

observing the percentage contributions and F-ratios deduced via ANOVA, the hypotheses

deduced from the Taguchi analysis were verified. Lastly, flight experiments validated the

results achieved by means of software-in-the-loop simulations
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