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TECHNICAL ABSTRACT 
 

Chemical engineers have routinely used computational tools for modeling, optimizing, and 

debottlenecking chemical processes. Because of the advances in computational science over the past 

decade, multivariate statistics and machine learning have become an integral part of the 

computerization of chemical processes. In this research, we look into using multivariate statistics, 

machine learning tools, and their combinations through a series of case studies including a case with a 

successful industrial deployment of machine learning models for fermentation. We use both 

commercially-available software tools, Aspen ProMV and Python, to demonstrate the feasibility of the 

computational tools.   

This work demonstrates a novel application of ensemble-based machine learning methods in 

bioprocessing, particularly for the prediction of different fermenter types in a fermentation process (to 

allow for successful data integration) and the prediction of the onset of foaming. We apply two 

ensemble frameworks, Extreme Gradient Boosting (XGBoost) and Random Forest (RF), to build 

classification and regression models. Excessive foaming can interfere with the mixing of reactants and 

lead to problems, such as decreasing effective reactor volume, microbial contamination, product loss, 

and increased reaction time. Physical modeling of foaming is an arduous process as it requires 

estimation of foam height, which is dynamic in nature and varies for different processes.  

In addition to foaming prediction, we extend our work to control and prevent foaming by allowing 

data-driven ad hoc addition of antifoam using exhaust differential pressure as an indicator of foaming. 

We use large-scale real fermentation data for six different types of sporulating microorganisms to 

predict foaming over multiple strains of microorganisms and build exploratory time-series driven 

antifoam profiles for four different fermenter types. In order to successfully predict the antifoam 

addition from the large-scale multivariate dataset (about half a million instances for 163 batches), we 

use TPOT (Tree-based Pipeline Optimization Tool), an automated genetic programming algorithm, to 

find the best pipeline from 600 other pipelines. Our antifoam profiles are able to decrease hourly 

volume retention by over 53% for a specific fermenter. A decrease in hourly volume retention leads to 

an increase in fermentation product yield.  



 

We also study two different cases associated with the manufacturing of polyolefins, particularly 

LDPE (low-density polyethylene) and HDPE (high-density polyethylene). Through these cases, we 

showcase the usage of machine learning and multivariate statistical tools to improve process 

understanding and enhance the predictive capability for process optimization.  

By using indirect measurements such as temperature profiles, we demonstrate the viability of such 

measures in the prediction of polyolefin quality parameters, anomaly detection, and statistical 

monitoring and control of the chemical processes associated with a LDPE plant. We use dimensionality 

reduction, visualization tools, and regression analysis to achieve our goals. Using advanced analytical 

tools and a combination of algorithms such as PCA (Principal Component Analysis), PLS (Partial Least 

Squares), Random Forest, etc., we identify predictive models that can be used to create inferential 

schemes.  

Soft-sensors are widely used for on-line monitoring and real-time prediction of process variables. In 

one of our cases, we use advanced machine learning algorithms to predict the polymer melt index, 

which is crucial in determining the product quality of polymers. We use real industrial data from one of 

the leading chemical engineering companies in the Asia-Pacific region to build a predictive model for a 

HDPE plant. Lastly, we show an end-to-end workflow for deep learning on both industrial and simulated 

polyolefin datasets.  

Thus, using these five cases, we explore the usage of advanced machine learning and multivariate 

statistical techniques in the optimization of chemical and biochemical processes. The recent advances in 

computational hardware allow engineers to design such data-driven models, which enhances their 

capacity to effectively and efficiently monitor and control a process. We showcase that even non-expert 

chemical engineers can implement such machine learning algorithms with ease using open-source or 

commercially available software tools. 
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GENERAL AUDIENCE ABSTRACT 
 

Most chemical and biochemical processes are equipped with advanced probes and connectivity 

sensors that collect large amounts of data on a daily basis. It is critical to manage and utilize the 

significant amount of data collected from the start and throughout the development and manufacturing 

cycle. Chemical engineers have routinely used computational tools for modeling, designing, optimizing, 

debottlenecking, and troubleshooting chemical processes. Herein, we present different applications of 

machine learning and multivariate statistics using industrial datasets.  

This dissertation also includes a deployed industrial solution to mitigate foaming in commercial 

fermentation reactors as a proof-of-concept (PoC). Our antifoam profiles are able to decrease volume 

loss by over 53% for a specific fermenter. Throughout this dissertation, we demonstrate applications of 

several techniques like ensemble methods, automated machine learning, exploratory time series, and 

deep learning for solving industrial problems. Our aim is to bridge the gap from industrial data 

acquisition to finding meaningful insights for process optimization. 
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Chapter 1. Introduction to the Dissertation 

Machine Learning and Multivariate Statistics for Optimizing Bioprocessing and Polyolefin 

Manufacturing 

1.1 Scope and organization of the dissertation 

The contents of the dissertation are as follows. Chapter 2 demonstrates the usage of various 

multivariate statistical algorithms to monitor and quality control an LDPE plant. In this chapter, we look 

into the strength and weaknesses of common statistical machine learning algorithms and determine 

their viability for a particular regression task.  

Chapter 3 includes building a data-driven soft-sensor for a continuous HDPE plant from a reputed 

chemical industry in the Asian-Pacific region. In this chapter, we demonstrate the possibility of building 

soft sensors for measurements that are difficult to extract in real-time. Chapter 4 proposes a novel 

method for fermenter classification and foaming prediction using ensemble-based machine learning. In 

this chapter, we demonstrate how we can use exhaust differential pressure (an indicator of foaming) to 

predict the onset of foaming in an ad hoc manner. We also validate the integration of the batch datasets 

with accurate classification models.  

Chapter 5 is an extension to the research done in Chapter 4, as we work with large datasets for 

industrial implementation. In this chapter, we showcase innovative defoaming strategies using 

automated machine learning and exploratory time-series analysis. We further establish our proof-of-

concept (PoC) by deploying machine learning (ML)-guided antifoam profiles in the fermentation plant 

and gauging the impact of the profiles in integrated and batch tests.  

Chapter 6 provides a step-by-step guide to chemical engineers on deep learning applications for 

both continuous industrial process (time-independent) and a simulated dynamic batch process (time-

dependent). In this chapter, we help readers walk through building deep neural networks including 

three different types of recurrent neural networks for an HDPE plant. Chapter 7 summarizes the 

dissertation and provides future outlooks for the research.  

Appendix A serves as a tutorial for chemical engineers new to Python language with useful examples 

and basic concepts of the language. Appendix B is the supplementary material for Chapter 6 as it 

introduces chemical engineers to the fundamentals of neural network.  

1.2 Significant novel contribution of the research 

1. Ensemble-Based Machine Learning for Industrial Fermenter Classification and Foaming Control 
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 We build accurate ensemble-based classification models to differentiate fermenter types on the 

basis of known independent variables alone, without prior knowledge of fermenter design 

specifications, thus allowing for data integration of multiple plant data sets to build better 

prediction models. 

 We accurately predict the onset of foaming based on exhaust differential pressure using both 

classification and regression models. 

2. Large-Scale Industrial Fermenter Foaming Control: Automated Machine Learning for Antifoam 

Prediction and Defoaming Process Implementation 

 We demonstrate the ability of automated machine learning (AML) to predict antifoam addition 

for multiple strains of microorganisms using large-scale industrial fermentation dataset. 

 We establish proof of concept (PoC) by using time-series exploratory analysis to build strain-

specific and deployment-ready antifoam profiles for four different fermenter designs. We 

confirm the industrial impact of the deployed profiles based on the initial results from the plant. 

From our initial deployment results, we see significant improvements in yield, shown by the 

significant decrease in hourly volume retention (up to 53%) and decrease in the count of 

exhaust differential pressure (a foaming indicator) exceeding a threshold of 100 mbarg, among 

other performance indicators.  

3. Deep Learning Optimization on Industrial and Simulated Polyolefin Datasets 

 We demonstrate how to build a steady-state (time-independent) model for a high-density 

polyethylene (HDPE) industrial plant to predict the melt index. 

 We show how to build three different types of dynamic recurrent neural network from scratch 

to predict the melt index from a simulated time-dependent polymer dataset. 

 

 

 

 

 

 



3 
 

Chapter 2. Multivariate Data Analysis of Polyolefin Quality Parameters for a LDPE plant 

2.1 Introduction 

 Multivariate data analysis is a form of predictive analytics which uses a training dataset to build a 

mathematical model for tasks such as process monitoring, identification of critical parameters, 

assessment of process variability, scale-up, and inferential control. One such application of multivariate 

data analysis is quality control. We often use quality parameters like melt flow rate (melt index), weight-

average molecular weight, and number-average molecular weight, etc. to assess the polymer quality. 

The measurements for these quality parameters are often made off-line in a laboratory setting and are 

recorded on an hourly to a daily basis. Some of the biggest challenges of such measurements lie within 

the data collected. The measurements are often noisy, sparse, and infrequent, making them unreliable 

and imprecise. In this chapter, we look at using different multivariate statistics and machine learning 

algorithms to predict these off-line quality parameters using multi-output regression and different 

statistical methods to analyze a given set of process data. 

 Process data from chemical industries are generally high-dimensional, non-causal, sparse, and noisy. 

By using different algorithms like PCA (Principal Component Analysis), PLS (Partial Least Squares), 

decision trees, random forests, etc. and visualization plots like loading plots, biplots, barcharts, etc. we 

can successfully extract the desired insights from a raw dataset. In this chapter, we look at simulated 

LDPE data by MacGregor et al. generated by using a model of Kiparissides and Mavridis. 1-2 Polyolefins, 

such as low-density polyethylene (LDPE), high-density polyethylene (HDPE), and propylene (PP), are 

commercially significant thermoplastics manufactured throughout the world for food packaging, 

clothing, bags, toys, containers, pipes, etc.  3 LDPE are usually produced in a tubular reactor under high 

pressure. Properties like molecular weight and melt index are often very difficult to measure on a 

frequent interval to ensure final product quality. In order to mitigate the expense associated with the 

measurement, we use multivariate statistics and machine learning algorithms to predict the polyolefin 

quality parameters. The resulting multi-output regression model, built on the existing operational logs of 

temperature sensors, wall temperature probes, and solvent flow rate, provides us with frequent on-line 

quantitative estimates of the polyolefin quality parameters.  

2.2 Literature Review  

 With the increasing interest in digitalization of the chemical industry and integration of data science 

in the chemical industry, many researchers have been exploring different pathways to apply multivariate 

statistics and machine learning algorithms for process monitoring and quality control. 4-7 Wang et al. use 

partial least squares (PLS), support vector machines (SVMs), and random forest machine learning 
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algorithms to predict several quality parameters of organic polymers. 8 Ersen et al. use multiple 

algorithms like K-NN (k- nearest neighbors), decision trees, random forest, etc. to analyze fracture 

behavior of polymer composites. 9 Hartman et al., used artificial neural networks to derive potential rate 

constants. 10 Similarly, Baughman and Liu, in their 1995 neural network book, describe in detail how 

artificial neural networks can be used for a variety of tasks including prediction, classification, diagnosis, 

and control applications. 11 

2.3 LDPE data structure  

 The dataset generated by the Kiparissides and Mavridis model include variations in the four 

variables: wall temperature (Tw), solvent-flow rate (S), heat transfer coefficient for the wall on the 

cooling side (Hw), and initial initiator concentration in the feed. The reactor is a tubular reactor and the 

feed includes a monomer ethylene, an initiator, and a chain transfer agent. These authors measure 

temperatures at 20 different locations in the reactor, and simulated polymer properties including the 

number-average molecular weight (Mn). weight-average molecular weight (Mw), frequency of long chain 

branching (LCB), frequency of short chain branching (SCB), the content of vinyl groups (VNL), and 

vinylidene groups (VND) in the polymer chain. Table 1 shows the input and output variables for the 

multi-output regression models.   

 The polymerization reaction is a highly exothermic reaction and therefore the reactor temperature 

rapidly increases as we move from T1 to T20 and eventually begins to plateau as it reaches its peak. The 

reactor wall begins to slowly heat the reactor and generates heat until a maximum temperature is 

reached; the peak is known as the hot-spot, which occurs when the initiator is completely consumed. All 

the changes in the rate of heat transfer due to fouling of the inner walls and the change in the initiator 

concentration are recorded in the temperature profiles alongside the reactor. The dataset consists of 22 

input variables (X) and 6 output variables (Y), which are listed below in Table 2.1.  
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Table 2.1: List of process variables and product quality variables for the LDPE reactor 

Input (Process Variables) Output (Product Quality Variables) 

T1-T20 Temperature 

measurements 

along the 

reactor 

MWI_e5 Weight average molecular weight 

inverse (X 105) 

MNI_e6 Number average molecular weight 

inverse (X 106) 
Tw Wall 

temperature 
LCB Long chain branching frequency  

S Solvent Flow 

Rate 
SCB Short chain branching frequency  

  

VNL Frequency of vinyl groups in 

polymer chain 

VND Frequency of vinylidene groups in 

polymer chain 

 

2.4 Data Visualization and Process Monitoring 

 Most process measurements acquired from distributed control systems (DCS) in industries are high 

dimensional, have low signal-to-noise ratios, and have missing data. Multivariate statistical monitoring 

using visualization techniques and projection of the raw dataset into a transformed plane helps to 

interpret the dataset. We use Aspen ProMV, a commercially available software readily available to 

academic users at low cost for building the Principal Component Analysis (PCA)/ Partial Least 

Squares(PLS) models and the required visualizations for anomaly detection, dimensionality reduction, 

and exploration of variable relations in section 2.4.  

2.4.1 PCA algorithm and model building 

 PCA is defined as an orthogonal linear transformation that transforms the data to a new coordinate 

system by projecting the dataset into a new hyperplane. The scalar projection is done such that the 
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greatest variance comes to lie on the first coordinate (called the first principal component), the second 

greatest variance on the second coordinate, and so on.12 Eq. (1) defines this transformation:   

X =  TP𝑇  +  E                                                                                                                                                (1)               

 Here, X represents the data matrix, T represents the score matrix, P is the loading matrix, and E is 

the residual matrix. Re-writing Eq. (1) gives the relationship for the prediction error E:  

E =  X − TP𝑇 =  Observed value − Model Approximation = Prediction Error                        (2)               

 We build the PCA model on the 22 input variables and transform the high dimensional input set into 

three principal components as shown in Figure 2.1.  

 

Figure 2.1. PCA plot with 3 principal components for X process variables (22 input variables).  

 The R2 cumulative score summarizes the fit error on all training data, while the Q2 cumulative score 

is the prediction ability over the test dataset. Equations. (3) and (4) define these scores:  

𝑅𝑋
2 =

𝑆𝑆(𝑋) − 𝑆𝑆(𝐸𝑡𝑟𝑎𝑖𝑛)

𝑆𝑆(𝑋)
                                                                                                                                         (3) 

𝑄𝑋
2 =

𝑆𝑆(𝑋) − 𝑆𝑆(𝐸𝑡𝑒𝑠𝑡)

𝑆𝑆(𝑋)
                                                                                                                                           (4) 
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where SS=Sum of squares and 𝐸𝑡𝑟𝑎𝑖𝑛 and 𝐸𝑡𝑒𝑠𝑡 are the prediction errors for the training and test 

datasets.  

 Figure 2.1 shows that with three principal components, we are able to successfully fit the dataset 

(since both 𝑅𝑋
2 and 𝑄𝑋

2  are close to 1). 

2.4.2 Anomaly detection 

 After using PCA for dimensionality reduction, we can now use Hotelling’s T2 in junction with score 

plot for building a hyper-ellipse score plot. Figure 2.2 shows the PCA score plot along with the Hotelling’s 

T2 tolerance ellipse of 95% confidence. Hotelling’s T2 is a summary statistic for all the scores taken 

together, given by: 

𝑇𝑖
2 =

𝑡𝑖1
2

𝑠1
2 +

𝑡𝑖2
2

𝑠2
2 + ⋯ +

𝑡𝑖𝐴
2

𝑠𝐴
2                                                                                                                                           (5)   

where, t’s are the latent (transformed) variables whose values are called scores., ‘s’ represents variance 

of the latent variable in the model. From Figure 2, we can see that some observations depart from the 

cluster as outliers and observations 55 and 56 are outside the 95% confidence interval. Using this plot, 

we can see the trend from ‘outlier’ or ‘anomaly’ observation 51-56 and observation 37. 
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Figure 2.2. PCA hyper-ellipse score plot on product quality variables. 

2.4.3 PLS algorithm 

 PCA calculates the latent variables based only on the input (X) variables, and Partial Least Squares 

(PLS) quantifies the latent variables based on both input and output (Y) variables. The overall objective 

function of PLS is given by: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)                                                                                                 (6) 

 Like before for X space in PCA, PLS modifies both the X-space and Y-space while ensuring maximum 

covariance as shown in Figure 2.3. t’ s and u’ s are the transformed variables and their values represent 

the projection scores. Equations. (7) and (8) define these scores as:  

𝑡𝑎 = 𝑋𝑎𝑤𝑎 , for the X − space                                                                                                                                  (7)  

𝑢𝑎 = 𝑌𝑎𝑐𝑎  , for the Y − space                                                                                                                                  (8)   

where,  𝑤𝑎  represents the loading values for X, and 𝑐𝑎 represents the loading values for Y. 

The covariance is given by: 

𝐶𝑜𝑣(𝑡𝑎 , 𝑢𝑎) =
1

𝑛 − 1
∑{(𝑡𝑎 − 𝑡�̅�)(𝑢𝑎 − �̅�𝑎)}

𝑛

𝑖=1

                                                                                                    (9) 

where, 𝑡�̅� is the mean of ‘t’ projection scores and �̅�𝑎 is the mean of ‘u’ projection scores respectively.  

 In PLS, we try to maximize this covariance or the dot product of 𝑡𝑎
′ 𝑢𝑎. 
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Figure 2.3. PLS projection plot.  

2.4.4 PLS model building and variable relationships 

 As shown in Figure 2.4, we build a PLS model with 8 components as the 𝑄𝑋
2 score reaches its 

maximum possible value for the dataset. We remove the seven outliers {(51-56), 37} identified above 

before building the PLS model. With 8 components, we are able to get a cumulative 𝑄𝑋
2 score of 0.8, 

which is reasonable for the small dataset. To further visualize the predictions made by the model, we 

plot the actual observation vs predicted observation for the number-average molecular weight in Figure 

2.5. We see that the predicted values for the number-average molecular weight (MN_e6) are close to 

the actual values with a high 𝑅𝑋
2 score and a low root-mean squared error estimate (RMSEE).  

PLS can help us identify which variable is important through a variable important plot (VIP). Figure 2.6 

shows the key process variables that impact the product quality parameters the most. We see that the 

solvent flow rate has a very high VIP score, which makes it an important variable to consider, while 

deciding to adjust the product quality. Along with the solvent flow rate, T7, T6, Tw, and T4 are also very 

important as they all have a score greater than or equal to one. VIP scores greater than one represent 

important variables.  

 Now that we know the important variables, we use the same model to visualize the relationships 

between X and Y variables. We make a loading plot, which has all the weights associated with the 

variables. Highly correlated variables have similar weights and since we do not look at the weights 

planes 

projections 

X- Plane Y- Plane 
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directly, we see the effect and directionality of each of the original variables. From Figure 2.7, we see 

several relationships between the input and output variables and the variables by themselves. As 

expected, the temperatures closer to one side of the reactor are clustered together and are opposite to 

the temperature profiles on the other side. Also, in order to get higher frequency of LCB (long chain 

branching parameter), we have to make sure that the reactor inlet temperature is not too high and the 

solvent rate is low as well. However, to get a higher frequency of SCB (short chain branching parameter) 

and increased molecular weight, we need a high inlet temperature and higher solvent rate.  

  

 

Figure 2.4. PLS plot with 8 components without outliers.  
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Figure 2.5. PLS observed vs predicted plot for the number-average molecular weight.  

 

 

Figure 2.6. Variable importance plot based on PLS.  
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Figure 2.7. Loading plot (X&Y) based on PLS.  

2.5 Multi-output regression model building and results 

 Multi-output regression models are problems that involve using multivariate statistics and machine 

learning algorithms to predict two or more output values given a dataset. Most machine learning 

algorithms do not natively support predicting multiple outputs and predict a single numerical value. 

Such algorithms (like support vector machine) require wrappers or linear sequences of models to give 

multiple output values. For our purpose, we look at some algorithms known for multi-output regression. 

We develop all the regression models built below using Python libraries, which are commercially free 

open-source resources.  

2.5.1 Linear regression algorithm 

 Linear regression is the simplest machine learning algorithm used for multi-output regression. The 

objective of a linear regression model is to find a relationship between one or more features 

(independent variables) and a continuous target variable (dependent variable). We represent the linear 

regression by Eq. (10): 

𝑌 = 𝜃𝑇𝑥                                                                                                                                                                       (10) 

where, 𝜃𝑇is the model parameter which includes the bias term and x is the feature vector.  
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2.5.2 K-Nearest neighbor algorithm 

 K-NN algorithm is a distance-based instant learning algorithm, which is non-parametric and gives 

results based on proximity. The algorithm uses several distance measures for calculating the distance 

between two points; for our model, we choose the standard Euclidean distance, defined by Eq. (11) for 

two points x and y: 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑑) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑘
𝑖=1                                                                                                    (11) 

 After calculating the distances, the K-NN algorithm finds a given observation value based on the 

values of the nearest neighbors. We choose the number of neighbors (k) based on grid search. The 

number of neighbors cannot be more than the number of instances in the test set.  

2.5.3 Decision tree regression algorithm 

 Decision tree is a frequency-based algorithm which builds models in the form of a tree structure. A 

decision tree consists of three types of nodes: 

 Root nodes or just nodes are the top decision node and represent an entire population or a 

sample.  

 Decision nodes resulting from splitting sub-nodes into further sub-nodes.  

 Leaf/Terminal nodes are the bottom nodes with no further split.  

We apply regression trees for continuous quantitative target variables. For regression, the most 

common splitting criterion for the trees is the weighted variance of the nodes. The algorithm splits the 

nodes to minimize the variation in nodes after the split.  

2.5.4 Random forest regression algorithm 

 Random Forest is simply a combination of the decision trees which follows the principle of bootstrap 

aggregating (or bagging) to reduce complexity by training each decision tree on a different data sample, 

where sampling is done with replacement. Random Forest has high tolerance for multidimensional data 

and yields a parallel ensemble of unstable learners, which together provide a strong learner, resulting in 

lower bias and variance.  

 The biggest difference between decision trees and random forest is that decision trees are prone to 

overfitting and do not handle noise as well as random forest. Random forest provides an aggregate 

solution which minimizes the variance errors and bias errors.  

2.5.5 Model validation and results 

 We build five different regression models for multi-output regression prediction of the six polyolefin 

quality parameters. Before building the models, we split the dataset into training and testing sets (80-20 
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split). We also remove all the outliers identified in the earlier sections. In order to preserve the small 

dataset from further splits, we use cross-validation to divide the training set into folds for validation 

purposes. We use 10-fold cross validation, where the training set is divided into 10 folds and the model 

is trained on the 9-folds. We validate the resulting model on the remaining part of the data. By 

repeating the process, we use all of the training data to build the model. We choose 8 components for 

PLS based on the previous R2 scores. Similarly, we build a grid of {3,5,7,8,9} neighbors and pick 9 nearest 

neighbors for best results from trial and error.  

 Table 2.2 shows the results obtained for each of the regression models. We compare the standard 

deviation of the output quality variables with the root mean square error (RMSE) of the predicted 

values. RMSE is the square root of the average of squared errors.  We use the Q2 score to represent the 

accuracy of the fit of the model on the test set. A negative Q2 score indicates a fit worse than the 

standard deviation. We compare the results from five different algorithms: linear regression, k-nearest 

neighbor, decision trees, random forest, and partial least squares.  

 From Tables 2.2 and 2.3, we see that a single algorithm does not predict all the output variables 

accurately. Because of the complexity of a multivariate dataset, a simple linear regression aggression 

fails to predict all the variables with high accuracy. However, the linear regression predicts short chain 

branching (SCB) frequency and vinylidene frequency in polymer chain, fairly well. It is crucial to identify 

linear relationships between variables in datasets. However, dependent variables which show non-linear 

relations with the independent variables require more sophisticated non-linear algorithms.  

 We notice that the K-nearest neighbor algorithm gives poor performance for all output variables. 

We expect this result as the K-NN algorithm works better on large datasets and is prone to misleading 

results for a smaller dataset. Decision trees give the best results for weight-average molecular weight 

and long chain branching (LCB) frequency. Decision trees outperforms random forests for smaller 

datasets and are more prone to overfitting compared to random forests. Decision trees are, however, 

faster for relatively large datasets and easily interpreted. The random forest algorithm gives the best 

prediction of the frequency of vinyl group addition. Random forest algorithm is effective for noisy non-

linear datasets and larger datasets. We can further fine-tune the random forest algorithm for better 

performance, while regularizing to restrict overfitting. The PLS algorithm gives the most accurate 

predictions for the number-average molecular weight, and this observation is similar to that obtained 

using AspenProMV for a different testing set and split between training and testing datasets.    
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Table 2.2. Multi-output regression results for different machine learning algorithms. 

Model Y1 Y2 Y3 Y4 Y5 Y6 

Linear Regression MWI_e5 MNI_e6 LCB SCB VNL VND 

Q2_score -0.6744 0.7230 0.3548 0.8024 0.1643 0.9224 

RMSE 1.2727 1.9610 0.0128 1.2994 0.0011 0.0031 

STD 0.9836 3.7258 0.0160 2.9232 0.0012 0.0110 

k-Nearest 

Neighbor 

MWI_e5 MNI_e6 LCB SCB VNL VND 

Q2_score -0.1966 -0.1840 -0.1628 -0.1508 -0.1740 -0.1504 

RMSE 1.0929 4.1398 0.0178 3.2480 0.0013 0.0122 

STD 0.9836 3.7258 0.0160 2.9232 0.0012 0.0110 

Decision Tree MWI_e5 MNI_e6 LCB SCB VNL VND 

Q2_score 0.2616 0.0192 0.8697 0.3892 0.2834 0.3820 

RMSE 0.8452 3.6898 0.0058 2.2846 0.0010 0.0086 

STD 0.9836 3.7258 0.0160 2.9232 0.0012 0.0110 

Random Forest MWI_e5 MNI_e6 LCB SCB VNL VND 

Q2_score 0.13769 -0.2042 0.783599 0.549067 0.579419 0.580188 

RMSE 0.9133 4.0886 0.0074 1.9630 0.0008 0.0071 

STD 0.9836 3.7258 0.0160 2.9232 0.0012 0.0110 

PLS MWI_e5 MNI_e6 LCB SCB VNL VND 

Q2_score -3.7036 0.8476 -1.0569 0.4262 -0.9805 0.8594 

RMSE 2.1331 1.4545 0.0229 2.2143 0.0016 0.0041 

STD 0.9836 3.7258 0.0160 2.9232 0.0012 0.0110 
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Table 2.3. Summary Results 

Product Quality Variables Highest Q2_score 

MWI_e5 Decision Tree 

MNI_e6 PLS 

LCB Decision Tree 

SCB Linear Regression 

VNL Random Forest 

VND Linear Regression 

 

2.6 Conclusion 

 Using different tools of machine learning and different statistical algorithms, we are able to 

successfully showcase ways to monitor and quality control a LDPE reactor. We can use simple methods 

of dimensionality reduction and visualization such as PCA for anomaly detection. Using methods like 

PLS, we are able to identify inter-variable relationships and relationships between input and output 

variables. Multi-output regression models enable us to predict the infrequently measured quality 

parameters for real time control and assessment of polymer quality. The choice of algorithm used for 

analysis depends on the nature of the data: linear or non-linear, sparse or complete, noisy or consistent, 

balanced or unbalanced, small data volume or large data volume, interpretation, time, and processing 

power. One algorithm does not fit every dataset or in this case every output variable. However, the 

knowledge of the available algorithms and limitations of the algorithms helps chemical engineers and 

other users make informed decisions. 
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Chapter 3. Data-driven Soft Sensor for Process Monitoring and Control of a HDPE plant 

3.1 Introduction 

 Soft sensors are inferential estimators that alleviate the need for installation of expensive hardware 

sensors by making accurate predictions of relevant process variables. Because of a surge in data 

volumes in industries, there has been a realization of the potential of data-driven sensors. In order to 

ensure proper process control and instant on-line measurements, many chemical plants, and 

bioprocessing facilities have opted for virtual soft sensors instead of hard sensors. In this chapter, we 

look at building such a soft-sensor for a HDPE plant. Soft sensors are generally of two types: model-

driven soft sensors and data-driven soft sensors. Since the foundation of data-based sensors is based on 

real processing conditions, data-driven sensors are more adaptive than model-driven sensors.  

 Recently, because of an increase in storage capacity of data, data-driven soft sensors have gained 

popularity in the chemical industry. Low sampling rates and difficulties faced during off-line 

measurements in a laboratory setting have also added to the necessity for developing these inferential 

sensors. There are many reported applications of data-driven sensors for process monitoring and fault 

detection. The strategy to develop a data-driven sensor depends on the type of process as well. Most 

data-driven sensors are most effective for continuous processes, while model-based sensors are 

applicable to both continuous and discontinuous processes. When applying data-driven sensors to 

discontinuous or batch sensors, we must consider one additional feature vector to characterize the 

batch-to-batch variance. Another issue to consider while building a data-driven sensor is missing data. 

Data-driven sensors struggle with missing data; one way to overcome the limitation is by imputation of 

the missing data.  

 For our case study, we build a data-driven sensor for a continuous HDPE plant from a reputed 

chemical industry in the Asian-Pacific region.1 For a polyolefin process, polymer melt index (MI) serves 

as an important quality control variable, which Is also hard to measure on-line. MI refers to the ease of 

flow of the melt of a thermoplastic polymer.  

3.2 Literature Review 

 Data-driven and model-based soft sensors are growingly important in bio-processing and chemical 

industries because of their cost-reduction potential and their use in process control.2-5 Soft-sensors pave 

a way to perform real-time analyzing, monitoring, and control by providing reliant calculation of 

parameters, where no physical hard sensor is available. Gao et al. use ensemble deep kernel learning 

(EDKL) to predict melt index.6 Polyolefin manufacturing uses such data-driven soft sensors to predict 

quality properties like the melt index and it has been a hot research topic among many chemical 
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engineers for quite some time.7-10 Zhang et al. use empirical mode decomposition (EMD), relevance 

vector machine (RVM), and least squares support vector machine (LSSVM) to predict the melt index.  

3.3 HDPE reactor setup  

 High-density ethylene (HDPE) production is an important slurry polymerization process as shown in 

Figure 3.1. The polymerization process involves two different reactors in parallel or in series and the 

entire process is highly exothermic. We obtain an industrial HDPE plant dataset from Professor Park.1 

From the raw process data, we use 14 input variables to predict the melt index as the output variable as 

shown in Table 3.1.  

 

 

 

Figure 3.1. Schematic of the HDPE process used to build a soft sensor. Reproduced from reference (1) 
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Table 3.1. List of all the input variables for HDPE reactor 

Input Variables Symbol 

Ethylene Feed Rate ETH 

Hexane Feed Rate HDH 

Recycled Hexane Feed 

Rate 

HMH 

Reactant with BUE ligand 

Feed Rate 

PRL/BUE 

Hydrogen Feed Rate HYD 

Reactor temperature 

(Bottom) 

RT_BOTTOM 

Reactor temperature 

(Middle) 

RT_MIDDLE 

Reactor temperature (Top) RT_TOP 

Reactor level LEVEL 

Reactor Pressure_1 RP1 

Reactor Pressure_2 RP2 

Agitator Speed AGITATOR 

Jacket Temperature_1 JT1 

Jacket Temperaure_2 JT2 

 

3.4 Algorithms and Model Building 

 We use three different models to predict the melt index using the 14 input variables. We split the 

dataset into training and testing sets (80-20 split). In order to preserve the dataset from further splits, 

we use cross-validation to divide the training set into 10 folds for training and validation, with 9 folds for 

training and the remaining one for validation. The algorithms we use are neural networks and deep 

neural networks, extreme gradient boosting (XGBoost), and support vector regression (SVR). Baughman 

and Liu show how to use neural networks for solving a variety process monitoring and control 

problems.12 Similarly, SVR has found growing application in process control and monitoring 13 The use of 

XGBoost (extreme gradient boosting) machine learning algorithm in process applications appears to be 

relatively new.   
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3.4.1 Neural networks and deep neural networks 

 Neural Networks are a cluster of nodes, known as neurons, which are arranged into an ordered 

sequence of at least three groups known as layers. The first layer is called the input layer and has the 

same number of neurons as the number of input variables for the system, and the last layer is known as 

the output layer; the layers in-between are called hidden layers. The choice of number of layers and 

number of nodes is task-dependent and is mostly based on experience.14 Deep neural networks are just 

neural networks with two or more than two hidden layers.  

3.4.2 Extreme gradient boosting (XGBoost) 

 XGBoost is an implementation of gradient boosted decision trees designed for speed and 

performance. In gradient boosting, the algorithm predicts the residuals or errors of prior models and 

then adds them together to make the final prediction. It is called gradient boosting, because it uses a 

gradient descent algorithm to minimize the loss when adding new models. XGBoost is a powerful 

sequential ensemble technique because of its features such as: regularization for preventing overfitting, 

weighted quantile sketch for handling weighted data, and block structure for parallel learning for faster 

computing.15 

3.4.3 Support vector regression (SVR) 

 SVR is a regression algorithm based on the principles of support vector machine (SVM), used to 

predict a continuous variable. Unlike many other algorithms, SVR tries to fit the best line within a 

predefined or threshold value instead of minimizing the error between predicted and actual values. It 

basically creates an error boundary space, which is a region separated by two parallel lines. The 

prediction lines which do not pass through the space are disregarded and the lines that pass become the 

support vectors for the model. SVR helps overcome the limitations associated with distributional 

properties of underlying variables, geometry of the data and the common problem of model overfitting. 

SVR algorithm uses a set of mathematical functions called kernel. The function of the kernel is to 

transform the input data in the right form. Kernels are of different types: linear, nonlinear, polynomial, 

radial basis function (RBF), and sigmoid. With the right choice of kernels, SVR can be a very powerful 

statistical tool.  

3.4.4 Model discussion and results 

 We build two different neural network structures; one of the structure has one hidden layer, while 

the deep structure has two hidden layers. Figure 3.2 shows the structure for the deep neural network. 

As we can see from the structure, the deep neural network has 1 input layer with 14 neurons, 2 hidden 

layers with 10 neurons, and an output layer with 1 neuron. The simple neural network has the same 
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structure with one less hidden layer. We use rectified linear unit (ReLU) activation function, as the 

activation function for the hidden layers, which is the most commonly used activation function in deep 

learning models.16 We use simple linear activation function for the output layer as we want a numerical 

regression output. We use ‘Adam optimization’ for training the neural net.17 For SVR, we use the 

commonly used radial basis function (RBF) kernel.  

 Table 3.2 gives the results of the different algorithms. It is important to visualize how the predictions 

look compared to the original values. Figures 3.3-3.5 help us visualize the prediction error for the three 

algorithms along with the R2 score for each model. R2 scores characterize the fit of the model over the 

dataset. An R2 score close to one shows that most of the variance is explained by the data and indicates 

a good fit. We see that deep neural network outperforms the other two algorithms and is better than 

regular neural network. The RMSE values for D-NN are significantly lower (about four times) than SVM.   

We note that Park et. al1 have also applied SVM to a melt index problem. 

Table 3.2. Data-driven soft sensor model results for predicting melt index 

Algorithm RMSE 

NN 1.0846 

D-NN 0.9966 

XGBoost 3.6163 

SVM 4.0069 

Std. Deviation 4.57 
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Figure 3.2. Basic deep neural network structure with two hidden layers. 
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Figure 3.3 Prediction error plot for neural networks. 
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Figure 3.4. Prediction error plot for XGBoost regressor.  
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Figure 3.5. Prediction error plot for support vector regression (SVR). 

3.5 Conclusion 

 In the polymerization process, for both LDPE and HDPE, machine learning algorithms can provide 

virtual assistance in many aspects of process monitoring and control. By providing accurate predictions, 

we can use soft-sensors to decrease capital investment costs and provide analysis and insights which 

otherwise may not be readily available. In this chapter, we build such a data-driven sensor and find that 

deep neural network provides us with the best predictions. With advances in computational technology 

and statistical algorithms, there are many avenues that await the adoption by chemical engineers to 

develop cost-effective soft sensors. Here, we showcase the benefits of one such algorithm to predict the 

melt index with high predictive power.  
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4.1 Introduction 

4.1.1 Foaming control and dataset collection 

 The process of foaming refers to the formation of a dispersed media by trapping pockets of gas in a 

network of thin liquid films or solids. A foam generation process can be further described by two distinct 

events: air entrapment and bubble breakup.1 Despite its simplicity, the foaming process affects the 

industrial sector in a substantial way due to its dynamic nature, making it a major technological      

hurdle.  2-9 In a bioprocess, due to the extensive aeration and presence of active microorganisms that 

reduce the surface tension, foams can build up to a serious level resulting in several issues such as 

microbial cell stripping and contamination.10  

 Some of the common methods of controlling foaming involves addition of chemical antifoam agents 

(AFA) to prevent the adverse effects of foaming. Increased usage of industrial AFA tends to decrease cell 

viability and the effects are intensified with increased exposure and higher concentration of AFA.11 The 

current methods of AFA addition are based on empirical methods or operational experiences. This study 

aims at mitigating the adverse effects of excessive AFA addition by using advanced machine learning 

algorithms to predict the onset of foaming. Conventionally, we estimate the amount of foaming by using 

the empirical foaming parameters: foamability (maximum height reached by the foam after CO2 

injection), Bickerman coefficient (bubble average lifetime), and surface tension of the liquid.12 However, 

this estimation is time-consuming and not viable for dynamic process control.  
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 This paper presents a way to estimate foaming based on the prediction of differential pressure using 

ensemble-based machine learning algorithms. As illustrated in Figure 4.1, the exhaust differential 

pressure (DP1) is the pressure difference between the fermenter head pressure (PT01), measured from 

the headspace of the fermenter, and the exhaust pressure (PT02), measured from the exhaust line 

downstream of the fermenter.  

 

Figure 4.1. Fermenter design with pressure notations for exhaust differential pressure calculations.  

 Fermentation practices in industry shows that the exhaust differential pressure can be a strong 

indicator of foaming. Developing a model which can accurately predict foaming would require large 

industrial dataset with operating variables over a wide range of values to accommodate different 

fermenter designs and multiple strains of microorganisms. No such model is currently available, because 

of lack of relevant industrial data and application of conventional methods to predict foaming.  

 Physical modeling of foaming is an arduous process as it requires estimation of foam height which is 

dynamic in nature and differs for different bioprocesses.13 Machine-learning based modeling helps 

mitigate the necessity for foam height estimation, and it can be generalized for any process as it uses 

the available operational data for prediction. Recently, machine-learning based methods have found 

several applications in sectors where mechanistic modeling is precluded by the inability to develop a 

model or generalize it for a process.14-18 

 Figure 4.2 shows a schematic diagram of an experimental setup to study the dynamic measurement 

of foam behavior for a continuous fermenter over a range of key process variables19. This setup and the 

additional details in reference [19] suggest that the key measurement considerations in foaming control 
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include: probes (pH, temperature and dissolved oxygen); additions of antifoam, media (air), acid and 

caustic for pH control; volume of fermenter, agitator speed, and hour (time of foaming). In developing 

the dataset for the current study, we collect the key plant data following reference [19], and include an 

identical list of 11 independent variables. Figures 4.3 to 4.5 display these 11 independent variables (X), 

together with our quality variable (Y), the exhaust differential pressure. In particular, our dataset 

consists of 64 batches with four fermenter designs, with 11 independent variables (X) and one quality 

variable (Y), totaling over 183,000 instances. These data require cleaning, integration and 

transformation before being used for model building. 
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Figure 4.2. Fermenter setup for dynamic study of foaming behavior 19 

4.1.2. Ensemble methods for modeling foaming 

 The proposed model is based on ensemble methods, which are meta-algorithms that offer a 

systematic solution by combining the predictive power of several learners. Ensemble methods provide 

an extra degree of freedom in the classical bias-variance tradeoff, where model complexity is carefully 

calibrated so that the fit on the training sample reflects performance out-of-sample, and have allowed 

for solutions to many complicated problems.20-25 The book by Zhou26 gives an excellent introduction to 

the foundations and algorithms of ensemble methods.   Bootstrap aggregating (bagging) and boosting 

are two popular ensemble methods which can be used with several statistical models, predominantly 

with decision trees. In this paper, we use two popular ensemble methods: 1) extreme gradient boosting 

(XGBoost), an efficient boosting sequential ensemble framework designed by Chen et al 27 and 2) 

random forest (RF), an established parallel bagging ensemble framework developed by Brieman et al.28  

4.2 Ensemble Framework and Methodology  

 The four steps in our proposed scheme for the ensemble-based foaming prediction model are: data 

acquisition, data preprocessing and visualization, ensemble-based model building, and foaming 

prediction. For the data acquisition step, we acquire real-industrial annual batch data for different 

fermenters from a fermentation plant. For consistency, we collect the data for a specific strain of 

bacteria over time in different fermentation setups. The data preprocessing involves data cleaning, 

integration, and transformation. In the data visualization step, we justify the usage of ensemble 

methods with the help of heat-mapping based on linear correlations. Heat-mapping helps us visualize 

the existing bivariate correlations between independent variables and a chosen dependent variable. We 

then apply the ensemble methods for classification of different types of fermenters, and for both 

classification and regression models for foaming prediction. We quantify the model results based on 

different averaging techniques and metrics for our multiclass classification models and root mean 

squared error (RMSE) for regression models. We also perform model validation using 10-fold cross 

validation, which is explained ahead in Section 4.2.2. 

4.2.1 Data preprocessing 

 Data preprocessing include cleaning, integration and transformation. Data cleaning identifies 

irrelevant and inaccurate records, and removes noisy and redundant data, which may occur because of 

usage of multiple temperature and pressure sensors, multiple dissolved oxygen (DO) probes, multiple 

identifiers for the same independent variables, and different fermenter design setups. The raw data 

consist of several columns with redundant data due to presence of backup probes. We remove all the 
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columns with identical data for temperature, pressure, dissolved oxygen, etc. Similarly, we remove some 

data columns, which play no role in foaming, like inoculation date, speculative batch count, etc. In order 

to ensure the robustness of the prediction model for exhaust differential pressure, we remove the 

directly correlated variables like fermenter head pressure and exhaust line pressure, which are also 

measured along with exhaust differential pressure.  

 Data integration involves combining datasets from different fermenters to form a generalized 

dataset with over 183,000 instances. Data transformation involves standardization of the data to center 

the data (shift it to have a zero mean and remove bias). It also scales the data so the values are in a 

standardized unit and the data have unit variance (so variables with large values do not dominate the 

analysis results).29 The transformation also involves changing the cumulative values of some 

independent variables (such as acidic flow, caustic flow, antifoam flow, and volume of the reactor) to 

noncumulative values.  

4.2.2 Data visualization and model selection 

 In order to find the real underlying sources of variation and select the right features, we use the 

multivariate data analysis software Aspen ProMV (available through university programs of Aspen 

Technology Inc., Bedford, MA) to rank the relative importance of 11 independent variables. The 

software generates the variable importance plot of Figure 4.3 based on partial least square (PLS) to 

determine the important features for model building. The y-axis represents the Variable Importance in 

Projection (VIP) score, computed for a selected variable in multiple principal components following an 

equation given by Wold et al.30 This analysis considers an independent variable as important when its 

VIP score is close to or greater than one in a given model. As expected, hour (time of foaming), pH, 

dissolved oxygen, and fermenter temperature are the most important variables for the model.  

 We use Python 3.6 and its various packages (e.g., Scikit-learn machine learning python library) for 

the following visualizations and the proposed models.31-34 Before model building, we visualize the data 

using bar graphs for each variable as shown in Figure 4.4 for the selected variables.  

 By visualizing the data, we can see the spread of each of the independent variables and make a 

preliminary feature selection, where similar or non-variant attributes are removed. For some variables 

with multiple values, like pH, it is important to see if the values are reasonable. In an industrial 

fermentation setup, it is very common to have backup probes which share identical values with the 

active probes, or are inactive during regular operations. We check the entire dataset to identify such 

similar or non-variant variables, so they can be removed before data processing. 
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 After visualizing the spread of the data and feature selection, it is important to see if an independent 

variable and our quality variable (foaming indicator; exhaust differential pressure) are linearly 

correlated. A good way to visualize any such correlation is to create a correlation heat map. Figure 4.5 

shows the correlation of all 11 independent variables with the exhaust differential pressure. Because of 

restriction of industrial plant data, we represent the y-axis of the figure in max-min normalized log scale 

for the variable. We choose hour (time of foaming) as an independent variable, as none of the other 

independent variables is linearly correlated with time and the fermenter data are collected for multiple 

batches in the same period. In cases, where time linearly changes with other variables or if data are 

collected in different periods for multiple batches, we should remove hour as this independent variable 

becomes redundant or an observational ID.  

 We see a positive correlation of the exhaust differential pressure with hour, pH, fermenter 

temperature, and agitation speed. Similarly, we see a negative correlation against dissolved oxygen. This 

observation aligns with our understanding of foaming19. This analysis shows that we can apply 

visualization tools such as annotated heat mapping for quick analysis of large fermentation datasets to 

identify patterns among several batches with possible multiple strains of microorganisms and different 

fermenter designs. We also see that none of the independent variables shares a high (>|0.5|) positive or 

negative linear correlation with the dependent variable. Thus, our reasoning for using ensemble 

methods, known for handling data with nonlinear correlations, instead of simple linear models, is 

justified.21 



34 
 

 

Figure 4.3. Variable importance plot based on partial least square (PLS) created using Aspen ProMV.  
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Figure 4.4. Bar graph representation of selected features for the entire dataset (about 183,000 

instances); the y-axis is in max-min normalized log scale for the variable.  
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Figure 4.5. Linear correlation heat mapping to identify positive and negative relationships.  

4.3 Model Building and Model Evaluation  

 The process of fermentation differs from other industrial processes as the design of fermenter and 

its mode of operation depends highly on the choice of microorganism used for fermentation.35 Our 

fermentation plant currently has four fermenter types (designated types A, B, C and D), each with 

different material, geometric and equipment specifications. Some of these specifications are: straight 

wall height, diameter, aspect ratio, total volume, fill volume, stainless steel type, jacketing, aeration 

method, agitator mounting position, number of impellers, impeller diameter and impeller type, etc.  

 In particular, while these specifications may contribute to generating different fermentation 

performance, we wish to investigate if we could develop an ensemble-based fermenter classification 

model that: (1) evaluates all the datasets for the four fermenter types together in an integrated fashion; 
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(2) considers the 11 independent variables for each batch alone without having to incorporate explicitly 

the design specifications for the specific fermenter type for the batch;  and (3) can correctly differentiate 

or classify the fermenter type with an accuracy of over 99% for our integrated dataset of over 183,000 

instances. If this development of fermenter classification model is successful, it can help to generalize 

the foaming prediction for different types of fermenters and integrate the multiple datasets for a better 

model.  We discuss the development of a XGBoost-based 27 fermenter classification model in Section 

4.4.  

 After developing a model for fermenter type prediction, we build classification and regression 

models for foaming prediction based on the exhaust differential pressure prediction. For the 

classification model, we bin the exhaust differential pressure into four thresholds: lower threshold limit, 

close to threshold limit, threshold limit, and upper threshold limit, which is explained in Section 4.4.2. 

We use XGBoost-based 27 and RF-based 28 ensemble models for comparison. Finally, we build regression 

models using both of the meta-algorithms to predict the exact value of exhaust differential pressure in 

mbarg.  

 The model evaluation step involves partitioning the entire dataset into a training set and a test set 

to determine the predictive power of each model. For our models, we use 80-20 training-test split for 

model building. The training set is useful in the formulation of the model, while the test set is 

independent and plays no part in the process.  We use the test set for validating the model predictions, 

and reserve one-fifth of the training set for hyperparameter tuning (validation set). This ensures an 

unbiased evaluation of model fit on training set, while tuning the hyperparameters. The k-fold cross-

validation technique is a well-established and flexible technique for selecting the ideal model (which 

avoids overfitting and over-optimization).36 It involves partitioning the data into k disjoint subsets and 

using each one for validation and the remainder for training. The k parameter is adjustable according to 

performance and predictive evaluation considerations. For our models we use 10-fold cross-validation, 

which involves randomly dividing the dataset into 10 groups, or folds, of approximately equal size. The 

first fold is treated as a test set, and the method is fit on the remaining 9 folds. 

 For our regression model, we use root mean square error (RMSE), which is the square root of the 

average of squared errors. It is measured in the same unit as the target variable, which in our case is 

mbarg (for exhaust differential pressure). Similarly, we use four different evaluation metrics for our 

classification models: accuracy, precision, recall, and f1-score. The accuracy of a classification model can 

be defined as the ratio of the total number of correct predictions by the total number of predictions. 

Precision is the ability of a classification model to return only relevant instances. Recall refers to the 
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ability of a classification model to identify all relevant instances. In addition, f1-score is the single metric 

that combines recall and precision using the harmonic mean. 29   

 The evaluation metrics (precision, recall, and f1-score) used for multiclass classification are 

calculated based on different ways to average binary metric calculations for different class labels. The 

three common ways of averaging are: micro-averaging, macro-averaging, and weighted-averaging. 

Micro-averaging gives each class an equal contribution to the overall metric. Macro-averaging uses the 

mean of the binary metrics, giving equal weight to each class. Finally, weighted-averaging accounts for 

class imbalance by incorporating the average of binary metrics in which each class’s score is weighted by 

its presence in the data sample. 31 Table 4.1 shows how these measures can be calculated by these 

different averaging techniques. 31 If all the classes are included, micro-averaging gives same values for 

precision, recall, and f1-score, which are identical to the accuracy score for the model. 

Table 4.1. Calculation of evaluation metrics using different averaging techniques for multiclass 

classification models. 31 

Averaging 

Technique 

Precision (P) Recall (R) F1-score 

Micro 
𝑃(𝑦, �̂�) ≔

|𝑦 ∩ �̂�|

|𝑦|
 𝑅(𝑦, �̂�) ≔

|𝑦 ∩ �̂�|

|�̂�|
 𝐹(𝑦, �̂�) ≔ 2 [

𝑃(𝑦, �̂�)  ×  𝑅(𝑦, �̂�)

𝑃(𝑦, �̂�) + 𝑅(𝑦, �̂�)
] 

Macro 1

|𝐶|
 ∑ 𝑃(𝑦𝑙 , �̂�𝑙)

𝑐∈𝐶

 
1

|𝐶|
 ∑ 𝑅(𝑦𝑙 , �̂�𝑙)

𝑐∈𝐶

 
1

|𝐶|
 ∑ 𝐹(𝑦𝑙 , �̂�𝑙)

𝑐∈𝐶

 

Weighted 1

∑ |�̂�𝑙|𝑐∈𝐶
 ∑|�̂�𝑙|𝑃(𝑦𝑙 , �̂�𝑙)

𝑐∈𝐶

 
1

∑ |�̂�𝑙|𝑐∈𝐶
 ∑|�̂�𝑙|𝑅(𝑦𝑙 , �̂�𝑙)

𝑐∈𝐶

 
1

∑ |�̂�𝑙|𝑐∈𝐶
 ∑|�̂�𝑙|𝐹(𝑦𝑙 , �̂�𝑙)

𝑐∈𝐶

 

 

4.3.1 Algorithms  

4.3.1.1 Extreme gradient boosting (XGBoost) 

 Extreme gradient boosting is an implementation of gradient boosting decision trees, which is a 

powerful sequential ensemble technique because of its features such as: regularization for preventing 
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overfitting, weighted quantile sketch for handling weighted data, and block structure for parallel 

learning for faster computing.26 

 Let 𝑓𝑘 be the prediction from a decision tree and suppose we have K trees; the model is a collection 

of trees given by:  

Model = ∑ 𝑓𝑘
𝐾
𝑘=1                                                                                                                                                       (1) 

           

After collecting all decision trees, we make prediction at the t-th step by 

 

�̂�𝑖
(𝑡)

= ∑ 𝑓𝑘
𝑡
𝑘=1 (𝑥𝑖)                                                                                                                                                   (2) 

 

where 𝑥𝑖 is the feature vector for the t-th data point. 

For training the model, we need to optimize a loss function (𝐿) and add a regularization term 

(𝛺) to form a training objective function (Obj): 

𝑂𝑏𝑗 = 𝐿 +  𝛺                                               (3) 

 For an iterative algorithm, we redefine the objective function as  

 

𝑂𝑏𝑗(𝑡) = ∑ 𝐿(𝑦𝑖 , �̂�𝑖
(𝑡)

)𝑁
𝑖=1 + ∑ 𝛺𝑡

𝑖=1 (𝑓𝑖) = ∑ 𝐿(𝑦𝑖 , �̂�𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖))𝑁
𝑖=1 + ∑ 𝛺𝑡

𝑖=1 (𝑓𝑖)                                 (4) 

 To optimize with gradient descent, we need to calculate the gradient; in order to achieve high 

performance, we consider both first-order and second-order gradients. Since we do not have the 

derivative of every objective function, we calculate its second-order Taylor approximation and remove 

constant terms. This leads to: 

𝑂𝑏𝑗(𝑡) = ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖)𝑁
𝑖=1 +

1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + 𝛺(𝑓𝑡)                                                                                                    (5)  

where, 𝑔𝑖 = 𝜕�̂�(𝑡−1)𝑙(𝑦𝑖 , �̂�(𝑡−1)), ℎ𝑖 = 𝜕2
�̂�(𝑡−1)𝑙(𝑦𝑖 , �̂�(𝑡−1)) 

 

Now we define a tree: 

𝑓𝑡(𝑥) = 𝑤𝑞(𝑥)                    (6) 

where 𝑞(𝑥) is a directing function that assigns every data point to the q(x)-th leaf 

We define the index set as: 

𝐼𝑗 = {𝑖|𝑞(𝑥𝑖) = 𝑗}                   (7) 

Then, the objective function after expanding the regularization term and indexing becomes: 
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𝑂𝑏𝑗(𝑡) = ∑ [∑ 𝑔𝑖𝑤𝑗𝑖∈𝐼𝑗
+

1

2
(∑ ℎ𝑖𝑖∈𝐼𝑗

+ 𝜆)𝑤𝑗
2] + 𝛾𝑇𝑇

𝑗=1                                                                                       (8) 

              

After substituting the best 𝑤𝑗 to optimize the objective function, we get: 

𝑂𝑏𝑗(𝑡) =  − 
1

2
 ∑

(∑ 𝑔𝑖)𝑖∈𝐼𝑗
2

∑ ℎ𝑖+𝜆𝑖∈𝐼𝑗

+ 𝛾𝑇𝑇
𝑗=1                (9) 

 Let 𝐼𝐿and 𝐼𝑅 be the sets of indices assigned to two new leaves. Then, we can write 

𝐺𝑎𝑖𝑛 =  
1

2
 [

(∑ 𝑔𝑖)𝑖∈𝐼𝐿
2

∑ ℎ𝑖𝑖∈𝐼𝐿
+𝜆

+
(∑ 𝑔𝑖)𝑖∈𝐼𝑅

2

∑ ℎ𝑖𝑖∈𝐼𝑅
+𝜆

−
(∑ 𝑔𝑖)𝑖∈𝐼

2

∑ ℎ𝑖𝑖∈𝐼 +𝜆
] − 𝛾           (10) 

where gamma (𝛾) is a pseudo-regularization hyperparameter (Lagrange multiplier) used for pruning 

(reducing the size) the tree. Ultimately, the algorithm chooses the final structure by selecting splits with 

maximized gain.  

4.3.1.2 Random forest 

 Random forest is a parallel ensemble technique which uses both bootstrap aggregation (bagging) 

and random variable selection for tree building. To obtain low-bias trees, each tree is unpruned (grown 

fully); in the meantime, bagging and random variable selection ensure low correlation between 

individual trees. The method yields an ensemble of unstable individual learners, which together can 

achieve both low bias and low variance. Some of the features of random forest which makes it a 

prominent method are high tolerance for multidimensional data, good performance for multiclass 

classification problems, handles overfitting internally, and works well with noisy data.26 

Let us assume an ensemble of E trees {𝑇1(𝑋), … . , 𝑇𝐸(𝑋)}, where 𝑋 = {𝑥1, … , 𝑥𝑛} is a n-dimensional 

vector of independent variables associated with a dependent variable. The ensemble method produces 

E outputs {�̂�1 = 𝑇1(𝑋), … , �̂�𝐸 = 𝑇𝐸(𝑋)}, where  �̂�𝑒 , (𝑒 = 1, … , 𝐸) is the prediction for a dependent 

variable by the e-th tree. The outputs from all trees are aggregated to produce a final prediction, �̂�.  For 

the classification models, �̂� is the class predicted by the majority of the trees; while for regression 

models, it is the average of the individual tree predictions.  

 Given a dataset of n instances for training, 𝐷 = {(𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛)}, where 𝑋𝑖 , ( 𝑖 = 1, … , 𝑛) is a 

vector of independent variables and 𝑌𝑖  is the dependent variable of interest. From the training data of n 

instances, the algorithm chooses a random sample with replacement. For each bootstrap sample, a tree 
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is grown with the following modification: at each node, the best split is chosen among a randomly 

selected subset of independent variables using GINI index, defined by 

𝐺𝑖𝑛𝑖(𝑆) = 1 − ∑ 𝑝𝑖
2

𝑖                (11) 

where 𝑝𝑖 is the probability of an item with label i in a set S belongs to a class C 

 The tree is grown to the maximum size and not pruned back. The steps are repeated until E such 

trees are grown. The standard tree growing algorithm used in the RF method is based on classification 

and regression trees (CART) model.  

4.4 Model Results and Discussion 

 We develop three different models using ensemble methods for fermenter-batch prediction and 

foaming prediction. These include: (1) fermenter type classification model; (2) foaming prediction 

classification model; and (3) foaming prediction regression model.  

4.4.1 Fermenter type classification model 

 Four different fermenter batch types are differentiated using a classification ensemble model based 

on XGBoost algorithm. Figure 4.6 shows a confusion matrix of the results produced by the fermenter 

classification model, which is able to differentiate the batch type with 99.49% accuracy. The diagonal in 

the confusion matrix represents the number of correct predictions. Table 4.2. shows the evaluation 

metrics obtained by micro-averaging, macro-averaging, and weighted-averaging. For fermenter batch 

prediction, we get identical results for all three different types of averaging techniques.  

 We thereby infer that, the operating variables do incorporate all the necessary design differences 

and our ensemble approach can successfully detect these hidden patterns. By using the operating 

variables as input and no prior knowledge about the fermenter design (number of impellers, aspect 

ratio, etc.) and the microorganism, the model is able to distinguish one batch type from another based 

on the operating conditions alone. Separation of batch types is very essential for data integration and 

generalization of any model which will be used for foaming prediction. These results demonstrate the 

potential of ensemble methods in aiding big data analytics by allowing for data integration from multiple 

fermenters and multiple organisms.  
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Figure 4.6. Confusion matrix for XGBoost-based fermenter classification model for 4 different 

fermenter types (A, B, C, and D). 

 

 

Table 4.2. Fermenter batch classification model evaluation summary using XGBoost and different 

averaging techniques for metric calculation.  

 

Averaging 

Technique 

Accuracy 

(in %) 

Precision (P) Recall (R) F1-score 

Micro 99.49 0.99 0.99 0.99 

Macro 99.49 0.99 0.99 0.99 

Weighted 99.49 0.99 0.99 0.99 

 

 



43 
 

4.4.2 Foaming prediction classification model  

 Now that we have successfully separated the batch types, we integrate the datasets for a larger 

training dataset for the foaming prediction model. The foaming prediction model is based on the 

prediction of the exhaust differential pressure, which serves as an indicator of foaming and is observed 

when the differential pressure is above 100 mbarg based on past industrial fermentation experience. For 

the classification models, the numeric pressure values are binned to different thresholds so the model 

can predict a particular class type (threshold). The idea behind binning is to see how successful the 

models will be at predicting a certain threshold to allow for alleviatory steps such as addition of AFA. 

The threshold limits (arbitrarily set) are as follows: 

L: Lower Threshold (below 90 mbarg), C: Close to Threshold (between 90-100 mbarg), T: Threshold (at 

100 mbarg), and U: Upper Threshold (above 100 mbarg).  

 Figure 4.7 and Figure 4.8 show the respective confusion matrices for the foaming classification 

model based on XGBoost and RF, respectively. Like before, the diagonal in the confusion matrix 

represents the number of correct predictions. From Table 4.3. and Table 4.4., we can see that for 

foaming prediction micro-averaging results in better evaluation scores than macro-averaging. This 

makes sense as micro-averaging is a measure of effectiveness on larger classes in a test set. While, 

macro-averaging is a measure of effectiveness on the overall test set. By taking the weighted-average, 

we see that the weighted-average results are close to the micro-average results, which leads us to 

believe that class imbalance has no significant impact in our models. The average accuracy for the 

XGBoost classification model after tuning is 73.69% and the same for RF is around 82.39%. The results 

from XGBoost and RF are not that impressive as many instances which are at lower threshold are 

misclassified as upper threshold which will lead to false alarms in a real world scenario. The 

performance of RF is slightly better, but leaves room for improvement.  
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Figure 4.7. Confusion matrix for XGBoost-based foaming classification model for 4 thresholds.  

 

 

Figure 4.8. Confusion matrix for RF-based foaming classification model for 4 thresholds.  
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Table 4.3. Foaming prediction classification model evaluation summary using XGBoost and different 

averaging techniques for metric calculation.  

 

Averaging 

Technique 

Accuracy 

(in %) 

Precision (P) Recall (R) F1-score 

Micro 73.69 0.74 0.74 0.74 

Macro 73.69 0.54 0.45 0.45 

Weighted 73.57 0.72 0.74 0.70 

 

 

Table 4.4. Foaming prediction classification model evaluation summary using Random Forest and 

different averaging techniques for metric calculation. 

 

Averaging 

Technique 

Accuracy 

(in %) 

Precision (P) Recall (R) F1-score 

Micro 82.39 0.82 0.82 0.82 

Macro 82.39 0.69 0.65 0.62 

Weighted 82.39 0.89 0.82 0.84 

 

 

4.4.3 Foaming prediction regression model  

 After attempting to classify the foaming by ensemble methods, we build regression models which 

would exactly predict the numeric exhaust differential pressure at a particular instant. We use the same 

two ensemble methods for model building and choose RMSE values as performance indicators. As 

shown in Table 4.5, RF outperforms XGBoost again with an RMSE of 12.25 mbarg with comparison to 

XGBoost with an RMSE value of 18.61 mbarg. RF outperforms XGBoost for both classification and 
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regression models, which can be attributed to easier parameter tuning in RF ensemble methods. Both 

XGBoost and RF are generally expected to give similar results, which are relatively better than ordinary 

boosting and bagging methods and singular strong algorithms.  

 To compare with other popular algorithms for regression, we build two other models based on 

popular methods like neural networks and support vector regression (SVR). To compare with other 

popular algorithms for regression, we build two other models using popular methods like neural 

networks and support vector regression (SVR). For neural network, we build a network with 2 hidden 

layers (with 11 and 5 neurons respectively). Each hidden layer uses the rectified linear unit (ReLU) 

activation function and the neural net uses Adam optimization for training.37-38 For SVR, we use radial 

basis function (RBF) kernel due to the non-linear nature of the data.39 A grid-search technique is applied 

for tuning the hyperparameters: Gamma (γ), which is the regularization parameter and Sigma2 (σ2), 

which is the RBF kernel function parameter. The results show that ensemble methods perform better 

than these singular robust algorithms for our dataset. While, further optimization can be done to 

enhance the performance of these algorithms, ensemble methods provide us with the desired output.  

Table 4.5. Model evaluation summary using ensemble methods and other popular methods for 

regression. 

Ensemble 

Technique 

Model Type Description    RMSE  

XGBoost Regression Foaming Prediction (without 

tuning) 

45.72  mbarg  

XGBoost Regression Foaming Prediction (with tuning)  18.61 mbarg  

Random Forest Regression Foaming Prediction 12.25 mbarg  

Neural Network  Regression Foaming Prediction 40.99 mbarg  

SVR (with RBF 

kernel)  

Regression Foaming Prediction 52.46 mbarg 

 

4.5 Model implementation 

 We can implement the ensemble-based classification and regression models for similar datasets by 

following the steps shown in Figure 4.9. Python, an open-source programming language, includes 
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packages for both XGBoost and Random Forest ensemble methods.31-34 We can do preprocessing with 

the help of packages like Scikit-Learn and Pandas.31-32 The criterion for the training to test split is 

normally based on two conditions for the test set: i) the test set is large enough to yield statistically 

meaningful results, and ii) the test set is representative of the data set as a whole. In case of unbalanced 

datasets, we may consider stratified sampling, where each strata (subgroup) of a given dataset is 

adequately represented.  

 Depending on the size and nature of the dataset, training and hyperparameter tuning can take 

significant process time. However, we can use parallel computing techniques to reduce the processing 

time. In XGBoost, such parallelization is done within a single tree since it is a sequential ensemble 

method. By contrast, in Random Forest, parallelization is done for separate trees at the same time since 

it is a parallel ensemble method. A hyperparameter is a parameter whose value is used to control the 

learning process of a base learner. Hyperparameter optimization is essential to find the optimal model 

which minimizes the loss function. A grid search exhaustively generates candidates from a grid of 

parameter values and all possible combinations of parameter values are evaluated and the best 

combination is retained. For XGBoost, we tune the learning rate, maximum depth, and the number of 

boosting rounds, etc. While, for random forest, we tune number of estimators, maximum depth, 

minimum sample split, etc.  

 After a model is optimized with the ideal hyperparameters, we perform model evaluation with 

established methods like k-fold cross validation as explained in Section 4.2.2. Out-of-bag (OOB) error is 

one of the methods for predicting error in random forests. It avoids the need for an independent 

validation dataset, but often underestimates actual performance and the optimal number of iterations.  

Model performance metrics like accuracy can be used alongside confusion matrix to demonstrate 

prediction results of a classifier. For regression models, we can apply metrics like root mean squared 

error (RMSE) to quantify the model accuracy.  
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Figure 4.9. Model implementation of ensemble-based methods. 

 

XGBoost 
Implementation Steps

Install XGBoost for use with Python

Load the required dataset and preprocess the data by following 
the steps for data cleaning, data intergration, and data 

transformation. 

Split the dataset into test, training, and validation sets. 

Train the model and make baseline predictions. 

Tune the hyperparameters based on iteration or GridSearch 
with the aim of minimizing overfitting and maximizing accuracy. 

For XGBoost, a lower learning rate and a higher number of 
boosting rounds accomplishes the task. 

Evaluate the model based on techniques like k-fold cross 
validation and assess the performance using metrics like Root 

Mean Squared Error(RMSE) or accuracy. 

Random Forest 
Implementation Steps

Use existing libraries like Scikit-Learn to import 
RandomForestRegressor.

Load the required dataset and preprocess the data by following 
the steps for data cleaning, data intergration, and data 

transformation. 

Split the dataset into test, training, and validation sets.

Train the model and make baseline predictions. 

Tune the hyperparameters using GridSearch if advanced 
computing resources are available or using iteration methods 

with the aim of maximizing accuracy, fast processing, and 
minimizing overfitting. For RandomForest, GridSearch is 

preferred to select the right hyperparameters. 

Evaluate the model based on techniques like k-fold cross 
validation or out-of-bag error (OOB) and assess the 

performance using metrics like root mean squared error (RMSE) 
or accuracy. 
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4.6 Conclusions, Limitations, and Future Research 

 In this paper, we describe the potential of ensemble learning methods like XGBoost and Random 

Forest in real-industrial data. We propose a novel application of such meta-algorithms in fermenter 

classification and foaming prediction. Our experience shows that regression-based ensemble methods 

can successfully be implemented to build an antifoam addition profile; such a profile will eliminate the 

need for speculative addition of defoamers and overcome the limitations associated with foaming which 

causes problems in several bioreactors and is not limited to biological plants. With the help of ensemble-

based machine learning, we can use the already available industrial operating data to minimize issues 

such as foaming and maximize the yield of the product.  

 The real-industrial data acquired is based on a single strain of organism for consistency. It would be 

interesting to see if the model gives a good performance for different strains or different 

microorganisms. The hyperparameter tuning for XGBoost and RF is cursory and an in-depth parameter 

tuning leaves room for further improvements in the models, especially for XGBoost, after its 

underperformance with comparison to RF. We compared the ensemble methods with some strong 

singular algorithms like neural networks and SVR. Even though ensemble methods outperformed these 

algorithms, we believe they can still provide competitive results for a different dataset.  

 We plan to implement the foaming prediction results to build an antifoam profile for future batch 

runs which would allow us to have more control over foaming. The passage for data integration opened 

by successful classification of fermenters allows us to dive into big fermenter data analysis as we are 

able to combine the data from every batch to produce a large dataset which helps us build more robust 

models.  

 

 

 

 

 

.  
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Symbols 

English and Greek Symbols 

y = set of predicted (sample, label) pairs 

�̂�= set of true (sample, label) pairs 

𝑦𝑙= subset of y with class c  

�̂�𝑙= subset of �̂� with class c  

C= set of classes  

𝐿= loss function 

𝛺= regularization term 

𝑓𝑘 = decision tree prediction 

𝑥𝑖 = feature vector for t-th datapoint 

𝑞(𝑥)= directing function 

𝐼𝐿 = indices assigned to left leaves  

𝐼𝑅 = indices assigned to right leaves  

𝛾= pseudo-regularization parameter (Lagrange multiplier)  

�̂�𝑒= prediction by the e-th tree 

�̂�= final prediction 

𝑋𝑖= vector of independent variables 

𝑌𝑖  = dependent variable of interest 

p𝑖 = the probability that an item in S belongs to class C  

γr = regularization parameter in SVR 

σ2 = RBF-kernel function parameter 
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Chapter 5. Large-Scale Industrial Fermenter Foaming Control: Automated Machine Learning for 

Antifoam Prediction and Defoaming Process Implementation 

5.1 Introduction 

5.1.1. Foam Formation and Foaming in Bioreactors 

  Foam is a form of dispersed medium with a well-defined complex structure composed of gas 

pockets separated by liquid membranes. Foaming behavior is usually affected by liquid properties such 

as surface tension, viscosity, and ionic strength. Foams can be classified into different categories based 

on their behaviors; they can be unstable (transient), metastable, or persistent.1 Metastable and 

persistent foams, which are a result of relatively concentrated surfactant mixtures, have the longest 

lifetime if left undisturbed.1 

 A foam structure is usually polydisperse in nature with a varying particle size distribution 2 and is 

influenced by the liquid fraction, which is the proportion of fluid in the foam. An increase in the liquid 

fraction results in structural change, allowing the foam to adopt a spherical configuration as it 

transitions from dry foam to wet foam.3 Foaming in bioreactors can occur because of multiple factors 

and the foaming agent(s) can come from both the media components used for fermentation and the 

metabolic activities of the microorganism used for fermentation.4 Different operational factors can 

impact foam formation inside a bioreactor.5,6 Higher airflow rate along with several other operational 

and design variables like temperature, pH, microorganism type (sporulating/ non-sporulating), choice of 

impellers, positioning of baffles, aeration zones, etc. impact foaming in one way or the other.  

 Some of the operational changes which can mitigate foaming include reduced aeration, lower 

temperature for broth, the addition of anti-foaming agents, reduced agitation, minimal broth usage, and 

usage of mechanical foam-breakers5; however, these techniques can have negative impacts on a 

fermentation process. Therefore, to maximize process efficiency without any severe repercussions, it is 

important to optimize the addition of antifoam in a bioreactor. 

5.1.2 Antifoam Addition and Defoaming Practices 

     High film elasticity, high surface and bulk viscosity, and high solid content are some foam stabilizing 

factors. Antifoams prevent foaming in a system in one of two ways. They either displace the foam 

stabilizing component from the bubble wall or locally burst the bubbles. A typical antifoam consists of 

oil, hydrophobic solid particles, or a mixture of both. Traditionally, optimization of an antifoam addition 

profile for a particular bioprocess requires a thorough understanding of the surface activities which 
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impact the stabilization of foam, specifications for the different fermenter designs, and the knowledge 

of the physico-chemical properties of the foam itself.7 

Antifoam addition can alter the dynamics of the bioprocess both directly (by preventing foaming) 

and indirectly (by impacting oxygen transfer, clogging filters downstream, interacting with cell 

membranes and other components of the chemical broth, etc.) Several studies are available that 

quantify the different impacts of foaming and antifoam addition on a bioprocess and other industrial 

sectors.7-13 Velugula-Yellela et. al.8 use change in the local dissolved oxygen variability to predict 

foaming; in their study, they observe the impact of antifoam and media selection on cellular health and 

production. In a similar study, Nielsen et. al.9 show that industrial antifoam agents compromised the 

growth rates and the glucose uptake rates for an ethanol production process.   

The addition of suitable antifoam agents effectively defoams a bioprocess, but excessive addition 

and post hoc addition of antifoam can severely degrade the product quality without controlling foaming 

efficiently. It is critical to use the optimal initial antifoam volume fraction (volume of antifoam mixed 

with media) for the desired defoaming actions.10 Adding the right amount of antifoam is also important 

to maintaining a sufficiently high oxygen transfer rate (crucial for a fermentation process); McClure et 

al.11 in their experiment quantify the impact of commercial antifoams in terms of foam suppression, 

oxygen transfer rate reduction, and time-dependent deactivation.  

Typically, bioreactors are equipped with different foam sensors or use various foam detection 

methods to automatically add antifoam, or the antifoaming agents are added manually in response to a 

foaming indication. Over time, there have been several reported defoaming strategies to mitigate the 

adverse effect of excessive antifoam addition, such as pH adjustment and high-temperature neutral 

stripping12, mechanical foam breakers13, etc.  In this work, we propose a unique defoaming strategy that 

uses data analytics tools to control the antifoam addition. Using our defoaming strategy, we attempt to 

remove the post hoc aspect of antifoam addition and develop specific (targeted) profiles for antifoam 

addition. In our previous work, we demonstrated that fermenters can be classified without any prior 

information on fermenter design and type of microorganism; we also predicted the onset of foaming 

using ensemble methods.14  

Through this work, we take our work to the next step by demonstrating the use of automated 

machine learning and by using exploratory time-series data analytics for industrial antifoam profile 

deployment. We use exhaust differential pressure as an indicator of foaming. As shown in Figure 5.1, 

exhaust differential pressure is the difference between the fermenter head pressure and the exhaust 
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line pressure. We consider foaming to occur when the exhaust differential pressure crosses 100 mbarg 

based on past industrial fermentation experience.   

 

Figure 5.1. Fermenter design with pressure notations for exhaust differential pressure calculations, 

created using Canva and adapted from reference [5] 

5.2 Dataset Extraction 

 We extract the key process variables to build the antifoam prediction model based on an 

experimental setup to study the dynamic measurements of foaming behavior for a continuous 

fermenter in Figure 5.2.6 The setup and additional details in reference 6 suggest the key measurement 

considerations in foaming control include probes (pH, temperature, and dissolved oxygen), the volume 

of a fermenter, agitator speed, and time for fermentation. In building the dataset for our current study, 

we use the key plant data following references 5 and 6. Table 5.1 summarizes 12 independent variables 

(X) and 1 quality variable (Y). Our dataset consists of 163 batches with four fermenter designs, totaling 

about half a million instances.  

 We choose hours (fermentation progress time) as an independent variable because of two reasons. 

First, none of the other independent variables is linearly correlated with time, and second, the 

fermenter data are collected for a multi-batch process for the same time-periods. For cases where time 

linearly changes with other variables or if data are collected in different periods for multiple batches, we 

should remove time as an independent variable as it becomes redundant or an observational ID.  



56 
 

 

 

Figure 5.2. Foaming control setup in a bioreactor, Reprinted from ref. 5. Copyright 2004 Elsevier.  
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Table 5.1. List of dependent and independent variables  

 

5.3 Defoaming Strategy 

 From our last report, we were able to integrate fermenter data based on independent variables 

alone, without specifying fermenter specifications such as straight wall height, aspect ratio, total 

volume, number of impellers, etc.14 We also accurately predicted the onset of foaming using ensemble-

based methods and compared them to other ML regression methods like Support Vector Machine 

(SVM) and neural networks.14 This paper demonstrates two different approaches to mitigate foaming: 

1) In the first approach (Section 5.4), we use the integrated data for each fermenter type and the 

combined dataset from all the fermenters to predict antifoam addition directly using an automated 

regression algorithm (TPOT) and compare it with ensemble-based methods like Random Forest and 

Extreme gradient boosting (XGBoost). We do not use this approach for deployment in the industry 

because of its limitations, but showcase the possibility of future usage as discussed later in Section 5.4.4 

and Section 5.5.2. 

2) For the second approach (Section 5.5), we use exploratory time series analysis and stepwise addition 

to build generalized profiles for all fermenter types and targeted deployment-ready profiles, which are 

specific to each organism in each fermenter type. We test these profiles on the fermenters and discuss 

the results in this paper later in Section 5.5.4 and Section 5.6.  

5.4 Automated Machine Learning for Antifoam Prediction  

 A successful ML model requires scanning through an exhaustive list of appropriate machine learning 

algorithms with multiple steps for feature selection, preprocessing, and hyperparameter tuning.  

Because of the plethora of algorithms available and the necessity for domain expertise, finding and 

Independent Variables Dependent Variable

Hours Antifoam Flow (in L/min)

pH

Acid Flow (in L/min)

Caustic Flow(in L/min)

Fermenter Temperature (in Celsius)

Dissolved Oxygen( %)

Air Flow (in L/min)

Volume (in L)

Air Valve Position (% open)

Agitator Speed (%)

Exhaust Differential Pressure (in mbarg)

Maximum Antifoam Addition (in L)
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using the right ML tool can be quite challenging, especially in an industrial setting. For our goal of 

building antifoam profiles, we use an automated-machine learning (AML) model called TPOT (Tree-

based Pipeline Optimization Tool). 15 By using AML, we can test hundreds of pipelines of successful 

algorithms and select the best pipeline based on the evaluation metric. AML tools use pre-designed data 

analytics structures, following the traditional sequential steps of training, tuning, and testing a data 

analysis pipeline. Such a tool helps researchers save quality time and provides the right pathway 

towards finding accurate results. Recently, AML has found its footing in several industrial and research 

projects in bioindustries and other chemical engineering sectors. 16-20 In this paper, we use TPOT to 

enhance our workflow after data acquisition, data cleaning and visualization, and data integration and 

transformation.  

5.4.1 TPOT Framework and Methodology  

 TPOT, developed by Olson et al15, is an AML tool that uses genetic programming to explore 

thousands of pipelines to find the best ML framework. Genetic programming is a well-known 

evolutionary computation technique that has three properties: selection, crossover, and mutation. In 

the selection step, we search for all possible random solutions to a given problem (referred to as the 

population) and evaluate how fit each solution is for a given fitness function. The next step is crossover, 

where we select the fittest solution for every iteration in the optimization process (referred to as a 

generation) and perform crossover to create a new population. The last step is mutation, where we take 

the new population and mutate them with random modifications and repeat the process.  

These stochastic changes can have positive or negative effects on the performance of the pipelines, 

thereby allowing the algorithm to explore pipelines that were not considered before.  After every 

crossover step, the worst-performing pipelines are removed from the population; after a fixed number 

of generations, TPOT recommends the best pipeline.17 The pipelines generated by TPOT include several 

different robust models from the Sklearn library such as Logistic Regression, SVM, K-nearest neighbor, 

Random Forest, etc. TPOT also occasionally learns pipelines that stack these estimators to create a new 

pipeline.   

 Figure 5.3 illustrates the TPOT framework for building an AML model. After the initial exploratory 

analysis and data integration, the TPOT algorithm automatically constructs and optimizes all the later 

steps.  
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Figure 5.3. TPOT framework for model building, created using Canva and adapted from reference [15] 

5.4.2 Data Preprocessing before Automation 

 Data preprocessing includes cleaning, visualization, fusion, and transformation. Data cleaning 

identifies misleading and mislabeled records, and removes noisy and redundant data, which may occur 

because of usage of multiple temperature sensors and pressure gauges, multiple dissolved oxygen (DO) 

probes, multiple identifiers for the same independent variables, and different fermenter design setups. 

The raw data consist of several columns with redundant data because of the presence of backup probes. 

We remove all the columns with identical data for temperature, pressure, dissolved oxygen, etc. 

Similarly, we remove some data columns, which play no role in antifoam addition profiling, like 

inoculation date, speculative batch count, etc.  

5.4.2.1 Data Visualization  

 We use Python 3.8 and its various packages (e.g., Scikit-learn machine learning python library) for 

the following visualizations and the proposed models.21-24 SHAP (Shapley Additive Explanations) 
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proposed by Lundberg et al.24 is a method to explain individual predictions based on game theory. We 

use random forest feature importance along with TreeSHAP to get the plot shown in Figure 5.4. The 

variables with the highest importance are placed at the top and the lowest variables are placed at the 

bottom. Some advantages of SHAP-based plotting over traditional importance plots are: (1) SHAP-based 

plots can highlight both the importance of the independent variables and the positive and negative 

relationships of the independent variables with the dependent variable. (2) the SHAP-based plot 

includes every single observation as shown by each dot in the plot. Traditional importance plots only 

show the trend on a generalized basis and do not account for individual cases.  

 From Figure 5.4, we see that exhaust differential pressure is the most important feature along with 

hour, volume, air valve position, etc. This is expected as the antifoam addition should rely heavily on the 

current exhaust differential pressure. We can also see the directionality of the importance as SHAP 

values in the x-axis indicate whether the independent variable will result in a positive (higher) or 

negative (lower) effect on the dependent variable. In our case, we see that the exhaust differential 

pressure has both positive and negative impacts on the current antifoam addition. We can also see two 

extreme observational cases from the plot: a) lower volume resulting in lower antifoam addition. b) 

lower airflow also resulting in lower antifoam addition. Such anomalies in observations can be excluded 

from the training dataset to ensure better model performance and in some cases, they also help us 

identify problems in the fermentation process.  

 To identify the anomalies in our batches, we use the multivariate data analysis software Aspen 

ProMV (available through university programs of Aspen Technology Inc.) to identify the underlying 

sources of variation. The software helps us generate a PCA-based (principal component analysis) hyper-

ellipse score plot, as shown in Figure 5.5. For this particular figure, we use a batch from Fermenter A 

with about 3000 observations to generate the ellipse plot. We see that some of the observations depart 

from the cluster as outliers. For instance, observations from 660-678 show deviation from the entire 

dataset as they fall outside the 95% confidence interval along with some other observations as shown in 

Figure 5.5. We can remove these observations from our training dataset for better model results.  
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Figure 5.4. Random Forest Feature Importance computed using SHAP values.  

 

Figure 5.5. PCA-based hyper ellipse score plot  
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5.4.2.2 Data Fusion and Transformation  

 Data fusion involves combining datasets from different fermenters to form a generalized dataset for 

each fermenter type. We then segregate datasets based on the six different types of strains to profile 

the antifoam addition for each strain. Data transformation involves changing the cumulative values of 

some independent variables (such as acidic flow, caustic flow, antifoam flow, and volume of the reactor) 

to non-cumulative values. Data transformation within the automated TPOT algorithm involves maximum 

absolute value scaling of the data as prescribed by the TPOT algorithm. This scaling ensures that the 

value of each feature in the model is in the range of [-1,1].  

5.4.3 TPOT Antifoam Addition Model Results 

 Table 5.2 shows the results for the antifoam addition predictive models using TPOT and ensemble-

based methods. The table compares the root-mean-squared error (RMSE) values of the ensemble-

methods (e.g., XGBoost and Random Forest) and TPOT method for both combined and individual 

datasets. We see that the RMSE values from TPOT are very similar to those of the ensemble methods 

and TPOT outperforms the methods with a slight margin for the combined fermenter data. The table 

also shows that the TPOT RMSE values for Fermenters A and D are very low (0.08-0.09). Lower RMSE 

values indicate a small error margin and a high accuracy.  Similarly, Fermenters B and C, show a 

relatively high RMSE value, which possibly results from the limited amount of data available for these 

fermenters.  

 Interested readers can find the details on ensemble methods and their comparison with other 

regression methods from our previous work,14 where we build regression predictive models for exhaust 

differential pressure. In this work, we predict the amount of antifoam addition to the fermenter directly.  

 Now that we have established a proper method of predicting the right amount of antifoam, we want 

to ensure that our method is viable in an industrial setting. By comparing the proprietary average 

antifoam flow rate in our industrial site with the antifoam addition RMSE, we find that our predictions 

have a marginal error of 3-4% per minute. While numerically our RMSE is very low, having a margin of 3-

4% is not very practical for an improved profile. In general, a machine learning model suggests a 

maximum antifoam addition without any limit constraints. We believe that such prediction models can 

be used for building micro-scale profiles, but for a complete profile, they require a maximum addition 

constraint. 
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Table 5.2. Model Comparison between automated machine learning (TPOT) and ensemble methods 

Algorithms Antifoam Addition Prediction RMSE 

Combined Dataset  

XGBoost 0.1276 

Random Forest 0.13 

TPOT 0.1249 

Individual Dataset  

TPOT (Fermenter A) 0.09 

TPOT (Fermenter B) 0.18 

TPOT (Fermenter C) 0.24 

TPOT (Fermenter D) 0.08 

 

5.4.4 TPOT Prediction Model Conclusion and Limitations 

 With our TPOT regression model, we show that we can use automated machine learning (AML) to 

predict antifoam addition with comparable accuracy to fully-tuned ensemble methods. This result is very 

useful as it ensures that we can build models using AML algorithms like TPOT and get high accuracies as 

good as those given by established robust methods like random forest or extreme gradient boosting. 

The usage of such saves time for an engineer and removes the barrier of complexity formed by several 

robust machine learning algorithms.  

 We also acknowledge a limitation of our AML-guided TPOT antifoam prediction model. If we use the 

profiles suggested by the model, we cannot account for the limit in antifoam addition. To use the model 

successfully, we need to find a way to restrict the total antifoam addition for a given system. 

Furthermore, another limitation is the size of the individual dataset. We need a larger dataset for each 

fermenter type to improve the antifoam addition prediction model in Fermenters B and C. In the next 

section, we discuss how we built new deployment-ready antifoam profiles using a unique approach. 

5.5. Antifoam Profile Building using Time-Series Based Exploratory Analysis and Stepwise Addition 

 To improve the antifoam profiles, we first explore the realized antifoam dosing strategy for each of 

the four fermenter types over 163 batches. We do this by grouping them by the mean value for each 

unique time observational ID. Table 5.3 shows the top ten peaks for the merged current antifoam 

addition rates for each fermenter type. From Table 5.3, we see that for fermenter A most of the addition 

occurs around the 13th hour. Similarly, we find that most of the addition is during the 11th and 37th hour 
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for fermenter B, 15th hour for fermenter C, and 35th hour for fermenter D. Observing the overall trend of 

the current antifoam addition helps us understand the generalized antifoam addition pattern for each of 

the fermenter types.  

Table 5.3. Merged antifoam profiles (largest 10 peaks) separated for each fermenter type for the 

entire dataset (of ~half a million instances) grouped by time. 

Fermenter A Fermenter B Fermenter C Fermenter D 

Time 
Antifoam 
Addition Time 

Antifoam 
Addition Time 

Antifoam 
Addition Time 

Antifoam 
Addition 

(in hrs) (in L) (in hrs) (in L) (in hrs) (in L) (in hrs) (in L) 

13.3 11.07 37.06 21.49 14.88 15.75 34.68 25.01 

12.54 5.89 10.68 21.15 14.78 14.48 34.66 18.76 

0.98 4.39 36.98 13.16 0.02 14.06 13.3 7.47 

40.64 4.09 10.63 7.46 14.7 10.12 13.22 6.58 

12.46 3.86 13.2 7.26 12.41 6.54 13.28 6.49 

35.17 3.81 36.9 6.95 14.62 5.99 0.08 5.66 

19.27 3.54 36.75 6 12.33 3.93 31.55 5.61 

40.44 3.53 13.13 5.77 12.15 3.54 30.16 3.74 

12.51 3.46 13.08 5.08 14.53 3.42 11.53 3.71 

12.59 3.39 21.38 5.05 12.23 2.61 17.3 3.12 

 

5.5.1 Generalized Fermenter Profiles 

 A typical industrial fermentation process can vary from a few days to months in some cases, 

depending on the type of reactor and the fermentation process. 25-27 For our case, we only consider the 

primary fermentation period of about 2-3 days. By combining all the strains and observing a generalized 

trend for a fermenter type, we get a base addition profile for a specific fermenter type. Since all the 

fermenters have different peak times, we conclude that the four different fermenters require separate 

antifoam addition profile analysis for the same microorganism strains. Figures 5.6-5.9 show the 

averaged current antifoam additions for each fermenter type for the entire 163 batches for six different 

strains. We use these base profiles to mark antifoam requirements for each fermenter type based on 

time. We conclude from these profiles that antifoam addition patterns are very different for each 

fermenter type.  
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Figure 5.6. Merged current antifoam addition profile for fermenter A.  
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Figure 5.7. Merged current antifoam addition profile for fermenter B.  



67 
 

 

Figure 5.8. Merged current antifoam addition profile for fermenter C.  
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Figure 5.9. Merged current antifoam addition profile for fermenter D.  

5.5.2 Deployment-Ready Targeted Profiles 

 The antifoam addition process is very dynamic; thus, the antifoam profile must be specified towards 

specific fermenter design and the microbial strain used. For reporting our analysis, we based our results 

on one of the six organisms, on three of the total four fermenter types, and both integrated and single 

batch tests. 

 To build new antifoam profiles, we use time-based exploratory analysis with stepwise addition. This 

method involves two important segments: 

a) The first segment involves mapping out the current maximum antifoam addition profiles and the 

current maximum observed exhaust differential pressures for a specific organism in each of the 

fermenters. Figure 10 shows an example of the top 100 antifoam additions with corresponding exhaust 

differential pressure. By doing this, we mark the time levels which require adjustments in levels of 

antifoam addition. We see from Figure 10 that the current profile for Organism 5 on Fermenter A, has 

maximum antifoam addition times around the 12th and 13th hours, followed by the 19th, 35th, and 41st 

hours. By doing this, we mark the time levels which require antifoam addition in the current profile. 

Then, from Figure 11, we see the observed maximum exhaust different pressure spikes occur around the 
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19th and 25th-27th hours. Based on these, we mark the time levels which require antifoam additions that 

are absent from the current profile.  

b) The second segment involves the management of antifoam addition constraints using a stepwise 

addition. Typically, in a fermentation process, there is a limit to the antifoam addition because of quality 

concerns. Most control systems for antifoam addition adhere to the limit, but the antifoam limit is 

reached much early in the fermentation process, resulting in poor quality towards the end. We use the 

time levels observed in the first segment to split the antifoam addition constraint leading to a stepwise 

addition of antifoam.  

 Figure 12 demonstrates how a sample profile for organism 5 on Fermenter A is submitted. The 

dotted lines indicate the stepwise constraints. In Figure 5.12, we add 25L of antifoam till the 18th hour. 

We then add 15L of antifoam from the 18th to the 27th hour. Similarly, we add 10L for the remaining 

hours. The time levels obtained from segment 1 help us decide when to partition the antifoam 

constraints. By splitting the constraint into three different steps and by using time-series-based 

partitions, we make sure that: (1) we do not run out of antifoam towards the end; (2) we are adding 

more antifoam preemptively during the time slots which seem to require a higher dosage of antifoam.  

 We note that the micro-profiles shown in Figure 5.12, represented by the curvy lines are controlled 

by the on-site foaming control mechanism. It would be possible to tune these micro-profiles in the 

future using our TPOT-based antifoam addition prediction approach. 
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Figure 5.10. Time-Series Antifoam Profiling for Organism 5 on Fermenter A based on Maximum 

Antifoam Addition (Subplot B shows the top 100 antifoam additions and Subplot A shows the 

corresponding exhaust differential pressure during the given time).  
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Figure 5.11. Time-Series Antifoam Profiling for Organism 5 on Fermenter A based on Maximum 

Exhaust Differential Pressure (Subplot A shows the top 100 exhaust differential pressure and Subplot 

B shows the corresponding antifoam addition during the given time). 
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Figure 5.12. Sample deployment-ready capped profile.   

5.5.3 Proof-of-Concept (PoC) Antifoam Profiles Deployment Verification Tests 

 We successfully deploy the antifoam profiles for an organism for three different fermenter types for 

about a month to gauge the initial results. We perform tests on two different scales: an integrated batch 

test and a single batch test. For the integrated batch test, we combine all the performance of all the 

batches from the training set and compare it with all the batches of the test set. For the single batch 

test, we take one random batch from the training batch and compare it side by side with a random 

batch from the test set.  

We evaluate the performance based on three different criteria: 

a) Average Exhaust Differential Pressure (AEDP) 

 For this criterion, we simply average the exhaust differential pressure (an indicator of foaming) 

throughout a batch or multiple batches, for a specific organism in a designated fermenter type and 

compare the averages for the training set and the test set. This measurement gives us some clues 

towards the extent of improvement in the new profiles. In an ideal setting, the AEDP should decrease 

with improvement in the model as we continue adding new data to the model.   

b) EDP Threshold Cross Count (ETCC) 
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This criterion is based on the count of exhaust differential pressure measurements that exceed our 

threshold of 100 mbarg (based on industrial experience). In an ideal setting, the ETCC should decrease 

with improvement in the model.  

c) Hourly Volume Retention (HVR) 

This criterion is one of the most important performance indicators as it directly correlates with 

production yield. For this measurement, we use the following formula: 

𝐻𝑉𝑅 =  
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑉𝑜𝑙𝑢𝑚𝑒 − 𝐹𝑖𝑛𝑎𝑙 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑉𝑜𝑙𝑢𝑚𝑒

𝐵𝑎𝑡𝑐ℎ 𝑅𝑢𝑛 𝑇𝑖𝑚𝑒 
 

 The initial maximum volume refers to the maximum volume in the fermenter during the initial 

stages of fermentation. Similarly, the final minimum volume refers to the minimum volume in the 

fermenter during the final stages of the fermentation.  

 Lastly, the batch run time is the runtime of a single batch or the average runtime of multiple 

batches. We divide the difference by the batch run to normalize the criterion for direct comparison. In 

an ideal setting, the HVR should decrease with improvement in the model. A decrease in HVR is a firm 

indicator of an increase in product yield and process improvement. 

5.5.4 Initial Performance Results from Deployed Antifoam Profiles 

 We deploy the profiles designed for a specific organism across 3 out of 4 different fermenter types. 

We monitor the results for several batches and use two different approaches to compare the initial 

results: integrated-batch comparison and single-batch comparison as shown in Figures 13 and 14.  

 For the single-batch approach, we compare an arbitrary batch from the training set with a random 

batch from the test set. We use the above-mentioned metrics to evaluate the performances of the new 

antifoam profiles on the fermenter types. From Table 5.4, we see that the profiles show significant 

improvement with a decrease in hourly volume retention (HVR) across all the fermenters. Fermenter A 

has a substantial overall reduction in EDP threshold cross count (ETCC) and average exhaust differential 

pressure (AEDP) as well. Fermenter C has conflicting results and requires further inspection.  

 For the integrated-batch approach, we combine all the current batch observations and compare 

them with the merged observations from the past batches. From Table 5.5, we see that the profiles have 

a large impact on Fermenter A. We reduce the AEDP by 55%, reduce ETCC by 12%, and decrease HVR in 

the fermenter by 53%. Similarly, we reduce the HVR in Fermenter B by 10%. We see a slight increase in 

AEDP, but that can be attributed to the lack of data for Fermenter B in both the test and the training 

dataset.  
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 The results from Fermenter C are conflicting as even though we manage to decrease the HVR, we 

still see a large increase in the AEDP and significant ETCC overshoot. When we go back to inspect the 

training dataset, we notice that the training dataset included several negative values which were 

corrected to zero, resulting in a sparse dataset. Comparatively, the new dataset does not have such 

sparsity. After further inspection, we verify that the impeller for Fermenter C is inefficient due to 

mounting errors. This issue led to the pressure overshoot in the line pressure, resulting in many negative 

values for the exhaust differential pressure. It is possible to remodel the fermenter results by adding a 

buffer value for the overshoot, to get a more reasonable comparison for the AEDP and ETCC. However, 

since the HVR is a firmer measure for comparison, we can see that even for Fermenter C, our new 

antifoam profiles show significant improvement. 

 

 

 

 

 

 

 

Table 5.4. Integrated Batch Test Results 

Integrated Batch Test 

  Value Indicator 

 HVR -53% Very Good 

Ferm A ETCC -12% Good 

 AEDP -55% Very Good 

    

 HVR -10% Good 

Ferm B ETCC 0% Neutral 

 AEDP 5.65% Bad 

    

 HVR -14% Good 

Ferm C ETCC 8% Bad 

 AEDP 69% Very Bad 
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Table 5.5. Single Batch Test Results 

Single Batch Test 

  Value Indicator 

 HVR -41% Very Good 

Ferm A ETCC -13% Good 

 AEDP -42% Very Good 

    

 HVR -34% Very Good 

Ferm B ETCC -4% Good 

 AEDP -1% Neutral 

    

 HVR -17% Good 

Ferm C ETCC 12% Bad 

 AEDP 39% Very Bad 
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Figure 5.13. Integrated-Batch test results. 
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Figure 5.14. Single-Batch test results.    
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5.6. Conclusion, Limitations, and Future Research 

 Herein, we showcase an industrial solution to foaming based on the development of data-driven 

antifoam profiles. We first predict the antifoam addition for defoaming directly, by using automated 

machine learning. Then, we use exploratory time-series to build macro-profiles for immediate 

deployment of antifoam profiles. 

 We verify the success of our profiles in both single-batch tests and integrated batch tests. Our 

profiles manage to reduce the average exhaust pressure, reduce the exhaust differential pressure 

overshoots, and most importantly reduce the hourly volume retention of the fermenter. By decreasing 

the hourly volume loss by over 53% and lowering the average pressure by over 55% in Fermenter A 

(integrated), we demonstrate our ability to control foaming with machine learning and data analytics. 

Decreasing the hourly volume loss leads to a significant increase in production yield and results in a 

corresponding revenue increase.  

 We have tested the results for a single strain across three different fermenter types. It would be 

interesting to gauge the performance of the profiles for the other five strain types and the fourth 

fermenter type. In Section 5.5.2, we mention the possibility of establishing micro-profiles for further 

improvement. We believe that ensemble methods, automated machine learning, and deep learning 

tools, can help with building those profiles. We show how one can predict the antifoam directly with 

these models; with the right amount of data, we may be able to constraint the antifoam addition to a 

limit and have accurate micro-profiles to further improve the process.  
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Chapter 6. Deep Learning Optimization on Industrial and Simulated Polyolefin Datasets 

6.1 Introduction 

 This chapter presents the workflow to build a deep neural network (DNN) and three different types 

of recurrent neural network (RNN) using Python. We showcase the use of these two methodologies for 

two different cases. For the first case, we demonstrate how to build a steady-state (time-independent) 

model for a high-density polyethylene (HDPE) industrial plant to predict the melt index (MI) using Keras 

libraries to build deep neural networks. And for the second case, we cover how to build three different 

types of dynamic recurrent neural network from scratch to predict the melt index from a simulated 

time-dependent polymer dataset.   

 Section 6.1 explains the resurgence of deep neural networks and describes the basics of a deep 

neural network. Section 6.2 provides the details about the different types of recurrent neural networks. 

Section 6.3 describes an industrial HDPE plant setup and the variables associated with the industrial 

dataset. Section 6.4 introduces a step-by-step workflow to build a deep neural network using Keras 

libraries. Section 6.5 describes the dynamic dataset simulated for an HDPE plant. Section 6.6 illustrates 

how to build the three different types of recurrent neural network architecture to deal with time-

sensitive data in a multistep workflow.  

 There are several published studies which use different deep neural network architectures and 

recurrent neural networks for plant control and optimization. [1,2,10,11,14] Deep learning is used for soft 

sensor development [1], fault diagnosis [2], predicting chemical properties [3,4,13], designing polymers 

[8,11,12], predicting protein interactions [5], tracking particle dynamics [7], fouling in heat exchangers [19], 

etc. However, the implementation of these architectures can be quite challenging for new readers. 

 Through this chapter, we want to enable readers to create their own deep neural network and 

recurrent neural network for optimization with little to no neural network exposure, minimal computing 

resources, and easy implementation.  

6.1.1 Why use deep neural networks? 

 In the past couple of years, we have seen a surge in big data collection, cutting-edge hardware 

improvements, and release of several user-friendly software platforms to enable engineers to use deep 

neural networks for their research. In addition to accessibility to resources for building deep neural 

networks, many industries are promoting process engineering solutions based on digital transformation. 

One of the examples of such a transformation is application of a ‘digital twin’.  A digital twin is a virtual 

representation of a process/model which becomes more powerful as it keeps receiving real world data 

from its real-world counterpart.  
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 Before we talk about deep neural networks, we need to briefly talk about neural networks. Neural 

networks are a cluster of nodes, known as neurons, which are arranged into an ordered sequence of at 

least three groups known as layers. The first layer is called the input layer and has the same number of 

neurons as the number of input variables for the system, the last layer is known as the output layer; the 

layers in between are called hidden layers. The choice of number of layers and number of nodes is task-

dependent and is mostly based on experience. [18] Deep neural networks are just neural networks with 

two or more hidden layers. Appendix B gives a brief introduction to different neural network 

terminologies and mathematics behind neural networks.  

 Most steady-state (time-independent) data can be modelled using a simple feed-forward neural 

network, where the connections between the nodes do not form a cycle. However, for dynamic (time-

dependent) data, a more complex neural network architecture is more useful. Recurrent Neural 

Networks (RNN) are very useful in handling such time-dependent sequence data. In a recurrent neural 

network, outputs from previous time steps are taken as inputs for the current time step.  

6.2 Different Types of Recurrent Neural Network 

 Recurrent Neural Networks (RNN) are mostly used to deal with sequential data types like time-series 

data. RNNs are trained by backpropagation which is a method of fine-tuning the weights of a neural 

network.  

In this chapter, we will be looking into three different types of RNN: 

6.2.1 Long short-term memory (LSTM) 

 In a RNN architecture, continuously updating the weights while training sometimes leads to 

decreasing gradient, making it harder for a network to converge with proper training. Inversely, you can 

also have increased gradient, which also makes it harder for a network to converge. To deal with these 

vanishing gradient problems and exploding gradient problems, Hochreiter et al. proposed LSTM which is 

a special kind of RNN with memory units to overcome long-term dependencies among the data. [20]   

 An LSTM layer consists of a set of connected memory cells which pass the sequential information. 

Each of these memory cells has three information gates: input gate, forget gate, and the output gate as 

shown in Figure 6.1 and two states: cell state and hidden state. These help the memory cell control what 

information flows in, what to forget, and what to memorize across the time series to learn long-term 

dependencies. The memory cell has two activation functions: Sigmoid (maintains range between 0 and 

1) and Hyperbolic Tangent (maintains range between -1 and 1). The sigmoid activation function helps 

the gates to update or forget the values, while hyperbolic tangent helps regulate the network. The 

attached Appendix B gives more details about these activation functions.  
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 In an LSTM memory cell, the first step involves combining the previous hidden state and current 

input at the forget gate, where the combination is passed through the sigmoid function. Then, the 

combination is passed through the input gate, where it gets transformed by both sigmoid and hyperbolic 

tangent functions. The hyperbolic tangent output is multiplied with the sigmoid output to get a primary 

cell state. The primary cell state is then multiplied by the forget vector from the forget gate and added 

pointwise to get a new cell state. For the final output gate, we first send the combination from the input 

gate through a sigmoid function and then send the new cell state through a hyperbolic tangent function. 

The output (or the hidden state) is finally calculated by multiplying the outputs from the output gate 

operations.    

 

Figure 6.1 LSTM memory cell. Reproduced from Reference 19.  

6.2.2 Bidirectional LSTM 

 Bidirectional LSTM (BiLSTM) is a modification to LSTM, that consists of two LSTMs: one taking the 

input in a forward direction, and the other in a backward direction. BiLSTM increases the amount of 

information available to the network, by combining the outputs from both forward and backward 

directions to make its final prediction.  

6.2.3 Gated recurrent unit (GRU)  

 A variant of LSTM architecture, GRU proposed by Cho et al. is a simplified version of LSTM. [21] Each 

memory cell for a GRU consists of only two gates: reset gate and update gate and has only one state: 

hidden state. The update gate acts like the forget and input gate of LSTM as it decides which information 

to forget and what new information to add or update. The reset gate acts as a type of forget gate as it 

decides how much past information to forget. Like LSTM, the current input (xt) and previous hidden 

state (ht-1) are combined as they go through the reset gate and the update gate to give an output (ht). 
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Figure 6.2 GRU memory cell. Adapted from reference 22.  

6.3 Industrial HDPE Reactor Setup 

 Figure 6.3 illustrates a slurry process to produce a high-density polyethylene (HDPE). The 

polymerization process involves two different reactors, and the entire process is highly exothermic. 

Almost the entire reactor volume is occupied by the polyethylene slurry, which undergoes separation, 

removing any unreacted monomer, solvent, catalyst, and other reactants from the polymer. Then, the 

slurry is cooled using internal coils and external cooling systems and put through a series of molds and 

packaged.  

 The 2005-2006 real-industrial HDPE plant dataset is provided by Park et. al. [25] From the raw process 

data, we choose the 14 input variables to predict the output variable, the melt index (MI) as shown in 

Table 6.1. 
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Figure 6.3 Schematic of the HDPE reactor used to build a soft sensor. Reproduced from reference (23). 

Table 6.1. List of all the input variables for HDPE reactor. 

Input Variables Symbol Input Variables Symbol 

Ethylene Feed Rate ETH Reactor temperature 

(Top) 

RT_TOP 

Hexane Feed Rate HDH Reactor temperature 

(Middle) 

RT_MIDDLE 

 

 

 

Recycled Hexane Feed Rate HMH Reactor level 

 

LEVEL 

Reactant (BUE ligand) Feed Rate PRL/BUE Reactor Pressure_1 RP1 

Hydrogen Feed Rate HYD Reactor Pressure_2 RP2 

Reactor temperature (Bottom) RT_BOTTOM Jacket Temperature_1 JT1 

Agitator Speed AGITATOR Jacket Temperaure_2 JT2 
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6.4 Deep Neural Network Model Using Keras Libraries 

 Keras is a deep learning application programming interface (API) written in Python, running on top 

of the machine learning libraries like TensorFlow and Theano. For our first case model, we use Keras to 

build a deep neural network in a google colab notebook.  

We follow these steps to build a deep neural network for melt index prediction: 

1. Remove any observation with empty or missing values. Then, divide the dataset into training and test 

datasets. We will use 80-20 split (80% training data and 20% test data). It is important to note that the 

training data can be further divided into validation set (70% training data and 10% validation data) for 

hyperparameter tuning, if needed. 

2. Select the dependent and independent variables of the dataset. 

3. Build the deep-neural network using Keras library.  

4. Extract the value of the model performance metric. 

5. Plot a scatterplot to visualize the model predictions.  

 The first step for every model building is data preprocessing. In this step, we make sure that we 

divide our dataset into two randomly sampled subsets using an 8:2 ratio. We also make sure that all null 

values are removed from the dataset. Figure 6.4 shows the code for splitting our dataset and removing 

all observations with missing values. Here ‘Axis=0’ represents the row values and by using ‘how=any’ we 

remove all rows with any missing column values. For this example, we have two different datasets, 

HDPE1 and HDPE2 representing two different timelines for the HDPE plant.  

 

Figure 6.4 Splitting the HDPE dataset into training and test sets and removing null values.  
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 The second step involves selecting our X-values (independent variables) and Y-value (dependent 

variable). Figure 6.5 illustrates how we do that. We use the HDPE1 dataset for our model. We select the 

first 14 columns as our X-values and the last column as our Y-value.  

`  

Figure 6.5 Selecting X-values and Y-value 

 The third step involves building the deep neural network model using Keras. Figure 6.6 shows the 

network architecture for the model. As we can see from the structure, the deep neural network has 1 

input layer with 14 neurons, 2 hidden layers with 10 neurons, and an output layer with 1 neuron. We 

use rectified linear unit (ReLU) activation function, as the activation function for the hidden layers, 

which is one of the most used activation functions in deep learning models. We use simple linear 

activation function for the output layer as we want a numerical regression output. We use ‘Adam 

optimization’ for training the neural net.  Appendix B describes activation functions and different 

optimization techniques.  
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Figure 6.6 Deep neural network with two hidden layers.  

 We use sequential Keras model to build the layers one at a time. For more complex architectures we 

can use functional Keras models. For layer type, we use dense layer type such that each neuron in the 

dense layer receives input from all the neurons of its previous layer.  Using the model, we minimize the 

mean squared error and train 481 parameters as shown in Figure 6.7. 
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Figure 6.7 Deep neural network using Keras.  

 In the fourth step, we extract the evaluation metric, root mean squared error (RMSE) value, for the 

model. As the name suggests, RMSE measures the standard deviation of the residuals. It is used to see 

how spread the predicted values are. Figure 6.8 shows the code for extracting the RMSE value from the 

model. We can see that the RMSE value for melt index is 1.2606.  
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Figure 6.8 Evaluation metric calculation (RMSE calculation). 

 The fifth and final step involves visualizing the actual and predicted values. Figure 6.9 explains how 

we can visualize the residuals with a scatterplot. From the figure, we can see that our simple deep 

neural network model does a good job of predicting the melt index. 

 

Figure 6.9 Visualization of actual vs predicted plot for melt-index prediction.  

6.5 Time-Dependent Polymer Dataset Obtained by Simulation for an HDPE Plant 

 For the second case, we use data from an HDPE plant simulation and predict the melt index using 

dynamic deep neural network modeling techniques.  
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 We simulate a two-reactor slurry HDPE process with ethylene as the monomer and butylene as the 

comonomer. Hexane is used as the solvent for the process. We build a dynamic process model like the 

procedure mentioned by Sharma and Liu. [26] The dynamic model is used to make changes in the process 

variables at set time intervals to simulate a real-time dynamic HDPE plant. We run the simulations twice 

with different changes in the process variables at the same time periods to simulate two different 

datasets for training and testing.  

 

Figure 6.10 Dynamic HDPE production process with 11 process variables.  

 From the raw process data, we use 8 input variables to predict the melt index (MI) as the output 

variable as shown in Table 6.2. 
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Table 6.2. List of all the input variables for simulated HDPE reactor. 

Input Variables Symbol Input Variables Symbol 

Hexane Solvent Feed to 1st 

reactor 

HX Ethylene Feed to 2nd 

reactor 

C22 

Hydrogen Feed to 1st reactor H2 Butylene feed to 2nd 

reactor  

C4 

 

Ethylene Feed to 1st reactor C2 Hexane Solvent feed to 

2nd reactor 

HX2 

Catalyst Feed to 1st reactor CAT Hydrogen Feed to 2nd 

reactor 

H22 

 

6.6 Dynamic Deep Learning Using 3 Types of Recurrent Neural Networks 

 In this section, we look at building three different types of deep recurrent neural network structures 

to extract the melt index for a dynamic process.  

We use the following steps as a step-by-step workflow to build the network architectures. We add some 

additional steps compared to Section 6.4 like data transformation to demonstrate a more complex 

workflow.  

1) Remove any observation with empty or missing values. Then, divide the dataset into training and test 

datasets. We will use 80-20 split (80% training data and 20% test data). 

2) Select the dependent and independent variables of the dataset. 

3) Transform the variables by standardizing or normalizing the variables.   

4) Build and train the three different types of recurrent neural network.  

5) Make predictions and visualize the predictions for all the architectures.  

6) Extract the value of the prediction metric for model evaluation. 

 Our first step like before is data preprocessing, where we check for any missing values and then split 

the dataset into training and test datasets. Figure 6.11 shows the code for checking the missing values 

and interpolating the values if missing. In our case there are no missing values. There are other methods 
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of dealing with missing values like listwise deletion, pairwise deletion, mean substitution, maximum 

likelihood, multiple imputation, etc. [27]  

 

  

Figure 6.11 Checking for missing values and interpolation of missing values.  

 In order to split the dataset into training and test datasets, we use a different approach. Instead of 

just directly splitting the dataset using an 8:2 train-test split, we use a time-split validation method. [16] 

Our dataset consists of two separate batch runs and we use one of the runs to train the model and test 

the model on some instances (where we see the maximum variation in the melt index) from the second 

run. By doing this, we mimic a real industrial setting where we must predict how the next batch will look 

like based on the previous batch. Figure 6.12 shows the code for the splitting method along with their 

dimensions, code for the split plot, and Figure 6.13 helps us visualize the training and test data used for 

model building.  



94 
 

 

Figure 6.12 Time-split validation method 

 

Figure 6.13 Train-test split plot using time-split. 
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 The second step is selecting the independent and dependent variables like we did for the simple 

deep neural network. From Figure 6.14, we see that we choose the 8 independent variables other than 

melt index and time as our X variables and melt index as our Y variable (dependent). 

  

Figure 6.14 Selecting independent and dependent variables.  

 The third step involves using data transformation techniques like feature scaling. The two most 

common methods for feature scaling include standardization (ensures zero mean and unit variance) and 

min-max normalization (re-scales features with a distribution value between 0 to 1). Feature scaling 

helps gradient-based algorithms like deep neural networks to converge faster. Standardization is 

preferred over min-max normalization in some cases as it is robust to outliers. We will use 

standardization for our transformation as shown in Figure 6.15. If we wanted to use min-max 

normalization, we would import and use MinMaxScaler instead of StandardScaler.  

 

Figure 6.15 Feature scaling using standardization or z-score method.  
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 For the fourth step, we will be building and training three different RNN architectures: Long Short-

Term Memory (LSTM), Bidirectional LSTM (BiLSTM), and Gated Recurrent Unit (GRU).  

 Before we start building the models, it is important to reshape the input data into a 3-D format. 

Figure 6.16 shows how we can do that: 

  

Figure 6.16 Reshaping input data. 

 Time-steps in Figure 6.16 refer to the number of instances to consider for input per iteration before 

giving an output. For example, if our dataset does not show any significant variation in output for every 

30 instances, we can set the timestep to be 30. In our case, we set the timestep as 1.  

Now we are ready to build the model as we build three different RNN architectures as shown in Figure 

6.17.  
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Figure 6.17 Creating different RNN architectures  
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 The first step towards creating the RNN architectures using Python is to import all the essential 

libraries. Here we use Keras API of the Tensorflow library to build the structures. We first create the 

BiLSTM model with two hidden layers. We use the dropout regularization method to ensure that our 

models are not overfitting. Since we have 8 input variables, we use 8 as the number of input neurons. 

We select Adam optimizer and a learning rate of 0.0001. The attached Appendix B gives information 

about the optimizer. To select the number of hidden neurons in each hidden layers (5 in our case as 

shown in Figure 6.17), we use a method developed by Sheela et al.17, using the following equation:  

𝑁ℎ = (4𝑛2 + 3)/(𝑛2 − 8)                                                                                                                                  (6.1) 

 Here, n is the number of input neurons. There are several rules which can be followed to determine 

the number of hidden neurons depending on the nature of the dataset, complexity of activation 

functions, and the size of the dataset. [23-24] It is important to investigate structured trial and error 

method for every specific case.  

 We can also check the number of parameters involved in each of the architectures as shown in 

Figure 6.18. We can see that the BiLSTM model is trained on 2619 parameters. Similarly, LSTM is trained 

on 1050 and GRU is trained on 843 parameters respectively. It intuitively makes sense, as BiLSTM 

accounts for input in both forward and backward direction and GRU is a simplified version of LSTM.   

 

Figure 6.18 Parameters involved in training BiLSTM. 
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 Next, we train the network architectures as shown in Figure 6.19. We use 20% of the training data 

for validation. We set the number of epochs to 100. The number of epochs define the number of times 

the learning algorithm will work through the entire dataset. In order to avoid overfitting, we also set an 

early stop to stop training when validation loss has not improved after 30 epochs.  

 We set the batch size to 5. The batch size determines how many times the network weights are 

updated per epoch. Batch sizes and number of epochs are also based on the nature and size of the 

dataset; structured trial and error should be used to determine the best batch size. We can use grid 

search to determine the best number of epochs and batch size.  

 

Figure 6.19 Fitting the RNN models.  

 We can also plot the training and validation loss to visualize our losses through each epoch. Figure 

6.20 shows the required code and the plot for training and validation loss in BiLSTM.  
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Figure 6.20 Training and validation loss in BiLSTM.  

 Now we are done with our fourth step; before we move on to the fifth step of comparing the actual 

values with the prediction, we must convert the target dependent variable (Y-variable/melt index) back 

to the original data space. We show the transformation in Figure 6.21. 

 

Figure 6.21 Inverse transform of target variable.  

 Now for the fifth step, we want to make predictions and visualize the real target variable and the 

predictions for our three RNN architectures. Figure 6.22 (a-d) shows the steps to make the predictions 

and plot the prediction vs real values for the melt index.  
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Figure 6.22 (a) Making prediction for the three RNN architectures and plotting the true data vs 

prediction for the three models.  

 

 

Figure 6.22(b) Prediction vs true data for BiLSTM 
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Figure 6.22(c) Prediction vs true data for LSTM 

 

Figure 6.22(d) Prediction vs true data for GRU 

 As a final step, we can evaluate the performance based on different metrics like root-mean squared 

error(RMSE) and mean absolute error (MAE). Figure 6.23 shows the steps for model evaluation.  
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Figure 6.23 Prediction of the target variable.  

6.7 Results and Limitations 

 Table 6.3 summarizes the results from the prediction. We can see that GRU gives the best 

performance with the lowest MAE and RMSE. For a large dataset, we would expect BiLSTM to give the 

best performance, but for a smaller dataset like ours, LSTM and GRU give better performances. GRU is 

preferred when we want our models to converge faster and are not too deeply concerned with high 

accuracy.  

Table 6.3. Model performance evaluation results for RNN architectures.  

RNN model  MAE RMSE 

LSTM 6.33 9.18 

BiLSTM 7.59 12.38 

GRU 5.61 6.94 

 

 We can further improve the models by tuning the tunable hyperparameters like number of hidden 

layers, number of epochs, batch size, number of hidden neurons, alternative loss functions, alternate 

optimization algorithms, etc. It is important to use proper regularization techniques like dropout and 

cross-validation to ensure we account for issues like overfitting and underfitting.  
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Chapter 7. Dissertation Summary 

7.1 Concluding Remarks 

 In this work, we successfully demonstrate five different cases where we use machine learning 

algorithms backed by statistical theories for multivariate data analysis. We demonstrate applications of 

several novel techniques like ensemble methods, automated machine learning, exploratory time series, 

and deep learning for solving industrial problems.  

 For the LDPE dataset, we demonstrate manufacturing quality control using multi-output regression. 

We are able to detect anomalies and observe inter-variable and IO (input-output) relationships. We use 

the HDPE dataset to build a soft sensor for melt flow index. Deep neural networks give us the best 

results as a soft sensor among the different non-linear machine learning models. We also demonstrate a 

step-by-step methodology of building different types of deep neural networks for both continuous 

process (industrial dataset) and batch process (simulated dataset). Through our work, we also show how 

multivariate data analysis tools like Aspen ProMV can be used for monitoring and optimizing polyolefin 

industrial datasets.  

 The second half of this dissertation is focused on foaming control and implementation of a robust 

machine learning-based defoaming strategy. In the industrial sector, foaming remains an inevitable side 

effect of mixing, shearing, powder incorporation, and the metabolic activities of microorganisms in a 

bioprocess. In our work, we show how we can integrate a dataset with different fermenters using 

ensemble-based classification models. We use ensemble-methods to predict the exhaust differential 

pressure (an indicator of foaming). In order to mitigate the adverse effects of excessive foaming, we 

present a method of predicting the antifoam addition using automated machine learning. Finally, as a 

proof-of-concept, we build antifoam profiles using exploratory time-series and deploy the profiles in the 

industry. The initial deployment results show an overall decrease in the volume loss (up to 53%) and a 

decrease in the average exhaust differential pressure (up to 55%), among other indicators.  

7.2 Future Outlook 

 In this section, we look at different approaches in which the research can be used to advance the 

objectives of the presented dissertation.  

Fermentation Data Integration 

 Our classification models were able to predict the type of fermenter with operating conditions 

alone. This allows for integrating datasets consisting of operating conditions to build a more robust 

generalized model. We believe that such a fermentation integration model can have other novel 

applications in pattern/trend detection outside foaming.   
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Foam Prediction 

 Using ensemble-based methods we are able to predict foaming with high accuracy. It would be 

interesting to see if we are able to use the model for designing protocols for fermentation operation 

with the goal of maximizing production yield and minimizing the impacts of foaming.  

Defoaming Strategy 

 We build antifoam profiles using exploratory time-series and deployed the profiles for one organism 

across three different fermenters. It would be interesting to gauge the performance of all of the six 

organisms across all four different fermenters. This research can be used not only for bioprocessing but 

for any chemical process which faces the problems of foaming. Herein, we present a novel strategy for 

defoaming, which is the first to use a data-based approach to reduce the impact of foaming.  

Defoaming Antifoam Profile Enhancement 

 We present automated machine learning for predicting antifoam addition directly; currently 

antifoam addition constraint restricts us from using the model. We believe such a method can instead 

be used to build antifoam micro-profiles which can further enhance the antifoam macro-profiles built by 

using exploratory time-series as noted in Chapter 5.  

Anomaly Detection and Quality Control 

 We demonstrate how Aspen ProMV and different machine learning algorithms can help with 

anomaly detection and quality control with multi-output regression. It would be interesting to see if we 

can use automated machine learning for the same.  

Deep Learning 

 Through our work, we look at both static and dynamic polyolefin datasets and build models around 

industrial and simulated datasets. It would be interesting to use the dynamic regression models for 

other time-series datasets found in chemical processes.  
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Appendix 
 

APPENDIX A 
 

Introduction to Python for Chemical Engineers 

Python is a high-level general purpose programming language designed by Guido van Rossum in 1980s. 

Some of the characteristics of Python which makes it such a popular programming language are: 

simplicity, versatility, cross-platform, open-source, free software, large unique library, and exception 

handling capacity.  

Simplicity: Python was ranked as the second-most popular programming language by Github in 2020. [1] 

Due to its user-friendliness, English language parallels, and adaptability, Python aids new programmers 

in mastering the concepts of programming in a simple manner. Engineers new to programming can 

easily learn the syntaxes of the language without having to learn complex syntaxes like the ones used for 

programs such as C++, Java, and PHP.  

Versatility: Over the past decades, Python has emerged to be one of the most diverse programming 

language, which can be used for software development, operations, visualization, data analytics, 

finance, design, machine learning, artificial intelligence, etc.  

In chemical engineering, Python has a broad array of applications like soft-sensor development, data 

analytics and visualization, operations, process optimization, simulation, process design, automatic 

calculation, anomaly detection, etc.  

Cross-platform: Python programs can run across different operating systems like Windows, Mac, and 

Linux. Some operating systems like Mac and Linux, come with preinstalled versions of Python. While, for 

operating system like Windows, one can easily install Python and a graphical interface if needed.  

Open-source: Python is publicly accessible with open-source license. Anyone can see, modify, and 

distribute the code, even for commercial use.  

Free software: All the versions of Python, including the latest version, can be installed for free on 

multiple devices for all operating systems (Windows, Mac, Linux, Other).  

Large unique library: One of the reason for the popularity of Python is its huge collection of libraries, 

which is increasing exponentially as its simplicity attracts thousands of developers to develop new 

libraries. Some of the popular libraries are: Numpy, Scikit-Learn, TensorFlow, Pandas, Keras, etc.  

Exception handling capacity: Errors in Python are of two types: Syntax errors and exceptions. Errors are 

the problems in a program due to which the program will stop the execution. Syntax errors are errors 

caused by a character or string incorrectly placed in a command or instruction that causes a failure in 

execution.  

On the other hand, exceptions are raised when some internal events occur which changes the normal 

flow of the program. Python offers several exception handling mechanisms to elegantly handle errors 
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without disturbing the workflow of majority of the code and solve problems, which can sometimes 

speed up the script.  

A.1.1 Installing Python: 

For installing and using Python, we recommend using Spyder, an open-source cross-platform integrated 

development environment (IDE) for scientific programming in the Python language. 

The best way to install Spyder as well as get other useful programming toolkits is to install a group 

package called Anaconda. Anaconda is a free and open-source distribution of Python and R 

programming languages for data science and machine learning. Anaconda comes with over a 1500 

packages (including the package management system Conda) and a graphic user interface (GUI) named 

Anaconda Navigator. The Anaconda Navigator also allows users to install some applications by default 

such as Jupyter Notebook, Spyder IDE and Rstudio (for R). 

The step-by-step guide for installing Anaconda Navigator is: 

1) Go to anaconda.com 

2) From the products category select Individual Edition. 

3) Click on Download.  

4) Select the right operating system and choose 64-bit processor for most advanced computer systems 

(ideal for RAM greater than 4GB) or 32-bit for older systems.  

5) Click on executable file, then click next, read the licensing agreement and click on agree to the terms. 

6) Select an install for “Just Me” unless you’re installing for all users (which requires Windows 

Administrator privileges) and click Next. 

7) Select the installation location.  

8) Choose whether to add Anaconda to your PATH environment variable. We recommend not adding 

Anaconda to the PATH environment variable, since this can interfere with other software. Instead, use 

Anaconda software by opening Anaconda Navigator or the Anaconda Prompt from the Start Menu. 

9) Choose whether to register Anaconda as your default Python. We recommend selecting this option.  

10) Click on Install, then Next, and finally Finish to complete installation.  

For more information and operating system specific guide, users can visit: 

https://docs.anaconda.com/anaconda/install/ 

 

A.1.2 Basics with Python 

1. Opening Python 

To use Python, we will be using Spyder IDE as a graphical interface. We open Spyder by searching for 

Spyder or using Anaconda Navigator.  

https://docs.anaconda.com/anaconda/install/
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2. Creating a new file 

We create a new file by clicking on new file or pressing Ctrl+N; every new file is created as a Python 

script and its directory location can be selected and is visible above the variable explorer window.  

It is important to save the script in the right location before executing the script.  

3. Writing a script  

We write the script in the command window and the executed script output can be seen in the IPython 

console window in Spyder. Stored functions, variables, and basic mathematical operations can directly 

be called in the console window.  

4. Using Python as a calculator 

Python can be used as a calculator to perform basic mathematical operations. For instance, we can 

directly use the console window for the calculation: 

 

Such calculations are very basic, in order to do some complicated calculations, we need to learn about 

storing values in variables and some mathematical libraries, which we will look into in the sections 

ahead.  

5. Storing values in variables 

In Python, we can assign a value to a variable, using the equals sign. For instance, we can store 

Avogadro’s number: 

 

We use the built-in power function (pow) to handle exponentials. The resulting variable is stored as 

Avogadro_number and can be seen in the variable explorer window.  

 

 

A.1.3 Different Data Types in Python 

Variables can store data of different types; Python has the following data types built-in by default: 

1. Text Type (‘str’) 

To create a string, we use single or double quotes around some text, for instance: 
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2. Numeric Types (‘int, float, complex’) 

Here we can see x, y, and z stored as integer, float, and complex numbers respectively.  

 

3. Sequence Types (‘list, tuple, range’) 

List: Lists are used to store multiple items in a single variable. Lists are created using square brackets. 

They are ordered, changeable, and allow duplicate values. List items are indexed, the first item has index 

[0], the second item has index [1] etc. For instance: 

 

 

Tuple: Tuples are also used to store multiple items in a single variable like lists. They are created using 

round brackets. They are ordered, unchangeable, and allow duplicate values. Tuple items are indexed as 

well, the first item has index [0], the second item has index [1] etc. For instance: 

 

 

Before we look into range, let us look at the differences between lists and tuples: 

a. Syntax Difference: As shown above, a list is created using square brackets, while a tuple is created 

using round brackets. 

b. Mutability: We can easily change or modify list values based on index, while a tuple cannot be 

changed. Since lists are mutable, we can't use a list as a key in a dictionary. This is because only an 

immutable object can be used as a key in a dictionary. Thus, we can use tuples as dictionary keys if 

needed. Below we show how the list we created before can be mutated: 

 

Now, we can see the change in the list in the variable explorer window: 

 

c. Copying and reusability: Since, tuples are immutable, they can simply be reused with no necessity to 

copy. However, lists can be copied as shown below: 
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The elements in the copied list are identical to the original list, however the list itself is different, as 

shown below: 

 

d. Memory Difference: Python allocates memory to tuples in terms of larger blocks with a low overhead 

because they are immutable. On the other hand, for lists, Pythons allocates small memory blocks. Thus, 

tuples use smaller memory space compared to lists. This makes tuples a bit faster than lists when you 

have a large number of elements. 

 

Range: The range() function returns a sequence of numbers, starting from 0 by default, and increments 

by 1 (by default), and stops before a specified number. Here we store a range of multiples of 4 starting 

from 4 and ending at 21: 

Script: 

 

Output: 

 

4. Mapping Type (‘dict’) 

Dictionaries are used to store data values in ‘key:value’ pairs. They are created using curly brackets. 

They are ordered (for Python 3.7 and above, unordered for other versions), changeable, and do not 

allow duplicate values. Here we store the information we used before as a dictionary: 

 

With dictionaries we can search for specific values for different keys easily. For instance, if we wanted to 

see the birth year for George Davis in our dictionary, we can simply use: 

 

5. Set Types (‘set’, ‘frozenset’) 
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Set: Sets are used to store multiple items in a single variable. They are also created using curly brackets. 

They are unordered, unchangeable, unindexed, and do not allow duplicate values. Sets are mutable, 

allowing us to add or remove values from it.  

 

We can see the unordered characteristic of the set when we call out the set: 

 

We can add new values to a set using add: 

 

Frozenset: They are nothing but immutable sets. We cannot add or remove values from a frozenset, 

once it is created. They are sometimes used as dictionary keys, since they are immutable.  

 

6. Boolean Type (‘bool’) 

The bool() function allows you to evaluate any value, and give you True or False in return. The following 

values are considered false for bool: None, False, Zero of any numeric type (0, 0.0, 0j), empty sequence, 

empty mapping, etc.  

 

Another way to use bool is by using the built-in Boolean function: 

 

7. Binary Type (‘bytes’, ‘bytearray’, ‘memoryview’) 

Bytes command can convert objects into bytes objects, or create empty bytes object of the specified 

size. They resulting bytes objects are immutable. 

Bytearray are the same as bytes, but are mutable.  

Memoryview returns a memoryview object from bytes and bytearray. The resulting object can be 

obtained via slicing without copying the entire set of data.  
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A.1.4 Functions and loops in Python 

Functions are blocks of code that perform specific tasks in Python. Generally, there are two types of 

functions: in-built functions and user-defined functions. As the name suggests, in-built functions are pre-

built functions which can directly be used or called in a Python script. For instance, we used ‘pow’ 

function before in order to use exponentials to define Avogadro’s number. The pow function is a built-in 

function.  

In this section, we are going to learn how to build user-defined functions. A function is defined by the 

def command. We build a function my_first_function below: 

 

After we save the function in a script, we can call it in the console window for different values of x as 

shown below: 

 

 

Functions are very useful in solving different linear and non-linear equations using Python. 

Loops are used to iterate over a sequence type, allowing us to execute a command over and over.  

a. For loop example 

 

 

For loops are generally used to iterate over a sequence of numbers using range. We can use for loop for 

the function we built above as follows: 

 

Here we calculate ‘my_first_function’ for the number 1 to 5, and get the following results: 
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b. While loop example 

 

Using this loop, we calculate ‘my_first_function’ till the conditional statement x<6 is met (0 to 5), we 

get: 

 

With while loop we can execute a set of statements if the condition for the loop is true. 

c. Break and continue statements example 

 

 

Break statements terminate the loop containing it and are used to control the flow of the program. 

Similarly, continue statements are used to instruct a loop to continue to the next iteration. For example: 

 

 

We can see that the output is everything other than the letter ‘e’.  

A.2 Libraries in Python 
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A library is a collection of modules or a set of pre-combines codes that can be used iteratively to reduce 

the time required to implement a function or code. They are reusable resources which help improve 

effectiveness and efficiency within Python. Python by default has a standard library, which is a collection 

of exact syntax, token, and semantics of Python. With over 200 core modules, the python standard 

library provides users with several data type, text processing, mathematical, and generic operational 

modules.  

Due to its popularity, Python has an ocean of open-source libraries under its umbrella. We look at some 

of the libraries popular with chemical engineers: 

1. Chemics 

Chemics is a Python library created by Wiggins et al. used for basic operational tools for chemical 

reactor engineering. [1] This library allows users to perform several operations like calculating 

dimensionless numbers, gas heat capacities, gas thermal conductivities, mass transfer correlations, 

transport velocity, pressure drop, molecular weights etc.  

The library is a handy tool for chemical engineers who rely on multiple tables for such calculations. The 

library allows for a fast and efficient implementation of several useful chemical engineering formulas. 

Here is an example, where we calculate Archimedes number for fluid transport: 

We know Archimedes number is a dimensionless number used to determine the motion of fluids due to 

density differences. It is the ratio of gravitational forces to viscous forces.   

It is given by the formula: 

𝐴𝑟 =
𝑑𝑝

3𝜌𝑔(𝜌𝑠 − 𝜌𝑔)𝑔

𝜇2
 

Where, 𝑑𝑝 is the particle diameter, 𝜌𝑔is the gas density, 𝜌𝑠 is the solid density, 𝜇 is the dynamic 

viscosity, and g is the local external field like gravitational acceleration.  

For 𝑑𝑝= 1 [mm], 𝜌𝑔= 910 [kg/m3], 𝜌𝑠= 2500 [kg/m3], and 𝜇= 0.001307 [kg/(m.s)]: 

 

2. Fluids 

Fluids is another open-source library for chemical engineers, created by Bell et al.[2] This vast library 

covers many essential tools for chemical engineers ranging from piping, fittings, pumps, tanks, two 

phase flows, control valve sizing, pressure drop calculations, etc.  

As an example, we solve for the mass flow rate (in kg/s) of an isothermal compressible gas flowing 

through a pipe. The formula used for the calculation is: 

�̇�2 =
(

𝜋𝐷2

4
)

2

𝜌𝑎𝑣𝑔 (𝑃1
2−𝑃2

2)

𝑃1(𝑓𝑑
𝐿

𝐷
+2 ln

𝑃1
𝑃2

)
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Where, 𝜌𝑎𝑣𝑔 is the average density of gas in pipe, 𝑓𝑑 is Darcy friction factor,  𝑃1 and 𝑃2 are the inlet and 

outlet pressures from pipe, L is the length of the pipe, D is the inner diameter of the pipe, and �̇� is the 

mass flow rate of gas through the pipe.  

For a gas with average density of 11.3 kg/m3 flowing through a 1km long pipe with inner diameter of 

0.5m, initially at 10 bar pressure going downstream to a pressure of 9 bar, we calculate the mass flow 

rate as follows: 

 

Here, we input the specifications in SI units and use 0.00185 as the Darcy factor. The same methodology 

can be used to find different variables of the formula. For example, to find the downstream pressure for 

the same pipe with a flow rate of 250 kg/s: 

 

We get a downstream pressure of 5.4 bars or 541423.45 pascals. 

 3. TensorFlow 

TensorFlow is a Python library created by Google Brain Team used to create deep learning models 

directly or by using wrapper libraries like Keras. [3] TensorFlow allows for a series of operations on 

tensors; tensors are mathematical objects that can be used to describe physical properties, like scalars 

and vectors. Since neural networks are easily expressed as computational graphs, they can be 

implemented using a series of operations on Tensors using TensorFlow.  

Some of the features which makes TensorFlow an ideal deep learning library are flexibility, large 

community, open-source, visual construct, parallel neural network training, etc. Such features as well as 

optimizing strategies like XLA (accelerated linear algebra) for compiling makes TensorFlow a useful 

library for building and optimizing deep neural networks as shown in Chapter 10.  

4. Scikit-learn 

 

Scikit-learn is a machine learning library created by Cournpeau et al. [4] It provides the users with a 

plethora of supervised and unsupervised machine learning algorithms for different classification, 

regression, and clustering tasks. It covers algorithms like K-nearest neighbors, Support Vector Machine 

(SVM), random forests, etc.  

Some of the features of Scikit-learn which make it a standard for implementing some machine learning 

algorithms are availability of model evaluation techniques like cross-validation, unsupervised learning 

algorithms like factor analysis, unsupervised neural networks, principal component analysis, etc.  

5. Numpy  
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Numpy is one of the most fundamental libraries in Python which offers support for multi-dimensional 

arrays and matrices with a large collection of mathematical functions to operate on these 

arrays/matrices. It was created by Oliphant et al. and is extensively used for array creation and 

manipulation. [5] 

Numpy interface can be utilized for expressing images, sound waves, and other binary raw systems as an 

array of real numbers. Arrays are a collection of values that can have one or more dimensions. A Numpy 

array of one dimension is called a vector while one with two dimensions is called a matrix. With Numpy 

arrays we can perform element-wise operations which are not possible using Python lists. 

6. Pandas 

Similar to Numpy, Pandas is another popular library used to handle data as dataframes created by 

McKinney et al. [6] Pandas is widely used for most data analysis due to its flexible and extremely 

thorough toolkit for data manipulation. It allows users to reshape and pivot data sets with flexibility and 

works well with dynamic data.  In addition, it also allows for label-based data slicing, indexing, and 

subsetting.  

Pandas library can be used to import or export data from/to Microsoft Excel, making it a very handy tool 

for data-related operations. Below we show a basic step to read data from an excel file using Pandas: 

 

We use head() to look at the first few rows of our dataset. 

7. Matplotlib 

Matplotlib is a widely used 2-D plotting library created by Hunter et al. for creating static, animated, and 

interactive visualizations in Python. [7] It is used to produce publication quality figures by using Python 

scripts. Matplotlib can be used to generate a variety of data visualization tools like plots, histograms, bar 

charts, error charts, scatterplots, etc. Matplotlib is also used as a state-based interface by using 

‘matplotlib.pyplot’, which provides users with a MATLAB-like way of plotting.   

Below we show a simple example to plot a line plot using Matplotlib.pyplot: 
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Figure A.1 Line plot for catalyst flow over time using Matplotlib 

 

By using these libraries and many other open-source libraries, readers can handle several basic and 

complex engineering problems in Python with ease. This appendix introduces the readers with the 

fundamentals of Python, which is the most versatile and well-rounded programming language for 

chemical engineering applications.  
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A.3 Regression with Python: Hyper-parameter Optimization and sample codes 

 

 

 

 

 

 

 

Algorithms Standard Parameters Commonly used values for parameters Method for selecting paramters Sample code

 Simple Linear Regression N/A N/A N/A Appendix 2.1

K-nearest neighbor n_neigbors, weights, algorithm, leaf_size, p, metric

n_neigbors=[3,5,10,15,20], 

weights=uniform, algorithm=auto, 

leaf_size=30, p=2, metric='minkowski'

GridSearch

Appendix 2.2

Decision Trees

criterion, splitter, max_depth, min_samples_split, 

min_samples_leaf,min_weight_fraction_leaf,max_f

eatures

criterion=mse, splitter=best, 

max_depth=[2,3,4,5,6,7,8,9,20,50,100], 

min_samples_split=[2,5,10,15,20,40], 

min_samples_leaf=[1,3,5,10,15,20], 

min_weight_fraction_leaf=0, 

max_features=auto                              

GridSearch

Appendix 2.3

Random Forest

n_estimators,criterion, max_depth, 

min_samples_split, 

min_samples_leaf,min_weight_fraction_leaf,max_f

eatures,bootstrap,oob_score,

n_estimators=[100,200,500,1000,2000], 

criterion=mse, 

max_depth=[2,3,4,5,6,7,8,9,20,50,100], 

min_samples_split=[2,5,10,15,20,40], 

min_samples_leaf=[1,3,5,10,15,20], 

min_weight_fraction_leaf=0, 

max_features=auto    

GridSearch

Appendix 2.4

Partial Least Squares n_components n_components=[Integer value]

Obtained by calculating Q2_score 

and R2_score. As the scores stop 

increasing, we pick the number of 

components associated with the 

score. Appendix 2.5

Neural Network/ Deep Neural 

Networks

Model, activation, loss, optimizer, 

batch_size,epochs, number_of_hidden_layers, 

input_layer_neurons, output_layer_neurons, 

hidden_layer_neurons,kernel_initializer

Model=Sequential(), activation=relu, 

loss=mean_squared_error, 

optimizer=adam,batch_size=[1, size of 

training set, 32,64, 

128],epochs=[10,100,500,1000],number 

of_hidden_layers=[1,2,integer 

value],input_layer_neurons=number of 

input variables, 

output_layer_neurons=number of output 

variables, hidden_layer_neurons=2/3 of 

the input layer plus output layer 

neuron,kernel_initializer=normal

Obtained by a thorough 

understanding of the data structure, 

gridsearch, understanding the 

computational limitations, and 

trial/error.  

Appendix 2.6

Support Vector Machine kernel, gamma, C,
kernel=rbf, gamma=[0.001,0.01,0.1, 0.2, 

0.5, 0.6, 0.9], C=[10, 100, 1000, 10000]

GridSearch and selecting suitable 

kernel for dataset Appendix 2.7

Principal Component Analysis n_components n_components=[Integer value]

Obtained by using scree plot, the 

number of components retained 

have eigenvalues>1 Appendix 2.8
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Sample code for the table above: 

1) Linear Regression Sample Code: 

from sklearn.linear_model import LinearRegression 

import pandas as pd 

import warnings  

import numpy as np 

from sklearn.model_selection import cross_val_predict 

from sklearn.metrics import mean_squared_error, r2_score 

warnings.filterwarnings('ignore') 

warnings.filterwarnings('ignore', category=DeprecationWarning) 

dataset=pd.read_excel("LDPE dataset_KevinMcgregor.xlsx",encoding = 'unicode_escape') 

dataset=dataset.drop(36,axis=0)  

X=dataset.iloc[0:39,1:23].values 

y=dataset.iloc[0:39,23:29].values 

# define model 

model = LinearRegression() 

model.fit(X, y) 

X_test=dataset.iloc[39:49,1:23].values 

y_test=dataset.iloc[39:49,23:29].values 

y1_test=y_test[:,0:1] 

y2_test=y_test[:,1:2] 

y3_test=y_test[:,2:3] 

y4_test=y_test[:,3:4] 

y5_test=y_test[:,4:5] 

y6_test=y_test[:,5:6] 

y_cv = cross_val_predict(model, X_test, y_test, cv=10) 

y_cv1=y_cv[:,0:1] 

y_cv2=y_cv[:,1:2] 

y_cv3=y_cv[:,2:3] 

y_cv4=y_cv[:,3:4] 

y_cv5=y_cv[:,4:5] 

y_cv6=y_cv[:,5:6] 

score= r2_score(y_test, y_cv) 

score1= r2_score(y1_test,y_cv1) 

score2= r2_score(y2_test,y_cv2) 

score3= r2_score(y3_test,y_cv3) 

score4= r2_score(y4_test,y_cv4) 

score5= r2_score(y5_test,y_cv5) 

score6= r2_score(y6_test,y_cv6) 

rmse = np.sqrt(mean_squared_error(y_test, y_cv)) 

rmse1= np.sqrt(mean_squared_error(y1_test,y_cv1)) 

rmse2= np.sqrt(mean_squared_error(y2_test,y_cv2)) 

rmse3= np.sqrt(mean_squared_error(y3_test,y_cv3)) 

rmse4= np.sqrt(mean_squared_error(y4_test,y_cv4)) 

rmse5= np.sqrt(mean_squared_error(y5_test,y_cv5)) 

rmse6= np.sqrt(mean_squared_error(y6_test,y_cv6)) 

 

2) K-NN Sample Code: 

from sklearn.neighbors import KNeighborsRegressor 

import pandas as pd 

import warnings  

import numpy as np 

from sklearn.model_selection import cross_val_predict 

from sklearn.metrics import mean_squared_error, r2_score 

warnings.filterwarnings('ignore') 

warnings.filterwarnings('ignore', category=DeprecationWarning) 

dataset=pd.read_excel("LDPE dataset_KevinMcgregor.xlsx",encoding = 'unicode_escape') 

dataset=dataset.drop(36,axis=0)  

X=dataset.iloc[0:39,1:23].values 

y=dataset.iloc[0:39,23:29].values 
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# define model 

model = KNeighborsRegressor(n_neighbors=9) 

model.fit(X, y) 

X_test=dataset.iloc[39:49,1:23].values 

y_test=dataset.iloc[39:49,23:29].values 

y1_test=y_test[:,0:1] 

y2_test=y_test[:,1:2] 

y3_test=y_test[:,2:3] 

y4_test=y_test[:,3:4] 

y5_test=y_test[:,4:5] 

y6_test=y_test[:,5:6] 

y_cv = cross_val_predict(model, X_test, y_test, cv=10) 

y_cv1=y_cv[:,0:1] 

y_cv2=y_cv[:,1:2] 

y_cv3=y_cv[:,2:3] 

y_cv4=y_cv[:,3:4] 

y_cv5=y_cv[:,4:5] 

y_cv6=y_cv[:,5:6] 

score= r2_score(y_test, y_cv) 

score1= r2_score(y1_test,y_cv1) 

score2= r2_score(y2_test,y_cv2) 

score3= r2_score(y3_test,y_cv3) 

score4= r2_score(y4_test,y_cv4) 

score5= r2_score(y5_test,y_cv5) 

score6= r2_score(y6_test,y_cv6) 

rmse = np.sqrt(mean_squared_error(y_test, y_cv)) 

rmse1= np.sqrt(mean_squared_error(y1_test,y_cv1)) 

rmse2= np.sqrt(mean_squared_error(y2_test,y_cv2)) 

rmse3= np.sqrt(mean_squared_error(y3_test,y_cv3)) 

rmse4= np.sqrt(mean_squared_error(y4_test,y_cv4)) 

rmse5= np.sqrt(mean_squared_error(y5_test,y_cv5)) 

rmse6= np.sqrt(mean_squared_error(y6_test,y_cv6)) 

 

 

3) Decision Trees Sample Code: 

from sklearn.tree import DecisionTreeRegressor 

import pandas as pd 

import warnings  

import numpy as np 

from sklearn.model_selection import cross_val_predict 

from sklearn.metrics import mean_squared_error, r2_score 

warnings.filterwarnings('ignore') 

warnings.filterwarnings('ignore', category=DeprecationWarning) 

dataset=pd.read_excel("LDPE dataset_KevinMcgregor.xlsx",encoding = 'unicode_escape') 

dataset=dataset.drop(36,axis=0)  

X=dataset.iloc[0:39,1:23].values 

y=dataset.iloc[0:39,23:29].values 

# define model 

model = DecisionTreeRegressor() 

model.fit(X, y) 

X_test=dataset.iloc[39:49,1:23].values 

y_test=dataset.iloc[39:49,23:29].values 

y1_test=y_test[:,0:1] 

y2_test=y_test[:,1:2] 

y3_test=y_test[:,2:3] 

y4_test=y_test[:,3:4] 

y5_test=y_test[:,4:5] 

y6_test=y_test[:,5:6] 

y_cv = cross_val_predict(model, X_test, y_test, cv=10) 

y_cv1=y_cv[:,0:1] 

y_cv2=y_cv[:,1:2] 

y_cv3=y_cv[:,2:3] 

y_cv4=y_cv[:,3:4] 

y_cv5=y_cv[:,4:5] 

y_cv6=y_cv[:,5:6] 

score= r2_score(y_test, y_cv) 

score1= r2_score(y1_test,y_cv1) 

score2= r2_score(y2_test,y_cv2) 

score3= r2_score(y3_test,y_cv3) 
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score4= r2_score(y4_test,y_cv4) 

score5= r2_score(y5_test,y_cv5) 

score6= r2_score(y6_test,y_cv6) 

rmse = np.sqrt(mean_squared_error(y_test, y_cv)) 

rmse1= np.sqrt(mean_squared_error(y1_test,y_cv1)) 

rmse2= np.sqrt(mean_squared_error(y2_test,y_cv2)) 

rmse3= np.sqrt(mean_squared_error(y3_test,y_cv3)) 

rmse4= np.sqrt(mean_squared_error(y4_test,y_cv4)) 

rmse5= np.sqrt(mean_squared_error(y5_test,y_cv5)) 

rmse6= np.sqrt(mean_squared_error(y6_test,y_cv6)) 

 

4) Random Forest Sample Code: 

 

from sklearn.ensemble import RandomForestRegressor as rf  

from sklearn.metrics import mean_squared_error 

import pandas as pd 

import numpy as np 

import warnings  

warnings.filterwarnings('ignore') 

warnings.filterwarnings('ignore', category=DeprecationWarning) 

dataset=pd.read_excel ("Mastermerged.xlsx",encoding = 'unicode_escape')  

traindataset=pd.read_excel ("TrainAll.xlsx",encoding = 'unicode_escape')  

testdataset=pd.read_excel ("TestAll.xlsx",encoding = 'unicode_escape') 

testA=pd.read_excel ("TestA.xlsx",encoding = 'unicode_escape') 

testB=pd.read_excel ("TestB.xlsx",encoding = 'unicode_escape') 

testC=pd.read_excel ("TestC.xlsx",encoding = 'unicode_escape') 

testH=pd.read_excel ("TestH.xlsx",encoding = 'unicode_escape') 

X1=dataset.iloc[:,0:12].values 

y=dataset.iloc[:,13:14].values 

from sklearn import preprocessing 

X=preprocessing.scale(X1) 

X_train1=traindataset.iloc[:,0:12].values 

X_train=preprocessing.scale(X_train1) 

y_train=traindataset.iloc[:,13:14].values 

X_test1=testdataset.iloc[:,0:12].values 

X_test=preprocessing.scale(X_test1) 

y_test=testdataset.iloc[:,13:14].values 

X_testA1=testA.iloc[:,0:12].values 

X_testA=preprocessing.scale(X_testA1) 

y_testA=testA.iloc[:,13:14].values 

X_testB1=testB.iloc[:,0:12].values 

X_testB=preprocessing.scale(X_testB1) 

y_testB=testB.iloc[:,13:14].values 

X_testC1=testC.iloc[:,0:12].values 

X_testC=preprocessing.scale(X_testC1) 

y_testC=testC.iloc[:,13:14].values 

X_testH1=testH.iloc[:,0:12].values 

X_testH=preprocessing.scale(X_testH1) 

y_testH=testH.iloc[:,13:14].values 

 

rfr= rf(n_estimators = 1000, random_state = 423,min_samples_split = 2,min_samples_leaf= 4, 

max_features='sqrt',max_depth= 50,bootstrap='True') 

# Train the model on training data 

rfr.fit(X_train,y_train); 

predictions = rfr.predict(X_test) 

# Calculate the absolute errors 

errors = np.sqrt(mean_squared_error(predictions,y_test)) 

 

# Print out the mean absolute error (mae) 

print('Root Mean Squared Error:', round(errors,2), 'L.') 

from pprint import pprint 

# Look at parameters used by our current forest 

print('Parameters currently in use:\n') 

pprint(rf().get_params()) 

from sklearn.model_selection import RandomizedSearchCV 

# Number of trees in random forest 

n_estimators = [200] 

# Number of features to consider at every split 
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max_features = ['auto', 'sqrt'] 

# Maximum number of levels in tree 

max_depth = [5,10,20,50] 

# Minimum number of samples required to split a node 

min_samples_split = [2, 5, 10] 

# Minimum number of samples required at each leaf node 

min_samples_leaf = [1, 2, 4] 

# Method of selecting samples for training each tree 

bootstrap = [True, False] 

# Create the random grid 

random_grid = {'n_estimators': n_estimators, 

               'max_features': max_features, 

               'max_depth': max_depth, 

               'min_samples_split': min_samples_split, 

               'min_samples_leaf': min_samples_leaf, 

               'bootstrap': bootstrap} 

pprint(random_grid) 

#Use the random grid to search for best hyperparameters 

# First create the base model to tune 

# Random search of parameters, using 3 fold cross validation,  

# search across 100 different combinations, and use all available cores 

rf_random = RandomizedSearchCV(estimator = rf(), param_distributions = random_grid, n_iter = 100, 

cv = 3, verbose=2, random_state=42, n_jobs = -1) 

# Fit the random search model 

rf_random.fit(X_train, y_train) 

rf_random.best_params_ 

print (rf_random.best_params_) 

 

 

5) Partial Least Squares Sample Code: 

from sklearn.cross_decomposition import PLSRegression 

import pandas as pd 

import warnings  

import numpy as np 

from sklearn.model_selection import cross_val_predict 

from sklearn.metrics import mean_squared_error, r2_score 

warnings.filterwarnings('ignore') 

warnings.filterwarnings('ignore', category=DeprecationWarning) 

dataset=pd.read_excel("LDPE dataset_KevinMcgregor.xlsx",encoding = 'unicode_escape') 

dataset=dataset.drop(36,axis=0)  

X=dataset.iloc[0:39,1:23].values 

y=dataset.iloc[0:39,23:29].values 

# define model 

model = PLSRegression(n_components=8) 

model.fit(X, y) 

X_test=dataset.iloc[39:49,1:23].values 

y_test=dataset.iloc[39:49,23:29].values 

y1_test=y_test[:,0:1] 

y2_test=y_test[:,1:2] 

y3_test=y_test[:,2:3] 

y4_test=y_test[:,3:4] 

y5_test=y_test[:,4:5] 

y6_test=y_test[:,5:6] 

y_cv = cross_val_predict(model, X_test, y_test, cv=10) 

y_cv1=y_cv[:,0:1] 

y_cv2=y_cv[:,1:2] 

y_cv3=y_cv[:,2:3] 

y_cv4=y_cv[:,3:4] 

y_cv5=y_cv[:,4:5] 

y_cv6=y_cv[:,5:6] 

score= r2_score(y_test, y_cv) 

score1= r2_score(y1_test,y_cv1) 

score2= r2_score(y2_test,y_cv2) 

score3= r2_score(y3_test,y_cv3) 

score4= r2_score(y4_test,y_cv4) 

score5= r2_score(y5_test,y_cv5) 

score6= r2_score(y6_test,y_cv6) 

 

6) Neural Network Sample Code: 
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import numpy as np 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.wrappers.scikit_learn import KerasRegressor 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import KFold 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

import pandas as pd 

dataset=pd.read_csv ('Master batches.csv',encoding = 'unicode_escape')  

X=dataset.iloc[:,0:11].values 

Y=dataset.iloc[:,11:12].values 

## define base model 

#def baseline_model(): 

# # create model 

# model = Sequential() 

# model.add(Dense(11, input_dim=11, kernel_initializer='normal', activation='relu')) 

# model.add(Dense(1, kernel_initializer='normal')) 

# # Compile model 

# model.compile(loss='mean_squared_error', optimizer='adam') 

# return model 

## fix random seed for reproducibility 

seed = 7 

#np.random.seed(seed) 

## evaluate model with standardized dataset 

#estimator = KerasRegressor(build_fn=baseline_model, epochs=100, batch_size=5, verbose=0) 

#kfold = KFold(n_splits=10, random_state=seed) 

#results = cross_val_score(estimator, X, Y, cv=kfold) 

#print("Results: %.2f (%.2f) MSE" % (results.mean(), results.std())) 

# 

#np.random.seed(seed) 

#estimators = [] 

#estimators.append(('standardize', StandardScaler())) 

#estimators.append(('mlp', KerasRegressor(build_fn=baseline_model, epochs=50, batch_size=5, 

verbose=0))) 

#pipeline = Pipeline(estimators) 

#kfold = KFold(n_splits=10, random_state=seed) 

#results = cross_val_score(pipeline, X, Y, cv=kfold) 

#print("Standardized: %.2f (%.2f) MSE" % (results.mean(), results.std())) 

 

# define the model 

def larger_model(): 

#  create model 

 model = Sequential() 

 model.add(Dense(11, input_dim=11, kernel_initializer='normal', activation='relu')) 

 model.add(Dense(5, kernel_initializer='normal', activation='relu')) 

 model.add(Dense(1, kernel_initializer='normal')) 

 # Compile model 

 model.compile(loss='mean_squared_error', optimizer='adam') 

 return model 

 

np.random.seed(seed) 

estimators = [] 

estimators.append(('standardize', StandardScaler())) 

estimators.append(('mlp', KerasRegressor(build_fn=larger_model, epochs=100, batch_size=5, 

verbose=0))) 

pipeline = Pipeline(estimators) 

kfold = KFold(n_splits=10, random_state=seed) 

results = cross_val_score(pipeline, X, Y, cv=kfold) 

print("Larger: %.2f (%.2f) MSE" % (results.mean(), results.std())) 

 

#def wider_model(): 

# # create model 

# model = Sequential() 

# model.add(Dense(20, input_dim=11, kernel_initializer='normal', activation='relu')) 

# model.add(Dense(1, kernel_initializer='normal')) 

# # Compile model 

# model.compile(loss='mean_squared_error', optimizer='adam') 

# return model 

# 

#np.random.seed(seed) 
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#estimators = [] 

#estimators.append(('standardize', StandardScaler())) 

#estimators.append(('mlp', KerasRegressor(build_fn=wider_model, epochs=100, batch_size=5, 

verbose=0))) 

#pipeline = Pipeline(estimators) 

#kfold = KFold(n_splits=10, random_state=seed) 

#results = cross_val_score(pipeline, X, Y, cv=kfold) 

#print("Wider: %.2f (%.2f) MSE" % (results.mean(), results.std())) 

 

kfold = KFold(n_splits=10, random_state=seed) 

results = cross_val_score(pipeline, X, Y, cv=kfold) 

print("Larger: %.2f (%.2f) MSE" % (results.mean(), results.std())) 

 

7) SVM Sample Code: 

from sklearn.model_selection import train_test_split 

import pandas as pd 

dataset=pd.read_csv ('Master batches.csv',encoding = 'unicode_escape')  

X=dataset.iloc[:,0:11].values 

Y=dataset.iloc[:,11:12].values 

Y=Y.ravel() 

X_train, X_test, y_train, y_test = train_test_split(X,Y,test_size=.2, random_state=422) 

from sklearn.model_selection import GridSearchCV 

import math 

from sklearn.svm import SVR  

from sklearn.metrics import mean_squared_error  

model = SVR(kernel='rbf', C=1e3, gamma = 0.5, epsilon = 0.01) 

print(model) 

model.fit(X_train,y_train) 

pred_y = model.predict(X_test) 

mse =mean_squared_error(pred_y,y_test) 

print("Mean Squared Error:",mse) 

rmse = math.sqrt(mse) 

print("Root Mean Squared Error:", rmse) 

# Tuning of parameters for regression by cross-validation 

K = 10               # Number of cross valiations 

# Parameters for tuning 

parameters = [{'kernel': ['rbf'], 'gamma': [0.1, 0.2, 0.5, 0.6, 0.9],'C': [10, 100, 1000, 

10000]}] 

print("Tuning hyper-parameters") 

from sklearn.metrics import make_scorer 

scorer = make_scorer(mean_squared_error, greater_is_better=False) 

svr= GridSearchCV(SVR(epsilon = 0.01), parameters, cv = K, scoring=scorer) 

svr.fit(X, Y) 

# Checking the score for all parameters 

print("Grid scores on training set:") 

means = svr.cv_results_['mean_test_score'] 

stds = svr.cv_results_['std_test_score'] 

for mean, std, params in zip(means, stds, svr.cv_results_['params']): 

    print("%0.3f (+/-%0.03f) for %r"% (mean, std * 2, params)) 

 

 

8) PCA Sample Code: 

from sklearn.decomposition import PCA 

import pandas as pd 

import warnings  

warnings.filterwarnings('ignore') 

warnings.filterwarnings('ignore', category=DeprecationWarning) 

dataset=pd.read_excel("LDPE dataset_KevinMcgregor.xlsx",encoding = 'unicode_escape') 

dataset=dataset.drop(36,axis=0)  

X=dataset.iloc[0:39,1:23].values 

model =PCA(n_components=2) 

model.fit_transform(X) 

print(pca.explained_variance_ratio_) 

print(pca.singular_values_ 
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APPENDIX B 
Introduction to Neural Networks  

B.1 What is a Neural Network? 

Artificial neural networks, commonly known as ‘neural networks’ mimic the mechanism of learning in 

biological organisms. Neurons, which are the basic working unit of a brain, transmit information through 

specialized projections called axons and dendrites. Such a transmission is replicated in an artificial neural 

network, where each neuron is a mathematical operation connected to other neurons by weights. Each 

input to the input neurons is scaled with weights and the sum is passed through different activation 

functions towards the output neurons. Learning occurs by simultaneously changing the weights 

connecting the neurons. 

B.2 Developing Neural Network Architecture and Some Common Topology for Neural Networks 

B.2.1 Modeling a neuron 

A neuron is the fundamental information processing unit of the network. In Figure C.1, we identify the 

four basic components of a neuron: 

i. Synapses: Connecting links which are characterized by a weight of its own (wij). The weight includes 

both positive and negative values.  

ii. Adder: Operator for summing up input signals modified by their respective synaptic weights. 

iii. Activation function: A mathematical function which limits the amplitude of the output of a neuron to 

a finite value. We compare different activation functions and their uses ahead in section 1.5.  

iv. Bias: A constant used to provide affine transformation to the adder signal by increasing or lowering 

the net input of an activation function.  
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Figure C.1 Anatomy of a simple neuron. 

 

We can mathematically describe a neuron by using the following equations: 

𝑢𝑗 = ∑ 𝑤𝑛𝑗𝑎𝑛
𝑛
𝑖=1                                                                                                                         (B.1) 

 

𝑣𝑗 =  𝑢𝑗 +  𝑏𝑗                                                                                                                             (B.2) 

 

𝑦𝑗 = 𝜙(𝑣𝑗)                                                                                                                                 (B.3) 

 

B.2.2 Topology of a neural network 

Neural nets are arranged into an ordered sequence of grouped partitions known as layers. The topology 

of a neural network refers to the interconnection of the neurons. The first layer is called the input layer 

and usually has the same number of neurons as the number of input variables for the system, the last 

layer is known as the output layer; the layers in between are called hidden layers. The architecture of 

the neural network depends on the connection patterns, number of neurons, number of layers, nature 

of the activation functions, and the learning algorithm.  

The connection patterns for a neuron can be partitioned into four categories: intralayer connections, 

interlayer connections, and self-connections, and supralayer connections. An intralayer connection is a 

connection between neurons of the same layer of the neural network. An interlayer connection is a 
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connection between neurons in adjacent layers of the neural network. Self-connections are connections 

which originate and terminate at the same neuron. Supralayer connections are connections between 

neurons that are neither in the same layer nor in the adjacent layer of the neural network.  

Within the interlayer connections, we have two directional connections: 

1) Feed-forward neural network: Unidirectional networks in which the signal flows from input to output 

without forming a loop. They are the simplest form of interlayer connection, which can be single-layered 

or multi-layered.  

2) Feedback or recurrent neural network: Multidirectional networks in which the signal flows in both 

directions forming a loop. They are dynamic in nature and are inherently more complex than 

feedforward networks.  

B.2.3 Common Architectures for Neural Networks 

Over time researchers have come up with several architectures for building neural networks. We 

describe some of these popular architectures used in chemical engineering: 

1) Perceptron 

Figure B.2 Perceptron model architecture. 

Perceptron model, proposed by Minsky-Papert is the simplest model architecture which can learn 

linearly separable problems. It accepts weighted inputs and applies the activation function to obtain the 

output. A single-layer perceptron with no hidden layers is no longer used for solving problems; multi-

layer perceptron models are more common as they provide more complexity and non-linear capabilities.  
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2) Feed Forward Neural Network 

 

Figure B.3 Feed-forward model architecture. 

As mentioned above in Section C.2.2, feed forward neural networks are unidirectional networks which 

have forward propagation leading to static weights. They are less complex, fast, and responsive to noisy 

datasets. Feedforward networks are primarily used for supervised learning in cases where the dataset is 

neither sequential nor time dependent. Supervised learning refers to learning techniques which include 

training with both input and correct output data to build a network.  

3) Recurrent Neural Network 

 

Figure B.4 Recurrent neural network model architecture. 

Recurrent neural networks are multidirectional networks in which the output from previous step is fed 

as input for the current step for prediction. The first layer is typically a feed forward neural network 

followed by recurrent neural network layer where a memory function is used to retrieve information 

from the previous time-step. They are useful in modeling sequential data and can process inputs of any 

length.  

4) Deep Convolutional Neural Network 
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Figure B.5 Deep convolutional network model architecture. 

Deep convolutional neural networks are deep neural networks which were primarily designed for 

computer vision tasks. These networks contain a three-dimensional arrangement of neurons instead of 

the standard two-dimensional setup. These networks are based on two basic operations: convolution 

and pooling. The convolution step is used to extract features from the dataset. The input features are 

taken in batch-wise like a filter. The pooling step, also called subsampling, involves reducing the 

dimensionality of the features extracted from the convolution step.  

 5) Radial-Basis Function Neural Network 

Figure B.6 Radial basis network model architecture.  

Radial-basis function neural networks are networks that use Gaussian functions as activation functions. 

It is usually a three-layered feed forward network with a single hidden layer. The network is known as a 

local approximation network with a linear output to map non-linear input data. These networks are 

faster and have better scaling properties when compared to a simple feed-forward network.  

B.3 Comparison of different activation functions 

Activation functions act as mathematical channels which limit the amplitude of the output of a neural 

network. These functions can be divided into three categories: i. Binary step function, ii. Linear 

activation function, and iii. Non-linear activation functions.  
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Binary activation function is a threshold-based activation function. If the input value is above or below a 

certain threshold, the neuron is activated, and a signal is sent to the next layer. It does not allow multi-

value outputs. Linear activation function creates an output signal proportional to the input and is not 

confined in a range as it can take values from (-∞,∞). Linear activation functions have limited power and 

do not allow for the usage of backpropagation or multiple hidden layers as with linear activation the 

final layer will always be a linear function of the first layer.  

Non-linear activation functions are the basis for most common neural network topologies. Some of the 

common non-linear activation functions are: 

1. Sigmoid/Logistic  

 

Equation: 𝑠𝑖𝑔(𝑥) =
1

(1+𝑒−𝑥)
                                                                                           (B.4)    

  

 

Figure B.7 Sigmoid activation function 

The sigmoid function curve looks like a S-shape curve and the function provides output values ranging 

from 0 to 1. Due to the specific range, it is commonly used for models which predict probability as an 

output. It provides smooth gradient preventing drastic changes in outputs; however, very large or very 

small input values are not represented as well in the output leading to vanishing gradient problem.  
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2. Hyperbolic Tangent (TanH)  

Equation: 𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                                                                                          (B.5)                                                   

 

Figure B.8 Hyperbolic tangent activation function 

TanH function is a mathematically shifted version of the sigmoid function with output values ranging 

from -1 to 1. Due to its range, its mean is zero-centered making it easier to model inputs with negative, 

neutral, and positive values.  

 

3. Rectified Linear Unit (ReLU) 

Equation: 𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)                                                                                 (B.6) 

 

Figure B.9 Rectified linear unit activation function 
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ReLU function is the most widely used activation function. Although it seems like a linear function, ReLU 

function is non-linear and has a derivative function. It is computationally efficient and allows for 

backpropagation. It does not handle inputs closer to zero and negative inputs very well during 

backpropagation leading to ‘dying ReLU’ problem, in which the gradient of the function becomes zero.  

4. Leaky ReLU 

Equation: 𝐿𝑅𝑒𝐿𝑈(𝑥) = max (0.01 ∗ (x, x))                                                                 (B.7) 

 

Figure B.10 Leaky rectified linear unit activation function 

 

A variation of the ReLU function which allows for backpropagation for negative input values. It does not 

provide consistent predictions for negative input values.  

5. Parametric ReLU 

Equation: 𝑃𝑅𝑒𝐿𝑈(𝑥) = max (α ∗ (x, x))                                                                      (B.8) 
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Figure B.11 Parametric rectified linear unit activation function (red line changes based on the value of 

𝛂 

Another variation of ReLU function which allows for negative slopes to be learned as well. Performance 

is dependent on the chosen parametric value. For α=0.01 PReLU becomes LReLU.  

 

 

6. Softmax 

Equation: 𝑆(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

                                                                                             (B.9) 

 

Figure B.12 Softmax activation function 

Softmax activation function is a normalized exponential function which generalizes logistic function to 

multiple dimensions. It is generally used for multinomial logistic regression and multiclass classification 
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problems. The range of output values for the function fall from 0 to 1 and the sum of the output values 

is equal to 1.  

7. Swish  

Equation: 𝑠𝑤𝑖𝑠ℎ(𝑥) =
𝑥

(1+𝑒−𝑥)
                                                                                    (B.10) 

 

Figure B.13 Swish activation function 

A simple modification to the ReLU function, designed by the Google Brain Team, swish activation 

function is a smooth non-monotonic function which outperforms or matches the performance of ReLU 

activation function in most cases. The lower bound for the network is bounded such that large negative 

weights are zeroed out, while its upper bound is unbounded such that large positive weights are not 

saturated to 1.  

 

B.4 Optimization Strategies 

Optimization strategies are often used in a neural network to reduce losses and increase the network 

accuracy by adjusting the attributes of the neural network like synaptic weights and learning rate. Some 

of the commonly used optimization strategies are: 

1. Gradient Descent 

Gradient descent is one of the most popular and common ways of optimizing a neural network. In 

gradient descent, we minimize an objective function J(θ) parameterized by the model’s parameters 𝜃 ∈

𝑅, by updating them in the opposite direction of the gradient of the objective function, explained by the 

following equation: 
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𝜃1 = 𝜃0 − 𝜂∇𝐽(𝜃)                                                                                                                                (B.11) 

where, 

 𝜃1 = 𝑁𝑒𝑥𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,  

 𝜃0 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,  

𝜂 = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 

∇𝐽(𝜃) = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 of the objective/cost function 

Gradient descent is a first-order derivative optimization algorithm in which the learning rate(α) is altered 

to decide on the number of steps to be taken to reach a (local) minimum. Based on the amount of data 

used, gradient descent can be further divided into three variants:  

a) Stochastic Gradient Descent 

Stochastic Gradient Descent (SGD) updates the parameters of the function after computation of loss on 

each training example. The parameters have high variance resulting in heavy fluctuations in the 

objective function. By using a single sample data per iteration, SGD converges relatively quicker and 

requires less memory compared to other optimization strategies. Due to the inherent randomness, SGD 

is noisier than simple gradient descent and can overshoot even after achieving a global minimum.  

b) Batch Gradient Descent 

Batch gradient descent or vanilla gradient computes the gradient of the loss function for the entire 

dataset. Since, it requires gradient computation for the entire dataset, it can be very slow and 

intractable for larger datasets that do not fit in memory. It is also very hard to apply on-line or in real 

time. Batch gradient descent is the traditional form of optimization which is simple to implement and 

interpret for smaller datasets.  

c) Mini-batch Gradient Descent 

Mini-batch gradient descent takes the best from batch gradient descent and stochastic gradient descent 

to compute gradient for a mini-batch of n training examples. In addition to frequently updating the 

parameters, mini-batch gradient descent has less variance. The computation requires medium amount 
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of memory storage capacity. Even though it addresses some drawbacks of the gradient descent variants, 

mini-batch gradient has some drawbacks as well.  

The selection of an optimal learning rate for mini-batch gradient descent can be difficult as a smaller 

learning rate can take a long time for the algorithm to converge, and a larger learning rate can lead to 

the algorithm getting trapped at some suboptimal local minima.  

2. Momentum 

Momentum is an optimization strategy introduced to accelerate convergence of SGD towards the 

relevant direction and dampen oscillations to reduce the fluctuations in irrelevant direction. Another 

hyperparameter, known as momentum(γ), is added leading to the following equation: 

𝑉(𝑡) = 𝛾𝑉(𝑡 − 1) + 𝜂 ∇𝐽(𝜃)                                                                                                                 (B.12)   

where, 

𝑉(𝑡) = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝛾 = 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑜𝑟 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 (usually given a value of 0.9) 

The weights in the SGD equation (B.11) are updated accordingly, leading to the following equation: 

 𝜃1 = 𝜃0 − 𝑉(𝑡)                                                                                                                      (B.13)                                                                                                    

 

The momentum optimization algorithm helps minimize the oscillations and reduces the high variance in 

SGD. Momentum-based SGD converges faster than regular SGD.  

3. Nesterov Accelerated Gradient 

Nesterov Accelerated Gradient (NAG) is a variation of Momentum optimization algorithm, which is 

slightly better than the standard momentum optimization. With NAG, instead of calculating gradient at 

current position, we calculate the gradient for a future position. By applying this small change, it 

prevents the momentum term from overshooting and missing the local minima. The momentum 

equation (B.12) is changed to the following equation: 

𝑉(𝑡) = 𝛾𝑉(𝑡 − 1) + 𝜂 ∇𝐽(𝜃 − 𝛾𝑉(𝑡 − 1))                                                                             (B.14) 

 4. Adagrad 
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Adagrad is a second-order derivative optimization algorithm in which the learning rate (η) is changed for 

each parameter for each step ‘t’. The algorithm makes smaller updates (low learning rates) for 

frequently occurring features and bigger updates (high learning rates) for infrequent features. In the 

algorithm we take the partial derivative of the objective function at a time t, given by: 

𝑔𝑡,𝑖 = ∇𝜃𝐽(𝜃𝑡,𝑖)                                                                                                                        (B.15) 

The updated parameters are then given by the following equation: 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
η

√𝐺𝑡,𝑖𝑖+𝜖
 . 𝑔𝑡,𝑖                                                                                                     (B.16) 

where, 

𝐺𝑡,𝑖𝑖 = 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤𝑖𝑡ℎ 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 (𝑖, 𝑖) 𝑎𝑠 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 

𝜖 = 𝑆𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑡𝑒𝑟𝑚 𝑡𝑜 𝑎𝑣𝑜𝑖𝑑 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑏𝑦 𝑧𝑒𝑟𝑜 

One of the main advantages of using Adagrad optimization strategy is that it eliminates the need to 

manually tune the learning rate. Most implementations use an initial rate of 0.01 and allow for it to be 

updated with the parameters for each iteration at a specific time interval (t). One of the drawbacks of 

Adagrad is the accumulation of square of gradients in the denominator leading to the shrinkage of the 

learning rate, as it eventually becomes infinitesimally small. At that point, the algorithm is unable to gain 

any further new information.  

5. AdaDelta and RMSProp 

AdaDelta, is an extension of Adagrad, which successfully eliminates the problem of diminishing learning 

rate due to accumulation of square of gradients. AdaDelta limits the window of past gradients to some 

fixed size w.  

We use exponentially running average of all the past squared gradients instead of inefficiently storing 

them. The running average at time t, depends only on the previous average and the current gradient 

and is given by: 

𝐸[𝑔2]𝑡 = 𝛾𝐸[𝑔2]𝑡−1 + (1 − 𝛾)𝑔𝑡
2           (B.17) 

Like equation B.16, the new equation for AdaDelta becomes: 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
η

√𝐸[𝑔2]𝑡,𝑖+𝜖
 . 𝑔𝑡,𝑖                     (B.18) 
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where,  

𝐸[𝑔2]𝑡,𝑖 = 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑡 

Since, the denominator is just the root mean squared error criterion we replace it with the short-hand 

criterion: 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
η

𝑅𝑀𝑆[𝑔]𝑡,𝑖
 . 𝑔𝑡,𝑖                                (B.19) 

Both AdaDelta and RMSProp have been developed independently around the same time to deal with 

Adagrad’s diminishing learning rate. The equation for RMSProp is identical to the first parameter update 

for AdaDelta, represented by equation B.19. In order to ensure the same units as the parameter for the 

gradient, for AdaDelta, we define another exponentially decaying average based on the square 

parameter updates: 

𝐸[∆𝜃2]𝑡 = 𝛾𝐸[∆𝜃2]𝑡−1 + (1 − 𝛾)∆𝜃𝑡
2                    (B.20) 

The root mean squared of the parameter update then becomes: 

𝑅𝑀𝑆[∆𝜃]𝑡,𝑖 = √𝐸[∆𝜃2]𝑡,𝑖 + 𝜖                    (B.21) 

Since, 𝑅𝑀𝑆[∆𝜃]𝑡,𝑖 is unknown, we approximate it with the RMS of the parameter update until the 

previous time step. Then by replacing 𝑅𝑀𝑆[∆𝜃]𝑡−1,𝑖 with the learning rate η, in equation B.19, we get: 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
𝑅𝑀𝑆[∆𝜃]𝑡−1,𝑖

𝑅𝑀𝑆[𝑔]𝑡,𝑖
 . 𝑔𝑡,𝑖                                                                                     (B.22) 

With equation B.22, we remove the learning rate from the parameter update to give the final AdaDelta 

update equation. AdaDelta, while being more computationally expensive, prevents learning rate decay 

and eliminates the necessity of setting a default learning rate. RMSProp on the other hand deals with 

the decaying learning rate but does not eliminate the necessity to set a default learning rate.  

6. Adam 

Adaptive Momentum Estimation (Adam) combines the momentum model with adaptive models like 

RMSProp and AdaDelta. It is one of the most used optimization algorithms, which converges very fast 

and includes a bias correction mechanism. Adam stores both the exponential running average of the 

past gradients (𝑚𝑡) and the exponential running average of the past-squared gradients (𝑣𝑡). The 

decaying averages are calculated as follows: 
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𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡                                 (B.23) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2                                  (B.24) 

where, 

𝑚𝑡 = 𝐹𝑖𝑟𝑠𝑡 𝑚𝑜𝑚𝑒𝑛𝑡 (𝑚𝑒𝑎𝑛) 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡  

𝑣𝑡 = 𝑆𝑒𝑐𝑜𝑛𝑑 𝑚𝑜𝑚𝑒𝑛𝑡 (𝑢𝑛𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 

𝛽1, 𝛽2 = 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠  

As the moments are initiated as vectors of zero, during the initial time steps when the decay rates are 

small (i.e., when 𝛽1and 𝛽2 are close to 1), the moments are biased towards zero. In order to correct the 

raw moment estimates, we use the following equations: 

 

�̂�𝑡 =
𝑚𝑡

1−𝛽1
𝑡                                             (B.25) 

𝑣𝑡 =
𝑣𝑡

1−𝛽2
𝑡                               (B.26) 

where, 

�̂�𝑡 and 𝑣𝑡 are the bias-corrected first and second moment estimates 

Like AdaDelta (Equation B.19) and RMSProp (Equation B.22), we get the final parameter update using 

the above moment estimates as: 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
η

√�̂�𝑡,𝑖+𝜖
 . �̂�𝑡,𝑖                               (B.27) 

Adam is one of the most popular optimization techniques, which converges rapidly and solves the 

problem of vanishing learning rate and high variance. The common values for 𝛽1 is 0.9, 𝛽2 is 0.999, and 𝜖 

is 10−8. 

7. Nadam 

Nadam (Nesterov-accelerated Adaptive Moment Estimation) is a variation to Adam optimization 

technique, which combines Adam and NAG. The algorithm applies acceleration to the parameters 

before computing the gradients, then updates the gradients computed with the interim parameters. 

This change allows the algorithm to mitigate problems like accumulation of large error gradients, also 
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known as exploding gradients.   

 

In order to modify Adam to Nadam, we update 𝑚𝑡 , the first moment term for the gradient. First, let us 

recall Nesterov-accelerated Momentum (NAG), which can be shown from equation B.14: 

𝑉(𝑡) = 𝛾𝑉(𝑡 − 1) + 𝜂 ∇𝐽(𝜃 − 𝛾𝑉(𝑡 − 1))      

Since, V(t) is also known as the first moment of a gradient (𝑚𝑡) and based on the terminologies used for 

Adagrad and Adam, we can rewrite the terms for equation B.14 as : 

𝑚𝑡 = 𝛾𝑚𝑡−1 + 𝜂𝑔𝑡                                                                                                                 (B.28)                                                                                                                                                                                                                                                                       

where, 

 𝑔𝑡 = ∇𝜃𝐽(𝜃𝑡 − 𝛾𝑉(𝑡 − 1))                                                                                                    (B.29) 

Then, the parameter update for the NAG equation becomes: 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −  𝑚𝑡,𝑖                                                                                                                 (B.30) 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 − (𝛾𝑚𝑡−1 + 𝜂𝑔𝑡)                                                                                                (B.31) 

Dozat et al. proposed to modify NAG in the following manner. Instead of applying the momentum step 

twice for both the gradient and then the parameters, we now use the current momentum vector 

directly to update the parameters, which can be shown by the following equations: 

𝑔𝑡 = ∇𝜃𝐽(𝜃𝑡)                                                                                                                            (B.32) 

𝑚𝑡 = 𝛾𝑚𝑡−1 + 𝜂𝑔𝑡                                                                                                                  (B.33) 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 − ( 𝛾𝑚𝑡 + 𝜂𝑔𝑡)                                                                                                   (B.34) 

By comparing equation B.31 and equation B.34, we can see that the update no longer utilizes the 

previous momentum vector, 𝑚𝑡−1 for parameter update. And, also from equation B.32, we see that the 

gradient is no longer based on momentum. Now, in order to combine NAG with Adam, we recall the 

equations B.23, B.25, and B.27: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

�̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 
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𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
η

√𝑣𝑡,𝑖 + 𝜖
 . �̂�𝑡,𝑖 

When we use equations B.23 and B.25 to expand equation B.27, we get: 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
η

√�̂�𝑡,𝑖+𝜖
 . [ 

𝛽1𝑚𝑡−1

1−𝛽1
𝑡 +

(1−𝛽1)𝑔𝑡

1−𝛽1
𝑡 ]                                                                             (B.35) 

We can see that, 
𝛽1𝑚𝑡−1

1−𝛽1
𝑡  is just the bias-corrected estimate of the momentum vector from the previous 

time step. For simplicity, we ignore that the denominator is 1 − 𝛽1
𝑡 instead of 1 − 𝛽1

𝑡−1. We can 

therefore replace 
𝛽1𝑚𝑡−1

1−𝛽1
𝑡   with �̂�𝑡−1, giving us the following equation: 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
η

√�̂�𝑡,𝑖+𝜖
 . [ 𝛽1�̂�𝑡−1 +

(1−𝛽1)𝑔𝑡

1−𝛽1
𝑡 ]                                                                           (B.36) 

Just like we updated NAG shown by equation B.31 into equation B.34, by eliminating the previous 

momentum vector for parameter update. Similarly, we eliminate the bias-corrected estimate of the 

momentum vector from the previous time step and replace it with the current bias-corrected estimate 

of the momentum vector: 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
η

√�̂�𝑡,𝑖+𝜖
 . [ 𝛽1�̂�𝑡 +

(1−𝛽1)𝑔𝑡

1−𝛽1
𝑡 ]                                                                              (B.37) 

This equation represents the final parameter update using Nadam. Nadam is slightly more 

computationally expensive than Adam but uses Nesterov Accelerated Gradient (NAG) instead of vanilla 

momentum update. 
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