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(ABSTRACT)

Box-Behnken designs are used to estimate parameters in a second-order response
surface model (Box and Behnken, 1960). These designs are formed by combining ideas
from incomplete block designs (BIBD or PBIBD) and factorial experiments, specifically

2% full or 2*-' fractional factorials.

In this dissertation, a more general mathematical formulation of the Box-Behnken
method is provided, a general expression for the coefficient matrix in the least squares
analysis for estimating the parameters in the second order model is derived, and the
properties of Box-Behnken designs with respect to the estimability of all parameters in
a second-order model are investigated when 2* full factorials are used. The results show
that for all pure quadratic coefficients to be estimable, the PBIB(m) design has to be
chosen such that its incidence matrix is of full rank, and for all mixed quadratic coeffi-
cients to be estimable the PBIB(m) design has to be chosen such that the parameters

A1, Ay ..., Am are all greater than zero.

In order to reduce the number of experimental points the use of 2%~/ fractional
factorials instead of 2* full factorials is being considered. Of particular interest and im-

portance are separate considerations of fractions of resolutions III, IV, and V. The



construction of Box-Behnken designs using such fractions is described and the properties
of the designs concerning estimability of regression coefficients are investigated. Using
designs obtained from resolution V factorials have the same properties as those using full
factorials. Resolutions I1I and IV designs may lead to non-estimability of certain coef-

ficients and to correlated estimators.

The final topic is concerned with Box-Behnken designs in which treatments are
applied to experimental units sequentially in time or space and in which there may exist
a linear trend effect. For this situation, one wants to find appropriate run orders for
obtaining a linear trend-free Box-Behnken design to remove a linear trend effect so that
a simple technique, analysis of variance, instead of a more complicated technique, anal-
ysis of covariance, to remove a linear trend effect can be used. Construction methods
for lineaf trend-free Box-Behnken designs are introduced for different values of block size
(for the underlying PBIB design) k. For k=2 or 3, it may not always be possible to find
linear trend-free Box-Behnken designs. However, for & = 4 linear trend-free Box-

Behnken designs can always be constructed.



Acknowledgements

This research would not have been proposed or completed without guidance and
encouragement I received from Dr. Klaus Hinkelmann, the consummate adviser.

I would also like to thank Dr. Raymond H. Myers, Dr. Marvin Lentner, Dr. Marion

R. Reynolds, and Dr. Rober V. Foutz for their willingness to serve on my committee and

for their time and assistance in completing my program and the final preparation of this

dissertation. In fact, I wish to thank all of the members of the faculty and staff of the

Department of Statistics, all of whom have been very helpful in many different ways.

I would like to thank my parents in law for all their help. Especially, 1 owe special
recognition to my wife, Jieun, and my two sons for their assistance and patience.
I would like to dedicate this dissertation to my mother for her endless love and sup-

port.

Acknowledgements iv



Table of Contents

Chapter 1. Introduction ..........c.0 ittt enroeetoessosnssossasnessans 1
Chapter 2. Properties of Box-Behnkendesigns ..........c0iiiiiiiiiiiiininennnass 5
2.1. Construction of Box-Behnken designs . .........cooitiiierienieneaennnnn., 5
2.2. Box-Behnkendesign matrix . ..........iiititiiiiiiiiii i e e 10
2.3. Second-ordermodel . ... ... e e 11
2.4. The coefficient matriX .. ... ...ttt e 12
2.5. Derivation of the coefficient matrix . .......... .. ... ..ttt unnnenann. 14
2.6. Estimation of parameters .. ... ... ..coviiiiinnnnnnneetnnin et 22
2.7, Examle ... e e e e 23
2.8, ConClUSIONS ...ttt e e et 26
Chapter 3. Box-Behnken designs using fractional factorials ........................ 27
31. Resolution III Case ........ ... i i, 28
32, Resolution IV Case ...... ...ttt et 34
33. Resolution VorHigher .......... .. i 41
34, ConClUSION .. vttt ittt e et e e 41

Table of Contents v



Chapter 4. Trend-free Box-Behnken designs ...........coiiiiiiiiiiiiiiernnnnnss 43

4.1, Background ... ... ... e e e e e 43
4.2, Trend-free block designs . ... ...ttt ittt enneeeenan 45
4.3. Property of the factorial design . ...........c.0iiiiiiieennennennn.. 51
4.4. Linear trend-free Box-Behnkendesigns . ......... ... ... ... ... ... .. ..., 60
4.5. Construction of LTF Box-Behnken Designs . ........... ..., 62
4.6, ConCIUSIONS ..ttt ittt ettt 101
Chapter 5. SUMMArY .. ...ttt ittt tennneerstoonsosessansessannanssss 103
REFERENCES ... i iiiiitttertteneeetioeetssseenesseesansonnssn 107
Appendix. The modified LINDO Program . ........coectenecnrnncscnncnsoncans 109
4 113

Table of Contents vi



List of Tables

2.1 Box-Behnken design for 4 input variables

4.1 Standard ordering of the 23 factorial

4.2 Standard ordering of the 23 factorial with a center point

4.3 Standard ordering of the 24 factorial

4.4 2* factorial

4.5 The upper half and lower half of 24 factorial

4.6 Two-factor interactions of 2* factorial with an inserted center point

4.7 Box-Behnken design No. 2 (Box and Behnken, 1960)

53
55
59
85
86
87
95

vii



Chapter 1. Introduction

Response surface methodology is essentially a particular set of mathematical and
statistical methods used by researchers to aid in the solution of certain types of problems
which are pertinent to scientific or engineering processes (Myers, 1976). The response
variable is the measured quantity whose value is assumed to be affected by changing the
levels of the factors (or input variables) which are subject to the control of the exper-
imenter. The response surface procedures are a collection involving experimental strat-
egy, mathematical methods, and statistical inference which enable the experimenter to
make an efficient empirical exploration of the system in which he is interested. Preceding
statistical analysis using the regression method, the experiment must be designed, that
is, the input variables must be selected, their values during the actual experimentation
designated, and an appropriate model for analysis must be chosen. Generally, the model
is fit by the method of least squares. The response surface analysis that follows the ex-
perimental strategy revolves around (1) prediction of response values, (2) exploring the
response surface in the region of the designated experiment, and (3) possibly finding
conditions on the design variables that give rise to optimum response. The most fre-

quently used approximating polynomial models are of degrees one and two. The general
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form of a first-order model (i.e., models of degree one) in v input variables xy, x, ... , X,

is

y=p+ 121,3:351 +e
where y is a response variable, f,, §; (i=1, ..., v) are unknown parameters, and ¢ is a
random error term. The 2* factorial designs, fractional replicates of the 2* factorial de-
signs, simplex designs, and Plackett-Burman designs are first-order designs. When the
first-order model suffers from lack of fit arising from the existence of surface curvature,
the first-order model is upgraded by adding higher-order terms to it. The next higher-

order model is the second-order model

y=P0+ Zﬂr"t‘*‘ Zﬁ,,x,z+ Z Buwxixy + ¢ (1.1)

i=1 i=1 Lt=1

i<t

where y is a response variable, B, 8;, Bu(i=1,...,v), B, (i, =1,...,v, i<i') are un-
known parameters. A design, by means of which observed values of the response are
collected for estimating the parameters in the second-order model is called a second-
order design. Experimental designs for fitting a second-order respone surface must in-
volve at least three levels of each variable so that the coefficients in the model can be
estimated. Examples of a second-order designs are a 3* factorial design, central com-
posite designs, equiradial designs, hybrid designs, and so on. Second-order composite
designs usually require five levels coded — a, —1, 0, 1, a for each of the variables where
« is a positive value. Circumstances occur, however, where second-order arrangements
are required which must employ the smallest number of different levels, namely three.

One useful class of such designs, which are economical with respect to the number of
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runs required, is due to Box and Behnken (1960). Box-Behnken designs are formed by
combining two level factorial designs with balanced incomplete block designs (BIBD)
or partially balanced incomplete block designs (PBIBD) in a particular manner. Box and
Behnken showed how to construct the designs, and illustrated the method with some
useful designs of second order. In chapter 2 of this dissertation, we

(i) provide a more general mathematical formulation of the Box-Behnken method,

(i1) derive a general expression for the coefficient matrix in the least square analysis for
estimating the parameters in model (1.1), and

(iii) investigate the properties of Box-Behnken designs with respect to the estimability
of all parameters in a second-order model when we use 2* full factorials.

In chapter 3, we elucidate the properties of Box-Behnken designs using 2*-/ fractional
factorials of resolutions 111, IV, and V or higher instead of using full factorials. For each
case, we obtain the coefficient matrix, and illuminate the properties of the estimators for
the parameters in a second order model. And, we investigate the use of appropriate
fractional factorials in Box-Behnken designs. Finally, in chapter 4, we consider the sit-
uation in which the experiment using a Box-Behnken design is conducted sequentially,
one run at a time, and a linear trend is assumed to exist over the experimental plots, i.e.
over time. The adjustment of linear trend has been accomplished by the use of analysis
of covariance in which covariate is a linear trend. The problem is that we face the
complication of analysis of covariance in the presence of linear trend over plots. Instead
of using analysis of covariance, we introduce linear trend-free (LTF) Box-Behnken de-
signs to eliminate a linear trend as a solution for simplifying the method. That is, we
show how to assign treatment combinations to experimental plots in a particular way in
order to remove the linear trend. When the design is linear trend-free, we use an analysis
of variance technique which is very simple. That is, sums of squares for the estimates

of coefficients we are concerned with are calculated as though there were no linear trend,
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sums of squares for the estimates of coefficients are calculated easily, variation due to
the linear trend may be removed for the error sums of squares, and design efficiencies
are increased. Depending on the block size k& of PBIB designs, we consider two cases, for
k=2 or 3 and for k£ > 4 to construct LTF Box-Behnken designs. Linear trend-free Box-
Behnken designs may not always exist for k=2 or 3. For k >4, however, we can always

find LTF Box-Behnken designs.
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Chapter 2. Properties of Box-Behnken designs

2.1. Construction of Box-Behnken designs

Box-Behnken designs (Box and Behnken, 1960) are a class of three-level incom-
plete factorial designs for the estimation of parameters in a second-order response sur-
face model. These designs are formed by combining two-level factorial designs with
incomplete block designs in a particular manner. The method can be described as fol-

lows:

1.  Consider a response surface design with v input variables xj, x,, ... , x, . Use as an
auxiliary design an incomplete block design with v treatments and b blocks of size
k, characterized by incidence matrix of the incomplete block design (BIBD or

PBIBD) N = (n;), with n; =1 if treatment i occurs in block j and n; = 0 otherwise.

2. ldentify the v treatments with the v input variables. and consider the transpose of

the incidence matrix N'. Each row of N’ contains k unity elements.
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3. Suppose in the first row the unity elements occur in columns 4, b, ...,k (
l<hi<bh<- <l<v). Replace each of those k unity elements by column vectors
F, (w=1,2,...,k). The elements of F, are either 1 or -1, and the F, 's are chosen
such that they are orthogonal to each other where the k factors correspond to the
input variables numbered /, 4, ... , . The F, can be interpreted in two different ways;
(1) If the levels of the factors in a 2* factorial are denoted by -1 and +1 and if the
treatment combinations z’;, = (za, za, ... , 2u) (i=1, 2, ..., 2¥=s) are written in stand-

ard order with z; = + 1, then

F o = (Ziw Zows - s Zsw)

(this is indeed the choice described by Box and Behnken (1960) ),

(i1) each F, represents a vector of the coefficients defining main effects and inter-
actions for the 2* factorial (there are 2* — 1 such vectors but only & are needed, for
example the contrast vectors for k independent two-factor interactions as long as
one two-factor interaction is not the generalized interaction of the other two-factor

interactions).

4. The v - Kk zeros in each row are replaced by 2* x 1 vectors of zeros.

§.  This procedure is repeated for each row of N resulting in b2* experimental points,

using the same vectors Fy, 5, ..., F.

6.  Finally, n, center points are added with all elements being zeros to the b2* exper-

imental points.

If we denote by n the number of observations (runs), we get the Box-Behnken design

matrix of size of n x v where n = b2* + n, for a full factorial. The following example will
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be used to illustrate how a Box-Behnken design can be constructed (see p.457 in Box and

Behnken, 1960).

Example 2.1
Below is shown a transpose of the incidence matrix of a balanced incomplete block de-
sign for v =4 treatments in b =6 blocks of size k =2. Each treatment appears r =3

times in the design, once with each of the other treatments (i.e. A=1).

FllOO

[ B -
—
o
Pt

Since k = 2 we consider the 22 factorial design, the treatment combinations of which are

assigned in standard order as follows:

e
1 -1
A =
-1 1
11j

The contrast vectors for the main effects and two-factor interaction are given by
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[ 1 -1 1 ]
1 -1 —1
B =
-1 1 -1
1 1 1

A three-level design in four variables (i.e. treatments) is then obtained by combining this
incomplete bock design with the 22 factorial. The two 1’s in every row of the incomplete
block design are replaced by either the £ =2 columns of the matrix 4 or any two col-
umns of the matrix B. Wherever a 0 appears a column of zeros with size 22 x 1 is in-
serted. The design is completed by the addition of a number », of center points (0, 0, 0,
0), say n, = 1 center point for this arrangement. The resulting three-level Box-Behnken
design in four variables (x, x2, X3, Xs) is shown in Table 2.1 consists of the following 25

points:
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Table 2.1. Box-Behnken design for 4 input variables

X

o O O O

o O o o ©

-1

-1

Box and Behnken (1960) listed

O O O O o o o o

-1

a

X3 X4
0 0
0 0
0 0
0 0
-1 -1
1 -1
-1 1
11
0 -1
0 -1
0 1
0 1
-1 0
-1 0
1 0
1 0
0 —1
0 -1
0 1
0 1
-1 0
-1 0
1 0
1 0
0 o0
number

v=3,4,56,7,9,10,11, 12 and 16 variables.
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2.2. Box-Behnken design matrix

In order to discuss some of the properties of Box-Behnken designs in general terms

it is useful to introduce the following notation and definitions.

Definition 2.1. The vector-valued transformation ¢ defined on { 0, 1 } into the set of

2k x 1 vectors is given by

jS = Q("ﬁ) = njl-Ew(/,[)

where w(j,i) = ny + np+ - + n,, with w taking the values 0,1, ... ,k, and F,;, is as defined

in Section 2.1, and Fy' =(1, 1, ..., 1).

Definition 2.2. Let g'=(g, 8, ..-,g&)and A’ = (h, hy, ... ,h)be 1 x s vectors. The

element-wise multiplication of g and h, denoted by goh , is given by the s x 1 vector

gOh = (glhh gzhz, aee g gshs)'

The design matrix D of the Box-Behnken design consists of two parts, one gener-
ated by the incomplete block design and the 2* factorial as described in Section 2.1, and

the other consisting of center points. We write this as

D= 2.1)

Using the notation of Definition 2.1. we have
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o f12 - - - Oy "11Ew(1,1) "12£w(1,2) I "1»Ew(1,v)
P2 P22 - - - Dy ”21£w(2,1) ”zsz(z,z) I n2v£w(2,v)

D =(¢p)= = (2.2)
D1 Do . Dby no1Ewpry Moabwey + + + Mebwe,v)

consisting of b2* design points. The matrix 0,y = (Qng, Qngy .- , Ong) TEPTESENLS 2y > O Center
points. We now write the design matrix as D = ( x,x,..,Xx ) Where

.-Ii’ = (nlLEw(l.l)lv n2L‘EW(2.0,s sy nbfw(b.i),! Q"OI) iS a l X (b2k + no) vector.

2.3. Second-order model

Consider the second degree polynomial model

Yu=Bo+ Z Bexw + Z ﬂibxzuz + Z BirXuXpy + &84y u=12,..,n (2.3)

i=1 i=1 Li'=1

i<V

where y, is a response variable, f, fi, f and [, are unknown parameters with

i'=12,..,t i<i,and g, is an unknown and unobservable random error with mean

0 and variance o? . In matrix notation, we can write (2.3) as

Y=Xg+¢

Chapter 2. Properties of Box-Behnken designs 11



where Y is an n x 1 observation vector, X is an n X p known matrix, fisa p x 1 vector
of parameters, and g is an »n x 1 vector of unknown and unobservable random errors

with mean 0 and variance ¢2/,,, Here, p=14+2v +v(v —1)/2,
2

2 2
X= (-l-ns £1n7£2, siw £1 y£2 g oo ,lv ,&1.&2, l]£3, ces gy llv) (2.4)

where 1, is an n x 1 vector of unity elements, x? = xo0x;, XX, = x0x», and

B = (Bos Brs Bas -+ s Bys Bras Bazs -+ s Bovs Brzs Buzs s By —1,) (2.5)

2.4. The coefficient matrix

For the second-order model (2.3), the X matrix in (2.4) can be partitioned as
X= (lm Xl! XZ! X3)

where X), X; are n x v matrices, and X; is an n x v(v —1)/2 matrix. The coeflicient vector

B in (2.5) is partioned correspondingly as
E = (B09 é]” ézlv ES')

where f, B, are v x 1 vectors, representing first and pure quadratic regression coeffi-
cients respectively, and B; is a v(v —1)/2 x 1 vector, representing the mixed quadratic re-

gression coefficients. We then rewrite model (2.3) in the partitioned form as
Y=1By+ X1 + Xy + Xyfy + & (2.6)

The properties of the design are determined essentially by the properties of the coeffi-

cient matrix of the normal equations for the model (2.6). This matrix is given by
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n -l'Xl _l_’Xz _l_,X3

Xl'l Xl’Xl XI’XI XI'X3
XX=
X1 5% XX XX

XSI-l» XBIXI X3'X2 X3,X3

It is proved in Section 2.5 that for a Box-Behnken design constructed by using a PBIB

design with m associate classes, denoted by PBIB(m), X’ X has the following form

n QI r2k ’ (_)I
0o 21 o 0
xXx=| . (2.7)
r21 0 2°(NN) O
0 0 0 G

In (2.7), the form of the matrix G can be described as follows: If we label the rows and
columns of G by (&' ) (i, =1,2,...,v,i<i ), and the general element of G by

8iryici~ then

8w w = A2% if treatments i and # are y -th associates (1<y<m)
and

giri-i~=0 1f (") # (i”i” ), ie. all off-diagonal elements are zero. So, given
the values of parameters (v, r, b, k, 4,, 4, ... , 4») of the incomplete block design PBIB(m),
and the structure of the incidence matrix, we can derive the X’X matrix of the second-
order model which contains information about the estimability of the parameters in the

second order model (see Section 2.5 for discussion on the estimability).
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2.5. Derivation of the coefficient matrix

We first list some properties of the factorial structure and of PBIB(m) de-
signs which will be used to obtain the general form of X'X

Property 1. For the 2F x 1 vectors, F,,,w = 1,2,...,k, introduced in
Section 2.1, we have

(1) F,oF, = 1lp allw

(2) F. -Fyu =0 w#uw

(3) 1y - Fy =0 alw

(4) Yok - (Fyuo Fy) = 2F alw

(5) 1_'21: : (Fw o le) =0 w # w’

(6) F. -(Fy o Fyn) =0 alw, v, v

(1) (FuoFy)(FuynoFym) = 28 w=w, v =w"orw=v" v'=uw"

= 0 otherwise
where 1.« is a 2F x 1 vector of unity elements, 0 is a 2¥ x 1 vector of zeros.

Property 2. For the PBIB(m) design with j = 1,2,...,b, 1 = 1,2,...,»
and parameters (v,b,r,k,Ay,...,An) , the elements of N’ = (n;;) satisfy

b b
(1) Yonji= "nji=r
=1

i=1
b b
(2) Z njnjy = Z *njin;e = A, if i,i’ are y'* associates
=1 =1

b
where the ) _ * notation denotes summation over non-zero elements (this
=1
notation will be useful later; see property 3).

In what follows we need to sum over terms like (n;iFy;)) (njirFu(,v)) or
b

(njiFu(i) (nji Fugiry © njinFugim),- -+, so on. By introducing the ) * no-
=1

tation, (see above), we exclude terms in which at least one of the nj; - terms

is zero. This simplifies the computation of the different parts of X'X, be-

Chapter 2. Properties of Box-Behnken designs

14



cause we can take advantage of the following

Property 3.
b

b

(1) Y _*is equivalent to

J=1

j=1

(2) w(y,?) takes values ¢ = 1,2,---,k, greater than zero.
(3) w(y,2) is less than w’ = w(y,¢") when ¢ < ¢’ since nj; appearing in
b

E * must be one.

i=1

Using the notation introduced in Sections 2.2 and 2.3 we now write X'X

as

11 X, 1X; 1X3

vy - | XL XX XiX, XjX
X1 X[ X2X, XBX
’ 1 1 !
[ ,
L1 i J-zl 1z, l‘(£|°£1) . l'(;‘o_g‘) J_'(;lo_g_z) .. l’(lt-l°£t)
z3L !;El 1%, Zi(zq024) . Z)(Z403,) Zilzy0z2q) cer Zylzgq0zy)
;"1 i’lgl . “I‘ !;(Il._{l) oo I‘(z‘°£‘) '!;(51052) . 5;(!6-1"!:)
CRESVE I RS (1022 (@)02))(2g01y) --- (zr02))(e0oz)] (g102,)(z1027) oo (z102,)(z4q02,)

(z,02,)1

Chapter 2. Properties of Box-Behnken designs
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2102201 | (z1022)2; -0 (102)'sy| @rozp)erozy) ... (gy0zy)laiozy)| (2y02y)(e;02g) ... (g1029)(z4.q02,)
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Then, making use of property 1, property 2, and property 3, we obtain
the following expressions for the various section of the X’X matrix:

(a) 11
ﬂ = b2k + Ng="n
(b) 1'X;
b b
Yz = U(njiFuis) = "ni(l- Fugy) =0 all:
j:l j=1
(C) U'X,
b
L(ﬂ o &) = 1 (nJ,Fw(J, i) (o} nJ,Fw(J,)) all 2
i=1
b
= > *ninilll - (Fugi © Fuga)l
=1
b
= Y 'nu(ll) =r2*
i=1
(d) 1'Xs

b
1’(&0&) = Zl_’ (nj,-Fw(j,,-) o nj;: w(j,i')) ’i,i' = 1,2, I 7 ? <1
-1
b
= Z*njinj";[l_,- (Fw(j,i) (o] Fw(j,i’))]
=1

b
= E"nj.-nj,v[l_'- (Fw o] le)] =0 w<w
J=1

(e) XiX

For i =1' (diagonal elements)

—

b
(z:z‘) = Z n]t w(j, l) n]:Fw(j,i)) 1= ]., 2, N 4
i=1

= Z thth( w(jg) Fw(].t))

j=1

Chapter 2. Properties of Box-Behnken designs
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Z*n]’;(F,:, . Fw) = 1‘2k

b
J=1

For ¢ #14' (off-diagonal elements)

b
(f_:ﬂ) = Zn,, w(j,3) (n_,,: w(],')) i,i’=1,2,...,l/, i;éi’
=1

b
= Z J‘nJ' w(J i)’ Fw(], '))

*njin;o(Fo, - Fu)=0 w#u

I
i Me-

It follows that (X]X;) =r2%.-1,,, .

(f) XiXe

b

zi(zeozy) = Y (niFu(q) (njiFugy © njoFugin) all i, 7

=1

= Z *njino[F, w(jyi) ° (Fu(iiny © Fun)]

= Z *njino[Fl - (Furo Fu)l =0 all w, w'

(g) XiXs

.x_:(ﬂ (o] w g Z(njiFw(j',')),(nji' w(j,i’) (o] nj,'n w(j,i”)) i, i/’ 'I:”

=1

= Z n_,,n],:nJ,u[ w(Gi) (Fw(J i’) o Fw(] ‘n))]
= Z nJ,nJ,an,u[F ( w' © F n)] =0 'LU < w
i=1

(h) XX,

- Chapter 2. Properties of Box-Behnken designs

1,2,...
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For ¢ =7

b

(zioz)(ziox) = Y (njiFugs o njiFuiy) (njiFugsy o njiFuiy)) alli
1=1

b
= z ‘njtnjl w(j,1) o Fw(J,z)) (Fw(J i) o Fw(],t))

=1

<.

b
= Z *nﬁ(Fw o] Fw),(Fw 0 Fw)

1=1
b
= E*n,. 1) = rok
i=1
For 1 # 7
b
(zi0z;)(zpozy) = E nji (i) © thFw(J,t)) (th’Fw(Jﬂ’) O Tbjir (4, t‘))

b
= Z 'nj,-nj,-/(Fw o Fw)'(er o le)
1=1

= Z *n;np(l'-1) = /\.,2" i, i’ ' associates
5=1

It follows that XX, = 25(1 4+ A\ By + \By + - -+ + A By,) = 25(NN')
where B, is the 4** association matrix of size v X v

(1) X2Xj3

b
(ziozi)(zwozm) = Y (njiFuii 0 njiFugs) (njo Fugin 0 njinFugm) 7

1=1

/4

<1

b
= Z *njinji’nji”(Fw [o] Fw)’(le (0] Fwn) w, < w”

J=1

b
= Z*n]’,"nﬁ/nﬁu[l—l- (le [e] Fw")] —_ 0
j=1

() X3Xs3
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For :=1¢" 7' =1i" (diagonal elements
bl

b
(zioze)(zioze) = D (njiFuis) © nyirFuiin) (njiFus o nyirFuge) 1 <7
=1
b
= Z *nj,-nj,-:(Fw o le)’(Fw (o) le) w<w
=1

b
= Z*nj;n,-,v(Qk)=/\.,2k i, i’ ~'associates
=1

For ¢ #1i" or i # 1" ( off-diagonal elements )

b
(zioz)(zim o zam) = D (njiFuii) © njwFugiin) (njinFuiiry © njim Fugigm) i <, i
=1

<

b
= Z‘njinji’nji”nji"’(Fw (o] le)'(qu [e] me) w < w,, w” < w"’
Jj=1

= 0

Now, let X3X3 = G. Then G is a diagonal matrix with (i7’,72') element
equal to A\,2* if 7 and i’ are 4** associates, and zero for all off-diagonal ele-
ments.

The results (a) - (j) lead then to the form of X’X as given in (2.7). Because
the notation is somewhat complex we illustrate the general derivation given
above by an example. Consider the Box-Behnken design using the PBIB(2)
design with parameters, v =6, r =2, b=3, k=4, \; =2, A, =1 and
treatment pairs (1,4), (2,5), and (3,6) being first associates with A\; = 2 and
the remaining treatment pairs being second associates with A, = 1 . This
PBIB design has incidence matrix

1=
I

1
[ T SO SR o T T Y Y
—_— O = e O
—_—— O = O

(see Design S1 of Clatworthy, 1973).
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Then,

N =

110110
101101
011011

From this, the design matrix D with 3 center points can be obtained as
follows:
D = (ﬂ’ﬂv""&)

niFuay) mzfua) 0 n1aFu1,4) PisFuqs) 0

— n21Fw(2,l) 0 n23Fw(2,3) n24Fw(2,4) 0 nzer(z,e)
1} na F, w(3,2) nasF w(3,3) 0 nas F, w(3,5) nasF, w(3,6)
03 03 03 03 03 03

where z; is a (3-2* + 3) x 1 vector, i =1,2,---,v

Now, consider z;z; when ¢ = 2, ' = 5.

3
a:’2 Ty = Z(nszw(jﬂ))'("jst(j,S)) + 030

=1
= (m2Fu2) (MsFos) + (n22Fuea) (nasFues) + (ns2Fue) (nasFus)
= (nm2Fu(,2)) (M5 Fu(,s)) + 00 + (n52Fuz2) (nas Fus,s))
= nnis(FF) + n32n35(F1'F3)
= 1x(0)+1x(0)
=0
Then, conditions (1), (2) and (3) of property 3 are satisfied since

3 '
D *(niaFuia) (RisFuis)) = (n2Fuq,2) (misFua,s) (a2 FuE) (nasFugs,s)

) =n11 + nyg =2 w(1,5) = nyy + N1z + N1y +nys =4
)=nzp =1 w(3,5) = nz2 + naz + nzs = 3

b
which implies that all w(j,¢) appearing in Z * are greater than zero. And
Jj=1

w(1,2) is less than w(1,5), And w(3,2) is less than w(3,5) which implies
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b
that w(j,2) is less than w(7,5) in D_*.

i=1
Let us consider now zjzy wheni =1, ¢’ =3.
3

gy zs = Y (niFuiy) (njsFuis) + 0508

i=1
= (nu1Fuan) 0+ (na1Fue)) (n2sFues) + 8 (nssFues)
= (naFuey)) (nsFuea)
= FF/=0
Also conditions (1), (2) and (3) of Property 3 are satisfied, since
3
g "(ni1Fuiy)) (njsFuga) = (naFue) (nsFues) = FF,

and

’LU(2, 1) =N = 1 W(2,3) =N + Nogz = 2

Chapter 2. Properties of Box-Behnken designs
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2.6. Estimation of parameters

We now consider estimability of the regression coefficients in model (2.6). For
purposes of this discussion we define ', = (B, Bu, B, ..., B..). Clearly, we can see from
(2.7) that the estimates of the parameters f, are orthogonal to both the estimates of §°
and to the estimates of the parameters f; , and the estimates of §°; are also orthogonal
to the estimates of the parameters f; in the second-order model.

Concerning the estimators for these three sets of parameters we can draw the following
conclusions:

(1) X", is of full rank v since rank ( /,., ) = v. Accordingly, we get uniformly minimum
variance unbiased estimators (UMVUE) for §, , namely él =(X'X)'X'Y.

(i1) The rank of X;'X; is less than or equal to v, say s, since rank ( NN’ ) = s <v. This
implies that we have s estimable functions among Sy, B2, ... , f... For a given PBIB(m)
design the rank of NN’ can be determined easily from general results about the charac-
teristic roots of NN’ (see for example, Raghavarao, 1971). Of course, only if rank
(XXN')=vcanall (i=1,2,..,v) be estimated.

(i) Now we consider the estimates of the coefficients 8, , i,/ =1,2,...,v,i<i . For
the PBIB(m) design we have 4,>0 (y=1,2,..,m) with at least one 4,>0 . If all
4, > 0 it is obvious that Xi'X; is of full rank v(v —1)/2 since then rank (G) = v(v—1)/2.
As a result, we obtain the UMVU estimator of f5 such that é; = (X' X3)'Xy'Y , which
implies that all f, are estimable, i,/ =1,2,...,v,i<i . If 1;=0 then all elements
g«.» =0 corresponding to those treatments i, i/ which are é -th associates, which implies

that the corresponding parameters 8, are not estimable.
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2.7. Example

Consider the Box-Behnken design with the cyclic PBIB(2) characterized by the

parameters v=35,r=2,b=15,k=2,1, =1, 1,=0, and the following association scheme

.ass l.assoc. 2.assoc.

1 3,4
2 4,5
3 5,1
4 1,2
S 2,3

( Design CI in Clatworthy, 1973 )

with the following incidence matrix N and its transpose N’ :

10010
01001
N=|10100 |
010160
00101

2,5
3,1
4,2
53
1,4

Then we get the following design matrix with n,=3
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(El(_)EzQQ

0 F 0K 0

0 0 F 0L
D=

E Q0 0 FK O

0 F 0 0 5

0; 03 03 03 Q5

where F, is a 4 x 1 vector with elements of +1 and -1, w = 1,2 withe.g, /i’ = (1,

L,-1,-1),E' = (1,-1,1,-1), Qisad4x1 vector of elements being zeros, and Q; is a
3 x 1 vector of elements being zeros.

Then, for the model

5 5 5
2
Yu=Bo+ Zﬂmﬁ Zﬁzzxzu + Z BuXuXpy + € u=12,..,23,
i=1 i=1 Li=1

i<t

We have
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Bo By B2 By By Bs Bu By B3z Bas Bss Bz Bz Bia Bis Pz Bau Bas Bau Pas Bas
230 0 o0 0 0|8 8 8 8 80 O O O O O O O O O
o|8 0 0 0 0OJO 0 O O OO0 O O O O 0 0 0
0|0 8 0 0 O0J]O0 O O O OJO O O O O O O O o0 O
o|0 o 8 0 0JO 0 O O O0|JO O O O © O O O0 0 O
ojlo o o 8 0Jj0 o 0o 0o O[O O O O O O O O o0 O
0/0 0o 0 0 8Yy0 0 0 O OfO O O O O O O O0 o0 o
8|0 0o o 0 0|8 0O 4 4 0|0 O O O O O O O 0 O
8|0 0 0 0O 0OJ]O 8 0O 4 4|0 0 O O O O O O O O
8/o0 o o 0 0)]4 0 8 0 4|0 0O O O O O O0 O0 0 O
) 810 0 0 0 0|4 4 0 8 0|0 O O O O O O O O0 O
Ax= 8|0 0 0 0 O|0O 4 4 0 8]0 0 O 0 O O 0 O0 0 o0
co|jo o o o ofo o o o o|j]o o 0 o0 o0 0 0 0 o0 o0
o|jo o o 6 o(f0 o o 0o O|O 4 0 O O O O O ©O0 O
o0)jo c o o oo o o 0o o0o|O O 4 0 O O 0 O0 0 ©O
/0o 0o 0o 0 0f0 0o o 0o OojO 0 O O O O O O O O
6|j0o o 0o 0 0(0 0 O O OlO O O O O O O O O0 O
oo o o o cjo o o 0 0|0 O O O O 4 0 O0 O0 O
o|o o o o o(fo o o 0 0|0 O O 0 O 0 4 0 0 O
oo o 0o o 0|0 0 0 0 0Ot0O0 0O O O O O O 0 o0 O
o0jo o o o oo 0o 0o 0O O]J]O O 0 O O O 0 O 4 0
oo o o 0o 0J0 0 0 O OfO O ©0 O 0 0 O0 0 o0 O

The form of X’ X implies immediately that all pure quadratic coefficients are estimable

since rank (NN')=35 and the mixed quadratic coefficients i, Bis, B, B2s, and Sy are

estimable, but B, Bis, B, B, and fes are not estimable.
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2.8. Conclusions

In deriving the general form of the coefficient matrix X’ X of the normal equations
for estimating the parameters of model (2.3) with a Box-Behnken design we have estab-
lished the following results:

(i) For all f; to be estimable the PBIB(m) design has to be chosen such that rank
(WN)=v;
(i1) For all 8, (i <{') to be estimable the PBIB(m) design has to be chosen such that all

AL>0(y=1,2,..,m).
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Chapter 3. Box-Behnken designs using fractional

factorials

One practical difficulty with the Box-Behnken design, using an incomplete block
design together with the full 2* factorial, is that the number of design points increases
rapidly as k, the block size increases. Instead of using a full factorial, Box and Behnken
(1960) advocate using a fractional factorial, say a % th fraction of the 2* factorial, hence

reducing the number of design points from 52%+ 1 to b2*-/+ 1 . Box-Behnken designs

using fractional factorials are constructed by combining incomplete block designs with
2k-! fractional factorials. The procedure of constructing such Box-Behnken design is
essentially the same as that described in Chapter 2, that is by means of £ generators
F, B, .., F, . The problem of choosing these generators depends on the resolution of
the 2%~/ fraction. Generally speaking, we choose F, F,, ..., F,_; as the first kK — ! main
effect contrasts of the 2%~/ factorial. The remaining F ’s, i.e. Fi_ji1y Fi—142, ... , Fi are
obtained by appropriate (to be described in subsequent sections) element-wise multipli-

cation of Fj, 3, ..., Fy_, . It will be shown that the F ’s obtained in this way satisfy the
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properties given in Chapter 2. We now explore the possibilities of constructing Box-

Behnken designs using fractional factorials of resolution III, IV, and V.

3.1. Resolution III Case

We first consider the smallest fraction which is a main effect plan or resolution 111
design. The basic property of a resolution 111 design is that main effects are confounded
with two-factor interactions. The main effect plan is obtained by specifying the so-called

identity relationship. For the 2*-/;; we have

I=E,=FE,=-=E;= all possible generalized interactions

where each of the terms E,, E,, ... consists of at least 3 letters. The E ’s refer to inter-
actions for the 2* factorial. Now, to choose the generators F, F, ..., F; for the Box-
Behnken design we choose for F, F, ..., F,_, the first k—/ main effect contrasts
F\, F,, ..., F,_ for the 2~/ factorial. The remaining F;_,., Fx_;+3, ... , Fx are determined
by the alias structure given by the defining relation. More specifically, the E; ‘s represent
interactions of the 2* factorial, represented by, say, F,o0F,0F, , etc. Then we take each
of Faucivry Fx-1s2y ..., Fi as one of alias of the main effects Fi_;4q, Ficis2y .00y Fr , TE-
spectively. A consequence of this is that (6) and (7) of Property 1 (see Section 2.5) do
not hold, ie. we have for some w,w',w” ,w” that F,=F,oF,- and hence
F.«(F.,F,-)#0, and (F.oF,) ¢(F.-oF,~)#0 . Consequently, the elements of
Xi'X; are no longer 0 and the off-diagonal elements of X;'X; are not 0. In this case, we

can write X’ X as follows:
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Xx=| (3.1)

where K now is not a 0 matrix and G is not a diagonal matrix. This form of the X'X
matrix tells us then that the estimates of ;= (f,, f.')’ are orthogonal to the estimates
of (', B+')’. Thus, using a resolution III design instead of the full factorial does alter the
properties of the estimators in the sense that El and _fj; are no longer uncorrelated, and
the fi,i,(i < ') are no longer uncorrelated. Now, we illustrate the construction of a Box-.

Behnken design using a resolution III fraction in example 3.1.
Example 3.1.

Consider the Box-Behnken design using a resolution III design with the PBIB(2)

based on a Regular group divisible association scheme, with parameters

v=_8,r=5,b=8,k=35,1,=2,1,=3, and the following association scheme
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Q.assoc. l.assoc. 2.assoc.

1 5 2,3,4,6,7,8
2 6 3,4,5,7,8,1
3 7 4,5,6,8,1,2
4 8 56,7,1,2,3
5 1 6,7,8,2,3,4
6 2 7,8,1,3,4,5
7 3 8,1,2,4,5,6
8 4 1,2,3,5,6,7

( Design R134 in Clatworthy, 1973 )

with the following incidence matrix /N and its transpose N’ :

10011110 10111100
01001111 01011110
10100111 00101111
11010011 10010111
N= . N-=
11101001 11001011
11110100 11100101
01111010 11110010
00111101 601111001

For the 25-%;,; fractional factorial, we specify the identity relationship as
I = FoF.oF, = FioFioFs = EoFoF.oF;s . To obtain the generators F, B, ..., Fs, we choose
for £, B, F the first 3 main effect contrasts F,, F,, F's for the 2°-2 factorial. The re-

maining [, 5 are determined by the defining relation given by F4 Fs such that
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E+s=FoF, Fs=FoF,, respectively. These main effect contrasts can be written spe-
cificaly as E'=(-1,1,-1,1,-1,1,-1,1), E' =(-1,-1,1,1,—-1,—-1,1,1),
E=(-1,-1,-1,-1,1,1,1,1). Thus, E=01,-1,-1,11,-1,-1,1), and
E=01,-1,1,-1,-1,1,-1,1). Also for w=4,w' =1,w” =2, F/ ¢« (FloF)=F'F,=8
, not 0. Similarly, for w=2w=3w" =4w"” =35,
(F2oF) o (FsoFs) = (FroF) o (FioFyoFioF;) = (FroF) « (FoF;) =8 , again not 0. In order
to obtain the Box-Behnken design matrix, we replace the first 3 unity elements of each
row by the main effect contrasts F; (i = 1,2,3) of the 2* factorial. We replace the re-
maining 2 unity elements of each row by F,, F's Then we obtain a Box-Behnken design

matrix using fractional factorial of resolution 111, i.e., 25-2;, , adding 3 center point

EFE 0 K E E E Q0 0
O FF 0K E EE O
0 0 F 0 K EEE
E Q0 0 LFKK 0 EELE
D=\E FKE 0 Q0 E 0 K K

EEE Q0 Q0 E QF
EEEE QO Q0 FE 0
O F EEE QO 0 F
0; 03 0; 0; 03 03 03 O

where 0 is a 8 x 1 vector of elements being zeros.

Then, for the model

8 8 8
2
Yu=bBot+ Z:thiu+ Zﬁaxtu + Z Byxyxp, +e&, u=12,..,67,
=1 i=1 =1

i<t
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We have

67 O 401 ¢
0 40171 0 K

XX=
401 0 8(NN) 0
0 K 0 G
with
g Bi2 B3 Bis Bis Pis Bir Pis Bz Bas Bas By By Bas By Biss Big Byr B Bas - - - By
! 0 0 0 0 0 0 0 0 8 0 8 8 0 0 8 0 8 8 0 0
B,
0 0 8 O 8 8 0 0 0 0 O 0 0 8 0 O 0 0
g
3 0 0 0 8 0 8 8 0 0 8 0 O 0 0 0 0 0 0 0 0
Bs
K= 8 0 0 0 8 8 0 0 0 0 8 0 8 0 O 0 0 0 0 0
Bs
0 8 0 0 0 0 8 8 0 0 0 8 0 0 0 0 8 0 0 0
Be
8§ 0 8 0 O 0 8 O 8 0 0 O O O O 0 O 8 0 0
B
7 8 8 8 0 0 O 0 0 0 8 0 0 0 0 8 0 0 0 0 0
B
B 0 8 0 8 8 0 0 0 8 0 0 0 0 0 0 8 0 0 0 0
and
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x2/24 0 0 0 0 0o 0o 0 0 0 O
x3] 0 24 0 0 0 0 0 0 0 0 O
x4| 0 0 24 0 0 0 0 0 0 0 ©
x| 0 0 0 16 0 0 0 0 0 Q0 O
x| 0 0 0 0 24 0 0 0 0 0 ©
x2/ 0 0 0 0 0 24 0 0 0 0 0O
xsl 0 0 0o 0o 0o 0 24 0 0 0 o
x3/ 0 0 0 0 0 0 0 24 0 0 0
x4l 0 0 0 0 0 0 0 0 24 0 0
x5 0 0 0 0 0 0 0 0 0 24 0
x%[ 0 0 0 0 0 0 0 0 0 0 16
= x93/ 0 0 0 0 0 0 0 0 0 0 O
x| © 0 0 0 0 0o 0o 0 0 0 O
x4/ 0 0 0 0 0 0 0 0 0 0 O
x5/ 0 0 0 0 0 0 0 0 0 0 O
x%x[ 0 0 0 0 0 0 0 0 0 0 O
x5/ 0 0 0 0 0o 0o o 0 8 0 O
x5/ 0 6 0 0 0 0 0 0 0 O 8
xs|] 6 0 06 0 0 0 O 0 O O O
x| 0 0 0 0 0 0 0 0 ©6 8 O

From the X’X matrix, we can see that the estimates of 2 = (f,, fu, Ba, ...

0

©c o o o o o oo o o ©

(%]
s

c O O O © o o

0

O O O O o o o o o o ©

(%]
H

o O o o o

0

o O O O O o o o o o o

0

o O O O o o o O O o o o o

[ %)
H

o

0

O O o o o o o o o ©

X2 X13 X14 Xj5 X16 X17 X183 X23 X24 X35 X6 X27 X2g X34 X35 X3¢ X37 X3g X45 .

0 0 0
0 0
0 0 O
0 0 O
0 0 O
0 0 0
0 0 O
0 0 O
8 0 0
0 0 0
0 8 0
0 0 0O
0 0 oO
0 0 O
0 0 0
0 0 8
16 0 O
0 24 8
0 8 24
0 0 O

, ﬂgs)’ are

orthogonal to the estimates of (8, By')’ = (Bi, B2, ... , Bs, B2, Pus, ... , Bs). However, 2, and

B3 are no longer uncorrelated since K is not 0 matrix. In G, some of off-diagonal ele-
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ments are not 0. For example, g, , defined as the element of row x; and column x3
in G, is not 0, because the vector for xs is given by
xoxs= (0, £F,0,0,0,0, BEE, FiF,0,)', and the vector for xy 1is given by
E£E, 0,0,0, BF, 0,04, g3 then is obtained by
gy = (x2)'(x37) = (BE) (BE) = (BEE) = (BEE)=F'F,=8. Thus the estimates of

e
O
I
]
Py
©
1o

mixed quadratic coefficients S, i, =1,2,...,8, i</, are no longer uncorrelated each

other.

3.2. Resolution IV Case

Next we consider using a resolution 1V design, in which two-factor interactions are

confounded with each other. For the 2*-/;, we have the identity relationship

I=E =FE, == E/= all possible generalized interactions

where each of the terms E,, E,, ... consists of at least 4 letters. The E; s refer to inter-
actions for the 2* factorial, represented by, say, F,oF,0F,0F, , etc. The procedure for
choosing the generators Fy, F, ..., F; for the Box-Behnken design is the same as that for
the resolution III case. That is, we choose for F, F,, ..., F;_, the first k — [ main effect
contrasts Fy, Fy, ..., F;_, for the 2%~/ factorial. The remaining Fy_,.1, Fy_143, --. , Fi are
determined by the alias structure given by the defining relation. Then we regard each
of Fy_is1y Fr-t142y ..., Fi as alias of the main effects Fy_, .1, Fy- 143, --. , Fx , respectively.
A consequence of this is that (7) of Property 1 (see Section 2.5) does not hold, i.e. we
have for some w, w',w” ,w ™ that (F.oF,) ¢(F.-oF,-)#0 . For example, we con-
sider 24-1,,, i.e. the fractional factorials of resolution 1V with 3 contrast vectors for main

effects F,, F; and F; which are orthogonal to each other, and F, being aliased with three-
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factor interaction FoF,0oF;. These main effect contrasts can be written as
E=(-1,1,-11,-1,1,—-1,1), E=(-1,-1,11,-1,-1,1,1),
E=(-1-1,-1,-1,1,1,1,1), and KL =(FoFoF)=(-1,1,1,—-1,1,—1,-1,1).
Thus for w=l,w=2w"=3w"=4,
(FioF,)" « (FsoFy) = (FioFy)' « (FoFoF,0F) = (FioF,)' « (FioF;) = 8 is not 0, which implies

that the off-diagonal elements of Xi'X; are no longer 0 (see (j) X';.X; in Section 2.4). In

this case, we can get an X’X matrix similar to (2.7):

n QI rzk—ll/ Qr
o 271 0o o0
XX=1 i k=1 (3:2)
2271 0 277(NN) O
0 0 0 G |

except that G is not a diagonal matrix.

From the form of the X’X matrix we can see that the estimates of §, and f, have the
same properties as those with the full factorial. But the estimates of the mixed quadratic
coefficients f§; do not have the same property as those with the full factorial since G is
no longer diagonal. In addition, for some PBIB designs some columns of G can be a
linear combination of other columns with the result that G is less than full rank (Table
3.1). This means that for some Box-Behnken designs even when all 4, >0 we may not
be able to estimate all mixed quadratic coefficients. Thus it may not be advisible to use
a resolution IV design. But for some Box-Behnken designs with PBIB(2) when 4, >0,
4,>0, G is of full rank (Table 3.2). Then we can estimate all mixed quadratic coeffi-
cients such that _@ = G(Xi'Y) , which implies that all mixed quadratic coefficients are
estimable. In these cases the number of observations can be reduced greatly by making

use of fractional factorials.
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Table 3.1. PBIB(2) designs in which G is of less than full rank

DesignNo. t r kb A A4

SR35 6 64 9 3 4
R94 6 44 6 3 2
733 104 410 1 2
LS26 9 44 9 1 2
S18 8§ 36 4 3 2
T57 1036 5 3 1
S$53 12 2 8 3 2 1

Table 3.2. PBIB(2) designs in which G is of full rank

DesignNo. t rk b A A4

SR65 9 6 6 9
LST2 9 46 6
171 10 7 7 10
R172 9 77 9
S5l 10 4 8 5
R186 12 8 8 12

3
3

S
6
4
6

4
2
4
5
3
S

It does not appear from the Table 3.1 and Table 3.2 that the property of G, i.e. whether

it is of full rank or not, is associated with any particular type of PBIB(2) design having

Ai>0and 4,>0.

Example 3.2.
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Consider the Box-Behnken design using a resolution 1V design with the PBIB(2)

based on a

v=9,r=4,b=6,k=06,1, =3, 1,=2, and the following association scheme

( Design LS72 in Clatworthy, 1973 )

Latin

Square

1
2

I

~ AN

0.assoc.

type

Lassoc.
2,3,4,7
1,3,5,8
1,2,6,9
1,5,6,7
2,4,6,8
3,4,5,9
1,4,8,9
2,5,7,9
3,6,7,8

association

.asso
56,8,9
4,6,7,9
4,5,7,8
2,3,8,9
,3,7,9
1,2,7,8
2,3,5,6
1,3,4,6
1,2,4,5

with the following incidence matrix N and its transpose N’ :
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01101

0
0
1

1
1
1

S o O

1
1
0

0
1
1

N =

scheme,

with  parameters
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For the 26-%, fractional factorial, we specify the identity relationship such that

I = FoFoFoFs = BoFoFwokFs = FloFEoFoFs . To obtain the generators F, B, ..., F, we

choose for £, E, E, Fs the first 4 main effect contrasts Fy, F», Fs, Fs for the 26-2 facto-

rial. The remaining F, Fs are determined by the defining relation given by F's, F's such

that Fs = FioF0F, Fs=F:0F0F. , respectively. we then replace the first 4 unity

elements of each row by the main effect contrasts F; (i = 1,2,3,4) of the 2¢ factorial. We

replace the remaining 2 unity elements of each row by Fs, F's Then we obtain a Box-

Behnken design matrix using fractional factorial of resolution IV, i.e., 26-2; , adding 1

center point such as

0 0 QKK B EEELE
EEE Q0 0 0EKLELLEL
B E B E E E 0 00
D=1 0 E E 0 K E 0 E K
E QLEEQLELE QL
EE O 5 E 0 E E O
0 0000 O0O0O0 O

where L. w=12..,6 is a 16 x 1
F=01111111-1,-1,-1,-1,-1,-1,-1,-1),
E=11,1,1,-1,-1,-1,-1,1,1,1,1,-1,—1,—-1,-1),
E=(11,-1,-111-1,-11,1,-1,-1,1,1,—1,-1),
E=(,-11,-1,1,-1,1,-1,1,-1,1,-1,1,-1, 1, -1), and
Fi= FoFoF, Qis a 16 x 1 vector of elements being zeros.

Then, for the model

Chapter 3. Box-Behnken designs using fractional factorials
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9 9 9
Yu= BO + Z Bixw, + Z ﬂiixz'u2 + Z ﬁii’xiuxi'u + &y, u=12,..,97,

i=1

We have

with

X12
13
X14
X1s
*16
X17
X138
X19
X23
X24

Xx25

X9

X312

H
(2]

o O O O O o o o o ©

i=1

X6 X17 X183 X19 X33 X4 X35 - -

Lir=1

i<t
[ 97 ¢
0 6417
XX=
641 O
0 0
X13 *14 X5
0 0 0 0 O
48 0 0 0 O
0 48 0 0 O
0 0 32 0 O
0 0 0 32 0
6 0 0 0 48
0 0 0 0 O
6 0 0 0 o
0 0 16 0 O
0 0 0 0 16
le 0 0 0 O
0 0 0 0 16

641
0

16 (NN')

0

o O o O ©

0

0

0
0
0

32

QO
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0
0
16

16

48

Q © ©

0 0
0 16
0 0
0 0
0 0
16 0
0 ¢
0 o
0 0
32 0
0 48
0 0

. Xgg

c o o o o

o O o o o

48
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From the XX matrix, we obtain UMVUE for first order coefficients f,. We have 5
estimable functions among pure quadratic coefficients fi, fz, ..., fs since rank

(NN') = 5 with

(S
[3S JEN 5 B 2N
NN
[\ I S |

3
(AN)=]2 3
2

w
W NN
NN W
W W W
N W N
[ 5 ZE S T SO 98 ]
HONN W NN
w w
w

For example, Bi, — Bss — Bss — Bss — Bw, B2 + Bss + Bas, Bz + Bos + Bos, Bas + Pss + Bes, and
B — Pss are estimable functions. In G, some of off-diagonal elements cannot be 0 since
two-factor interactions are confounded with each other. For example, the vector for xis
is given by xioxs=(0,0,EF,0,0,FE,0) , the vector for x5 is given by
x0x = (0, K5, BE, B, 0,0,0), and gis,;; represents an element of row x;s and column
X in G. Then 815,53 can be expressed as
85,3 = (010%5) (x:00) = (BF) (B6) = (BEEE) (BE) = (BE) (BEF) = 16. So gis,» is not
0 due to the confounding of FFs with F2F5. However, for this Box-Behnken design using
LS72 design, all mixed quadratic coefficients S, i,/ =1,2,...,9, i</, are estimable

since G is of full rank, i.e. 36.
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3.3. Resolution V or Higher

Using fractional factorials of resolution V or higher leads to the same form of X' X

as for the full factorial, except that 2 is replaced by 2¢-/ ,i.e.,

n Q/ rzk"lll Qr
0 2 0 0
xx=| Y (3.3)
270 0 2Ty o
0 0 0 G

where G is a diagonal matrix with elements being 4,2*-/ if treatments i and /' are y -th
associates ( 1 <y <m ). It is noted that the off-diagonal elements of G are 0 since we
use fractional factorials of resolution V, which implies that for off-diagonal elements of
G a two-factor interaction F.E, are not confounded with other two-factor interactions
E,-E,- ,1e. (7) (F.oF,) (E.-oF,~) =0 of Property 1 in Section 2.5 holds (see (j) X'3X; in
Section 2.5). Thus, the estimates of all parameters have the same properties as for the
full factorial. But just as the full factorial, the resolution V design leads to a large

number of treatment combinations for even moderate values of k, and hence to large n.

3.4. Conclusion

We have seen in this chapter that using fractional factorials instead of full facto-
rials has the following consequences concerning estimability and properties of estimators

for the parameters in model (2.3):
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(1) For resolution III fractions g, and g, are no longer uncorrelated;

(ii) for resolution III and IV fractions the estimators for the elements in §; are no longer

always uncorrelated,;

(ii1) for some Box-Behnken designs using resolution IV fractions, not all elements of f;

are estimable;

(iv) fractions of resolution V or higher lead to designs with the same properties as dis-

cussed in Chapter 2.
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Chapter 4. Trend-free Box-Behnken designs

In this chapter, we are concerned with Box-Behnken designs in which treatments
are applied to experimental units (plots) sequentially in time or space and in which there
may exist a linear trend effect. For this situation, the objective is to find appropriate run
orders such that the estimates of the parameters in model (2.3) are not affected by such

a trend. These designs will be referred to as trend-free Box-Behnken designs.

4.1. Background

First, we consider experimental situations in which a run order is to be conducted
over time or space and in which there may be unknown variables influencing the exper-
imental process that are highly correlated with the order in which the observations are
obtained. In the experimental designs to be used in some time order sequence, the re-
sults obtained may be affected by the particular time order chosen, and we should take

this into consideration when the experiment is planned. Time order itself is seldom an
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important variable, but it frequently serves as a proxy for other important lurking vari-
ables such as temperature, humidity, changing operator, materials and so on.

We present a few examples to illustrate this point.

(i) In an experiment to evaluate the accuracy of a facility to calibrate meters for use with
sales of cryogenic fluids (liquid nitrogen, liquid oxygen, and so on), the meters at par-
ticular point in time represent the experimental units. It is known that the meters, i.e.
the experimental units deteriorate over time due to the temperature of the liquid being
measured (Joiner and Campbell, 1976).

(i1) if a batch of material is created at the beginning of an experiment and treatments are
to be applied to experimental units formed from the material over time, then there could
be an unknown effect due to aging of the material which influences the observations
obtained (Jacroux, 1990).

It might be suggested that the treatment assignment be made in random order to remove
a time effect. But it may be that randomization will lead to a run order that is undesir-
able. It is sometimes preferable in such situations to use a systematic , rather than a
randomized , ordering of the treatments. It is often possible to find an ordering which

will allow estimation of treatment effects independently of any polynomial time trends

or spatial trends that might be present in the experiment. Such an ordering of the
treatments is known as a trend-free design.

Experimental designs to be used in the presence of trends to avoid the complication of
analysis of covariance and to increase design efficiencies have been developed.

Cox (1951, 1952) initiated the study of trend-free and nearly trend-free designs for the
efficient estimation of treatment effects in the presence of a smooth polynomial trend.
He considered the assignment of treatments to plots ordered in space or time without
blocking and with a trend extending over the entire sequence of plots. Box (1952) and

Box and Hay (1953) in similar experimental sequences investigated choices of levels of
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quantitative factors. Hill (1960) combined the designs of Cox and Box to form new de-
signs to study the effects of both qualitative and quantitative facors in the presence of
trends. Daniel and Wilcoxon (1966) and Daniel (1976) provided methods of sequencing
the assignments of fractional treatments combinations to experimental units to achieve
better estimates in the presence of a trend in time. Bradley and Yeh (1980) introduced
trend-free block designs to eliminate a time effect for block designs in the presence of
common polynomial trends over plots within blocks. Cheng and Jacroux (1988) gave
some methods for complete and fractional factorial designs in which the estimates of
main effects and two-factor interactions are othogonal to some polynomial trends. Lin
and Dean (1991) gave some general results on the existence of trend-free and partially
trend free designs for both varietal and factorial experiments, and investigated trend-free

properties of cyclic and generalized cyclic designs.

4.2. Trend-free block designs

We review the trend-free block (TFB) designs introduced by Bradley and Yeh
(1980) to remove a time effect for block designs since Box-Behnken designs are con-
structed by combining incomplete block designs with 2* factorial designs. These designs
can completely eliminate the effects of defined components of a common trend over
plots within blocks. We use TF,CB for a complete block design free of a common trend
of degree p within blocks, and TF,BIB and TF,PBIB for similar balanced and partially
balanced incomplete block designs. The usual additive model for a block design with

polynomial trend is written in terms of plot position t and block designation j as
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v P

V=t 1215,’,1, + B+ azle“d)“(t) + gy (4.1)

j=1,..,b, t=1,..,k, where y, is the observation on plot t of block j; u, 7, §; are re-

spectively the usual mean, treatment, and block parameters; é}é),d:.,(t) is the trend effect

on plot t, with 6, being the regression coefficient of the ortho_gonal polynomial ¢(¢) of

degree a; the designation of the treatment applied to plot (j, t) is effected through indi-
cator variables, 6/, =1 or O as treatment i is or is not applied on plot (j, t), i=1, ..., v.

The model (4.1) in matrix notation is

Y=Xpu+ X1+ Xgf+ X0 + ¢ 4.2)

where Y is a bk x 1 observation vector, ' =(ty,...,7,), B =B ..., ), ' =(04,...,6,) .
Bradley and Yeh (1980) defined trend-free block designs such that a block design mod-
elled by (4.2) is trend-free if

R(zlu, B, 6) = R(z|u, B)

where R(z|u, B, 6) represents the treatment sum of squares adjusted for block effects and
trend effects and R(t|u, ff) represents the corresponding sum of squares with the trend
effect deleted (i.e. ignored). And they showed that a necessary and sufficient condition
for a block design to be trend-free is that each trend component is orthogonal to the

treatment allocations throughout the experiment; that is,

b k

> Y Shbd)=0, a=1,..,p, i=1,..,v

J=1lr=1
or, equivalently,
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X'X,=0

For example, we consider the balanced incomplete block design (BIBD) characterized

by the parameters v= 35, b= 10, k =3, r = 6, A = 3 with the given incidence matrix

=
I
M © O W =

1111110
1110001
1001101
0101011
060010110

000 |
110

1 01

011

1

1

1

And we assume that a linear trend (i.e. p=1) exists over experimental units within the

blocks, taking values ¢,(2) = —1, 0, 1. Now we assign treatments to plots within blocks

not at random (as is usually done) but in the following manner (where -1, 0, 1 refer to

positions 1, 2, 3, respectively, in a block):

block
blockl
block?

block3
block4
blockS
block6
block7
block8
block9
block10

Chapter 4. Trend-free Box-Behnken designs

ST T 2 - T o T o T N NN

U ® %® % om0

M T A O x x x & O O -

47



10 3
This design satisfies the condition Y Y 6/¢:(f)=0, for all treatments since
j=1r=1

10 3 10 3
Yoo =—1—1-14+141+41=0 , Y3 8()=0+0+0+0+0+0=0 |,

j=1t=1 J=lt=1

3
S YSh()=1-1-14+141-1=0 , S S6dN=14+0-1-14140=0
j=tt=1 j=le=1
10 3
3 305 () =1+0+0—1—1+1=0,
J=1t=1

or equivalently satisfies the condition X,'X, =0= (0,0, 0, 0, 0)’ since
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Thus, we obtain a balanced incomplete block design free of a common trend of degree
1 within blocks ( TF,BIB ). That is, each treatment is orthogonal to a linear trend ( for
more examples see Bradley and Yeh, 1980).

The selection of X, may be viewed as a two stage process. The first stage is the deter-
mination of a way of blocking specified by the incidence matrix N = X",X,; , and the
second stage is the allocation of treatments to plots within blocks. Then we have the
following properties of trend-free block designs:

(i) Let a’t be any estimable function of treatment effects for the block design. Then a't
is also estimable for the TFB design.

(ii) Let 7, and 7 be the least squares estimators of T under model (4.2) for the TFB design,
and the corresponding block design with within-block treatment randomization respec-
tively. Then var(a'z,) < var(a'?)

(iii) The ordinary analysis of variance sums of squares for treatments and blocks are
preserved and variation due to the trend may be removed from the error sum of squares.
These properties assures us that TFB designs will be optimal in comparison with the
analysis of covariance for the corresponding block design with treatments randomized
over plots within blocks.

Yeh and Bradley (1983) also have discussed the existence and construction of TFB
designs. Sometimes a TFB design does not exist, and this provides the motivation for
considering a nearly trend-free block (NTFB) design. For given design parameters,
v, b, k, n, ..., r, r. being the number of replications of treatment i, a block design under

model (4.1) is said to be a NTFB design of type A if

li=i| j=1t=1

P v b k . 2
2, 2| 2 2880
a=
is minimum among the class of connected designs with the same incidence matrix.
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Under model (4.1), the information matrix for a design is
C=R—-(1/k)NN' — (1/b)X' Xy X' X, 4.3)

where R = diag (r,, ..., 1), X is the bk x v matrix with }bjléj, (the number of times that
j=

treatment / appears on plot ¢, i=1,2,...,v, t=1,2,..., k) in row t and column i, and
X, is the bk x p matrix with ¢,(f) in row t and column a.

The matrix C in (4.3), obtained from the reduced normal equations for estimating the
treatment parameters in model (4.1), is central to the analysis and the efficiency of a
design. When the design is trend-free, C = R — (1/k)NN’ depends only on the incidence
matrix N and the analysis is simple. When the design is not trend-free, the usual analysis
of covariance using trend terms as covariates must be employed to remove the con-
founding between treatments and trend terms. It is shown that NTFB designs for first-
and second-order trends can be constructed with good efficiency properties (Yeh,

Bradley, and Notz, 1985). NTFB designs do have the disadvantages of requiring some-

what more complicated covariance analysis computations.

4.3. Property of the factorial design

The properties of 2* factorial designs are useful to find a LTF Box-Behnken design.
We define symmetric and anti-symmetric properties of a vector before we discuss the

property of the 2* factorial design.

Definition 4.1. The vector (@1, @2y oev s Coy Aoty 2y von y Ga) or

(a, @y ...y, 0,811, G yay ..., @) 15 s2Qd to be symmetric if ;= ay,_;4+1, j=1,2, ...,
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Definition 4.2. The vector (ar, @3y ooy gy A1y Gy i 2y -ee , Qi) or

(ar, @y oo , @y 0, G 41y Qryay oee Qo) is said to be anti-symmetric if

G=—Qy_j+1y J= 1,2, ey S

We apply the notions of symmetric and anti-symmetric vectors now to the contrast
vectors of main effects and two-factor interactions for the 2* factorial. In what follows
we always assume that the 2* treatment combinations are assigned in standard order (see
Section 2.1). It is then easy to write down the contrast vectors for the main effects
Ay, A, ..., Ax. The contrast vectors for the two-factor interactions Ay, i.e. the interaction
between the i-th and j-th factor, is then given by A4, = 404, . This is illustrated for
k=3 1in Table 4.1. Even though it has no meaning in the context of the 2* factorial itself
but only in the context of the Box-Behnken design, we also define pure quadratic effects

for the i-th factors by 42 = A04; .
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Table 4.1. STANDARD ORDERING OF THE 22 FACTORIAL

Ay Ay Ay A7 A AP Ay Ay Ay

1 -1 -1 -1 1 1 1 1 1 1
a 1 -1 -1 1 1 1 -1 -1 1
a, -1 1 -1 1 1 1 -1 1 -1
a,a, 1 1 -1 1 1 1 1 -1 -1
az -1 -1 1 1 1 1 1 -1 -1
a,a; 1 -1 1 1 1 1 -1 1 -1
a,a; -1 1 1 1 1 1 -1 -1 1
a,a,a; 1 1 1 1 1 1 1 1 1
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From the Table 4.1, we observe that the main effect contrasts are anti-symmetric.
However, the pure quadratic terms and two-factor interactions are symmetric. The
anti-symmetric property for the main effect contrasts 4, i= 1,2, ..., &, and the symmet-
ric property for the pure quadratic terms 42, i= 1,2, ..., k, and two-factor interactions
Ay, 1,j=12, ... k, i <j, holds for all 2* factorials.

Next, we consider the case where one center point is inserted into the middle of the
2* treatment combinations in standard order. For example, when k=3, the 23 treatment
combinations can be written as (1, a, &, aia, 0, a;, a3, a3, aya:a;) Where 0 is an inserted
center point. Then, the main effect contrasts A,, 4, A3 are written as
A=(-1,1,-1,1,0,-1,1,-1,1), 4,=(-1,-1,1,1,0, -1, —-1,1,1),
Ay=(-1,-1,-1,-1,0,1, 1,1, 1). The pure quadratic terms A%, 4% 45 and the two-

factor interactions A, 413, A1 are shown in Table 4.2.
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Table 4.2. STANDARD ORDERING OF THE 2* FACTORIAL with a center point

)

aa

az
aa
a,a3

a1a,a3

Chapter 4. Trend-free Box-Behnken designs

Al A2 A3
-1 -1 -1
1 -1 -1
-1 1 -1
1 1 -1
0 0 0
-1 -1 1
1 -1 1
-1 1 1
1 1 1

2 42 42
1 1
1 1
1 1
1 1
0 O
1 1
1 1
1 1
1 1

Ay

Ay

A23
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From Table 4.2, we see, of course, that just as in Table 4.1 the main effect con-
trasts under standard ordering are anti-symmetric with respect to 0, and the pure quad-
ratic terms and the two-factor interactions are also symmetric with respect 0. We
consider now the coeflicients for a linear trend, ¢,(¢) = T say, they are given by the co-
efficients of the orthogonal polynomial of degree 1 and order s equal to number of ex-

perimental runs. Specifically, if s = 2q, then

r=(-(s-1,-(s-3),...,~-3,-1,1,3,...,s=3,s—1)

and if s=2q+ 1, then

T'=(-¢,—(g—-1,..,—-1,0,1,...,g—1,¢q)

In both cases, T is anti-symmetric. As a consequence, we see, for example, that for
s=2%as in Table 4.1 and for s =2*+ 1 as in Table 4.2 the pure quadratic terms and the
two-factor interactions are orthogonal to the linear trend, i.e.
(AD)'T=0, (A4)'T=0, (4)IT=0 and (A)T=0, (4:)I=0, (A45)’T=0. These
properties can obviously be generalized for all 2* factorial designs without or with a
center point inserted in the middle of the treatment combinations of the standard order.
We take advantage of these properties in Section 4.4 to construct a LTF Box-Behnken
designs when there exists a linear trend over experimental plots. At this point we in-
troduce some further notation which will simplify the description of LTF Box-Behnken

designs. For any of the coefficient vectors A for a 2* factorial, similar to those given in

Table 4.1, define
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AU
A=[AL] (4.4)

where AV is called the upper half and A~ is called the lower half of the vector A. 4V and
At are of course 2¢-! x 1 vectors.

When there exists a polynomial trend in a complete 2* factorial design, Cheng and
Jacroux (1988) showed that for the standard order of a complete 2* design, any h-factor
interaction is orthogonal to a (h-1)-degree polynomial trend. Consequently, in the
standard order of a complete 2* design, two or more factor interactions are orthogonal
to a linear trend ¢ taking values 1 4+ a,2 + a, ..., 2+ a , where a is an arbitrary integer.
16, (An)IL=0,(4s)IT=0,.., (41,0’ T=0, (Ain)T=0,.., (4.4’ T=0. For exam-
ple, when k£ =3, a= —17, we have (4,,))’) T =0, since 4,,=(1,-1,—-1,1,1,—-1,—1, 1) and
I=(-16,-15,-14,-13,-12,—-11,-10,—-9). The main effect contrasts A4,, 4,, ... , A,
however, are not orthogonal because A,'T = 2/2, A’ T=2* AT =224 ..., and so on
where T=(1,2,...,2¢ fora=0.

The same property holds for the upper half or the lower half of the h-factor interactions

(h=3):

Property 4.1. For the standard ordering of a complete 2* designs, any half of an h-factor
interaction contrast vector (h>3) is orthogonal to a linear trend ¢ taking values
l1+a,2+a,..,2*"'+a where a is an arbitrary integer, i.e. (AixY)'T=0,
(Aint)T=0,..., (Ak-2,0-14")Y T =0, (Ak-20-1.5)T=0, ..., (A YT =0,
(Ain.. 2y T =0.

For example, when k=4, the various AV and AL vectors are given in Table 4.3.

Choosing, for example, a= —9, the corresponding linear trend ¢ takes the values
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I'=(-8,-7,—-6,-5,—-4,-3,-2,—1). We then obtain (4;x")IL=0, (4x*)'T=0,...,
(Azuv)'l"= 0, (Azsa")'I’- 0, (Am«zu)'I = 0, (AlzsaL)'I =0.
Property 4.1 is used in Section 4.5.2 to construct linear trend free Box-Behnken designs

for k > 4.
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Table 4.3. STANDARD ORDERING OF THE 2* FACTORIAL

A, A, Ay A4, Az Aya Apza Azaa Ai234

1 -1 -1 -1 -1 -1 -1 -1 -1 1
a, 1 -1 -1 -1 1 1 1 -1 -1
a, -1 1 -1 -1 1 1 -1 1 -1
a,a, 1 1 -1 ~1 -1 -1 1 1 1
a; -1 -1 1 -1 1 -1 1 1 -1
a,a3 1 -1 1 -1 -1 1 -1 1 1
a,a, -1 1 1 -1 -1 1 I -1 1
a,a,a; 1 1 1 -1 1 -1 -1 -1 -1
a, -1 -1 -1 1 -1 1 1 1 -1
aa, 1 -1 -1 1 1 -1 -1 1 1
a,a, -1 1 -1 1 1 -1 1 -1 1
a,a,a, 1 1 -1 1 -1 1 -1 -1 -1
aza, -1 -1 1 1 1 1 -1 -1 1
a,a;a, 1 -1 1 1 -1 -1 1 -1 -1
a,a;a, -1 1 1 1 -1 -1 -1 1 -1
a,a,a3a, 1 1 1 1 1 1 1 1 1

Chapter 4. Trend-free Box-Behnken designs



4.4. Linear trend-free Box-Behnken designs

We now consider Box-Behnken designs in which a linear trend is assumed over
experimental units, and each observation is designated to one experimental unit se-

quentially. We write the model as follows:

Yu=Bo+ Z Bexw, + Z B + Z Bixpxpy + 0, + &y (4.5)
=1 =1 Li=1

i<?

u=1,2,...,n, where y, is a response variable, B, B, f and f.. are unknown parameters
with i, =1,2,...,v i<{ , 0 is the regression coefficient of the linear trend ¢ over ex-

perimental units, i.e. , a polynomial trend of degree 1, and ¢, is a random error with mean

0 and variance o¢? . It is noted that a linear trend ¢ takes values
n—1 n—1 n—1 n—1 . .

s +1,...,-1,0,1, ..., > -1, > if t+ (or n) is odd, and

-n+1,-n+3,..,-11,...,n=3,n—11f ¢t (or n) is even.

In matrix notation, we can write

X=lﬂo+X]£1+X2é2+X3£3 +IO+§ (4.6)

where T= (4, 1, ..., 1,)’ is a n x 1 linear trend vector.
Now, we define a linear trend-free Box-Behnken design as follows:
Definition 4.1. A Box-Behnken design under model (4.5) is said to be linear trend-free

(LTF) if

n n n
Z Xyt, =0, Z x,uztu =0, Z XXty =0, i,i'=1,..,v 4.7

u=1 u=1 u=1
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or, equivalently
Xi'T=0, X,))T=0, X'T=0.

The main objective then is to obtain a run order such that the design is a linear trend-
free Box-Behnken design. Such a method will be described in Section 4.8.

For LTF Box-Behnken designs using the model

X=lﬂ0 +X]£] +X2£2 +X3£3 + 710 +e

and using a full 2* factorial we have, according to Definition 4.1, the following X’ X ma-
trix:

n I'X X% I'X, I'T n 0 21 0 o

X'l XX X'X X'X; X'T 0 27 0o 0 0

XX=| X'1 XX X'X X'X X'T|=|r21 0o 25Ny 0 o (4.8)
0

X'l XX XXy XXy X' T 0 0 0 G

I'l T'x, I'x, I'X, I'T o ¢ O O IT

We can see from the XX matrix that the estimates of the first-order coefficients f,, and
the second-order coefficients f,, §; are orthogonal to the estimates of the estimate of the
linear trend coefficient 6. Concerning the estimators of these parameters we can state the
following properties:
(1) The estimates of the first-order coefficients 8, i=1, 2, ..., v, the pure quadratic co-
efficients Ba i=1,2,..,v, and the mixed quadratic coefficients
B, i, =1,2,...,v, i<{ are not affected by a linear trend. The properties of these es-
timators are same as those discussed in Section 2.5.

(i) We obtain the UMVUE of the linear trend coefficient 8 as 6= (rD'rY.
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4.5. Construction of LTF Box-Behnken Designs

We now consider Box-Behnken designs when there exists a linear trend over ex-
perimental plots. We consider first a design with one center point, which implies that

we have an odd number of design points (observations), i.e. n =52+ 1. Thus, we use

. . n—1 n—1 n-—1 n—1
a linear trend ¢ taking values — ) +1,...,-1,0,1, ..., 3 -1, )

over n experimental units. We first modify the Box-Behnken design matrix D* , given

by (2.1) and (2.2). Without loss of generality, we replace the F, by main effect contrasts
under standard ordering A. , for the factorial part of Box-Behnken design matrix D’ in

(2.2). Then we rewrite D* as

_ Tr -
B, "11Aw(1,1) ”12Aw(1,2) S nlvAw(l,v)
B, ”21Aw(2,1) ”22Aw(2,2) O n2vAw(2,v)

D = = (4.9)
B, My Ayey M2dwe2y - -+ MevAue, v

where B, is a 2% x v matrix, w(j,i) = n, + n, + -+ + n;, with w taking values 0,1, ... ,k, and
A, 1S a 2* main effect contrast of the standard ordering (i.e. 2*x 1 vector), and
A'=(1,1,...,1). Wedivide the B, i=1,2,..., b, into two parts, the upper half of B,
and the lower half of B, denoted by B and BZ, respectively, so that
U U U U
B; M Ay nI2Aw(I,2) S 9 -

B, = L= L L L (4.10)
B, midyayy Madwgay -« Madugy

where BY, BF are 2*-! x v matrices.
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We then write the Box-Behnken design matrix D augmented with linear trend T ,say S,

as
U U U U
B, ”nAw(m) ”12Aw(1,2) .o nlvAw(l,v)
L L L L
B, ”11Aw(1,1) ”12Aw(1,2) . ”nAw(],v)
U U U U
B, ”21Aw(2,1) "22Aw(2,2) I ”2vAw(2,v)
L L L L
B, midway M) R W I
S=(D, 7= T |= T | @411
U U U U
B, nblAw(b,l) ”bzAw(b,z) e nvaw(b, v)
L L L L
B, M Aweyy  Mdwer -+ 0 0 MevAwe, v
0 0 0 Coe 0
and T=( - ”51 - ”;1 +1, ., =101, ..., ";1 -1, ”;1 Y.

For example, for the Box-Behnken design ( No.l in Box and Behnken, 1960) with
the BIBD with the parameters v=3,r=2,b=3,k=2, 1 =1, and the transpose of the

incidence matrix given by

110 110
N=[101] N=|101 |,
011 011

we obtain Box-Behnken design matrix D with one center point as

Chapter 4. Trend-free Box-Behnken designs 63



-1 -1 0
1 -1 0
-1 1 0
1 1 0
L _ -1 0 —1
B, Ay 4, O
1 0 —1
B, 4, 0 4
D = = =]l-1 0 1
By 0, A 4
1 0 1
0 0 0 0
-4t - 0 -1 —1
0 1 —1
0 -1 1
0 1 1
0 0 0
where
[ 1 -1 0 | [ 1 0 —1 ] [0 —1 =1 |
1 =10 10 —1 0 1 —1
B1= s B2= N B3=
-1 10 10 1 0 -1 1
1 10 10 1 0 1 1

are 22 x 3 matrices, the 22 main effect contrasts of the standard ordering A4,, 4, are de-
finedas 4,=(-1,1,-1,1), A,=(-1,—1,1,1), and O, is a 4 x 1 zero vector.

Thus, we can express the upper half of B, and the lower half of B, i=1,2,3 as
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U -1-10 U -1 0 -1 U 0 -1 -1
B~ = B," = By" =

1 -10 10 -1 0 1 -1

-110 —-101 0-11
BxL= 32L= B3L___

110 101 0 11

Consequently, 4, i=1,2 are divided into AV, AF with AV =(-1,1), At =(-11),

Ay =(-1,-1y, 4k =(1,1).

Hence, we can write the Box-Behnken design matrix with a center point as follows:

-1 -1 0

1 -1 0

o ) -1 1 0
BY A4,Y 4,Y% o 1 1 0
B* AE 4t g -1 0 -1
B,Y A4Y 0, 4,7 1 0 -1
D=|BLY|=|4% 00 4L |[=]-1 0o 1
BY 0, 4,Y 4,Y 1 0 1
B,* 0, A* 4" 0 -1 -1
0 0 0 0 0 1 -1
T i 0 -1 1
0 1 1

0 0 0

where 0, 1s a 2 x 1 zero vector.
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Now, we consider the situation of Box-Behnken experimental design in which a run or-
der is to be conducted in time order sequence over the experimental plots, assuming that
there exists a linear trend ¢ taking values —6, -5, ...,—1,0,1, ..., 5, 6 over the 13 exper-

imental units. Writing the Box-Behnken design in the usual way we have

-1 -1 0 —6

1 -1 0 -5

] ] -1 1 0 -4
A% 47 o, 1 1 0 -3
AL 4k o, -1 0 -1 =2
4% 0o 47 1 0 -1 -1
S=MD,N =4 0,0 4T |=|-1 0o 1 o
0, 4Y 4,7 1 0 1 1
0, 4% 4," 0 -1 —1 2
0 0 0 0 1 -1 3

i ) 0-1 1 4
0 1 1 5

0 0 0 6

The problem then is how to arrange treatment combinations so that the resulting design
is a LTF Box-Behnken design. We shall take advantage of the symmetric property of
the second order terms (pure quadratic terms and the two-factor interactions) and anti-
symmetric property of the main effect contrasts of the 2* factorials shown in Section 4.3
in order to construct a LTF Box-Behnken designs by putting a center point on the

middle of the experimental units associated with the 0O-value of the linear trend, and
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placing the halves of each B, i= 1,2, ..., b symmetrically with respect to the center point
since the structure of the Box-Behnken designs is based on the 2* factorial designs. We

consider two cases (i) for k=2 or 3 and (ii) k¥ > 4 to arrange run orders.

4.5.1. Construction method of LTF Box-Behnken designs for k=2 or 3

For k=2 or 3, a LTF Box-Behnken design can be constructed by the following

method:

1. In(4.11), we place a center point in the middle of the experimental units associated
with 0-value of T.
For convenience of describing the following method we partition the Box-Behnken
design then into three parts: P, consists of the first 52*-! runs, P, consists of the

center point, and P, consists of the last 52*-! runs, i.e.

Py

Written in this order P, is associated with the negative values of T, P, is associated
with the O-value of T, and P, is associated with the positive values of 7. We par-

tition T correspondingly into
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2.

For each B,i= 1,2, ..., b, we put BV in P, and B! in P, symmetrically with respect
to the center point (P,) or vice versa.

Obviously, there exist 2° such arrangements. We call them D, D,, ..., Dp. In all
cases, the vectors for the pure quadratic terms x?, x?, ..., X2 and for the mixed
quadratic terms Xi,, X3, .. , X.-1,» are symmetric. This implies that the pure quadratic
terms and mixed quadratic terms are orthogonal to a linear trend T, i.e. (x,2)'T =0,
x)'T=0,.., ®x)T=0, and (x;)L=0, (x3)IT=0,.., (x-1.,))T=0. And the
vectors for the first-order terms x, x, ... , X, are anti-symmetric. We thus have to
consider run orders such that also the vectors for the first-order terms xj, x3, ... , X,

are orthogonal to T'i.e. (x)’IL=0, (x,))T=0,...,(x,))T=0.
We choose any one of the 2 arrangements D,, D;, ..., D.

For the given D; we number the individual design points in P, starting from the
center point (i.e. Py ) as design point 1, design point 2, ..., design point b2*-! since
P, contains b2%-! design points. Similarly, we number the individual design points
in P, starting again from the center point P, as design point 1, design point 2, ...,

design point b2*-1,

The next problem is to position the individual 52*-! design points associated with
P; to obtain (x;*)’ =0, (xx*)L=0,..., (x,*)' 2 =0 where x;*,j= 1,2, ..., v repres-
ents the vector of x; associated with P, , and is to position the individual 52*-! de-
sign points associated with P; to obtain (x,°)1, =0, (x;)1,=0,.., (x,) L, =0

where x;,j= 1,2, ..., v represents the vector of x; associated with P; .

Let {c, i=1,2,...,b2%-} represent a permutation of the integers 1,2, ..., b2¢-1,

Andlet {c, i=1,2,.., b2} represent the values of the positions of experimental
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units in which the corresponding design point i, i=1,2...,52*-! in P, should be
placed to obtain a LTF Box-Behnken design; that is, the design point 1 moves to
¢, position, the design point 2 moves to c; position, ... , the design point 62*-! moves
10 cyk-1 position of the experimental unit. Similarly, let { —c;, i=1,2, ..., 2% 1}
also represent a permutation of the integers —1,-2,...,—b2*-'. And let
{—c, i=1,2,...,b2%1} represent the values of the positions of experimental units
in which the corresponding design point i, i = —~1, -2, ..., —b2*-1 in P, should be
placed; that is, the design point 1 moves to —c, position, the design point 2 moves
to —c, position, ..., the design point 52*~! moves to —c,x-1 position of the exper-
imental unit. We then obtain a LTF Box-Behnken design.

If we define C*=(cy, ¢y ...y Cox-1) and C-=(—cy, —€3, ... , —Cpk-1) We Want to find

C+ and C- such that

EJTH—C-'- = 0’ J= l! 23 ey ¥y (4.12)

and

x5'CT=0, j=12..,v, (4.12q)

i.e. find permutations {c¢;} and { —c;} such that the v equations above are satisfied.

If we find a solution to {(4.12) then we also satisfy (4.12a).

6.  Suppose we have found C* such that the equations (4.12) are satisfied. Denote the
solution by Gi* = {ci}op. Then Gy* represents the orders of the runs 1,2,..., b2*
(numbered in standard order). Let Ci*(D,) denote the rearrangement of the runs
D, according to the permutation Gy*. Also, let C;~ = { —c;}o. Then the LTF Box-

Behnken design is given by
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Go (P)
D = PO
Cot(Py)

7.  If we cannot find solutions for equation (4.12) we choose another D; from the re-

maining arrangements, and repeat the whole procedure.

If we cannot find solutions for equation (4.12) for any of the 2% arrangements, then there
does not exist a run order which yields a LTF Box-Behnken design. On the other hand,
if we can find a C* satisfying equation (4.12), then the design constructed by this method

is not unique since there may be other solutions.

Example 4.5.1

We refer to the previous example of a Box-Behnken design in this section (Design No.1

in Box and Behnken, 1960). Again we rewrite the design matrix S with T
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S=MDN=|B"T|=

47 4,7 o
40 4t o
47 0, 47
A4t 0, 4t
0 4,7 4,°
0, 4" 4,°
0 0 0

I

By following step 1 and step 2, we have 2° arrngements.

5o ol
B," B,"
BY B*

Di=| 0 |, D= 0 |, D3=
B,* b,Y
B," b,"
BIL blL
L L |
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B," B
B* B,
B* B*
Ds=| 0 |, Dg=| O
B,Y B,Y
B2U BzL
B*- BY
ie.,
_ - _
X X3 X3 X1 X2 X3
-1 -1 0 -1 -1 0
1-1 0 1 -1 0
-1 0 -1 -1 0 -1
1 0-1 1 0 -1
0 -1 -1 0-1 1
0 1 -1 0 1 1
D, = D, =
0 0 O 0 0 O
0-1 1 0-1-1
0 1 1 0 1 -1
-1 0 1 -1 0 1
1 0 1 1 0 1
-1 1 O -1 1 0
1 1 0 1 1 0
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B,*
B,*
BY
0
B,*
BY
BY
b 2 )
-1 -1
1 -1
-1 0
1 0
0 —1
0 1
0 0
0 -1
0 1
-1 0
1 0
-1 1
1 1

X, Xy X3
-1 1 0
1 1 0
-1 0 -1
1 0 -1
0—1-1
0 1-1
0 0 0
0-1 1
0 1 1
-1 0 1
1 0 1
-1-1 0
1-1 0
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xX; X, X3 X; Xy X3 X; Xy X3 x| X, X3
-1-1 0 -1 1 0 -1 1 0 -1 1 0
1-1 0 1 1 0 1 1 0 1 1 0
-1 0 1 -1 0 -1 -1 0 1 -1 0 1
1 0 1 1 0-1 1 0 1 1 0 1
0-1 1 0-1 1 0-1-1 0-1 1
0 1 1 0 1 1 0 1-1 0 1 1
Ds = Dg = Dy = Dy =
0 0 O 0 0 O 0 0 0 0 0 O
0-1-1 0 -1 -1 0-1 1 0-1-1
0 1-1 0 1-1 0 1 1 0 1-1
-1 0 -1 -1 0 1 -1 0 -1 -1 0 -1
1 0-1 1 0 1 1 0-1 1 0-1
-1 1 0 -1-1 0 -1-1 0 -1-1 0
1 1 0 1-1 0 1-1 0 1-1 0

For all cases, the generated pure quadratic terms x%, X;?, x;* and the mixed quadratic
terms X1X2, X1X3, XoXs are symmetric, implying that
x)'IT=0, (xx.YIT=0, i,i’!=123, i<i . The first-order terms x;, x;, x; are anti-
symmetric with respect to the center point. So, we consider run orders for the first order
terms, while keeping the symmetric property of the second order terms.

Choose D, . In this case, we have b2*-! = 6 design points in P, associated with positive
values of T starting from the center point, i.e. (0, -1, 1) is called a design point 1, (0, 1,
1) is called a design point 2, ..., and (1, 1, 0) is called a design point 6. Similarly, we

define design points in P, associated with negative values of T starting from the center
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point. ie. (0, 1, -1) is called a design point 1, (0, -1, -1) is called a design point 2, ... ,
and (-1, -1, 0) is called a design point 6. And we have v = 3 equations.

Find C*=(¢1, ¢, ..., C6)’ to satisfy (x;*)'C* =0, (x*)'C+t=0, (x3*)'C*=0. But, we cannot
find solutions C* due to the fact that all elements of C* take positive integer values,
ranging from 1 to 6, resulting that (x;*)'C* = 0.

Choose D.. In the same way as D, we have b2*-! = 6 design points in P, associated with
T starting from the center point, i.e. a design point 1 is given by (0, -1, -1). a design
point 2 is given by (0, 1, -1), ..., a design point 6 is given by (1, 1, 0). Likewise, we define
design points in P, associated with T, starting from the center point. ie. (0, 1, 1) is
called a design point 1, (0, -1, 1) is called a design point 2, ..., and (-1, -1, 0) is called a
design point 6. And we have v = 3 equations.

We next Find C* = (¢, 3, ... , C6)" to satisfy (x*)' C* =0, (x:*)'C*=0, (x3*)’C*=0. Then,

we have X matrix with T as follows:
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X, Xy x3 x;oxy Xy xXyxy xyx; xpxy T (6
1-1 0 110 1 0 0 -6 —cg
1-1 0O 1 1 0 -1 0 0 -5 —Cs
[ ] -1 0 -1 1 0 1 0 1 0 -4 —Cy4
B’
1 0-1 101 0 -1 0 =3 e,
U
B,
0-1 1 011 0 0 —1 =2 —c,
L
B;
o 1 1 01 1 0 0 1 -1 —C
0O 0 O 0 00 0 0 0 0
B.Y
3
0 -1 -1 01 1 0 0 1 1 (o
BL
2
0 1-1 011 0 0 —1 2 &
B.L
1
i | |-t o1 101 o -1 o &
101 101 0 1 o 4 c4
-1 1 O 1 1 0 -1 0 0 5 Cs
1 1 O 110 1 0 0 6 Ce

According to step 4, we want to find Ctr=(c,c,c,cCCs,0) satisfying

(x*)Cr =0, (*)Cr =0, (x*)C =0, ie.

—C3+C4—C5+C6=0 (4.13)

—c+etes+c=0

—CI—C2+C3+C4=O

We use the LINDO programming package (Schrage, 1984) to solve these equations
(Appendix). We obtain one of the possible solutions as C* = (6, 3, 4, 5, 2, 1)’. But, this
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is not unique since C*=(6, 3, 5,4, 1,2)’ is another solution. Following step 6, we ar-
range run orders according to C*= (6, 3,4, 5, 2, 1)’ such that for P, associated with 15,
design point 1 = (0, -1, -1 ) is placed on the position of ¢; = 6 value of T3, design point
2 = (0, 1, -1) is placed on the position of ¢; = 3 value of T5, and so on. Finally, design
point 6 = (1, 1, 0 ) is placed on the position of ¢s =1 value of 7. We also arrange run
orders according to C-=(—6, -3, -4, —§, —2, —1)' such that for P, associated with T,
design point 1 = (0, 1, 1 ) is placed on the position of —¢; = —6 value of T, design point
2 =(0,-1,1 ) is placed on the position of —c, = —3 value of T}, and so on. Finally,
design point 6 = (-1, -1, 0 ) is placed on the position of —cs = —1 value of T;. Then we

obtain LTF Box-Behnken design such as

0 1 1

-1 0 -1

1 0 -1

0 -1 1

1 -1 0

Co (P -1 -1 0
Dyry = P, = o o o
Cot(py) 1 1 0
-1 1 0

0 1 -1

-1 0 1

1 0 1

0 -1 -1

We then write the X matrix with T for LTF Box-Behnken design such as
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X Xy X3 .xl2 x-f x32 XXy XiX3 Xox3 T
o 1 1 0 1 1 0 0 1 —6
-1 0 -1 1 0 1 0 1 0 -5
1 0 -1 1 0 1 0 -1 0 -4
0 -1 1 0 1 1 0 0 -1 -3
1 -1 O 1 1 0 -1 0 0 -2
-1 -1 0 1 1 0 1 0 0 -1
X1 =
0 0 0 0 0 O 0 0 0 0
1 1 O 1 1 0 1 0 0 1
-1 1 0 1 1 0 -1 0 0 2
0 1 -1 0 1 1 0 0 -1 3
-1 0 1 1 0 1 0 -1 0 4
1 0 1 1 0 1 0 1 0 5
0 -1 -1 0 1 1 0 0 1 6

Hence, for the model

3 3 3
2
Yu=Bo + Zﬂtxiu'*' Zﬁltxiu + Z Byxyxp, + 600, +e,, u=12,.,13
i=1 i=1 L =1

i<t

we have the following coefficient matrix
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n o 21 o o [ 13 ¢ 8 O 0
0 1 o 0 0 0 8 0 0 0

XX xT
=21 o 2Ny 0 o |[=|8L 0 4NN) O O

TX T'T
0 0 0 G 0 Q 0 0 4I 0
0o ¢ O o IT 00 O ¢ 18

From the X’X matrix, we can obtain a UMVUE of the linear trend coeflicient 6 such
as 6 = -ié—z)l'_}f, without affecting the other coefficients.

Example 4.5.2

The following example shows that there may not exist a LTF Box-Behnken Design. We
consider the Box-Behnken design with the PBIB(2) characterized by the parameters
v=6,r=2,b=4,k=3,1,=0,4,=1, and treatment combinations (1,4), (2,5), (3,6)
being first associates with 4; = 0 and the remaining treatment combinations being second

associates with A, =1, (Design SR18 in Clatworthy, 1973). Then the transpose of the

incidence matrix is:

(111000

100011
N =
010101

001110
L .

The Box-Behnken design matrix D with a linear trend I can be written as
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where

A|U=(—1,l, - 191)’9 A1L=('—ls19 - 131)'y A2U=(_19_ 1’191),’ A2L=(—1y— l,l,l)',

AV 4% 4% 0 0 o
A 48 4 0 0 0
Alu 0 0 0 AZU ABU
AlL Q Q Q A2L A3L
0 47 0 4Y o 4T
0 4% o 4% o 4t
0 0 A1U A2U ABU 0
0 0 AIL AzL A3L 0
0 0 0 0 0 0

AV=(-1,—-1,—1,—-1), At =(1, 1,1,1) are 22 factorials, Q is a 4 x 1 vector of ele-

ments being zeros, I” =(—16,-15, ..., —-1,0,1, ..., 15, 16).

There are 2¢ possible ways to arrange by step 1 and step 2.

Chapter 4. Trend-free Box-Behnken designs

79



B/* B’
B2U Bzu
B,Y B,
: B,*
Ds=| 0 Dg=| 0
B, B,"
B, B,"
B, B,"
B," B*

B/* B,*
B,Y B’
B,Y B,*
B,* BY
Dy=| 0 D= 0
BY Bt
BsL B;U
B,* B,*
B,Y B,Y
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L - . _ L T
B* B" B* B,
B,Y B," B," B,"
B3L B3U BsL B3L
B, B, B," B,
Dy=| 0 Dy=] 0 Dis=| 0 D= 0
B," B,Y B, B,"
BY B,* B,Y BY
B,- B,Y B,Y B,Y
B, U B, U B, U B, U
L | | |

For all cases, the second order terms are orthogonal to a linear trend
I=(-16, —15,...,16), since x?, x?, ..., x¢ and xixs, X1, ... , XsXs are symmetric. But
the first order terms x;, x3, ..., Xs are anti-symmetric.

We exclude the cases D,, D,, Ds, Dy, Do, Dy, Dis, and Ds since xs* consists of 1 and 0, or
-1 and 0 so that they will not satisfy the equation (xs*)’C* =0, due to the fact that all
elements of C* take positive integer values, ranging from 1 to 16.

Choose any case, say, D;. Then, we rewrite D; as
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-« T - Y c T 5, I I — N - N - B N 2 T~ Y o B o B ) ~ N ™ ¥ M O~ 0 O O e Nt T M o
O S s ST s s sSSP TYY YT Y VRY A A A S R AR R S - T M
| T R F B |
O v g N~ O 0 O v Las B o IR - N MmO ¢ v © ©~ 0 &0 O = N MM T un v
T_].l.l.l.l.ll_____ [ | P T e e R e R o T ]
[ e I D |
%00001_,4.1_.1_.1111000000000._14.1_..1_.11110000
—M,OOOO.ﬂ.ﬂl10000.ﬂc_n‘._..‘_‘0111100001_.1m.110000
v.Al.ﬂlqﬂ.l1_..1..4.1000000000000000001_1141.4l.ﬂl.
il
UULUO.LdU.JLL
- N = o e
a x L I - )
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Now, we want to find C+* = (¢, ¢, ..., Ci6)’ satisfying x;*'C* =0, x,*C* =0, ..., x"C* =0,

resulting that
=gt cp—Ct e —C3t o= s+ =0
—Cs+cg—Cr+cg—C3—Cla+cis+c=0
—C+e—ctegte3 et es+e=0
—C—C+c3t+cg—cs—cg+c+cg=0
it e+ tcg—Ccg—Ccg+c+c=0
—Cs—C—Cr—Cg+Cg+cig+c +c,=0

Again, we use LINDO to solve the case of 16 variables with 6 equations in similar way
to example 4.6.1. We , however, could not find a set of the solutions which satisfies the
constraints. There does not exist a solution for the other arrangements
D., D¢, Ds, Dy, Di1, D13, and D4, either. So, in this design, there does not exist a LTF

Box-Behnken design for the model

6 6 6
Ju= ﬁo + Z ﬁixiu + Z ﬂiixiuz + Z Bii’xiuxi'u + etu + Eus u= 172! sy 33

i=1 i=1 ii'r=1

i<t
4.5.2. Construction method of LTF Box-Behnken designs for £ > 4

Before we construct LTF Box-Behnken designs for k& > 4. we investigate the prop-

erties of Fy, F, ..., Fi such that F,= 4,04,0 ... 04;_10A4; 410 ... 04, i= 1,2, ... , k when k
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is even, F,= A4,04,0...04;_104;,10 ... 04,_,i=12,...,k—1, and F,= 41040 ... 04,
when k is odd where F; is a 2* x 1 vector, A, is a main effect contrasts of the standard
ordering. We let FV be the upper half of F,, Fi* be the lower half of F,, where FY, F! are
2*-1x | vector. Then these F, and FY, F* satisfies the following properties:

(i) The k F,i=1.2,..,k

are independent in the sense that no F; is the generalized interaction of other F, ’s.

(i) both FY and Ft, i=1,2,...,k are orthogonal to a linear trend taking values
I'=(1+a,2+a,..,2*'+a) in which a 1is an arbitrary integer, i.e.,
(FYYI=0, (F))IT=0,i=1,2,..., k because of property 4.1,

(iii) the generated two-factor interaction terms with an inserted center point FiF, = A:4;
, defined as F.F,= FoF,, AiA;= A0A;, are symmetric, implying that FF; are orthogonal
to a linear trend 7T which is anti-symmetric as we have shown earlier in Section 4.1.

For example, when k=4, we choose
F, = A:0A4,0A4s, F; = 41043044, F3= A,0A4:0A44, Fs= A,0A:04;, where F, is a 2* x 1 vec-
tor, A4, is a main effect contrast of the standard ordering of 2¢ factorial (Table 4.4). Then,
these factorials satisfy the following properties:

(1) These F,, F,, F;, F; are independent such that no F; is the generalized interaction of
others in the set.

(ii) Both FV and F£, i= 1,2, 3, 4 are orthogonal to a corresponding linear trend, which
was already discussed in the same example of Section 4.3.

(i) The two-factor interaction terms with an inserted center point
EE, FF, R F, BB, FF, FF, are symmetric with respect to 0 (Table 4.6). Hence, these
interaction terms are orthogonal to a linear trend T which is anti-symmetric with respect

to 0 since F.F;= A0A;
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Table 4.4. 2 FACTORIAL

-1 -1 -1 -1 1 1 1 1 1 1
-1 1 1 1 -1 -1 -1 1 1 1
1 -1 1 1 -1 1 1 -1 -1 1
1 1 -1 -1 1 -1 -1 -1 -1 1
1 1 -1 1 1 -1 1 -1 1 -1
1 -1 1 -1 -1 1 -1 -1 1 -1
-1 1 1 -1 -1 -1 1 1 -1 -1
-1 -1 -1 1 1 1 -1 1 -1 -1
1 1 1 -1 1 1 -1 1 -1 -l
1 -1 -1 1 -1 -1 1 1 -1 -1

where I:] = AzOAgOAq, E = A10A3OA4, F3 = A10A20A4, E = A]OA;OAa,
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Table 4.5. The UPPER HALF and LOWER HALF OF 2* FACTORIAL

rY RY EY EY  FRERY FRY FEY REY REY FREY

-1 -1 -1 -1 1 1 1 1 1 1
-1 1 1 1 -1 -1 -1 1 1 1
1 -1 1 1 -1 1 1 -1 -1 1
1 1 -1 -1 1 -1 -1 -1 -1 1
1 1 -1 1 1 -1 1 -1 1 -1
1 -1 1 -1 -1 1 -1 -1 1 -1
-1 1 1 -1 -1 -1 1 1 -1 -1
-1 -1 -1 1 1 1 -1 1 -1 -1

I 1 1 -1 1 1 -1 1 -1 -1
I -1 -1 1 -1 -1 1 1 -1 -1
-1 1 -1 1 -1 1 -1 -1 1 -1
-1 -1 1 -1 I -1 I -1 1 -1
-1 -1 1 1 1 -1 -1 -1 -1 1
-1 1 -1 -1 ot | 1 1 -1 -1 1
1 -1 -1 -1 -1 -1 -1 1 1 1
1 1 1 1 1 1 1 1 1 1
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Table 4.6. Two-factor interactions of 2¢ factorial with an inserted center point

F,F, F\F, F,F, F,F, FF, FF,
1 1 1 1 1 1
-1 -1 -1 1 1 1

Now, we are in position to construct LTF Box-Behnken designs for k >4 by the fol-

lowing method:

1. For k is even, choose F,= A4,04:0 ... 04;_104,,10 ... 04y, i=1,2, ..., k. When Kk is
odd, choose F=A4,040..04,_,04;,10...04,_,,i=12,..., k-1, and
Fk = A10A20 ves OAk .
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2. Replace 4, i=1,2,...,k by F, i=1,2,..., k into the Box-Behnken design matrix

(4.9) or (4.11).

3. In(4.11), position a center point on the middle of the experimental units associated

with O-value of T.

4. For each B,i=1,2,...,b, put BY in the experimental units associated with the
negative values of T and B¢ in the experimental units associated with the positive

values of T symmetrically with respect to the center point or vice versa.

Then we obtain a LTF Box-Behnken design since the first order terms xi, x, ... , X, are
orthogonal to a linear trend, and the second order terms are also orthogonal to a linear
trend because all pure quadratic terms x, x, ..., x,%, and the mixed quadratic terms
Xiz, X13, --- , Xy—1,, ar€ symmetric with respect to the center point. Here is one of LTF

Box-Behnken design matrices constructed by the above method.
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U U U U
B, ”11Fw(1,1) anFw(1,2) oo ”1vo(1,v)
U U U U
B, ny, F, w(2,1) nyF, w22 ¢ ny,F, w2, v)
U U U U
B, i Fyeny  MoFupzy  + + + MeFup,v)
S=MD,D=| 0 T |= 0 0 .o 0 T |(4.19)
L L L L
B, ”ble(b,l) anFw(b,z) I nvaw(b, v)
L L L L
B, miFueyy Mafupz - - - mFuay
L L L L
B, nFuan "12Fw(1,2) "1vo(1, v)

where F,= A40A40...04,_104;,10 ... 04y, i= 12, ... , k. when k is even,
E = A]OA;O .en OA,_]OA1+IO ese OAk—ly i= 1,2, cee g k - 1, and Fk == A]OA;O es OA;, When k is

odd.

Example 4.5.3

Consider the Box-Behnken design with the PBIB(2) characterized by the parameters

v=6r=2,b=3,k=4,A,=2,1,=1, and treatment combinations (1,4), (2,5), (3,6)

being first associates with 4, = 2 and the remaining treatment combinations being second
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associates with 4, =1, (Design S1 in Clatworthy, 1973). Then the transpose of the in-

cidence matrix is:

110110
N=]11011601
011011

Thus, the Box-Behnken design matrix D with linear trend vector I can be written as

BIU Alu A2U Q A3U A4U Q
BlL A‘L AzL Q A3L A4L Q
Bzu A1U 0 AZU A3U 0 A4U

DO.D=|B"T|=|4" 0 4" 4" o 4* 1T
B3U 0 Alu Azu 0 Asv A4U
BSL 0 AIL A2L 0 A3L A4L
0 0 0 0 0 0 0

where AV=(—=1,1,—1,1,—=1,1, =1, 1), At =(—=1,1,~1,1,~1, 1,1, 1), ...,
AV=(-1,-1,~-1,-1,—-1,-1,-1,-1), A+ =(1,1,1,1, 1,1, 1, 1) are 2* factorials (see
Table 4.4), 0 is an 8 x 1 zero vector, and T =(—-24, - 23, ...,-1,0,1, ..., 23, 24).

Now, we want to construct a LTF Box-Behnken design using the method for k>4 .

1. Choose Fl = A)OA30A4, Fz = A10A30A4, 1';2; = A10A20A4, F4 = A10A20A3 since k=4

is even, where

4 = i=1.2734
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2. Using F, F, F, F, as the generators of the Box-Behnken design, we then rewrite

the design matrix D with T as

B,U FIU qu 0 F3U F4U 0
BIL F]L F2L 0 FBL F4L 0
Bzu FIU 0 F2U F3U 0 F4U
oD=|B"1r|=|F" ¢ RB* K" o F'I
B,Y 0o RYRY o 4Y EY
B3L 0 FIL F2L 0 F3L F4L
0 j 0 0 0 0 0 0

3. Place a center point in the middle of the experimental units.

4. Move B, BY, BY in the experimental units associated with the negative values of
T, and the corresponding Bf, B¥, B} are placed on the experimental units associ-

ated with the positive values of T symmetrically with respect to the center point.

Then, we obtain a LTF Box-Behnken design matrix as follows:

(BIU FIU F2U Q F3U F4U Q
B2U FIU 0 qu F3U 0 RV
B3U 0 FIU qu 0 F3U F4U
Dir=| 0 |=l 0 0o o 0o o o
B3L 0 F}L F2L 0 F3L F4L
B,* FY o RY* R* o FR*F
B/* FYE* o R* FF o
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Accordingly, we obtain X matrix for LTF Box-Behnken design with T such as

X= [DLTF X* I]

where
X1 X3 X33 Xag4 Xss Xeg X12 *13 X4 - - - Xsg
1 1 0110 FRY o EFRY 0
1 0 1 1 0 1 o FRY REY 0
- 0 1 1 0 1 1 0 0 0 F,FY
0O 0 0 o0 0 O 0 0 0 0
01 1 0 1 1 0 0 0 EFt
1 01 1 01 0 FRE" RE" 0
1 1 0110 ARR" o FFR 0

Here, F.FV and FF} are defined as the upper half and the lower half of F.F; respectively,
1lis an 8 x 1 vector with elements being 1.

Then, for the model

6 6 6
2
Yu=Bo+ Z Bxy, + Z Bixn” + Z BipXuXpy, + 01, +¢,, u=12,..,49
i=1 i=1 i =1

i<

we have the X' X matrix
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n o 21U oo IT [ 49 O 32 O O ]

0o 27 o o o 0 32, 0 0 0
xXx=|r21 o 2%NN) 0 0o |=|321 0 16AN) O O

0 0 0 G 0 0 o0 0 G 0

1T ¢ o O I'T 0 0o (U8 Q' 9800

where G is a diagonal matrix with diagonal elements being 32 or 16.

Up to now, we considered linear trend-free (LTF) Box-Behnken designs with one
center point. We now consider LTF Box-Behnken designs with an odd number of center

points, ie. m=2n"+1 . Thus, we use a linear trend ¢ taking values

—_azl _nl g, 2Ly a1

2 2 2 2

n=b2*+2n" + 1 is a number of observations with 2% experimental points and 2»’ + 1

-1, over n experimental units where

center points. In this case the construction methods for LTF Box-Behnken designs are
the same as those shown in Section 4.5.1 and Section 4.5.2 except that we put n’ center

points on the first n’ experimental units associated with the negative values of T , i.e

— n; l y— n; 1 +1,...,— %+ n' —1 values of the linear trend, 1 center point on

the middle of the experimental units associated with the 0-value of T, and the remaining

n’ center points on the last n’ experimental units associated with the positive values of

. n—1 n—1 _ n—1
_7_",1.eonthevalues—2 Ty 1., >

ample, suppose we have ny =5 center points. Then we put 2 center points on the first

experimental units associated with the — n—2— ! , = "; L 11 values of T, 1 center point

on the middle of the experimental units associated with the 0-value of T, and 2 center

points on the last experimental units associated with the % , n_;L

—n’ + 1 of the linear trend. For ex-

—1 values of T
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, Where n=b2*+ 5. And we apply the same procedures of the construction methods in

Section 4.5.1 and Section 4.5.2 depending on the value of & .
4.5.3. LTF Box-Behnken designs with orthogonal blocking

Where insufficient homogeneous experimental material is available for all the ex-
perimental runs it become desirable to run them blocks. Where possible it is desirable
to achieve orthogonal blocking, that is to arrange the runs such that the block contrasts
are uncorrelated with all the estimates of the coeflicients in the second-order model (Box

and Behnken, 1960). Box and Behnken illustrate this with the following example:
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Table 4.7. Box-Behnken design No.2 (Box and Behnken, 1960).

X X X3 X4
-1 -1 0 0
1 -1 0 0
-1 1 0 0
1 1 0 0
0 0 -1 -1
0 0 1 =1
0 0 -1 1
0 0 1 1
0 0 0 O
D ———
-1 0 0 =1
1 0 0 -1
-1 0 0 1

Block1
1 0 0 1

D= Block?2 =

-1 =1 0

Block3

0 0
0 -1 0 -1
0 1 0 -1
0 -1 0 1
0 1 0 1
-1 0 -1 0
1 0 -1 0
-1 0 1 0
1 0 1 0
0 0 0 O
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The Box-Behnken design is a rotatable second order design suitable for studying four
variables in 27 trials and is capable of being blocked in three sets of nine trials with one
center point in each block.

Now we consider Box-Behnken designs with orthogonal blocking in which a common
linear trend is assumed over experimental units within each block and each observation

is designated to one experimental unit sequentially. We write the model as follows:

v v v b
Ju = ﬂo + Z ﬂixlu + Z ﬁ:‘l'xiu2 + Z ﬂil'xluxi’u + Z 5m(zmu - Z-m) + etu + €y (4'15)

i=1 i=1 Li'=1 m=1

i<?

u=12,..,n, where f,, B, f« and pf, are unknown parameters, 8, is coefficient of
corresponding block effect z, , z,, is unity if the u th observation arises from an exper-
imental run in the m th block, 6 is the regression coeflicient of the common linear trend
t over experimental units in each block, and ¢, is a random error.

In matrix notation, we can write
_Y=lﬂo+Xlﬁl+X2£2+X3£3+ZQ+IH+§ (4.16)

where J is a m x 1 block effect vector.
Now, we define a linear trend-free Box-Behnken design with orthogonal blocking as
follows:
Definition 4.3. A Box-Behnken design with orthogonal blocking under model (4.15) is

said to be linear trend-free (LTF) if

Y xty =0, Y x,=0, Y xxpt,=0, (m=1,..,b) (4.17)
bl.m bl.m blm
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The bl.m notation indicates that the sum is being taken over the observations in the m
th block. The objective then is to construct a run order within blocks such that the de-
sign is a linear trend-free Box-Behnken design. The construction methods are the same
as those shown in Sections 4.5.1 and 4.5.2. We apply the method of Section 4.5.1 when

k=2 or 3, and the method of Section 4.5.2 when & > 4.

Example 4.5.4

We consider the Box-Behnken design No.2 shown in previous example assuming now

that there exists a linear trend over experimental units within each block. The design

matrix with a linear trend T is as follows:
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Blockl
(D,I) = | Block2 | =
Block3

We follow the method 4.5.1 to find a run order to be linear trend-free since k=2.

X3

2]

—

(=)

o O O O Jo

o O

o O O O O o o

o O o jo o o o ©

- L o

©C O O OO0 O O ©o o o o o o

o o O o o

o O ©

(=]

o O o o ©

By step 1, we put a center point within each block on the middle of the experimental

units whose linear trend value is 0. Then, we obtain run orders as follows:
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Block!
(D,I) = | Block2 | =
Block3

o O o o o

© o o o o &

-1

2

&

S O O o o o o o o

8]

o O © o

o o O o

o o o o

o

o O O o Jo o o o o

(=2~ -]

o O O © ©

o O O O © o O o o]J]lo o o o

o o o (=]

S O O O o

-3

-1

Here, we consider the first block to find a run order to be linear trend-free. the first block

can be written as

Chapter 4. Trend-free Box-Behnken designs

99



1 1

Blockl =
0 O
0 0 -1 -1
0O 0 1 -1
0o 0 -1 1
0o o0 1 1

By step 2, we have 22 cases for first block to arrange.

XX X3 X X on X X <
-1 -1 0 0 -1 -1 0 0 —
1 -1 0 0 1-1 0 0 —cs
0 0 -1 -1 0 0 -1 1 -
Block1(Dy) = R Block1(D;) = R
0 0 0 0 0 0 0 0
0 0 -1 1 0 0 -1 -1 a
0 0 1 1 0 0 1 -1 &
-1 1 0 0 -1 1 0 0 o
1 1 0 o0 1 1 0 0 s
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XX X3 X (Xl X X X <
-1 1 0 0 -1 1 0 o0 -
1 1 0 0 1 1 0 0 -
0 0 —1 -1 0 0 -1 1 —c,
0 0 1 - 0 0 1 1 -
Block1(D3) = , Block1(Dg) = )

0 0 0 ©o© 0 0 0 O

0 0 -1 1 0 0 -1 -1 a
0 0 1 1 0 0 1 -1 X
-1 -1 0 0 -1 -1 0 0 o
1 -1 0 0 1-1 0 0 c

We can see that the all cases Block1(D,), Block1(D,), Block1(Ds) and Block1(D,) will not
satisfy the equations x,*'C* =0, x*'C* =0, since x,* , xs* consist of 1 and 0, or -1 and 0
due to the fact that all elements of C* take positive integer values, ranging from | to 4.
So, in this design, there does not exist a LTF Box-Behnken design with orthogonal

blocking.

4.6. Conclusions

When a linear trend exists over experimental units in the Box-Behnken designs,
we use two different methods for constructing LTF Box-Behnken designs, depending on
the value of £ . We apply the method of Section 4.5.1 when £ =2 or 3, and the method
of Section 4.5.2 when k& >4 . We then have the following resuits:

(i) For k=2 or 3, we can generally but not always find a LTF Box-Behnken design using
the construcion method first described in Section 4.4.

(ii) For k > 4, there always exist LTF Box-Behnken designs.
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(iii) For Box-Behnken designs with orthogonal blocking, there always exist LTF Box-
Behnken designs when & > 4, however, we have not been able to find arrangements that

are linear trend-free within blocks when k=2 or 3.
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Chapter 5. Summary

Box-Behnken designs (Box and Behnken, 1960) are a class of three-level incom-
plete factorial designs for the estimation of parameters in a second-order response sur-
face model. These designs are formed by combining two-level factorial designs with
incomplete block designs in a particular manner. Box and Behnken showed how to
construct the designs, and illustrated the method with some useful designs of second

order.

In Chapter 2, we consider the properties of Box-Behnken design with respect to the
estimability of all parameters in a second-order model when we use 2* full factorials.
The design matrix of the Box-Behnken design is expressed as a more general math-
ematical formulation. We can derive the X’ X matrix which contains information about
the estimability of the parameters in the second order model. The properties of the de-
sign are determined essentially by the properties of the coefficient matrix of the normal
equations. Concerning the estimators, we can draw the following conclusions from the

X' X matrix:
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(i) We get uniformly minimum variance unbiased estimators for the first-order coefli-
cients.

(ii) The rank of X;'X; is less than or equal to v, say s, since rank ( NN’ ) = s <v. This
implies that we have s estimable functions among S, fz, ..., f... So, for all f; to be
estimable the PBIB(m) design has to be chosen such that rank (NN')=v .

(i) If Ay, 43, ..., An are all greater than zero, the mixed quadratic coeflicients are all
estimable. If 1,=0 then all elements g, .» =0 corresponding to those treatments i,
which are é -th associates, and this implies that the corresponding parameters §;» are not
estimable. So, for all ;. (i <i') to be estimable the PBIB(m) design has to be chosen

such thatall 4, >0(y=1,2,...,m).

In Chapter 3, we consider the properties of Box-Behnken design when we use 24~/
fractional factorials. One practical difficulty with the Box-Behnken design, using an in-
complete block design together with the full 2* factorial, is that the number of design
points increases rapidly as k, the block size increases. Instead of using a full factorial,
Box and Behnken (1960) advocate using a 2%~/ fractional factorial, hence reducing the
number of design points from 2%+ 1 to b2~/ + 1.

We first consider the smallest fraction which is a main effect plan or resolution III de-
sign. The basic property of a resolution III design is that main effects are confounded
with two-factor interactions. A consequence of this is that for the coeflicient matrix the
elements of X"\ X; are no longer 0 and the off-diagonal elements of X";X; are not 0. Thus,
using a resolution I1I design instead of the full factorial does alter the properties of the
estimators in the sense that the estimates of the first-order coefficients and the estimates
of the mixed quadratic coefficients are no longer uncorrelated, and the estimates of the

mixed quadratic coefficients are no longer uncorrelated with each other.
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Next we consider using a resolution IV design, in which two-factor interactions are
confounded with each other. A consequence of this is that X’;X; is not a diagonal ma-
trix. From the form of the X’.X matrix we can see that the estimates of the first-order
coefficients and the pure qudratic coefficients have the same properties as those with the
full factorial. But the estimates of the mixed quadratic coefficients do not have the same
property as those with the full factorial since X’3X; is no longer diagonal. In addition,
for some PBIB designs X'3X; is less than full rank. This means that for some Box-
Behnken designs even when all 4, > 0 we may not be able to estimate all mixed quadratic
coefficients. Thus it may not be advisible to use a resolution IV design. But for some
Box-Behnken designs with PBIB(2) when 4, >0, 4,>0 , X'3X; is of full rank, which
implies that all mixed quadratic coeflicients are estimable. Using fractional factorials
of resolution V or higher leads to the same form of X’ X as for the full factorial, except
that 2* is replaced by 2¢-/. Thus, the estimates of all parameters have the same prop-

erties as for the full factorial.

In Chapter 4, we are first concerned with Box-Behnken designs using 2* full fac-

torials in which treatments are applied to experimental units (plots) sequentially in time
or space and in which there may exist a linear trend effect. For this situation, the ob-
jective is to obtain a linear trend-free Box-Behnken design so that the estimates of the
first-order coefficients, the pure quadratic coefficients, and the mixed quadratic coeffi-
cients are not affected by such a trend. We take advantage of the symmetric property
of the second order terms (pure quadratic terms and the two-factor interactions) and
anti-symmetric property of the main effect contrasts of the 2 factorials in order to con-
struct a LTF Box-Behnken design by putting a center point on the middle of the exper-
imental units associated with the 0-value of the linear trend, and placing the halves of

each B, i= 1,2, ..., b symmetrically with respect to the center point since the structure
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of the Box-Behnken designs is based on the 2* factorial designs. We use two different
methods for constructing LTF Box-Behnken designs, depending on the value of & . We
apply the method of Section 4.5.1 when & = 2 or 3, and the method of Section 4.5.2 when
k >4 . We then have the following results:

(i) For k=2 or 3, it may not always be possible to find linear trend-free Box-Behnken
designs.

(ii) For &k > 4, there always exist LTF Box-Behnken designs.

We next consider Box-Behnken designs with orthogonal blocking in which a common
linear trend is assumed over experimental units within each block and each observation
is designated to one experimental unit sequentially. The objective then is to construct
a run order within blocks such that the design is a linear trend-free Box-Behnken design.
The construction methods are the same as those shown in Sections 4.5.1 and 4.5.2. For
Box-Behnken designs with orthogonal blocking, we always find linear trend-free Box-
Behnken designs when & > 4 , however, we have not been able to find arrangements that

are linear trend-free within blocks when k=2 or 3.

The following topics require further research:
(i) For Box-Behnken designs with orthogonal blocking and k=2 or 3 we want to find run
orders within blocks such that the design is a linear trend-free Box-Behnken design.
(ii) In addition to linear trends we may also want to include quadratic trends and con-

struct Box-Behnken designs which are both linear and quadratic trend-free.
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Appendix. The modified LINDO Program

The computer program LINDO (Linear, INteractive, and Discrete Optimizer) was
develpoed by Schrage (1981) and updated as recently as 1991 (Release 5.0). It is an
interactive linear, quadratic, and integer programming system designed for maximizing
or minimizing linear objective functions subject to several linear constraints of equality
or/and inequality. In order to use this program in the context of Chapter 4, i.e. to solve
equations like (4.13), several modification must be made since (i) equations (4.13) do not
have a specific objective function to be optimized, and (ii) the solution
Ct={(a, ¢, ..., Cs) has to be such that the ¢, i=1,2, ..., b2t-1 are distinct integer values
between 1 and 52*-! .

To solve linear equations like (4.13), first we assign a dummy objective function (it can
be either a minimization or maximization problem). Then we assign our linear system
xt'Ct+=0, x3'C*=0, .., x'C*=0 as constraints in the optimization problem. Note
G E G

To make the solutions c¢; distinct, we use standard assignment technique. Define as-

since the solutions ¢, are distinct integers from 1 to b2*-1.

b2k =1

k=1
signment matrix {,}, ij=1, ..., 52! such that 'Y y,=1foralli, S y,=1 for all j
j=1 i=1

where y; ‘s can only take either 0 or 1. Then, each row and each column of the assign-
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ment matrix {y,} has only one nonzero element (i.e., 1). After assignment of y, , we as-
sign actual integers varying from 1 to 52*-! to the ¢ ‘s according to the indicator
variables y, ‘s such that ¢, = bjkil 1] Yy -

We illustrate the procedure for the specific equations (4.13) with 6 variables and 3

equations since b2*-1=6, v=3. We modify the LINDO program as follows:

(1) MINCL+ C2+ C3+ C4+ C5+ C6
ST

(2) -C3+ C4-C5+ C6 =20

(3) Cl+C2+C5+C6=0

(4 C1-C2+C3+C4=0

(5) Cl+C2+C3+Cd+CS5+ C6=21
(6) YLl + Y12 + YI3 + Y14 + Y15 + Y16 = 1
() Y21 + Y22 + Y23 + Y24 + Y25 + Y26 = 1
(8) Y31+ Y32+ Y33+ Y34+ Y35+ Y36 =1
(9) Y4l + Y42 + Y43 + Y44 + Y45 + Y46 = 1
(10) Y51 + Y52 + Y53 + Y54 + Y55 + Y56 = 1
(11) Y61 + Y62 + Y63 + Y64 + Y65 + Y66 = 1
(12)  YI1 + Y21 + Y31 + Y4l + YSI + Y61 = 1
(13) Y12 + Y22 + Y32 + Y42 + Y52 + Y62

1
(14) Y13 + Y23 + Y33 + Y43 + Y53 + Y63 = 1
(15) Y14 + Y24 + Y34 + Y44 + Y54 + Y64 = 1
(16) Y15 + Y25 + Y35 + Y45 + Y55 + Y65 = 1
(17) Y16 + Y26 + Y36 + Y46 + Y56 + Y66 = 1
(18) -Y11-2YI2-3Y13-4Y14-5Y15 - 6Y16 + Cl

I Il
o o

(19) -Y21-2Y22-3Y23-4Y24-5Y25-6Y26 + C2
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(20)
(21)
(22)
(23)

Appendix. The modified LINDO Program

-Y31-2Y32-3Y33-4Y34-5Y35-6Y36 + C3
-Y41 - 2Y42 - 3Y43 - 4Y44 - 5Y45 - 6Y46 + C4
-YS51-2Y52-3Y53-4Y54-5Y55-6Y56 + C5

(= - =

-Y61 - 2Y62 - 3Y63 - 4Y64 - 5Y65 - 6Y66 + C6 = 0

END

INTE Y11
INTE Y12
INTE Y13
INTE Y14
INTE Y15
INTE Y16
INTE Y21
INTE Y22
INTE Y23
INTE Y24
INTE Y25
INTE Y26
INTE Y31
INTE Y32
INTE Y33
INTE Y34
INTE Y35
INTE Y36
INTE Y41
INTE Y42
INTE Y43
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INTE Y44
INTE Y45
INTE Y46
INTE YS1
INTE Y52
INTE Y353
INTE Y54
INTE Y55
INTE Y56
INTE Y61
INTE Y62
INTE Y63
INTE Y64
INTE Y65
INTE Y66

Here, line (1) is a dummy objective function, lines (2)-(4) are constrainsts in actual linear
equations, i.e., xt'C+=0, x3'C*=0, x'C+=0 , line (5) means that i}ilc,= 21 , lines
(6)-(17) dictate standard assignment of 6 rows and 6 columns by using—indicator vari-
ables x; such that ily,, =1foralli, iZG)Iy,- =1 for all j, and lines (18)-(23) will assign to
the ¢, actual valuesj _varying from 1 to_6 according to non-zero y; values. INTE defines
indicator variables y; as binary (0 or 1). Then we obtain a solution

C+ = (Ch C2, C3, C4,CS, CG)I = (69 39 41 5, 2! 1)' .
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