

Machine Learning and Multivariate Statistics for

Optimizing Bioprocessing and Polyolefin

Manufacturing

Aman Agarwal

 Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy

In Chemical Engineering

Y.A. Liu, Chair

Donald G. Baird

Sanket A. Deshmukh

Hongliang Xin

6 December, 2021

Blacksburg, VA

Keywords: foaming, antifoam profiles, fermentation, machine learning,

multivariate statistics, ensemble methods, automated machine learning, deep

learning

©2021, Aman Agarwal

All rights reserved

Machine Learning and Multivariate Statistics for Optimizing

Bioprocessing and Polyolefin Manufacturing
Aman Agarwal

TECHNICAL ABSTRACT

Chemical engineers have routinely used computational tools for modeling, optimizing, and

debottlenecking chemical processes. Because of the advances in computational science over the past

decade, multivariate statistics and machine learning have become an integral part of the

computerization of chemical processes. In this research, we look into using multivariate statistics,

machine learning tools, and their combinations through a series of case studies including a case with a

successful industrial deployment of machine learning models for fermentation. We use both

commercially-available software tools, Aspen ProMV and Python, to demonstrate the feasibility of the

computational tools.

This work demonstrates a novel application of ensemble-based machine learning methods in

bioprocessing, particularly for the prediction of different fermenter types in a fermentation process (to

allow for successful data integration) and the prediction of the onset of foaming. We apply two

ensemble frameworks, Extreme Gradient Boosting (XGBoost) and Random Forest (RF), to build

classification and regression models. Excessive foaming can interfere with the mixing of reactants and

lead to problems, such as decreasing effective reactor volume, microbial contamination, product loss,

and increased reaction time. Physical modeling of foaming is an arduous process as it requires

estimation of foam height, which is dynamic in nature and varies for different processes.

In addition to foaming prediction, we extend our work to control and prevent foaming by allowing

data-driven ad hoc addition of antifoam using exhaust differential pressure as an indicator of foaming.

We use large-scale real fermentation data for six different types of sporulating microorganisms to

predict foaming over multiple strains of microorganisms and build exploratory time-series driven

antifoam profiles for four different fermenter types. In order to successfully predict the antifoam

addition from the large-scale multivariate dataset (about half a million instances for 163 batches), we

use TPOT (Tree-based Pipeline Optimization Tool), an automated genetic programming algorithm, to

find the best pipeline from 600 other pipelines. Our antifoam profiles are able to decrease hourly

volume retention by over 53% for a specific fermenter. A decrease in hourly volume retention leads to

an increase in fermentation product yield.

We also study two different cases associated with the manufacturing of polyolefins, particularly

LDPE (low-density polyethylene) and HDPE (high-density polyethylene). Through these cases, we

showcase the usage of machine learning and multivariate statistical tools to improve process

understanding and enhance the predictive capability for process optimization.

By using indirect measurements such as temperature profiles, we demonstrate the viability of such

measures in the prediction of polyolefin quality parameters, anomaly detection, and statistical

monitoring and control of the chemical processes associated with a LDPE plant. We use dimensionality

reduction, visualization tools, and regression analysis to achieve our goals. Using advanced analytical

tools and a combination of algorithms such as PCA (Principal Component Analysis), PLS (Partial Least

Squares), Random Forest, etc., we identify predictive models that can be used to create inferential

schemes.

Soft-sensors are widely used for on-line monitoring and real-time prediction of process variables. In

one of our cases, we use advanced machine learning algorithms to predict the polymer melt index,

which is crucial in determining the product quality of polymers. We use real industrial data from one of

the leading chemical engineering companies in the Asia-Pacific region to build a predictive model for a

HDPE plant. Lastly, we show an end-to-end workflow for deep learning on both industrial and simulated

polyolefin datasets.

Thus, using these five cases, we explore the usage of advanced machine learning and multivariate

statistical techniques in the optimization of chemical and biochemical processes. The recent advances in

computational hardware allow engineers to design such data-driven models, which enhances their

capacity to effectively and efficiently monitor and control a process. We showcase that even non-expert

chemical engineers can implement such machine learning algorithms with ease using open-source or

commercially available software tools.

Machine Learning and Multivariate Statistics for Optimizing

Bioprocessing and Polyolefin Manufacturing
Aman Agarwal

GENERAL AUDIENCE ABSTRACT

Most chemical and biochemical processes are equipped with advanced probes and connectivity

sensors that collect large amounts of data on a daily basis. It is critical to manage and utilize the

significant amount of data collected from the start and throughout the development and manufacturing

cycle. Chemical engineers have routinely used computational tools for modeling, designing, optimizing,

debottlenecking, and troubleshooting chemical processes. Herein, we present different applications of

machine learning and multivariate statistics using industrial datasets.

This dissertation also includes a deployed industrial solution to mitigate foaming in commercial

fermentation reactors as a proof-of-concept (PoC). Our antifoam profiles are able to decrease volume

loss by over 53% for a specific fermenter. Throughout this dissertation, we demonstrate applications of

several techniques like ensemble methods, automated machine learning, exploratory time series, and

deep learning for solving industrial problems. Our aim is to bridge the gap from industrial data

acquisition to finding meaningful insights for process optimization.

 v

Acknowledgment

I would like to take this opportunity to thank my advisor, Dr. Y.A. Liu for facilitating my industrial

project journey, providing me with all the necessary resources for research, and helping me enhance my

writing skills. I am very grateful that he primed me for research and helped me get ready for the

industrial world with his insights.

I would also like to thank my committee members, Dr. Donald Baird, Dr. Sanket Deshmukh, and Dr.

Hongliang Xin for their support, guidance, and availability. I thank Dr. Luke Achenie for his words of

encouragement in the initial phase of my research. Additionally, I would like to thank all the professors

and staff members in the Chemical Engineering Department at Virginia Tech.

I would like to thank my industrial project mentor, Dr. Chris McDowell, Novozymes Biologicals Inc.,

for giving me the opportunity, motivation, and valuable feedback on every step of my research. Thank

you very much for your continuous mentorship throughout my Ph.D. I would also like to thank Luke

Dooley, Novozymes Biologicals Inc., for his continuous support, availability, and cherished

resourcefulness for all my projects with Novozymes. Additionally, I would like to thank Dr. Mads

Thaysen, Novozymes A/S for his professional advice, availability, and continuous support.

I am very grateful to Aspen Technology and Novozymes Biologicals for their continuous support

throughout my graduate studies at Virginia Tech. I would also like to thank MATRIC research institute for

allowing me to explore industrial research as a summer intern. I would like to thank Steven Hedrick, Don

Bunnings, Brooke Albin, Dana Jividen, Rob Nunley, and everyone from MATRIC for their hospitality and

challenging learning opportunities. I would also like to thank Dr. Kevin Seavey, DOW Chemicals, for his

availability and help with motivation. I would also like to thank my labmates and friends for their

continuous support.

Lastly, I would like to extend my sincerest gratefulness to my loving parents, my father Surendra

Agarwal and my mother Shanta Agarwal, for their unconditional love and guidance throughout my

graduate studies. I would also like to thank my brother, Rishu Agrawal for his brotherly guidance and

love. I dedicate my dissertation to my parents. Without them, my graduate journey would not have

been possible.

vi

Table of Contents

Technical Abstract……ii
General Audience Abstract……………………………………………………………………..………………………………………………iv
Acknowledgment……………………………………………………………………………….….………………………………………………. v
Table of Contents………..…….vi
List of Tables……..ix
List of Figures………....xi

1. Introduction to the Dissertation………………………………………………………………………………………………………1
1.1 Scope and organization of the dissertation…………………………………………………………………………………….....1
1.2 Significant novel contribution of the research…………………………………………………………………………………...1

2. Multivariate Data Analysis of Polyolefin Quality Parameters for a LDPE plant…………………………………3
2.1 Introduction……….3
2.2 Literature Review………...3
2.3 LDPE data structure………4
2.4 Data Visualization and Process Monitoring……………………………………………………………………………………..…5

2.4.1 PCA algorithm and model building…………………………………………………………………………………..…5
2.4.2 Anomaly detection……….7
2.4.3 PLS algorithm……..8
2.4.4 PLS model building and variable relationships……………………………………………………………………9

2.5 Multi-output regression model building and results…………………………………………………………………………12
2.5.1 Linear regression algorithm……………………………………………………………………………………….…….12
2.5.2 K-Nearest neighbor algorithm………………………………………………………………………………………….13
2.5.3 Decision tree regression algorithm……………………………………………………………………………….....13
2.5.4 Random forest regression algorithm………………………………………………………………………………..13
2.5.5 Model validation and results……………………………………………………………………………………..…….13

2.6 Conclusion………………………………………………………………………………………………..16
References………………………………………………………………………………………………..16

3. Data-driven Soft Sensor for Process Monitoring and Control of a HDPE plant………….......................18
3.1 Introduction………………………………………………………………………………………………..18
3.2 Literature Review………………………………………………………………………………………………...............................18
3.3 HDPE reactor setup………………………………………………………………………………………………............................19
3.4 Algorithms and Model Building………………………………………………………………………………………………..........20

3.4.1 Neural networks and deep neural networks………………………………………………………...............21
3.4.2 Extreme gradient boosting (XGBoost)………………………………………………………………………………21
3.4.3 Support vector regression (SVR)……………………………………………………………………………………….21
3.4.4 Model discussion and results……………………………………………………………………………………………21
3.5 Conclusion……………………………………………………………………………………………….............................26

References………………………………………………………………………………………………..26

4. Ensemble-Based Machine Learning for Industrial Fermenter Classification and Foaming Control…..28
4.1 Introduction…………………………………………………………………………………………….............…...........................28

4.1.1 Foaming control and dataset collection…………………………………………..................................28

vii

4.1.2. Ensemble methods for modeling foaming…………………….…………………………………….............31
4.2 Ensemble Framework and Methodology……………………………………………………………………………..............31

4.2.1 Data preprocessing…………………………………………………..………………………………………….............31
4.2.2 Data visualization and model selection…………………….………………………………………………………32

4.3 Model Building and Model Evaluation……………………………………………………………………………………………..36
4.3.1 Algorithms………………………………………………………………………………………………..........................38

4.3.1.1 Extreme gradient boosting (XGBoost).………………........……………………………………..38
4.3.1.2 Random forest………………………………………………………………………………………………...40

4.4 Model Results and Discussion………………………………………………………………………………………………............41
4.4.1 Fermenter type classification model…………………………………………………………………………………41
4.4.2 Foaming prediction classification model…………………………………………………………………………..43
4.4.3 Foaming prediction regression model………………………………………………………………………………45

4.5 Model Implementation………………………………………………………………………………………………......................46
4.6 Conclusions, Limitations, and Future Research………………………………………………………………………………..49
References………………………………………………………………………………………………..51

5. Large-Scale Industrial Fermenter Foaming Control: Automated Machine Learning for Antifoam
Prediction and Defoaming Process Implementation……………………..…………………………..........................53
5.1 Introduction……………………………………………………………………………………………..53

5.1.1. Foam formation and foaming in bioreactors………………..………………………………………………….53
5.1.2 Antifoam addition and defoaming practices..53

5.2 Dataset Extraction………………………………………………………………………………………………..............................55
5.3 Defoaming Strategy………………………………………………………………………………………………............................57
5.4 Automated Machine Learning for Antifoam Prediction……………………………………………………………………57

5.4.1 TPOT framework and methodology………………………………………………………………….………………58
5.4.2 Data preprocessing before automation……………………………………………………………………………59

5.4.2.1 Data visualization……………………………………………………………………………………………..59
5.4.2.2 Data fusion and transformation………….…….………………………………………………………62

5.4.3 TPOT antifoam addition model results…………………..…………………………………………………………62
5.4.4 TPOT prediction model conclusion and limitations……..…………………………………………………...63

5.5. Antifoam Profile Building using Time-Series Based Exploratory Analysis and Stepwise Addition…....63
5.5.1 Generalized fermenter profiles………………………………………………………………………………………..64
5.5.2 Deployment-ready targeted profiles……………………………….……………………………………………….68
5.5.3 Proof-of-Concept (PoC) antifoam profiles deployment verification tests..………..................72
5.5.4 Initial performance results from deployed antifoam profiles…………………….........................73

5.6. Conclusion, Limitations, and Future Research………………………………………………………………….……………..78
References………………………………………………………………………………………………..78

6. Deep Learning Optimization on Industrial and Simulated Polyolefin Datasets……………………………....81
6.1 Introduction………………………………………………………………………………………………..81

6.1.1 Why use deep neural networks? ……….…………………………………...……………………………………...81
6.2 Different Types of Recurrent Neural Network………………………………………………..………………..................82

6.2.1 Long short-term memory (LSTM) ………………………………………………………………………….………...82
6.2.2 Bidirectional LSTM…………………………...……………………………………………………...........................83
6.2.3 Gated recurrent unit (GRU)………………………………………………………………………………..…............83

6.3 Industrial HDPE Reactor Setup………………………………………………………………………………………………...........84
6.4 Deep Neural Network Model using Keras Libraries……………………………………………………………….…………86
6.5 Time-Dependent Polymer Dataset Obtained by Simulation for an HDPE Plant………………...……………..90

viii

6.6 Dynamic Deep Learning Using 3 Types of Recurrent Neural Networks. ……………................................92
6.7 Results and Limitations...103
References………………………………………………………………………………………………..103

7. Dissertation Summary………………………………………………………………….……………………….......................106
7.1 Concluding Remarks……………………………………………………………………………………………….........................106
7.2 Future Outlook……………………………………………………………………………………………….................................106

Appendix A. Introduction to Python for Chemical Engineers…………………………………………………………..108

Appendix B. Introduction to Neural Networks (supplement for Chapter 6) …………….........................128

ix

List of Tables

Table 2.1. List of process variables and product quality variables for the LDPE reactor..........................5

Table 2.2. Multi-output regression results for different machine learning algorithms.........................15

Table 2.3. Summary results...16

Table 3.1. List of all the input variables for HDPE reactor..20

Table 3.2. Data-driven soft sensor model results for predicting melt index...22

Table 4.1. Calculation of evaluation metrics using different averaging techniques for multiclass

classification models...38

Table 4.2. Fermenter batch classification model evaluation summary using XGBoost and different

averaging techniques for metric calculation..42

Table 4.3. Foaming prediction classification model evaluation summary using XGBoost and different

averaging techniques for metric calculation..45

Table 4.4. Foaming prediction classification model evaluation summary using Random Forest and

different averaging techniques for metric calculation...45

Table 4.5. Model evaluation summary using ensemble methods and other popular methods for

regression...46

Table 5.1. List of dependent and independent variables...57

Table 5.2. Model Comparison between automated machine learning (TPOT) and ensemble

methods...63

Table 5.3. Merged antifoam profiles (largest 10 peaks) separated for each fermenter type for the

entire dataset (of ~half a million instances) grouped by time..64

Table 5.4. Integrated-batch test results...74

Table 5.5. Single-batch test results..75

x

Table 6.1. List of all the input variables for HDPE reactor..85

Table 6.2. List of all the input variables for simulated HDPE reactor..92

Table 6.3. Model performance evaluation results for RNN architectures...103

xi

List of Figures

Figure 2.1. PCA plot with 3 principal components for X process variables (22 input variables)...............6

Figure 2.2. PCA hyper-ellipse score plot on product quality variables..7

Figure 2.3. PLS projection plot..9

Figure 2.4. PLS plot with 8 components without outliers...10

Figure 2.5. PLS observed vs predicted plot for the number-average molecular weight........................11

Figure 2.6. Variable importance plot based on PLS..11

Figure 2.7. Loading plot (X&Y) based on PLS..12

Figure 3.1. Schematic of the HDPE process used to build a soft sensor. Reproduced from ref 1..........19

Figure 3.2. Basic deep neural network structure with two hidden layers...23

Figure 3.3 Prediction error plot for neural networks...24

Figure 3.4. Prediction error plot for XGBoost regressor...25

Figure 3.5. Prediction error plot for support vector regression (SVR)...26

Figure 4.1. Fermenter design with pressure notations for exhaust differential pressure calculations..29

Figure 4.2. Fermenter setup for dynamic study of foaming behavior...30

Figure 4.3. Variable importance plot based on partial least square (PLS) created using Aspen ProMV.34

Figure 4.4. Bar graph representation of selected features for the entire dataset (about 183,000

instances); the y-axis is in max-min normalized log scale for the variable..35

Figure 4.5. Linear correlation heat mapping to identify positive and negative relationships................36

Figure 4.6. Confusion matrix for XGBoost-based fermenter classification model for 4 different

fermenter types (A, B, C, and D)..42

Figure 4.7. Confusion matrix for XGBoost-based foaming classification model for 4 thresholds...........44

Figure 4.8. Confusion matrix for RF-based foaming classification model for 4 thresholds....................44

xii

Figure 4.9. Model implementation of ensemble-based methods...48

Figure 5.1. Fermenter design with pressure notations for exhaust differential pressure calculations,

created using Canva and adapted from reference [5]..55

Figure 5.2. Foaming control setup in a bioreactor, Reprinted from ref. 5. Copyright 2004 Elsevier.......56

Figure 5.3. TPOT framework for model building, created using Canva and adapted from ref 15..........59

Figure 5.4. Random forest feature importance computed using SHAP values......................................61

Figure 5.5. PCA-based hyper ellipse score plot..61

Figure 5.6. Merged current antifoam addition profile for fermenter A..65

Figure 5.7. Merged current antifoam addition profile for fermenter B..66

Figure 5.8. Merged current antifoam addition profile for fermenter C...67

Figure 5.9. Merged current antifoam addition profile for fermenter D..68

Figure 5.10. Time-series antifoam profiling for organism 5 on fermenter A based on maximum

antifoam addition (subplot B shows the top 100 antifoam additions and subplot A shows the

corresponding exhaust differential pressure during the given time)..70

Figure 5.11. Time-series antifoam profiling for organism 5 on fermenter A based on maximum exhaust

differential pressure (subplot A shows the top 100 exhaust differential pressure and subplot B shows

the corresponding antifoam addition during the given time)..71

Figure 5.12. Sample deployment-ready capped profile..72

Figure 5.13. Integrated-batch test results..76

Figure 5.14. Single-batch test results...77

Figure 6.1 LSTM memory cell. Reproduced from reference 19...83

Figure 6.2 GRU memory cell. Adapted from reference 22..84

Figure 6.3 Schematic of the HDPE reactor used to build a soft sensor. Reproduced from ref 23...........85

Figure 6.4 Splitting the HDPE dataset into training and test sets and removing null values..................86

xiii

Figure 6.5 Selecting X-values and Y-value..87

Figure 6.6 Deep neural network with two hidden layers...88

Figure 6.7 Deep neural network using Keras...89

Figure 6.8 Evaluation metric calculation (RMSE calculation)..90

Figure 6.9 Visualization of actual vs predicted plot for melt-index prediction......................................90

Figure 6.10 Dynamic HDPE production process with 11 process variables...91

Figure 6.11 Checking for missing values and interpolation of missing values.......................................93

Figure 6.12 Time-split validation method..94

Figure 6.13 Train-test split plot using time-split..94

Figure 6.14 Selecting independent and dependent variables...95

Figure 6.15 Feature scaling using standardization or z-score method..95

Figure 6.16 Reshaping input data..96

Figure 6.17 Creating different RNN architectures..97

Figure 6.18 Parameters involved in training BiLSTM..98

Figure 6.19 Fitting the RNN models...99

Figure 6.20 Training and validation loss in BiLSTM..100

Figure 6.21 Inverse transform of target variable..100

Figure 6.22 (a) Making prediction for the three RNN architectures and plotting the true data vs

prediction for the three models..101

Figure 6.22(b) Prediction vs true data for BiLSTM..101

Figure 6.22(c) Prediction vs true data for LSTM...102

Figure 6.22(d) Prediction vs true data for GRU..102

Figure 6.23 Prediction of the target variable...103

1

Chapter 1. Introduction to the Dissertation

Machine Learning and Multivariate Statistics for Optimizing Bioprocessing and Polyolefin

Manufacturing

1.1 Scope and organization of the dissertation

The contents of the dissertation are as follows. Chapter 2 demonstrates the usage of various

multivariate statistical algorithms to monitor and quality control an LDPE plant. In this chapter, we look

into the strength and weaknesses of common statistical machine learning algorithms and determine

their viability for a particular regression task.

Chapter 3 includes building a data-driven soft-sensor for a continuous HDPE plant from a reputed

chemical industry in the Asian-Pacific region. In this chapter, we demonstrate the possibility of building

soft sensors for measurements that are difficult to extract in real-time. Chapter 4 proposes a novel

method for fermenter classification and foaming prediction using ensemble-based machine learning. In

this chapter, we demonstrate how we can use exhaust differential pressure (an indicator of foaming) to

predict the onset of foaming in an ad hoc manner. We also validate the integration of the batch datasets

with accurate classification models.

Chapter 5 is an extension to the research done in Chapter 4, as we work with large datasets for

industrial implementation. In this chapter, we showcase innovative defoaming strategies using

automated machine learning and exploratory time-series analysis. We further establish our proof-of-

concept (PoC) by deploying machine learning (ML)-guided antifoam profiles in the fermentation plant

and gauging the impact of the profiles in integrated and batch tests.

Chapter 6 provides a step-by-step guide to chemical engineers on deep learning applications for

both continuous industrial process (time-independent) and a simulated dynamic batch process (time-

dependent). In this chapter, we help readers walk through building deep neural networks including

three different types of recurrent neural networks for an HDPE plant. Chapter 7 summarizes the

dissertation and provides future outlooks for the research.

Appendix A serves as a tutorial for chemical engineers new to Python language with useful examples

and basic concepts of the language. Appendix B is the supplementary material for Chapter 6 as it

introduces chemical engineers to the fundamentals of neural network.

1.2 Significant novel contribution of the research

1. Ensemble-Based Machine Learning for Industrial Fermenter Classification and Foaming Control

2

 We build accurate ensemble-based classification models to differentiate fermenter types on the

basis of known independent variables alone, without prior knowledge of fermenter design

specifications, thus allowing for data integration of multiple plant data sets to build better

prediction models.

 We accurately predict the onset of foaming based on exhaust differential pressure using both

classification and regression models.

2. Large-Scale Industrial Fermenter Foaming Control: Automated Machine Learning for Antifoam

Prediction and Defoaming Process Implementation

 We demonstrate the ability of automated machine learning (AML) to predict antifoam addition

for multiple strains of microorganisms using large-scale industrial fermentation dataset.

 We establish proof of concept (PoC) by using time-series exploratory analysis to build strain-

specific and deployment-ready antifoam profiles for four different fermenter designs. We

confirm the industrial impact of the deployed profiles based on the initial results from the plant.

From our initial deployment results, we see significant improvements in yield, shown by the

significant decrease in hourly volume retention (up to 53%) and decrease in the count of

exhaust differential pressure (a foaming indicator) exceeding a threshold of 100 mbarg, among

other performance indicators.

3. Deep Learning Optimization on Industrial and Simulated Polyolefin Datasets

 We demonstrate how to build a steady-state (time-independent) model for a high-density

polyethylene (HDPE) industrial plant to predict the melt index.

 We show how to build three different types of dynamic recurrent neural network from scratch

to predict the melt index from a simulated time-dependent polymer dataset.

3

Chapter 2. Multivariate Data Analysis of Polyolefin Quality Parameters for a LDPE plant

2.1 Introduction

 Multivariate data analysis is a form of predictive analytics which uses a training dataset to build a

mathematical model for tasks such as process monitoring, identification of critical parameters,

assessment of process variability, scale-up, and inferential control. One such application of multivariate

data analysis is quality control. We often use quality parameters like melt flow rate (melt index), weight-

average molecular weight, and number-average molecular weight, etc. to assess the polymer quality.

The measurements for these quality parameters are often made off-line in a laboratory setting and are

recorded on an hourly to a daily basis. Some of the biggest challenges of such measurements lie within

the data collected. The measurements are often noisy, sparse, and infrequent, making them unreliable

and imprecise. In this chapter, we look at using different multivariate statistics and machine learning

algorithms to predict these off-line quality parameters using multi-output regression and different

statistical methods to analyze a given set of process data.

 Process data from chemical industries are generally high-dimensional, non-causal, sparse, and noisy.

By using different algorithms like PCA (Principal Component Analysis), PLS (Partial Least Squares),

decision trees, random forests, etc. and visualization plots like loading plots, biplots, barcharts, etc. we

can successfully extract the desired insights from a raw dataset. In this chapter, we look at simulated

LDPE data by MacGregor et al. generated by using a model of Kiparissides and Mavridis. 1-2 Polyolefins,

such as low-density polyethylene (LDPE), high-density polyethylene (HDPE), and propylene (PP), are

commercially significant thermoplastics manufactured throughout the world for food packaging,

clothing, bags, toys, containers, pipes, etc. 3 LDPE are usually produced in a tubular reactor under high

pressure. Properties like molecular weight and melt index are often very difficult to measure on a

frequent interval to ensure final product quality. In order to mitigate the expense associated with the

measurement, we use multivariate statistics and machine learning algorithms to predict the polyolefin

quality parameters. The resulting multi-output regression model, built on the existing operational logs of

temperature sensors, wall temperature probes, and solvent flow rate, provides us with frequent on-line

quantitative estimates of the polyolefin quality parameters.

2.2 Literature Review

 With the increasing interest in digitalization of the chemical industry and integration of data science

in the chemical industry, many researchers have been exploring different pathways to apply multivariate

statistics and machine learning algorithms for process monitoring and quality control. 4-7 Wang et al. use

partial least squares (PLS), support vector machines (SVMs), and random forest machine learning

4

algorithms to predict several quality parameters of organic polymers. 8 Ersen et al. use multiple

algorithms like K-NN (k- nearest neighbors), decision trees, random forest, etc. to analyze fracture

behavior of polymer composites. 9 Hartman et al., used artificial neural networks to derive potential rate

constants. 10 Similarly, Baughman and Liu, in their 1995 neural network book, describe in detail how

artificial neural networks can be used for a variety of tasks including prediction, classification, diagnosis,

and control applications. 11

2.3 LDPE data structure

 The dataset generated by the Kiparissides and Mavridis model include variations in the four

variables: wall temperature (Tw), solvent-flow rate (S), heat transfer coefficient for the wall on the

cooling side (Hw), and initial initiator concentration in the feed. The reactor is a tubular reactor and the

feed includes a monomer ethylene, an initiator, and a chain transfer agent. These authors measure

temperatures at 20 different locations in the reactor, and simulated polymer properties including the

number-average molecular weight (Mn). weight-average molecular weight (Mw), frequency of long chain

branching (LCB), frequency of short chain branching (SCB), the content of vinyl groups (VNL), and

vinylidene groups (VND) in the polymer chain. Table 1 shows the input and output variables for the

multi-output regression models.

 The polymerization reaction is a highly exothermic reaction and therefore the reactor temperature

rapidly increases as we move from T1 to T20 and eventually begins to plateau as it reaches its peak. The

reactor wall begins to slowly heat the reactor and generates heat until a maximum temperature is

reached; the peak is known as the hot-spot, which occurs when the initiator is completely consumed. All

the changes in the rate of heat transfer due to fouling of the inner walls and the change in the initiator

concentration are recorded in the temperature profiles alongside the reactor. The dataset consists of 22

input variables (X) and 6 output variables (Y), which are listed below in Table 2.1.

5

Table 2.1: List of process variables and product quality variables for the LDPE reactor

Input (Process Variables) Output (Product Quality Variables)

T1-T20 Temperature

measurements

along the

reactor

MWI_e5 Weight average molecular weight

inverse (X 105)

MNI_e6 Number average molecular weight

inverse (X 106)
Tw Wall

temperature
LCB Long chain branching frequency

S Solvent Flow

Rate
SCB Short chain branching frequency

VNL Frequency of vinyl groups in

polymer chain

VND Frequency of vinylidene groups in

polymer chain

2.4 Data Visualization and Process Monitoring

 Most process measurements acquired from distributed control systems (DCS) in industries are high

dimensional, have low signal-to-noise ratios, and have missing data. Multivariate statistical monitoring

using visualization techniques and projection of the raw dataset into a transformed plane helps to

interpret the dataset. We use Aspen ProMV, a commercially available software readily available to

academic users at low cost for building the Principal Component Analysis (PCA)/ Partial Least

Squares(PLS) models and the required visualizations for anomaly detection, dimensionality reduction,

and exploration of variable relations in section 2.4.

2.4.1 PCA algorithm and model building

 PCA is defined as an orthogonal linear transformation that transforms the data to a new coordinate

system by projecting the dataset into a new hyperplane. The scalar projection is done such that the

6

greatest variance comes to lie on the first coordinate (called the first principal component), the second

greatest variance on the second coordinate, and so on.12 Eq. (1) defines this transformation:

X = TP𝑇 + E (1)

 Here, X represents the data matrix, T represents the score matrix, P is the loading matrix, and E is

the residual matrix. Re-writing Eq. (1) gives the relationship for the prediction error E:

E = X − TP𝑇 = Observed value − Model Approximation = Prediction Error (2)

 We build the PCA model on the 22 input variables and transform the high dimensional input set into

three principal components as shown in Figure 2.1.

Figure 2.1. PCA plot with 3 principal components for X process variables (22 input variables).

 The R2 cumulative score summarizes the fit error on all training data, while the Q2 cumulative score

is the prediction ability over the test dataset. Equations. (3) and (4) define these scores:

𝑅𝑋
2 =

𝑆𝑆(𝑋) − 𝑆𝑆(𝐸𝑡𝑟𝑎𝑖𝑛)

𝑆𝑆(𝑋)
 (3)

𝑄𝑋
2 =

𝑆𝑆(𝑋) − 𝑆𝑆(𝐸𝑡𝑒𝑠𝑡)

𝑆𝑆(𝑋)
 (4)

7

where SS=Sum of squares and 𝐸𝑡𝑟𝑎𝑖𝑛 and 𝐸𝑡𝑒𝑠𝑡 are the prediction errors for the training and test

datasets.

 Figure 2.1 shows that with three principal components, we are able to successfully fit the dataset

(since both 𝑅𝑋
2 and 𝑄𝑋

2 are close to 1).

2.4.2 Anomaly detection

 After using PCA for dimensionality reduction, we can now use Hotelling’s T2 in junction with score

plot for building a hyper-ellipse score plot. Figure 2.2 shows the PCA score plot along with the Hotelling’s

T2 tolerance ellipse of 95% confidence. Hotelling’s T2 is a summary statistic for all the scores taken

together, given by:

𝑇𝑖
2 =

𝑡𝑖1
2

𝑠1
2 +

𝑡𝑖2
2

𝑠2
2 + ⋯ +

𝑡𝑖𝐴
2

𝑠𝐴
2 (5)

where, t’s are the latent (transformed) variables whose values are called scores., ‘s’ represents variance

of the latent variable in the model. From Figure 2, we can see that some observations depart from the

cluster as outliers and observations 55 and 56 are outside the 95% confidence interval. Using this plot,

we can see the trend from ‘outlier’ or ‘anomaly’ observation 51-56 and observation 37.

8

Figure 2.2. PCA hyper-ellipse score plot on product quality variables.

2.4.3 PLS algorithm

 PCA calculates the latent variables based only on the input (X) variables, and Partial Least Squares

(PLS) quantifies the latent variables based on both input and output (Y) variables. The overall objective

function of PLS is given by:

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) (6)

 Like before for X space in PCA, PLS modifies both the X-space and Y-space while ensuring maximum

covariance as shown in Figure 2.3. t’ s and u’ s are the transformed variables and their values represent

the projection scores. Equations. (7) and (8) define these scores as:

𝑡𝑎 = 𝑋𝑎𝑤𝑎 , for the X − space (7)

𝑢𝑎 = 𝑌𝑎𝑐𝑎 , for the Y − space (8)

where, 𝑤𝑎 represents the loading values for X, and 𝑐𝑎 represents the loading values for Y.

The covariance is given by:

𝐶𝑜𝑣(𝑡𝑎 , 𝑢𝑎) =
1

𝑛 − 1
∑{(𝑡𝑎 − 𝑡𝑎̅)(𝑢𝑎 − 𝑢̅𝑎)}

𝑛

𝑖=1

 (9)

where, 𝑡𝑎̅ is the mean of ‘t’ projection scores and 𝑢̅𝑎 is the mean of ‘u’ projection scores respectively.

 In PLS, we try to maximize this covariance or the dot product of 𝑡𝑎
′ 𝑢𝑎.

9

Figure 2.3. PLS projection plot.

2.4.4 PLS model building and variable relationships

 As shown in Figure 2.4, we build a PLS model with 8 components as the 𝑄𝑋
2 score reaches its

maximum possible value for the dataset. We remove the seven outliers {(51-56), 37} identified above

before building the PLS model. With 8 components, we are able to get a cumulative 𝑄𝑋
2 score of 0.8,

which is reasonable for the small dataset. To further visualize the predictions made by the model, we

plot the actual observation vs predicted observation for the number-average molecular weight in Figure

2.5. We see that the predicted values for the number-average molecular weight (MN_e6) are close to

the actual values with a high 𝑅𝑋
2 score and a low root-mean squared error estimate (RMSEE).

PLS can help us identify which variable is important through a variable important plot (VIP). Figure 2.6

shows the key process variables that impact the product quality parameters the most. We see that the

solvent flow rate has a very high VIP score, which makes it an important variable to consider, while

deciding to adjust the product quality. Along with the solvent flow rate, T7, T6, Tw, and T4 are also very

important as they all have a score greater than or equal to one. VIP scores greater than one represent

important variables.

 Now that we know the important variables, we use the same model to visualize the relationships

between X and Y variables. We make a loading plot, which has all the weights associated with the

variables. Highly correlated variables have similar weights and since we do not look at the weights

planes

projections

X- Plane Y- Plane

10

directly, we see the effect and directionality of each of the original variables. From Figure 2.7, we see

several relationships between the input and output variables and the variables by themselves. As

expected, the temperatures closer to one side of the reactor are clustered together and are opposite to

the temperature profiles on the other side. Also, in order to get higher frequency of LCB (long chain

branching parameter), we have to make sure that the reactor inlet temperature is not too high and the

solvent rate is low as well. However, to get a higher frequency of SCB (short chain branching parameter)

and increased molecular weight, we need a high inlet temperature and higher solvent rate.

Figure 2.4. PLS plot with 8 components without outliers.

11

Figure 2.5. PLS observed vs predicted plot for the number-average molecular weight.

Figure 2.6. Variable importance plot based on PLS.

12

Figure 2.7. Loading plot (X&Y) based on PLS.

2.5 Multi-output regression model building and results

 Multi-output regression models are problems that involve using multivariate statistics and machine

learning algorithms to predict two or more output values given a dataset. Most machine learning

algorithms do not natively support predicting multiple outputs and predict a single numerical value.

Such algorithms (like support vector machine) require wrappers or linear sequences of models to give

multiple output values. For our purpose, we look at some algorithms known for multi-output regression.

We develop all the regression models built below using Python libraries, which are commercially free

open-source resources.

2.5.1 Linear regression algorithm

 Linear regression is the simplest machine learning algorithm used for multi-output regression. The

objective of a linear regression model is to find a relationship between one or more features

(independent variables) and a continuous target variable (dependent variable). We represent the linear

regression by Eq. (10):

𝑌 = 𝜃𝑇𝑥 (10)

where, 𝜃𝑇is the model parameter which includes the bias term and x is the feature vector.

13

2.5.2 K-Nearest neighbor algorithm

 K-NN algorithm is a distance-based instant learning algorithm, which is non-parametric and gives

results based on proximity. The algorithm uses several distance measures for calculating the distance

between two points; for our model, we choose the standard Euclidean distance, defined by Eq. (11) for

two points x and y:

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑑) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑘
𝑖=1 (11)

 After calculating the distances, the K-NN algorithm finds a given observation value based on the

values of the nearest neighbors. We choose the number of neighbors (k) based on grid search. The

number of neighbors cannot be more than the number of instances in the test set.

2.5.3 Decision tree regression algorithm

 Decision tree is a frequency-based algorithm which builds models in the form of a tree structure. A

decision tree consists of three types of nodes:

 Root nodes or just nodes are the top decision node and represent an entire population or a

sample.

 Decision nodes resulting from splitting sub-nodes into further sub-nodes.

 Leaf/Terminal nodes are the bottom nodes with no further split.

We apply regression trees for continuous quantitative target variables. For regression, the most

common splitting criterion for the trees is the weighted variance of the nodes. The algorithm splits the

nodes to minimize the variation in nodes after the split.

2.5.4 Random forest regression algorithm

 Random Forest is simply a combination of the decision trees which follows the principle of bootstrap

aggregating (or bagging) to reduce complexity by training each decision tree on a different data sample,

where sampling is done with replacement. Random Forest has high tolerance for multidimensional data

and yields a parallel ensemble of unstable learners, which together provide a strong learner, resulting in

lower bias and variance.

 The biggest difference between decision trees and random forest is that decision trees are prone to

overfitting and do not handle noise as well as random forest. Random forest provides an aggregate

solution which minimizes the variance errors and bias errors.

2.5.5 Model validation and results

 We build five different regression models for multi-output regression prediction of the six polyolefin

quality parameters. Before building the models, we split the dataset into training and testing sets (80-20

14

split). We also remove all the outliers identified in the earlier sections. In order to preserve the small

dataset from further splits, we use cross-validation to divide the training set into folds for validation

purposes. We use 10-fold cross validation, where the training set is divided into 10 folds and the model

is trained on the 9-folds. We validate the resulting model on the remaining part of the data. By

repeating the process, we use all of the training data to build the model. We choose 8 components for

PLS based on the previous R2 scores. Similarly, we build a grid of {3,5,7,8,9} neighbors and pick 9 nearest

neighbors for best results from trial and error.

 Table 2.2 shows the results obtained for each of the regression models. We compare the standard

deviation of the output quality variables with the root mean square error (RMSE) of the predicted

values. RMSE is the square root of the average of squared errors. We use the Q2 score to represent the

accuracy of the fit of the model on the test set. A negative Q2 score indicates a fit worse than the

standard deviation. We compare the results from five different algorithms: linear regression, k-nearest

neighbor, decision trees, random forest, and partial least squares.

 From Tables 2.2 and 2.3, we see that a single algorithm does not predict all the output variables

accurately. Because of the complexity of a multivariate dataset, a simple linear regression aggression

fails to predict all the variables with high accuracy. However, the linear regression predicts short chain

branching (SCB) frequency and vinylidene frequency in polymer chain, fairly well. It is crucial to identify

linear relationships between variables in datasets. However, dependent variables which show non-linear

relations with the independent variables require more sophisticated non-linear algorithms.

 We notice that the K-nearest neighbor algorithm gives poor performance for all output variables.

We expect this result as the K-NN algorithm works better on large datasets and is prone to misleading

results for a smaller dataset. Decision trees give the best results for weight-average molecular weight

and long chain branching (LCB) frequency. Decision trees outperforms random forests for smaller

datasets and are more prone to overfitting compared to random forests. Decision trees are, however,

faster for relatively large datasets and easily interpreted. The random forest algorithm gives the best

prediction of the frequency of vinyl group addition. Random forest algorithm is effective for noisy non-

linear datasets and larger datasets. We can further fine-tune the random forest algorithm for better

performance, while regularizing to restrict overfitting. The PLS algorithm gives the most accurate

predictions for the number-average molecular weight, and this observation is similar to that obtained

using AspenProMV for a different testing set and split between training and testing datasets.

15

Table 2.2. Multi-output regression results for different machine learning algorithms.

Model Y1 Y2 Y3 Y4 Y5 Y6

Linear Regression MWI_e5 MNI_e6 LCB SCB VNL VND

Q2_score -0.6744 0.7230 0.3548 0.8024 0.1643 0.9224

RMSE 1.2727 1.9610 0.0128 1.2994 0.0011 0.0031

STD 0.9836 3.7258 0.0160 2.9232 0.0012 0.0110

k-Nearest

Neighbor

MWI_e5 MNI_e6 LCB SCB VNL VND

Q2_score -0.1966 -0.1840 -0.1628 -0.1508 -0.1740 -0.1504

RMSE 1.0929 4.1398 0.0178 3.2480 0.0013 0.0122

STD 0.9836 3.7258 0.0160 2.9232 0.0012 0.0110

Decision Tree MWI_e5 MNI_e6 LCB SCB VNL VND

Q2_score 0.2616 0.0192 0.8697 0.3892 0.2834 0.3820

RMSE 0.8452 3.6898 0.0058 2.2846 0.0010 0.0086

STD 0.9836 3.7258 0.0160 2.9232 0.0012 0.0110

Random Forest MWI_e5 MNI_e6 LCB SCB VNL VND

Q2_score 0.13769 -0.2042 0.783599 0.549067 0.579419 0.580188

RMSE 0.9133 4.0886 0.0074 1.9630 0.0008 0.0071

STD 0.9836 3.7258 0.0160 2.9232 0.0012 0.0110

PLS MWI_e5 MNI_e6 LCB SCB VNL VND

Q2_score -3.7036 0.8476 -1.0569 0.4262 -0.9805 0.8594

RMSE 2.1331 1.4545 0.0229 2.2143 0.0016 0.0041

STD 0.9836 3.7258 0.0160 2.9232 0.0012 0.0110

16

Table 2.3. Summary Results

Product Quality Variables Highest Q2_score

MWI_e5 Decision Tree

MNI_e6 PLS

LCB Decision Tree

SCB Linear Regression

VNL Random Forest

VND Linear Regression

2.6 Conclusion

 Using different tools of machine learning and different statistical algorithms, we are able to

successfully showcase ways to monitor and quality control a LDPE reactor. We can use simple methods

of dimensionality reduction and visualization such as PCA for anomaly detection. Using methods like

PLS, we are able to identify inter-variable relationships and relationships between input and output

variables. Multi-output regression models enable us to predict the infrequently measured quality

parameters for real time control and assessment of polymer quality. The choice of algorithm used for

analysis depends on the nature of the data: linear or non-linear, sparse or complete, noisy or consistent,

balanced or unbalanced, small data volume or large data volume, interpretation, time, and processing

power. One algorithm does not fit every dataset or in this case every output variable. However, the

knowledge of the available algorithms and limitations of the algorithms helps chemical engineers and

other users make informed decisions.

References:
1. Skagerberg, B.; Macgregor, J. F.; Kiparissides, C. Multivariate Data Analysis Applied to Low-Density
Polyethylene Reactors. Chemometrics and Intelligent Laboratory Systems 1992, 14 (1-3), 341–356.
2. Kiparissides, C.; Mavridis, H. Mathematical Modelling and Sensitivity Analysis of High Pressure
Polyethylene Reactors. Chemical Reactor Design and Technology 1986, 759–777.
3. Achilias, D.; Roupakias, C.; Megalokonomos, P.; Lappas, A.; Antonakou, Ε. Chemical Recycling of Plastic
Wastes Made from Polyethylene (LDPE and HDPE) and Polypropylene (PP). Journal of Hazardous
Materials 2007, 149 (3), 536–542
4. Yuan, X.; Li, L.; Wang, Y.; Yang, C.; Gui, W. Deep Learning for Quality Prediction of Nonlinear Dynamic
Processes with Variable Attention‐Based Long Short‐Term Memory Network. The Canadian Journal of
Chemical Engineering 2019, 98 (6), 1377–1389.
5. Szymańska, E. Modern Data Science for Analytical Chemical Data – A Comprehensive Review.
Analytica Chimica Acta 2018, 1028, 1–10.
6. Silva, D. J. D.; Wiebeck, H. Predicting LDPE/HDPE Blend Composition by CARS-PLS Regression and
Confocal Raman Spectroscopy. Polímeros 2019, 29 (1).

17

7. Ge, Z.; Song, Z.; Ding, S. X.; Huang, B. Data Mining and Analytics in the Process Industry: The Role of
Machine Learning. IEEE Access 2017, 5, 20590–20616.
8. Wu, K.; Sukumar, N.; Lanzillo, N. A.; Wang, C.; Ramprasad, R. “R.; Ma, R.; Baldwin, A. F.; Sotzing, G.;
Breneman, C. Prediction of Polymer Properties Using Infinite Chain Descriptors (ICD) and Machine
Learning: Toward Optimized Dielectric Polymeric Materials. Journal of Polymer Science Part B: Polymer
Physics 2016, 54 (20), 2082–2091.
9. Balcıoğlu, H. E.; Seçkin, A. Ç. Comparison of Machine Learning Methods and Finite Element Analysis on
the Fracture Behavior of Polymer Composites. Archive of Applied Mechanics 2020.
10. Rizkin, B. A.; Hartman, R. L. Supervised Machine Learning for Prediction of Zirconocene-Catalyzed α-
Olefin Polymerization. Chemical Engineering Science 2019, 210, 115224.
11. Baughman, D. R.; Liu, Y. A. Neural Networks in Bioprocessing and Chemical Engineering; Academic
Press: San Diego, CA, 1995.
12. Jolliffe, I. T. Principal component analysis; Springer: New York, 2002.

18

Chapter 3. Data-driven Soft Sensor for Process Monitoring and Control of a HDPE plant

3.1 Introduction

 Soft sensors are inferential estimators that alleviate the need for installation of expensive hardware

sensors by making accurate predictions of relevant process variables. Because of a surge in data

volumes in industries, there has been a realization of the potential of data-driven sensors. In order to

ensure proper process control and instant on-line measurements, many chemical plants, and

bioprocessing facilities have opted for virtual soft sensors instead of hard sensors. In this chapter, we

look at building such a soft-sensor for a HDPE plant. Soft sensors are generally of two types: model-

driven soft sensors and data-driven soft sensors. Since the foundation of data-based sensors is based on

real processing conditions, data-driven sensors are more adaptive than model-driven sensors.

 Recently, because of an increase in storage capacity of data, data-driven soft sensors have gained

popularity in the chemical industry. Low sampling rates and difficulties faced during off-line

measurements in a laboratory setting have also added to the necessity for developing these inferential

sensors. There are many reported applications of data-driven sensors for process monitoring and fault

detection. The strategy to develop a data-driven sensor depends on the type of process as well. Most

data-driven sensors are most effective for continuous processes, while model-based sensors are

applicable to both continuous and discontinuous processes. When applying data-driven sensors to

discontinuous or batch sensors, we must consider one additional feature vector to characterize the

batch-to-batch variance. Another issue to consider while building a data-driven sensor is missing data.

Data-driven sensors struggle with missing data; one way to overcome the limitation is by imputation of

the missing data.

 For our case study, we build a data-driven sensor for a continuous HDPE plant from a reputed

chemical industry in the Asian-Pacific region.1 For a polyolefin process, polymer melt index (MI) serves

as an important quality control variable, which Is also hard to measure on-line. MI refers to the ease of

flow of the melt of a thermoplastic polymer.

3.2 Literature Review

 Data-driven and model-based soft sensors are growingly important in bio-processing and chemical

industries because of their cost-reduction potential and their use in process control.2-5 Soft-sensors pave

a way to perform real-time analyzing, monitoring, and control by providing reliant calculation of

parameters, where no physical hard sensor is available. Gao et al. use ensemble deep kernel learning

(EDKL) to predict melt index.6 Polyolefin manufacturing uses such data-driven soft sensors to predict

quality properties like the melt index and it has been a hot research topic among many chemical

19

engineers for quite some time.7-10 Zhang et al. use empirical mode decomposition (EMD), relevance

vector machine (RVM), and least squares support vector machine (LSSVM) to predict the melt index.

3.3 HDPE reactor setup

 High-density ethylene (HDPE) production is an important slurry polymerization process as shown in

Figure 3.1. The polymerization process involves two different reactors in parallel or in series and the

entire process is highly exothermic. We obtain an industrial HDPE plant dataset from Professor Park.1

From the raw process data, we use 14 input variables to predict the melt index as the output variable as

shown in Table 3.1.

Figure 3.1. Schematic of the HDPE process used to build a soft sensor. Reproduced from reference (1)

20

Table 3.1. List of all the input variables for HDPE reactor

Input Variables Symbol

Ethylene Feed Rate ETH

Hexane Feed Rate HDH

Recycled Hexane Feed

Rate

HMH

Reactant with BUE ligand

Feed Rate

PRL/BUE

Hydrogen Feed Rate HYD

Reactor temperature

(Bottom)

RT_BOTTOM

Reactor temperature

(Middle)

RT_MIDDLE

Reactor temperature (Top) RT_TOP

Reactor level LEVEL

Reactor Pressure_1 RP1

Reactor Pressure_2 RP2

Agitator Speed AGITATOR

Jacket Temperature_1 JT1

Jacket Temperaure_2 JT2

3.4 Algorithms and Model Building

 We use three different models to predict the melt index using the 14 input variables. We split the

dataset into training and testing sets (80-20 split). In order to preserve the dataset from further splits,

we use cross-validation to divide the training set into 10 folds for training and validation, with 9 folds for

training and the remaining one for validation. The algorithms we use are neural networks and deep

neural networks, extreme gradient boosting (XGBoost), and support vector regression (SVR). Baughman

and Liu show how to use neural networks for solving a variety process monitoring and control

problems.12 Similarly, SVR has found growing application in process control and monitoring 13 The use of

XGBoost (extreme gradient boosting) machine learning algorithm in process applications appears to be

relatively new.

21

3.4.1 Neural networks and deep neural networks

 Neural Networks are a cluster of nodes, known as neurons, which are arranged into an ordered

sequence of at least three groups known as layers. The first layer is called the input layer and has the

same number of neurons as the number of input variables for the system, and the last layer is known as

the output layer; the layers in-between are called hidden layers. The choice of number of layers and

number of nodes is task-dependent and is mostly based on experience.14 Deep neural networks are just

neural networks with two or more than two hidden layers.

3.4.2 Extreme gradient boosting (XGBoost)

 XGBoost is an implementation of gradient boosted decision trees designed for speed and

performance. In gradient boosting, the algorithm predicts the residuals or errors of prior models and

then adds them together to make the final prediction. It is called gradient boosting, because it uses a

gradient descent algorithm to minimize the loss when adding new models. XGBoost is a powerful

sequential ensemble technique because of its features such as: regularization for preventing overfitting,

weighted quantile sketch for handling weighted data, and block structure for parallel learning for faster

computing.15

3.4.3 Support vector regression (SVR)

 SVR is a regression algorithm based on the principles of support vector machine (SVM), used to

predict a continuous variable. Unlike many other algorithms, SVR tries to fit the best line within a

predefined or threshold value instead of minimizing the error between predicted and actual values. It

basically creates an error boundary space, which is a region separated by two parallel lines. The

prediction lines which do not pass through the space are disregarded and the lines that pass become the

support vectors for the model. SVR helps overcome the limitations associated with distributional

properties of underlying variables, geometry of the data and the common problem of model overfitting.

SVR algorithm uses a set of mathematical functions called kernel. The function of the kernel is to

transform the input data in the right form. Kernels are of different types: linear, nonlinear, polynomial,

radial basis function (RBF), and sigmoid. With the right choice of kernels, SVR can be a very powerful

statistical tool.

3.4.4 Model discussion and results

 We build two different neural network structures; one of the structure has one hidden layer, while

the deep structure has two hidden layers. Figure 3.2 shows the structure for the deep neural network.

As we can see from the structure, the deep neural network has 1 input layer with 14 neurons, 2 hidden

layers with 10 neurons, and an output layer with 1 neuron. The simple neural network has the same

22

structure with one less hidden layer. We use rectified linear unit (ReLU) activation function, as the

activation function for the hidden layers, which is the most commonly used activation function in deep

learning models.16 We use simple linear activation function for the output layer as we want a numerical

regression output. We use ‘Adam optimization’ for training the neural net.17 For SVR, we use the

commonly used radial basis function (RBF) kernel.

 Table 3.2 gives the results of the different algorithms. It is important to visualize how the predictions

look compared to the original values. Figures 3.3-3.5 help us visualize the prediction error for the three

algorithms along with the R2 score for each model. R2 scores characterize the fit of the model over the

dataset. An R2 score close to one shows that most of the variance is explained by the data and indicates

a good fit. We see that deep neural network outperforms the other two algorithms and is better than

regular neural network. The RMSE values for D-NN are significantly lower (about four times) than SVM.

We note that Park et. al1 have also applied SVM to a melt index problem.

Table 3.2. Data-driven soft sensor model results for predicting melt index

Algorithm RMSE

NN 1.0846

D-NN 0.9966

XGBoost 3.6163

SVM 4.0069

Std. Deviation 4.57

23

Figure 3.2. Basic deep neural network structure with two hidden layers.

24

Figure 3.3 Prediction error plot for neural networks.

25

Figure 3.4. Prediction error plot for XGBoost regressor.

26

Figure 3.5. Prediction error plot for support vector regression (SVR).

3.5 Conclusion

 In the polymerization process, for both LDPE and HDPE, machine learning algorithms can provide

virtual assistance in many aspects of process monitoring and control. By providing accurate predictions,

we can use soft-sensors to decrease capital investment costs and provide analysis and insights which

otherwise may not be readily available. In this chapter, we build such a data-driven sensor and find that

deep neural network provides us with the best predictions. With advances in computational technology

and statistical algorithms, there are many avenues that await the adoption by chemical engineers to

develop cost-effective soft sensors. Here, we showcase the benefits of one such algorithm to predict the

melt index with high predictive power.

References
1. Park, T. C.; Kim, T. Y.; Yeo, Y. K. Prediction of the Melt Flow Index Using Partial Least Squares and
Support Vector Regression in High-Density Polyethylene (HDPE) Process. Korean Journal of Chemical
Engineering 2010, 27 (6), 1662–1668.
2. Kaneko, H.; Arakawa, M.; Funatsu, K. Novel Soft Sensor Method for Detecting Completion of
Transition in Industrial Polymer Processes. Computers & Chemical Engineering 2011, 35 (6), 1135–1142.

27

3. Cheng, Z.; Liu, X. Optimal Online Soft Sensor for Product Quality Monitoring in Propylene
Polymerization Process. Neurocomputing 2015, 149, 1216–1224.
4. Liu, Y.; Chen, J. Integrated Soft Sensor Using Just-in-Time Support Vector Regression and Probabilistic
Analysis for Quality Prediction of Multi-Grade Processes. Journal of Process Control 2013, 23 (6), 793–
804.
5. Jiang, X.-L.; Guo, X.-Q. Soft-Sensor Modeling of Quality Control Based on Support Vector Machine.
Journal of Computer Applications 2009, 28 (9), 2382–2385.
6. Liu, Y.; Yang, C.; Gao, Z.; Yao, Y. Ensemble Deep Kernel Learning with Application to Quality Prediction
in Industrial Polymerization Processes. Chemometrics and Intelligent Laboratory Systems 2018, 174, 15–
21.
7. Han, I.-S.; Han, C.; Chung, C.-B. Melt Index Modeling with Support Vector Machines, Partial Least
Squares, and Artificial Neural Networks. Journal of Applied Polymer Science 2004, 95 (4), 967–974.
8. Liu, Y.; Gao, Z. Industrial Melt Index Prediction with the Ensemble Anti-Outlier Just-in-Time Gaussian
Process Regression Modeling Method. Journal of Applied Polymer Science 2015, 132 (22).
9. Liu, Y.; Yang, C.; Liu, K.; Chen, B.; Yao, Y. Domain Adaptation Transfer Learning Soft Sensor for Product
Quality Prediction. Chemometrics and Intelligent Laboratory Systems 2019, 192, 103813.
10. Zhang, M.; Liu, X.; Zhang, Z. A Soft Sensor for Industrial Melt Index Prediction Based on Evolutionary
Extreme Learning Machine. Chinese Journal of Chemical Engineering 2016, 24 (8), 1013–1019.
11. Zhang, M.; Zhou, L.; Jie, J.; Liu, X. A Multi-Scale Prediction Model Based on Empirical Mode
Decomposition and Chaos Theory for Industrial Melt Index Prediction. Chemometrics and Intelligent
Laboratory Systems 2019, 186, 23–32.
12. Baughman, D. R.; Liu, Y. A. Neural Networks in Bioprocessing and Chemical Engineering, 1995,
Elsevier, Atlanta, GA.
13. Kecman, V. (2005). Support Vector Machines – An Introduction. Support Vector Machines: Theory
and Applications Studies in Fuzziness and Soft Computing, 1-47. doi:10.1007/10984697_1
14. Bramer, M. (2020). An Introduction to Neural Networks. In Principles of Data Mining (pp. 427-466).
Springer Verlag London.
15. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 16, San Francisco, CA,
August, 2016

28

Chapter 4. Ensemble-Based Machine Learning for Industrial Fermenter Classification and Foaming

Control

"Reprinted with permission from [110th Anniversary: Ensemble-Based Machine Learning for Industrial

Fermenter Classification and Foaming Control. Industrial & Engineering Chemistry Research 2019, 58

(36), 16719–16729.]

Copyright [2019] American Chemical Society."

Aman Agarwal and Y.A. Liu
AspenTech-PetroChina Center of Excellence in Process System Engineering,
Department of Chemical Engineering, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061, United States

Christopher McDowell
Novozymes Biologicals Inc., 5400 Corporate Circle, Salem, Virginia 24153, United States

4.1 Introduction

4.1.1 Foaming control and dataset collection

 The process of foaming refers to the formation of a dispersed media by trapping pockets of gas in a

network of thin liquid films or solids. A foam generation process can be further described by two distinct

events: air entrapment and bubble breakup.1 Despite its simplicity, the foaming process affects the

industrial sector in a substantial way due to its dynamic nature, making it a major technological

hurdle. 2-9 In a bioprocess, due to the extensive aeration and presence of active microorganisms that

reduce the surface tension, foams can build up to a serious level resulting in several issues such as

microbial cell stripping and contamination.10

 Some of the common methods of controlling foaming involves addition of chemical antifoam agents

(AFA) to prevent the adverse effects of foaming. Increased usage of industrial AFA tends to decrease cell

viability and the effects are intensified with increased exposure and higher concentration of AFA.11 The

current methods of AFA addition are based on empirical methods or operational experiences. This study

aims at mitigating the adverse effects of excessive AFA addition by using advanced machine learning

algorithms to predict the onset of foaming. Conventionally, we estimate the amount of foaming by using

the empirical foaming parameters: foamability (maximum height reached by the foam after CO2

injection), Bickerman coefficient (bubble average lifetime), and surface tension of the liquid.12 However,

this estimation is time-consuming and not viable for dynamic process control.

29

 This paper presents a way to estimate foaming based on the prediction of differential pressure using

ensemble-based machine learning algorithms. As illustrated in Figure 4.1, the exhaust differential

pressure (DP1) is the pressure difference between the fermenter head pressure (PT01), measured from

the headspace of the fermenter, and the exhaust pressure (PT02), measured from the exhaust line

downstream of the fermenter.

Figure 4.1. Fermenter design with pressure notations for exhaust differential pressure calculations.

 Fermentation practices in industry shows that the exhaust differential pressure can be a strong

indicator of foaming. Developing a model which can accurately predict foaming would require large

industrial dataset with operating variables over a wide range of values to accommodate different

fermenter designs and multiple strains of microorganisms. No such model is currently available, because

of lack of relevant industrial data and application of conventional methods to predict foaming.

 Physical modeling of foaming is an arduous process as it requires estimation of foam height which is

dynamic in nature and differs for different bioprocesses.13 Machine-learning based modeling helps

mitigate the necessity for foam height estimation, and it can be generalized for any process as it uses

the available operational data for prediction. Recently, machine-learning based methods have found

several applications in sectors where mechanistic modeling is precluded by the inability to develop a

model or generalize it for a process.14-18

 Figure 4.2 shows a schematic diagram of an experimental setup to study the dynamic measurement

of foam behavior for a continuous fermenter over a range of key process variables19. This setup and the

additional details in reference [19] suggest that the key measurement considerations in foaming control

30

include: probes (pH, temperature and dissolved oxygen); additions of antifoam, media (air), acid and

caustic for pH control; volume of fermenter, agitator speed, and hour (time of foaming). In developing

the dataset for the current study, we collect the key plant data following reference [19], and include an

identical list of 11 independent variables. Figures 4.3 to 4.5 display these 11 independent variables (X),

together with our quality variable (Y), the exhaust differential pressure. In particular, our dataset

consists of 64 batches with four fermenter designs, with 11 independent variables (X) and one quality

variable (Y), totaling over 183,000 instances. These data require cleaning, integration and

transformation before being used for model building.

31

Figure 4.2. Fermenter setup for dynamic study of foaming behavior 19

4.1.2. Ensemble methods for modeling foaming

 The proposed model is based on ensemble methods, which are meta-algorithms that offer a

systematic solution by combining the predictive power of several learners. Ensemble methods provide

an extra degree of freedom in the classical bias-variance tradeoff, where model complexity is carefully

calibrated so that the fit on the training sample reflects performance out-of-sample, and have allowed

for solutions to many complicated problems.20-25 The book by Zhou26 gives an excellent introduction to

the foundations and algorithms of ensemble methods. Bootstrap aggregating (bagging) and boosting

are two popular ensemble methods which can be used with several statistical models, predominantly

with decision trees. In this paper, we use two popular ensemble methods: 1) extreme gradient boosting

(XGBoost), an efficient boosting sequential ensemble framework designed by Chen et al 27 and 2)

random forest (RF), an established parallel bagging ensemble framework developed by Brieman et al.28

4.2 Ensemble Framework and Methodology

 The four steps in our proposed scheme for the ensemble-based foaming prediction model are: data

acquisition, data preprocessing and visualization, ensemble-based model building, and foaming

prediction. For the data acquisition step, we acquire real-industrial annual batch data for different

fermenters from a fermentation plant. For consistency, we collect the data for a specific strain of

bacteria over time in different fermentation setups. The data preprocessing involves data cleaning,

integration, and transformation. In the data visualization step, we justify the usage of ensemble

methods with the help of heat-mapping based on linear correlations. Heat-mapping helps us visualize

the existing bivariate correlations between independent variables and a chosen dependent variable. We

then apply the ensemble methods for classification of different types of fermenters, and for both

classification and regression models for foaming prediction. We quantify the model results based on

different averaging techniques and metrics for our multiclass classification models and root mean

squared error (RMSE) for regression models. We also perform model validation using 10-fold cross

validation, which is explained ahead in Section 4.2.2.

4.2.1 Data preprocessing

 Data preprocessing include cleaning, integration and transformation. Data cleaning identifies

irrelevant and inaccurate records, and removes noisy and redundant data, which may occur because of

usage of multiple temperature and pressure sensors, multiple dissolved oxygen (DO) probes, multiple

identifiers for the same independent variables, and different fermenter design setups. The raw data

consist of several columns with redundant data due to presence of backup probes. We remove all the

32

columns with identical data for temperature, pressure, dissolved oxygen, etc. Similarly, we remove some

data columns, which play no role in foaming, like inoculation date, speculative batch count, etc. In order

to ensure the robustness of the prediction model for exhaust differential pressure, we remove the

directly correlated variables like fermenter head pressure and exhaust line pressure, which are also

measured along with exhaust differential pressure.

 Data integration involves combining datasets from different fermenters to form a generalized

dataset with over 183,000 instances. Data transformation involves standardization of the data to center

the data (shift it to have a zero mean and remove bias). It also scales the data so the values are in a

standardized unit and the data have unit variance (so variables with large values do not dominate the

analysis results).29 The transformation also involves changing the cumulative values of some

independent variables (such as acidic flow, caustic flow, antifoam flow, and volume of the reactor) to

noncumulative values.

4.2.2 Data visualization and model selection

 In order to find the real underlying sources of variation and select the right features, we use the

multivariate data analysis software Aspen ProMV (available through university programs of Aspen

Technology Inc., Bedford, MA) to rank the relative importance of 11 independent variables. The

software generates the variable importance plot of Figure 4.3 based on partial least square (PLS) to

determine the important features for model building. The y-axis represents the Variable Importance in

Projection (VIP) score, computed for a selected variable in multiple principal components following an

equation given by Wold et al.30 This analysis considers an independent variable as important when its

VIP score is close to or greater than one in a given model. As expected, hour (time of foaming), pH,

dissolved oxygen, and fermenter temperature are the most important variables for the model.

 We use Python 3.6 and its various packages (e.g., Scikit-learn machine learning python library) for

the following visualizations and the proposed models.31-34 Before model building, we visualize the data

using bar graphs for each variable as shown in Figure 4.4 for the selected variables.

 By visualizing the data, we can see the spread of each of the independent variables and make a

preliminary feature selection, where similar or non-variant attributes are removed. For some variables

with multiple values, like pH, it is important to see if the values are reasonable. In an industrial

fermentation setup, it is very common to have backup probes which share identical values with the

active probes, or are inactive during regular operations. We check the entire dataset to identify such

similar or non-variant variables, so they can be removed before data processing.

33

 After visualizing the spread of the data and feature selection, it is important to see if an independent

variable and our quality variable (foaming indicator; exhaust differential pressure) are linearly

correlated. A good way to visualize any such correlation is to create a correlation heat map. Figure 4.5

shows the correlation of all 11 independent variables with the exhaust differential pressure. Because of

restriction of industrial plant data, we represent the y-axis of the figure in max-min normalized log scale

for the variable. We choose hour (time of foaming) as an independent variable, as none of the other

independent variables is linearly correlated with time and the fermenter data are collected for multiple

batches in the same period. In cases, where time linearly changes with other variables or if data are

collected in different periods for multiple batches, we should remove hour as this independent variable

becomes redundant or an observational ID.

 We see a positive correlation of the exhaust differential pressure with hour, pH, fermenter

temperature, and agitation speed. Similarly, we see a negative correlation against dissolved oxygen. This

observation aligns with our understanding of foaming19. This analysis shows that we can apply

visualization tools such as annotated heat mapping for quick analysis of large fermentation datasets to

identify patterns among several batches with possible multiple strains of microorganisms and different

fermenter designs. We also see that none of the independent variables shares a high (>|0.5|) positive or

negative linear correlation with the dependent variable. Thus, our reasoning for using ensemble

methods, known for handling data with nonlinear correlations, instead of simple linear models, is

justified.21

34

Figure 4.3. Variable importance plot based on partial least square (PLS) created using Aspen ProMV.

35

Figure 4.4. Bar graph representation of selected features for the entire dataset (about 183,000

instances); the y-axis is in max-min normalized log scale for the variable.

36

Figure 4.5. Linear correlation heat mapping to identify positive and negative relationships.

4.3 Model Building and Model Evaluation

 The process of fermentation differs from other industrial processes as the design of fermenter and

its mode of operation depends highly on the choice of microorganism used for fermentation.35 Our

fermentation plant currently has four fermenter types (designated types A, B, C and D), each with

different material, geometric and equipment specifications. Some of these specifications are: straight

wall height, diameter, aspect ratio, total volume, fill volume, stainless steel type, jacketing, aeration

method, agitator mounting position, number of impellers, impeller diameter and impeller type, etc.

 In particular, while these specifications may contribute to generating different fermentation

performance, we wish to investigate if we could develop an ensemble-based fermenter classification

model that: (1) evaluates all the datasets for the four fermenter types together in an integrated fashion;

37

(2) considers the 11 independent variables for each batch alone without having to incorporate explicitly

the design specifications for the specific fermenter type for the batch; and (3) can correctly differentiate

or classify the fermenter type with an accuracy of over 99% for our integrated dataset of over 183,000

instances. If this development of fermenter classification model is successful, it can help to generalize

the foaming prediction for different types of fermenters and integrate the multiple datasets for a better

model. We discuss the development of a XGBoost-based 27 fermenter classification model in Section

4.4.

 After developing a model for fermenter type prediction, we build classification and regression

models for foaming prediction based on the exhaust differential pressure prediction. For the

classification model, we bin the exhaust differential pressure into four thresholds: lower threshold limit,

close to threshold limit, threshold limit, and upper threshold limit, which is explained in Section 4.4.2.

We use XGBoost-based 27 and RF-based 28 ensemble models for comparison. Finally, we build regression

models using both of the meta-algorithms to predict the exact value of exhaust differential pressure in

mbarg.

 The model evaluation step involves partitioning the entire dataset into a training set and a test set

to determine the predictive power of each model. For our models, we use 80-20 training-test split for

model building. The training set is useful in the formulation of the model, while the test set is

independent and plays no part in the process. We use the test set for validating the model predictions,

and reserve one-fifth of the training set for hyperparameter tuning (validation set). This ensures an

unbiased evaluation of model fit on training set, while tuning the hyperparameters. The k-fold cross-

validation technique is a well-established and flexible technique for selecting the ideal model (which

avoids overfitting and over-optimization).36 It involves partitioning the data into k disjoint subsets and

using each one for validation and the remainder for training. The k parameter is adjustable according to

performance and predictive evaluation considerations. For our models we use 10-fold cross-validation,

which involves randomly dividing the dataset into 10 groups, or folds, of approximately equal size. The

first fold is treated as a test set, and the method is fit on the remaining 9 folds.

 For our regression model, we use root mean square error (RMSE), which is the square root of the

average of squared errors. It is measured in the same unit as the target variable, which in our case is

mbarg (for exhaust differential pressure). Similarly, we use four different evaluation metrics for our

classification models: accuracy, precision, recall, and f1-score. The accuracy of a classification model can

be defined as the ratio of the total number of correct predictions by the total number of predictions.

Precision is the ability of a classification model to return only relevant instances. Recall refers to the

38

ability of a classification model to identify all relevant instances. In addition, f1-score is the single metric

that combines recall and precision using the harmonic mean. 29

 The evaluation metrics (precision, recall, and f1-score) used for multiclass classification are

calculated based on different ways to average binary metric calculations for different class labels. The

three common ways of averaging are: micro-averaging, macro-averaging, and weighted-averaging.

Micro-averaging gives each class an equal contribution to the overall metric. Macro-averaging uses the

mean of the binary metrics, giving equal weight to each class. Finally, weighted-averaging accounts for

class imbalance by incorporating the average of binary metrics in which each class’s score is weighted by

its presence in the data sample. 31 Table 4.1 shows how these measures can be calculated by these

different averaging techniques. 31 If all the classes are included, micro-averaging gives same values for

precision, recall, and f1-score, which are identical to the accuracy score for the model.

Table 4.1. Calculation of evaluation metrics using different averaging techniques for multiclass

classification models. 31

Averaging

Technique

Precision (P) Recall (R) F1-score

Micro
𝑃(𝑦, 𝑦̂) ≔

|𝑦 ∩ 𝑦̂|

|𝑦|
 𝑅(𝑦, 𝑦̂) ≔

|𝑦 ∩ 𝑦̂|

|𝑦̂|
 𝐹(𝑦, 𝑦̂) ≔ 2 [

𝑃(𝑦, 𝑦̂) × 𝑅(𝑦, 𝑦̂)

𝑃(𝑦, 𝑦̂) + 𝑅(𝑦, 𝑦̂)
]

Macro 1

|𝐶|
 ∑ 𝑃(𝑦𝑙 , 𝑦̂𝑙)

𝑐∈𝐶

1

|𝐶|
 ∑ 𝑅(𝑦𝑙 , 𝑦̂𝑙)

𝑐∈𝐶

1

|𝐶|
 ∑ 𝐹(𝑦𝑙 , 𝑦̂𝑙)

𝑐∈𝐶

Weighted 1

∑ |𝑦̂𝑙|𝑐∈𝐶
 ∑|𝑦̂𝑙|𝑃(𝑦𝑙 , 𝑦̂𝑙)

𝑐∈𝐶

1

∑ |𝑦̂𝑙|𝑐∈𝐶
 ∑|𝑦̂𝑙|𝑅(𝑦𝑙 , 𝑦̂𝑙)

𝑐∈𝐶

1

∑ |𝑦̂𝑙|𝑐∈𝐶
 ∑|𝑦̂𝑙|𝐹(𝑦𝑙 , 𝑦̂𝑙)

𝑐∈𝐶

4.3.1 Algorithms

4.3.1.1 Extreme gradient boosting (XGBoost)

 Extreme gradient boosting is an implementation of gradient boosting decision trees, which is a

powerful sequential ensemble technique because of its features such as: regularization for preventing

39

overfitting, weighted quantile sketch for handling weighted data, and block structure for parallel

learning for faster computing.26

 Let 𝑓𝑘 be the prediction from a decision tree and suppose we have K trees; the model is a collection

of trees given by:

Model = ∑ 𝑓𝑘
𝐾
𝑘=1 (1)

After collecting all decision trees, we make prediction at the t-th step by

𝑦̂𝑖
(𝑡)

= ∑ 𝑓𝑘
𝑡
𝑘=1 (𝑥𝑖) (2)

where 𝑥𝑖 is the feature vector for the t-th data point.

For training the model, we need to optimize a loss function (𝐿) and add a regularization term

(𝛺) to form a training objective function (Obj):

𝑂𝑏𝑗 = 𝐿 + 𝛺 (3)

 For an iterative algorithm, we redefine the objective function as

𝑂𝑏𝑗(𝑡) = ∑ 𝐿(𝑦𝑖 , 𝑦̂𝑖
(𝑡)

)𝑁
𝑖=1 + ∑ 𝛺𝑡

𝑖=1 (𝑓𝑖) = ∑ 𝐿(𝑦𝑖 , 𝑦̂𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖))𝑁
𝑖=1 + ∑ 𝛺𝑡

𝑖=1 (𝑓𝑖) (4)

 To optimize with gradient descent, we need to calculate the gradient; in order to achieve high

performance, we consider both first-order and second-order gradients. Since we do not have the

derivative of every objective function, we calculate its second-order Taylor approximation and remove

constant terms. This leads to:

𝑂𝑏𝑗(𝑡) = ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖)𝑁
𝑖=1 +

1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + 𝛺(𝑓𝑡) (5)

where, 𝑔𝑖 = 𝜕𝑦̂(𝑡−1)𝑙(𝑦𝑖 , 𝑦̂(𝑡−1)), ℎ𝑖 = 𝜕2
𝑦̂(𝑡−1)𝑙(𝑦𝑖 , 𝑦̂(𝑡−1))

Now we define a tree:

𝑓𝑡(𝑥) = 𝑤𝑞(𝑥) (6)

where 𝑞(𝑥) is a directing function that assigns every data point to the q(x)-th leaf

We define the index set as:

𝐼𝑗 = {𝑖|𝑞(𝑥𝑖) = 𝑗} (7)

Then, the objective function after expanding the regularization term and indexing becomes:

40

𝑂𝑏𝑗(𝑡) = ∑ [∑ 𝑔𝑖𝑤𝑗𝑖∈𝐼𝑗
+

1

2
(∑ ℎ𝑖𝑖∈𝐼𝑗

+ 𝜆)𝑤𝑗
2] + 𝛾𝑇𝑇

𝑗=1 (8)

After substituting the best 𝑤𝑗 to optimize the objective function, we get:

𝑂𝑏𝑗(𝑡) = −
1

2
 ∑

(∑ 𝑔𝑖)𝑖∈𝐼𝑗
2

∑ ℎ𝑖+𝜆𝑖∈𝐼𝑗

+ 𝛾𝑇𝑇
𝑗=1 (9)

 Let 𝐼𝐿and 𝐼𝑅 be the sets of indices assigned to two new leaves. Then, we can write

𝐺𝑎𝑖𝑛 =
1

2
 [

(∑ 𝑔𝑖)𝑖∈𝐼𝐿
2

∑ ℎ𝑖𝑖∈𝐼𝐿
+𝜆

+
(∑ 𝑔𝑖)𝑖∈𝐼𝑅

2

∑ ℎ𝑖𝑖∈𝐼𝑅
+𝜆

−
(∑ 𝑔𝑖)𝑖∈𝐼

2

∑ ℎ𝑖𝑖∈𝐼 +𝜆
] − 𝛾 (10)

where gamma (𝛾) is a pseudo-regularization hyperparameter (Lagrange multiplier) used for pruning

(reducing the size) the tree. Ultimately, the algorithm chooses the final structure by selecting splits with

maximized gain.

4.3.1.2 Random forest

 Random forest is a parallel ensemble technique which uses both bootstrap aggregation (bagging)

and random variable selection for tree building. To obtain low-bias trees, each tree is unpruned (grown

fully); in the meantime, bagging and random variable selection ensure low correlation between

individual trees. The method yields an ensemble of unstable individual learners, which together can

achieve both low bias and low variance. Some of the features of random forest which makes it a

prominent method are high tolerance for multidimensional data, good performance for multiclass

classification problems, handles overfitting internally, and works well with noisy data.26

Let us assume an ensemble of E trees {𝑇1(𝑋), … . , 𝑇𝐸(𝑋)}, where 𝑋 = {𝑥1, … , 𝑥𝑛} is a n-dimensional

vector of independent variables associated with a dependent variable. The ensemble method produces

E outputs {𝑌̂1 = 𝑇1(𝑋), … , 𝑌̂𝐸 = 𝑇𝐸(𝑋)}, where 𝑌̂𝑒 , (𝑒 = 1, … , 𝐸) is the prediction for a dependent

variable by the e-th tree. The outputs from all trees are aggregated to produce a final prediction, 𝑌̂. For

the classification models, 𝑌̂ is the class predicted by the majority of the trees; while for regression

models, it is the average of the individual tree predictions.

 Given a dataset of n instances for training, 𝐷 = {(𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛)}, where 𝑋𝑖 , (𝑖 = 1, … , 𝑛) is a

vector of independent variables and 𝑌𝑖 is the dependent variable of interest. From the training data of n

instances, the algorithm chooses a random sample with replacement. For each bootstrap sample, a tree

41

is grown with the following modification: at each node, the best split is chosen among a randomly

selected subset of independent variables using GINI index, defined by

𝐺𝑖𝑛𝑖(𝑆) = 1 − ∑ 𝑝𝑖
2

𝑖 (11)

where 𝑝𝑖 is the probability of an item with label i in a set S belongs to a class C

 The tree is grown to the maximum size and not pruned back. The steps are repeated until E such

trees are grown. The standard tree growing algorithm used in the RF method is based on classification

and regression trees (CART) model.

4.4 Model Results and Discussion

 We develop three different models using ensemble methods for fermenter-batch prediction and

foaming prediction. These include: (1) fermenter type classification model; (2) foaming prediction

classification model; and (3) foaming prediction regression model.

4.4.1 Fermenter type classification model

 Four different fermenter batch types are differentiated using a classification ensemble model based

on XGBoost algorithm. Figure 4.6 shows a confusion matrix of the results produced by the fermenter

classification model, which is able to differentiate the batch type with 99.49% accuracy. The diagonal in

the confusion matrix represents the number of correct predictions. Table 4.2. shows the evaluation

metrics obtained by micro-averaging, macro-averaging, and weighted-averaging. For fermenter batch

prediction, we get identical results for all three different types of averaging techniques.

 We thereby infer that, the operating variables do incorporate all the necessary design differences

and our ensemble approach can successfully detect these hidden patterns. By using the operating

variables as input and no prior knowledge about the fermenter design (number of impellers, aspect

ratio, etc.) and the microorganism, the model is able to distinguish one batch type from another based

on the operating conditions alone. Separation of batch types is very essential for data integration and

generalization of any model which will be used for foaming prediction. These results demonstrate the

potential of ensemble methods in aiding big data analytics by allowing for data integration from multiple

fermenters and multiple organisms.

42

Figure 4.6. Confusion matrix for XGBoost-based fermenter classification model for 4 different

fermenter types (A, B, C, and D).

Table 4.2. Fermenter batch classification model evaluation summary using XGBoost and different

averaging techniques for metric calculation.

Averaging

Technique

Accuracy

(in %)

Precision (P) Recall (R) F1-score

Micro 99.49 0.99 0.99 0.99

Macro 99.49 0.99 0.99 0.99

Weighted 99.49 0.99 0.99 0.99

43

4.4.2 Foaming prediction classification model

 Now that we have successfully separated the batch types, we integrate the datasets for a larger

training dataset for the foaming prediction model. The foaming prediction model is based on the

prediction of the exhaust differential pressure, which serves as an indicator of foaming and is observed

when the differential pressure is above 100 mbarg based on past industrial fermentation experience. For

the classification models, the numeric pressure values are binned to different thresholds so the model

can predict a particular class type (threshold). The idea behind binning is to see how successful the

models will be at predicting a certain threshold to allow for alleviatory steps such as addition of AFA.

The threshold limits (arbitrarily set) are as follows:

L: Lower Threshold (below 90 mbarg), C: Close to Threshold (between 90-100 mbarg), T: Threshold (at

100 mbarg), and U: Upper Threshold (above 100 mbarg).

 Figure 4.7 and Figure 4.8 show the respective confusion matrices for the foaming classification

model based on XGBoost and RF, respectively. Like before, the diagonal in the confusion matrix

represents the number of correct predictions. From Table 4.3. and Table 4.4., we can see that for

foaming prediction micro-averaging results in better evaluation scores than macro-averaging. This

makes sense as micro-averaging is a measure of effectiveness on larger classes in a test set. While,

macro-averaging is a measure of effectiveness on the overall test set. By taking the weighted-average,

we see that the weighted-average results are close to the micro-average results, which leads us to

believe that class imbalance has no significant impact in our models. The average accuracy for the

XGBoost classification model after tuning is 73.69% and the same for RF is around 82.39%. The results

from XGBoost and RF are not that impressive as many instances which are at lower threshold are

misclassified as upper threshold which will lead to false alarms in a real world scenario. The

performance of RF is slightly better, but leaves room for improvement.

44

Figure 4.7. Confusion matrix for XGBoost-based foaming classification model for 4 thresholds.

Figure 4.8. Confusion matrix for RF-based foaming classification model for 4 thresholds.

45

Table 4.3. Foaming prediction classification model evaluation summary using XGBoost and different

averaging techniques for metric calculation.

Averaging

Technique

Accuracy

(in %)

Precision (P) Recall (R) F1-score

Micro 73.69 0.74 0.74 0.74

Macro 73.69 0.54 0.45 0.45

Weighted 73.57 0.72 0.74 0.70

Table 4.4. Foaming prediction classification model evaluation summary using Random Forest and

different averaging techniques for metric calculation.

Averaging

Technique

Accuracy

(in %)

Precision (P) Recall (R) F1-score

Micro 82.39 0.82 0.82 0.82

Macro 82.39 0.69 0.65 0.62

Weighted 82.39 0.89 0.82 0.84

4.4.3 Foaming prediction regression model

 After attempting to classify the foaming by ensemble methods, we build regression models which

would exactly predict the numeric exhaust differential pressure at a particular instant. We use the same

two ensemble methods for model building and choose RMSE values as performance indicators. As

shown in Table 4.5, RF outperforms XGBoost again with an RMSE of 12.25 mbarg with comparison to

XGBoost with an RMSE value of 18.61 mbarg. RF outperforms XGBoost for both classification and

46

regression models, which can be attributed to easier parameter tuning in RF ensemble methods. Both

XGBoost and RF are generally expected to give similar results, which are relatively better than ordinary

boosting and bagging methods and singular strong algorithms.

 To compare with other popular algorithms for regression, we build two other models based on

popular methods like neural networks and support vector regression (SVR). To compare with other

popular algorithms for regression, we build two other models using popular methods like neural

networks and support vector regression (SVR). For neural network, we build a network with 2 hidden

layers (with 11 and 5 neurons respectively). Each hidden layer uses the rectified linear unit (ReLU)

activation function and the neural net uses Adam optimization for training.37-38 For SVR, we use radial

basis function (RBF) kernel due to the non-linear nature of the data.39 A grid-search technique is applied

for tuning the hyperparameters: Gamma (γ), which is the regularization parameter and Sigma2 (σ2),

which is the RBF kernel function parameter. The results show that ensemble methods perform better

than these singular robust algorithms for our dataset. While, further optimization can be done to

enhance the performance of these algorithms, ensemble methods provide us with the desired output.

Table 4.5. Model evaluation summary using ensemble methods and other popular methods for

regression.

Ensemble

Technique

Model Type Description RMSE

XGBoost Regression Foaming Prediction (without

tuning)

45.72 mbarg

XGBoost Regression Foaming Prediction (with tuning) 18.61 mbarg

Random Forest Regression Foaming Prediction 12.25 mbarg

Neural Network Regression Foaming Prediction 40.99 mbarg

SVR (with RBF

kernel)

Regression Foaming Prediction 52.46 mbarg

4.5 Model implementation

 We can implement the ensemble-based classification and regression models for similar datasets by

following the steps shown in Figure 4.9. Python, an open-source programming language, includes

47

packages for both XGBoost and Random Forest ensemble methods.31-34 We can do preprocessing with

the help of packages like Scikit-Learn and Pandas.31-32 The criterion for the training to test split is

normally based on two conditions for the test set: i) the test set is large enough to yield statistically

meaningful results, and ii) the test set is representative of the data set as a whole. In case of unbalanced

datasets, we may consider stratified sampling, where each strata (subgroup) of a given dataset is

adequately represented.

 Depending on the size and nature of the dataset, training and hyperparameter tuning can take

significant process time. However, we can use parallel computing techniques to reduce the processing

time. In XGBoost, such parallelization is done within a single tree since it is a sequential ensemble

method. By contrast, in Random Forest, parallelization is done for separate trees at the same time since

it is a parallel ensemble method. A hyperparameter is a parameter whose value is used to control the

learning process of a base learner. Hyperparameter optimization is essential to find the optimal model

which minimizes the loss function. A grid search exhaustively generates candidates from a grid of

parameter values and all possible combinations of parameter values are evaluated and the best

combination is retained. For XGBoost, we tune the learning rate, maximum depth, and the number of

boosting rounds, etc. While, for random forest, we tune number of estimators, maximum depth,

minimum sample split, etc.

 After a model is optimized with the ideal hyperparameters, we perform model evaluation with

established methods like k-fold cross validation as explained in Section 4.2.2. Out-of-bag (OOB) error is

one of the methods for predicting error in random forests. It avoids the need for an independent

validation dataset, but often underestimates actual performance and the optimal number of iterations.

Model performance metrics like accuracy can be used alongside confusion matrix to demonstrate

prediction results of a classifier. For regression models, we can apply metrics like root mean squared

error (RMSE) to quantify the model accuracy.

48

Figure 4.9. Model implementation of ensemble-based methods.

XGBoost
Implementation Steps

Install XGBoost for use with Python

Load the required dataset and preprocess the data by following
the steps for data cleaning, data intergration, and data

transformation.

Split the dataset into test, training, and validation sets.

Train the model and make baseline predictions.

Tune the hyperparameters based on iteration or GridSearch
with the aim of minimizing overfitting and maximizing accuracy.

For XGBoost, a lower learning rate and a higher number of
boosting rounds accomplishes the task.

Evaluate the model based on techniques like k-fold cross
validation and assess the performance using metrics like Root

Mean Squared Error(RMSE) or accuracy.

Random Forest
Implementation Steps

Use existing libraries like Scikit-Learn to import
RandomForestRegressor.

Load the required dataset and preprocess the data by following
the steps for data cleaning, data intergration, and data

transformation.

Split the dataset into test, training, and validation sets.

Train the model and make baseline predictions.

Tune the hyperparameters using GridSearch if advanced
computing resources are available or using iteration methods

with the aim of maximizing accuracy, fast processing, and
minimizing overfitting. For RandomForest, GridSearch is

preferred to select the right hyperparameters.

Evaluate the model based on techniques like k-fold cross
validation or out-of-bag error (OOB) and assess the

performance using metrics like root mean squared error (RMSE)
or accuracy.

49

4.6 Conclusions, Limitations, and Future Research

 In this paper, we describe the potential of ensemble learning methods like XGBoost and Random

Forest in real-industrial data. We propose a novel application of such meta-algorithms in fermenter

classification and foaming prediction. Our experience shows that regression-based ensemble methods

can successfully be implemented to build an antifoam addition profile; such a profile will eliminate the

need for speculative addition of defoamers and overcome the limitations associated with foaming which

causes problems in several bioreactors and is not limited to biological plants. With the help of ensemble-

based machine learning, we can use the already available industrial operating data to minimize issues

such as foaming and maximize the yield of the product.

 The real-industrial data acquired is based on a single strain of organism for consistency. It would be

interesting to see if the model gives a good performance for different strains or different

microorganisms. The hyperparameter tuning for XGBoost and RF is cursory and an in-depth parameter

tuning leaves room for further improvements in the models, especially for XGBoost, after its

underperformance with comparison to RF. We compared the ensemble methods with some strong

singular algorithms like neural networks and SVR. Even though ensemble methods outperformed these

algorithms, we believe they can still provide competitive results for a different dataset.

 We plan to implement the foaming prediction results to build an antifoam profile for future batch

runs which would allow us to have more control over foaming. The passage for data integration opened

by successful classification of fermenters allows us to dive into big fermenter data analysis as we are

able to combine the data from every batch to produce a large dataset which helps us build more robust

models.

.

50

Symbols

English and Greek Symbols

y = set of predicted (sample, label) pairs

𝑦̂= set of true (sample, label) pairs

𝑦𝑙= subset of y with class c

𝑦̂𝑙= subset of 𝑦̂ with class c

C= set of classes

𝐿= loss function

𝛺= regularization term

𝑓𝑘 = decision tree prediction

𝑥𝑖 = feature vector for t-th datapoint

𝑞(𝑥)= directing function

𝐼𝐿 = indices assigned to left leaves

𝐼𝑅 = indices assigned to right leaves

𝛾= pseudo-regularization parameter (Lagrange multiplier)

𝑌̂𝑒= prediction by the e-th tree

𝑌̂= final prediction

𝑋𝑖= vector of independent variables

𝑌𝑖 = dependent variable of interest

p𝑖 = the probability that an item in S belongs to class C

γr = regularization parameter in SVR

σ2 = RBF-kernel function parameter

51

References

1. Golemanov, K.; Tcholakova, S.; Denkov, N. D.; Ananthapadmanabhan, K. P.; Lips, A. Breakup of
bubbles and drops in steadily sheared foams and concentrated emulsions. Physical Review E 2008, 78,
051405.
2.Maza-Márquez, P.; Vílchez-Vargas, R.; Boon, N.; González-López, J.; Martínez-Toledo, M.; Rodelas, B.
The ratio of metabolically active versus total Mycolata populations triggers foaming in a membrane
bioreactor. Water Research 2016, 92, 208.
3. Maza-Márquez, P.; Vilchez-Vargas, R.; Kerckhof, F.; Aranda, E.; González-López, J.; Rodelas, B.
Community structure, population dynamics and diversity of fungi in a full-scale membrane bioreactor
(MBR) for urban wastewater treatment. Water Research 2016, 105, 507.
4. Cosenza, A.; Bella, G. D.; Mannina, G.; Torregrossa, M. The role of EPS in fouling and foaming
phenomena for a membrane bioreactor. Bioresource Technology 2013, 147, 184.
5. Coutte, F.; Lecouturier, D.; Yahia, S. A.; Leclère, V.; Béchet, M.; Jacques, P.; Dhulster, P. Production of
surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Applied Microbiology
and Biotechnology 2010, 87, 499.
6. Bella, G. D.; Torregrossa, M. Foaming in membrane bioreactors: Identification of the causes. Journal of
Environmental Management 2013, 128, 453.
7. Kougias, P. G.; Francisci, D. D.; Treu, L.; Campanaro, S.; Angelidaki, I. Microbial analysis in biogas
reactors suffering by foaming incidents. Bioresource Technology 2014, 167, 24.
8. Routledge, S. J. Beyond de-foaming: the effects of antifoams on bioprocess productivity.
Computational and Structural Biotechnology Journal 2012, 3, 10001.
9. Kar, T.; Destain, J.; Thonart, P.; Delvigne, F. Scale-down assessment of the sensitivity of Yarrowia
lipolytica to oxygen transfer and foam management in bioreactors: investigation of the underlying
physiological mechanisms. Journal of Industrial Microbiology & Biotechnology 2011, 39, 337.
10. Delvigne, F.; Lecomte, J.-P. Foam Formation and Control in Bioreactors. Encyclopedia of Industrial
Biotechnology; ACS: Washington, DC, 2010; p 1.
11. Nielsen, J. C.; Lino, F. S. D. O.; Rasmussen, T. G.; Thykær, J.; Workman, C. T.; Basso, T. O. Industrial
antifoam agents impair ethanol fermentation and induce stress responses in yeast cells. Applied
Microbiology and Biotechnology 2017, 101, 8237.
12. López-Barajas, M.; López-Tamames, E.; Buxaderas, S.; Tomás, X.; Torre, M. C. D. L. Prediction of Wine
Foaming. Journal of Agricultural and Food Chemistry 1999, 47, 3743.
13. Birk, W.; Arvanitidis, I.; Jonsson, P.; Medvedev, A. Physical modeling and control of dynamic foaming
in an LD-converter process. IEEE Transactions on Industry Applications 2001, 37, 1067.
14. Oyetunde, T.; Bao, F. S.; Chen, J.-W.; Martin, H. G.; Tang, Y. J. Leveraging knowledge engineering and
machine learning for microbial bio-manufacturing. Biotechnology Advances 2018, 36, 1308.
15. Hansen, K.; Biegler, F.; Ramakrishnan, R.; Pronobis, W.; Lilienfeld, O. A. V.; Müller, K.-R.; Tkatchenko,
A. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and
Nonlocality in Chemical Space. The Journal of Physical Chemistry Letters 2015, 6, 2326.
16. Timoshenko, J.; Lu, D.; Lin, Y.; Frenkel, A. I. Supervised Machine-Learning-Based Determination of
Three-Dimensional Structure of Metallic Nanoparticles. The Journal of Physical Chemistry Letters
2017, 8, 5091.
17. Costello, Z.; Martin, H. G. A machine learning approach to predict metabolic pathway dynamics from
time-series multiomics data. NPJ Systems Biology and Applications 2018, 4, 1.
18. Oyetunde, T.; Liu, D.; Martin, H. G.; Tang, Y. J. Machine learning framework for assessment of
microbial factory performance. Plos One 2019, 14, 1.

52

19. Varley, J.; Brown, A. K.; Boyd, J. W. R.; Dodd, P. W.; Gallagher, S. Dynamic Multi-Point Measurement
of Foam Behavior for a Continuous Fermentation over a Range of Key Process Variables. Biochemical
Eng. J., 2004, 20, 61.
20. Brown, G. Diversity Creation Methods: A Survey and Categorisation. Information Fusion 2004, 6, 5.
21. Alfaro, E.; Gámez, M.; García, N. Ensemble Classification Methods with Applications in R. Wiley &
Sons: New York, NY, 2018, p 31.
22. Dev, V. A.; Datta, S.; Chemmangattuvalappil, N. G.; Eden, M. R. Comparison of Tree Based Ensemble
Machine Learning Methods for Prediction of Rate Constant of Diels-Alder Reaction. Computer Aided
Chemical Engineering 27th European Symposium on Computer Aided Process Engineering 2017, 40, 997.
23. Borysik, A. J.; Kovacs, D.; Guharoy, M.; Tompa, P. Ensemble Methods Enable a New Definition for the
Solution to Gas-Phase Transfer of Intrinsically Disordered Proteins. Journal of the American Chemical
Society 2015, 137, 13807.
24. Gulyani, B. B.; Fathima, A. Introducing Ensemble Methods to Predict the Performance of Waste
Water Treatment Plants (WWTP). International Journal of Environmental Science and Development
2017, 8, 501.
25. Amozegar, M.; Khorasani, K. An ensemble of dynamic neural network identifiers for fault detection
and isolation of gas turbine engines. Neural Networks 2016, 76, 106.
26. Zhou, Z. H., Ensemble Methods: Foundations and Algorithms, CRC Press, Boca Raton, FL., 2012.
27. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 16, San Francisco, CA,
August, 2016.
28. Breiman, L. Random Forests. Machine Learning 2001, 45, 5.
29. Tan, P.-N.; Steinbach, M.; Karpatne, A.; Kumar, V. Introduction to Data Mining; Pearson Education,
Inc.: New York, NY, 2019, p 64.
30. Wold, S.; Ruhe, A.;Wold, H.;Dunn, W. The Collinearity Problem in Linear Regression: The Partial Least
Square (PLS) Approach to Generalized Inverse. Soc.Ind.Appl.Math, 1984, 5, 735.
31. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.;
Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot,
M.; Duchesnay, E. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 2011,
12, 2825.
32. McKinney, W. Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in
Science Conference, Austin, TX, June, 2010.
33. Hunter, J. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering 2007, 9, 90.
34. Waskom, M.; Botvinnik, O.; Okane, D.; Hobson, P.; Halchenko, Y.; Lukauskas, S.; Cole, J.;
Warmenhoven, J.; Ruiter, J.; Hoyer, S.; Vanderplas, J.; Villalba, S.; Kunter, G.; Quintero, E.; Martin, M.;
Miles, A.; Meyer, K.; Augspurger, T.; Yarkoni, T.; Bachant, P.; Williams, M.; Evans, C.; Fitzgerald, C.;
Wehner, D.; Hitz, G.; Ziegler, E., Qalieh, A.; Lee, A. Seaborn: v0.7.0, 2016. URL:
https://doi.org/10.5281/zenodo.54844.
35. Jagani, H.; Hebbar, K.; Gang, S. S.; Raj, P. V.; H., R. C.; Rao, J. V. An Overview of Fermenter and the
Design Considerations to Enhance Its Productivity. Pharmacologyonline 2010, 1, 261.
36. Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.
International Conference on Artificial Intelligence, Montreal, Canada, Aug. 1995.
37. Baughman, D. R.; Liu, Y. A. Neural Networks in Bioprocessing and Chemical Engineering, 1995,
Elsevier, Atlanta, GA.
38. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization, International Conference on Learning
Representations, San Diego, CA. 2015.
39. Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based
Learning Methods, Cambridge University Press, London, UK, 2000, pp.149–161.

53

Chapter 5. Large-Scale Industrial Fermenter Foaming Control: Automated Machine Learning for

Antifoam Prediction and Defoaming Process Implementation

5.1 Introduction

5.1.1. Foam Formation and Foaming in Bioreactors

 Foam is a form of dispersed medium with a well-defined complex structure composed of gas

pockets separated by liquid membranes. Foaming behavior is usually affected by liquid properties such

as surface tension, viscosity, and ionic strength. Foams can be classified into different categories based

on their behaviors; they can be unstable (transient), metastable, or persistent.1 Metastable and

persistent foams, which are a result of relatively concentrated surfactant mixtures, have the longest

lifetime if left undisturbed.1

 A foam structure is usually polydisperse in nature with a varying particle size distribution 2 and is

influenced by the liquid fraction, which is the proportion of fluid in the foam. An increase in the liquid

fraction results in structural change, allowing the foam to adopt a spherical configuration as it

transitions from dry foam to wet foam.3 Foaming in bioreactors can occur because of multiple factors

and the foaming agent(s) can come from both the media components used for fermentation and the

metabolic activities of the microorganism used for fermentation.4 Different operational factors can

impact foam formation inside a bioreactor.5,6 Higher airflow rate along with several other operational

and design variables like temperature, pH, microorganism type (sporulating/ non-sporulating), choice of

impellers, positioning of baffles, aeration zones, etc. impact foaming in one way or the other.

 Some of the operational changes which can mitigate foaming include reduced aeration, lower

temperature for broth, the addition of anti-foaming agents, reduced agitation, minimal broth usage, and

usage of mechanical foam-breakers5; however, these techniques can have negative impacts on a

fermentation process. Therefore, to maximize process efficiency without any severe repercussions, it is

important to optimize the addition of antifoam in a bioreactor.

5.1.2 Antifoam Addition and Defoaming Practices

 High film elasticity, high surface and bulk viscosity, and high solid content are some foam stabilizing

factors. Antifoams prevent foaming in a system in one of two ways. They either displace the foam

stabilizing component from the bubble wall or locally burst the bubbles. A typical antifoam consists of

oil, hydrophobic solid particles, or a mixture of both. Traditionally, optimization of an antifoam addition

profile for a particular bioprocess requires a thorough understanding of the surface activities which

54

impact the stabilization of foam, specifications for the different fermenter designs, and the knowledge

of the physico-chemical properties of the foam itself.7

Antifoam addition can alter the dynamics of the bioprocess both directly (by preventing foaming)

and indirectly (by impacting oxygen transfer, clogging filters downstream, interacting with cell

membranes and other components of the chemical broth, etc.) Several studies are available that

quantify the different impacts of foaming and antifoam addition on a bioprocess and other industrial

sectors.7-13 Velugula-Yellela et. al.8 use change in the local dissolved oxygen variability to predict

foaming; in their study, they observe the impact of antifoam and media selection on cellular health and

production. In a similar study, Nielsen et. al.9 show that industrial antifoam agents compromised the

growth rates and the glucose uptake rates for an ethanol production process.

The addition of suitable antifoam agents effectively defoams a bioprocess, but excessive addition

and post hoc addition of antifoam can severely degrade the product quality without controlling foaming

efficiently. It is critical to use the optimal initial antifoam volume fraction (volume of antifoam mixed

with media) for the desired defoaming actions.10 Adding the right amount of antifoam is also important

to maintaining a sufficiently high oxygen transfer rate (crucial for a fermentation process); McClure et

al.11 in their experiment quantify the impact of commercial antifoams in terms of foam suppression,

oxygen transfer rate reduction, and time-dependent deactivation.

Typically, bioreactors are equipped with different foam sensors or use various foam detection

methods to automatically add antifoam, or the antifoaming agents are added manually in response to a

foaming indication. Over time, there have been several reported defoaming strategies to mitigate the

adverse effect of excessive antifoam addition, such as pH adjustment and high-temperature neutral

stripping12, mechanical foam breakers13, etc. In this work, we propose a unique defoaming strategy that

uses data analytics tools to control the antifoam addition. Using our defoaming strategy, we attempt to

remove the post hoc aspect of antifoam addition and develop specific (targeted) profiles for antifoam

addition. In our previous work, we demonstrated that fermenters can be classified without any prior

information on fermenter design and type of microorganism; we also predicted the onset of foaming

using ensemble methods.14

Through this work, we take our work to the next step by demonstrating the use of automated

machine learning and by using exploratory time-series data analytics for industrial antifoam profile

deployment. We use exhaust differential pressure as an indicator of foaming. As shown in Figure 5.1,

exhaust differential pressure is the difference between the fermenter head pressure and the exhaust

55

line pressure. We consider foaming to occur when the exhaust differential pressure crosses 100 mbarg

based on past industrial fermentation experience.

Figure 5.1. Fermenter design with pressure notations for exhaust differential pressure calculations,

created using Canva and adapted from reference [5]

5.2 Dataset Extraction

 We extract the key process variables to build the antifoam prediction model based on an

experimental setup to study the dynamic measurements of foaming behavior for a continuous

fermenter in Figure 5.2.6 The setup and additional details in reference 6 suggest the key measurement

considerations in foaming control include probes (pH, temperature, and dissolved oxygen), the volume

of a fermenter, agitator speed, and time for fermentation. In building the dataset for our current study,

we use the key plant data following references 5 and 6. Table 5.1 summarizes 12 independent variables

(X) and 1 quality variable (Y). Our dataset consists of 163 batches with four fermenter designs, totaling

about half a million instances.

 We choose hours (fermentation progress time) as an independent variable because of two reasons.

First, none of the other independent variables is linearly correlated with time, and second, the

fermenter data are collected for a multi-batch process for the same time-periods. For cases where time

linearly changes with other variables or if data are collected in different periods for multiple batches, we

should remove time as an independent variable as it becomes redundant or an observational ID.

56

Figure 5.2. Foaming control setup in a bioreactor, Reprinted from ref. 5. Copyright 2004 Elsevier.

57

Table 5.1. List of dependent and independent variables

5.3 Defoaming Strategy

 From our last report, we were able to integrate fermenter data based on independent variables

alone, without specifying fermenter specifications such as straight wall height, aspect ratio, total

volume, number of impellers, etc.14 We also accurately predicted the onset of foaming using ensemble-

based methods and compared them to other ML regression methods like Support Vector Machine

(SVM) and neural networks.14 This paper demonstrates two different approaches to mitigate foaming:

1) In the first approach (Section 5.4), we use the integrated data for each fermenter type and the

combined dataset from all the fermenters to predict antifoam addition directly using an automated

regression algorithm (TPOT) and compare it with ensemble-based methods like Random Forest and

Extreme gradient boosting (XGBoost). We do not use this approach for deployment in the industry

because of its limitations, but showcase the possibility of future usage as discussed later in Section 5.4.4

and Section 5.5.2.

2) For the second approach (Section 5.5), we use exploratory time series analysis and stepwise addition

to build generalized profiles for all fermenter types and targeted deployment-ready profiles, which are

specific to each organism in each fermenter type. We test these profiles on the fermenters and discuss

the results in this paper later in Section 5.5.4 and Section 5.6.

5.4 Automated Machine Learning for Antifoam Prediction

 A successful ML model requires scanning through an exhaustive list of appropriate machine learning

algorithms with multiple steps for feature selection, preprocessing, and hyperparameter tuning.

Because of the plethora of algorithms available and the necessity for domain expertise, finding and

Independent Variables Dependent Variable

Hours Antifoam Flow (in L/min)

pH

Acid Flow (in L/min)

Caustic Flow(in L/min)

Fermenter Temperature (in Celsius)

Dissolved Oxygen(%)

Air Flow (in L/min)

Volume (in L)

Air Valve Position (% open)

Agitator Speed (%)

Exhaust Differential Pressure (in mbarg)

Maximum Antifoam Addition (in L)

58

using the right ML tool can be quite challenging, especially in an industrial setting. For our goal of

building antifoam profiles, we use an automated-machine learning (AML) model called TPOT (Tree-

based Pipeline Optimization Tool). 15 By using AML, we can test hundreds of pipelines of successful

algorithms and select the best pipeline based on the evaluation metric. AML tools use pre-designed data

analytics structures, following the traditional sequential steps of training, tuning, and testing a data

analysis pipeline. Such a tool helps researchers save quality time and provides the right pathway

towards finding accurate results. Recently, AML has found its footing in several industrial and research

projects in bioindustries and other chemical engineering sectors. 16-20 In this paper, we use TPOT to

enhance our workflow after data acquisition, data cleaning and visualization, and data integration and

transformation.

5.4.1 TPOT Framework and Methodology

 TPOT, developed by Olson et al15, is an AML tool that uses genetic programming to explore

thousands of pipelines to find the best ML framework. Genetic programming is a well-known

evolutionary computation technique that has three properties: selection, crossover, and mutation. In

the selection step, we search for all possible random solutions to a given problem (referred to as the

population) and evaluate how fit each solution is for a given fitness function. The next step is crossover,

where we select the fittest solution for every iteration in the optimization process (referred to as a

generation) and perform crossover to create a new population. The last step is mutation, where we take

the new population and mutate them with random modifications and repeat the process.

These stochastic changes can have positive or negative effects on the performance of the pipelines,

thereby allowing the algorithm to explore pipelines that were not considered before. After every

crossover step, the worst-performing pipelines are removed from the population; after a fixed number

of generations, TPOT recommends the best pipeline.17 The pipelines generated by TPOT include several

different robust models from the Sklearn library such as Logistic Regression, SVM, K-nearest neighbor,

Random Forest, etc. TPOT also occasionally learns pipelines that stack these estimators to create a new

pipeline.

 Figure 5.3 illustrates the TPOT framework for building an AML model. After the initial exploratory

analysis and data integration, the TPOT algorithm automatically constructs and optimizes all the later

steps.

59

Figure 5.3. TPOT framework for model building, created using Canva and adapted from reference [15]

5.4.2 Data Preprocessing before Automation

 Data preprocessing includes cleaning, visualization, fusion, and transformation. Data cleaning

identifies misleading and mislabeled records, and removes noisy and redundant data, which may occur

because of usage of multiple temperature sensors and pressure gauges, multiple dissolved oxygen (DO)

probes, multiple identifiers for the same independent variables, and different fermenter design setups.

The raw data consist of several columns with redundant data because of the presence of backup probes.

We remove all the columns with identical data for temperature, pressure, dissolved oxygen, etc.

Similarly, we remove some data columns, which play no role in antifoam addition profiling, like

inoculation date, speculative batch count, etc.

5.4.2.1 Data Visualization

 We use Python 3.8 and its various packages (e.g., Scikit-learn machine learning python library) for

the following visualizations and the proposed models.21-24 SHAP (Shapley Additive Explanations)

60

proposed by Lundberg et al.24 is a method to explain individual predictions based on game theory. We

use random forest feature importance along with TreeSHAP to get the plot shown in Figure 5.4. The

variables with the highest importance are placed at the top and the lowest variables are placed at the

bottom. Some advantages of SHAP-based plotting over traditional importance plots are: (1) SHAP-based

plots can highlight both the importance of the independent variables and the positive and negative

relationships of the independent variables with the dependent variable. (2) the SHAP-based plot

includes every single observation as shown by each dot in the plot. Traditional importance plots only

show the trend on a generalized basis and do not account for individual cases.

 From Figure 5.4, we see that exhaust differential pressure is the most important feature along with

hour, volume, air valve position, etc. This is expected as the antifoam addition should rely heavily on the

current exhaust differential pressure. We can also see the directionality of the importance as SHAP

values in the x-axis indicate whether the independent variable will result in a positive (higher) or

negative (lower) effect on the dependent variable. In our case, we see that the exhaust differential

pressure has both positive and negative impacts on the current antifoam addition. We can also see two

extreme observational cases from the plot: a) lower volume resulting in lower antifoam addition. b)

lower airflow also resulting in lower antifoam addition. Such anomalies in observations can be excluded

from the training dataset to ensure better model performance and in some cases, they also help us

identify problems in the fermentation process.

 To identify the anomalies in our batches, we use the multivariate data analysis software Aspen

ProMV (available through university programs of Aspen Technology Inc.) to identify the underlying

sources of variation. The software helps us generate a PCA-based (principal component analysis) hyper-

ellipse score plot, as shown in Figure 5.5. For this particular figure, we use a batch from Fermenter A

with about 3000 observations to generate the ellipse plot. We see that some of the observations depart

from the cluster as outliers. For instance, observations from 660-678 show deviation from the entire

dataset as they fall outside the 95% confidence interval along with some other observations as shown in

Figure 5.5. We can remove these observations from our training dataset for better model results.

61

Figure 5.4. Random Forest Feature Importance computed using SHAP values.

Figure 5.5. PCA-based hyper ellipse score plot

62

5.4.2.2 Data Fusion and Transformation

 Data fusion involves combining datasets from different fermenters to form a generalized dataset for

each fermenter type. We then segregate datasets based on the six different types of strains to profile

the antifoam addition for each strain. Data transformation involves changing the cumulative values of

some independent variables (such as acidic flow, caustic flow, antifoam flow, and volume of the reactor)

to non-cumulative values. Data transformation within the automated TPOT algorithm involves maximum

absolute value scaling of the data as prescribed by the TPOT algorithm. This scaling ensures that the

value of each feature in the model is in the range of [-1,1].

5.4.3 TPOT Antifoam Addition Model Results

 Table 5.2 shows the results for the antifoam addition predictive models using TPOT and ensemble-

based methods. The table compares the root-mean-squared error (RMSE) values of the ensemble-

methods (e.g., XGBoost and Random Forest) and TPOT method for both combined and individual

datasets. We see that the RMSE values from TPOT are very similar to those of the ensemble methods

and TPOT outperforms the methods with a slight margin for the combined fermenter data. The table

also shows that the TPOT RMSE values for Fermenters A and D are very low (0.08-0.09). Lower RMSE

values indicate a small error margin and a high accuracy. Similarly, Fermenters B and C, show a

relatively high RMSE value, which possibly results from the limited amount of data available for these

fermenters.

 Interested readers can find the details on ensemble methods and their comparison with other

regression methods from our previous work,14 where we build regression predictive models for exhaust

differential pressure. In this work, we predict the amount of antifoam addition to the fermenter directly.

 Now that we have established a proper method of predicting the right amount of antifoam, we want

to ensure that our method is viable in an industrial setting. By comparing the proprietary average

antifoam flow rate in our industrial site with the antifoam addition RMSE, we find that our predictions

have a marginal error of 3-4% per minute. While numerically our RMSE is very low, having a margin of 3-

4% is not very practical for an improved profile. In general, a machine learning model suggests a

maximum antifoam addition without any limit constraints. We believe that such prediction models can

be used for building micro-scale profiles, but for a complete profile, they require a maximum addition

constraint.

63

Table 5.2. Model Comparison between automated machine learning (TPOT) and ensemble methods

Algorithms Antifoam Addition Prediction RMSE

Combined Dataset

XGBoost 0.1276

Random Forest 0.13

TPOT 0.1249

Individual Dataset

TPOT (Fermenter A) 0.09

TPOT (Fermenter B) 0.18

TPOT (Fermenter C) 0.24

TPOT (Fermenter D) 0.08

5.4.4 TPOT Prediction Model Conclusion and Limitations

 With our TPOT regression model, we show that we can use automated machine learning (AML) to

predict antifoam addition with comparable accuracy to fully-tuned ensemble methods. This result is very

useful as it ensures that we can build models using AML algorithms like TPOT and get high accuracies as

good as those given by established robust methods like random forest or extreme gradient boosting.

The usage of such saves time for an engineer and removes the barrier of complexity formed by several

robust machine learning algorithms.

 We also acknowledge a limitation of our AML-guided TPOT antifoam prediction model. If we use the

profiles suggested by the model, we cannot account for the limit in antifoam addition. To use the model

successfully, we need to find a way to restrict the total antifoam addition for a given system.

Furthermore, another limitation is the size of the individual dataset. We need a larger dataset for each

fermenter type to improve the antifoam addition prediction model in Fermenters B and C. In the next

section, we discuss how we built new deployment-ready antifoam profiles using a unique approach.

5.5. Antifoam Profile Building using Time-Series Based Exploratory Analysis and Stepwise Addition

 To improve the antifoam profiles, we first explore the realized antifoam dosing strategy for each of

the four fermenter types over 163 batches. We do this by grouping them by the mean value for each

unique time observational ID. Table 5.3 shows the top ten peaks for the merged current antifoam

addition rates for each fermenter type. From Table 5.3, we see that for fermenter A most of the addition

occurs around the 13th hour. Similarly, we find that most of the addition is during the 11th and 37th hour

64

for fermenter B, 15th hour for fermenter C, and 35th hour for fermenter D. Observing the overall trend of

the current antifoam addition helps us understand the generalized antifoam addition pattern for each of

the fermenter types.

Table 5.3. Merged antifoam profiles (largest 10 peaks) separated for each fermenter type for the

entire dataset (of ~half a million instances) grouped by time.

Fermenter A Fermenter B Fermenter C Fermenter D

Time
Antifoam
Addition Time

Antifoam
Addition Time

Antifoam
Addition Time

Antifoam
Addition

(in hrs) (in L) (in hrs) (in L) (in hrs) (in L) (in hrs) (in L)

13.3 11.07 37.06 21.49 14.88 15.75 34.68 25.01

12.54 5.89 10.68 21.15 14.78 14.48 34.66 18.76

0.98 4.39 36.98 13.16 0.02 14.06 13.3 7.47

40.64 4.09 10.63 7.46 14.7 10.12 13.22 6.58

12.46 3.86 13.2 7.26 12.41 6.54 13.28 6.49

35.17 3.81 36.9 6.95 14.62 5.99 0.08 5.66

19.27 3.54 36.75 6 12.33 3.93 31.55 5.61

40.44 3.53 13.13 5.77 12.15 3.54 30.16 3.74

12.51 3.46 13.08 5.08 14.53 3.42 11.53 3.71

12.59 3.39 21.38 5.05 12.23 2.61 17.3 3.12

5.5.1 Generalized Fermenter Profiles

 A typical industrial fermentation process can vary from a few days to months in some cases,

depending on the type of reactor and the fermentation process. 25-27 For our case, we only consider the

primary fermentation period of about 2-3 days. By combining all the strains and observing a generalized

trend for a fermenter type, we get a base addition profile for a specific fermenter type. Since all the

fermenters have different peak times, we conclude that the four different fermenters require separate

antifoam addition profile analysis for the same microorganism strains. Figures 5.6-5.9 show the

averaged current antifoam additions for each fermenter type for the entire 163 batches for six different

strains. We use these base profiles to mark antifoam requirements for each fermenter type based on

time. We conclude from these profiles that antifoam addition patterns are very different for each

fermenter type.

65

Figure 5.6. Merged current antifoam addition profile for fermenter A.

66

Figure 5.7. Merged current antifoam addition profile for fermenter B.

67

Figure 5.8. Merged current antifoam addition profile for fermenter C.

68

Figure 5.9. Merged current antifoam addition profile for fermenter D.

5.5.2 Deployment-Ready Targeted Profiles

 The antifoam addition process is very dynamic; thus, the antifoam profile must be specified towards

specific fermenter design and the microbial strain used. For reporting our analysis, we based our results

on one of the six organisms, on three of the total four fermenter types, and both integrated and single

batch tests.

 To build new antifoam profiles, we use time-based exploratory analysis with stepwise addition. This

method involves two important segments:

a) The first segment involves mapping out the current maximum antifoam addition profiles and the

current maximum observed exhaust differential pressures for a specific organism in each of the

fermenters. Figure 10 shows an example of the top 100 antifoam additions with corresponding exhaust

differential pressure. By doing this, we mark the time levels which require adjustments in levels of

antifoam addition. We see from Figure 10 that the current profile for Organism 5 on Fermenter A, has

maximum antifoam addition times around the 12th and 13th hours, followed by the 19th, 35th, and 41st

hours. By doing this, we mark the time levels which require antifoam addition in the current profile.

Then, from Figure 11, we see the observed maximum exhaust different pressure spikes occur around the

69

19th and 25th-27th hours. Based on these, we mark the time levels which require antifoam additions that

are absent from the current profile.

b) The second segment involves the management of antifoam addition constraints using a stepwise

addition. Typically, in a fermentation process, there is a limit to the antifoam addition because of quality

concerns. Most control systems for antifoam addition adhere to the limit, but the antifoam limit is

reached much early in the fermentation process, resulting in poor quality towards the end. We use the

time levels observed in the first segment to split the antifoam addition constraint leading to a stepwise

addition of antifoam.

 Figure 12 demonstrates how a sample profile for organism 5 on Fermenter A is submitted. The

dotted lines indicate the stepwise constraints. In Figure 5.12, we add 25L of antifoam till the 18th hour.

We then add 15L of antifoam from the 18th to the 27th hour. Similarly, we add 10L for the remaining

hours. The time levels obtained from segment 1 help us decide when to partition the antifoam

constraints. By splitting the constraint into three different steps and by using time-series-based

partitions, we make sure that: (1) we do not run out of antifoam towards the end; (2) we are adding

more antifoam preemptively during the time slots which seem to require a higher dosage of antifoam.

 We note that the micro-profiles shown in Figure 5.12, represented by the curvy lines are controlled

by the on-site foaming control mechanism. It would be possible to tune these micro-profiles in the

future using our TPOT-based antifoam addition prediction approach.

70

Figure 5.10. Time-Series Antifoam Profiling for Organism 5 on Fermenter A based on Maximum

Antifoam Addition (Subplot B shows the top 100 antifoam additions and Subplot A shows the

corresponding exhaust differential pressure during the given time).

71

Figure 5.11. Time-Series Antifoam Profiling for Organism 5 on Fermenter A based on Maximum

Exhaust Differential Pressure (Subplot A shows the top 100 exhaust differential pressure and Subplot

B shows the corresponding antifoam addition during the given time).

72

Figure 5.12. Sample deployment-ready capped profile.

5.5.3 Proof-of-Concept (PoC) Antifoam Profiles Deployment Verification Tests

 We successfully deploy the antifoam profiles for an organism for three different fermenter types for

about a month to gauge the initial results. We perform tests on two different scales: an integrated batch

test and a single batch test. For the integrated batch test, we combine all the performance of all the

batches from the training set and compare it with all the batches of the test set. For the single batch

test, we take one random batch from the training batch and compare it side by side with a random

batch from the test set.

We evaluate the performance based on three different criteria:

a) Average Exhaust Differential Pressure (AEDP)

 For this criterion, we simply average the exhaust differential pressure (an indicator of foaming)

throughout a batch or multiple batches, for a specific organism in a designated fermenter type and

compare the averages for the training set and the test set. This measurement gives us some clues

towards the extent of improvement in the new profiles. In an ideal setting, the AEDP should decrease

with improvement in the model as we continue adding new data to the model.

b) EDP Threshold Cross Count (ETCC)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10

A
n

ti
fo

am
 A

d
d

it
io

n
 C

ap
(

in
 L

)

Time (in hrs)

Sample New Antifoam Profile for Organism 5 on
Fermenter A

73

This criterion is based on the count of exhaust differential pressure measurements that exceed our

threshold of 100 mbarg (based on industrial experience). In an ideal setting, the ETCC should decrease

with improvement in the model.

c) Hourly Volume Retention (HVR)

This criterion is one of the most important performance indicators as it directly correlates with

production yield. For this measurement, we use the following formula:

𝐻𝑉𝑅 =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑉𝑜𝑙𝑢𝑚𝑒 − 𝐹𝑖𝑛𝑎𝑙 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑉𝑜𝑙𝑢𝑚𝑒

𝐵𝑎𝑡𝑐ℎ 𝑅𝑢𝑛 𝑇𝑖𝑚𝑒

 The initial maximum volume refers to the maximum volume in the fermenter during the initial

stages of fermentation. Similarly, the final minimum volume refers to the minimum volume in the

fermenter during the final stages of the fermentation.

 Lastly, the batch run time is the runtime of a single batch or the average runtime of multiple

batches. We divide the difference by the batch run to normalize the criterion for direct comparison. In

an ideal setting, the HVR should decrease with improvement in the model. A decrease in HVR is a firm

indicator of an increase in product yield and process improvement.

5.5.4 Initial Performance Results from Deployed Antifoam Profiles

 We deploy the profiles designed for a specific organism across 3 out of 4 different fermenter types.

We monitor the results for several batches and use two different approaches to compare the initial

results: integrated-batch comparison and single-batch comparison as shown in Figures 13 and 14.

 For the single-batch approach, we compare an arbitrary batch from the training set with a random

batch from the test set. We use the above-mentioned metrics to evaluate the performances of the new

antifoam profiles on the fermenter types. From Table 5.4, we see that the profiles show significant

improvement with a decrease in hourly volume retention (HVR) across all the fermenters. Fermenter A

has a substantial overall reduction in EDP threshold cross count (ETCC) and average exhaust differential

pressure (AEDP) as well. Fermenter C has conflicting results and requires further inspection.

 For the integrated-batch approach, we combine all the current batch observations and compare

them with the merged observations from the past batches. From Table 5.5, we see that the profiles have

a large impact on Fermenter A. We reduce the AEDP by 55%, reduce ETCC by 12%, and decrease HVR in

the fermenter by 53%. Similarly, we reduce the HVR in Fermenter B by 10%. We see a slight increase in

AEDP, but that can be attributed to the lack of data for Fermenter B in both the test and the training

dataset.

74

 The results from Fermenter C are conflicting as even though we manage to decrease the HVR, we

still see a large increase in the AEDP and significant ETCC overshoot. When we go back to inspect the

training dataset, we notice that the training dataset included several negative values which were

corrected to zero, resulting in a sparse dataset. Comparatively, the new dataset does not have such

sparsity. After further inspection, we verify that the impeller for Fermenter C is inefficient due to

mounting errors. This issue led to the pressure overshoot in the line pressure, resulting in many negative

values for the exhaust differential pressure. It is possible to remodel the fermenter results by adding a

buffer value for the overshoot, to get a more reasonable comparison for the AEDP and ETCC. However,

since the HVR is a firmer measure for comparison, we can see that even for Fermenter C, our new

antifoam profiles show significant improvement.

Table 5.4. Integrated Batch Test Results

Integrated Batch Test

 Value Indicator

 HVR -53% Very Good

Ferm A ETCC -12% Good

 AEDP -55% Very Good

 HVR -10% Good

Ferm B ETCC 0% Neutral

 AEDP 5.65% Bad

 HVR -14% Good

Ferm C ETCC 8% Bad

 AEDP 69% Very Bad

75

Table 5.5. Single Batch Test Results

Single Batch Test

 Value Indicator

 HVR -41% Very Good

Ferm A ETCC -13% Good

 AEDP -42% Very Good

 HVR -34% Very Good

Ferm B ETCC -4% Good

 AEDP -1% Neutral

 HVR -17% Good

Ferm C ETCC 12% Bad

 AEDP 39% Very Bad

76

Figure 5.13. Integrated-Batch test results.

77

Figure 5.14. Single-Batch test results.

78

5.6. Conclusion, Limitations, and Future Research

 Herein, we showcase an industrial solution to foaming based on the development of data-driven

antifoam profiles. We first predict the antifoam addition for defoaming directly, by using automated

machine learning. Then, we use exploratory time-series to build macro-profiles for immediate

deployment of antifoam profiles.

 We verify the success of our profiles in both single-batch tests and integrated batch tests. Our

profiles manage to reduce the average exhaust pressure, reduce the exhaust differential pressure

overshoots, and most importantly reduce the hourly volume retention of the fermenter. By decreasing

the hourly volume loss by over 53% and lowering the average pressure by over 55% in Fermenter A

(integrated), we demonstrate our ability to control foaming with machine learning and data analytics.

Decreasing the hourly volume loss leads to a significant increase in production yield and results in a

corresponding revenue increase.

 We have tested the results for a single strain across three different fermenter types. It would be

interesting to gauge the performance of the profiles for the other five strain types and the fourth

fermenter type. In Section 5.5.2, we mention the possibility of establishing micro-profiles for further

improvement. We believe that ensemble methods, automated machine learning, and deep learning

tools, can help with building those profiles. We show how one can predict the antifoam directly with

these models; with the right amount of data, we may be able to constraint the antifoam addition to a

limit and have accurate micro-profiles to further improve the process.

References

1. Vardar-Sukan, F. Foaming: Consequences, Prevention and Destruction. Biotechnology Advances
1998, 16 (5-6), 913–948.

2. Richtering, W. In Smart colloidal materials; Springer: Berlin, 2006; p 102.
3. Langevin, D. Aqueous Foams and Foam Films Stabilised by Surfactants. Gravity-Free Studies.

Comptes Rendus Mécanique 2017, 345 (1), 47–55.
4. Junker, B. Foam and Its Mitigation in Fermentation Systems. Biotechnology Progress 2007, 23

(4), 767–784.
5. St-Pierre Lemieux, G.; Groleau, D.; Proulx, P. Introduction on Foam and Its Impact in Bioreactors.

Canadian Journal of Biotechnology 2019, 3 (2), 143–157.

6. Varley, J.; Brown, A. K.; Boyd, J. W. R.; Dodd, P. W.; Gallagher, S. Dynamic Multi-Point

Measurement of Foam Behaviour for a Continuous Fermentation over a Range of Key Process

Variables. Biochemical Engineering Journal 2004, 20 (1), 61–72.

7. Prud'homme, R. K. Foams: Theory: Measurements: Applications; Taylor and Francis: London,

2017

79

8. Velugula-Yellela, S. R.; Williams, A.; Trunfio, N.; Hsu, C.-J.; Chavez, B.; Yoon, S.; Agarabi, C. Impact

of Media and Antifoam Selection on Monoclonal Antibody Production and Quality Using a High

Throughput Micro-Bioreactor System. Biotechnology Progress 2017, 34 (1), 262–270.

9. Nielsen, J. C.; Senne de Oliveira Lino, F.; Rasmussen, T. G.; Thykær, J.; Workman, C. T.; Basso, T.
O. Industrial Antifoam Agents Impair Ethanol Fermentation and Induce Stress Responses in
Yeast Cells. Applied Microbiology and Biotechnology 2017, 101 (22), 8237–8248.

10. Chandran Suja, V.; Kar, A.; Cates, W.; Remmert, S. M.; Fuller, G. G. Foam Stability in Filtered
Lubricants Containing Antifoams. Journal of Colloid and Interface Science 2020, 567, 1–9.

11. McClure, D. D.; Lamy, M.; Black, L.; Kavanagh, J. M.; Barton, G. W. An Experimental Investigation
into the Behaviour of Antifoaming Agents. Chemical Engineering Science 2017, 160, 269–274.

12. Wu, H.; Dong, R.; Wu, S. Exploring Low-Cost Practical Antifoaming Strategies in the Ammonia
Stripping Process of Anaerobic Digested Slurry. Chemical Engineering Journal 2018, 344, 228–
235.

13. Jiang, J.; Zu, Y.; Li, X.; Meng, Q.; Long, X. Recent Progress towards Industrial Rhamnolipids
Fermentation: Process Optimization and Foam Control. Bioresource Technology 2020, 298,
122394.

14. Agarwal, A.; Liu, Y. A.; McDowell, C. 110th Anniversary: Ensemble-Based Machine Learning for
Industrial Fermenter Classification and Foaming Control. Industrial & Engineering Chemistry
Research 2019, 58 (36), 16719–16729.

15. Olson, R. S.; Urbanowicz, R. J.; Andrews, P. C.; Lavender, N. A.; Kidd, L. C.; Moore, J. H.
Automating Biomedical Data Science through Tree-Based Pipeline Optimization. Applications of
Evolutionary Computation 2016, 123–137.

16. Schweidtmann, A. M.; Clayton, A. D.; Holmes, N.; Bradford, E.; Bourne, R. A.; Lapkin, A. A.
Machine Learning Meets Continuous Flow Chemistry: Automated Optimization towards the
Pareto Front of Multiple Objectives. Chemical Engineering Journal 2018, 352, 277–282.

17. Orlenko, A.; Moore, J. H.; Orzechowski, P.; Olson, R. S.; Cairns, J.; Caraballo, P. J.; Weinshilboum,
R. M.; Wang, L.; Breitenstein, M. K. Considerations for Automated Machine Learning in Clinical
Metabolic Profiling: Altered Homocysteine Plasma Concentration Associated with Metformin
Exposure. Biocomputing 2018.

18. Venkatasubramanian, V. The Promise of Artificial Intelligence in Chemical Engineering: Is It Here,
Finally? AIChE Journal 2018, 65 (2), 466–478.

19. Ge, Z.; Song, Z.; Ding, S. X.; Huang, B. Data Mining and Analytics in the Process Industry: The Role
of Machine Learning. IEEE Access 2017, 5, 20590–20616.

20. Kim, G. B.; Kim, W. J.; Kim, H. U.; Lee, S. Y. Machine Learning Applications in Systems Metabolic
Engineering. Current Opinion in Biotechnology 2020, 64, 1–9.

21. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.;

Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.;

Perrot, M.; Duchesnay, E. Scikit-learn: Machine Learning in Python. Journal of Machine Learning

Research 2011, 12, 2825.

22. McKinney, W. Data Structures for Statistical Computing in Python. Proceedings of the 9th Python

in Science Conference, Austin, TX, June, 2010.

23. Hunter, J. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering 2007, 9,

90.

80

24. Lundberg, S. M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. 31st Conference

on Neural Information Processing Systems 2017, 4768–4777.

25. Nielsen, P. H.; Oxenbøll, K. M.; Wenzel, H. Cradle-to-Gate Environmental Assessment of Enzyme

Products Produced Industrially in Denmark by Novozymes A/s. The International Journal of Life

Cycle Assessment 2006, 12 (6), 432–438.

26. Meyer, H.-P.; Minas, W.; Schmidhalter, D. Industrial-Scale Fermentation. Industrial

Biotechnology 2016, 1–53.

27. Demirci, A.; Pometto, A. L. Repeated-Batch Fermentation in Biofilm Reactors with Plastic-

Composite Supports for Lactic Acid Production. Applied Microbiology and Biotechnology 1995,

43 (4), 585–589.

81

Chapter 6. Deep Learning Optimization on Industrial and Simulated Polyolefin Datasets

6.1 Introduction

 This chapter presents the workflow to build a deep neural network (DNN) and three different types

of recurrent neural network (RNN) using Python. We showcase the use of these two methodologies for

two different cases. For the first case, we demonstrate how to build a steady-state (time-independent)

model for a high-density polyethylene (HDPE) industrial plant to predict the melt index (MI) using Keras

libraries to build deep neural networks. And for the second case, we cover how to build three different

types of dynamic recurrent neural network from scratch to predict the melt index from a simulated

time-dependent polymer dataset.

 Section 6.1 explains the resurgence of deep neural networks and describes the basics of a deep

neural network. Section 6.2 provides the details about the different types of recurrent neural networks.

Section 6.3 describes an industrial HDPE plant setup and the variables associated with the industrial

dataset. Section 6.4 introduces a step-by-step workflow to build a deep neural network using Keras

libraries. Section 6.5 describes the dynamic dataset simulated for an HDPE plant. Section 6.6 illustrates

how to build the three different types of recurrent neural network architecture to deal with time-

sensitive data in a multistep workflow.

 There are several published studies which use different deep neural network architectures and

recurrent neural networks for plant control and optimization. [1,2,10,11,14] Deep learning is used for soft

sensor development [1], fault diagnosis [2], predicting chemical properties [3,4,13], designing polymers

[8,11,12], predicting protein interactions [5], tracking particle dynamics [7], fouling in heat exchangers [19],

etc. However, the implementation of these architectures can be quite challenging for new readers.

 Through this chapter, we want to enable readers to create their own deep neural network and

recurrent neural network for optimization with little to no neural network exposure, minimal computing

resources, and easy implementation.

6.1.1 Why use deep neural networks?

 In the past couple of years, we have seen a surge in big data collection, cutting-edge hardware

improvements, and release of several user-friendly software platforms to enable engineers to use deep

neural networks for their research. In addition to accessibility to resources for building deep neural

networks, many industries are promoting process engineering solutions based on digital transformation.

One of the examples of such a transformation is application of a ‘digital twin’. A digital twin is a virtual

representation of a process/model which becomes more powerful as it keeps receiving real world data

from its real-world counterpart.

82

 Before we talk about deep neural networks, we need to briefly talk about neural networks. Neural

networks are a cluster of nodes, known as neurons, which are arranged into an ordered sequence of at

least three groups known as layers. The first layer is called the input layer and has the same number of

neurons as the number of input variables for the system, the last layer is known as the output layer; the

layers in between are called hidden layers. The choice of number of layers and number of nodes is task-

dependent and is mostly based on experience. [18] Deep neural networks are just neural networks with

two or more hidden layers. Appendix B gives a brief introduction to different neural network

terminologies and mathematics behind neural networks.

 Most steady-state (time-independent) data can be modelled using a simple feed-forward neural

network, where the connections between the nodes do not form a cycle. However, for dynamic (time-

dependent) data, a more complex neural network architecture is more useful. Recurrent Neural

Networks (RNN) are very useful in handling such time-dependent sequence data. In a recurrent neural

network, outputs from previous time steps are taken as inputs for the current time step.

6.2 Different Types of Recurrent Neural Network

 Recurrent Neural Networks (RNN) are mostly used to deal with sequential data types like time-series

data. RNNs are trained by backpropagation which is a method of fine-tuning the weights of a neural

network.

In this chapter, we will be looking into three different types of RNN:

6.2.1 Long short-term memory (LSTM)

 In a RNN architecture, continuously updating the weights while training sometimes leads to

decreasing gradient, making it harder for a network to converge with proper training. Inversely, you can

also have increased gradient, which also makes it harder for a network to converge. To deal with these

vanishing gradient problems and exploding gradient problems, Hochreiter et al. proposed LSTM which is

a special kind of RNN with memory units to overcome long-term dependencies among the data. [20]

 An LSTM layer consists of a set of connected memory cells which pass the sequential information.

Each of these memory cells has three information gates: input gate, forget gate, and the output gate as

shown in Figure 6.1 and two states: cell state and hidden state. These help the memory cell control what

information flows in, what to forget, and what to memorize across the time series to learn long-term

dependencies. The memory cell has two activation functions: Sigmoid (maintains range between 0 and

1) and Hyperbolic Tangent (maintains range between -1 and 1). The sigmoid activation function helps

the gates to update or forget the values, while hyperbolic tangent helps regulate the network. The

attached Appendix B gives more details about these activation functions.

83

 In an LSTM memory cell, the first step involves combining the previous hidden state and current

input at the forget gate, where the combination is passed through the sigmoid function. Then, the

combination is passed through the input gate, where it gets transformed by both sigmoid and hyperbolic

tangent functions. The hyperbolic tangent output is multiplied with the sigmoid output to get a primary

cell state. The primary cell state is then multiplied by the forget vector from the forget gate and added

pointwise to get a new cell state. For the final output gate, we first send the combination from the input

gate through a sigmoid function and then send the new cell state through a hyperbolic tangent function.

The output (or the hidden state) is finally calculated by multiplying the outputs from the output gate

operations.

Figure 6.1 LSTM memory cell. Reproduced from Reference 19.

6.2.2 Bidirectional LSTM

 Bidirectional LSTM (BiLSTM) is a modification to LSTM, that consists of two LSTMs: one taking the

input in a forward direction, and the other in a backward direction. BiLSTM increases the amount of

information available to the network, by combining the outputs from both forward and backward

directions to make its final prediction.

6.2.3 Gated recurrent unit (GRU)

 A variant of LSTM architecture, GRU proposed by Cho et al. is a simplified version of LSTM. [21] Each

memory cell for a GRU consists of only two gates: reset gate and update gate and has only one state:

hidden state. The update gate acts like the forget and input gate of LSTM as it decides which information

to forget and what new information to add or update. The reset gate acts as a type of forget gate as it

decides how much past information to forget. Like LSTM, the current input (xt) and previous hidden

state (ht-1) are combined as they go through the reset gate and the update gate to give an output (ht).

84

Figure 6.2 GRU memory cell. Adapted from reference 22.

6.3 Industrial HDPE Reactor Setup

 Figure 6.3 illustrates a slurry process to produce a high-density polyethylene (HDPE). The

polymerization process involves two different reactors, and the entire process is highly exothermic.

Almost the entire reactor volume is occupied by the polyethylene slurry, which undergoes separation,

removing any unreacted monomer, solvent, catalyst, and other reactants from the polymer. Then, the

slurry is cooled using internal coils and external cooling systems and put through a series of molds and

packaged.

 The 2005-2006 real-industrial HDPE plant dataset is provided by Park et. al. [25] From the raw process

data, we choose the 14 input variables to predict the output variable, the melt index (MI) as shown in

Table 6.1.

85

Figure 6.3 Schematic of the HDPE reactor used to build a soft sensor. Reproduced from reference (23).

Table 6.1. List of all the input variables for HDPE reactor.

Input Variables Symbol Input Variables Symbol

Ethylene Feed Rate ETH Reactor temperature

(Top)

RT_TOP

Hexane Feed Rate HDH Reactor temperature

(Middle)

RT_MIDDLE

Recycled Hexane Feed Rate HMH Reactor level

LEVEL

Reactant (BUE ligand) Feed Rate PRL/BUE Reactor Pressure_1 RP1

Hydrogen Feed Rate HYD Reactor Pressure_2 RP2

Reactor temperature (Bottom) RT_BOTTOM Jacket Temperature_1 JT1

Agitator Speed AGITATOR Jacket Temperaure_2 JT2

86

6.4 Deep Neural Network Model Using Keras Libraries

 Keras is a deep learning application programming interface (API) written in Python, running on top

of the machine learning libraries like TensorFlow and Theano. For our first case model, we use Keras to

build a deep neural network in a google colab notebook.

We follow these steps to build a deep neural network for melt index prediction:

1. Remove any observation with empty or missing values. Then, divide the dataset into training and test

datasets. We will use 80-20 split (80% training data and 20% test data). It is important to note that the

training data can be further divided into validation set (70% training data and 10% validation data) for

hyperparameter tuning, if needed.

2. Select the dependent and independent variables of the dataset.

3. Build the deep-neural network using Keras library.

4. Extract the value of the model performance metric.

5. Plot a scatterplot to visualize the model predictions.

 The first step for every model building is data preprocessing. In this step, we make sure that we

divide our dataset into two randomly sampled subsets using an 8:2 ratio. We also make sure that all null

values are removed from the dataset. Figure 6.4 shows the code for splitting our dataset and removing

all observations with missing values. Here ‘Axis=0’ represents the row values and by using ‘how=any’ we

remove all rows with any missing column values. For this example, we have two different datasets,

HDPE1 and HDPE2 representing two different timelines for the HDPE plant.

Figure 6.4 Splitting the HDPE dataset into training and test sets and removing null values.

87

 The second step involves selecting our X-values (independent variables) and Y-value (dependent

variable). Figure 6.5 illustrates how we do that. We use the HDPE1 dataset for our model. We select the

first 14 columns as our X-values and the last column as our Y-value.

`

Figure 6.5 Selecting X-values and Y-value

 The third step involves building the deep neural network model using Keras. Figure 6.6 shows the

network architecture for the model. As we can see from the structure, the deep neural network has 1

input layer with 14 neurons, 2 hidden layers with 10 neurons, and an output layer with 1 neuron. We

use rectified linear unit (ReLU) activation function, as the activation function for the hidden layers,

which is one of the most used activation functions in deep learning models. We use simple linear

activation function for the output layer as we want a numerical regression output. We use ‘Adam

optimization’ for training the neural net. Appendix B describes activation functions and different

optimization techniques.

88

Figure 6.6 Deep neural network with two hidden layers.

 We use sequential Keras model to build the layers one at a time. For more complex architectures we

can use functional Keras models. For layer type, we use dense layer type such that each neuron in the

dense layer receives input from all the neurons of its previous layer. Using the model, we minimize the

mean squared error and train 481 parameters as shown in Figure 6.7.

89

Figure 6.7 Deep neural network using Keras.

 In the fourth step, we extract the evaluation metric, root mean squared error (RMSE) value, for the

model. As the name suggests, RMSE measures the standard deviation of the residuals. It is used to see

how spread the predicted values are. Figure 6.8 shows the code for extracting the RMSE value from the

model. We can see that the RMSE value for melt index is 1.2606.

90

Figure 6.8 Evaluation metric calculation (RMSE calculation).

 The fifth and final step involves visualizing the actual and predicted values. Figure 6.9 explains how

we can visualize the residuals with a scatterplot. From the figure, we can see that our simple deep

neural network model does a good job of predicting the melt index.

Figure 6.9 Visualization of actual vs predicted plot for melt-index prediction.

6.5 Time-Dependent Polymer Dataset Obtained by Simulation for an HDPE Plant

 For the second case, we use data from an HDPE plant simulation and predict the melt index using

dynamic deep neural network modeling techniques.

91

 We simulate a two-reactor slurry HDPE process with ethylene as the monomer and butylene as the

comonomer. Hexane is used as the solvent for the process. We build a dynamic process model like the

procedure mentioned by Sharma and Liu. [26] The dynamic model is used to make changes in the process

variables at set time intervals to simulate a real-time dynamic HDPE plant. We run the simulations twice

with different changes in the process variables at the same time periods to simulate two different

datasets for training and testing.

Figure 6.10 Dynamic HDPE production process with 11 process variables.

 From the raw process data, we use 8 input variables to predict the melt index (MI) as the output

variable as shown in Table 6.2.

92

Table 6.2. List of all the input variables for simulated HDPE reactor.

Input Variables Symbol Input Variables Symbol

Hexane Solvent Feed to 1st

reactor

HX Ethylene Feed to 2nd

reactor

C22

Hydrogen Feed to 1st reactor H2 Butylene feed to 2nd

reactor

C4

Ethylene Feed to 1st reactor C2 Hexane Solvent feed to

2nd reactor

HX2

Catalyst Feed to 1st reactor CAT Hydrogen Feed to 2nd

reactor

H22

6.6 Dynamic Deep Learning Using 3 Types of Recurrent Neural Networks

 In this section, we look at building three different types of deep recurrent neural network structures

to extract the melt index for a dynamic process.

We use the following steps as a step-by-step workflow to build the network architectures. We add some

additional steps compared to Section 6.4 like data transformation to demonstrate a more complex

workflow.

1) Remove any observation with empty or missing values. Then, divide the dataset into training and test

datasets. We will use 80-20 split (80% training data and 20% test data).

2) Select the dependent and independent variables of the dataset.

3) Transform the variables by standardizing or normalizing the variables.

4) Build and train the three different types of recurrent neural network.

5) Make predictions and visualize the predictions for all the architectures.

6) Extract the value of the prediction metric for model evaluation.

 Our first step like before is data preprocessing, where we check for any missing values and then split

the dataset into training and test datasets. Figure 6.11 shows the code for checking the missing values

and interpolating the values if missing. In our case there are no missing values. There are other methods

93

of dealing with missing values like listwise deletion, pairwise deletion, mean substitution, maximum

likelihood, multiple imputation, etc. [27]

Figure 6.11 Checking for missing values and interpolation of missing values.

 In order to split the dataset into training and test datasets, we use a different approach. Instead of

just directly splitting the dataset using an 8:2 train-test split, we use a time-split validation method. [16]

Our dataset consists of two separate batch runs and we use one of the runs to train the model and test

the model on some instances (where we see the maximum variation in the melt index) from the second

run. By doing this, we mimic a real industrial setting where we must predict how the next batch will look

like based on the previous batch. Figure 6.12 shows the code for the splitting method along with their

dimensions, code for the split plot, and Figure 6.13 helps us visualize the training and test data used for

model building.

94

Figure 6.12 Time-split validation method

Figure 6.13 Train-test split plot using time-split.

95

 The second step is selecting the independent and dependent variables like we did for the simple

deep neural network. From Figure 6.14, we see that we choose the 8 independent variables other than

melt index and time as our X variables and melt index as our Y variable (dependent).

Figure 6.14 Selecting independent and dependent variables.

 The third step involves using data transformation techniques like feature scaling. The two most

common methods for feature scaling include standardization (ensures zero mean and unit variance) and

min-max normalization (re-scales features with a distribution value between 0 to 1). Feature scaling

helps gradient-based algorithms like deep neural networks to converge faster. Standardization is

preferred over min-max normalization in some cases as it is robust to outliers. We will use

standardization for our transformation as shown in Figure 6.15. If we wanted to use min-max

normalization, we would import and use MinMaxScaler instead of StandardScaler.

Figure 6.15 Feature scaling using standardization or z-score method.

96

 For the fourth step, we will be building and training three different RNN architectures: Long Short-

Term Memory (LSTM), Bidirectional LSTM (BiLSTM), and Gated Recurrent Unit (GRU).

 Before we start building the models, it is important to reshape the input data into a 3-D format.

Figure 6.16 shows how we can do that:

Figure 6.16 Reshaping input data.

 Time-steps in Figure 6.16 refer to the number of instances to consider for input per iteration before

giving an output. For example, if our dataset does not show any significant variation in output for every

30 instances, we can set the timestep to be 30. In our case, we set the timestep as 1.

Now we are ready to build the model as we build three different RNN architectures as shown in Figure

6.17.

97

Figure 6.17 Creating different RNN architectures

98

 The first step towards creating the RNN architectures using Python is to import all the essential

libraries. Here we use Keras API of the Tensorflow library to build the structures. We first create the

BiLSTM model with two hidden layers. We use the dropout regularization method to ensure that our

models are not overfitting. Since we have 8 input variables, we use 8 as the number of input neurons.

We select Adam optimizer and a learning rate of 0.0001. The attached Appendix B gives information

about the optimizer. To select the number of hidden neurons in each hidden layers (5 in our case as

shown in Figure 6.17), we use a method developed by Sheela et al.17, using the following equation:

𝑁ℎ = (4𝑛2 + 3)/(𝑛2 − 8) (6.1)

 Here, n is the number of input neurons. There are several rules which can be followed to determine

the number of hidden neurons depending on the nature of the dataset, complexity of activation

functions, and the size of the dataset. [23-24] It is important to investigate structured trial and error

method for every specific case.

 We can also check the number of parameters involved in each of the architectures as shown in

Figure 6.18. We can see that the BiLSTM model is trained on 2619 parameters. Similarly, LSTM is trained

on 1050 and GRU is trained on 843 parameters respectively. It intuitively makes sense, as BiLSTM

accounts for input in both forward and backward direction and GRU is a simplified version of LSTM.

Figure 6.18 Parameters involved in training BiLSTM.

99

 Next, we train the network architectures as shown in Figure 6.19. We use 20% of the training data

for validation. We set the number of epochs to 100. The number of epochs define the number of times

the learning algorithm will work through the entire dataset. In order to avoid overfitting, we also set an

early stop to stop training when validation loss has not improved after 30 epochs.

 We set the batch size to 5. The batch size determines how many times the network weights are

updated per epoch. Batch sizes and number of epochs are also based on the nature and size of the

dataset; structured trial and error should be used to determine the best batch size. We can use grid

search to determine the best number of epochs and batch size.

Figure 6.19 Fitting the RNN models.

 We can also plot the training and validation loss to visualize our losses through each epoch. Figure

6.20 shows the required code and the plot for training and validation loss in BiLSTM.

100

Figure 6.20 Training and validation loss in BiLSTM.

 Now we are done with our fourth step; before we move on to the fifth step of comparing the actual

values with the prediction, we must convert the target dependent variable (Y-variable/melt index) back

to the original data space. We show the transformation in Figure 6.21.

Figure 6.21 Inverse transform of target variable.

 Now for the fifth step, we want to make predictions and visualize the real target variable and the

predictions for our three RNN architectures. Figure 6.22 (a-d) shows the steps to make the predictions

and plot the prediction vs real values for the melt index.

101

Figure 6.22 (a) Making prediction for the three RNN architectures and plotting the true data vs

prediction for the three models.

Figure 6.22(b) Prediction vs true data for BiLSTM

102

Figure 6.22(c) Prediction vs true data for LSTM

Figure 6.22(d) Prediction vs true data for GRU

 As a final step, we can evaluate the performance based on different metrics like root-mean squared

error(RMSE) and mean absolute error (MAE). Figure 6.23 shows the steps for model evaluation.

103

Figure 6.23 Prediction of the target variable.

6.7 Results and Limitations

 Table 6.3 summarizes the results from the prediction. We can see that GRU gives the best

performance with the lowest MAE and RMSE. For a large dataset, we would expect BiLSTM to give the

best performance, but for a smaller dataset like ours, LSTM and GRU give better performances. GRU is

preferred when we want our models to converge faster and are not too deeply concerned with high

accuracy.

Table 6.3. Model performance evaluation results for RNN architectures.

RNN model MAE RMSE

LSTM 6.33 9.18

BiLSTM 7.59 12.38

GRU 5.61 6.94

 We can further improve the models by tuning the tunable hyperparameters like number of hidden

layers, number of epochs, batch size, number of hidden neurons, alternative loss functions, alternate

optimization algorithms, etc. It is important to use proper regularization techniques like dropout and

cross-validation to ensure we account for issues like overfitting and underfitting.

References:

1. Ke, W.; Huang, D.; Yang, F.; Jiang, Y. Soft Sensor Development and Applications Based on LSTM in
Deep Neural Networks. 2017 IEEE Symposium Series on Computational Intelligence (SSCI) 2017.

104

2. Xie, D.; Bai, L. A Hierarchical Deep Neural Network for Fault Diagnosis on Tennessee-Eastman Process.
2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA) 2015.
3. Goh, G. B.; Hodas, N. O.; Siegel, C.; Vishnu, A. SMILES2Vec: An Interpretable General-Purpose Deep
Neural Network for Predicting Chemical Properties. arXiv:1712.02034 [stat.ML], arXiv
preprint, 2017. https://arxiv.org/abs/1712.02034.
4. Hou, F.; Wu, Z.; Hu, Z.; Xiao, Z.; Wang, L.; Zhang, X.; Li, G. Comparison Study on the Prediction of
Multiple Molecular Properties by Various Neural Networks. The Journal of Physical Chemistry A 2018,
122, 9128–9134.
5. Du, X.; Sun, S.; Hu, C.; Yao, Y.; Yan, Y.; Zhang, Y. Deepppi: Boosting Prediction of Protein–Protein
Interactions with Deep Neural Networks. Journal of Chemical Information and Modeling 2017, 57, 1499–
1510.
6. Liu, D.; Tan, Y.; Khoram, E.; Yu, Z. Training Deep Neural Networks for the Inverse Design of
Nanophotonic Structures. ACS Photonics 2018, 5, 1365– 1369, DOI: 10.1021/acsphotonics.7b01377
7. Zhong, Y.; Li, C.; Zhou, H.; Wang, G. Developing Noise-Resistant Three-Dimensional Single Particle
Tracking Using Deep Neural Networks. Analytical Chemistry 2018, 90, 10748–10757.
8. Kuenneth, C.; Schertzer, W.; Ramprasad, R. Copolymer Informatics with Multitask Deep Neural
Networks. Macromolecules 2021, 54, 7321–7321.
9. Xu, Y.; Ma, J.; Liaw, A.; Sheridan, R. P.; Svetnik, V. Demystifying Multitask Deep Neural Networks for
Quantitative Structure–Activity Relationships. Journal of Chemical Information and Modeling 2017, 57,
2490–2504.
10. Zhou, Y.; Cahya, S.; Combs, S. A.; Nicolaou, C. A.; Wang, J.; Desai, P. V.; Shen, J. Exploring Tunable
Hyperparameters for Deep Neural Networks with Industrial Adme Data Sets. Journal of Chemical
Information and Modeling 2018, 59, 1005–1016.
11. Goli, E.; Vyas, S.; Koric, S.; Sobh, N.; Geubelle, P. H. ChemNet: A Deep Neural Network for Advanced
Composites Manufacturing. The Journal of Physical Chemistry B 2020, 124, 9428–9437.
12. Munshi, J.; Chen, W.; Chien, T. Y.; Balasubramanian, G. Transfer Learned Designer Polymers for
Organic Solar Cells. Journal of Chemical Information and Modeling 2021, 61, 134–142.
13. Wu, J.; Wang, S.; Zhou, L.; Ji, X.; Dai, Y.; Dang, Y.; Kraft, M. Deep-Learning Architecture in Qspr
Modeling for the Prediction of Energy Conversion Efficiency of Solar Cells. Industrial & Engineering
Chemistry Research 2020, 59, 18991–19000.
14. Agarwal, P.; Tamer, M.; Sahraei, M. H.; Budman, H. Deep Learning for Classification of Profit-Based
Operating Regions in Industrial Processes. Industrial & Engineering Chemistry Research 2019, 59, 2378–
2395.
15. Kantz, E. D.; Tiwari, S.; Watrous, J. D.; Cheng, S.; Jain, M. Deep Neural Networks for Classification OF
Lc-Ms SPECTRAL PEAKS. Analytical Chemistry 2019, 91, 12407–12413.
16. Sheridan, R. P. Time-Split Cross-Validation as a Method for Estimating the Goodness of Prospective
Prediction. Journal of Chemical Information and Modeling 2013, 53, 783–790.
17. Sheela, K. G.; Deepa, S. N. Review on Methods to Fix Number of Hidden Neurons in Neural Networks.
Mathematical Problems in Engineering 2013, 2013, 1–11.
18. Yuan, H. C.; Xiong, F. L.; Huai, X. Y. A Method for Estimating the Number of Hidden Neurons in Feed-
Forward Neural Networks Based on Information Entropy. Computers and Electronics in Agriculture 2003,
40, 57–64.
19. Madhu P.K., R.; Subbaiah, J.; Krithivasan, K. Rf‐Lstm‐Based Method for Prediction and Diagnosis of
Fouling in Heat Exchanger. Asia-Pacific Journal of Chemical Engineering 2021.
20. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Computation 1997, 9, 1735–1780.
21. Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv:1412.3555, arXiv preprint, 2014. https://arxiv.org/abs/1412.3555.

105

22. Phi, M. Illustrated guide TO LSTM's And GRU's: A step by step explanation.
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-
44e9eb85bf21 (accessed Sep 20, 2021).
23. Shin-ike K. A two phase method for determining the number of neurons in the hidden layer of a 3-
layer neural network. Proc SICE Ann Conf. 2010;2010:238–42.
24. Karsoliya S. Approximating number of hidden layer neurons in multiple hidden layer BPNN
architecture. International Journal of Engineering Trends and Technology 2012, 3, 713–717.
25. Park, T. C.; Kim, T. Y.; Yeo, Y. K. Prediction of the Melt Flow Index Using Partial Least Squares and
Support Vector Regression in High-Density POLYETHYLENE (HDPE) Process. Korean Journal of Chemical
Engineering 2010, 27, 1662–1668.
26. Sharma, N.; Liu, Y. A. 110th Anniversary: An Effective Methodology for Kinetic Parameter Estimation
for Modeling Commercial Polyolefin Processes from Plant Data Using Efficient Simulation Software
Tools. Industrial & Engineering Chemistry Research 2019, 58 (31), 14209–14226.
27. Kang, H. The Prevention and Handling of the Missing Data. Korean Journal of Anesthesiology 2013,
64, 402

106

Chapter 7. Dissertation Summary

7.1 Concluding Remarks

 In this work, we successfully demonstrate five different cases where we use machine learning

algorithms backed by statistical theories for multivariate data analysis. We demonstrate applications of

several novel techniques like ensemble methods, automated machine learning, exploratory time series,

and deep learning for solving industrial problems.

 For the LDPE dataset, we demonstrate manufacturing quality control using multi-output regression.

We are able to detect anomalies and observe inter-variable and IO (input-output) relationships. We use

the HDPE dataset to build a soft sensor for melt flow index. Deep neural networks give us the best

results as a soft sensor among the different non-linear machine learning models. We also demonstrate a

step-by-step methodology of building different types of deep neural networks for both continuous

process (industrial dataset) and batch process (simulated dataset). Through our work, we also show how

multivariate data analysis tools like Aspen ProMV can be used for monitoring and optimizing polyolefin

industrial datasets.

 The second half of this dissertation is focused on foaming control and implementation of a robust

machine learning-based defoaming strategy. In the industrial sector, foaming remains an inevitable side

effect of mixing, shearing, powder incorporation, and the metabolic activities of microorganisms in a

bioprocess. In our work, we show how we can integrate a dataset with different fermenters using

ensemble-based classification models. We use ensemble-methods to predict the exhaust differential

pressure (an indicator of foaming). In order to mitigate the adverse effects of excessive foaming, we

present a method of predicting the antifoam addition using automated machine learning. Finally, as a

proof-of-concept, we build antifoam profiles using exploratory time-series and deploy the profiles in the

industry. The initial deployment results show an overall decrease in the volume loss (up to 53%) and a

decrease in the average exhaust differential pressure (up to 55%), among other indicators.

7.2 Future Outlook

 In this section, we look at different approaches in which the research can be used to advance the

objectives of the presented dissertation.

Fermentation Data Integration

 Our classification models were able to predict the type of fermenter with operating conditions

alone. This allows for integrating datasets consisting of operating conditions to build a more robust

generalized model. We believe that such a fermentation integration model can have other novel

applications in pattern/trend detection outside foaming.

107

Foam Prediction

 Using ensemble-based methods we are able to predict foaming with high accuracy. It would be

interesting to see if we are able to use the model for designing protocols for fermentation operation

with the goal of maximizing production yield and minimizing the impacts of foaming.

Defoaming Strategy

 We build antifoam profiles using exploratory time-series and deployed the profiles for one organism

across three different fermenters. It would be interesting to gauge the performance of all of the six

organisms across all four different fermenters. This research can be used not only for bioprocessing but

for any chemical process which faces the problems of foaming. Herein, we present a novel strategy for

defoaming, which is the first to use a data-based approach to reduce the impact of foaming.

Defoaming Antifoam Profile Enhancement

 We present automated machine learning for predicting antifoam addition directly; currently

antifoam addition constraint restricts us from using the model. We believe such a method can instead

be used to build antifoam micro-profiles which can further enhance the antifoam macro-profiles built by

using exploratory time-series as noted in Chapter 5.

Anomaly Detection and Quality Control

 We demonstrate how Aspen ProMV and different machine learning algorithms can help with

anomaly detection and quality control with multi-output regression. It would be interesting to see if we

can use automated machine learning for the same.

Deep Learning

 Through our work, we look at both static and dynamic polyolefin datasets and build models around

industrial and simulated datasets. It would be interesting to use the dynamic regression models for

other time-series datasets found in chemical processes.

108

Appendix

APPENDIX A

Introduction to Python for Chemical Engineers

Python is a high-level general purpose programming language designed by Guido van Rossum in 1980s.

Some of the characteristics of Python which makes it such a popular programming language are:

simplicity, versatility, cross-platform, open-source, free software, large unique library, and exception

handling capacity.

Simplicity: Python was ranked as the second-most popular programming language by Github in 2020. [1]

Due to its user-friendliness, English language parallels, and adaptability, Python aids new programmers

in mastering the concepts of programming in a simple manner. Engineers new to programming can

easily learn the syntaxes of the language without having to learn complex syntaxes like the ones used for

programs such as C++, Java, and PHP.

Versatility: Over the past decades, Python has emerged to be one of the most diverse programming

language, which can be used for software development, operations, visualization, data analytics,

finance, design, machine learning, artificial intelligence, etc.

In chemical engineering, Python has a broad array of applications like soft-sensor development, data

analytics and visualization, operations, process optimization, simulation, process design, automatic

calculation, anomaly detection, etc.

Cross-platform: Python programs can run across different operating systems like Windows, Mac, and

Linux. Some operating systems like Mac and Linux, come with preinstalled versions of Python. While, for

operating system like Windows, one can easily install Python and a graphical interface if needed.

Open-source: Python is publicly accessible with open-source license. Anyone can see, modify, and

distribute the code, even for commercial use.

Free software: All the versions of Python, including the latest version, can be installed for free on

multiple devices for all operating systems (Windows, Mac, Linux, Other).

Large unique library: One of the reason for the popularity of Python is its huge collection of libraries,

which is increasing exponentially as its simplicity attracts thousands of developers to develop new

libraries. Some of the popular libraries are: Numpy, Scikit-Learn, TensorFlow, Pandas, Keras, etc.

Exception handling capacity: Errors in Python are of two types: Syntax errors and exceptions. Errors are

the problems in a program due to which the program will stop the execution. Syntax errors are errors

caused by a character or string incorrectly placed in a command or instruction that causes a failure in

execution.

On the other hand, exceptions are raised when some internal events occur which changes the normal

flow of the program. Python offers several exception handling mechanisms to elegantly handle errors

109

without disturbing the workflow of majority of the code and solve problems, which can sometimes

speed up the script.

A.1.1 Installing Python:

For installing and using Python, we recommend using Spyder, an open-source cross-platform integrated

development environment (IDE) for scientific programming in the Python language.

The best way to install Spyder as well as get other useful programming toolkits is to install a group

package called Anaconda. Anaconda is a free and open-source distribution of Python and R

programming languages for data science and machine learning. Anaconda comes with over a 1500

packages (including the package management system Conda) and a graphic user interface (GUI) named

Anaconda Navigator. The Anaconda Navigator also allows users to install some applications by default

such as Jupyter Notebook, Spyder IDE and Rstudio (for R).

The step-by-step guide for installing Anaconda Navigator is:

1) Go to anaconda.com

2) From the products category select Individual Edition.

3) Click on Download.

4) Select the right operating system and choose 64-bit processor for most advanced computer systems

(ideal for RAM greater than 4GB) or 32-bit for older systems.

5) Click on executable file, then click next, read the licensing agreement and click on agree to the terms.

6) Select an install for “Just Me” unless you’re installing for all users (which requires Windows

Administrator privileges) and click Next.

7) Select the installation location.

8) Choose whether to add Anaconda to your PATH environment variable. We recommend not adding

Anaconda to the PATH environment variable, since this can interfere with other software. Instead, use

Anaconda software by opening Anaconda Navigator or the Anaconda Prompt from the Start Menu.

9) Choose whether to register Anaconda as your default Python. We recommend selecting this option.

10) Click on Install, then Next, and finally Finish to complete installation.

For more information and operating system specific guide, users can visit:

https://docs.anaconda.com/anaconda/install/

A.1.2 Basics with Python

1. Opening Python

To use Python, we will be using Spyder IDE as a graphical interface. We open Spyder by searching for

Spyder or using Anaconda Navigator.

https://docs.anaconda.com/anaconda/install/

110

2. Creating a new file

We create a new file by clicking on new file or pressing Ctrl+N; every new file is created as a Python

script and its directory location can be selected and is visible above the variable explorer window.

It is important to save the script in the right location before executing the script.

3. Writing a script

We write the script in the command window and the executed script output can be seen in the IPython

console window in Spyder. Stored functions, variables, and basic mathematical operations can directly

be called in the console window.

4. Using Python as a calculator

Python can be used as a calculator to perform basic mathematical operations. For instance, we can

directly use the console window for the calculation:

Such calculations are very basic, in order to do some complicated calculations, we need to learn about

storing values in variables and some mathematical libraries, which we will look into in the sections

ahead.

5. Storing values in variables

In Python, we can assign a value to a variable, using the equals sign. For instance, we can store

Avogadro’s number:

We use the built-in power function (pow) to handle exponentials. The resulting variable is stored as

Avogadro_number and can be seen in the variable explorer window.

A.1.3 Different Data Types in Python

Variables can store data of different types; Python has the following data types built-in by default:

1. Text Type (‘str’)

To create a string, we use single or double quotes around some text, for instance:

111

2. Numeric Types (‘int, float, complex’)

Here we can see x, y, and z stored as integer, float, and complex numbers respectively.

3. Sequence Types (‘list, tuple, range’)

List: Lists are used to store multiple items in a single variable. Lists are created using square brackets.

They are ordered, changeable, and allow duplicate values. List items are indexed, the first item has index

[0], the second item has index [1] etc. For instance:

Tuple: Tuples are also used to store multiple items in a single variable like lists. They are created using

round brackets. They are ordered, unchangeable, and allow duplicate values. Tuple items are indexed as

well, the first item has index [0], the second item has index [1] etc. For instance:

Before we look into range, let us look at the differences between lists and tuples:

a. Syntax Difference: As shown above, a list is created using square brackets, while a tuple is created

using round brackets.

b. Mutability: We can easily change or modify list values based on index, while a tuple cannot be

changed. Since lists are mutable, we can't use a list as a key in a dictionary. This is because only an

immutable object can be used as a key in a dictionary. Thus, we can use tuples as dictionary keys if

needed. Below we show how the list we created before can be mutated:

Now, we can see the change in the list in the variable explorer window:

c. Copying and reusability: Since, tuples are immutable, they can simply be reused with no necessity to

copy. However, lists can be copied as shown below:

112

The elements in the copied list are identical to the original list, however the list itself is different, as

shown below:

d. Memory Difference: Python allocates memory to tuples in terms of larger blocks with a low overhead

because they are immutable. On the other hand, for lists, Pythons allocates small memory blocks. Thus,

tuples use smaller memory space compared to lists. This makes tuples a bit faster than lists when you

have a large number of elements.

Range: The range() function returns a sequence of numbers, starting from 0 by default, and increments

by 1 (by default), and stops before a specified number. Here we store a range of multiples of 4 starting

from 4 and ending at 21:

Script:

Output:

4. Mapping Type (‘dict’)

Dictionaries are used to store data values in ‘key:value’ pairs. They are created using curly brackets.

They are ordered (for Python 3.7 and above, unordered for other versions), changeable, and do not

allow duplicate values. Here we store the information we used before as a dictionary:

With dictionaries we can search for specific values for different keys easily. For instance, if we wanted to

see the birth year for George Davis in our dictionary, we can simply use:

5. Set Types (‘set’, ‘frozenset’)

113

Set: Sets are used to store multiple items in a single variable. They are also created using curly brackets.

They are unordered, unchangeable, unindexed, and do not allow duplicate values. Sets are mutable,

allowing us to add or remove values from it.

We can see the unordered characteristic of the set when we call out the set:

We can add new values to a set using add:

Frozenset: They are nothing but immutable sets. We cannot add or remove values from a frozenset,

once it is created. They are sometimes used as dictionary keys, since they are immutable.

6. Boolean Type (‘bool’)

The bool() function allows you to evaluate any value, and give you True or False in return. The following

values are considered false for bool: None, False, Zero of any numeric type (0, 0.0, 0j), empty sequence,

empty mapping, etc.

Another way to use bool is by using the built-in Boolean function:

7. Binary Type (‘bytes’, ‘bytearray’, ‘memoryview’)

Bytes command can convert objects into bytes objects, or create empty bytes object of the specified

size. They resulting bytes objects are immutable.

Bytearray are the same as bytes, but are mutable.

Memoryview returns a memoryview object from bytes and bytearray. The resulting object can be

obtained via slicing without copying the entire set of data.

114

A.1.4 Functions and loops in Python

Functions are blocks of code that perform specific tasks in Python. Generally, there are two types of

functions: in-built functions and user-defined functions. As the name suggests, in-built functions are pre-

built functions which can directly be used or called in a Python script. For instance, we used ‘pow’

function before in order to use exponentials to define Avogadro’s number. The pow function is a built-in

function.

In this section, we are going to learn how to build user-defined functions. A function is defined by the

def command. We build a function my_first_function below:

After we save the function in a script, we can call it in the console window for different values of x as

shown below:

Functions are very useful in solving different linear and non-linear equations using Python.

Loops are used to iterate over a sequence type, allowing us to execute a command over and over.

a. For loop example

For loops are generally used to iterate over a sequence of numbers using range. We can use for loop for

the function we built above as follows:

Here we calculate ‘my_first_function’ for the number 1 to 5, and get the following results:

115

b. While loop example

Using this loop, we calculate ‘my_first_function’ till the conditional statement x<6 is met (0 to 5), we

get:

With while loop we can execute a set of statements if the condition for the loop is true.

c. Break and continue statements example

Break statements terminate the loop containing it and are used to control the flow of the program.

Similarly, continue statements are used to instruct a loop to continue to the next iteration. For example:

We can see that the output is everything other than the letter ‘e’.

A.2 Libraries in Python

116

A library is a collection of modules or a set of pre-combines codes that can be used iteratively to reduce

the time required to implement a function or code. They are reusable resources which help improve

effectiveness and efficiency within Python. Python by default has a standard library, which is a collection

of exact syntax, token, and semantics of Python. With over 200 core modules, the python standard

library provides users with several data type, text processing, mathematical, and generic operational

modules.

Due to its popularity, Python has an ocean of open-source libraries under its umbrella. We look at some

of the libraries popular with chemical engineers:

1. Chemics

Chemics is a Python library created by Wiggins et al. used for basic operational tools for chemical

reactor engineering. [1] This library allows users to perform several operations like calculating

dimensionless numbers, gas heat capacities, gas thermal conductivities, mass transfer correlations,

transport velocity, pressure drop, molecular weights etc.

The library is a handy tool for chemical engineers who rely on multiple tables for such calculations. The

library allows for a fast and efficient implementation of several useful chemical engineering formulas.

Here is an example, where we calculate Archimedes number for fluid transport:

We know Archimedes number is a dimensionless number used to determine the motion of fluids due to

density differences. It is the ratio of gravitational forces to viscous forces.

It is given by the formula:

𝐴𝑟 =
𝑑𝑝

3𝜌𝑔(𝜌𝑠 − 𝜌𝑔)𝑔

𝜇2

Where, 𝑑𝑝 is the particle diameter, 𝜌𝑔is the gas density, 𝜌𝑠 is the solid density, 𝜇 is the dynamic

viscosity, and g is the local external field like gravitational acceleration.

For 𝑑𝑝= 1 [mm], 𝜌𝑔= 910 [kg/m3], 𝜌𝑠= 2500 [kg/m3], and 𝜇= 0.001307 [kg/(m.s)]:

2. Fluids

Fluids is another open-source library for chemical engineers, created by Bell et al.[2] This vast library

covers many essential tools for chemical engineers ranging from piping, fittings, pumps, tanks, two

phase flows, control valve sizing, pressure drop calculations, etc.

As an example, we solve for the mass flow rate (in kg/s) of an isothermal compressible gas flowing

through a pipe. The formula used for the calculation is:

𝑚̇2 =
(

𝜋𝐷2

4
)

2

𝜌𝑎𝑣𝑔 (𝑃1
2−𝑃2

2)

𝑃1(𝑓𝑑
𝐿

𝐷
+2 ln

𝑃1
𝑃2

)

117

Where, 𝜌𝑎𝑣𝑔 is the average density of gas in pipe, 𝑓𝑑 is Darcy friction factor, 𝑃1 and 𝑃2 are the inlet and

outlet pressures from pipe, L is the length of the pipe, D is the inner diameter of the pipe, and 𝑚̇ is the

mass flow rate of gas through the pipe.

For a gas with average density of 11.3 kg/m3 flowing through a 1km long pipe with inner diameter of

0.5m, initially at 10 bar pressure going downstream to a pressure of 9 bar, we calculate the mass flow

rate as follows:

Here, we input the specifications in SI units and use 0.00185 as the Darcy factor. The same methodology

can be used to find different variables of the formula. For example, to find the downstream pressure for

the same pipe with a flow rate of 250 kg/s:

We get a downstream pressure of 5.4 bars or 541423.45 pascals.

 3. TensorFlow

TensorFlow is a Python library created by Google Brain Team used to create deep learning models

directly or by using wrapper libraries like Keras. [3] TensorFlow allows for a series of operations on

tensors; tensors are mathematical objects that can be used to describe physical properties, like scalars

and vectors. Since neural networks are easily expressed as computational graphs, they can be

implemented using a series of operations on Tensors using TensorFlow.

Some of the features which makes TensorFlow an ideal deep learning library are flexibility, large

community, open-source, visual construct, parallel neural network training, etc. Such features as well as

optimizing strategies like XLA (accelerated linear algebra) for compiling makes TensorFlow a useful

library for building and optimizing deep neural networks as shown in Chapter 10.

4. Scikit-learn

Scikit-learn is a machine learning library created by Cournpeau et al. [4] It provides the users with a

plethora of supervised and unsupervised machine learning algorithms for different classification,

regression, and clustering tasks. It covers algorithms like K-nearest neighbors, Support Vector Machine

(SVM), random forests, etc.

Some of the features of Scikit-learn which make it a standard for implementing some machine learning

algorithms are availability of model evaluation techniques like cross-validation, unsupervised learning

algorithms like factor analysis, unsupervised neural networks, principal component analysis, etc.

5. Numpy

118

Numpy is one of the most fundamental libraries in Python which offers support for multi-dimensional

arrays and matrices with a large collection of mathematical functions to operate on these

arrays/matrices. It was created by Oliphant et al. and is extensively used for array creation and

manipulation. [5]

Numpy interface can be utilized for expressing images, sound waves, and other binary raw systems as an

array of real numbers. Arrays are a collection of values that can have one or more dimensions. A Numpy

array of one dimension is called a vector while one with two dimensions is called a matrix. With Numpy

arrays we can perform element-wise operations which are not possible using Python lists.

6. Pandas

Similar to Numpy, Pandas is another popular library used to handle data as dataframes created by

McKinney et al. [6] Pandas is widely used for most data analysis due to its flexible and extremely

thorough toolkit for data manipulation. It allows users to reshape and pivot data sets with flexibility and

works well with dynamic data. In addition, it also allows for label-based data slicing, indexing, and

subsetting.

Pandas library can be used to import or export data from/to Microsoft Excel, making it a very handy tool

for data-related operations. Below we show a basic step to read data from an excel file using Pandas:

We use head() to look at the first few rows of our dataset.

7. Matplotlib

Matplotlib is a widely used 2-D plotting library created by Hunter et al. for creating static, animated, and

interactive visualizations in Python. [7] It is used to produce publication quality figures by using Python

scripts. Matplotlib can be used to generate a variety of data visualization tools like plots, histograms, bar

charts, error charts, scatterplots, etc. Matplotlib is also used as a state-based interface by using

‘matplotlib.pyplot’, which provides users with a MATLAB-like way of plotting.

Below we show a simple example to plot a line plot using Matplotlib.pyplot:

119

Figure A.1 Line plot for catalyst flow over time using Matplotlib

By using these libraries and many other open-source libraries, readers can handle several basic and

complex engineering problems in Python with ease. This appendix introduces the readers with the

fundamentals of Python, which is the most versatile and well-rounded programming language for

chemical engineering applications.

120

A.3 Regression with Python: Hyper-parameter Optimization and sample codes

Algorithms Standard Parameters Commonly used values for parameters Method for selecting paramters Sample code

 Simple Linear Regression N/A N/A N/A Appendix 2.1

K-nearest neighbor n_neigbors, weights, algorithm, leaf_size, p, metric

n_neigbors=[3,5,10,15,20],

weights=uniform, algorithm=auto,

leaf_size=30, p=2, metric='minkowski'

GridSearch

Appendix 2.2

Decision Trees

criterion, splitter, max_depth, min_samples_split,

min_samples_leaf,min_weight_fraction_leaf,max_f

eatures

criterion=mse, splitter=best,

max_depth=[2,3,4,5,6,7,8,9,20,50,100],

min_samples_split=[2,5,10,15,20,40],

min_samples_leaf=[1,3,5,10,15,20],

min_weight_fraction_leaf=0,

max_features=auto

GridSearch

Appendix 2.3

Random Forest

n_estimators,criterion, max_depth,

min_samples_split,

min_samples_leaf,min_weight_fraction_leaf,max_f

eatures,bootstrap,oob_score,

n_estimators=[100,200,500,1000,2000],

criterion=mse,

max_depth=[2,3,4,5,6,7,8,9,20,50,100],

min_samples_split=[2,5,10,15,20,40],

min_samples_leaf=[1,3,5,10,15,20],

min_weight_fraction_leaf=0,

max_features=auto

GridSearch

Appendix 2.4

Partial Least Squares n_components n_components=[Integer value]

Obtained by calculating Q2_score

and R2_score. As the scores stop

increasing, we pick the number of

components associated with the

score. Appendix 2.5

Neural Network/ Deep Neural

Networks

Model, activation, loss, optimizer,

batch_size,epochs, number_of_hidden_layers,

input_layer_neurons, output_layer_neurons,

hidden_layer_neurons,kernel_initializer

Model=Sequential(), activation=relu,

loss=mean_squared_error,

optimizer=adam,batch_size=[1, size of

training set, 32,64,

128],epochs=[10,100,500,1000],number

of_hidden_layers=[1,2,integer

value],input_layer_neurons=number of

input variables,

output_layer_neurons=number of output

variables, hidden_layer_neurons=2/3 of

the input layer plus output layer

neuron,kernel_initializer=normal

Obtained by a thorough

understanding of the data structure,

gridsearch, understanding the

computational limitations, and

trial/error.

Appendix 2.6

Support Vector Machine kernel, gamma, C,
kernel=rbf, gamma=[0.001,0.01,0.1, 0.2,

0.5, 0.6, 0.9], C=[10, 100, 1000, 10000]

GridSearch and selecting suitable

kernel for dataset Appendix 2.7

Principal Component Analysis n_components n_components=[Integer value]

Obtained by using scree plot, the

number of components retained

have eigenvalues>1 Appendix 2.8

121

Sample code for the table above:

1) Linear Regression Sample Code:

from sklearn.linear_model import LinearRegression

import pandas as pd

import warnings

import numpy as np

from sklearn.model_selection import cross_val_predict

from sklearn.metrics import mean_squared_error, r2_score

warnings.filterwarnings('ignore')

warnings.filterwarnings('ignore', category=DeprecationWarning)

dataset=pd.read_excel("LDPE dataset_KevinMcgregor.xlsx",encoding = 'unicode_escape')

dataset=dataset.drop(36,axis=0)

X=dataset.iloc[0:39,1:23].values

y=dataset.iloc[0:39,23:29].values

define model

model = LinearRegression()

model.fit(X, y)

X_test=dataset.iloc[39:49,1:23].values

y_test=dataset.iloc[39:49,23:29].values

y1_test=y_test[:,0:1]

y2_test=y_test[:,1:2]

y3_test=y_test[:,2:3]

y4_test=y_test[:,3:4]

y5_test=y_test[:,4:5]

y6_test=y_test[:,5:6]

y_cv = cross_val_predict(model, X_test, y_test, cv=10)

y_cv1=y_cv[:,0:1]

y_cv2=y_cv[:,1:2]

y_cv3=y_cv[:,2:3]

y_cv4=y_cv[:,3:4]

y_cv5=y_cv[:,4:5]

y_cv6=y_cv[:,5:6]

score= r2_score(y_test, y_cv)

score1= r2_score(y1_test,y_cv1)

score2= r2_score(y2_test,y_cv2)

score3= r2_score(y3_test,y_cv3)

score4= r2_score(y4_test,y_cv4)

score5= r2_score(y5_test,y_cv5)

score6= r2_score(y6_test,y_cv6)

rmse = np.sqrt(mean_squared_error(y_test, y_cv))

rmse1= np.sqrt(mean_squared_error(y1_test,y_cv1))

rmse2= np.sqrt(mean_squared_error(y2_test,y_cv2))

rmse3= np.sqrt(mean_squared_error(y3_test,y_cv3))

rmse4= np.sqrt(mean_squared_error(y4_test,y_cv4))

rmse5= np.sqrt(mean_squared_error(y5_test,y_cv5))

rmse6= np.sqrt(mean_squared_error(y6_test,y_cv6))

2) K-NN Sample Code:

from sklearn.neighbors import KNeighborsRegressor

import pandas as pd

import warnings

import numpy as np

from sklearn.model_selection import cross_val_predict

from sklearn.metrics import mean_squared_error, r2_score

warnings.filterwarnings('ignore')

warnings.filterwarnings('ignore', category=DeprecationWarning)

dataset=pd.read_excel("LDPE dataset_KevinMcgregor.xlsx",encoding = 'unicode_escape')

dataset=dataset.drop(36,axis=0)

X=dataset.iloc[0:39,1:23].values

y=dataset.iloc[0:39,23:29].values

122

define model

model = KNeighborsRegressor(n_neighbors=9)

model.fit(X, y)

X_test=dataset.iloc[39:49,1:23].values

y_test=dataset.iloc[39:49,23:29].values

y1_test=y_test[:,0:1]

y2_test=y_test[:,1:2]

y3_test=y_test[:,2:3]

y4_test=y_test[:,3:4]

y5_test=y_test[:,4:5]

y6_test=y_test[:,5:6]

y_cv = cross_val_predict(model, X_test, y_test, cv=10)

y_cv1=y_cv[:,0:1]

y_cv2=y_cv[:,1:2]

y_cv3=y_cv[:,2:3]

y_cv4=y_cv[:,3:4]

y_cv5=y_cv[:,4:5]

y_cv6=y_cv[:,5:6]

score= r2_score(y_test, y_cv)

score1= r2_score(y1_test,y_cv1)

score2= r2_score(y2_test,y_cv2)

score3= r2_score(y3_test,y_cv3)

score4= r2_score(y4_test,y_cv4)

score5= r2_score(y5_test,y_cv5)

score6= r2_score(y6_test,y_cv6)

rmse = np.sqrt(mean_squared_error(y_test, y_cv))

rmse1= np.sqrt(mean_squared_error(y1_test,y_cv1))

rmse2= np.sqrt(mean_squared_error(y2_test,y_cv2))

rmse3= np.sqrt(mean_squared_error(y3_test,y_cv3))

rmse4= np.sqrt(mean_squared_error(y4_test,y_cv4))

rmse5= np.sqrt(mean_squared_error(y5_test,y_cv5))

rmse6= np.sqrt(mean_squared_error(y6_test,y_cv6))

3) Decision Trees Sample Code:

from sklearn.tree import DecisionTreeRegressor

import pandas as pd

import warnings

import numpy as np

from sklearn.model_selection import cross_val_predict

from sklearn.metrics import mean_squared_error, r2_score

warnings.filterwarnings('ignore')

warnings.filterwarnings('ignore', category=DeprecationWarning)

dataset=pd.read_excel("LDPE dataset_KevinMcgregor.xlsx",encoding = 'unicode_escape')

dataset=dataset.drop(36,axis=0)

X=dataset.iloc[0:39,1:23].values

y=dataset.iloc[0:39,23:29].values

define model

model = DecisionTreeRegressor()

model.fit(X, y)

X_test=dataset.iloc[39:49,1:23].values

y_test=dataset.iloc[39:49,23:29].values

y1_test=y_test[:,0:1]

y2_test=y_test[:,1:2]

y3_test=y_test[:,2:3]

y4_test=y_test[:,3:4]

y5_test=y_test[:,4:5]

y6_test=y_test[:,5:6]

y_cv = cross_val_predict(model, X_test, y_test, cv=10)

y_cv1=y_cv[:,0:1]

y_cv2=y_cv[:,1:2]

y_cv3=y_cv[:,2:3]

y_cv4=y_cv[:,3:4]

y_cv5=y_cv[:,4:5]

y_cv6=y_cv[:,5:6]

score= r2_score(y_test, y_cv)

score1= r2_score(y1_test,y_cv1)

score2= r2_score(y2_test,y_cv2)

score3= r2_score(y3_test,y_cv3)

123

score4= r2_score(y4_test,y_cv4)

score5= r2_score(y5_test,y_cv5)

score6= r2_score(y6_test,y_cv6)

rmse = np.sqrt(mean_squared_error(y_test, y_cv))

rmse1= np.sqrt(mean_squared_error(y1_test,y_cv1))

rmse2= np.sqrt(mean_squared_error(y2_test,y_cv2))

rmse3= np.sqrt(mean_squared_error(y3_test,y_cv3))

rmse4= np.sqrt(mean_squared_error(y4_test,y_cv4))

rmse5= np.sqrt(mean_squared_error(y5_test,y_cv5))

rmse6= np.sqrt(mean_squared_error(y6_test,y_cv6))

4) Random Forest Sample Code:

from sklearn.ensemble import RandomForestRegressor as rf

from sklearn.metrics import mean_squared_error

import pandas as pd

import numpy as np

import warnings

warnings.filterwarnings('ignore')

warnings.filterwarnings('ignore', category=DeprecationWarning)

dataset=pd.read_excel ("Mastermerged.xlsx",encoding = 'unicode_escape')

traindataset=pd.read_excel ("TrainAll.xlsx",encoding = 'unicode_escape')

testdataset=pd.read_excel ("TestAll.xlsx",encoding = 'unicode_escape')

testA=pd.read_excel ("TestA.xlsx",encoding = 'unicode_escape')

testB=pd.read_excel ("TestB.xlsx",encoding = 'unicode_escape')

testC=pd.read_excel ("TestC.xlsx",encoding = 'unicode_escape')

testH=pd.read_excel ("TestH.xlsx",encoding = 'unicode_escape')

X1=dataset.iloc[:,0:12].values

y=dataset.iloc[:,13:14].values

from sklearn import preprocessing

X=preprocessing.scale(X1)

X_train1=traindataset.iloc[:,0:12].values

X_train=preprocessing.scale(X_train1)

y_train=traindataset.iloc[:,13:14].values

X_test1=testdataset.iloc[:,0:12].values

X_test=preprocessing.scale(X_test1)

y_test=testdataset.iloc[:,13:14].values

X_testA1=testA.iloc[:,0:12].values

X_testA=preprocessing.scale(X_testA1)

y_testA=testA.iloc[:,13:14].values

X_testB1=testB.iloc[:,0:12].values

X_testB=preprocessing.scale(X_testB1)

y_testB=testB.iloc[:,13:14].values

X_testC1=testC.iloc[:,0:12].values

X_testC=preprocessing.scale(X_testC1)

y_testC=testC.iloc[:,13:14].values

X_testH1=testH.iloc[:,0:12].values

X_testH=preprocessing.scale(X_testH1)

y_testH=testH.iloc[:,13:14].values

rfr= rf(n_estimators = 1000, random_state = 423,min_samples_split = 2,min_samples_leaf= 4,

max_features='sqrt',max_depth= 50,bootstrap='True')

Train the model on training data

rfr.fit(X_train,y_train);

predictions = rfr.predict(X_test)

Calculate the absolute errors

errors = np.sqrt(mean_squared_error(predictions,y_test))

Print out the mean absolute error (mae)

print('Root Mean Squared Error:', round(errors,2), 'L.')

from pprint import pprint

Look at parameters used by our current forest

print('Parameters currently in use:\n')

pprint(rf().get_params())

from sklearn.model_selection import RandomizedSearchCV

Number of trees in random forest

n_estimators = [200]

Number of features to consider at every split

124

max_features = ['auto', 'sqrt']

Maximum number of levels in tree

max_depth = [5,10,20,50]

Minimum number of samples required to split a node

min_samples_split = [2, 5, 10]

Minimum number of samples required at each leaf node

min_samples_leaf = [1, 2, 4]

Method of selecting samples for training each tree

bootstrap = [True, False]

Create the random grid

random_grid = {'n_estimators': n_estimators,

 'max_features': max_features,

 'max_depth': max_depth,

 'min_samples_split': min_samples_split,

 'min_samples_leaf': min_samples_leaf,

 'bootstrap': bootstrap}

pprint(random_grid)

#Use the random grid to search for best hyperparameters

First create the base model to tune

Random search of parameters, using 3 fold cross validation,

search across 100 different combinations, and use all available cores

rf_random = RandomizedSearchCV(estimator = rf(), param_distributions = random_grid, n_iter = 100,

cv = 3, verbose=2, random_state=42, n_jobs = -1)

Fit the random search model

rf_random.fit(X_train, y_train)

rf_random.best_params_

print (rf_random.best_params_)

5) Partial Least Squares Sample Code:

from sklearn.cross_decomposition import PLSRegression

import pandas as pd

import warnings

import numpy as np

from sklearn.model_selection import cross_val_predict

from sklearn.metrics import mean_squared_error, r2_score

warnings.filterwarnings('ignore')

warnings.filterwarnings('ignore', category=DeprecationWarning)

dataset=pd.read_excel("LDPE dataset_KevinMcgregor.xlsx",encoding = 'unicode_escape')

dataset=dataset.drop(36,axis=0)

X=dataset.iloc[0:39,1:23].values

y=dataset.iloc[0:39,23:29].values

define model

model = PLSRegression(n_components=8)

model.fit(X, y)

X_test=dataset.iloc[39:49,1:23].values

y_test=dataset.iloc[39:49,23:29].values

y1_test=y_test[:,0:1]

y2_test=y_test[:,1:2]

y3_test=y_test[:,2:3]

y4_test=y_test[:,3:4]

y5_test=y_test[:,4:5]

y6_test=y_test[:,5:6]

y_cv = cross_val_predict(model, X_test, y_test, cv=10)

y_cv1=y_cv[:,0:1]

y_cv2=y_cv[:,1:2]

y_cv3=y_cv[:,2:3]

y_cv4=y_cv[:,3:4]

y_cv5=y_cv[:,4:5]

y_cv6=y_cv[:,5:6]

score= r2_score(y_test, y_cv)

score1= r2_score(y1_test,y_cv1)

score2= r2_score(y2_test,y_cv2)

score3= r2_score(y3_test,y_cv3)

score4= r2_score(y4_test,y_cv4)

score5= r2_score(y5_test,y_cv5)

score6= r2_score(y6_test,y_cv6)

6) Neural Network Sample Code:

125

import numpy as np

from keras.models import Sequential

from keras.layers import Dense

from keras.wrappers.scikit_learn import KerasRegressor

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import KFold

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

import pandas as pd

dataset=pd.read_csv ('Master batches.csv',encoding = 'unicode_escape')

X=dataset.iloc[:,0:11].values

Y=dataset.iloc[:,11:12].values

define base model

#def baseline_model():

create model

model = Sequential()

model.add(Dense(11, input_dim=11, kernel_initializer='normal', activation='relu'))

model.add(Dense(1, kernel_initializer='normal'))

Compile model

model.compile(loss='mean_squared_error', optimizer='adam')

return model

fix random seed for reproducibility

seed = 7

#np.random.seed(seed)

evaluate model with standardized dataset

#estimator = KerasRegressor(build_fn=baseline_model, epochs=100, batch_size=5, verbose=0)

#kfold = KFold(n_splits=10, random_state=seed)

#results = cross_val_score(estimator, X, Y, cv=kfold)

#print("Results: %.2f (%.2f) MSE" % (results.mean(), results.std()))

#np.random.seed(seed)

#estimators = []

#estimators.append(('standardize', StandardScaler()))

#estimators.append(('mlp', KerasRegressor(build_fn=baseline_model, epochs=50, batch_size=5,

verbose=0)))

#pipeline = Pipeline(estimators)

#kfold = KFold(n_splits=10, random_state=seed)

#results = cross_val_score(pipeline, X, Y, cv=kfold)

#print("Standardized: %.2f (%.2f) MSE" % (results.mean(), results.std()))

define the model

def larger_model():

create model

 model = Sequential()

 model.add(Dense(11, input_dim=11, kernel_initializer='normal', activation='relu'))

 model.add(Dense(5, kernel_initializer='normal', activation='relu'))

 model.add(Dense(1, kernel_initializer='normal'))

 # Compile model

 model.compile(loss='mean_squared_error', optimizer='adam')

 return model

np.random.seed(seed)

estimators = []

estimators.append(('standardize', StandardScaler()))

estimators.append(('mlp', KerasRegressor(build_fn=larger_model, epochs=100, batch_size=5,

verbose=0)))

pipeline = Pipeline(estimators)

kfold = KFold(n_splits=10, random_state=seed)

results = cross_val_score(pipeline, X, Y, cv=kfold)

print("Larger: %.2f (%.2f) MSE" % (results.mean(), results.std()))

#def wider_model():

create model

model = Sequential()

model.add(Dense(20, input_dim=11, kernel_initializer='normal', activation='relu'))

model.add(Dense(1, kernel_initializer='normal'))

Compile model

model.compile(loss='mean_squared_error', optimizer='adam')

return model

#np.random.seed(seed)

126

#estimators = []

#estimators.append(('standardize', StandardScaler()))

#estimators.append(('mlp', KerasRegressor(build_fn=wider_model, epochs=100, batch_size=5,

verbose=0)))

#pipeline = Pipeline(estimators)

#kfold = KFold(n_splits=10, random_state=seed)

#results = cross_val_score(pipeline, X, Y, cv=kfold)

#print("Wider: %.2f (%.2f) MSE" % (results.mean(), results.std()))

kfold = KFold(n_splits=10, random_state=seed)

results = cross_val_score(pipeline, X, Y, cv=kfold)

print("Larger: %.2f (%.2f) MSE" % (results.mean(), results.std()))

7) SVM Sample Code:

from sklearn.model_selection import train_test_split

import pandas as pd

dataset=pd.read_csv ('Master batches.csv',encoding = 'unicode_escape')

X=dataset.iloc[:,0:11].values

Y=dataset.iloc[:,11:12].values

Y=Y.ravel()

X_train, X_test, y_train, y_test = train_test_split(X,Y,test_size=.2, random_state=422)

from sklearn.model_selection import GridSearchCV

import math

from sklearn.svm import SVR

from sklearn.metrics import mean_squared_error

model = SVR(kernel='rbf', C=1e3, gamma = 0.5, epsilon = 0.01)

print(model)

model.fit(X_train,y_train)

pred_y = model.predict(X_test)

mse =mean_squared_error(pred_y,y_test)

print("Mean Squared Error:",mse)

rmse = math.sqrt(mse)

print("Root Mean Squared Error:", rmse)

Tuning of parameters for regression by cross-validation

K = 10 # Number of cross valiations

Parameters for tuning

parameters = [{'kernel': ['rbf'], 'gamma': [0.1, 0.2, 0.5, 0.6, 0.9],'C': [10, 100, 1000,

10000]}]

print("Tuning hyper-parameters")

from sklearn.metrics import make_scorer

scorer = make_scorer(mean_squared_error, greater_is_better=False)

svr= GridSearchCV(SVR(epsilon = 0.01), parameters, cv = K, scoring=scorer)

svr.fit(X, Y)

Checking the score for all parameters

print("Grid scores on training set:")

means = svr.cv_results_['mean_test_score']

stds = svr.cv_results_['std_test_score']

for mean, std, params in zip(means, stds, svr.cv_results_['params']):

 print("%0.3f (+/-%0.03f) for %r"% (mean, std * 2, params))

8) PCA Sample Code:

from sklearn.decomposition import PCA

import pandas as pd

import warnings

warnings.filterwarnings('ignore')

warnings.filterwarnings('ignore', category=DeprecationWarning)

dataset=pd.read_excel("LDPE dataset_KevinMcgregor.xlsx",encoding = 'unicode_escape')

dataset=dataset.drop(36,axis=0)

X=dataset.iloc[0:39,1:23].values

model =PCA(n_components=2)

model.fit_transform(X)

print(pca.explained_variance_ratio_)

print(pca.singular_values_

127

References:

1. Wiggins, G. https://chemics.github.io/ (accessed Aug 26, 2021).
2. Caleb Bell (2016-2021). fluids: Fluid dynamics component of Chemical Engineering Design

Library (ChEDL) https://github.com/CalebBell/fluids (accessed Aug 26, 2021).

3. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.;

Isard, M.; Kudlur, M.; Levenberg, J.; Monga, R.; Moore, S.; Murray, D. G.; Steiner, B.; Tucker, P.;

Vasudevan, V.; Warden, P.; Wicke, M.; Yu, Y.; Zheng, X. TensorFlow: A system for large-scale

machine learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI ’16), Savannah, GA, USA, 2016.

4. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.;

Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research 2011, 12, 2825– 2830.

5. Harris, C. R.; Millman, K. J.; van der Walt, S. J.; Gommers, R.; Virtanen, P.; Cournapeau, D.;

Wieser, E.; Taylor, J.; Berg, S.; Smith, N. J.; Kern, R.; Picus, M.; Hoyer, S.; van Kerkwijk, M. H.;

Brett, M.; Haldane, A.; del Río, J. F.; Wiebe, M.; Peterson, P.; Gérard-Marchant, P.; Sheppard, K.;

Reddy, T.; Weckesser, W.; Abbasi, H.; Gohlke, C.; Oliphant, T. E. Array Programming with

Numpy. Nature 2020, 585 (7825), 357–362.

6. McKinney, W. Data Structures for Statistical Computing in Python. Proceedings of the 9th

Python in Science Conference, Austin, TX, June 28 to July 3, 2010.

7. Hunter, J. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90, DOI:

10.1109/MCSE.2007.55

https://github.com/CalebBell/fluids

128

APPENDIX B
Introduction to Neural Networks

B.1 What is a Neural Network?

Artificial neural networks, commonly known as ‘neural networks’ mimic the mechanism of learning in

biological organisms. Neurons, which are the basic working unit of a brain, transmit information through

specialized projections called axons and dendrites. Such a transmission is replicated in an artificial neural

network, where each neuron is a mathematical operation connected to other neurons by weights. Each

input to the input neurons is scaled with weights and the sum is passed through different activation

functions towards the output neurons. Learning occurs by simultaneously changing the weights

connecting the neurons.

B.2 Developing Neural Network Architecture and Some Common Topology for Neural Networks

B.2.1 Modeling a neuron

A neuron is the fundamental information processing unit of the network. In Figure C.1, we identify the

four basic components of a neuron:

i. Synapses: Connecting links which are characterized by a weight of its own (wij). The weight includes

both positive and negative values.

ii. Adder: Operator for summing up input signals modified by their respective synaptic weights.

iii. Activation function: A mathematical function which limits the amplitude of the output of a neuron to

a finite value. We compare different activation functions and their uses ahead in section 1.5.

iv. Bias: A constant used to provide affine transformation to the adder signal by increasing or lowering

the net input of an activation function.

129

Figure C.1 Anatomy of a simple neuron.

We can mathematically describe a neuron by using the following equations:

𝑢𝑗 = ∑ 𝑤𝑛𝑗𝑎𝑛
𝑛
𝑖=1 (B.1)

𝑣𝑗 = 𝑢𝑗 + 𝑏𝑗 (B.2)

𝑦𝑗 = 𝜙(𝑣𝑗) (B.3)

B.2.2 Topology of a neural network

Neural nets are arranged into an ordered sequence of grouped partitions known as layers. The topology

of a neural network refers to the interconnection of the neurons. The first layer is called the input layer

and usually has the same number of neurons as the number of input variables for the system, the last

layer is known as the output layer; the layers in between are called hidden layers. The architecture of

the neural network depends on the connection patterns, number of neurons, number of layers, nature

of the activation functions, and the learning algorithm.

The connection patterns for a neuron can be partitioned into four categories: intralayer connections,

interlayer connections, and self-connections, and supralayer connections. An intralayer connection is a

connection between neurons of the same layer of the neural network. An interlayer connection is a

130

connection between neurons in adjacent layers of the neural network. Self-connections are connections

which originate and terminate at the same neuron. Supralayer connections are connections between

neurons that are neither in the same layer nor in the adjacent layer of the neural network.

Within the interlayer connections, we have two directional connections:

1) Feed-forward neural network: Unidirectional networks in which the signal flows from input to output

without forming a loop. They are the simplest form of interlayer connection, which can be single-layered

or multi-layered.

2) Feedback or recurrent neural network: Multidirectional networks in which the signal flows in both

directions forming a loop. They are dynamic in nature and are inherently more complex than

feedforward networks.

B.2.3 Common Architectures for Neural Networks

Over time researchers have come up with several architectures for building neural networks. We

describe some of these popular architectures used in chemical engineering:

1) Perceptron

Figure B.2 Perceptron model architecture.

Perceptron model, proposed by Minsky-Papert is the simplest model architecture which can learn

linearly separable problems. It accepts weighted inputs and applies the activation function to obtain the

output. A single-layer perceptron with no hidden layers is no longer used for solving problems; multi-

layer perceptron models are more common as they provide more complexity and non-linear capabilities.

131

2) Feed Forward Neural Network

Figure B.3 Feed-forward model architecture.

As mentioned above in Section C.2.2, feed forward neural networks are unidirectional networks which

have forward propagation leading to static weights. They are less complex, fast, and responsive to noisy

datasets. Feedforward networks are primarily used for supervised learning in cases where the dataset is

neither sequential nor time dependent. Supervised learning refers to learning techniques which include

training with both input and correct output data to build a network.

3) Recurrent Neural Network

Figure B.4 Recurrent neural network model architecture.

Recurrent neural networks are multidirectional networks in which the output from previous step is fed

as input for the current step for prediction. The first layer is typically a feed forward neural network

followed by recurrent neural network layer where a memory function is used to retrieve information

from the previous time-step. They are useful in modeling sequential data and can process inputs of any

length.

4) Deep Convolutional Neural Network

132

Figure B.5 Deep convolutional network model architecture.

Deep convolutional neural networks are deep neural networks which were primarily designed for

computer vision tasks. These networks contain a three-dimensional arrangement of neurons instead of

the standard two-dimensional setup. These networks are based on two basic operations: convolution

and pooling. The convolution step is used to extract features from the dataset. The input features are

taken in batch-wise like a filter. The pooling step, also called subsampling, involves reducing the

dimensionality of the features extracted from the convolution step.

 5) Radial-Basis Function Neural Network

Figure B.6 Radial basis network model architecture.

Radial-basis function neural networks are networks that use Gaussian functions as activation functions.

It is usually a three-layered feed forward network with a single hidden layer. The network is known as a

local approximation network with a linear output to map non-linear input data. These networks are

faster and have better scaling properties when compared to a simple feed-forward network.

B.3 Comparison of different activation functions

Activation functions act as mathematical channels which limit the amplitude of the output of a neural

network. These functions can be divided into three categories: i. Binary step function, ii. Linear

activation function, and iii. Non-linear activation functions.

133

Binary activation function is a threshold-based activation function. If the input value is above or below a

certain threshold, the neuron is activated, and a signal is sent to the next layer. It does not allow multi-

value outputs. Linear activation function creates an output signal proportional to the input and is not

confined in a range as it can take values from (-∞,∞). Linear activation functions have limited power and

do not allow for the usage of backpropagation or multiple hidden layers as with linear activation the

final layer will always be a linear function of the first layer.

Non-linear activation functions are the basis for most common neural network topologies. Some of the

common non-linear activation functions are:

1. Sigmoid/Logistic

Equation: 𝑠𝑖𝑔(𝑥) =
1

(1+𝑒−𝑥)
 (B.4)

Figure B.7 Sigmoid activation function

The sigmoid function curve looks like a S-shape curve and the function provides output values ranging

from 0 to 1. Due to the specific range, it is commonly used for models which predict probability as an

output. It provides smooth gradient preventing drastic changes in outputs; however, very large or very

small input values are not represented as well in the output leading to vanishing gradient problem.

134

2. Hyperbolic Tangent (TanH)

Equation: 𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 (B.5)

Figure B.8 Hyperbolic tangent activation function

TanH function is a mathematically shifted version of the sigmoid function with output values ranging

from -1 to 1. Due to its range, its mean is zero-centered making it easier to model inputs with negative,

neutral, and positive values.

3. Rectified Linear Unit (ReLU)

Equation: 𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) (B.6)

Figure B.9 Rectified linear unit activation function

135

ReLU function is the most widely used activation function. Although it seems like a linear function, ReLU

function is non-linear and has a derivative function. It is computationally efficient and allows for

backpropagation. It does not handle inputs closer to zero and negative inputs very well during

backpropagation leading to ‘dying ReLU’ problem, in which the gradient of the function becomes zero.

4. Leaky ReLU

Equation: 𝐿𝑅𝑒𝐿𝑈(𝑥) = max (0.01 ∗ (x, x)) (B.7)

Figure B.10 Leaky rectified linear unit activation function

A variation of the ReLU function which allows for backpropagation for negative input values. It does not

provide consistent predictions for negative input values.

5. Parametric ReLU

Equation: 𝑃𝑅𝑒𝐿𝑈(𝑥) = max (α ∗ (x, x)) (B.8)

136

Figure B.11 Parametric rectified linear unit activation function (red line changes based on the value of

𝛂

Another variation of ReLU function which allows for negative slopes to be learned as well. Performance

is dependent on the chosen parametric value. For α=0.01 PReLU becomes LReLU.

6. Softmax

Equation: 𝑆(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

 (B.9)

Figure B.12 Softmax activation function

Softmax activation function is a normalized exponential function which generalizes logistic function to

multiple dimensions. It is generally used for multinomial logistic regression and multiclass classification

137

problems. The range of output values for the function fall from 0 to 1 and the sum of the output values

is equal to 1.

7. Swish

Equation: 𝑠𝑤𝑖𝑠ℎ(𝑥) =
𝑥

(1+𝑒−𝑥)
 (B.10)

Figure B.13 Swish activation function

A simple modification to the ReLU function, designed by the Google Brain Team, swish activation

function is a smooth non-monotonic function which outperforms or matches the performance of ReLU

activation function in most cases. The lower bound for the network is bounded such that large negative

weights are zeroed out, while its upper bound is unbounded such that large positive weights are not

saturated to 1.

B.4 Optimization Strategies

Optimization strategies are often used in a neural network to reduce losses and increase the network

accuracy by adjusting the attributes of the neural network like synaptic weights and learning rate. Some

of the commonly used optimization strategies are:

1. Gradient Descent

Gradient descent is one of the most popular and common ways of optimizing a neural network. In

gradient descent, we minimize an objective function J(θ) parameterized by the model’s parameters 𝜃 ∈

𝑅, by updating them in the opposite direction of the gradient of the objective function, explained by the

following equation:

138

𝜃1 = 𝜃0 − 𝜂∇𝐽(𝜃) (B.11)

where,

 𝜃1 = 𝑁𝑒𝑥𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,

 𝜃0 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,

𝜂 = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

∇𝐽(𝜃) = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 of the objective/cost function

Gradient descent is a first-order derivative optimization algorithm in which the learning rate(α) is altered

to decide on the number of steps to be taken to reach a (local) minimum. Based on the amount of data

used, gradient descent can be further divided into three variants:

a) Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) updates the parameters of the function after computation of loss on

each training example. The parameters have high variance resulting in heavy fluctuations in the

objective function. By using a single sample data per iteration, SGD converges relatively quicker and

requires less memory compared to other optimization strategies. Due to the inherent randomness, SGD

is noisier than simple gradient descent and can overshoot even after achieving a global minimum.

b) Batch Gradient Descent

Batch gradient descent or vanilla gradient computes the gradient of the loss function for the entire

dataset. Since, it requires gradient computation for the entire dataset, it can be very slow and

intractable for larger datasets that do not fit in memory. It is also very hard to apply on-line or in real

time. Batch gradient descent is the traditional form of optimization which is simple to implement and

interpret for smaller datasets.

c) Mini-batch Gradient Descent

Mini-batch gradient descent takes the best from batch gradient descent and stochastic gradient descent

to compute gradient for a mini-batch of n training examples. In addition to frequently updating the

parameters, mini-batch gradient descent has less variance. The computation requires medium amount

139

of memory storage capacity. Even though it addresses some drawbacks of the gradient descent variants,

mini-batch gradient has some drawbacks as well.

The selection of an optimal learning rate for mini-batch gradient descent can be difficult as a smaller

learning rate can take a long time for the algorithm to converge, and a larger learning rate can lead to

the algorithm getting trapped at some suboptimal local minima.

2. Momentum

Momentum is an optimization strategy introduced to accelerate convergence of SGD towards the

relevant direction and dampen oscillations to reduce the fluctuations in irrelevant direction. Another

hyperparameter, known as momentum(γ), is added leading to the following equation:

𝑉(𝑡) = 𝛾𝑉(𝑡 − 1) + 𝜂 ∇𝐽(𝜃) (B.12)

where,

𝑉(𝑡) = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝛾 = 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑜𝑟 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 (usually given a value of 0.9)

The weights in the SGD equation (B.11) are updated accordingly, leading to the following equation:

 𝜃1 = 𝜃0 − 𝑉(𝑡) (B.13)

The momentum optimization algorithm helps minimize the oscillations and reduces the high variance in

SGD. Momentum-based SGD converges faster than regular SGD.

3. Nesterov Accelerated Gradient

Nesterov Accelerated Gradient (NAG) is a variation of Momentum optimization algorithm, which is

slightly better than the standard momentum optimization. With NAG, instead of calculating gradient at

current position, we calculate the gradient for a future position. By applying this small change, it

prevents the momentum term from overshooting and missing the local minima. The momentum

equation (B.12) is changed to the following equation:

𝑉(𝑡) = 𝛾𝑉(𝑡 − 1) + 𝜂 ∇𝐽(𝜃 − 𝛾𝑉(𝑡 − 1)) (B.14)

 4. Adagrad

140

Adagrad is a second-order derivative optimization algorithm in which the learning rate (η) is changed for

each parameter for each step ‘t’. The algorithm makes smaller updates (low learning rates) for

frequently occurring features and bigger updates (high learning rates) for infrequent features. In the

algorithm we take the partial derivative of the objective function at a time t, given by:

𝑔𝑡,𝑖 = ∇𝜃𝐽(𝜃𝑡,𝑖) (B.15)

The updated parameters are then given by the following equation:

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
η

√𝐺𝑡,𝑖𝑖+𝜖
 . 𝑔𝑡,𝑖 (B.16)

where,

𝐺𝑡,𝑖𝑖 = 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤𝑖𝑡ℎ 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 (𝑖, 𝑖) 𝑎𝑠 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠

𝜖 = 𝑆𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑡𝑒𝑟𝑚 𝑡𝑜 𝑎𝑣𝑜𝑖𝑑 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑏𝑦 𝑧𝑒𝑟𝑜

One of the main advantages of using Adagrad optimization strategy is that it eliminates the need to

manually tune the learning rate. Most implementations use an initial rate of 0.01 and allow for it to be

updated with the parameters for each iteration at a specific time interval (t). One of the drawbacks of

Adagrad is the accumulation of square of gradients in the denominator leading to the shrinkage of the

learning rate, as it eventually becomes infinitesimally small. At that point, the algorithm is unable to gain

any further new information.

5. AdaDelta and RMSProp

AdaDelta, is an extension of Adagrad, which successfully eliminates the problem of diminishing learning

rate due to accumulation of square of gradients. AdaDelta limits the window of past gradients to some

fixed size w.

We use exponentially running average of all the past squared gradients instead of inefficiently storing

them. The running average at time t, depends only on the previous average and the current gradient

and is given by:

𝐸[𝑔2]𝑡 = 𝛾𝐸[𝑔2]𝑡−1 + (1 − 𝛾)𝑔𝑡
2 (B.17)

Like equation B.16, the new equation for AdaDelta becomes:

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
η

√𝐸[𝑔2]𝑡,𝑖+𝜖
 . 𝑔𝑡,𝑖 (B.18)

141

where,

𝐸[𝑔2]𝑡,𝑖 = 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑡

Since, the denominator is just the root mean squared error criterion we replace it with the short-hand

criterion:

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
η

𝑅𝑀𝑆[𝑔]𝑡,𝑖
 . 𝑔𝑡,𝑖 (B.19)

Both AdaDelta and RMSProp have been developed independently around the same time to deal with

Adagrad’s diminishing learning rate. The equation for RMSProp is identical to the first parameter update

for AdaDelta, represented by equation B.19. In order to ensure the same units as the parameter for the

gradient, for AdaDelta, we define another exponentially decaying average based on the square

parameter updates:

𝐸[∆𝜃2]𝑡 = 𝛾𝐸[∆𝜃2]𝑡−1 + (1 − 𝛾)∆𝜃𝑡
2 (B.20)

The root mean squared of the parameter update then becomes:

𝑅𝑀𝑆[∆𝜃]𝑡,𝑖 = √𝐸[∆𝜃2]𝑡,𝑖 + 𝜖 (B.21)

Since, 𝑅𝑀𝑆[∆𝜃]𝑡,𝑖 is unknown, we approximate it with the RMS of the parameter update until the

previous time step. Then by replacing 𝑅𝑀𝑆[∆𝜃]𝑡−1,𝑖 with the learning rate η, in equation B.19, we get:

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
𝑅𝑀𝑆[∆𝜃]𝑡−1,𝑖

𝑅𝑀𝑆[𝑔]𝑡,𝑖
 . 𝑔𝑡,𝑖 (B.22)

With equation B.22, we remove the learning rate from the parameter update to give the final AdaDelta

update equation. AdaDelta, while being more computationally expensive, prevents learning rate decay

and eliminates the necessity of setting a default learning rate. RMSProp on the other hand deals with

the decaying learning rate but does not eliminate the necessity to set a default learning rate.

6. Adam

Adaptive Momentum Estimation (Adam) combines the momentum model with adaptive models like

RMSProp and AdaDelta. It is one of the most used optimization algorithms, which converges very fast

and includes a bias correction mechanism. Adam stores both the exponential running average of the

past gradients (𝑚𝑡) and the exponential running average of the past-squared gradients (𝑣𝑡). The

decaying averages are calculated as follows:

142

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (B.23)

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (B.24)

where,

𝑚𝑡 = 𝐹𝑖𝑟𝑠𝑡 𝑚𝑜𝑚𝑒𝑛𝑡 (𝑚𝑒𝑎𝑛) 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

𝑣𝑡 = 𝑆𝑒𝑐𝑜𝑛𝑑 𝑚𝑜𝑚𝑒𝑛𝑡 (𝑢𝑛𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

𝛽1, 𝛽2 = 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠

As the moments are initiated as vectors of zero, during the initial time steps when the decay rates are

small (i.e., when 𝛽1and 𝛽2 are close to 1), the moments are biased towards zero. In order to correct the

raw moment estimates, we use the following equations:

𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡 (B.25)

𝑣𝑡 =
𝑣𝑡

1−𝛽2
𝑡 (B.26)

where,

𝑚̂𝑡 and 𝑣𝑡 are the bias-corrected first and second moment estimates

Like AdaDelta (Equation B.19) and RMSProp (Equation B.22), we get the final parameter update using

the above moment estimates as:

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
η

√𝑣̂𝑡,𝑖+𝜖
 . 𝑚̂𝑡,𝑖 (B.27)

Adam is one of the most popular optimization techniques, which converges rapidly and solves the

problem of vanishing learning rate and high variance. The common values for 𝛽1 is 0.9, 𝛽2 is 0.999, and 𝜖

is 10−8.

7. Nadam

Nadam (Nesterov-accelerated Adaptive Moment Estimation) is a variation to Adam optimization

technique, which combines Adam and NAG. The algorithm applies acceleration to the parameters

before computing the gradients, then updates the gradients computed with the interim parameters.

This change allows the algorithm to mitigate problems like accumulation of large error gradients, also

143

known as exploding gradients.

In order to modify Adam to Nadam, we update 𝑚𝑡 , the first moment term for the gradient. First, let us

recall Nesterov-accelerated Momentum (NAG), which can be shown from equation B.14:

𝑉(𝑡) = 𝛾𝑉(𝑡 − 1) + 𝜂 ∇𝐽(𝜃 − 𝛾𝑉(𝑡 − 1))

Since, V(t) is also known as the first moment of a gradient (𝑚𝑡) and based on the terminologies used for

Adagrad and Adam, we can rewrite the terms for equation B.14 as :

𝑚𝑡 = 𝛾𝑚𝑡−1 + 𝜂𝑔𝑡 (B.28)

where,

 𝑔𝑡 = ∇𝜃𝐽(𝜃𝑡 − 𝛾𝑉(𝑡 − 1)) (B.29)

Then, the parameter update for the NAG equation becomes:

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 − 𝑚𝑡,𝑖 (B.30)

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 − (𝛾𝑚𝑡−1 + 𝜂𝑔𝑡) (B.31)

Dozat et al. proposed to modify NAG in the following manner. Instead of applying the momentum step

twice for both the gradient and then the parameters, we now use the current momentum vector

directly to update the parameters, which can be shown by the following equations:

𝑔𝑡 = ∇𝜃𝐽(𝜃𝑡) (B.32)

𝑚𝑡 = 𝛾𝑚𝑡−1 + 𝜂𝑔𝑡 (B.33)

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 − (𝛾𝑚𝑡 + 𝜂𝑔𝑡) (B.34)

By comparing equation B.31 and equation B.34, we can see that the update no longer utilizes the

previous momentum vector, 𝑚𝑡−1 for parameter update. And, also from equation B.32, we see that the

gradient is no longer based on momentum. Now, in order to combine NAG with Adam, we recall the

equations B.23, B.25, and B.27:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡

144

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
η

√𝑣𝑡,𝑖 + 𝜖
 . 𝑚̂𝑡,𝑖

When we use equations B.23 and B.25 to expand equation B.27, we get:

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
η

√𝑣̂𝑡,𝑖+𝜖
 . [

𝛽1𝑚𝑡−1

1−𝛽1
𝑡 +

(1−𝛽1)𝑔𝑡

1−𝛽1
𝑡] (B.35)

We can see that,
𝛽1𝑚𝑡−1

1−𝛽1
𝑡 is just the bias-corrected estimate of the momentum vector from the previous

time step. For simplicity, we ignore that the denominator is 1 − 𝛽1
𝑡 instead of 1 − 𝛽1

𝑡−1. We can

therefore replace
𝛽1𝑚𝑡−1

1−𝛽1
𝑡 with 𝑚̂𝑡−1, giving us the following equation:

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
η

√𝑣̂𝑡,𝑖+𝜖
 . [𝛽1𝑚̂𝑡−1 +

(1−𝛽1)𝑔𝑡

1−𝛽1
𝑡] (B.36)

Just like we updated NAG shown by equation B.31 into equation B.34, by eliminating the previous

momentum vector for parameter update. Similarly, we eliminate the bias-corrected estimate of the

momentum vector from the previous time step and replace it with the current bias-corrected estimate

of the momentum vector:

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
η

√𝑣̂𝑡,𝑖+𝜖
 . [𝛽1𝑚̂𝑡 +

(1−𝛽1)𝑔𝑡

1−𝛽1
𝑡] (B.37)

This equation represents the final parameter update using Nadam. Nadam is slightly more

computationally expensive than Adam but uses Nesterov Accelerated Gradient (NAG) instead of vanilla

momentum update.

References:

1. Veen, F. van. Fjodor van Veen, author at the Asimov Institute.

https://www.asimovinstitute.org/author/fjodorvanveen/ (accessed Dec 6, 2021).

