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Exponential-Krylov methods for ordinary differential equations

Paul Tranquillia, Adrian Sandua

aComputational Science Laboratory, Department of Computer Science, Virginia Tech. Blacksburg, Virginia 24060

Abstract

This paper develops a new family of exponential time discretization methods called exponential-Krylov
(expK). The new schemes treat the time discretization and the Krylov based approximation of exponential
matrix-vector products as a single computational process. The classical order conditions theory developed
herein accounts for both the temporal and the Krylov approximation errors. Unlike traditional exponential
schemes, expK methods require the construction of only a single Krylov space at each timestep. The
number of basis vectors that guarantee the temporal order of accuracy does not depend on the application at
hand. Numerical results show favorable properties of expK methods when compared to current exponential
schemes.

1. Introduction

Many methods exist to numerically approximate the solution of initial value problems

dy

dt
= f(t, y) , t0 ≤ t ≤ tF , y(t0) = yn ; y(t), f(t, y) ∈ RN . (1)

Multistep methods make use of the solution at several previous timesteps to compute the solution at tn+1,
while Runge-Kutta methods interpolate the solution at several points between the current solution, tn, and
the future solution, tn+1. In both cases implicit methods require the solution of (non-)linear system of
equations at each time step. Much work has been done towards the acceleration of the solutions to these
systems. Iterative Krylov-based linear algebra solvers are the typical choice for large-scale applications
(1). The generalized minimal residual (GMRES) method [19] is the standard approach for constructing
efficient solutions to linear systems arising throughout the integration of ODEs. Jacobian-free Newton-
Krylov (JFNK) methods [8, 9] make use of a GMRES like solver within a Newton iteration to solve the
nonlinear equations arising from Runge-Kutta and multistep methods.

Rosenbrock methods [4], a class of integrators coming from a linearization of Runge-Kutta methods,
require only the solution of a linear system at each stage and are characterized by the explicit appearance
of the Jacobian matrix

Jn =
∂f

∂y

∣∣∣∣
t=tn,y=yn

in the method itself. Due to the approximate nature of solutions coming from iterative methods, the ex-
plicit appearance of Jn causes order reduction unless the system solution is very accurate. For this reason
Rosenbrock-W methods [4, 14, 17], an extension of Rosenbrock methods allowing for arbitrary approxima-
tions of the matrix Jn, have been developed.

Krylov-ROW methods [15, 18, 20, 26] couple Rosenbrock methods with Krylov based solvers for the
linear systems arising therein. A multiple Arnoldi process is used to enrich the Krylov space at each stage,
and the order of the underlying Rosenbrock method is preserved with modest requirements on the Krylov
space size, independent of the dimension of the ODE system under consideration.
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The authors have recently developed Rosenbrock-K methods [24] to pursue a similar goal. Krylov-ROW
methods ensure the order results with standard Rosenbrock-W discretizations by adding requirements to
the underlying Krylov space. In contradistinction, Rosenbrock-K methods guarantee the accuracy order
through the use of a specific Krylov-based approximation of the Jacobian and the construction of new
order conditions which take this approximation into account. Rosenbrock-K methods have substantially
fewer order conditions than Rosenbrock-W methods allowing for the construction of schemes of higher order
with fewer stages. More importantly, Rosenbrock-K methods give a strict lower bound on the number of
Krylov basis vectors required for accuracy that depends only on the order of the method, and is completely
independent of the dimension of the ODE system under consideration.

Exponential integrators [6, 22, 23] replace the need to construct solutions to a linear system, or equiv-

alently approximate the rational matrix function times vector product (IN − hA)
−1
v, with the similar,

hopefully cheaper, requirement to approximate the exponential matrix times vector product exp(hA)v. Like
the solution of large linear systems, approximations of the matrix exponential times vectors are typically
obtained using Krylov based methods.

In this paper we extend the ideas of the Rosenbrock-K methods presented in [24] to the particular set
of exponential integrators discussed in Hochbruck, Lubich, and Selhofer [6] and introduce the new family
of exponential-Krylov (exponential-K) methods. The new schemes require the construction of only a single
Kyrlov basis at each timestep, as opposed to each stage in the case of standard exponential methods.
Moreover, the required dimension of the subspace to guarantee the desired order of accuracy is independent
of the system (1) under consideration.

The remainder of the paper is organized as follows. Section 2 presents the exponential-K framework and
the Krylov approximation of the Jacobian used. Section 3 develops the order condition theory for the new
exponential-K methods using both Butcher trees and B-series. Section 4 constructs a practical four stage,
fourth order exponential-K method. Section 5 discusses alternative implementations of existing exponential
methods, and Section 6 presents numerical results. Conclusions are drawn in Section 7.

2. Formulation of exponential-Krylov methods

2.1. Exponential-W integrators

The starting point of our investigation is following class of exponential-W integrators proposed in [6]

ki = ϕ(hγAn)

hFi + hAn

i−1∑
j=1

γi,jkj

 ,

Fi = f

yn +

i−1∑
j=1

αi,jkj

 ,

yn+1 = yn +

s∑
j=1

biki,

(2)

where An is either the matrix Jn or an approximation of it. Equation (2) formalizes explicit Runge-Kutta
methods when ϕ(z) = 1, Rosenbrock methods when ϕ(z) = 1/(1 − z), and exponential methods when
ϕ(z) = (ez − 1)/z. Note that similar to the Rosenbrock methods discussed before, equation (2) makes
explicit use of the matrix Jn, and so it is natural to explore conditions allowing for arbitrary approximations
as in the case of Rosenbrock-W methods. A discussion of these methods and their order conditions is given
in [6].

2.2. Exponential-K integrators

The new exponential-K methods proposed in this work have the same general form as exponential-W
methods (2), but use a specific, Krylov based-approximation An of the Jacobian. To begin we construct
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the M -dimensional Krylov space KM where M � N and

KM = span
{
fn,Jnfn,J

2
nfn, . . . ,J

M−1
n fn

}
= span {v1, v2, . . . , vM}

(3)

using a modified Arnoldi iteration [25]. The Arnoldi iteration returns the matrix

V = [v1, v2, . . . , vM ] ∈ RN×M

whose columns form an orthonormal basis of KM , and the upper Hessenberg matrix

H = VT Jn V ∈ RM×M . (4)

From these two matrices we construct the following Krylov-based approximation of the Jacobian

An = V H VT = V VT Jn V VT . (5)

The powers of this matrix have the following property.

Lemma 1 (Powers of An). For any k = 0, 1, 2, . . .

Ak
n = V Hk VT .

Proof. We give the proof of the Lemma by induction. As the base case we have that

A1
n = V H VT = V H1 VT

next we assume that Ak−1
n = V Hk−1 VT and show that Ak

n = V Hk VT .

Ak
n = AnAk−1

n = V H VT
(
V Hk−1 VT

)
= V H

(
VT V

)
Hk−1 VT

because V is an orthonormal matrix VT V = IN , and so

Ak
n = V Hk VT

�

The construction of exponential integrators uses matrix functions of the form ϕk(hγAn), where the
functions are defined by

ϕk(z) =

∫ 1

0

ez(1−θ)
θk−1

(k − 1)!
dθ, k = 0, 1, 2, . . .

and satisfy the recurrence relation

ϕk+1(z) =
ϕk(z)− 1/k!

z
, ϕk(0) =

1

k!
.

The matrix functions have the following property.

Lemma 2 (Matrix functions of the approximate Jacobian).

ϕk(hγAn) =
1

k!
(IN −V VT ) + Vϕk(hγH) VT k = 1, 2, . . .

3



Proof. It is possible to expand ϕk(z) as a Taylor series [11]:

ϕk(z) =

∞∑
i=0

ci
zi

(k + i)!
(6)

We have that

ϕk(hγAn) =
1

k!
IN +

∞∑
i=1

(hγ)i

(k + i)!
Ai
n

after applying Lemma 1 we obtain

ϕk(hγAn) =
1

k!
IN +

∞∑
i=1

(hγ)i

(k + i)!
VHiVT .

Similarly we can expand Vϕk(hγH)VT as

Vϕk(hγH)VT =
1

k!
VVT +

∞∑
i=1

(hγ)i

(k + i)!
VHiVT ,

taking the difference we see that

ϕk(hγAn)−Vϕk(hγH)VT =
1

k!

(
IN −VVT

)
.

Finally we move Vϕk(hγH)VT across the equality to obtain

ϕk(hγAn) =
1

k!

(
IN −VVT

)
+ Vϕk(hγH)VT (7)

�

To finish the derivation of a reduced form for the exponential-Krylov integrator (2) we introduce the
following notation

ki = Vλi︸︷︷︸
∈KM

+ µi︸︷︷︸
∈K⊥

M

, Fi = Vψi︸︷︷︸
∈KM

+ δi︸︷︷︸
∈K⊥

M

where Vλi and Vψi represent the components of ki and Fi which reside in the Krylov subspace KM , and
similarly µi and δi are the components residing in the space orthogonal to KM . Insert equation (7) and the
split forms of ki and Fi into the general method formulation (2) to obtain

V λi + µi = V

ϕ(hγH)ψi + hH

i−1∑
j=1

γi,jλj

+ δi .

This leads to the following equation for the reduced stage vector

λi = ϕ(hγH)

ψi + hH

i−1∑
j=1

γi,jλj

 . (8)

The full stage values can be recovered as

ki = V λi + (Fi −Vψi). (9)

A single step of an autonomous exponential-K method is given in Algorithm 1.
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Algorithm 1 One step of an autonomous exponential-K integrator

1: Compute H and V using the N -dimensional Arnoldi process [25]
2: for i = 1, . . . , s do . For each stage, in succession

Fi = f

yn +

i−1∑
j=1

αi,jkj


ψi = VT Fi

λi = ϕ (hγH)

hψi + hH

i−1∑
j=1

γi,jλj


ki = V λi + h (Fi −Vψi)

3: end for

4: yn+1 = yn +

s∑
i=1

biki

Remark 1. Because the matrix H has dimension M ×M direct methods can be used to compute the matrix
function ϕ(hγH). In the case of Rosenbrock methods where ϕ(z) = 1/(1 − z) a direct LU -decomposition
can be used. For exponential methods where ϕ(z) = (ez − 1)/z a Pade approximation [5] can be utilized.
Furthermore, a single matrix function needs to be evaluated at each step when the matrices H and V are
constructed.

Remark 2. We have only given here the autonomous form of an exponential-K method. A non-autonomous
form is possible by constructing an extended ODE system and the corresponding Jacobian. This construction
follows closely the treatment given in [24], where an N + 1 dimensional Arnoldi iteration is discussed.

3. Order conditions for exponential-K methods

We construct classical order conditions for exponential-K methods. To this end we match the Taylor series
expansion of the numerical and exact solutions up to a specified order. Butcher-trees[3] are an established
method of representing terms in the Taylor series expansions of Runge-Kutta like methods. The derivation
of order conditions for K-methods is an extension of the framework developed for W -methods. The theory
for W methods is constructed using TW -trees, a subclass of P -trees, which are themselves an extension of
T -trees that allow for two different colored nodes.

TW =

{
P -trees: end vertices are meagre, and

fat vertices are singly branched

}
In the context of TW (and TK)-trees a meagre, or solid, node represents an appearance of the exact

Jacobian matrix Jn, while a fat, or empty, node represents the appearance of the approximate Jacobian
matrix An. Each tree represents a single elementary differential in the Taylor series of either the exact or
numerical solutions of the ODE.

A fundamental component of our derivation of order conditions for exponential-K methods are B-series,
a way of representing an expansion in trees, or elementary differentials, as a sequence of real numbers. A
mapping a : TW ∪ {∅} → R represents the series

B(a, y) = a(∅)y +
∑
τ∈TW

a(τ)
h|τ |

σ(τ)
F (τ)(y).

Here τ are TW-trees; the order |τ |, and the symmetry σ(τ) of a tree are defined in the same way as for single
colored trees [3, 23], and F (τ) is the elementary differential belonging to tree τ as in figure 1. Similarly we
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τ
j j

k

j

k

j

kl

j

k

l

F (τ) fJ fJKf
K AJKf

K fJKLf
KfL fJKf

K
L fL

a(τ) x1 x2 x3 x4 x5

B# (hf(B(a, y))) 1 x1 0 x21 x2

B# (hAB(a, y)) 0 0 x1 0 0

B# (ϕ(hγA)B(a, y)) x1 x2 x3 + c1x1 x4 x5

τ
j

k

l

j

k

l

j

k

l

j

k

l
m

j

k l

m

F (τ) fJKAKLf
L AJKf

K
L fL AJKAKLf

L fJKLMfKfLfM fJKLf
L
MfMfK

a(τ) x6 x7 x8 x9 x10

B# (hf(B(a, y))) x3 0 0 x31 x1x2

B# (hAB(a, y)) 0 x2 x3 0 0

B# (ϕ(hγA)B(a, y)) x6 x7 + c1x2 x8 + c1x3 + c2x1 x9 x10

τ
j

k l

m

j

k

lm

j

k

lm

j

k

l

m

j

k

l

m

F (τ) fJKLALMfMfK fJKf
K
LMfMfL AJKf

K
LMfLfM fJKf

K
L fLMfM fJKf

K
L ALMfM

a(τ) x11 x12 x13 x14 x15

hf(B(a, y)) x1x3 x4 0 x5 x6

B# (hAB(a, y)) 0 0 x4 0 0

B# (ϕ(hγA)B(a, y)) x11 x12 x13 + c1x4 x14 x15

Figure 1: TW-trees up to order four (part one of two).

introduce the operator B#(f), which takes as input a function (which can be represented by a series) and
returns the B-series coefficients

B# (B(a, y)) = a.

Figure 1 shows all TW -trees to order four, the coefficients of a generic B-series B(a, y), the result
of composing B(a, y) with the function f(y), the result of a multiplication of B(a, y) with the Krylov
approximation matrix An, and the result of a multiplication of B(a, y) by ϕ(hγAn). The full details of the
composition of B-series can be found in [2], while details of products with the Jacobian and ϕ-functions can
be found in [1].

Because K-methods are an extension of W -methods we first construct order conditions for the W -
methods, then prove two lemmas that allow us to obtain the specific exponential-K order conditions. We
follow a similar derivation procedure to that outlined in [16]. Throughout the derivation we track the
progress of several truncated B-series which include all terms up to order four. These series have 21 terms
corresponding to the TW-trees shown in Figure 1.

We begin the construction of order conditions for the W -method with a truncated B-series for yn

B# (y(t0)) = a0 = {a0(∅) = 1, xi = 0 ∀i = 1, . . . , 21} ,

6



τ
j

k

l

m

j

k

l

m

j

k

l

m

F (τ) fJKAKLf
L
MfM fJKAKLALMfM AJKf

K
L fLMfM

a(τ) x16 x17 x18

B# (hf(B(a, y))) x7 x8 0

B# (hAB(a, y)) 0 0 x5

B# (ϕ(hγA)B(a, y)) x16 x17 x18 + c1x5

τ
j

k

l

m

j

k

l

m

j

k

l

m

F (τ) AJKf
K
L ALMfM AJKAKLf

L
MfM AJKAKLALMfM

a(τ) x19 x20 x21

B# (hf(B(a, y))) 0 0 0

B# (hAB(a, y)) x6 x7 x8

B# (ϕ(hγA)B(a, y)) x19 + c1x6 x20 + c1x7 + c2x2 x21 + c1x8 + c2x3 + c3x1

Figure 2: TW-trees up to order four (part two of two).

and then progress through individual stages of the W -method in equation (2), making use of the formulas
from Figure 1 to construct the resultantB-series of the composition and multiplication operations. Algorithm
2 gives a method of constructing the B-series of the numerical solution yn that approximates the exact
solution y(t0 + h). Note that the sum of two B-series is another B-series with coefficients equal to the sum
of individual coefficients of the series being combined. Similarly, the product of a B-series with a scalar is
a new series with each coefficient multiplied by the scalar.

The order conditions of the W -methods are obtained by matching the B-series coefficients of the exact
solution B# (y(tn + h)) with those of the numerical solution B# (yn+1) up to a specified order. Keeping in
mind that we do not ultimately seek order conditions for a W -method itself, that they are simply a means
to an end, we look now at the process for obtaining order conditions of the K-method from this result.

The extension of the theory of TW -trees to TK-trees is done in [24]. This extension allows us to “recolor”
all linear sub-trees (possessing only singly branched nodes) of the TW -trees and to substantially reduce the
number of required conditions. This is done using Lemmas 3 and 4, taken from [24], and repeated here
without proof.

Lemma 3 (Property of the Krylov approximate Jacobian (5) [24]). For any 0 ≤ k ≤M−1 it holds
that

Ak
n fn = Jkn fn ,

where M = dim(KM ).

Lemma 4 (Property of elementary differentials using the approximation (5) [24]). When the Krylov
approximation matrix (5) is used in equation (2), all linear TW-trees of order k ≤M correspond to a single
elementary differential, regardless of the color of their nodes.

TK-trees are the result of an application of Lemmas 3 and 4 to reduce the set of TW -trees that need to
be considered in the order conditions when the Krylov approximation matrix (5) is used [24].
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Algorithm 2 Construction of B-series of the numerical solution of a fourth-order, s stage exponential-W -
method (2)

for i = 1, . . . , s do
u = a0
for j = 1, . . . , i− 1 do

u = u + αi,j · ki
end for
q = B# (hf (B(u, y)))
for j = 1, . . . , i− 1 do

q = q + γi,j ·B# (hAnB(ki, y))
end for
ki = B# (ϕ(hγAn)B(q, y))

end for
an = a0
for i = 1, . . . , s do

an = an + bi · ki
end for

Definition 1 (TK-trees [24]).

TK = {TW -trees: no linear sub-tree has a fat root}
TK(k) = {TW -trees: no linear sub-tree of order

smaller than or equal to k has a fat root} .

Figure 3 shows all TK-trees to order four and the corresponding exponential-K order conditions. Note that
there are only nine TK-trees as opposed to the original twenty TW -trees. There is only one additional order
condition compared to methods which make use of the exact Jacobian, and this condition corresponds to a
tree which has a doubly-branched node occurring as a descendant of a fat node.

Remark 3. The order conditions given here are only for the exponential-K methods, but the same process
can be used to rederive the Rosenbrock-K conditions given in [24] through the use of different cn in the
Taylor expansion of ϕ(hγAn) in equation (6).

Theorem 1 (Order conditions for exponential-K methods). An exponential-K method has order p
iff the underlying Krylov space (3) has dimension M ≥ p, and the following order conditions hold:∑

j

bj Φj(τ) = Pτ (τ) ∀ τ ∈ TK with |τ | ≤ p . (10)

Here |τ | is the order, or number of vertices of the tree τ , and Φj(τ) and Pτ (τ) are computed using Algorithm
2; they are shown in Figure 3 for p ≤ 4.

Proof. The proof follows from our discussion, the near equivalence of order conditions for exponential-W
and Rosenbrock-W methods [6], and from the order conditions of Rosenbrock-W methods [4, Theorem 7.7].

�

Remark 4 (Stiff order conditions.). This section has developed classical order conditions that explain
the accuracy of the methods on non-stiff problems. The behavior of the methods when applied to very stiff
problems may be different, e.g., true to order reduction. A stiff order conditions theory for exponential
methods has been proposed by Luan and Ostermann [13]. The development of stiff order conditions for
exponential-K methods falls outside the scope of this paper.

8



Figure 3: TK-trees and exponential-K conditions up to order four.

τ F (τ) Φ(τ) Pτ (γ)

j
fJ 1 1

j

k

fJKf
K

∑
βj,k 1/2 (1− γ)

j

kl

fJKLf
KfL

∑
αj,kαj,l 1/3

j

k

l

fJKf
K
L f

L
∑
βj,kβk,l 1/3(1/2− γ)(1− γ)

j

k
l

m

fJKLMf
KfLfM

∑
αj,kαj,lαjm 1/4

j

k

l

m

fJKMf
K
L f

LfM
∑
αj,kβk,lαj,m 1/8− γ/6

j

k

l m

fJKf
K
LMf

LfM
∑
αj,kαk,mαk,l 1/12

j

k

l m

AJKf
K
LMf

LfM
∑
γj,kαk,mαk,l −γ/6

j

k

l

m

fJKf
K
L f

L
Mf

M
∑
βj,kβk,lβl,m 1/4(1/3− γ)(1/2− γ)(1− γ)

9



Remark 5 (Stability considerations.). The numerical stability of exponential-K solutions depends on
the choice of Krylov space. Intuitively, the size of the K space should be large enough to cover the stiff
subspace of the system.Note that traditional exponential methods focus on accurate computations of matrix-
exp-vector products (e.g., by monitoring residuals), but do not account explicitly for the impact of Krylov
approximations on stability. The large number of basis vectors required to achieve accurate matrix function
vector products favors stability. In our case a small K dimension ensures accuracy, so the stability needs to be
considered separately. An automatic procedure to select dimension such as to achieve stability is important,
but falls outside the scope here.

4. An exponential-K method of order four

We now construct an exponential-K method of order four. As before we consider the case where γi,i = γ
for all stages i and denote

βi,j = αi,j + γi,j , β′i =

i−1∑
j=1

βi,j .

The following nine non-linear equations arise from the order conditions of a four stage, fourth order
exponential-K method

(a) b1 + b2 + b3 + b4 = 1

(b) b2β
′
2 + b3β

′
3 + b4β

′
4 = 1

2 (1− γ) = p21(γ)

(c) b2α
2
2 + b3α

2
3 + b4α

2
4 = 1

3

(d) b3(β3,2β
′
2) + b4(β4,2β

′
2 + β4,3β

′
3) = 1

3 ( 1
2 − γ)(1− γ) = p3,2(γ)

(e) b2α
3
2 + b3α

3
3 + b4α

3
4 = 1

4

(f) b3α3,2β
′
2 + b4(α4,2β

′
2 + α4,3β3) = 1

8 −
1
6γ = p4,2(γ)

(g1) b3α3,2α
2
2 + b4(α4,2α

2
2 + α4,3α

2
3) = 1

12

(g2) b3γ3,2α
2
2 + b4(γ4,2α

2
2 + γ4,3α

2
3) = − 1

6γ

(h) b4β4,3β3,2β
′
2 = 1

4 ( 1
3 − γ)( 1

2 − γ)(1− γ) = p4,4(γ)

(11)

If we now set

p4,3(γ) =
1

12
− 1

6
γ,

we can follow exactly the solution procedure given in [24] for obtaining the rok4a method, where we make
use of the pi,j given above, and as suggested in [6] to guarantee exact solutions for linear ODEs choose γ as
the reciprocal of an integer. For the expK method given in Table 1 we make the arbitrary choices

γ =
1

4
, b3 = 0, α2 = 1, α3 = α4 =

1

2
, β4,3 = −1

4
.

5. Alternative implementations of existing exponential methods

We now consider alternative implementations of previously derived methods exp4 [6] and erow4 [7].
These reformulations make use of only a single Krylov subspace projection per time step and exploit the
B-series analysis of Section 3.
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γ = 1
4

α2,1 = 1 γ2,1 = 7
8

α3,1 = 41
80 γ3,1 = 1

16

α3,2 = 1
80 γ3,2 = 0

α4,1 = 1
4 γ4,1 = − 1

32

α4,2 = 1
12 γ4,2 = 1

24

α4,3 = 1
6 γ4,3 = − 5

12

b1 = 1
6 b̂1 = 8

3

b2 = 1
6 b̂2 = 1

b3 = 0 b̂3 = − 8
3

b4 = 2
3 b̂4 = 0

Table 1: Coefficients of expK, a fourth order exponential-K method.

The method exp4 [6] has the alternative formulation:

k1 = ϕ1

(
1

3
hAn

)
f(yn), k2 = ϕ1(

2

3
hAn)f(yn), k3 = ϕ1(hAn)f(yn), (12a)

w4 =
−7

300
k1 +

97

150
k2 −

37

300
k3, (12b)

u4 = yn + hw4, d4 = f(u4)− f(yn)− hAnw4, (12c)

k4 = ϕ1

(
1

3
hAn

)
d4, k5 = ϕ1(

2

3
hAn)d4, k6 = ϕ1(hAn)d4, (12d)

w7 =
59

300
k1 −

7

75
k2 +

269

300
k3 +

2

3
(k4 + k5 + k6) , (12e)

u7 = yn + hw7, d7 = f(u7)− f(yn)− hAnw7, (12f)

k7 = ϕ1

(
1

3
hAn

)
d7, (12g)

y1 = yn + h

(
k3 + k4 −

4

3
k5 + k6 +

1

6
k7

)
. (12h)

The method erow4 [7] has the alternative formulation

k1 = ϕ1(
1

2
hAn)f(yn), (13a)

w2 =
1

2
k1, (13b)

u2 = yn + hw2, d2 = f(u2)− f(yn)− hAnw2, (13c)

k2 = ϕ1(hAn)f(yn), k3 = ϕ1(hAn)d2, (13d)

w4 = k2 + k3, (13e)

u4 = yn + hw4, d4 = f(u4)− f(yn)− hAnw4, (13f)

k4 = ϕ3(hAn)d2, k5 = ϕ4(hAn)d2, k6 = ϕ3(hAn)d4, k7 = ϕ4(hAn)d4, (13g)

yn+1 = yn + h (k2 + 16k4 − 48k5 − 2k6 + 12k7) (13h)
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We implement these methods in three different forms: first, in the standard way outlined in the literature
[6, 22, 23]; second, entirely in the reduced space such as given in (12), (13), and in [24]; and finally, using
only a single Krylov projection to approximate the ϕ functions. These implementations are discussed below.

5.1. Standard implementation

The primary feature of a standard implementation of an exponential method is the approximation of ϕ
functions using Krylov subspaces. For a term of the form ϕ(hAn)b this is done by projecting ϕ(hAn) and
b onto the space KM (An, b) = span

{
b,Anb,A

2
nb, . . . ,A

M−1
n b

}
as follows

ϕ(hAn)b ≈ VVTϕ(hAn)VVT b. (14)

Note that V T b = ‖b‖2e1, where e1 is the first canonical basis vector. Making use of equation (4) we obtain
the final Krylov subspace approximation

ϕ(hAn)b ≈ ‖b‖2V ϕ(hH)e1 . (15)

This approximation is computed as in [21], in which the exponential of an augmented matrix H̃ is constructed
[5] and (15) is read off from this result.

Remark 6. The standard implementation requires the construction of a new Krylov space for each vector b
operated on by a ϕ function, as well as the evaluation of a small matrix exponential to compute each ϕ(hγH)
function. Both exp4 and erow4 require the construction of three Krylov subspaces and the evaluation of
seven small matrix exponentials.

5.2. K-type implementation

K-type implementations of exp4 and erow4 follow the style of [24] and Section 1. For each ki ∈ RN
we create a corresponding λi = VT ki ∈ RM , similarly σi = VTwi ∈ RM , and evaluate all linear algebra
operations, including Jacobian-vector products, in the reduced space. Further, we construct only a single
Krylov subspace and perform full matrix computations of three ϕ function evaluations in the case of exp4,
and four in the case of erow4.

The K-type implementation of exp4, called exp4k, is:

ψ0 = VT f(yn), f⊥0 = f −Vψ0,

λ1 = ϕ1(
1

3
hH)ψ0, λ2 = ϕ1(

2

3
hH)ψ0, λ3 = ϕ1(hH)ψ0,

k1 = Vλ1 + f⊥0 , k2 = Vλ2 + f⊥0 , k3 = Vλ3 + f⊥0 , (16a)

w4 =
−7

300
k1 +

97

150
k2 −

37

300
k3, σ4 =

−7

300
λ1 +

97

150
λ2 −

37

300
λ3, (16b)

u4 = yn + hw4, ψ4 = VT f(u4), f⊥4 = f(u4)−Vψ4, δ4 = ψ4 − ψ0 − hHσ4, (16c)

λ4 = ϕ1(
1

3
hH)δ4, λ4 = ϕ1(

1

3
hH)δ4, λ4 = ϕ1(

1

3
hH)δ4,

k4 = Vλ4 + f⊥4 − f⊥0 , k5 = Vλ5 + f⊥4 − f⊥0 , k6 = Vλ6 + f⊥4 − f⊥0 , (16d)

w7 =
59

300
k1 −

7

75
k2 +

269

300
k3 +

2

3
(k4 + k5 + k6) ,

σ7 =
59

300
λ1 −

7

75
λ2 +

269

300
λ3 +

2

3
(λ4 + λ5 + λ6) , (16e)

u7 = yn + hw7, ψ7 = VT f(u7), f⊥7 = f(u7)− V ψ7, δ7 = ψ7 − ψ0 − hHσ7, (16f)

λ7 = ϕ1(
1

3
hH)δ7, k7 = VTλ7 + f⊥7 − f⊥0 , (16g)

y1 = yn + h

(
k3 + k4 −

4

3
k5 + k6 +

1

6
k7

)
. (16h)
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The K-type implementation of erow4, called erow4k, is:

ψ0 = VT f(yn), f⊥0 = f(yn)−Vψ0,

λ1 = ϕ1(
1

2
hH)ψ0, k1 = Vλ1 + f⊥0 , (17a)

w2 =
1

2
k1, σ2 =

1

2
λ1, (17b)

u2 = yn + hw2, ψ2 = VT f(u2), f⊥2 = f(u2)−Vψ2, δ2 = ψ2 − ψ0 − hHσ2, (17c)

λ2 = ϕ1(hH)ψ0, k2 = Vλ2 + f⊥0 ,

λ3 = ϕ1(hH)δ2, k3 = Vλ3 + f⊥2 − f⊥0 , (17d)

w4 = k2 + k3, σ4 = λ2 + λ3, (17e)

u4 = yn + hw4, ψ4 = VT f(u4), f⊥4 = f(u4)− V ψ4, δ4 = ψ4 − ψ0 − hHσ4, (17f)

λ4 = ϕ3(hH)δ2, k4 = Vλ4 +
1

3!

(
f⊥2 − f⊥0

)
,

λ5 = ϕ4(hH)δ2, , k5 = Vλ5 +
1

4!

(
f⊥2 − f⊥0

)
,

λ6 = ϕ3(hH)δ4, k6 = Vλ6 +
1

3!

(
f⊥4 − f⊥0

)
,

λ7 = ϕ4(hH)δ4, k7 = Vλ7 +
1

4!

(
f⊥4 − f⊥0

)
, (17g)

yn+1 = yn + h (k2 + 16k4 − 48k5 − 2k6 + 12k7) (17h)

5.3. Single projection implementation

The results of Section 3 imply that a single Krylov subspace need to be computed per time step guarantee
the order of accuracy. In contradistinction the standard implementation constructs several Krylov spaces,
primarily due to the use of residuals indicating how accurately the matrix function times vector products
have been approximated. In the single projection implementation we construct only the one subspace, and
similarly to K-type implementation compute the full matrix result of the ϕ functions. The implementation
differs from the K-type implementation in that the linear algebra operations, including Jacobian-vector
products, are computed in the full space.
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The single projection implementation of exp4, called exp4sp, is:

ψ0 = VT f(yn), f⊥0 = f(yn)−Vψ0,

λ1 = ϕ1(
1

3
hH)ψ0, λ2 = ϕ1(

2

3
hH)ψ0, λ3 = ϕ1(hH)ψ0,

k1 = Vλ1 + f⊥0 , k2 = Vλ2 + f⊥0 , k3 = Vλ3 + f⊥0 , (18a)

w4 =
−7

300
k1 +

97

150
k2 −

37

300
k3, (18b)

u4 = yn + hw4, d4 = f(u4)− f(yn)− hJnw4, (18c)

ψ4 = VT d4, d⊥4 = d4 −Vψ4,

λ4 = ϕ1(
1

3
hH)ψ4, λ5 = ϕ1(

2

3
hH)ψ4, λ6 = ϕ1(hH)ψ4,

k4 = Vλ4 + d⊥4 , k5 = Vλ5 + d⊥4 , k6 = Vλ6 + d⊥4 , (18d)

w7 =
59

300
k1 −

7

75
k2 +

269

300
k3 +

2

3
(k4 + k5 + k6) , (18e)

u7 = yn + hw7, d7 = f(u7)− f(yn)− hJnw7, (18f)

ψ7 = VT d7, d⊥7 = d7 −Vψ7,

λ7 = ϕ1(
1

3
hH)ψ7, k7 = Vλ7 + d⊥7 , (18g)

y1 = yn + h

(
k3 + k4 −

4

3
k5 + k6 +

1

6
k7

)
. (18h)

The single projection implementation of erow4, called erow4sp, is:

ψ0 = VT f(yn), f⊥0 = f(yn)−Vψ0,

λ1 = ϕ1(
1

2
hH)f(yn), k1 = Vλ1 + f⊥0 , (19a)

w2 =
1

2
k1, (19b)

u2 = yn + hw2, d2 = f(u2)− f(yn)− hJnw2, (19c)

ψ2 = V T d2, d⊥2 = d2 −Vψ2,

λ2 = ϕ1(hH)ψ0, k2 = Vλ2 + f⊥0 ,

λ3 = ϕ1(hH)ψ2, k3 = Vλ3 + d⊥2 , (19d)

w4 = k2 + k3, (19e)

u4 = yn + hw4, d4 = f(u4)− f(yn)− hJnw4, (19f)

ψ4 = V T d4, d⊥4 = d4 −Vψ4,

λ4 = ϕ3(hH)d2, k4 = Vλ4 +
1

3!
d⊥2 , λ5 = ϕ4(hH)d2, k5 = Vλ5 +

1

4!
d⊥2 ,

λ6 = ϕ3(hH)d4, k6 = Vλ6 +
1

3!
d⊥4 , λ7 = ϕ4(hH)d4, k7 = Vλ7 +

1

4!
d⊥4 , (19g)

yn+1 = yn + h (k2 + 16k4 − 48k5 − 2k6 + 12k7) . (19h)

5.4. Accuracy analysis of alternative implementations

Using the approach described by Algorithm 2 we construct B-series representations of the numerical
solutions produced by exp4k, exp4sp, erow4k, and erow4sp. Table 2 shows the B-series coefficients for
up to fourth order. Note that coefficients associated to various trees change not only for different methods
but also for different formulations of the same method.

The critical coefficient is that belonging to τ13, i.e., corresponding to the K order condition. Table 2
reveals that exp4k is fourth order, while both exp4sp, erow4K, and erow4sp are only third order. These
analytical results are confirmed experimentally in the next section.
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i F (τi) exp4k exp4sp erow4k erow4sp Exact Solution

1 fJ 1 1 1 1 1

2 fJKf
K 1

2 0 1
2 0

1
2

3 AJKf
K 0 1

2 0 1
2

4 fJKLf
KfL 1

3
1
3

1
3

1
3

1
3

5 fJKf
K
L f

L 1
6 0 1

12 0

1
6

6 fJKAKLf
L 1

120 0 1
12 0

7 AJKf
K
L f

L - 1
36 0 1

15 0

8 AJKAKLf
L 7

360
1
6 − 1

15
1
6

9 fJKLMf
KfLfM 1

4
1
4

1
4

1
4

1
4

10 fJKLf
L
Mf

MfK 1
6 0 1

12 0
1
8

11 fJKLALMf
MfK − 1

24
1
8

1
24

1
8

12 fJKf
K
LMf

MfL 1
12 0 1

24 0 1
12

13 AJKf
K
LMf

MfL 0 1
12

1
24

1
12 0

14 fJKf
K
L f

L
Mf

M 0 0 0 0

1
24

15 fJKf
K
L ALMf

M 1
20 0 1

48 0

16 fJKAKLf
L
Mf

M 1
18 0 1

24 0

17 fJKAKLALMf
M − 1537

24300 0 − 1
48 0

18 AJKf
K
L f

L
Mf

M 1
36 0 1

120 0

19 AJKf
K
L ALMf

M − 23
720 0 1

80 0

20 AJKAKLf
L
Mf

M − 1
27 0 − 1

60 0

21 AJKAKLALMf
M 3943

97200
1
24 − 1

240
1
24

Table 2: B-series expansion of the numerical solution for different exponential methods and implementations.
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Standard K-type SP-type
expK – 3.99 –
exp4 3.98 3.97 2.97
erow4 4.00 2.97 2.96

Table 3: Convergence rates for all methods and implementations applied to the Lorenz-96 model.

6. Numerical Results

We perform numerical tests using a nonlinear ODE model, the two-dimensional shallow water equations,
and the two-dimensional Allen-Cahn problem. While we have constructed both K- and SP - type implemen-
tations of exp4 and erow4, we present performance comparisons of only the fourth order methods expK,
exp4, exp4K, and erow4, since the third order methods perform the same amount of work as fourth order
methods but yield lower accuracy.

6.1. Lorenz-96 model

The chaotic Lorenz-96 model [12] has N = 40 states, periodic boundary conditions, and is described by
the following equations:

dyj
dt

= −yj−1 (yj−2 − yj+1)− yj + F , j = 1, . . . , N , (20)

y−1 = yN−1 , y0 = yN , yN+1 = y1 .

The forcing term is F = 8.0, with t ∈ [0, 0.3] (time units).

0.0019 0.0037 0.0075 0.015 0.03 0.06
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

dt

E
rr

or

 

 

EXPK
EXP4
EROW4

Figure 4: Precision diagrams for different exponential methods in standard implementation applied to the Lorenz-96 test
problem. expK use a Krylov space of dimension M = 5.

Figure 4 shows the precision diagrams for expK with M = 5, and for the standard implementations of
exp4 and erow4. All methods show the theoretical convergence order four. The performance of different
implementations of exp4 and erow4 are shown in Figures 5(a) and 5(b), respectively. The results confirm
the lower orders of alternative implementations predicted by the B-series analysis presented in table 2. The
convergence rates for all methods applied to the Lorenz-96 model are summarized in Table 3 .
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6.2. Shallow water equations

We examine the relative performance of the methods on the two-dimensional shallow water equations
[10], a hyperbolic system of partial differential equations

∂

∂t
h+

∂

∂x
(uh) +

∂

∂y
(vh) = 0, (21a)

∂

∂t
(uh) +

∂

∂x

(
u2h+

1

2
gh2
)

+
∂

∂y
(uvh) = 0, (21b)

∂

∂t
(vh) +

∂

∂x
(uvh) +

∂

∂y

(
v2h+

1

2
gh2
)

= 0, (21c)

where u(x, y, t), v(x, y, t) are the flow velocity components and h(x, y, t) is the fluid height. After spatial
discretization using centered finite differences (21) is brought to the standard ODE form (1) with

y = [u v h]
T ∈ RN , fy(t, y) = J ∈ RN×N .

The standard exponential integrators compute the product ϕ(hAn)b with an adaptive basis size to
guarantee accuracy and the comparisons include the cost of the extra residual computations required to do
so, while the K- type implementations use a constant basis size chosen empirically for stability. Automatic
selection of Krylov basis size for stability is an open problem, and is the subject of future work. A special
subroutine was implemented to compute exact Jacobian-vector products using a matrix-free approach.

Figures 6(a) and 6(b) show a performance comparison of the standard and K-type implementations of
expK, exp4, and erow4. Two grid sizes of 32× 32 and 128× 128 points are considered. In both cases the
K-type implementations are more efficient for lower error tolerances, while the adaptivity of the standard
implementations allows them to ‘catch up’ in performance as the errors decrease.

6.3. The Allen-Cahn problem

For further performance comparison we consider the two-dimensional Allen-Cahn system, a parabolic
partial differential equation

∂

∂t
u = α∇2u+ γ

(
u− u3

)
, (x, y) ∈ [0, 1]× [0, 1], t ∈ [0, 0.2], (22)

with α = 0.1 and γ = 1.0. The problem has homogeneous Neumann boundary conditions and the initial
solution u(t = 0) = 0.4+0.1(x+y)+0.1 sin(10x) sin(20y). Unlike the shallow water equations, the reaction-
diffusion problem (22) is stiff.

The standard implementations of various methods make use of an adaptive Krylov basis size while the K-
type implementations use empirically selected basis sizes. Figures 7(a) and 7(b) compares the performance of
the standard and K-type implementations for different problem sizes. We once again see a better efficiency
of the K-type methods for lower error values, but with a much earlier break-even point for efficiency. This
is due primarily to the spectrum of the diffusion operator, and the difference in stability and accuracy
requirements between the shallow water and Allen-Cahn equations. In the case of Allen-Cahn the stability
requirements are more strict than the accuracy considerations and so the multiple smaller projections of
the standard implementation become more efficient than the single larger projection in the K-type method,
even though the latter uses fewer overall basis vectors.

7. Conclusions

This work extends the K-method approach proposed in [24] to exponential integrators and develops the
new family of exponential-K schemes. A rigorous framework for order conditions analysis is developed that
accounts for both temporal truncation errors and Krylov approximation errors. We construct an exponential-
K method based on the general form given in [6], and reformulate existing exponential methods in order to
take advantage of the reduced workload permitted by the new analysis.
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Figure 5: Work-precision diagrams for different implementations of traditional exponential integrators applied to the Lorenz-96
test problem (20).
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(a) N = 3 × 32 × 32
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(b) N = 3 × 128 × 128

Figure 6: Work-precision diagrams for exponential integrators applied to the shallow water test problem (21). Different problem
sizes results from different spatial resolutions.
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(a) N = 50 × 50
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(b) N = 150 × 150

Figure 7: Work-precision diagrams for exponential integrators applied to the Allen-Cahn test problem (22). Different problem
sizes result from different spatial resolutions.
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Numerical experiments are carried out with three test problems, an ordinary differential equation and
hyperbolic and parabolic partial differential equations. The results indicate that the new K-type exponential
methods have the potential to be more efficient than their classical counterparts. While the new K- method
expK derived here does not appear to be more efficient than the previously existing methods, primarily due
to a less efficient general form, it validates the order conditions theory of exponential-K methods. We have
shown that the traditional exp4 method satisfies the additional order four K-condition when reformulated
as a K-method, and that the resulting exp4k scheme is more efficient than previous methods for the test
problems presented here.

Future work will focus on developing a methodology to automatically select the Krylov subspace size in
order to guarantee numerical stability, as on the construction of new exponential methods that can take full
advantage of the inherent benefits present in the K-type formulation.

Acknowledgements

This work has been supported in part by NSF through awards NSF CMMI–1130667, NSF CCF–1218454,
NSF CCF–0916493, AFOSR FA9550–12–1–0293–DEF, AFOSR 12-2640-06, and by the Computational Sci-
ence Laboratory at Virginia Tech.

Appendix A. Order conditions for exponential-W methods.

Theorem 2 (Order conditions for exponential-W methods). An exponential-W method with general
form (2) has order p iff the following order conditions hold:∑

j

bj Φj(τ) = Pτ (τ) ∀ τ ∈ TW with |τ | ≤ p . (A.1)

Here |τ | is the order, or number of vertices of the tree τ , and Φj(τ) and Pτ (τ) can be computed using
Algorithm 2; they are shown in Figure A.4 for p ≤ 4.

Proof. The proof follows from our discussion in section 3, the near equivalence of order conditions for
exponential-W and Rosenbrock-W methods [6], and from the order conditions of Rosenbrock-W methods
[4, Theorem 7.7]. �
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i F (τi) Φ(τ) Pτ (γ)

1 fJ 1 1

2 fJKf
K

∑
αjk

1
2

3 AJKf
K

∑
γjk

−γ
2

4 fJKLf
KfL

∑
αjkαjl

1
3

5 fJKf
K
L f

L
∑
αjkαkl

1
6

6 fJKAKLf
L

∑
αjkγkl

−γ
4

7 AJKf
K
L f

L
∑
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−γ
4

8 AJKAKLf
L

∑
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γ2

3
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∑
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1
4
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L
Mf

MfK
∑
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8
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MfK

∑
αjkαjlγlm

−γ
6

12 fJKf
K
LMf

MfL
∑
αjkαklαkm

1
12

13 AJKf
K
LMf

MfL
∑
γjkαklαkm

−γ
6

14 fJKf
K
L f

L
Mf

M
∑
αjkαklαlm

1
24

15 fJKf
K
L ALMf

M
∑
αjkαklγlm

−γ
12

16 fJKAKLf
L
Mf

M
∑
αjkγklαlm

−γ
12

17 fJKAKLALMf
M

∑
αjkγklγlm

γ2

6

18 AJKf
K
L f

L
Mf

M
∑
γjkαklαlm

−γ
12

19 AJKf
K
L ALMf

M
∑
γjkαklγlm

γ2

8

20 AJKAKLf
L
Mf

M
∑
γjkγklαlm

γ2

6

21 AJKAKLALMf
M

∑
γjkγklγlm

−γ3

4

Table A.4: Order conditions for exponential-W methods with general form (2) and p ≤ 4.
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