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ABSTRACT

Steepest-entropy-ascent quantum thermodynamics (SEAQT) is a mathematical and theoret-
ical framework for intrinsic quantum thermodynamics (IQT), a unified theory of quantum
mechanics and thermodynamics. In the theoretical framework, entropy is viewed as a mea-
sure of energy load sharing among available energy eigenlevels, and a unique relaxation path
of a system from an initial non-equilibrium state to a stable equilibrium is determined from
the greatest entropy generation viewpoint. The SEAQT modeling has seen a great devel-
opment recently. However, the applications have mainly focused on gas phases, where a
simple energy eigenstructure (a set of energy eigenlevels) can be constructed from appropri-
ate quantum models by assuming that gas-particles behave independently. The focus of this
research is to extend the applicability to solid phases, where interactions between constituent
particles play a definitive role in their properties so that an energy eigenstructure becomes
quite complicated and intractable from quantum models. To cope with the problem, a highly
simplified energy eigenstructure (so-called “pseudo-eigenstructure”) of a condensed matter
is constructed using a reduced-order method, where quantum models are replaced by typical
solid-state models. The details of the approach are given and the method is applied to make
kinetic predictions in various solid-state phenomena: the thermal expansion of silver, the
magnetization of iron, and the continuous/discontinuous phase separation and ordering in
binary alloys where a pseudo-eigenstructure is constructed using atomic/spin coupled oscil-
lators or a mean-field approximation. In each application, the reliability of the approach
is confirmed and the time-evolution processes are tracked from different initial states un-
der varying conditions (including interactions with a heat reservoir and external magnetic
field) using the SEAQT equation of motion derived for each specific application. Specifi-
cally, the SEAQT framework with a pseudo-eigenstructure successfully predicts: (i) lattice
relaxations in any temperature range while accounting explicitly for anharmonic effects, (ii)
low-temperature spin relaxations with fundamental descriptions of non-equilibrium temper-
ature and magnetic field strength, and (iii) continuous and discontinuous mechanisms as
well as concurrent ordering and phase separation mechanisms during the decomposition of
solid-solutions.
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GENERAL AUDIENCE ABSTRACT

Many engineering materials have physical and chemical properties that change with time.
The tendency of materials to change is quantified by the field of thermodynamics. The
first and second laws of thermodynamics establish conditions under which a material has no
tendency to change; these conditions are called equilibrium states. When a material is not
in an equilibrium state, it is able to change spontaneously. Classical thermodynamics reli-
ably identifies whether a material is susceptible to change, but it is incapable of predicting
how change will take place or how fast it will occur. These are kinetic questions that fall
outside the purview of thermodynamics. A relatively new theoretical treatment developed
by Hatsopoulos, Gyftopoulos, Beretta and others over the past forty years extends classi-
cal thermodynamics into the kinetic realm. This framework, called steepest-entropy-ascent
quantum thermodynamics (SEAQT), combines the tools of thermodynamics with quantum
mechanics through a postulated equation of motion. Solving the equation of motion provides
a kinetic description of the path a material will take as it changes from a non-equilibrium
state to stable equilibrium. To date, the SEAQT framework has been applied primarily to
systems of gases. In this dissertation, solid-state models are employed to extend the SEAQT
approach to solid materials. The SEAQT framework is used to predict the thermal expan-
sion of silver, the magnetization of iron, and the kinetics of atomic clustering and ordering
in binary solid-solutions as a function of time or temperature. The model makes it possible
to predict a unique kinetic path from any arbitrary, non-equilibrium, initial state to a stable
equilibrium state. In each application, the approach is tested against experimental data. In
addition to reproducing the qualitative kinetic trends in the cases considered, the SEAQT
framework shows promise for modeling the behavior of materials far from equilibrium.
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Chapter 1

Introduction

1.1 SEAQT model

Steepest-entropy-ascent quantum thermodynamics (SEAQT) is the mathematical and the-
oretical framework for intrinsic quantum thermodynamics (IQT), a unified theory of quan-
tum mechanics and thermodynamics [47, 48, 49, 50, 5], and is a novel and intriguing
approach to describing both equilibrium as well as non-equilibrium dynamic processes in
a self-consistent way. Unlike conventional dynamic methods using microscopic mechan-
ics (e.g., molecular dynamics simulations) or stochastic thermodynamics (e.g., the kinetic
Monte Carlo method), the SEAQT framework is based on a first-principle, non-equilibrium
thermodynamic-ensemble approach. While the former approaches require extensive infor-
mation about particles (e.g., position and momentum) and/or all possible reaction rates
in a system at each time step, SEAQT uses thermodynamic properties (e.g., energy and
entropy) as its state variables and predicts the kinetic evolution of a system via a unique
equation of motion that follows the principle of steepest entropy ascent (i.e., the maximum
rate of entropy production postulate). The thermodynamic description of system states and
a unique kinetic path determined from the SEAQT equation of motion greatly reduces the
computational burden relative to other approaches for modeling dynamic processes. Fur-
thermore, since the state variables can be applied at any scale in any system (from the
atomistic to macroscopic scale), the SEAQT framework has the ability to do multiscale cal-
culations in which multiple length and time scales need to be taken into account within a
single theoretical framework [76].

1
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1.2 Objectives and originality

In the SEAQT framework in which the entropy is viewed as a measure of the energy load
sharing among available energy eigenlevels, a relaxation path from an initial non-equilibrium
state to stable equilibrium is uniquely determined by the SEAQT equation of motion. This
framework has undergone significant development recently, but most applications have fo-
cused on gas phases where an energy eigenstructure (a set of energy eigenlevels) can be
constructed by assuming that the gas-particles behave independently. The objective of this
research, therefore, is to apply the SEAQT framework to a variety of applications involving
solid phases where interactions between constituent particles play a definitive role in their
properties and the energy eigenstructure is quite complicated. To cope with the complex
energy eigenstructure, a somewhat simplified energy eigenstructure is constructed using a
“reduced-order method”, where a solid-state model is employed instead of a quantum model.
This reduced-order model is then combined with the desnity of states method developed by
Li and von Spakovsky [73] to create a so-called “pseudo-eigenstructure” used by the SEAQT
equation of motion to predict the state evolution of a given system. This strategy is applied
to make kinetic predictions in several solid-state materials: the thermal expansion of silver,
the magnetization of iron, and continuous/discontinuous phase separation and ordering in
binary alloys. These specific applications are chosen in this research because a relatively
simple pseudo-eigenstructure can be constructed from a reduced-order method. However,
the SEAQT theoretical framework is applicable to any physical phenomenon as long as the
eigenstructure and pseudo-eigenstructure for the system in question are properly prepared.

Although each solid-state application addressed in this dissertation has been broadly inves-
tigated with various computational methods before, there are some open issues to address.
For example;

• Equilibrium thermal expansion of metals has been explored using statistical mechanics
with a quasi-harmonic approximation, but the applicability is limited to stable equilib-
rium and a quasi-harmonic approximation underestimates thermal expansion at high
temperatures. Although molecular dynamics simulations have been employed for lat-
tice relaxation processes, the use of this approach based on classical mechanics cannot
be justified at low temperatures (below the Debye temperature).

• Atomic spin relaxations have been studied by spin dynamics simulations, but low-
temperature magnetization is not predicted accurately with this method. Furthermore,
although non-equilibrium spin system temperature is defined within the method, it is
a phenomenological and not a fundamental property.

• Continuous and discontinuous phase decomposition processes in alloy systems have
been modeled by various microstructural approaches (e.g., the cluster dynamics method
and the Phase Field Model), but these conventional models need to assume an operative
mechanism in a given system a priori. Furthermore, there are currently no convenient
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theoretical frameworks that can model decomposition when multiple mechanisms are
operative such as in concurrent phase separation and ordering.

In this doctoral research, the above problems are circumvented using the SEAQT framework.
The original contributions of the dissertation are summarized as follow:

For SEAQT;

• Developed a methodology for applying the SEAQT framework to solid-state phenom-
ena.

• Derived the SEAQT equation of motion for specific applications.

• Applied the methodology and each derived form of the SEAQT equation of motion to
various solid-state phenomena, resulting in predictions of the kinetic changes of state
and the final equilibrium state for various materials.

For thermal expansion (or lattice relaxation);

• Took into account anharmonic effects explicitly.

• Predicted lattice relaxations reliably at any temperature (even below the Debye tem-
perature).

For magnetization (or spin relaxation);

• Predicted spin relaxations reliably at low temperatures.

• Defined “fundamental” intensive properties (i.e., temperature and magnetic field strength)
in spin systems.

For continuous/discontinuous phase separation and ordering;

• Predicted continuous and discontinuous phase transformations without any a priori
assumptions.

• Modeled concurrent behaviors of phase separation and ordering.
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1.3 Structure of this dissertation

The procedure for applying the SEAQT theoretical framework to a solid-state phenomenon
is given in the next chapter (Chapter 2), and each specific application is investigated in the
subsequent chapters (Chapters 3 to 6). Each chapter forms an independent paper, which
has either already been published or will be submitted for publication. The chapters of the
dissertation are summarized as follow:

Chapter 2:
An overview of the application of the SEAQT framework to materials science is given with
details of the this framework and the pseudo-eigenstructure. Differences of the method with
other common computational approaches in materials science are described. In addition,
the application of the method is illustrated with a simple model system and a ferromagnetic
spin system. Each of these applications focuses on how the SEAQT equation of motion is
used and demonstrates how one can construct a pseudo-eigenstructure using a reduced-order
method with the density of states method mentioned above. This chapter is being prepared
for journal publication [129].

Chapter 3:
The thermal expansion of metallic silver is explored in the SEAQT theoretical framework
with a pseudo-eigenstructure based on anharmonic coupled oscillators. The applicability of
the method is demonstrated by calculating the thermal expansion for three cases: (a) stable
equilibrium, (b) along three irreversible paths from different initial non-equilibrium states to
stable equilibrium, and (c) along an irreversible path between two stable equilibrium states.
The calculated equilibrium thermal expansion values are compared with experimental data
to confirm the reliability of the method, and the lattice relaxations associated with several
different irreversible (non-equilibrium) paths from the initial state to the final equilibrium
state are predicted and discussed. This study has been published in the Journal of Physics:
Condensed Matter [128].

Chapter 4:
The low-temperature magnetization of bcc-Fe is investigated using the SEAQT framework
with a pseudo-eigenstrcuture constructed from harmonic coupled oscillators. The spin re-
laxation process at various external magnetic fields are calculated as well as the equilibrium
magnetization and show good agreement with experimental data up to 500 K. In addition,
fundamental non-equilibrium intensive properties (temperature and magnetic field strength)
are defined using the concept of hypoequilibrium states. Some spin relaxation processes are
analyzed with the use of the non-equilibrium intensive properties. This study is in prepara-
tion for journal publication [127].
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Chapter 5:
The decomposition kinetics of a solid solution into separate phases are analyzed with the
SEAQT framework. The appropriate form of the SEAQT equation of motion is derived for
the case of the decomposition of a binary alloy, and a mean-field approximation (or a solution
model) is used to build an approximate energy eigenstructure (or pseudo-eigenstructure) for
the alloy. The equation of motion is then solved with the pseudo-eigenstructure to obtain a
unique reaction path and the decomposition kinetics of the alloy. For a hypothetical solid
solution with a miscibility gap at low temperatures, conditions under which the method
predicts a continuous transformation path (spinodal decomposition) and a discontinuous
transformation path (nucleation and growth) is predicted. This study is in preparation for
journal publication [125].

Chapter 6:
The kinetics of ordering and concurrent ordering and clustering is analyzed with the SEAQT
framework. A pseudo-eigenstructure is constructed from a static concentration wave method
to describe the configuration-dependent energy during atomic ordering and clustering in a
binary alloy. This pseudo-eigenstructure is used in conjunction with the equation of motion
derived for the decomposition of the binary alloy in Chapter 5 in order to calculate the
kinetic path that leads to ordering and clustering in a series of hypothetical alloys. By
adjusting the thermodynamic solution parameters, it is demonstrated the model can predict
the stable equilibrium state and also the unique path and kinetics of continuous ordering,
discontinuous ordering, phase separation, and concurrent processes of simultaneous ordering
and phase separation. This study is in preparation for journal publication [126].



Chapter 2

Steepest-Entropy-Ascent Quantum
Thermodynamics Models in Materials
Science

2.1 Introduction

Mechanics and equilibrium thermodynamics overlap extensively in computational materials
science, but they have different origins. Quantum and classical mechanics describe non-
entropic phenomena through a fundamental description of particle (and wave) behavior
based upon Schrödinger’s or Newton’s equation of motion. Thermodynamics is concerned
with stable equilibria and provides a phenomenological description of matter derived from
the first and second laws of thermodynamics. Because mechanics and thermodynamics
developed independently and from different starting points, there are well-known conceptual
incompatibilities between the two frameworks [83].

An intriguing theory that reconciles these incompatibilities appeared almost 40 years ago
[47, 48, 49, 50, 5]. Its mathematical framework, which is now called steepest-entropy-ascent
quantum thermodynamics (SEAQT), has developed extensively over the intervening years
(e.g., see references [11, 10, 6, 7, 8, 117, 88, 17, 109, 9, 73, 70, 71, 72, 74, 76, 75, 128, 125, 126,
127]). In the SEAQT theoretical framework, energy and entropy are used as fundamental
state variables (as does classical thermodynamics), but entropy is interpreted as a measure of
energy load sharing among available energy eigenlevels rather than as a statistical property
of a statistical ensemble. In addition, SEAQT postulates that the time-evolution of an
isolated system maximizes the rate of entropy production at every instant of time. The
particular path that satisfies this postulate is determined by a unique master equation called
the SEAQT equation of motion, which directs the system along the path of steepest entropy
ascent.
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The steps required to apply the SEAQT framework to materials-related problems are illus-
trated in this paper through several solid-state applications. By way of introduction, the
SEAQT model is first compared and contrasted with common computational approaches in
Section 2.2. In Sec. 2.3, the SEAQT equation of motion is derived for the case of an isolated
system and for interacting systems. In Sec. 2.4, the issues associated with constructing an
energy eigenstructure (a set of energy levels) are described for solids, and then a method for
building a simplified energy eigenstructure (a so-called “pseudo-eigenstructure”) is presented
to address these issues. In Sec. 2.5, the SEAQT model is demonstrated using a simple model
system and then a ferromagnetic spin system with a focus on the use of the SEAQT equation
of motion and the construction of the pseudo-eigenstructure. Finally, the salient features
and advantages of the SEAQT model are noted in Sec. 2.6 along with some future directions
for study.

2.2 Advantages of the SEAQT Model

2.2.1 Mechanics and Thermodynamics

The energy–entropy (E–S ) diagram (Fig. 2.1), which is a two-dimensional cut in the E–S
plane of the hypersurface of all stable equilibrium states for a given system, helps clarify
where the mechanics and equilibrium thermodynamic approaches are valid. While mechanics
describes non-entropic states corresponding to the vertical axis of Fig. 2.1, classical thermo-
dynamics is largely limited to the stable equilibria represented by the bounding curve in the
figure.

A variety of material properties can be calculated reliably in the non-entropic region using
first principle methods for solving Schrödinger-like equations (e.g., the Kohn-Sham equations
of density functional theory), but these methods cannot be employed directly at the finite
temperatures of the entropic region. In order to determine properties at finite temperatures,
quantum statistical mechanics is often combined with density functional theory where the
most probable state is explored by searching the minimum free energy. Quantum statis-
tical mechanics has had much success describing solid-state phenomena such as magnetic
transitions, gas–liquid transitions, and order–disorder transformations [65, 37]. However, it
introduces unphysical assumptions by assuming a heterogeneous ensemble (Appendix A.1)
and its applicability is limited to the stable equilibrium region and does, thus, not apply to
the non-equilibrium region (the cross-hatched area in Fig. 2.1).

There are a number of ways to combine quantum mechanics with thermodynamics to describe
non-equilibrium time-evolution processes at the quantum scale [108]. For example, using a
nonlinear time-dependent Schrödinger equation of motion [29, 106] with an added frictional
term or Markovian and non-Markovian quantum master equations [34, 35, 132] where so-
called “dissipative open systems” are assumed are two such ways that this can be done.
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Figure 2.1: A schematic energy–entropy (E–S ) diagram for a system with constant volume,
V , and number of particles, N . The bounding curve represents the stable equilibrium states
in the in the E–S plane described by equilibrium thermodynamics, and the vertical axis is a
non-entropic line that represents the domain of mechanics in this plane. The cross-hatched
area is the non-equilibrium region that is not strictly described either by mechanics or by
thermodynamics.

Unfortunately, as recently pointed out, these approaches are plagued by inconsistencies in
descriptions such as the definition of state, which is different in each of the approaches [108].
It is simply noted here without dwelling on these inconsistencies that the SEAQT framework
provides an alternative approach for unifying quantum mechanics and thermodynamics that
does not introduce any intrinsic inconsistencies. Additional details can be found in reference
[108].

2.2.2 Multiscale calculations in materials science

Computational investigations of materials cover a broad range of length and time scales.
Macroscopic material properties generally depend to some extent on the underlying atom-
istic, microscopic, and mesoscopic behavior. For example, the deformation behavior of a
structural steel component depends not only upon the geometry of the component but also
on the steel microstructure and its dependence upon the local plastic deformation zones,
which, in turn, depend upon the atomic bonding of the constituent atoms.

Approaches suitable for calculating material properties apply to different length and time
scales (Fig. 2.2). For instance, in the above example of deformation behavior, macroscopic
strains are calculated using the finite element method [4, 27], microstructure evolution at
the mesoscopic spatial scale with phase field models [21, 85], atomic displacements with
molecular dynamics simulations [12] and kinetic Monte Carlo simulations, and bonding-level
behavior with electronic structure calculations [118, 69].
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Figure 2.2: Common computational methods and the different time and length scales for
their application in materials science [92]. The acronyms shown are Finite Element Method
(FEM), Phase Field Model (PFM), Molecular Dynamics (MD), kinetic Monte Carlo (kMC),
and Density Functional Theory (DFT). The range of scales over which SEAQT has been
applied to date is indicated by the gray region; there are no intrinsic limitations that prevent
it from being extended over larger spatial scales.

Each computational method is quite successful when applied over the length and time scales
for which it was developed, but extending them to other length/time scales is problematic.
To overcome these difficulties, computational methods have been combined synergistically
such that the time-dependence of a property is calculated in a larger-scale computational
model with parameters/data determined from smaller-scale methods in a “constitutive ap-
proach” [119]. For example, a deformation process can be simulated by calculating atomistic
parameters with molecular dynamics [53] or Monte Carlo simulations [115] and then passing
them to a phase field model that calculates the microstructure [130, 32], which is subse-
quently passed to a finite element method that simulates the deformation process. Although
the constitutive approach connects different length scales, the dynamics at smaller scales
are usually ignored by the larger scales. As pointed out in reference [119], although the
constitutive approach may be adequate for a simple system, its applicability to a complex
system is questionable, because complex interactions among scales are possible and many
parameters would be required to represent them. Furthermore, parameters/data in the con-
stitutive relation are calculated ignoring the effect of larger-scale phenomena by assuming a
homogeneous system [119]. Therefore, in order to reliably describe behavior over multiple
scales, it is desirable to combine methods that take into account the dynamics at each scale
and mutually update data during the entire time-evolution process. This is difficult with
existing methods because the state variables and governing equations differ from one scale
to the next and converting variables and using different governing equations becomes very
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problematic [76].

The SEAQT framework has the potential to improve this situation. Unlike the computational
methods described above, the SEAQT framework uses energy and entropy as its fundamental
state variables and the time-evolution of a system is determined from the SEAQT equation of
motion based on the principle of steepest entropy ascent at each instant of time. Since energy
and entropy can be defined for any state in any system regardless of scale and the equation
of motion is based upon quantum mechanics without resort to the near/local equilibrium
assumptions, the framework applies to any state at all length and time scales. Thus, it is
able to describe physical phenomena and their couplings at all length and time scales within
a single theoretical framework [76].

The SEAQT framework has several additional distinguishing characteristics relative to con-
ventional computational models. They are as follow:

• MD is limited to high temperatures (above the Debye temperature) because it is based
on classical mechanics, while SEAQT is equally valid at all temperatures. In addition,
MD models require an artificial term in the Hamiltonian when a system interacts
with a heat reservoir [69], while there is no need to introduce arbitrary terms in the
Hamiltonian with the SEAQT approach since the framework is based on a fundamental
and not a phenomenological description.

• Whereas the PFM is most appropriate for near-stable equilibrium states because the
time-evolution process is determined by a master equation (e.g., the Cahn-Hilliard
equation and the Allen-Cahn equation [3]) that is derived assuming small deviations
from equilibrium, the SEAQT framework requires no such restriction, because the
SEAQT equation of motion does not require the near/local equilibrium assumption.

• While the kMC method needs to identify all possible discrete events that can take place
at each instant of time, the kinetic path in SEAQT is determined by merely solving the
SEAQT equation of motion (a set of first-order, ordinary differential equations). Thus,
the computational burden associated with the SEAQT framework is small compared to
that for kMC (as well as the other methods described here). Moreover, the stochastic
framework in kMC can make it difficult to extract physical insights from the simulations
without a statistical analysis of multiple computational experiments.

2.3 SEAQT equation of motion

The SEAQT equation of motion is based on the steepest-entropy-ascent principle using
energy and entropy as the basic state variables, and it has been demonstrated that the
equation of motion recovers the Boltzmann transport equations in the near-equilibrium limit
[75]. Here, the SEAQT equation of motion is derived for an isolated system and for an
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Figure 2.3: Schematic descriptions of the isolated systems under consideration: (a) the simple
isolated system considered in Sec. 2.3.1, and (b) the isolated system with two subsystems
that exchange energy in a heat interaction in Sec. 2.3.2.

isolated composite system that contains two interacting systems that exchange energy in a
heat interaction (Fig. 2.3).

2.3.1 Isolated system

A typical quantum mechanics equation of motion, such as a Schrödinger-like equation, only
describes a subset of reversible processes (i.e., those involving non-entropic phenomena). The
SEAQT equation of motion, on the other hand, adds a postulated dissipative term to the
time-dependent Schrödinger equation that makes it possible to describe both reversible and
irreversible processes. This equation for a simple (as opposed to general) quantum system
is written as [11, 10, 6, 7]

dρ̂

dt
=

1

ih̄
[ρ̂, Ĥ] +

1

τ(ρ̂)
D̂(ρ̂) , (2.1)

where ρ̂ is the density operator, t the time, h̄ the reduced Planck constant, Ĥ the Hamiltonian
operator, τ the relaxation time, and D̂ the dissipation operator. The left-hand side of the
equation and the first term on the right corresponds to the time-dependent von Neumann
equation (or Schrödinger equation), and the second term on the right is the dissipation
term — an irreversible contribution that accounts for relaxation processes in the system.
The density operator, ρ̂, includes all the information about the state of the system. Its use
allows SEAQT to unify quantum mechanics and thermodynamics into a consistent theoretical
framework [47, 48, 49, 50].

When there are no quantum correlations between particles, ρ̂ is diagonal in the Hamiltonian
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eigenvector basis [70, 71, 74] and ρ̂ and Ĥ commute, i.e., [ρ̂, Ĥ] = 0. Under this circumstance,
the SEAQT equation of motion, Eq. (2.1), reduces to [6, 7, 73]

dpj
dt

=
1

τ(p)
Dj(p) , (2.2)

where the pj are the diagonal terms of ρ̂, each of which represents the occupation probability
in the jth energy eigenlevel, εj, and p denotes the vector of all the pj. (Since the contribution
of quantum correlations would be quite small for most material properties, the form of the
SEAQT equation of motion shown in Eq. (2.2) is employed hereafter.) The dissipation term,
Dj(p), can be derived via either a variational principle [6] or via the use of a manifold
[6, 7, 73] with the postulate that the time-evolution of a system follows the direction of
steepest entropy ascent constrained by appropriate conservation laws. Here, the derivation
of the SEAQT equation of motion is briefly described using the mathematical technique of
a manifold constrained by the conservation of energy and conservation of the occupation
probabilities.

For the purpose of deriving the dissipation term, Dj(p), the square root of the probability
distribution, xj =

√
pj, is employed (as is done in references [6, 7, 73]). Using xj, the

summation of the occupation probabilities and the expected energy and entropy of a system
are written as [73]

I =
∑
i

pi =
∑
i

x2
i

E = 〈e〉 =
∑
i

εipi =
∑
i

εix
2
i

S =〈s〉 = −
∑
i

piln

(
pi
gi

)
= −

∑
i

x2
i ln

(
x2
i

gi

)
,

(2.3)

where gj is the degeneracy of the energy eigenlevel εj. The von Neumann formula for en-
tropy is used in the last line of Eq. (2.3) because it satisfies all the characteristics required
by thermodynamics [45, 25] (the quantum Boltzmann entropy formula is discussed in Ap-
pendix A.1). The gradients of each property in state space are then expressed as

gI =
∑
i

∂I

∂xi
êi =

∑
i

2xiêi

gE =
∑
i

∂E

∂xi
êi =

∑
i

2εixiêi

gS =
∑
i

∂S

∂xi
êi = −

∑
i

2xi

[
1 + ln

(
x2
i

gi

)]
êi ,

(2.4)

where êi is the unit vector for component, i, i.e., the ith eigenlevel. Since I = 1 and
E = constant, the time-evolution of state, ẋ (=dx/dt), must be orthogonal to the manifold
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spanned by gI and gE. That is, ġI (=dgI/dt) and ġE (=dgE/dt) must be zero (see Fig. 2.4).
Therefore, the time-evolution is given by the solution of [6, 7, 73]

dx

dt
=

1

τ(x)
gS⊥L(gI ,gE)

=
1

τ(x)

∣∣∣∣∣∣
gS gI gE

(gS, gI) (gI , gI) (gE, gI)
(gS, gE) (gI , gE) (gE, gE)

∣∣∣∣∣∣∣∣∣∣(gI , gI) (gE, gI)
(gI , gE) (gE, gE)

∣∣∣∣ ,

(2.5)

where L(gI , gE) is the manifold spanned by gI and gE and gS⊥L(gI ,gE) is the perpendicular
component of the gradient of the entropy, gS, to the manifold, which is written in an explicit
form using the theory of Gram determinants [6] (the notation (· , ·) represents the scalar
product of two vectors). The explicit form of the SEAQT equation of motion for this case
is then written as [6, 7, 73]

dpj
dt∗

=

∣∣∣∣∣∣
−pjlnpjgj pj εjpj
〈s〉 1 〈e〉
〈es〉 〈e〉 〈e2〉

∣∣∣∣∣∣∣∣∣∣ 1 〈e〉
〈e〉 〈e2〉

∣∣∣∣ , (2.6)

where
〈e2〉 =

∑
i

ε2i pi , 〈es〉 = −
∑
i

εipiln
pi
gi
,

and t∗ ( = t
τ(p)

) is the dimensionless time and τ(p) a relaxation time. In Eq. (2.6), the

time-dependent trajectory of state evolution, pj(t
∗) is expressed in terms of a dimensionless

time rather than in terms of the real time, t. The two kinds of time are distinguished
by using the term ‘kinetics’ to refer to processes expressed in terms of t∗ and ‘dynamics’
to refer to processes expressed in terms of t. Thus, the ‘kinetics’ establishes the unique
thermodynamic path along which the state of the system evolves in state space (e.g., Hilbert
space), while τ determines the speed at which the system evolves along this path, i.e., the
so-called ‘dynamics’. A detailed discussion of this distinction can be found in references
[73, 70].

The derivation of the SEAQT equation of motion can be extended to include additional
conservation conditions, e.g., the number of particles [72], the volume [71], and the mag-
netization [127]. The SEAQT equation of motion with constant magnetization is shown in
Sec. 2.5.2.
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Figure 2.4: Geometric representation of the steepest-entropy-ascent direction constrained by
the conservation of occupation probabilities and the energy [5, 108]. The gradients gI , gE,
and gS are, respectively, the gradients of the occupation probabilities, energy, and entropy
in state space, and L(gI , gE) is the manifold spanned by gI and gE. While ẋ would be in the
direction of gS for an unconstrained process, it must be orthogonal to the manifold for max-
imum entropy generation, i.e., gS⊥L(gI ,gE), in order to conserve the occupation probabilities
and the energy [6].

2.3.2 Heat interaction between systems

The SEAQT equation of motion was formally derived in the previous section (Sec. 2.3.1)
for an isolated system but can also be extended to interacting systems by treating them
as interacting systems within a larger, isolated composite system [70, 72] (see Fig. 2.3 (b)).
(Hereafter, we call the interacting systems “subsystems” within the composite.) Further-
more, if one of the subsystems is much larger than the other, the bigger subsystem can be
treated as a reservoir and the SEAQT equation of motion for a system interacting with a
reservoir can be formulated as well [70, 72].

To derive the SEAQT equation of motion for two (sub) systems, A and B, interacting via
a heat interaction, three quantities in the composite system must be conserved: the energy
of the overall composite system and the occupation probabilities in each subsystem. In this
case, the manifold can be expressed as L = L(gAI , g

B
I , gE). The equation of motion for each

subsystem takes the form [70]

dpAj
dt∗

=

∣∣∣∣∣∣∣∣∣
−pAj ln

pAj
gAj

pAj 0 εAj p
A
j

〈s〉A 1 0 〈e〉A

〈s〉B 0 1 〈e〉B

〈es〉 〈e〉A 〈e〉B 〈e2〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 0 〈e〉A

0 1 〈e〉B

〈e〉A 〈e〉B 〈e2〉

∣∣∣∣∣∣
, (2.7)

where 〈·〉A (orB) is the expectation value of a property in subsystem A (or B), and 〈·〉 =
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〈·〉A+〈·〉B is the property in the composite system (only the equation of motion for system A
is shown above). Representing the cofactors of the first line of the determinant in the
numerator by C1, CA

2 , and C3, Eq. (2.7) can be expressed as [70]

dpAj
dt∗

= pAj

(
−ln

pAj
gAj
− CA

2

C1

− εAj
C3

C1

)

= pAj

[
(sAj − 〈s〉

A)− (εAj − 〈e〉
A)
C3

C1

]
= pAj

[
(sAj − 〈s〉

A)− (εAj − 〈e〉
A)β
]
.

(2.8)

The factor β is defined as β ≡ C3/C1 because it can be related to a temperature, T , as
β = 1

kBT
using the concept of hypo-equilibrium states described in Appendix A.2. Here, kB

is Boltzmann’s constant. In addition, β is related to the mole fractions of the subsystems
[70]. Therefore, when system B of Fig. 2.3 (b) is much larger than system A and viewed as
a heat reservoir, Eq. (2.8) is transformed into [70]

dpj
dt∗

= pj
[
(sj − 〈s〉)− (εj − 〈e〉)βR

]
, (2.9)

where βR = 1
kBTR

, TR is the temperature of the reservoir, and the superscripts, A, are
removed because there is just one system of interest to follow.

Although only two subsystems exchanging energy in a heat interaction are considered here,
the approach can be generalized to additional subsystems exchanging heat and/or mass [70].

2.4 Pseudo-eigenstructure

The SEAQT equation of motion is solved with a particular energy eigenstructure. In general,
an energy eigenstructure (a set of energy eigenlevels) is constructed for a quantum system
by assuming appropriate degrees of freedom for the particles or molecules: for example,
translation, rotation, and vibration degrees of freedom (see Fig. 2.5). A relatively simple
energy eigenstructure can be constructed for a low-density gas by assuming the gas particles
behave independently (the ideal gas approximation). In the solid (or liquid) phase, on the
other hand, interactions between particles play a determining role for the properties so that
interactions cannot be ignored and the energy eigenstructure becomes quite complex. This
complexity can be mitigated by replacing the quantum model with a reduced-order model
[128, 125, 126, 127] constructed from an appropriate solid-state analog. Furthermore, since
these energy eigenstructures usually involve an infinite number of energy eigenlevels — and
cannot be used with the SEAQT framework for this reason — a density of states method
[73] must be employed to convert an infinite energy-eiegnlevel system to a finite-level one.
Two common reduced-order models (coupled oscillators and the mean-field approximation)
are described in Sec. 2.4.1 and the density of states method is explained in Sec. 2.4.2.
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Figure 2.5: The translational, rotational, and vibrational degrees of freedom of particles (or
molecules). They are commonly used as quantum models when an energy eigenstructure of
a gas phase is constructed.

2.4.1 Reduced-order model

2.4.1.1 Coupled oscillators

Unlike atoms or molecules in a gas or liquid phase which include all of the degrees of freedom
of Fig. 2.5, the motion of particles in a solid are spatially constrained and only include the
vibrational degree of freedom. This has some computational benefits because it removes the
need to calculate any eigenlevels associated with translation or rotation. Since atoms in a
lattice exhibit collective atomic movements even at quite high temperatures, they can be
modeled reasonably well by a collection of coupled oscillators with quantized energies. The
energy eigenstructure is constructed by associating energies with all the frequencies available
to the system. This can be done by constructing a reduced-order model that treats a system
of particle oscillators as a collection of subsystems with different vibrational frequencies
(see Fig. 2.6). The oscillators may be physical objects, like atoms or molecules, or they
can be analogs like magnetic spin waves. Example applications of the approach are found
in reference [128] where thermal expansion is calculated from an eigenstructure built from
anharmonic coupled oscillators and in reference [127] where magnetization is calculated from
an eigenstructure based on harmonic coupled oscillators.

2.4.1.2 Mean-field approximation

The lattice (spin) wave description using coupled harmonic oscillators breaks down at high
temperatures because of interactions among the subsystems of Fig. 2.6 (phonon-phonon or
magnon-magnon interactions). These interactions can be included explicitly in the eigen-
structure by using anharmonic oscillators rather than simple harmonic oscillators (see refer-
ence [128]). Alternatively, one can use a mean-field approximation to describe the interac-
tions. The mean field approximation has been used extensively to describe the magnetization
of ferromagnetic materials [37, 65, 1] where interactions among spins on a lattice are replaced
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Figure 2.6: The system description for coupled oscillators with various vibrational frequen-
cies, ωj. The system is divided into three interacting subsystems, each with its own vi-
brational frequency. n is an integer quantum number that applies to the phenomenon of
interest, e.g., phonons for oscillating molecules in a lattice or magnons for magnetic spin on
a lattice.

with an effective internal magnetic field (see Fig. 2.7). The mean-field model is often used
with the Ising model where magnetic moments are allowed to point in only two directions,
up or down. The method is illustrated in Sec. 2.5.2 wherein the magnetization change of
body-centered cubic (bcc) iron is calculated with the SEAQT framework.

The mean-field approximation fails to predict magnetization changes of ferromagnetic ma-
terials at low temperatures because it uses a uniform (or constant) value for the effective
internal field and ignores changes of the field in the region where up-spins or down-spins are
slightly localized. This happens at low temperatures because the contribution of interaction
energy becomes large. To cope with the problem, there have been attempts to include short-
range correlations between spins in the model by defining clusters [37] (see Fig. 2.8). The
same is true for mean-field approximations applied to atomic configurations in alloys (see
below) [60]. However, very large clusters are required to describe the wave-like behavior of
magnetic moments at low temperatures so the mean-field approximation is not suitable for
describing magnetization at very low temperatures.

Combining the mean-field approximation with an Ising model can also be used to model
atomic configurations in a binary A–B alloy [37, 65] where up- and down-spins are used
to represent A- and B-atoms. The mean-field approximation replaces detailed interaction
energies between particles with an effective interaction energy (as is done in a spin system,
Fig. 2.7). In this case, applying the SEAQT equation of motion to the eigenstructure can
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Figure 2.7: The spin system before and after the mean-field approximation is employed.
The interactions between magnetic moments (spins) is substituted by the effective internal
magnetic field, Heff.

Figure 2.8: The mean-field approximation, which includes short-range correlations by defin-
ing pair and triangle clusters, respectively.
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track the time-evolution of atomic arrangements in a specific alloy provided the atomic
configurations are constrained to reflect the accessible states of the system as it evolves.
This methodology is used in references [125, 126] to explore phase decomposition in a binary
alloy system.

2.4.2 Density of states method

As the number of oscillators or particles in a solid phase increases, the number of energy
eigenlevels becomes effectively infinite, and applying the SEAQT equation of motion results
in a system of equations infinite in extent, which clearly is problematic. This difficulty can
be avoided with the density of states method developed by Li and von Spakovsky within
the SEAQT framework [73]. The density of states method approximates an infinite energy-
eigenlevel system with one composed of a finite number of discretized energy eigenlevels
called a pseudo-eigenstructure. The approach is based on the observation that the occupation
probabilities for all eigenlevels within a sufficiently small energy range behave dynamically in
a similar fashion. As a result, the energy eigenlevels within a given range can be represented
by a single pseudo-eigenlevel and associated degeneracy. A quasi-continuous condition [73] on
the size of the energy range ensures that the approximate pseudo-eigenstructure effectively
results in the same property values as would be predicted with the original infinite-level
eigenstructure.

In the density of states method, the continuous energy distribution, ε(x), of an infinite-level
energy system is divided into discrete bins with a set of discrete eigenlevels, εj. The system
with the continuous distribution of energy eigenlevels is referred to as the ‘original’ system,
and the discretized bins and associated energy eigenlevels as the ‘pseudo-system’. From
a practical standpoint, the number of bins, R, in the pseudo-system is made as small as
possible to reduce the number of simultaneous equations of motion that need to be solved
in the SEAQT framework. However, in order to accurately represent the original energy
eigenstructure, the property values predicted for the original and the pseudo-systems should
be approximately same. The conditions under which this will be true can be established
using canonical distributions. For the original system with a continuous energy spectrum,
the canonical distribution for occupation probabilities is given by

p(x) =
g(x)e−βε(x)∫∞

−∞ g(x′)e−βε(x′) dx′
=
g(x)e−βε(x)

Zcont
, (2.10)

where p(x) and g(x) are, respectively, the occupation probability and the degeneracy of the
energy ε(x) and β = 1/kBT . The occupation probability of a discrete energy eigenlevel in
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the pseudo-system, pj, is expressed as

pj =

∫ xmax
j

xmin
j

p(x) dx =
1

Zcont

∫ xmax
j

xmin
j

g(x)e−βε(x) dx

=
Z

Zcont

1

Z
e−βεj

∫ xmax
j

xmin
j

g(x)e−β(ε(x)−εj) dx ,

(2.11)

where x
min (or max)
j is the minimum (maximum) value of x in the jth energy interval (or bin)

and εj and Z are, respectively, the jth energy eigenlevel and the partition function in the
pseudo-system. When

Z

Zcont
e−β(ε(x)−εj) ≈ 1

in the range, xmin
j ≤ x ≤ xmax

j , Eq. (2.11) can be written as

pj ≈
1

Z
e−βεj

∫ xmax
j

xmin
j

g(x) dx =
gje
−βεj

Z
, (2.12)

where gj =
∫ xmax

j

xmin
j

g(x) dx. Since Eq. (2.12) is the canonical distribution for discrete energy

eigenlevels, the property values of the original and pseudo-systems will be similar when the
following condition is satisfied:

ε(x)− εj
kBT

≈ ln

(
Z

Zcont

)
= ln

( ∑
i gie

−βεi∫∞
−∞ g(x′)e−βε(x′) dx′

)
. (2.13)

When Z ≈ Zcont, the condition can be simplified to

ε(x)− εj
kBT

≈ 0 ⇒ |ε(x)− εj| � kBT

⇒ |εj±1 − εj| � kBT ,

(2.14)

where the relation, |εj±1 − εj| < |ε(x) − εj|, is employed since εj−1 < ε(xmin
j ) < ε(x) <

ε(xmax
j ) < εj+1 for a monotonic function of ε(x). Thus, when Z ≈ Zcont, the number of

energy intervals (or bins), R, can be determined by checking whether Eq. (2.14), which is
called the quasi-continuous condition [73], is satisfied or not. Note that since Z < Zcont in
most cases, the general condition, Eq. (2.13), is less stringent than that given by Eq. (2.14).

2.5 Demonstrations

2.5.1 Simple model systems

The use of the SEAQT equation of motion is illustrated in this section assuming a simple
system composed of particles with four, non-degenerate energy eigenlevels. This model was
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introduced in reference [6] for an isolated system. Here, interactions with a heat reservoir or
another system are considered.

The four energy eiegenlevels, εj, are arbitrarily set as [ε1, ε2, ε3, ε4] = [0, 1/3, 2/3, 1] with
no degeneracy, i.e., the gj = 1. The stable equilibrium states can be determined by the
canonical distribution:

psej =
gjexp(−βseεj)∑
i

giexp(−βseεi)
=
gjexp(−βseεj)

Zse , (2.15)

where Zse is the partition function, βse = 1/kBT
se, and the se superscript denotes stable

equilibrium. Consider now a system in which some of the available energy eigenlevels are not
occupied; such a system is not in stable equilibrium. The occupation probabilities calculated
with a canonical distribution modified to account for the unoccupied energy eigenlevels are
referred to a partially canonical distribution [6]:

p
pe
j =

δjgjexp(−βpeεj)∑
i

δigiexp(−βpeεi)
, (2.16)

where βpe = 1/kBT
pe and δj takes a value of one or zero depending upon whether the

state is occupied or not. For four energy eiegenlevels, one could make a partially canoni-
cal distribution, for example, by making the third energy eigenlevel unoccupied, or setting
[δ1, δ2, δ3, δ4] = [1, 1, 0, 1] in Eq. (2.16). This partially canonical distribution can be used to
determine an initial non-equilibrium state for the SEAQT equation of motion. The E–S
diagram calculated from the canonical distribution, Eq. (2.15), and the partially canonical
distribution, Eq. (2.16), is shown in Fig. 2.9. For simplicity in this illustrative example,
dimensionless energies with kB = 1 are used.

First, three different relaxation paths are investigated using the SEAQT equation of motion.
Two paths (Paths 2 and 3) represent a system moving from an initial equilibrium state to
a final equilibrium state through an interaction with a heat reservoir, TR, using Eq. (2.9).
The initial states (or initial occupation probabilities), p0

j , are prepared from Eq. (2.15) by
replacing T se with T0 of a chosen value for the initial temperature. The remaining path
(Path-1) corresponds to an isolated system evolving from a non-equilibrium initial state to
stable equilibrium using Eq. (2.6). The initial state for this path is given using the partially
canonical distribution, p

pe
j , and a perturbation equation that displaces the initial state from

the partially canonical state such that [6]

p0
j = (1− λconst)p

pe
j + λconstp

se
j , (2.17)

where λconst is the perturbation constant. Note that βpe is determined through the relation,∑
i εip

pe
i =

∑
i εip

se
i . The calculated kinetic paths are shown in Fig. 2.9 as well as the

canonical and partially canonical distributions. As can be seen, although the initial states
are different, the final states are the same and correspond to a stable equilibrium state at TR
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Figure 2.9: The E–S diagram for a system of particles with four energy eiegenlevels,
[ε1, ε2, ε3, ε4] = [0, 1/3, 2/3, 1]. [6] The entropy and energy calculated from the canonical
(stable equilibrium) and partially canonical distributions are represented by the dotted
and broken lines, respectively. Three different kinetic paths calculated using the SEAQT
equation of motion are labeled with arrows. Path-1 is for an isolated system whose ini-
tial non-equilibrium state is prepared by Eq. (2.17) with λ = 0.1. Paths 2 and 3 are for a
system interacting with a heat reservoir, TR, evolving from different initial states prepared
using Eq. (2.15): Path-2 represents cooling from T0 = 1.0, and Path-3 depicts heating from
T0 = 0.25. The final stable equilibrium state for all three paths is indicated by the open
circle and corresponds to a temperature of T se or TR = 0.5.
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Figure 2.10: The time dependence of the occupation probabilities for the isolated system
in the relaxation process shown in Fig. 2.9 (Path-1). The detail analysis of the relaxation
process for the isolated system can be found in reference [6].

(or T se). The time-dependence of each occupation probability in the relaxation process for
the isolated system (Path-1 of Fig. 2.9) is shown in Fig. 2.10. Although the expected energy,
〈e〉 =

∑
i εipi, is constant throughout the process (Path-1 is a horizontal line on the E–S

diagram of Fig. 2.9), the probability distribution among the individual energy eigenlevels
does change with time. This redistribution of the internal energy is driven by an increase in
entropy as the state of the system evolves.

Next, a case involving a heat interaction between two systems is considered. The two systems
are treated within the context of an isolated composite system. This correspond to the system
description of Fig. 2.3 (b). The two subsystems, A and B, are identical and have the same
energy eigenstructure as described above. The E–S diagrams calculated for subsystems A
and B as well as the composite system, A + B, using Eq. (2.15) are shown in Fig. 2.11.
Because both the energy and entropy are extensive properties, the values of these properties
for the composite system are twice the energy and entropy of the individual subsystems A
and B. The relaxation paths of each subsystem calculated from Eq. (2.7) (or Eq. (2.8))
are shown together in Fig. 2.11 where initial states are prepared by Eq. (2.15) with TA0 =
1.0 and TB0 = 0.25. While the energy in the composite system is constant, the energies
of subsystems A and B are not, and they approach each other with time and reach the
same final states, which indicates they are in a mutual stable equilibrium (i.e., TA = TB).
The time evolution of the occupation probabilities in subsystems A and B are shown in



Chapter 2 24

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Entropy

E
ne

rg
y

 S.E. (Composite)
 S.E. (Subsystem A, B)
 Path (Composite)
 Path (Subsystem A)
 Path (Subsystem B)

Figure 2.11: The E–S diagrams for the interacting subsystems A and B as well as for
the composite system, A + B. The canonical distributions of the composite system and
subsystems A and B are, respectively, shown as solid and dotted lines. The kinetic paths
of each subsystem and the composite calculated using the SEAQT equation of motion are
depicted as well. The final states of the subsystems and the composite are shown by open
circles.

Fig. 2.12. Although the initial probability distributions are different in the two subsystems,
they become the same at the final state of mutual stable equilibrium. Recall that the two
subsystems here are assumed to be identical. If they are not, the probability distributions
are not necessarily the same even at mutual stable equilibrium.

Note that as can be seen in Fig. 2.11, the kinetic path of each subsystem moves along its own
manifold of different stable equilibrium states. This is a direct result of the steepest-entropy-
ascent principle when initial states belong to the manifold and is an essential feature of the
concept of hypo-equilibrium states [73, 70] described in Appendix A.2. The non-equilibrium
state of the composite system, A+B, at every instant of time is what Li and von Spakovsky
call a 2nd-order hypo-equilibrium state.
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Figure 2.12: The time dependence of occupation probabilities in subsystems A and B in the
relaxation process shown in Fig. 2.11. The occupation probabilities of subsystems A and B
are shown by solid and dotted lines, respectively.

2.5.2 bcc-Fe spin system

To extend beyond a simple system model, a realistic magnetic spin system is considered next
and a pseudo-eigenstructure is constructed based on a reduced-order model (an Ising model
with a mean-field approximation) and the density of states method. The SEAQT equation
of motion is applied to the pseudo-system eigenstructure to calculate the magnetization of
bcc-Fe in the presence of an external magnetic filed and a heat reservoir.

2.5.2.1 Theory

The SEAQT equation of motion for a ferromagnetic material is derived first. When magnetic
spin is conserved, the manifold is L(gI , gE, gM) (where gM is the gradient of the magnetiza-
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tion) and the SEAQT equation of motion becomes

dpj
dt∗

=

∣∣∣∣∣∣∣∣
−pjlnpjgj pj εjpj mjpj
〈s〉 1 〈e〉 〈m〉
〈es〉 〈e〉 〈e2〉 〈em〉
〈ms〉 〈m〉 〈em〉 〈m2〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 〈e〉 〈m〉
〈e〉 〈e2〉 〈em〉
〈m〉 〈em〉 〈m2〉

∣∣∣∣∣∣
, (2.18)

where
〈s〉 = −

∑
i

piln
pi
gi
, 〈e〉 =

∑
i

εipi ,

〈m〉 =
∑
i

mipi , 〈es〉 = −
∑
i

εipiln
pi
gi
,

〈e2〉 =
∑
i

ε2i pi , 〈em〉 =
∑
i

εimipi ,

〈ms〉 = −
∑
i

mipiln
pi
gi
, 〈m2〉 =

∑
i

m2
i pi ,

and mj is the magnetization associated with the jth energy eigenlevel, εj. When there is an
exchange of energy via a heat interaction between the system of interest and a heat reservoir,
TR, in an external magnetic field, HR, Eq. (2.18) is transformed into [127]

dpj
dt∗

= pj
[
(sj − 〈s〉)− (εj − 〈e〉) βR + (mj − 〈m〉) γR

]
, (2.19)

where βR = 1/kBTR and γR = HR/kBTR.

Next, a simplified eigenstructure is constructed using the Ising model and the mean-field
approximation. When interactions between only the first-nearest-neighbor pairs are taken
into account, the energy of the spin system is given by

E =
1

2
Nz
∑
ij

eij yij , (2.20)

where N is the number of lattice points, z is the coordination number (the number of
first-nearest-neighbor sites per lattice point), and eij and yij are, respectively, the pair inter-
action energy and the pair (cluster) probability between i and j spins. When the mean-field
approximation (with no short-range correlations) is employed, Eq. (2.20) becomes (see Ap-
pendix A.3)

E(c) =
1

2
Nz Jeff c(1− c) , (2.21)

where c is the fraction of down-spins and

Jeff ≡ 2e↑↓ − e↑↑ − e↓↓ .
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The degeneracy of Eq. (2.21) is given by a binomial coefficient as

g(c) =
N !

N↑!N↓!
=

N !

(N(1− c))!(Nc)!
, (2.22)

where N↑ and N↓ are the number of lattice sites associated with up-spin and down-spin,
respectively. Here, using the approximation for a factorial [121],

x! ≈ (2x+
1

3
π)xxe−x ,

Eq. (2.22) is a continuous function. The energy eigenlevels and the degeneracy, Ej and gj,
are determined from Eqs. (2.21) and (2.22) by replacing c with cj. In a bulk material, the
atomic fraction of down-spin, cj, could take any value, and the number of energy eigenlevels
becomes effectively infinite. To cope with this infinity of levels, the density of states method
[73] is used (see Sec. 2.4.2). Following the procedures of Sec. 2.4.2, the energy eigenlevels,
degeneracies, and fractions of down-spins become

Ej =
1

gj

∫ c̄j+1

c̄j

g(c′)E(c′) dc′ , (2.23)

gj =

∫ c̄j+1

c̄j

g(c′) dc′ , (2.24)

and

cj =
1

gj

∫ c̄j+1

c̄j

g(c′)c′ dc′ , (2.25)

where c̄j is specified using the number of intervals, R, as c̄j = j/R. Here j is an integer
and takes values from zero to R/2. The magnetization for a given energy eigenlevel is given
using the fraction of down-spins, cj, as

Mj = Nµ (1− 2cj) , (2.26)

where µ is the magnetic moment of iron (µ = 2.22µB where µB is the Bohr magneton [64]).
Note that the energy eigenlevels and magnetizations are expressed here as Ej and Mj instead
of εj and mj in order to emphasize that these are extensive properties.

The number of intervals, R, is determined from Eq. (2.14) (or Eq. (2.13)). However, since
the degeneracy, gj, in Eq. (2.24) significantly increases with the number of particles, N ,
the ratio, Z/Zcont, rapidly decreases with N and the criterion given in Eq. (2.14) becomes
greatly relaxed. Taking this into account, the following relaxed criterion is used here instead
of Eq. (2.14) (or Eq. (2.13)):

|Ej±1 − Ej|
N

� kBT . (2.27)

The validity of Eq. (2.27) was tested for this particular application by repeating the cal-
culations for different numbers of energy intervals to see how the calculated magnetization
converges and then by confirming that the the results calculated based on Eq. (2.27) are
close to the converged magnetization.
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2.5.2.2 Results

The equilibrium magnetization at each temperature is determined from the extended canon-
ical distribution

psej =
gj exp[−βse (Ej −MjH

se)]∑
i

gi exp[−βse (Ei −MiHse)]

=
gj exp[−βse (Ej −MjH

se)]

Zse ,

(2.28)

where Zse is the partition function, βse=1/kBT
se, and T se and Hse are, respectively, the tem-

perature and the external magnetic field strength at stable equilibrium. The calculated tem-
perature dependence of the magnetization, M =

∑
iMipi, in various external magnetic field

strengths is shown in Fig. 2.13 where Jeff is estimated from experimental data of the Curie
temperature, Tc = 1043 K, [64] as Jeff = 7.2 × 10−22 (J/atom) (see Appendix A.3). It can
be seen that the calculated magnetization shows a similar temperature dependence with the
experimental data and increases with an external magnetic field, as expected. However, the
results at low temperatures deviate from experiments. This is a well-known tendency in the
equilibrium magnetization calculated from the Ising model with a mean-field approximation
[37, 65, 1] because spin wave contributions (and any short-range correlations) are ignored in
the energy eigenstructure. An alternate model for building the pseudo-eigenstructure based
upon coupled harmonic oscillators that is more applicable at low temperatures can be found
in reference [127].

The time-evolution process of magnetization can be calculated using the SEAQT equation of
motion. Here, the relaxation process for a system interacting with a reservoir is investigated
using Eq. (2.19) where the initial probability distribution, p0

j is prepared using Eq. (2.28) by
replacing T se and Hse with T0 and H0. The calculated relaxation process at different external
magnetic field strengths, HR = 0, 100, 200, and 500 kOe, with T0 = 300 K, H0 = 0 kOe, and
TR = 800 K are shown in Fig. 2.14. Although the initial states are the same, the final states
are different, each of which corresponds to the equilibrium values shown in Fig. 2.13, which
are independently calculated from the canonical distribution, Eq. (2.28).

Note that as before the dimensionless time, t∗, normalized by the relaxation time, τ , is used
in the calculated relaxation processes. The relaxation time can be correlated with a real
time by calibrating with either ab initio calculations [8, 70, 75, 128] or experimental data
[9, 76]. For the relaxation of magnetization, the experimental results of spin-pumping could
be employed for real-time scaling [127].
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Figure 2.13: The calculated temperature dependence of equilibrium magnetizations of bcc-Fe
at various external magnetic field strengths using N = 106. (b) shows the low temperature
range of (a). The solid black circles are experimental data at H = 0 (kOe) [24]. The
magnetization, M∗, is a dimensionless magnetization normalized by the magnetic moment
of iron, M∗ = M/µ.
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Figure 2.14: The calculated relaxation of magnetization in bcc-Fe at various external mag-
netic field strengths with TR = 800 K using N = 106. The initial states are prepared using
T0 = 300 K and H0 = 0 kOe. The magnetization, M∗, is a dimensionless magnetization
normalized by the magnetic moment of iron, M∗ = M/µ, and t∗ is the dimensionless time
normalized by the relaxation time, t∗ = t/τ .
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2.6 Concluding comments

In this paper, we have attempted to illustrate the methodology of applying the SEAQT
framework to problems in materials science. With this framework, steepest entropy ascent
dictates via an equation of motion the unique kinetic path a system follows from any initial
non-equilibrium state to stable equilibrium. Since the method is based in Hilbert or Fock
space with no explicit connection to a spatial or time scale, there are no inherent restrictions
on the applicability of the SEAQT model in terms of system size or time. For this reason,
it is useful for multiscale calculations where a larger scale time-evolution process requires
input from smaller scale behaviors within a single framework.

The SEAQT approach also has significant computational advantages relative to other com-
putational methods. Many conventional computational tools in materials science require
extensive information about the system being studied (e.g., the positions and momenta of
particles and/or possible kinetic paths at each time-step), and this data is then updated in
time through microscopic mechanics (e.g., molecular dynamics) or stochastic thermodynam-
ics (e.g., kinetic Monte Carlo methods). Such methodologies place significant demands on
computational resources such as the computational speed and data storage. The SEAQT
framework is based upon a different paradigm. The kinetic path a system follows as its
state evolves is found by simply solving R first-order, ordinary differential equations (i.e.,
the SEAQT equation of motion) using energy and entropy as the fundamental state variables
(where R is the number of energy eigenlevels). For this reason, the computational cost in
SEAQT modeling is remarkably small compared with conventional methods. For example,
the kinetic paths shown in Fig. 2.14 in Sec. 2.5.2 (R = 555 with N = 106) were calculated
in a few minutes on a laptop computer with 8 GB of memory.

As a final remark, there are three fronts where progress is needed to develop SEAQT ap-
plications for materials science. The first is a more elaborate description for the pseudo-
eigenstructures. Both the equilibrium and non-equilibrium properties calculated by the
SEAQT method depend entirely on the accuracy of the pseudo-eigenstructure (or the un-
derlying solid-state model). In the mean-field approach used in Sec. 2.5.2, for example,
short-range correlations were ignored. For a more reliable description of material proper-
ties, short-range correlations could be added. This is especially relevant to alloy systems
because it is known that short-range correlations between different atomic species can affect
the kinetic paths of phase transformations.

The second front is an extension of the method to heterogeneous systems. Although homo-
geneous systems have been assumed in references [128, 125, 126, 127] (as well as in Sec. 2.5.2
in this paper), most materials are highly heterogeneous at a mesoscopic scale. Lots of in-
teresting behaviors are observed at this the scale (such as unique microstructures depending
upon a stress field and lattice misfits). In order to describe the heterogeneous system, the
construction of a network of local systems would be required as is done in reference [76]. The
third front is the coupling of different phenomena, which is something that is inherent to
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this framework. The topics investigated to date — thermal expansion [128], magnetization
[127], and phase decomposition [125, 126], for example, are not necessarily independent but
may depend upon each other in nonlinear ways. For a complete description of solid-state
phenomena, the inclusion of the coupling effects would be essential. To accomplish this
aim within the SEAQT framework, a similar approach as that used to explore the coupled
behavior between electrons and phonons [75] could be employed.



Appendix A

A.1 Quantum statistical mechanics and the quantum

Boltzmann entropy

Quantum statistical mechanics (QSM) is a bridge between quantum mechanics and ther-
modynamics as well as is SEAQT. Although both QSM and SEAQT are ensemble-based
approaches, the concepts of ensemble are different in each framework. QSM uses a heteroge-
neous ensemble, whereas SEAQT is based on a homogeneous ensemble. Furthermore, while
the SEAQT framework employs the von Neumann formula for the entropy, QSM employs
the quantum Boltzmann entropy formula. In this appendix, the distinctions between the
ensembles and entropy formulas used are discussed.

A homogeneous ensemble is an ensemble of identical systems that are identically prepared,
while a heterogeneous ensemble is an ensemble of identical systems not identically prepared
[50, 108]. In QSM, the state of a system is given as a weighted average of various states
in a heterogeneous ensemble 1. This causes a violation of the well-known second law of
thermodynamics [50, 108] (i.e., no energy via a work interaction can be extracted from a
system when the system is in a stable equilibrium state [44]). In a heterogeneous ensemble,
it is possible to extract work from the system in a stable equilibrium state because some
of the states in the ensemble necessarily deviate from the average (stable equilibrium) —
a perpetual motion machine of the second kind [44]. In the SEAQT framework, on the
other hand, the state of a system is defined differently. It is given by an ensemble of energy
eigenlevels for the system [50, 108] (rather than an ensemble of systems, each of which is in
a different energy eigenlevel). Since the SEAQT framework does not average over a set of
different states, it does not violate the second law of thermodynamics.

Now, as to the von Neumann entropy formula, it satisfies all of the characteristics of the

1Of course, as pointed out by Park [98], the use of a heterogeneous ensemble leads to the conclusion that
knowledge of the state of the system, a bedrock of physical thought, is lost and all that can indeed be said is
that the state of the ensemble and not that of the system is known. This is not the case for a homogeneous
ensemble for which the state of the ensemble necessarily coincides with that of the system.

33
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entropy required by thermodynamics [45, 25], while the quantum Boltzmann entropy formula
makes entropy a statistical property (and not a fundamental one) that results from a loss of
information. Nevertheless, QSM with the quantum Boltzmann entropy formula has produced
great success in computational materials science. This suggests that there is a relationship
between the two entropy formulae under some conditions. This relationship can be readily
derived as follows. The von Neumann entropy is defined as

s = −
∑
i

piln

(
pi
gi

)
, (A.1)

where pj and gj are, respectively, the occupation probability and the degeneracy in the jth

energy eigenlevel, εj (kB is omitted here for simplicity). When the occupation probability,
pj, is localized at a single energy eigenlevel, εj∗ , the distribution is given as pj∗ ≈ 1 and
pj 6=j∗ ≈ 0. Then, the von Neumann entropy formula, Eq. (A.1), becomes s ≈ lngj∗ . This
entropy corresponds with the quantum Boltzmann entropy formula, s = lnW (where W
is the number of complexions of the most probable state [65]), because both gj∗ and W
represent the same physical quantity 2 (even though they are based on different ensembles.).
Therefore, the Boltzmann entropy formula is valid when it is assumed that the occupation
probability is highly localized at a given energy eigenlevel. Since, in QSM for a solid phase,
it is assumed that the contribution of the most probable state is dominant compared with
others when a stable equilibrium state is reached, the use of the quantum Boltzmann entropy
formula may be justified. However, the assumption is rigorously exact only for an infinite,
bulk sample [37].

A.2 The concept of hypo-equilibrium states

The concept of hypo-equilibrium states developed by Li and von Spakovsky [73, 70] within
the SEAQT theoretical framework provides simple relaxation patterns for systems. The
concept makes the SEAQT equation of motion quite simple and tractable. Here, the basic
idea is described and non-equilibrium intensive properties are defined.

Using the steepest-entropy-ascent principle, it has been proven that when an initial state is
divided into M subspaces, each of which is in a canonical distribution (this is called a M th-
order hypo-equilibirum state), the system remains in a M th-order hypo-equilibirum states
during the entire time-evolution process [73]. Therefore, the probability distribution in the

2The meaning of the term ‘complexions’ corresponds to energy degeneracy used in the SEAQT framework



Chapter 2 35

each subspace can be described as

pKj (t∗) = pK(t∗)
gKj exp[−β(t∗)εKj ]∑
i

gKi exp[−β(t∗)εKi ]

= pK(t∗)
gKj exp[−βK(t∗)εKj ]

ZK(t∗)
,

(A.2)

where β(t∗) = 1/kBT (t∗), pKj and gKj are, respectively, the occupation probability and the
degeneracy in the energy eigenlevel εKj in the Kth subspace and pK is the mole fraction of the
subspace. Any state can be represented using the canonical distribution by properly dividing
the system into subspaces. The canonical distribution in a non-equilibrium state allows us
to define intensive properties (e.g., temperature) in the non-equilibrium region. Intensive
properties defined this way are fundamental [73] unlike a phenomenological temperature
defined, for example, via the kinetic energy of the particles, E = 3

2
kBT . [18] The definitions

and uses of the non-equilibrium intensive properties are found in references [74, 75, 127].

This is also true for subsystems that constitute a composite system [73]. In Fig. 2.3 (b),
for example, two systems interacting via a heat interaction are considered with no mass
exchange, i.e., pA(t∗) = pB(t∗) = 1. Therefore, if the initial states of the each (sub) sys-
tem, A and B, are described by a canonical distribution, the time-evolution of occupation
probabilities in the each subsystem are given as

p
A(B)
j (t∗) =

g
A(B)
j exp[−β(t∗)ε

A(B)
j ]

ZA(B)(t∗)
. (A.3)

Furthermore, using the concept of hypo-equilibrium states, the substitution of C3/C1 ≡ β
in Eq. (2.8) can be justified. With the use of Eq. (A.3), Eq. (2.8) is written as

dpAj
dt∗

= pAj

[
(sAj − 〈s〉

A)− (εAj − 〈e〉
A)β
]

⇒
d(lnpAj )

dt∗
=
[
(sAj − 〈s〉

A)− (εAj − 〈e〉
A)β
]

⇒ d

dt∗
(
−βA(t∗)εAj − lnZA(t∗)

)
= (εAj − 〈e〉

A)(βA(t∗)− β) ,

(A.4)
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where the following relations are used:

ln

(
dpAj
dt∗

)
= ln

(
d(lnpAj )

dt∗
dpAj

d(lnpAj )

)

= ln

(
d(lnpAj )

dt∗

)
+ ln

(
dpAj

d(lnpAj )

)

= ln

(
d(lnpAj )

dt∗

)
+ lnpAj

⇒
d(lnpAj )

dt∗
= exp

[
ln

(
dpAj
dt∗

)
− lnpAj

]
=

1

pAj

dpAj
dt∗

,

(A.5)

and

sAj = −ln
pAj
gAj

= βA(t∗)εAj + lnZA(t∗)

〈s〉A = −
∑
i

pAi ln
pAi
gAi

= βA(t∗) 〈e〉A + lnZA(t∗) .

(A.6)

Subtracting Eq. (A.4) for the ith and jth energy eigenlevels yields [73]

d

dt∗
[
−βA(t∗)(εAi − εAj )

]
= (εAi − εAj )(βA(t∗)− β)

⇒ dβA(t∗)

dt∗
= −(βA(t∗)− β) .

(A.7)

This is the equation of motion for the intensive property, βA. At stable equilibrium,
dβA(t∗)/dt∗ → 0, which corresponds to the condition, βA(t∗) = β. Therefore, β (≡ C3/C1)
is considered to be 1/kBT as defined in Eq. (A.2). When system B is viewed as a heat
reservoir, β is replaced by βR and Eq. (A.7) becomes

dβ(t∗)

dt∗
= −(β(t∗)− βR) , (A.8)

where the superscripts, A, are removed. Therefore, the time-evolution of a system that
interacts with a heat reservoir can be determined readily from Eqs. (A.3) and (A.8) if the
initial state of the system is described by a canonical distribution. A more detailed discussion
about hypo-equilibrium states and a more general case (e.g., for heat and mass diffusion
between interacting systems) can be found in reference [70].
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A.3 Spin energy using the Ising model with the mean-

field approximation

An approximate energy in a spin system is derived using the Ising model with a mean-field
approximation in this appendix. The energy in a spin system is given by Eq. (2.20) by
taking into account only the first-nearest-neighbor pair interactions. Using the mean-field
approximation, which does not include any short-range correlations between spins, the pair
probabilities in Eq. (2.20) are given by a product of probabilities of up- and/or down-spins
as

y↑↑ = x↑x↑ , y↑↓ = x↑x↓ ,

y↓↑ = x↓x↑ , y↓↓ = x↓x↓ ,

where x↑ and x↓ are, respectively, the probability of up-spins and down-spins in a system.
Then, Eq. (2.20) can be expanded as

E =
1

2
Nz (e↑↑x↑x↑ + 2e↑↓x↑x↓ + e↓↓x↓x↓)

=
1

2
Nz
[
e↑↑(1− c)2 + 2e↑↓c(1− c) + e↓↓c

2
]
,

(A.9)

where x↑ and x↓ are replaced as x↑ = 1−c and x↓ = c by defining the fraction of down-spins,
c. Now, the reference energy of Eq. (A.9) is set to the line connecting two energies of all
up-spins (c = 0) or all down-spins (c = 1) as

∆E(c) = E(c)− E(1.0)− E(0.0)

1.0− 0.0
c . (A.10)

Thus, the energy becomes

∆E(c) =
1

2
Nz(2e↑↓ − e↑↑ − e↓↓)c(1− c)

=
1

2
Nz Jeff c(1− c) ,

(A.11)

where Jeff is the effective interaction energy defined as Jeff ≡ 2e↑↓ − e↑↑ − e↓↓.

The effective interaction energy, Jeff, can be determined either from ab initio calculations
[95] or from experiments. Here, it is roughly estimated using the experimentally measured
Curie temperature of iron, Tc = 1043 K. [64] The Helmholtz free energy of the spin system
is given by

F = E − TS = E − kBT lnW

=
1

2
Nz Jeff c(1− c)− kBT ln

N !

(N(1− c))!(Nc)!
,

(A.12)
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where Eq. (A.11) is used in the energy term and the quantum Boltzmann entropy formula
is employed. Applying Stirling’s formula, lnx! ≈ xlnx− x, Eq. (A.12) becomes

F =
Nz

2
Jeff c(1− c)

−NkBT [cln(1− c)− clnc− ln(1− c)] .
(A.13)

It is expected that the second derivative of the free energy in terms of the fraction of down-
spins, c, becomes zero at the Curie temperature, Tc, and c = 0.5, i.e., (d2F/dc2)c=0.5 = 0.
Using this relation, Jeff is derived as

Tc =
zc(1− c)Jeff

kB
=
zJeff

4kB
⇒ Jeff =

4kBTc
z

. (A.14)

Since Tc = 1043 K [64] and z = 8 for bcc-Fe, the effective interaction energy becomes
Jeff = 7.2× 10−22 (J/atom).

Note that an ad hoc assumption is used here for the estimation of Jeff, i.e., the second deriva-
tive of F in terms of c becomes zero at T = Tc and c = 0.5. A more reliable approach for
estimating Jeff can be found in references [37, 65, 1]. Furthermore, the free-energy analy-
sis, Eq. (A.12), is used here just for the estimation of Jeff. In the SEAQT framework, no
free-energy functions are used because these functions are strictly applicable only at stable
equilibrium.

A.4 Computational Tips

There are many computational tools that can be used for SEAQT modeling. The calculations
shown in Sec. 2.5.2 are conducted using Mathematica (11.2.0.0) and MATLAB (R2017a).
They are used for the calculations of the energy eigenstructure and to solve the equation of
motion, respectively.

The relaxation processes are numerically calculated with an ordinary differential equation
(ODE) solver in MATLAB (e.g., ode45 and ode15). In MATLAB, however, very small/large
values are treated as zero/infinity, and the ODEs (or the SEAQT equation of motion) cannot
be solved. This becomes a problem when the number of energy eigenlevels and/or the
degeneracy of the energy eigenlevels become very large (because the occupation probability,
pj, and the degeneracy, gj, become pj → 0 and gj → infinity, respectively). The way to avoid
the issue is described in this appendix.

The most straightforward approach to circumvent the problem is to use the logarithm of pj
and gj. For example, the SEAQT equation of motion, Eq. (2.19), can be rewritten using the
logarithm as

d(lnpj)

dt∗
=
[
(sj − 〈s〉)− (εj − 〈e〉) βR + (mj − 〈m〉) γR

]
, (A.15)
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where the relation, Eq. (A.5), is used. Note that all pj and gj in Eq. (A.15) also need to be
converted to the logarithmic forms in the code such that

sj = −ln
pj
gj

= lngj − lnpj

〈s〉 = −
∑
i

piln
pi
gi

=
∑
i

exp [lnpi + ln(lngi − lnpi)]

〈e〉 =
∑
i

εipi =
∑
i

exp (lnεi + lnpi)

〈m〉 =
∑
i

mipi =
∑
i

exp (lnmi + lnpi) .

(A.16)

A similar computational issue is faced with calculating stable equilibrium states for a sys-
tem that has a huge number of energy eigenlevels or an enormous degeneracy. A sta-
ble equilibrium state is determined from a canonical distribution, e.g., Eqs. (2.15) and
(2.28). In the canonical distribution, the problem is evaluating the partition function, e.g.,
Z ≡

∑
i giexp(−εi/kBT ), because some terms in the partition function are converted to

infinity by some software. The problem can be avoided using the logarithms as well. The
partition function can be expanded as

Z ≡
∑
i

gie
−βεi = X1 +X2 +X3 + ...+XR

= Xmax

(
X1

Xmax

+
X2

Xmax

+ ...+ 1 + ....+
XR

Xmax

)
,

(A.17)

where Xj ≡ gje
−βεj , R is the number of energy eigenlevels, and Xmax is the maximum Xj in

the expansion. Using the logarithm of Xj, i.e., lnXj = lngj − βεj, Eq. (A.17) is written as

lnZ = lnXmax + ln

(
X1

Xmax

+
X2

Xmax

+ ...+
XR

Xmax

)
=lnXmax + ln[exp(lnX1 − lnXmax)

+ exp(lnX2 − lnXmax) + ...+ exp(lnXR − lnXmax)] .

(A.18)

The canonical distribution, pj = gje
−βεj/Z, can then be calculated using the logarithms as

lnpj = lngj − βεj − lnZ

⇒ pj = exp (lngj − βεj − lnZ) .
(A.19)

Although the degeneracy, gj, in Sec. 2.5.2 are directly evaluated from Eq. (2.24) using Math-
ematica, they can be estimated simply using the following relation:

gj =
N !

(N(1− cj))!(Ncj)!
lngj ≈ N · ln [cjln(1− cj)− cjlncj − ln(1− cj)]

(A.20)
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where the Stirling formula, lnx! ≈ xlnx−x, is employed. From this relation, it is evident that
ln gj is simply proportional to the number of particles, N . Therefore, once the degeneracies
for a system composed of a small number of particles (say, N = NS), i.e., ln gSj , are calculated
from Eq. (2.24), the degeneracies for a large number of particles (say, N = NL), i.e., ln gLj ,

can be determined from ln gLj = NL

NS ln gSj .
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A Method for Predicting
Non-Equilibrium Thermal Expansion
Using Steepest-Entropy-Ascent
Quantum Thermodynamics

3.1 Introduction

Classical thermodynamics is arguably the foundation for investigating physical systems.
However, because it is based upon uniform state variables and potentials, it does not de-
scribe kinetic behavior without invoking a governing principle beyond the first and sec-
ond laws of thermodynamics. An intriguing approach to building kinetics into thermo-
dynamic descriptions was proposed 40 years ago [47, 48, 49, 50, 5]. The approach uses
a first-principles, non-equilibrium thermodynamic-ensemble formalism to combine classical
thermodynamics with quantum mechanics. Its mathematical framework, recently called
steepest-entropy-ascent quantum thermodynamics or SEAQT, has seen extensive develop-
ment as well as experimental validation over the last three decades (e.g., see references
[11, 10, 6, 7, 8, 88, 17, 9, 73, 70, 71, 72, 74, 76, 117, 75, 109]).

The SEAQT framework describes the state of a system in terms of energy and entropy, both
of which are well-defined properties for any state and system [45, 25, 131]. These proper-
ties are determined relative to a system’s so-called eigenstructure constructed from a set of
possible energy eigenlevels and a time-dependent state operator (a density or probability
distribution). The energy is an expectation value of the available energies of a given state,
while the entropy is viewed as a measure of load sharing among the energy levels. A pos-
tulated dissipation term added to the von Neumann equation for the time evolution of a
density operator introduces nonlinear dynamics based on the principle of steepest entropy

41
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ascent and provides a link between quantum mechanics and thermodynamics. This dissi-
pation term provides an equation of motion that captures the effects of irreversibility and
makes it possible to describe the detailed time evolution of all non-equilibrium states of the
system.

Energy eigenstructures in the SEAQT theoretical framework can be constructed from appro-
priate quantum mechanical models. For instance, an eigenstructure for a gas phase can be
constructed with a manageable number of degrees of freedom by assuming that gas molecules
move independently with translational, rotational, and vibrational modes (the ideal gas ap-
proximation). For a condensed phase, however, the interactions between molecules greatly
affect physical properties, so they cannot be neglected. These interactions complicate the
energy eigenstructure for solids or liquids (and real gases as well). Furthermore, for suffi-
ciently large systems (from the micro- to the macro-scale) and regardless of phase, infinite-
dimensional state spaces are present, which make solving the equation of motion computa-
tionally intractable. Nevertheless, these difficulties can be overcome by using simple models
to construct a so-called “pseudo-eigenstructure” and by using the density of states method
developed by Li and von Spakovsky [73] to replace infinite-dimensional spaces. Together,
these strategies make it possible to solve the equation of motion for a condensed phase.

The SEAQT framework for solids has two distinct benefits: First, it provides a method
to explore kinetic behavior in a thermodynamic system (non-equilibrium paths and evolu-
tion with time) that is consistent with classical mechanics. Second, when a simple pseudo-
eigenstructure is available, the SEAQT framework is remarkably efficient from a computa-
tional standpoint.

To demonstrate the approach, we apply the SEAQT framework to calculate the thermal
expansion of solid silver. The presentation is organized as follows. The basis of the SEAQT
equation of motion is described in Section 3.2.1, while in Sec. 3.2.2, the system pseudo-
eigenstructure is constructed by treating the crystal as a collection of anharmonic oscillators.
Sec. 3.2.3 calculates the thermal expansion coefficient from the position probabilities of the
oscillators determined from the pseudo-eigenstructure. Sec. 3.3.1 validates the approach
with a comparison between the calculated (equilibrium) thermal expansion and experimental
data. Finally, Sections 3.3.2 and 3.3.3 apply the approach to investigate lattice relaxation
associated with several different irreversible (non-equilibrium) paths.

3.2 Theory

3.2.1 Equation of motion

Following Beretta and others [8, 40, 41, 88, 94], a general equation of motion for a quantum
system is taken to be composed of reversible and irreversible terms. In the SEAQT frame-
work, the form of this equation of motion for an assembly of indistinguishable particles is
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[73, 6, 7]
dρ̂

dt
=

1

ih̄
[ρ̂, Ĥ] +

1

τ(ρ̂)
D̂(ρ̂) , (3.1)

where ρ̂ is the density operator, t the time, h̄ the reduced Planck constant, Ĥ the Hamiltonian
operator, τ the relaxation time (which reflects the speed of the time evolution of states of the
system in Hilbert space), and D̂ the dissipation operator. The left-hand side of the equation
and the first term on the right corresponds to the time-dependent von Neumann equation.
The second term on the right is the irreversible contribution that accounts for relaxation
processes in the system. This dissipation term is derived via a constrained gradient in
Hilbert space [73, 6, 7] that causes the system to follow the direction of steepest entropy
ascent when the energy and occupation probabilities are conserved. When ρ̂ is diagonal in
the Hamiltonian eigenvector basis, ρ̂ and Ĥ commute and the von Neumann term in the
equation of motion disappears so that Eq. (3.1) simplifies to [73]:

dpj
dt

=
1

τ

∣∣∣∣∣∣∣
−pjlnpjgj pj εjpj∑
piln

pi
gi

1
∑
εipi∑

εipiln
pi
gi

∑
εipi

∑
ε2i pi

∣∣∣∣∣∣∣∣∣∣∣ 1
∑
εipi∑

εipi
∑
ε2i pi

∣∣∣∣ , (3.2)

where the pj are the diagonal terms of ρ̂, each of which represents the occupation prob-
ability of a particle being in the jth energy level, εj. The gj are the degeneracies of εj.
Equation (3.2) is a system of differential equations involving the ratio of determinants. An
example application to a particularly simple system — four energy level particles — can be
found in reference [6]. In general, the density operator is diagonalized when there are no
quantum correlations or in classical cases [74, 70, 71]. In this work, the density operator is
diagonalized with respect to the energy eigenstates basis (Section 3.2.2) so that Eq. (3.2) is
applicable rather than Eq. (3.1).

When there is a heat interaction between the system and a heat reservoir at temperature TR,
the SEAQT equation of motion, Eq. (3.2), transforms, using the concept of hypoequilibrium
state, [73, 70] into

dpj
dt

=
1

τ
pj

[(
−ln

pj
gj
− 〈s〉

)
− βR (εj − 〈e〉)

]
, (3.3)

where βR = 1/kBT
R (kB is the Boltzmann constant), and 〈e〉 and 〈s〉 are the expected values

of the system energy and entropy, which are, respectively, defined as

e = 〈e〉 =
∑
i

εipi (3.4)

and
s = 〈s〉 = −

∑
i

piln
pi
gi
. (3.5)
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Equation (3.5) is the von Neumann expression for the entropy. Provided the density operator
is based on a homogeneous ensemble [47], this expression satisfies all the characteristics of
entropy required by thermodynamics without making entropy a statistical property of the
ensemble [45, 25].

3.2.2 Pseudo-eigenstructure: anharmonic oscillator

To model thermal expansion of a crystalline solid, we treat atoms in the lattice as coupled
anharmonic oscillators vibrating about equilibrium positions. Two problems must be re-
solved in this context. The first is one of computational scale. The envisioned oscillators
have an infinite number of energy levels, and using such an eigenstructure with Eq. (3.2)
requires solution of an infinitely large system of equations. This difficulty is circumvented
by replacing the infinite-level state space with an approximate, finite, state space of several
hundred or thousand energy levels through a density of states approach. The second prob-
lem involves developing a representation for the energy levels of the anharmonic oscillators.
Unlike for the simple case of harmonic oscillators, the eigenvalues and eigenfunctions of an-
harmonic oscillators generally cannot be solved analytically. They can, however, be found
numerically. The details of how this is done are found in reference [52], and the essential
points are described below.

To determine the anharmonic eigenstates, a Morse potential for the pair interaction energy
is assumed, i.e.,

VMorse(x) = A+D(1− e−λ(x−x0))2 (3.6)

where A, D, λ, and x0 are fitting parameters. Since there are four fitting parameters and
the potential is nonlinear in two of them, the fitting procedure is operationally difficult.
The fitting procedure, however, can be simplified with the approach of Moruzzi et al. [90]
To obtain a realistic Morse potential for silver, the parameters in Eq. (3.6) are fitted to
electronic total energy calculations for silver performed using the projector augmented-wave
(PAW) method [67] as implemented in the Vienna Ab Initio Simulation Package (VASP).
A description of the ab-initio calculations and the resulting Morse potential parameters are
provided in Appendix B.1.

Substituting the Morse potential into the time-independent Schrödinger equation (i.e., the
energy eigenvalue problem),

Ĥψn(x) = εnψn(x) ,

− h̄2

2m

d2ψn(x)

dx2
+ VMorse(x)ψn(x) = εnψn(x) .

(3.7)
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With the ladder operators, a+ and a−, the Hamiltonian can be rewritten as

Ĥ = h̄ω

{
1

2

(
a−a+ +

1

2

)
− 1

4

(
(a−)2 + (a+)2

)
+ζ
(

1− 2F̂ (λ0) + F̂ (2λ0)
)}

,

(3.8)

where
F̂ (λ0) = e−λ

0(a−+a+) , F̂ (2λ0) = e−2λ0(a−+a+) ,

ζ = D
h̄ω
, and λ0 = 1

2

√
h̄ω
D

= 1
2

√
1
ζ
.

The eigenfunctions, ψn(x), for the anharmonic oscillator are then given by [52]

ψn(x) =
nmax−1∑
k=0

Cknψ
HO
k (x) , (3.9)

where the Ckn are coefficients of the expansion, the ψHO
n (x) are the eigenfunctions of a

related harmonic oscillator, and nmax is the largest quantum number of eigenvalues used
for the numerical calculation. The latter is chosen to include enough energy eigenlevels to
adequately represent the thermal expansion of the system with the available computational
resources. The procedure for determining the harmonic oscillator eigenfunctions, ψHO

n (x),
and selecting nmax is described in Appendix B.2.

The vibrational frequencies, ω, in Eq. (3.8), are obtained from the Debye approximation
[64] in which the velocity of sound is taken to be a constant and the lattice vibrates with
frequencies up to the Debye frequency, ωD. Adopting a definition suggested by Moruzzi et
al. [90], the constant velocity of sound at the ground state, v0, is given by

v0 = 0.617

√
B0

ρ0

, (3.10)

where B0 and ρ0 are, respectively, the bulk modulus and the density of the specimen eval-
uated with the lattice constant at 0 K, a0. The coefficient, 0.617, comes from the fact
that there are two wave modes, transverse and longitudinal, whose velocities have different
dependencies on the bulk modulus [90]. The bulk modulus at the ground state is given as

B0 = −V0

(
∂P

∂V

)
V0

=
4

9a0

(
∂2Etotal

∂a2

)
a0

=
4

9a0

6(2Dλ2) ,

(3.11)

where P is the system pressure, V is the volume (V0 is the volume evaluated at a0), Etotal is
the total energy of the system, and D and λ are the fitting parameters in the Morse potential.
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The factor of 6 in Eq. (3.11) is related to the number of first-nearest-neighbor pairs (as seen
in Eq. (B.1)). The Debye frequency, ωD,0, and the density of states, g0(ω), evaluated at a0

are given by [64]

ωD,0 =

(
6π2Ns

Vs

) 1
3

v0 (3.12)

and

g0(ω) =
9Nsω

2

ω3
D,0

, (3.13)

where Ns and Vs are, respectively, the number of primitive cells in a specimen and the volume
of the specimen (Vs = Nsa

3
0/4). Ns is set equal to Avogadro’s number.

The incorporation of vibrational frequencies below the Debye frequency cannot be done in
a straightforward manner because the density of states is not discrete as is evident from
Eq. (3.13). To avoid this difficulty, the density of states method developed by Li and von
Spakovsky [73] within the SEAQT framework is applied. This strategy combines similar
energy eigenvalues into discrete bins and significantly reduces the computational burden
without losing the accuracy of the result. By using this method, which is based on a quasi-
continuous assumption, the vibrational frequency and degeneracy in the pseudo-system be-
comes (see Appendix B.3)

ωi =
1

Gi

∫ ω̄i+1

ω̄i

ω̄g0(ω̄)dω̄ (3.14)

and

Gi =

∫ ω̄i+1

ω̄i

g0(ω̄)dω̄ , (3.15)

where ω̄ is the vibrational frequency of the original system and ω̄i is the interval of the
frequency. The vibrational frequencies, Eq. (3.14), are used in Eq. (3.8) to derive the eigen-
values and eigenfunctions of the crystal of anharmonic oscillators.

3.2.3 Thermal expansion

The expected lattice constant, a, at time, t, is determined from the probability of a particle
at a given position and time, Φ(x, t), and its position, xi, such that

a = 〈x〉 =
∑
i

Φ(xi, t)xi , (3.16)

where the position probability of a particle, Φ(x, t), can be described as [84]

Φ(x, t) =
∑
i

pi(t)|ψi(x)|2 , (3.17)
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Figure 3.1: The position probabilities of a particle as a function of interatomic distance at
various temperatures calculated using the localized density approximation (LDA) functional.

and the position of the oscillator, x, corresponds to the interatomic distance in the present
application.

The values of the occupation probabilities, pi, in Eq. (3.17) reflect the distribution of the
oscillators in the crystal among the various energy eigenlevels of the eigenstructure. If a
solid is at thermal equilibrium, a natural choice for the occupation probabilities is given by
the canonical distribution:

P se
j =

Gje
−βEj∑

i

Gie−βEi
=
Gje

−βEj

Z
, (3.18)

where Z is the partition function, β=1/kBT , and se denotes stable equilibrium. We denote
the occupation probability, energy eigenvalue, and energy degeneracy, respectively, as Pj, Ej
and Gj (instead of pj, εj and gj) in order to emphasize that these quantities apply to the
pseudo-system, which closely approximates the real system.

Figure 3.1 shows how the oscillator position affects the occupation probability for silver
oscillators at a series of different temperatures. The peak in the position probability is
the same at all temperatures and corresponds to the ground state lattice parameter and
the minimum pair interaction energy (see Fig. B.1 in Appendix B.1). Nevertheless, the
distribution becomes broader with increasing temperature and the asymmetric pair potential
distributes energy to energy eigenvalues corresponding to larger interatomic distances.

Equation (3.16) in conjunction with the pseudo-eigenstructure and Eq. (3.18) provides a
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means to calculate the lattice constant at any temperature. The coefficient of thermal
expansion, α, is obtained from the temperature-dependent lattice constants via the relation-
ship:

α(T ) =
a(T )− a(T0K)

a(T0K)
. (3.19)

Here, a(T0K) includes zero-point vibrations and is different from a0. The estimated lattice
constant for a(T0K), 1.002a0 [124], is used here because it is difficult to satisfy the quasi-
continuous condition, Eq. (B.6), at very low temperatures.

It is important to note that a pseudo-eigenstructure can be constructed from any reasonable
solid-state model. The one employed here for thermal expansion arises from anharmonic os-
cillators. It evaluates the phonon dispersion relation (or the Debye frequency) at the ground
state (corresponding to a0) and determines the thermal expansion from the intrinsic asym-
metry of the pair-potential curve in an intuitive way. A useful pseudo-eigenstructure could
be built just as easily from the harmonic oscillator approximation with a volume-dependent
phonon dispersion relation (i.e., the quasi-harmonic approximation; see, for example, ref-
erences [38, 90]). Also, additional contributions to thermal expansion, such as electronic
contributions, can be incorporated into the pseudo-eigenstructure if desired. The Debye
model is used here for the sake of simplicity to calculate the density of states of vibrational
frequencies. For more accurate calculations, a more detailed description of the density of
states — such as one obtained from density functional theory (DFT) — would be required.

3.3 Results

3.3.1 Thermal expansion at stable equilibrium

Calculated equilibrium lattice constants for silver over a range of temperatures using the
occupation probabilities given by Eq. (3.18) are shown in Fig. 3.2 for two different choices
of the Morse potential fitted to the total energy, i.e., one calculated with DFT using the
localized density approximation (LDA) and the other using the generalized gradient approx-
imation (GGA). The thermal expansion coefficient, Eq. (3.19), determined from these values
is plotted in Fig. 3.3.

The solid curves in Fig. 3.3 calculated from the anharmonic model with the SEAQT frame-
work show that the thermal expansion obtained from the GGA functional is an overestimate,
whereas that from LDA is quite close to the experimental results up to a fairly high tempera-
ture (∼ 800 K). The improved agreement of the LDA thermal expansion arises from the fact
that the LDA functional overestimates both the Debye temperature and Grüneisen constant,
which are, respectively, related to the potential curvature and asymmetry/softening effect,
and these errors offset each other (see Appendix B.4). The qualitative agreement between
experimental thermal expansion and predicted values from the SEAQT framework suggests
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Figure 3.2: The temperature dependence of the Ag lattice constant. The red/yellow lines are
calculated using the GGA/LDA functionals. The solid black circles, squares, and triangles
are experimental data [100]. The lattice constant at 0 K is estimated as 1.002a0, where a0

is the ground state lattice constant without zero-point vibrations [124].
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Figure 3.3: The temperature dependence of the linear thermal expansion coefficient. The
red/yellow lines are calculated using the GGA/LDA functionals. The solid black circles are
experimental data [100].
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that the pseudo-eigenstructure built from an anharmonic oscillator model is reasonable. Be-
cause the LDA thermal expansion is closer to experiment than the GGA thermal expansion,
only the LDA functional is used in the calculations of the following sections (Sections 3.3.2
and 3.3.3).

3.3.2 Non-equilibrium lattice evolution

In this section, the SEAQT model is used to explore how the state of the silver lattice evolves
from an initial, non-equilibrium state to a stable equilibrium state with an equilibrium lattice
constant. An initial state can be generated in a variety of ways. Two different approaches
are used here. The first selects an initial occupation distribution described by an appropriate
probability distribution. For example, Li and von Spakovsky [73, 70] generated initial states
with a gamma function distribution of the form

P 0
j =

GjE
θ
j e
−βEj∑

iGiEθ
i e
−βEi

, (3.20)

where β is as defined above and θ represents an adjustable parameter that shifts the initial
state away from the canonical distribution. In the second approach, the initial state can be
generated using an ad hoc description of the initial occupation distribution. For example,
an occupation distribution generated by pumping energy into the silver lattice with a laser
might be approximated by assuming that the injected photons excite silver atoms out of the
lower energy states. To numerically determine such an initial state, the procedure developed
by Beretta [6] is used here. The initial probability distribution, P 0

j , is expressed in terms of
the following perturbation function:

P 0
j = (1− λconst)P

pe
j + λconstP

se
j , (3.21)

where P
pe/se
j are the partially canonical and stable equilibrium probability distributions

and λconst is the perturbation constant (assumed to be 0.1 here) that describes the initial
departure from the partially canonical state. For the partially canonical distribution, it is
assumed that the atoms do not occupy the lowest three quantum levels.

Now, in order to determine the maximum vibrational quantum number and apply the quasi-
continuous condition of the density of states method [73], Eqs. (B.3) and (B.6) given in Ap-
pendices B.2 and B.3 must be satisfied at stable equilibrium as well as at non-equilibrium.
Both conditions are satisfied rigorously at stable equilibrium but require an additional con-
cept at non-equilibrium, namely, that of a hypoequilibrium state [73]. With this concept,
Eqs. (B.3) and (B.6) can be satisfied rigorously at non-equilibrium. A discussion of this
concept is beyond the scope of the present work and, thus, the reader is referred to reference
[73].

Fig. 3.4 shows an example of how the position probability distribution varies with interatomic
distance at three different times for the irreversible thermodynamic path determined for the
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Figure 3.4: The position probability of a particle in an isolated system as a function of inter-
atomic distance at three different times of the irreversible thermodynamic path determined
using the initial state generated from Eq. (3.21) and the LDA functional. The temperature
in the final stable equilibrium state is 800 K and time, t, is normalized by the relaxation
time, τ , as t∗ = t/τ .

initial state generated using the partially canonical distribution of Eq. (3.21). Figure 3.5
shows the time dependence of the silver lattice parameter for three different initial states,
one generated based on Eq. (3.21) and two based on Eq. (3.20). For the former, the change
in the lattice parameter is quite small because the total energy remains fixed throughout the
evolution. For the other two, the system energy varies since the system is allowed to interact
with a heat reservoir at 800 K. All three evolutions arrive at the same stable equilibrium
state of 800 K. An interesting feature of the evolution based on Eq. (3.21) is that a non-
monotonic change of the lattice parameter with time is observed. Note that the lattice
parameter at stable equilibrium for all three evolutions corresponds to the lattice constant
at 800 K derived from the canonical distribution in Sec. 3.3.1 (see Fig. 3.2).

In these results, the time scales are normalized by the relaxation time, τ , as t∗ = t/τ . The
dimensionless time, t∗, can be correlated to real time via comparisons with experimental data
[9, 76] or from ab initio calculations based on quantum or classical mechanical considerations
[8, 70, 75]. The latter approach is used in the following section (Sec. 3.3.3). Regardless of
how τ is scaled to real time, though, the SEAQT framework predicts a unique kinetic path
in state space. The relaxation time, τ , simply determines how fast along that path the state
of the system changes.
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Figure 3.5: The time dependence of the Ag lattice parameter for three initial states using
the LDA functional. In each case, the lattice parameter relaxes to the stable equilibrium
value at 800 K (Figure 3.2). The insert shows the non-monotonic behavior of the lattice
parameter for the evolution based on the initial state prepared by the partially canonical
(P.C.) distribution, Eq. (3.21).
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Figure 3.6: The time dependence of the lattice parameter in a cubic sample (L = 10 mm)
interacting with a heat reservoir (TR = 800 K) using the SEAQT framework and the LDA
functional.

3.3.3 Thermal expansion along irreversible path between equilib-
rium states

The real-time dependence of the lattice parameter can be estimated by correlating the relax-
ation time, τ , to the phonon contribution of thermal conductivity. This is done by allowing
the system to interact with a heat reservoir in an irreversible process in which the system
starts at an initial temperature T0 and ends up in thermal equilibrium with the reservoir at
TR. The calculated time dependence of the lattice parameter for T0 = 300 K and TR = 800 K
is shown in Fig. 3.6. Here, the real time scale is determined using the following equation
(derived in Appendix B.6):

τ =
N

24LKphonon(TR − TC)

dE

dt∗
. (3.22)

where N is the number of atoms in the sample, L = 10 mm is the edge length of the sample
with an assumed cube shape, Kphonon is the phonon component of the thermal conductivity
coefficient, TC is the temperature at the center of the sample, and dE/dt∗ is the energy
change rate per atom, which can be determined from the SEAQT framework (the determined
relaxation time, τ , is shown in Fig. B.4 in Appendix B.6).

From Fig. 3.6, it is apparent that the steepest part of the lattice change happens at the first
half of the relaxation process (i.e., from 0 ∼ 2 minutes) and slows as the temperature of
the sample, TC , approaches the temperature of the reservoir, TR. Note that, however, the
Eq. (3.22) is derived based on some assumptions; e.g., only the Fourier type heat transfer is
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considered, and a spatially uniform system is assumed. For a more reliable estimation of the
relaxation time, τ , a more realistic system description would be required.

3.4 Conclusions

The SEAQT model can reliably estimate the thermal expansion of face-centered-cubic silver
with a pseudo-eigenstructure based on a crystal of anharmonic oscillators. The accuracy of
the approach is quite good for anharmonic oscillators determined from band calculations. It
has the added advantage that the thermal expansion can be calculated not only at stable
equilibrium but also along a path from some initial non-equilibrium state to stable equilib-
rium.

In the present work, the following three calculations are provided: (a) at stable equilibrium,
(b) along three irreversible paths from different initial non-equilibrium states to stable equi-
librium, and (c) along an irreversible path between two stable equilibrium states. For each
calculation, it is confirmed that

(a) the SEAQT framework with an anharmonic pseudo-eigenstructure predicts reasonable
values for equilibrium thermal expansion;

(b) the time dependence of the lattice parameter has a non-monotonic behavior for one
particular choice of initial state prepared by a method that uses partial occupation proba-
bilities, Eq. (3.21), to approximate energy injection from a laser. A lattice parameter that
monotonically increases or decreases with time can result from initial states prepared using
Eq. (3.20);

(c) the real-time dependence of the lattice parameter is found using the phonon component
of thermal conductivity and shows that the most significant lattice change occurs at the
earlier stages of the relaxation process.

It is noteworthy that the SEAQT model with an anharmonic pseudo-eigenstructure based on
a coupled anharmonic oscillator is much more computationally efficient than quasi-harmonic
models. The latter require volume dependent phonon dispersion relations which are compu-
tationally demanding using DFT, but our approach evaluates the phonon dispersion relation
only at the ground state and thermal expansion is calculated from the pseudo-eigenstructure
by solving the time-independent Schrödinger equation of anharmonic oscillators. This in-
volves solving a modest size system of ordinary differential equations — a comparatively
small computational problem.
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B.1 Ab-initio calculations

To obtain a realistic Morse potential for silver, the parameters in Eq. (3.6) are fitted to
electronic total energy calculations for silver performed using the projector augmented-wave
(PAW) method [67] as implemented in VASP. For the exchange-correlation functional, both
the localized density approximation (LDA) of Ceperley and Alder [19, 102] and the general-
ized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) [101] are employed.
Supercells in the present DFT calculations contain 4 atoms in the face-centered cubic (fcc)
structure, and the plane wave cut-off energy is set to 400 eV. Integration over the Brillouin
zone is done with 11×11×11 k-points, and the tetrahedron method [13] is applied for the
k-space integrals.

The pair interaction energy, Epair, employed in the Morse potential, Eq. (3.6), is extracted
from the total energies, Etotal, derived from the band calculation by considering only first-
nearest-neighbors, i.e.,

Etotal =
Ncz

2
Epair ⇒ Epair =

1

6Nc

Etotal , (B.1)

where Nc is the number of atoms in the supercell and z is the coordination number (z = 12 for
the fcc structure). The pair potentials are fitted in the range from 3.8 to 5.2 Å for GGA and
3.6 to 4.8 Å for LDA. The pair interaction energy and fitting parameters are, respectively,
shown in Fig. B.1 and Table B.1 for the GGA and the LDA functionals.

B.2 The maximum vibrational quantum number and

the harmonic oscillator

The vibrational quantum number can be infinite. Thus, the maximum value, which does not
underestimate the thermal expansion of the lattice, must be determined. A value as small as
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Figure B.1: Pair interaction energies for the GGA and LDA functionals. The solid lines
are the results derived from band calculations, and the broken lines are the Morse potential
function fitted to the band calculations.

Table B.1: Morse potential parameters used to fit band calculations made with the GGA and
LDA functionals. Note that the fitting parameter, x0, corresponds to the lattice constant,
a0.

GGA LDA
A (eV/atom) -0.0914 -0.1476
D (eV/atom) 0.3616 0.4829
λ (1/Å) 1.1069 1.1648
x0 (Å) 4.1493 4.0025
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possible that does not change the result is sought. The probability of phonons, Xn, whose
quantum number is labeled as n, can be derived as [64]

Xn =
Nn
∞∑
s=0

Ns

=
exp(− nh̄ω

kBT
)

∞∑
s=0

exp(− sh̄ω
kBT

)
, (B.2)

where Nn is the number of phonons with quantum number n. Checking whether or not the
summation of the above probabilities from n = 0 to nmax is approximately one determines
the maximum vibrational value, nmax, i.e., when

δ = 1−
nmax∑
i=0

Xi ≈ 0 . (B.3)

In this work, nmax is set in order to satisfy the condition δ < 0.01.

To determine the eigenvalues, εHO
n , and eigenfunctions at a position x, ψHO

n (x), for the
quantum harmonic oscillator, the following analytical expressions are used [39]:

εHO
n =

(
n+

1

2

)
h̄ω (B.4)

and

ψHO
n (x) =

(mω
πh̄

) 1
4 1√

2nn!
Hn(ξ)e−

ξ2

2 , (B.5)

where n is the quantum number (n = 0, 1, 2, . . .), m the mass of a particle, ω the vibrational
frequency, Hn a Hermite polynomial, and ξ =

√
mω
h̄
x.

B.3 Quasi-continuous condition

The quasi-continuous condition can be derived by seeking a condition where the properties
between the original and pseudo systems become approximately the same [73]. However,
past work has applied this method to the density of states for energy eigenstructures and
not to that for the vibrational frequency. In this appendix, the quasi-continuous condition
is extended to the density of states for this frequency.

The quasi-continuous condition for the density of states of the energy is given as

1

β
� |Ei+1 − Ei| , (B.6)

where Ei is ith eigenvalue in the pseudo-system expressed as

Ei =
1

Gi

∑
j

gijε
i
j , (B.7)
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where εij is the jth eigenvalue in the original system in the ith energy interval and gij is its
degeneracy. The degeneracy of Ei, Gi, is defined as

Gi =
∑
j

gij . (B.8)

The length of each energy interval is given by (εcut − εground)/R, where εcut and εground are,
respectively, the cutoff and ground state energies and R is the number of intervals.

The above procedure is now extended to the vibrational frequency. For simplicity, an har-
monic oscillator is assumed here to derive the analogous expression for the quasi-continuous
condition of the vibrational frequency. For the harmonic oscillator, the vibrational frequency
is directly related to the energy eigenvalue as shown in Eq. (B.4). Thus, Eqs. (B.6) to (B.8)
can be rewritten as

1

β
� h̄

∣∣∣∣ (〈n〉ωi+1
+

1

2

)
ωi+1 −

(
〈n〉ωi +

1

2

)
ωi

∣∣∣∣ , (B.9)

ωi =
1

Gi

∫ ω̄i+1

ω̄i

ω̄g(ω̄)dω̄ , (B.10)

and

Gi =

∫ ω̄i+1

ω̄i

g(ω̄)dω̄ , (B.11)

where ωi and Gi are the vibrational frequency and its degeneracy in the pseudo-system,
〈n〉ωi is the average number of phonons with vibrational frequency ωi, ω̄ is the vibrational
frequency in the original system, and ω̄i is the interval of the vibrational frequency, which
is specified as

ω̄i = (i− 1)
ω̄D
R

, (B.12)

where R is the number of intervals, ω̄D is the Debye frequency, and i is an integer (i =
1, 2, . . . R). Since the Debye frequency is the maximum frequency with which the lattice can
vibrate, it can be regarded as the cutoff energy (cutoff vibrational frequency). The average
number of phonons at temperature, T , can be expressed as [64]

〈n〉ω =
1

exp(h̄ω/kBT )− 1
. (B.13)

The above quasi-continuous condition is valid at stable equilibrium but can be extended to
non-equilibrium via the hypoequilibrium concept [73].

B.4 Analysis of GGA/LDA thermal expansion

The origin of the difference between the calculated thermal expansion and that given by
experiments (Fig. 3.3) can be inferred from three characteristics of the interatomic potential
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Table B.2: The Debye temperature, ΘD,0, and Grüneisen constant, γ0, for Ag evaluated at
a0 from the GGA and LDA functionals with experimental data [42, 110]. The normalized
Grüneisen constant, γ′0 = γ0/a0, is shown as well. The lattice constant in Table B.1 (aGGA

0 =
4.149 Å and aLDA

0 = 4.003 Å) and Ref. [100] (aExp
0 = 4.076 Å) are used, respectively, for the

normalization.

GGA LDA Exp.
ΘD,0(K) 221.9 266.9 226.5 [110]

Error in ΘD,0 -2.03% +17.8% -
γ0 2.623 2.664 2.46 [42]

γ′0 (1/Å) 0.6321 0.6656 0.603
Error in γ′0 +4.74% +10.4% -

energy: its curvature, its asymmetry about the minimum bonding energy, and its width
at large displacements from the minimum point (i.e., the softening effect [64]). Note that
the first and third contributions do not have an impact on the thermal expansion for the
symmetry potential of the harmonic oscillators, but do strongly affect it for the asymmetry
potential. The Debye temperature, ΘD, and the Grüneisen constant, γ, can be used to
evaluate the magnitude of each of these contributions. These constants evaluated at a0 are
obtained from band calculations using the following relationships: [90, 64]

ΘD,0 =
h̄ωD,0
kB

(B.14)

and

γ0 ≡ −
(
∂lnΘD

∂lnV

)
V0

=
λa0

2
, (B.15)

where ωD,0 is given in Eq. (3.12). The calculated values of these constants are shown in
Table B.2 and compared with experimental results [42, 110]. The normalized Grüneisen
constant, γ′0 = γ0/a0, is used because γ0 depends on a0 (x0), which does not contribute to
the thermal expansion (see Appendix B.5; hereafter, we call the normalized constant, simply
the Grüneisen constant). In general, the lattice expansion becomes smaller or larger when
it has a larger or smaller Debye temperature and a smaller or larger Grüneisen constant
(Appendix B.5). As seen in Table B.2, the Debye temperature and Grüneisen constant are
overestimated by the LDA functional, while only the Grüneisen constant is overestimated by
the GGA functional. For this reason, it is concluded that the GGA functional overestimates
the thermal expansion because it does not accurately represent the asymmetry/softening
effect in the potential energy. The closer agreement of the LDA thermal expansion to exper-
imental values arises from the fact that the LDA functional overestimates both the Debye
temperature and the Grüneisen constant and these errors offset each other.
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B.5 The relationship of the Debye temperature and

Grüneisen constant to thermal expansion

A simple anharmonic potential is given as [52, 64]

V (x) = V0 + c(x− x0)2 − g(x− x0)3 + f(x− x0)4 , (B.16)

where V0 is the energy at the equilibrium point, x0, and c, g, and f are all positive coefficients.
The second and fourth terms in this potential, respectively, are related to the inverse of the
curvature and the width of the potential at large amplitudes, while the third term represents
the asymmetry [64]. It is expected that a thermal expansion becomes smaller or larger when
c and f in the potential are smaller or larger and g in the potential is larger or smaller.
Furthermore, a Taylor series expansion of the Morse potential, Eq. (3.6), is written as

VMorse(x) ≈A+Dλ2(x− x0)2 −Dλ3(x− x0)3

+
7

12
Dλ4(x− x0)4 + · · · .

(B.17)

A comparison of the coefficients between Eqs. (B.16) and (B.17) leads to the following rela-
tions: c = Dλ2, g = Dλ3, and f = 7

12
Dλ4. From these relations and Eqs. (3.10) to (3.12),

the Debye temperature and the Grüneisen constant (Eqs. (B.14) and (B.15)) are written as

ΘD,0 =
h̄

kB
C
√
c (B.18)

and

γ0 =
6

7
x0
f

g
, (B.19)

where C is a constant, which does not depend on the Morse fitting parameters. Since it is
assumed that x0 does not contribute to thermal expansion, a normalized Grüneisen constant
is defined as

γ′0 =
γ0

x0

=
6f

7g
. (B.20)

From the above equations, it is inferred that the lattice expansion becomes smaller or larger
when the Debye temperature, ΘD,0, is larger or smaller and the normalized Grüneisen con-
stant, γ′0, is smaller or larger.

B.6 Real-time scaling

In this appendix, it is shown how the SEAQT relaxation time, τ , can be correlated to real
time through the phonon component of the thermal conductivity. If the process of heating
a block of silver from an initial temperature to a higher temperature through contact with
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a heat reservoir is considered, the kinetics of this process can be described by solving the
SEAQT equation of motion, or the process can be treated as a transport problem whose ki-
netics are described by Fourier’s law. The transport problem is readily verified by experiment
and its time scale can be directly compared with the SEAQT relaxation time, τ .

One can question the validity of this strategy given the system in the SEAQT framework
is spatially uniform whereas the block in the transport problem is not (the center is cooler
than the surfaces). A more rigorous approach would be to make the SEAQT system spatially
nonuniform by arranging a network of subsystems with different energies that exchange heat
with each other in the manner of references [76, 75]. This approach has been extended to
coupled transport processes as well [74, 75]. However, the added complexity is avoided here
for the sake of simplicity and because the rate of the spatially-dependent transport processes
should provide a rough bound for the SEAQT relaxation time.

For the case of a cube-shaped sample experiencing irreversible heating from a uniform ini-
tial temperature to the temperature of a surrounding reservoir, energy conservation during
thermal conduction requires that

∂EV
∂t

= −∇ · J , (B.21)

where EV is the energy density of the substance at a point (x, y, z) and J is the heat flux.
Using Fourier’s law for the flux, J = −K∇T where K is the thermal conductivity coefficient,
and assuming K is constant (independent of position or temperature), Eq. (B.21) becomes

∂EV
∂t

= K∇2T . (B.22)

The laplacian can be replaced by expressing the temperature on each of the six surfaces of
the cube as a Taylor series expanded about the temperature at the cube center and summing
the series (up to the quadratic terms). With this approximation, Eq. (B.22) becomes

∂EV
∂t
≈ K

6

(L/2)2
(TR − TC) , (B.23)

where L is the edge length of the cube-shaped sample, and TC and TR are the temperatures
of the center and the surface of the sample, respectively (the surface is maintained at the
reservoir temperature).

For the equivalent SEAQT system, the energy change rate per volume, ∂EV /∂t, is

∂EV
∂t

⇒ N

L3

dE

dt
, (B.24)

where N is the number of atoms in the sample and dE/dt is total energy change rate per
atom. Converting t in Eq. (B.24) to t∗ (i.e., dE

dt
= 1

τ
dE
dt∗

) and equating Eqs. (B.23) with (B.24)
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yields an expression for the relaxation time in terms of measurable quantities. If only the
phonon contribution of the thermal conductivity is considered, the relaxation time, τ , is

τ =
N

24LKphonon(TR − TC)

dE

dt∗
. (B.25)

Note that since the transient case is considered here, TC is a function of time, and Kphonon

is a function of TC .

To apply Eq. (B.25), a cube-shaped block of silver with edge length L = 10 mm and ini-
tial temperature T0 = 300 K is considered to interact with a heat reservoir maintained at
TR = 800 K. The calculated time dependences of lattice parameter, temperature, and en-
ergy change rate per atom (dE/dt∗) using the SEAQT model are shown in Fig. B.2 where
the time dependence of the temperature in the system is estimated using the relation be-
tween the lattice constant and temperature derived in the stable equilibrium calculation
of Sec. 3.3.1 (Fig. 3.2). The temperature dependence of the phonon thermal conductivity
coefficient, Kphonon, calculated from first-principles by Jain et al. [57] (taking into account
electron-phonon and phonon-phonon interactions) are used here by fitting to the following
expression:

Kphonon(T ) = A′ +B′ exp(
C ′

T
) , (B.26)

where T is temperature and A′, B′, and C ′ are fitting parameters. The fitting result is
shown in Fig. B.3 with the original data [57]. Eq. (B.26) closely reproduces the original
values although the reliability of the fitted function above 500 K can not be verified because
there is no calculated data above this temperature. The determined time dependence of the
relaxation time for the cube-shaped sample is shown in Fig. B.4.
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(b)

(a)

Figure B.2: The calculated time dependences of the (a) lattice parameter and (b) tempera-
ture and energy change rate per atom, dE/dt∗, when there is a heat interaction between the
system and a reservoir TR = 800 K and the initial temperature of the system, T0, is 300 K.
The temperature of the system corresponds to TC in Eq. (B.25).
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Figure B.3: The temperature dependence of the phonon thermal conductivity coefficient.
The black circles are the original data [57], and the broken line is the fitting function,
Kphonon(T ) = A′ +B′ exp(C ′/T ), where A′ = −504.3, B′ = 504.6, and C ′ = 2.020.
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Figure B.4: The time dependence of the relaxation time, τ , for a spatially uniform cubic
sample (L = 10 mm) estimated using Eq. (B.25) with the results/data shown in Figs. B.2
and B.3.
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Low-temperature Atomistic Spin
Relaxations and Non-equilibrium
Intensive Properties Using
Steepest-Entropy-Ascent Quantum
Thermodynamics Modeling

4.1 Introduction

The dynamic time-evolution of magnetization in ferromagnetic materials undergoing changes
in temperature and an external magnetic field plays a role in a variety of applications such as
spintronics [123, 20]. Since magnetic relaxations occur on a short time scale, the experimental
study of the dynamic magnetic behavior is difficult and theoretical approaches can be helpful.

The atomistic spin relaxation process has been actively investigated using spin dynamics
simulations [2, 107, 31]. These simulations use the Langevin equation of motion to describe
state evolution toward stable equilibrium. The Langevin equation of motion is derived by
introducing stochastic fluctuations and dissipation terms in the equation of motion for spins
(or magnetic moments) through a treatment similar to mean-field theory [14, 120, 78, 79]
wherein an effective magnetic field is assumed to act on each spin. Spin dynamics simulations
have been extended to spin-lattice dynamics [82] and spin-lattice-electron dynamics simula-
tions [81] by taking into account coupled spin, atomic, and electronic degrees of freedom. To
facilitate an understanding of the coupled effects in the relaxation process, Ma et al. defined
a closed-form expression for the non-equilibrium temperature of a spin system by solving the
Langevin equations of motion at equilibrium with the fluctuation-dissipation theorem [80].

Although the calculated equilibrium magnetizations of body-centered cubic (bcc) iron us-
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ing spin dynamics simulations are in good agreement with experiments at high temperatures
(around the Curie temperature, Tc), the magnetization predictions at low temperatures devi-
ate from experimental data [107, 79] because of the mean-field treatment of spin interactions.
Furthermore, even though the non-equilibrium temperature defined by Ma et al. provides
an estimate of the temperature of a spin system, it is not a fundamental property defined
as, for example, the temperature at equilibrium in terms of a canonical distribution.

Recently, the steepest-entropy-ascent quantum thermodynamics (SEAQT) framework has
been applied to the relaxation processes of various physical phenomena such as chemical
reactions [73, 9], the heat and mass diffusion of indistinguishable particles [70, 74], the
thermal expansion of silver [128], and phase decompositions in alloy systems [125, 126]. The
SEAQT model is based upon a first-principles, non-equilibrium thermodynamic-ensemble
approach that unifies quantum mechanics and thermodynamics into a single self-consistent
framework [47, 48, 49, 50, 5]. The most distinctive characteristics of the SEAQT framework
are that entropy is viewed as a measure of energy load sharing among available energy
eigenlevels and that relaxation processes are determined by a unique master equation called
the SEAQT equation of motion. The definition of entropy allows entropy to be defined for
any state (including non-equilibrium states) in systems ranging in spatial scale from the
microscopic to the macroscopic level. The SEAQT equation of motion drives a relaxing
system in the direction of steepest entropy ascent. The model does not make a local/near
equilibrium assumption, and it is applicable at all temporal and spatial scales and for states
far-from-equilibrium [76].

Within the SEAQT theoretical framework, Li and von Spakovsky have developed the con-
cept of hypoequilibrium states [73, 70] (i.e., a non-equilibrium relaxation pattern) and used
the concept to define “fundamental” non-equilibrium intensive properties such as tempera-
ture, chemical potential, and pressure. Using these non-equilibrium intensive properties, Li,
von Spakovsky, and Hin have applied the SEAQT framework to the coupled transport of
phonons and electrons clearly distinguishing the non-equilibrium temperatures of phonons
and electrons and showed that the SEAQT equation of motion recovers the two-temperature
model of electron-phonon coupling when a constant relaxation time for phonons and elec-
trons is assumed [75]. They also have proven that the SEAQT formulation reduces to the
Boltzmann transport equations in the near-equilibrium limit [75].

To apply the SEAQT framework to any relaxation process, one must first build an energy
eigenstructure — a set of energy eigenlevels — for the system in question. The eigenstructure
is constructed from appropriate quantum models and degrees of freedom for the relevant
particles or molecules. However, complex many-body interactions between particles in a
solid phase makes the use of simple quantum mechanical models difficult. In addition, the
number of energy levels in the eigenstructure of solids becomes effectively infinite as the
number of particles in a system approaches those of the bulk material. To avoid these
difficulties, a somewhat simplified eigenstructure (a so-called “pseudo-eigenstructure”) [128]
is constructed here with the use of reduced-order models [129] and a density of states method
[73]. The former replaces a quantum model with a simple solid-state model and the latter
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converts the infinite energy eigenlevel structure to a finite-level one. The approach used in
the thermal expansion application [128], in which atoms are treated as coupled oscillators,
provides an analogous strategy for constructing a pseudo-eigenstructure of a spin system by
viewing spins as coupled oscillators.

In the present contribution, relaxation processes of magnetization in bcc-iron with and with-
out an external magnetic field are investigated using the SEAQT framework with a pseudo-
eigenstructure constructed from the coupled spin oscillators. Fundamental definitions of
non-equilibrium intensive properties (i.e., temperature and magnetic field strength) in spin
systems are also proposed using the concept of hypoequilibrium states [73]. For simplicity,
harmonic oscillators are used for the reduced-order model and the focus is on magnetiza-
tion in the low-temperature region (T < Tc/2) where spin dynamics simulations have not
succeeded in accurately predicting the magnetization.

This paper is organized as follows. The SEAQT equation of motion in an external mag-
netic field and non-equilibrium intensive properties are described in Sec. 4.2.1, and the
pseudo-eigenstructure is constructed assuming coupled harmonic oscillators in Sec. 4.2.2.
In Section 4.3, the calculated equilibrium magnetizations for various external magnetic field
strengths and temperatures are shown and compared with experimental data (Sec. 4.3.1).
Then, some calculated relaxation processes of magnetizations are shown in Secs. 4.3.2 and
4.3.3 focusing on relaxations in the far-from-equilibrium region and the use of non-equilibrium
intensive properties, respectively. At the end, results of the magnetization calculations using
the SEAQT model are summarized in Sec. 4.4.

4.2 Theory

4.2.1 SEAQT equation of motion

4.2.1.1 An isolated system

Relaxation under the SEAQT framework arises from a fundamental equation of motion,
which uses the maximum rate of entropy production principle. The SEAQT equation of
motion is given as [10, 6, 7]

dρ̂

dt
=

1

ih̄
[ρ̂, Ĥ] +

1

τ(ρ̂)
D̂(ρ̂) , (4.1)

where ρ̂ is the density operator, t the time, h̄ the modified Planck constant, Ĥ the Hamilto-
nian operator, τ the relaxation time (which represents the rate at which the system moves
along the unique thermodynamic path in Hilbert space predicted by the equation of mo-
tion), and D̂ the dissipation operator. The left-hand side of the equation and the first term
on the right corresponds to the time-dependent von Neumann equation (or time-dependent
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Schrödinger equation). The second term on the right is a dissipation term, an irreversible
contribution that accounts for relaxation processes in the system. When ρ̂ is diagonal in the
Hamiltonian eigenvector basis, ρ̂ and Ĥ commute and the von Neumann term in the equa-
tion of motion disappears so that when the only generators of the motion are the identity
and Hamiltonian operators, Eq. (4.1) simplifies to [6, 7, 73]

dpj
dt

=
1

τ

∣∣∣∣∣∣
−pjlnpjgj pj εjpj
〈s〉 1 〈e〉
〈es〉 〈e〉 〈e2〉

∣∣∣∣∣∣∣∣∣∣ 1 〈e〉
〈e〉 〈e2〉

∣∣∣∣ , (4.2)

where
〈s〉 = −

∑
i

piln
pi
gi
, 〈e〉 =

∑
i

εipi ,

〈e2〉 =
∑
i

ε2i pi , 〈es〉 = −
∑
i

εipiln
pi
gi
.

The pj are the diagonal terms of ρ̂, each of which represents the occupation probability
in the jth energy level, εj, and the gj are the degeneracies of the energy eigenlevel. Note
that the von Neumann expression for entropy is used here. Provided the density operator
is based on a homogeneous ensemble, this expression satisfies all the characteristics of the
entropy required by thermodynamics without making entropy a statistical property of the
ensemble [45, 25]. It is assumed that ρ̂ is diagonal in the eigenvector basis throughout all of
the calculations. This is the case when there are no quantum correlations between particles
(or spins) and for many classical systems [70, 71, 74].

The SEAQT equation of motion, Eq. (4.2), is derived via a constrained gradient in Hilbert
space that causes the system to follow the direction of steepest entropy ascent when en-
ergy and occupation probabilities are conserved (i.e., an isolated sysetm). When another
conservation constraint or generator of the motion is imposed, in this case that for the
magnetization, the equation of motion becomes [129]

dpj
dt

=
1

τ

∣∣∣∣∣∣∣∣
−pjlnpjgj pj εjpj mjpj
〈s〉 1 〈e〉 〈m〉
〈es〉 〈e〉 〈e2〉 〈em〉
〈ms〉 〈m〉 〈em〉 〈m2〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 〈e〉 〈m〉
〈e〉 〈e2〉 〈em〉
〈m〉 〈em〉 〈m2〉

∣∣∣∣∣∣
, (4.3)

where
〈m〉 =

∑
i

mipi , 〈m2〉 =
∑
i

m2
i pi ,

〈em〉 =
∑
i

εimipi , 〈ms〉 = −
∑
i

mipiln
pi
gi
,
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and mj is the magnetization in the jth energy eigenlevel. Equation (4.3) is the generalized
equation of motion of Eq. (4.2) for magnetic materials in an isolated system and has a form
similar to one derived for the conservation of the number of particles given in reference [72].

4.2.1.2 A composite system (two interacting systems)

The SEAQT equations of motion, Eqs. (4.2) and (4.3), are valid for an isolated system.
The equation of motion for interacting systems (non-isolated) can be derived by treating
interacting systems as an isolated composite system made up of interacting subsystems.
In addition, a SEAQT equation of motion for a system interacting with a reservoir can be
derived by taking one of the subsystems in the composite system as a reservoir. This strategy
has been developed by Li and von Spakovsky for heat and mass interactions [73, 70, 72]; the
methodology is applied here to formulate an equation of motion for subsystems undergoing
heat and magnetic field interactions.

The SEAQT equation of motion for a composite isolated system of two interacting sub-
systems (subsystems A and B) with the conservation of energy and magnetization in the
composite system is given for subsystem A by

dpAj
dt

=
1

τ

∣∣∣∣∣∣∣∣∣∣∣∣

−pAj ln
pAj
gAj

pAj 0 εAj p
A
j mA

j p
A
j

〈s〉A 1 0 〈e〉A 〈m〉A

〈s〉B 0 1 〈e〉B 〈m〉B

〈es〉 〈e〉A 〈e〉B 〈e2〉 〈em〉
〈ms〉 〈m〉A 〈m〉B 〈em〉 〈m2〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 0 〈e〉A 〈m〉A

0 1 〈e〉B 〈m〉B

〈e〉A 〈e〉B 〈e2〉 〈em〉
〈m〉A 〈m〉B 〈em〉 〈m2〉

∣∣∣∣∣∣∣∣
, (4.4)

where 〈·〉A(B) is the expectation value of a property in subsystem A (or B), and 〈·〉 = 〈·〉A +
〈·〉B corresponds to the property of the composite system. An expression similar to Eq. (4.4)
can be written for subsystem B. Whereas energy and magnetizaiton are conserved within
the composite system, the occupation probabilities are conserved within each subsystem.
Using the cofactors C1, CA

2 , C3, and C4 of the first line of the determinant in the numerator,
Eq. (4.4) can be expressed as

dpAj
dt

=
1

τ
pAj (−ln

pAj
gAj
− CA

2

C1

− εAj
C3

C1

+mA
j

C4

C1

)

=
1

τ
pAj

[
(sAj − 〈s〉

A)− (εAj − 〈e〉
A)
C3

C1

+ (mA
j − 〈m〉

A)
C4

C1

]
=

1

τ
pAj

[
(sAj − 〈s〉

A)− (εAj − 〈e〉
A)β − (mA

j − 〈m〉
A)γ
]
,

(4.5)
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where β and γ are defined as β ≡ C3/C1 and γ ≡ −C4/C1. The β and γ quantities are
intensive properties related to the temperature, T , and the magnetic field strength, H, i.e.,
β = 1/kBT and γ = H/kBT (where kB is the Boltzmann constant).

The intensive properties, β and γ, depend on the mole fractions of each subsystem [70].
When subsystem B is much larger than subsystem A (i.e., when subsystem B is taken to be
a large reservoir, R), these intensive properties can be denoted by βR and γR, and Eq. (4.5)
is transformed into

dpj
dt

=
1

τ
pj
[
(sj − 〈s〉)− (εj − 〈e〉) βR − (mj − 〈m〉) γR

]
, (4.6)

where βR = 1/kBTR, γR = HR/kBTR, and TR and HR are, respectively, the temperature of
the reservoir and the external magnetic field strength. In this context, the superscripts A
have been dropped in Eq. (4.6).

4.2.1.3 Non-equilibrium intensive properties

The concept of hypoequilibrium states developed by Li and von Spakovsky [73, 70] in the
SEAQT framework permits one to define intensive properties (e.g., temperature, pressure,
and chemical potential) in the non-equilibrium realm. Here, the concept is briefly described
and non-equilibrium temperature and magnetic field strength are defined (details are found
in references [73, 70, 72]).

The concept of hypoequilibrium states is based on the idea that any non-equilibrium state of
a system can be described by an M th-order hypoequilibrium state by dividing the system’s
state space into M subspaces, each of which is described by a canonical distribution. Note
that in some cases such as the one presented here, the subspaces coincide with a physical
division of the system into subsystems. Furthermore, as proven in references [73, 72], once in
a M th-order hypoequilibrium state, the system remains in such a state throughout the entire
kinetic evolution process predicted by the SEAQT equation of motion, and the relaxation
paths can be simply described by the time dependence of the intensive properties in each
subspace. This means that the time evolution of the probability distribution in subspace (or
subsystem) M can be described by

p
(M)
j (t) =

p(M)(t)

Z(M)(t)
g

(M)
j e−ε

(M)
j β(M)(t)+m

(M)
j γ(M)(t) , (4.7)

where ε
(M)
j , g

(M)
j , and m

(M)
j are, respectively, the energy eigenlevel, energy degeneracy, and

magnetization in subsystem M , p(M) is the total occupation probability in the subsystem,
and Z(M)(t) is the partition function defined as

Z(M)(t) ≡
∑
i

g
(M)
i e−ε

(M)
i β(M)(t)+m

(M)
i γ(M)(t) . (4.8)
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In Eq. (4.7), the eigenstructure of each subsystem is invariant with time, but the intensive
properties, β(M) and γ(M), are time-dependent. During the evolution process, the probability
distribution in each subsystem evolves together with those of the other subsystems until
they reach a mutual equilibrium state with each other, and the system ends up in a stable
equilibrium state (which corresponds to M = 1).

The concept of hypoequilibrium states is applied to the composite system considered here.
Thus, the time-evolution of the probability distributions in the two interacting subsystems,
A and B, take the following form:

p
A(B)
j (t) =

1

ZA(B)(t)
g
A(B)
j e−ε

A(B)
j βA(B)(t)+m

A(B)
j γA(B)(t) . (4.9)

The time evolution of the intensive properties are determined from the equation of motion
for the intensive properties [72] given by

dβA(B)(t)

dt
= −1

τ

(
βA(B)(t)− β(t)

)
dγA(B)(t)

dt
= −1

τ

(
γA(B)(t)− γ(t)

)
,

(4.10)

where β(t) = C3(t)/C1(t) and γ(t) = −C4(t)/C1(t) (as defined in Eq. (4.5)). Therefore, using
Eq. (4.10) with Eq. (4.9), kinetic trajectories of the relaxation process in each subsystem
can be described with non-equilibrium intensive properties (i.e., the temperature and the
magnetic field strength).

Finally, it should be noted that the hypoequilibrium concept is well-defined for any state
even one far from equilibrium since the order of M can be as high as needed to adequately
describe the state. Furthermore, this concept unlike the local-equilibrium assumption of
continuum mechanics is fundamental and does not rely on the assumption that the total
system must be subdivided into a set of infinitesimally small local systems each of which is
assumed phenomenologically to be in stable equilibrium due to the smallness of the gradients
across it. In fact, neither size nor gradients nor for that matter a physical division of the
system are necessary requirements for the hypoequilibrium description.

4.2.2 Pseudo-eigenstructure

From the Heisenberg Hamiltonian, the total energy of spin systems is given by [64, 46, 95, 66]

E = −
∑
ij

Jijei · ej , (4.11)

where the Jij represent exchange interaction energies, and ei and ej are the unit vectors in
the direction of the local magnetic moment at lattice sites i and j. The magnon dispersion
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Table 4.1: The fitting parameters in Eq. (4.12) for the magnon dispersion relation [95].

Experimental data for the atomic volume of bcc-Fe at the ground state, V = 11.81 (Å
3
/atom)

[64], is assumed here.

V = 11.81 (Å
3
/atom)

D (meV Å) 247.7
E ′ (meV Å4) -31.73
E ′′ (meV Å4) 1.970

relation, which is directly related to the energy eigenlevels of spin waves (magnons), has
been calculated from Eq. (4.11) using spin-density-functional-theory[46, 95, 66], and the
result calculated by Padja et al.[95] is used here by fitting to a function [89]:

h̄ω = D|k|2 + E ′|k|4 + E ′′(k2
xk

2
y + k2

yk
2
z + k2

xk
2
z) , (4.12)

where ω is the magnon frequency, k is the wave vector, kx, ky, and kz are the components
of k, and D, E ′, and E ′′ are fitting parameters (shown in Table 4.1). The spin waves have
different degeneracies depending upon the frequency, ω. The degeneracy (or the density of
states) is given by [64]

g(ω) = 4πk2

(
1

2π

)3(
dk

dω

) 3
2

, (4.13)

where (dω/dk)−1 is calculated from Eq. (4.12).

The eigenenergy of each magnon, εn, is [64]

εn =

(
n+

1

2

)
h̄ω , (4.14)

where n is the quantum number (n = 0, 1, 2, ...). Incorporation of the magnon frequency,
Eq. (4.12), into Eq. (4.14) cannot be done in a straightforward manner because the density of
states, Eq. (4.13), is not discrete. To circumvent this difficulty, the density of states method
developed by Li and von Spakovsky [73] within the SEAQT framework is applied (see also
reference [128] for a similar application of the method). Using this approach, the magnon
frequency and degeneracy in the system become

ωj =
1

Gj

∫ ω̄j+1

ω̄j

ω̄g(ω̄) dω̄ (4.15)

and

Gj =

∫ ω̄j+1

ω̄j

g(ω̄) dω̄ , (4.16)
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The quantity, ω̄j, is the jth frequency interval in the original infinite energy-eigenlevel system
determined by

ω̄j = (j − 1)∆ω̄ = (j − 1)
ω̄cut

R
, (4.17)

where R is the number of intervals, j is an integer (j = 0, 1, 2, ...R), and ω̄cut is the cutoff
frequency estimated by using |k| = 2π/a (where a is the lattice constant) in Eq. (4.12).
Using Eqs. (4.14) and (4.15), the energy eigenlevels become

Ej,n =

(
n+

1

2

)
h̄ωj . (4.18)

Furthermore, the magnetization (change) of the energy eigenlevel is given as

Mj,n = −nµ , (4.19)

where µ is the magnetic moment of iron (µ = 2.22µB where µB is the Bohr magneton [64])
and the magnetization at the ground state (n = 0) is taken as “zero”. From here on, the
occupation probability, energy eigenlevel, energy degeneracy, and magnetization are written,
respectively, as Pj,n, Ej,n, Gj,n, and Mj,n (instead of as pj,n, εj,n, gj,n, and mj,n) in order to
emphasis that these quantities apply to the finite energy-eigenlevel system. Note that each
frequency interval, ωj, has the same energy degeneracy; that is, Gj,n = Gj.

The decrease in magnetization caused by non-aligned spins is given by a weighted average
of the expected magnetizations in each frequency [64]. Therefore, the magnetization, M , in
a system is

M = µ(1−
∑
i

Gi〈M〉i) , (4.20)

where the expectation magnetization of each magnon frequency, 〈M〉i, is

〈M〉i =
∑
n

Mi,nP
′
i,n =

∑
n

Mi,n
Pi,n∑
n′ Pi,n′

, (4.21)

where P ′i,n is the normalized occupation probability at each magnon frequency.

Note that longitudinal degrees of freedom of atomic magnetic moments (or the magnitude
of spins) and anharmonic effects (or magnon-magnon interactions) are ignored here for the
sake of simplicity. While the former is not sensitive to temperatures for bcc-iron below
the Curie temperature Tc, [79] the latter effect is above about half the Curie temperature.
The anharmonic effects could be included using anharmonic oscillators as was done for
analogous thermal expansion calculations in reference [128]. However, that added complexity
is beyond the scope of this paper, and the validity of the present approach is limited to low
temperatures, T < Tc/2, where anharmonic effects can be neglected.
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4.3 Results and Discussion

4.3.1 Equilibrium magnetization

The equilibrium magnetization at different temperatures and external magnetic fields is
determined from the following canonical distribution:

P se
k =

Gke
−(Ek−MkH

se)/kBTse

Zse , (4.22)

where Zse is the partition function already defined in Eq. (4.8), “se” denotes stable equilib-
rium, and the subscripts corresponding to each energy eigenlevel are simply designated by a
k (e.g., Ej,n → Ek).

The calculated equilibrium magnetization, M , using Eqs. (4.20) and (4.22) is shown in
Fig. 4.1 where the magnetization is expressed as a fraction of the magnetic moment of
iron, µ. It can be seen that the calculated results are close to the experimental data at
low temperatures (T < 500 K) and reproduce the dependence on external magnetic fields.
However, the calculated magnetization deviates from the experiments at high temperatures.
As noted above, this is a consequence of anharmonic effects (magnon-magnon interactions)
that are not taken into account in the model used here, i.e., coupled harmonic oscillators.
If anharmonic oscillators were used, it is expected that the energy eigenlevels with large
magnon quantum numbers would be lowered (see Eq. (4.14) or (4.18)) and the equilibrium
magnetizations at high temperatures would be more accurate.

4.3.2 Relaxation far from equilibrium

One of the advantages of the SEAQT model is that a relaxation process to stable equilibrium
from any initial non-equilibrium state (not only near equilibrium but also far from equilib-
rium) can be calculated without any unphysical assumptions. Relaxation processes from
states in the far-from-equilibrium realm are explored in this section with/without external
magnetic fields. There are an infinite number of non-equilibrium states and a variety of
ways to generate an initial non-equilibrium state. Following reference [128], two different
approaches are considered: one using a partially canonical distribution and a second based
on the gamma function distribution. While the relaxation process using the former is for an
isolated system, that using the latter is for a system, which interacts with a reservoir (see
Fig. 4.2).

For the isolated system case, the initial probability distribution, P 0
k , is generated in terms

of a linear perturbation function [6]:

P 0
k = (1− λconst)P

pe
k + λconstP

se
k , (4.23)
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Figure 4.1: The calculated temperature dependence of equilibrium magnetization at various
external magnetic fields; (b) is an enlarged portion of (a) below room temperature. The
experimental data are shown as solid circles [24] and squares [99]. The magnetization is
plotted as a fraction of the magnetic moment of iron, µ.
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Heat and magnetic interactions

System Reservoir

(b)

isolated

System

(a)

Figure 4.2: The system descriptions considered in Sec. 4.3.2. (a) is a depiction of the isolated
system associated with the relaxation process whose initial state is based on the perturbation
of a partially canonical equilibrium (P.E.) state, while (b) is a depiction of the system
interacting with a reservoir associated with the relaxation process whose initial state is
generated from a gamma function distribution.

where P
pe/se
k are the partially canonical/stable equilibrium probability distributions (P se

k

is shown in Eq. (4.22)) and λconst is the perturbation constant that describes the initial
departure from the partially canonical state. The partially canonical distribution when
there is no external magnetic field is given by

P
pe
k =

δkGke
−Ek/kBTpe∑

k′ δk′Gk′e−Ek′/kBT
pe , (4.24)

where δk takes one or zero depending upon whether the states are occupied or unoccupied,
and Tpe is determined via the relation,

∑
k′ P

pe
k′ Ek′ =

∑
k′ P

se
k′ Ek′ , which ensures a relaxation

of the isolated system to a final equilibrium state with the temperature T se. Another way to
prepare a partially canonical distribution that uses different Tpe for each magnon frequency
ωj, i.e., T

pe
j , is to use the relation,

∑
n P

pe
j,nEj,n =

∑
n P

se
j,nEj,n. Here both the partially

canonical and canonical distributions are employed assuming that the lowest three quantum
levels (i.e., n =0, 1, and 2) are not occupied.

The calculated spin relaxation processes from two different initial states (i.e., one based on
Tpe and the other on T

pe
j ) generated using Eq. (4.23) with λ = 0.1 are shown in Fig. 4.3.

Equation (4.3) is used for the relaxation processes of the isolated system of Fig. 4.2 (a) with
T se set to 300 K. It can be seen that both magnetizations relax to the equilibrium value at
300 K with a zero external magnetic field (see Fig. 4.1), which is independently calculated
from the canonical distribution, Eq. (4.22). Relaxation from an initial state prepared with
T
pe
j is particularly interesting in that the magnetization evolves non-monatonically with

time.
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Figure 4.3: The calculated spin relaxation from two different initial non-equilibrium states
prepared using the partially canonical distribution, Eq. (4.23), with Tpe or T

pe
j . The SEAQT

equation of motion for an isolated system, Eq. (4.3), is used for the kinetic calculations. The
magnetization is plotted as a fraction of the magnetic moment of iron, µ, and the time is
normalized by the relaxation time, τ .

In the second approach, the initial states are generated with a gamma function distribution
of the form [73, 70]

P 0
k =

GkE
θ
ke
−(Ek−MkH0)/kBT0∑

k′ Gk′Eθ
k′e
−(Ek′−Mk′H0)/kBT0

, (4.25)

where T0 and H0 are the initial temperature and magnetic field and θ represents an adjustable
parameter that can be positive or negative and shifts the initial state away from the canoni-
cal distribution. Figure 4.4 shows the time evolutions of the magnetization for the system of
Fig. 4.2 (b) relaxing to four different stable equilibrium states (i.e., those corresponding to
four sets of reservoir temperatures, TR’s, and external magnetic field strengths, HR’s) begin-
ning from two different initial states generated using Eq. (4.25) with θ = ±2.0, T0 = 300 K,
and H0 = 0.0 Oe. The relaxations are calculated using Eq. (4.6), where the system interacts
with a reservoir (see Fig. 4.2 (b)). It can be observed that although the magnetizations of
the two initial states prepared using θ = ±2.0 are different, the final equilibrium states are
same (for a given set of TR and HR). The final equilibrium states correspond with the results
shown in Fig. 4.1.

One might view the approach using a partially canonical distribution as a description of
spin-pumping in which applied microwave energy excites spins from low energy levels, but
there is no obvious physical meaning to the initial states prepared using the gamma function
distributions. They are employed here as an arbitrary means of displacing the initial non-
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Figure 4.4: The calculated relaxation processes of magnetization from two different initial
states prepared using the gamma function, Eq. (4.25), with T0 = 300 K, H0 = 0.0 Oe, and
θ = +2 or -2 (each of which corresponds to M∗ ≈ 0.91 or 1 at t∗ = 0; evolutions are shown in
solid or broken lines, respectively). Four different combinations of reservoir temperature, TR
(K), and external magnetic field strength, HR (×105 Oe), are used here as indicated in the
inset box. The colors represent different combinations of TR and HR. The spin relaxation
processes are calculated using the SEAQT equation of motion for a system interacting with
a reservoir, Eq. (4.6). The magnetization is plotted as a fraction of the magnetic moment of
iron, µ, and the time is normalized by the relaxation time, τ .
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Composite system (isolated)

Heat and magnetic interactions

System A System B

Figure 4.5: The two interacting systems considered in Sec. 4.3.3. Heat and magnetic in-
teractions between two identical (sub)systems A and B are depicted here. Note that the
composite system is isolated so that there are no interactions with other systems such as a
reservoir.

Table 4.2: The initial temperatures and magnetic field strengths of subsystems A and B
used in the relaxation processes in Sec. 4.3.3. The units of T0 and H0 are, respectively, in K
and ×105 Oe.

Process TA0 TB0 HA
0 HB

0

1 300 500 0.0 0.0
2 300 300 0.0 1.0
3 300 500 0.0 1.0

equilibrium state far from equilibrium.

Note that the time scale in Figs. 4.3 and 4.4 and the remaining figures below is normalized by
the relaxation time, τ . This time can be correlated with the real time, t, via comparisons to
experimental data [17, 9, 76] or from ab initio calculations [8, 75, 128]. Real-time scaling for
magnetic relaxation processes has been done in spin dynamics simulations using experimental
data of the demagnetization on iron thin films induced by a laser pulse [81, 79]. Although
it was not attempted here, the same strategy could be taken.

4.3.3 Relaxation and non-equilibrium intensive properties

The non-equilibrium temperature and magnetic field strength defined in Sec. 4.2.1.3 are
fundamental non-equilibrium intensive properties of spin systems that are convenient for
analyzing relaxation processes involving not only spin degrees of freedom but lattice and
electronic degrees of freedom in a simple way. The use of these non-equilibrium intensive
properties is demonstrated in this section by considering heat and magnetic interactions
between identical (sub)systems A and B (see Fig. 4.5).
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Figure 4.6: The calculated time dependence of the intensive properties, temperature and
magnetic field strength, of subsystems A and B in (a) process 1, (b) process 2, and (c)
process 3 (see Table 4.2). The trajectories of temperatures TA and TB in process 2 overlap.
The time is normalized by the relaxation time, τ .
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In order to use the concept of hypoequilibrium states (or non-equilibrium intensive proper-
ties), the initial state for the each subsystem is described by a canonical distribution (see
Sec. 4.2.1.3) such that

P 0
k =

Gke
−(Ek−MkH0)/kBT0

Z0

, (4.26)

where Z0 is the partition function and the superscripts A or B are omitted. Three differ-
ent relaxation processes are investigated with the initial temperatures and magnetic field
strengths of subsystems A and B: the temperatures and field strengths of each process are
enumerated in Table 4.2.

The calculated time dependences of intensive properties (temperature and magnetic field
strength) and magnetizations of subsystems A and B using Eqs. (4.9) and (4.10) are shown,
respectively, in Figs. 4.6 and 4.7. In all of the processes, the final temperatures and magnetic
field strengths of subsystems A and B converge to the same value (i.e., TA = TB and
HA = HB) indicating the subsystems reach mutual equilibrium. In process 1, the exchange
of energy in a heat interaction between the two subsystems produces concomitant changes
in the magnetic field strengths as the composite system (A + B) evolves to equilibrium.
The converse occurs in process 2: the difference in magnetic field strengths between the two
subsystems drives the subsystems to a slightly different temperature. In process 3, differences
in both the magnetic field strengths and temperatures of the subsystems produce a subtle
interplay between the properties as the composite system relaxes in time. The relaxation
behavior of all three processes reflects the magneto-caloric effect in that changes in magnetic
interactions between subsystems affect the subsystem temperatures and vice-versa.

4.4 Conclusions

The SEAQT framework is used to explore the magnetization of bcc-iron at equilibrium and
as it relaxes from non-equilibrium states. The SEAQT model is applied using a pseudo-
eigenstructure based on coupled harmonic oscillators. The results presented confirm that
the equilibrium magnetization at low temperatures (T < 500 K) with either zero or non-
zero external magnetic fields can be reliably estimated with the SEAQT model. They also
confirm that based on the principle of steepest entropy ascent, the model predicts the unique
thermodynamic path which the system takes in relaxing from some initial non-equilibrium
state (even one far from equilibrium) to stable equilibrium. Furthermore, fundamental non-
equilibrium intensive properties (temperature and magnetic field strength) can be defined
using the concept of hypoequilibrium states. Relaxation processes in terms of these intensive
properties are used to demonstrate the magneto-caloric effect.

It is expected that the model developed here can be combined with the analogous approach
used to model thermal expansion [128] by following the approach employed to model the
electron-phonon coupling at a material interface presented in reference [75]. The combined
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Figure 4.7: The calculated relaxation processes of magnetization in subsystems A and B.
The magnetization is plotted as a fraction of the magnetic moment of iron, µ, and the time
is normalized by the relaxation time, τ .

SEAQT theoretical framework could potentially facilitate the description of coupling effects
between spin and lattice degrees of freedom.
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Kinetic Pathways of Phase
Decomposition Using
Steepest-Entropy-Ascent Quantum
Thermodynamics Modeling. Part I:
Continuous and Discontinuous
Transformations

5.1 Introduction

J. W. Gibbs envisioned uniform solutions decomposing (or phase separating) through two
kinds of kinetic processes [36, 16]. In alloy systems, these processes are sometimes classified
as continuous and discontinuous transformations. While continuous transformations begin
with small fluctuations that extend over relatively large spatial regions and take place simul-
taneously throughout the volume of the system, discontinuous transformations initiate with
localized concentration fluctuations that are comparatively large in amplitude but small in
spatial extent [3]. From the perspective of the thermodynamic free-energy [16, 3], continu-
ous transformations initiate spontaneously from an unstable solution when an infinitesimal
variation decreases the free-energy. This behavior is associated with the spinodal decompo-
sition mechanism. Discontinuous transformations develop in an initially metastable solution
through a series of statistical fluctuations that eventually overcome a free-energy barrier.
They are characteristic of nucleation and growth mechanisms. These thermodynamic con-
cepts are useful for interpreting alloy decomposition even though functions like temperature
and free-energy are strictly speaking defined only at equilibrium and must be extrapolated
to non-equilibrium states to describe kinetic phenomena.

83
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Although the unit process underlying the two mechanisms are the same (atomic migration
by diffusion), the driving forces are quite different, and this leads to very different kinetic
characteristics. Models for decomposition processes like these generally start by assuming
that a particular step of the process is rate-limiting, and then building an appropriate math-
ematical description of the rate-limiting step. An inherent difficulty with this approach is the
need to know the underlying reaction mechanism in order to build an accurate kinetic model.
For example, if classical nucleation is the operative process responsible for phase decompo-
sition, the kinetics are described in terms of the distribution of cluster sizes and their rates
of growth and shrinkage [105]. On the other hand, if spinodal decomposition is operative,
the decomposition rate is better described by a generalized diffusion equation (e.g., refer-
ence [16]). For this reason, microstructural modeling starts by assuming a decomposition
mechanism rather than determining it from the physical conditions.

Following Gibbs [36], the decomposition mechanism should be selected at the very begin-
ning of the decomposition process when changes take place through the collective behavior
of a relatively small number of fluctuations. Not surprisingly, kinetic Monte Carlo meth-
ods, which are based on statistical fluctuations and do not assume a rate-limiting step, are
successful describing multiple processes [113, 33]. Quantum mechanics is widely used to
interpret discrete behavior in small systems, so it should be reasonable to apply the tools of
quantum mechanics to the selection of transformation mechanisms in bulk systems.

In this regard, the steepest-entropy-ascent quantum thermodynamics (SEAQT) framework
shows great promise for predicting both the operative decomposition mechanism as well as
the reaction kinetics. SEAQT is a non-equilibrium thermodynamic-ensemble approach that
was originally formulated to address a number of physical inconsistencies between quan-
tum mechanics and thermodynamics [47, 48, 49, 50, 5]. It describes the relaxation process
of a system from an initial non-equilibrium state to stable equilibrium following the direc-
tion of steepest entropy ascent, i.e., maximum entropy production. To apply the frame-
work to the phase decomposition of alloys, the system is described differently from con-
ventional microstructural models. Rather than describing the system in terms of position-
dependent functions, like free-energy, that evolve with time, the SEAQT approach employs
a thermodynamic-ensemble and a density operator formalism (analogous to a phase-space
probability measure in statistical mechanics) that tracks the decomposition process in terms
of a single time-dependent variable. While perhaps physically nonintuitive, reformulating
the problem in this way has important computational advantages over approaches based on
classical mechanics (e.g., molecular dynamics) and microstructual models (e.g., phase field
models).

States in the SEAQT framework are described by occupation probabilities of a set of possible
energy eigenlevels, also called the energy eigenstructure [73], as depicted in Fig. 5.1. For
example, an energy eigenstructure for a A–B binary solid-solution of a specified size is
constructed from the energies corresponding to all the possible arrangements of A-type and
B-type atoms. The entropy of the system is given by a measure of the degree of energy load
sharing among available energy eigenlevels, and the evolution of the system from an initial,
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Figure 5.1: A schematic explanation of the SEAQT approach: (a) An energy landscape, or
eigenstructure, of an alloy with variable composition and long-range order is constructed from
an appropriate solution model. The energy of the system is displayed as a discrete function
of alloy concentration and a long-range order parameter (LRO). (b) The initial state of the
system (t = 0) is expressed by occupation probabilities for each possible configuration, which
is superimposed over the eigenstructure (shaded squares). The time-evolution of the system
is determined by solving the SEAQT equation of motion (represented by the large arrow) to
find the path from the initial state to that of stable equilibrium (c) at t =∞.

non-equilibrium state at time t = 0 to a final, stable equilibrium state at time t = ∞ is
found by solving the SEAQT equation of motion (indicated by the large schematic arrow in
Fig. 5.1). By assuming the system’s evolution of state follows the path of steepest entropy
ascent (maximum rate of entropy production), the equation of motion yields a unique kinetic
path through state space from the initial state to the final equilibrium state predicted by
the second law of thermodynamics.

To use the SEAQT framework, the energy eigenstructure must be determined for the system
in question. Although the eigenstructure for a gas phase can be constructed relatively
easily (e.g., by assuming ideal gas behavior), many-body interactions among particles make
the eigenstructure highly complex for condensed phases. There are two aspects to this
complexity. First, determining the available energy eigenlevels from appropriate quantum
models may be computationally intractable, and second, the number of energy eigenlevels is
effectively infinite. Both of these problems are addressed in recent work modeling the thermal
expansion of silver [128]. A highly simplified eigenstructure is built from a reduced-order
model (a solid-state instead of a quantum model), and an infinite energy-level eigenstructure
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is replaced with a discretized, finite-level “pseudo-eigenstructure” with the use of the density
of states method developed in reference [73].

In this contribution, the SEAQT theoretical framework with the pseudo-eigenstructure is
applied to phase decompositions in binary solid-solutions to determine the kinetic pathways.
The work consists of two parts; continuous and discontinuous transformations are investi-
gated in Part I, and ordering and concurrent ordering with phase separation are explored
in Part II. Part I is organized as follows. First, the SEAQT equation of motion is modified
for kinetic calculations in binary alloy systems with fixed composition in Sec. 5.2.1, and a
pseudo-eigenstructure for a solid-solution is constructed using a mean-field approximation
(or a solution model) in Sec. 5.2.2. In Sec. 5.2.3, calculation conditions and how to prepare
initial states are described. In Sec. 5.3, the calculated time-evolution of the decomposi-
tion process from arbitrary initial states is shown and discussed focusing on the continuous
and discontinuous transformation behaviors (Sec. 5.3.1) in which a spinodal limit and a real
time-dependence of the decomposition process are also explored (Secs. 5.3.2 and 5.3.3, re-
spectively). At the end, the study of the continuous and discontinuous phase decomposition
behaviors in an alloy system using the SEAQT model is summarized in Sec. 5.4.

5.2 Theory

5.2.1 SEAQT equation of motion

The equation of motion in the SEAQT modeling has been developed to account for dissi-
pative processes in quantum systems. The dissipative contribution is incorporated in the
Schrödinger equation as the irreversible term and the SEAQT equation of motion takes a
form [10, 6, 7]:

dρ̂

dt
=

1

ih̄
[ρ̂, Ĥ] +

1

τ(ρ̂)
D̂(ρ̂) , (5.1)

where ρ̂ is the density operator, t the time, h̄ the reduced Planck constant, Ĥ the Hamil-
tonian operator, τ the relaxation time (which represents the rate at which the states of
a system evolve in Hilbert space along the unique kinetic path determined by Eq. (5.1)),
and D̂ the dissipation operator. The left-hand side of the equation and the first term on
the right corresponds to the time-dependent von Neumann (or Schrödinger) equation. The
second term on the right is a dissipation term, the irreversible contribution that accounts
for relaxation processes in the system. When ρ̂ is diagonal in the Hamiltonian eigenvector
basis, ρ̂ and Ĥ commute and the von Neumann term in the equation of motion disappears
so that Eq. (5.1) simplifies (for the case of a system in which the identity and Hamiltonian
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operators are the only generators of the motion) to [6, 7, 73]

dpj
dt

=
1

τ

∣∣∣∣∣∣
−pjlnpjgj pj εjpj
〈s〉 1 〈e〉
〈es〉 〈e〉 〈e2〉

∣∣∣∣∣∣∣∣∣∣ 1 〈e〉
〈e〉 〈e2〉

∣∣∣∣ , (5.2)

where
〈s〉 = −

∑
i

piln
pi
gi
, 〈e〉 =

∑
i

εipi ,

〈e2〉 =
∑
i

ε2i pi , 〈es〉 = −
∑
i

εipiln
pi
gi
,

and the pj are the diagonal terms of ρ̂, each of which represents the occupation probability
in the jth energy eigenlevel εj; the gj are the degeneracies of the energy eigenlevel; and 〈·〉
is the expectation value of the property. Note that the von Neumann formula for entropy
is used here. Provided the density operator is based on a homogeneous ensemble, this for-
mula satisfies all the characteristics of entropy required by thermodynamics without making
entropy a statistical property of the ensemble [45, 25, 129]. It is assumed here that ρ̂ is
diagonal in the eigenvector basis, which is the case for many classical systems or when no
quantum correlations between particles are present [70, 71, 74].

The SEAQT equation of motion, Eq. (5.2), is derived via a constrained gradient in Hilbert
space that causes the system to follow the direction of steepest entropy ascent when the
energy and occupation probabilities are conserved. When the number of particles is conserved
as an additional constraint, the identity, Hamiltonian, and particle number operators become
the generators of the motion. The equation of motion, then, becomes [72]

dpj
dt

=
1

τ

∣∣∣∣∣∣∣∣
−pjlnpjgj pj Njpj εjpj
〈s〉 1 〈N〉 〈e〉
〈Ns〉 〈N〉 〈N2〉 〈eN〉
〈es〉 〈e〉 〈eN〉 〈e2〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 〈N〉 〈e〉
〈N〉 〈N2〉 〈eN〉
〈e〉 〈eN〉 〈e2〉

∣∣∣∣∣∣
, (5.3)

where
〈N〉 =

∑
i

Nipi , 〈N2〉 =
∑
i

N2
i pi ,

〈eN〉 =
∑
i

εiNipi , 〈Ns〉 = −
∑
i

Nipiln
pi
gi
.

Here the Nj are the number of particles in the jth energy eigenlevel. The equation of motion
can be modified further by allowing an exchange of heat between the system and a heat
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reservoir. This can be done by viewing them as subsystems of an overall composite system
(see references [73, 70, 72, 129]) for which the generators of the motion are the identity
and particle number operators for each subsystem and the Hamiltonian operator for the
composite system. This combined with the concept of hypoequilibrium states [73, 70, 72]
transforms Eq. (5.3) for the original system into the following form:

dpj
dt

=
1

τ
pj
[
(sj − 〈s〉) + (Nj − 〈N〉) γR − (εj − 〈e〉) βR

]
, (5.4)

where

γR ≡ −(〈Ns〉 − 〈N〉〈s〉)− (〈eN〉 − 〈e〉〈N〉)βR

〈N2〉 − 〈N〉〈N〉
,

and βR is the inverse of the product of Boltzmann’s constant and the temperature of the
reservoir TR, i.e., βR = 1/kBTR.

For many physical processes occurring in an alloy, the concentrations of the components
remain constant. This can be described for a binary A–B alloy by replacing Nj with NB,j

(or NA,j) and fixing the total number of particles in each energy eigenlevel (i.e., Nj =
NA,j + NB,j = constant where NA,j and NB,j are, respectively, the number of A-type and
B-type atoms in the jth energy eigenlevel). These notations together with Eqs. (5.3) and
(5.4) are applicable to a binary alloy of fixed composition.

5.2.2 Pseudo-eigenstructure

Configurational energy in a binary alloy system is given by [59]

E =
1

2

∑
r,r′

W (r− r′)n(r)n(r′) , (5.5)

where W (r − r′) is a pairwise interatomic interaction energy between two atoms at lattice
sites r and r′. The factors n(r) and n(r′) represent the distribution functions at these lattice
points. The pseudo-eigenstructure in an alloy system is constructed by employing a mean-
field approximation that replaces many-body interactions among particles with an average
internal field experienced by each atom [37]. Using the simplest mean-field approximation,
where short-range correlations between different atomic species are ignored, the n(r) and
n(r′) can be expressed in terms of the concentration of B-type atoms, c. When the reference
energy is set to the segregation limit (a line connecting the energies of two systems composed
of pure A-type and pure B-type atoms), Eq. (5.5) becomes

E(c) =
1

2
Nc(1− c)V (0) , (5.6)

where N is the number of atoms in the system and V (0) is a parameter incorporating all
the interaction energies. For a face-centered cubic crystal, V (0) is given by [59]

V (0) = 12w1 + 6w2 + 24w3 + 12w4 + · · · , (5.7)
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where wn is the nth nearest-neighbor effective pair interaction energy, which is related to the
component-specific nth-neighbor pair interaction energies, V

(n)
ij (i, j = A or B), by

wn = V
(n)
AA + V

(n)
BB − 2V

(n)
AB . (5.8)

The parameter V (0) is positive when the interactions among A and B species are such that
a solid-solution of A and B prefers to decompose into two different solid-solutions. The
degeneracy of each energy in Eq. (5.6) is given by the binomial coefficient,

g(c) =
N !

NA! ·NB!
=

N !

(N(1− c))! · (Nc)!
, (5.9)

where NA and NB are the number of A-type and B-type atoms, respectively. Here, using
the approximation for a factorial [121], x! ≈ (2x + 1

3
π)xxe−x, Eq. (5.9) can be treated as

a continuous function for large N . The energy eigenlevels, Ej, and the degeneracy, gj, are
determined from Eqs. (5.6) and (5.9) by replacing N and c with Nj and cj (here the energy
eigenlevels are denoted by Ej instead of εj because the Ej’s are extensive quantities). Since
the Nj are the same for all energy eigenlevels (because of the constraint mentioned at the
end of Sec. 5.2.1), it is denoted as N hereafter. For a bulk sample composed of a vast
number of particles, any value of cj between zero and unity is possible and the number
of states is effectively infinite. To cope with this intractable number of accessible energy
eigenlevels, the density of states method developed by Li and von Spakovsky within the
SEAQT framework [73] is used, where similar energy eigenlevels are combined into discrete
bins and the computational burden is reduced substantially without affecting the accuracy
of the result. With this method, the energy eigenlevels, degeneracies, and concentration of
B-type atoms become

Ej =
1

gj

∫ c̄j+1

c̄j

g(c)E(c) dc , (5.10)

gj =

∫ c̄j+1

c̄j

g(c) dc , (5.11)

and

cj =
1

gj

∫ c̄j+1

c̄j

g(c)c dc , (5.12)

where c̄j is specified by the number of intervals, R, as c̄j = j/R with j an integer (j =
0, 1, 2, ... R). The number of intervals, R, is determined by ensuring the following condition
is satisfied [129]:

1

β
� |Ej+1 − Ej|

N
. (5.13)

The size of the system, specified via the number of atoms, N , establishes the energy and the
degeneracy through Eqs. (5.6) and (5.9), respectively. In order to capture quantum effects,
the system size should not be so large that it behaves classically but large enough to include
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important interactions among the constituent atoms — say 5 to 20 times the interatomic
distance for a metallic solid-solution. For most of the subsequent calculations, N = 104 was
chosen for the system size although a more detailed analysis than that conducted here could
be carried out to determine the most appropriate system size, but that is beyond the present
scope.

The system being considered here is analogous to what Gibbs called a “homogenous part of
the given mass” in his seminal paper on the equilibrium of heterogeneous substances [36]. His
homogeneous part is spatially uniform in chemical composition and physical state, and it is a
subsystem of the larger isolated system he considers at equilbrium. While a uniform system
may seem at odds with the concept of fluctuations, it is entirely consistent with the way a
system is represented in the SEAQT framework. Fluctuations, or changes in composition or
physical state, in the SEAQT system are reflected by multimode probability distributions
among the energy eigenlevels, not by spatial variations in a property. Gibbs demonstrated
that equilibrium is reached when the intensive property values (temperature, pressure, and
chemical potential) of each homogeneous part are identical. The SEAQT framework is used
here to identify the path by which a part reaches this equilibrium.

5.2.3 Specification of initial states

The evolution of a binary solid-solution that is quenched and annealed within a miscibility
gap is considered in this work. The phase diagram for a binary alloy with a high-temperature
solid-solution and a miscibility gap at lower temperatures is shown in Fig. 5.2. The pseudo-
eigenstructure of such an alloy corresponds to a system with a positive V (0) in Eq. (5.6).

The initial disordered solid-solution (S.S.) is annealed at a high temperature, TH (= T0),
and then quenched to a lower temperature, TL (= TR), and annealed at that temperature.
The initial state can be prepared using the (semi-) [69] grand canonical distribution:

p0
j =

gje
−β0(Ej+µANA,j+µBNB,j)

Ξ
, (5.14)

where β0 = 1/kBT0, µA and µB are, respectively, the chemical potentials of A atoms and B
atoms, and Ξ is the grand partition function, which is given by

Ξ ≡
∑
i

gie
−β0(Ei+µANA,i+µBNB,i) . (5.15)

The target alloy composition is obtained by adjusting the chemical potentials. Note that
one needs to adjust the chemical potentials just for the initial state since once the initial
state is prepared using Eq. (5.14), the alloy composition is fixed and conserved in the kinetic
calculations via Eq. (5.4).

Although not a necessary assumption, preparing the initial state of the alloy system with
Eq. (5.14) alone means that its initial state is in equilibrium at the initial, high temperature,



Chapter 5 91

Figure 5.2: A phase diagram with a positive V (0). The solid line is the solvus line, inside
of which is a two-phase region of different solid-solutions. The spinodal curve determined
from the free-energy [59] is shown as the broken line. The vertical axis is a normalized
temperature, T ∗ = kBT

V (0)
.

T0. On the other hand, the initial state of the composite system (i.e., alloy system plus
reservoir) is that of non-equilibrium since the equilibrium state of the reservoir is not that
of the alloy system. This non-equilibrium state is in effect what Li and von Spakovsky
[73, 72] call a 2nd-order hypoequilibrium state. The concept of hypoequilibrium provides
a simple relaxation pattern for a system by properly dividing the system into a number of
subsystems (or subspaces). The steepest entropy ascent principle under hypoequilibrium
ensures that each subsystem moves along its own manifold of different equilibrium states
until the states of both subsystems (alloy system plus reservoir) arrive at a final equilibrium
state of the composite system in which the two subsystems are in mutual stable equilibrium
with each other. In order to explore the effects on state evolution of not assuming that
the alloy subsystem is initially in equilibrium, concentration fluctuations are introduced into
the initial state to drive it away from equilibrium. This is done by using an occupation
probability distribution corresponding to a smaller number of particles than are actually
present in the system, N0 < N . A smaller number of particles reduces the degeneracies of
some of the energy eigenlevels, gj, and generates an initial occupation probability distribution
calculated from Eq. (5.14) that is broader than the equilibrium distribution. The effects of
the number of particles on initial states and kinetic paths are discussed in Sec. 5.3.2.
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5.3 Results and Discussion

5.3.1 Continuous and discontinuous transformations

The SEAQT equation of motion, Eq. (5.4), is solved with Eqs. (5.10) – (5.12) to track the
decomposition process in two alloys, A–40.0 at.% B and A–30.0 at.% B, quenched from T ∗0 =
kBT0
V (0)

= 0.30 to T ∗0 = 0.20. Solving the equation of motion gives the occupancy probabilities

of the atomic configurations (distinguished by the concentration of B-type atoms, c) as a
function of time from the initial state to the final stable equilibrium state.

Figure 5.3 (a) shows the occupancy probabilities as a function of c at five different times (ex-
pressed as a dimensionless ratio of time to the relaxation time, t∗ = t/τ) in a A–40.0 at.% B
alloy. From the phase diagram in Fig. 5.2, quenching this alloy from T ∗0 = 0.30 to T ∗R = 0.20
falls within the spinodal limits and should thus lead to a continuous transformation. The
dotted curve in Fig. 5.3 (a) represents the initial occupancy probability distribution at the
high temperature, T ∗0 = 0.30. As time increases, the occupancy probability evolves from the
dashed distribution into two peaks (one at a dilute concentration of B and the other at a
rich concentration) that eventually at t∗ = 3.0 correspond to the compositions of the two
equilibrium solid-solutions at the temperature of the reservoir, T ∗R = 0.20. At early times,
the probability distribution between the two peaks of the evolving phases is non-zero — this
is a signature of a continuous transformation. There is a finite probability of finding any
concentration between those of the two developing phases.

A contrasting example is shown in Fig. 5.3 (b), which shows the equivalent heat treatment
for a A–30.0 at.% B alloy. In this comparatively dilute alloy, the same thermal cycle places
the alloy very close to the spinodal limit at the annealing (or reservoir) temperature. In this
case, the initial probability distribution in Fig. 5.3 (b) shifts to more dilute concentrations
with time, and a new phase suddenly appears at high concentrations. The occupation
probabilities of atomic configurations between the dilute and high concentrations are zero
— this behavior is a signature of a discontinuous transformation (a nucleation and growth
mechanism). The B-rich phase with concentrations in the range 0.65 < c < 0.8 appears from
the initial distribution, but there are no occupied probabilities between c = 0.4 and c = 0.65.

Considering the influence of alloy composition, as the B concentration in the alloy increases
from c = 0.3 (Fig. 5.3 (b)) to c = 0.4 (Fig. 5.3 (a)), the transformation mechanism switches
from discontinuous to continuous. This transition is consistent with conventional wisdom
in that the driving force for transformation increases with c at the annealing temperature
and has the effect of lowering the barrier to nucleation. Although not shown, it also was
confirmed that the kinetic path is sensitive in a similar fashion to the annealing temperature:
lowering the annealing temperature increases the driving force for decomposition and as a
result shifts the mechanism from a discontinuous transformation path at high annealing
temperatures to a continuous transformation path at lower annealing temperatures.
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Figure 5.3: The calculated phase separation processes in (a) A–40.0 at.% B and (b) A–
30.0 at.% B alloy systems at T ∗R = 0.20 using T ∗0 = 0.30, N = 104, and N0 = 103. The time,
t, is normalized by the relaxation time, τ , as t∗ = t/τ .
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Figure 5.4: The calculated initial probability distributions in a A–50.0 at.% B alloy system
at T ∗0 = 0.30 using Eq. (5.14) with N0 = 1000, 500, 200, and 100. Here, an occupation
probability calculated using N0 = N = 104 is shown together as a dotted line.

It is worth noting that the equation of motion is a system of R first-order, ordinary differential
equations (R is the number of energy eigenlevels). From a computational standpoint, these
are relatively easy to solve. For the system considered here (R = 500 and N = 104), the
kinetic path from the initial state to stable equilibrium can be calculated in a few minutes
on a laptop computer with 8 GB of memory. This is an added advantage of the SEAQT
approach when compared to other methods (e.g., kinetic Monte Carlo), where extensive
information on particles and possible paths is required at each time-step.

5.3.2 Estimated spinodal curves

Of course, being an initial value problem, the kinetic path is sensitive to the initial proba-
bility distribution. When an initial probability distribution, p0

j , is prepared using a smaller
N0 (which corresponds to an initial state further from stable equilibrium at the initial tem-
perature, T ∗0 ), the transformation path changes. The effect of system size can be seen from
Fig. 5.4, where the initial probability distributions for systems with sizes, N0 = 1000, 500,
200, and 100, are calculated with Eq. (5.14) for an A–50.0 at.% B alloy at T ∗0 = 0.30. The
larger the N0 used to prepare the initial state, the sharper the peak in the occupancy proba-
bility distribution. In the limit of large N0, the distribution is a delta function (at the most
probable state of statistical mechanics).
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Figure 5.5: The kinetic pathways of the phase separation process calculated with the
SEAQT model using the initial probability distributions shown in Fig. 5.4 with N = 104

(A–50.0 at.% B alloy with T ∗0 = 0.30 and T ∗R = 0.20). The initial states of each path are
indicated by arrows and the final states are shown by an open circle. The specific energy
and entropy are normalized and denoted as e∗ and s∗, respectively.

The kinetic pathways the system follows from the initial probability distributions of Fig. 5.4
are shown in Fig. 5.5, where the kinetic path calculated with N0 = N = 104 is shown as a
dotted line. As seen from the enlarged inset in the figure, the deviation from the curve for
N0 = N = 104 becomes more significant as the initial fluctuation becomes larger. Note that
although the initial states of each kinetic path in the energy-entropy diagram (Fig. 5.5) are
different, the final states of the paths correspond to the same stable equilibrium state since
in each case the final state is one in which the alloy system is in mutual stable equilibrium
with the same reservoir.

The fact that the initial state can affect the kinetic path has an interesting implication when it
comes to representing the spinodal limit. When a phase decomposition process is continuous
(spinodal in the present example), there is a non-zero occupation probability between the
concentrations associated with the two stable concentration peaks during decomposition.
On the other hand, when the transformation is discontinuous, there is a concentration range
over which the occupation probabilities are zero when the second phase (precipitate) appears.
Therefore, a spinodal curve can be determined by checking if occupation probabilities are
zero or not in the concentration range between two peaks during decomposition process. In
a numerical calculation, however, the probabilities have finite non-zero values even when



Chapter 5 96

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5

Te
m

pe
ra

tu
re

,  
T*

  

Concentration of B atoms, c

Figure 5.6: The estimated spinodal curves using T ∗0 = 0.30 with the different initial proba-
bility distributions, N0 = 1000, 500, 200, and 100. When T ∗R is inside/outside the spinodal
curve, the transformation shows a continuous/discontinuous behavior. The solvus line (solid
black line) and the spinodal curve (broken black line), which is determined from the free-
energy analysis, are also shown together (Fig. 5.2).

those values are close to zero (e.g., 10−20). Practically speaking, we can select an arbitrary
value, say, 10−5, as a cutoff below which the occupation probability is taken to be effectively
zero to distinguish discontinuous occupation probabilities from continuous (non-zero) values.
That is, when the second phase emerges and all probabilities between two peaks in the
occupation probabilities are below 10−5, the transformation is taken to be discontinuous.
Spinodal curves calculated from this criterion are shown in Fig. 5.6. These spinodal curves
are clearly sensitive to the initial state of the alloy system and are quite different from
those determined from a free-energy analysis (the second derivative of the free-energy versus
c curve). This indicates that the onset of a continuous transformation is not simply a
matter of the thermodynamic driving force at the transformation temperature. Instead, it
also depends upon the initial state. Note that the criteria used for the distinction between
continuous and discontinuous transformations, i.e., 10−5 here, should depend on the number
of intervals in the concentration of B atoms, R (see Sec. 5.2.2). When a larger value of R
is used, the criteria should be changed to a smaller value (here R = 500 is used for the
calculations).
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5.3.3 Scaling to dimensional time

In the results shown in Fig. 5.3, the times, t∗, represent a dimensionless ratio of the actual
dimensional time, t, and the relaxation time, τ , from the SEAQT equation of motion. The
latter represents a variable that tracks the dynamic progress from the initial state to the
final equilibrium state. The dimensional time can be extracted from t∗ through a comparison
with experimental data [9, 76] or from ab initio calculations [8, 70, 75, 128].

While SEAQT framework predicts the transformation mechanism (nucleation-growth or spin-
odal decomposition) for a given eigenstructure by selecting the path from the initial state
with the steepest entropy ascent principle, the actual time required to traverse this path
depends upon the rate of entropy production associated with the unit processes. For a nu-
cleation process involving the assembly of subcritical embryos, entropy production is much
slower than for the diffusion throughout a spinodally decomposing material. Thus, the
scaling that maps the relaxation time, τ , to dimensional time should be different for the
nucleation-growth and spinodal mechanisms.

Here, the dimensional time dependence is extracted via comparisons of the relaxation time to
experimental transformation kinetics from the Co–Cu alloy system. The Cu–Co system has
a positive mixing enthalpy (positive V (0) in Eq. (5.6)) and a large miscibility gap extending
over almost the whole concentration range (see the phase diagram in reference [91]). The
discontinuous transformation mechanism (nucleation-growth) has been investigated exten-
sively in the Cu-rich region (Cu–0.5∼2.7 at.% Co alloys) [68, 122, 51], and the continuous
transformation mechanism (spinodal decomposition) has been observed in Cu–10 at.% Co
alloy at 713 K [15].

The procedures for scaling the dimensional time to the relaxation time for each transfor-
mation mechanism (nucleation-growth and spinodal decomposition) are shown in Appen-
dices C.1 and C.2, respectively. After scaling the relaxation time, τ , to experimental data,
the calculated kinetics from the SEAQT framework can be presented in terms of dimensional
time. Figures 5.7 and 5.8 show the time-dependence of the nucleated precipitate volume
fraction (the Co-rich phase) and the concentration of Co atoms in the spinodal decomposed
phases, respectively. The predicted time-evolution processes show opposite tendencies: the
speed of the transformation slows as nucleation and growth proceeds, whereas spinodal de-
composition is predicted to accelerate as the transformation proceeds. Thus, the different
experimental scalings for τ make it possible to place nucleation-growth and spinodal decom-
position on very different dimensional time scales: spinodal decomposition is scaled to times
less than a second whereas nucleation-growth extends over a period of 2 or 3 hours.
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Figure 5.7: The dimensional time dependence of the precipitate volume fraction during
nucleation and growth in Cu–1.0 at.% Co annealed at 823 K calculated with SEAQT using
T ∗R = 0.089, T ∗0 = 0.30, N = 104, and N0 = 102. The relaxation time is correlated with
the experimental kinetics of Cu–1 at.% Co alloy annealed at 823 K [51]. The inset has a
time range of 0-4 min and the incubation period for the nucleation process obtained from
the intercept with the abscissa is approximately 1.2 min.
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Figure 5.8: The dimensional time dependence of the Co concentration in the Cu- and Co-
rich phases during spinodal decomposition in Cu–50.0 at.% Co annealed at 823 K calculated
with SEAQT using T ∗R = 0.089, T ∗0 = 0.30, N = 104, and N0 = 102. The relaxation time is
correlated with the experimental diffusion coefficient [30] and the characteristic wave length
of the spinodal microstructure [77].



Chapter 5 99

5.4 Conclusions

The quantum mechanical-based SEAQT framework was applied to the decomposition of
a binary solid-solution using a pseudo-eigenstructure based on the mean-field approxima-
tion. In this Part I, the different behaviors of continuous and discontinuous transformations
are explored. It is confirmed that the SEAQT approach is able to predict the transforma-
tion characteristic of continuous and discontinuous transformation mechanisms. The kinetic
path is sensitive to the initial state of the alloy and the annealing temperature, and the
spinodal limits estimated from the SEAQT model show some quantitative difference from
the conventional spinodal limit calculated from a free-energy analysis. Furthermore, very
different dimensional time dependencies of the continuous and discontinuous transformation
mechanisms are readily obtained by calibrating the SEAQT relaxation time to experimental
spinodal data and nucleation-growth data.

It is noteworthy that the SEAQT model with a mean-field approximation is computationally
efficient. Kinetic paths from an initial state to stable equilibrium in a system considered here
were obtained in minutes on a standard laptop computer.



Appendix C

C.1 Scaling to dimensional time for nucleation-growth

The nucleation-growth mechanism has been investigated in the Cu–Co alloy system [68, 122,
51]. The relaxation time can be related to the dimensional time, t, in the calculated discon-
tinuous phase transformation using experimental data for a Cu–1 at.% Co alloy isothermally
aged at 823 K [51].

The measured data of the precipitated volume fraction at Cu–1 at.% Co alloy at 823 K is
shown in Fig. C.1, where the following fitting function is shown as well:

fp = fmax
p − e−Ktn , (C.1)

where fp is the volume fraction of the precipitate, fmax
p is the maximum measured value

of fp, t is the annealing time, and K and n are the fitting parameters. Equation (C.1) is
rewritten as

t =

[
− 1

K
ln(fmax

p − fp)
] 1
n

. (C.2)

The annealing time, t, can be determined once the volume fraction, fp, is known at each
time.

Although the real temperatures of the calculated phase diagram (shown in Fig. 5.2) were
estimated using the reported regular solution parameter, Ω = V (0)/2 = 33, 300 (J/mol) [51],
the phase diagram had some differences with the experimentally determined one [91]. For this
reason, the normalized temperature, which corresponds to 823 K, is found by searching for
the condition for which the calculated fmax

p becomes 0.71. Since fmax
p ∼ 0.71 at T ∗R = 0.089,

the normalized annealing temperature, T ∗R = 0.089, is used here for the calculation. The
calculated time dependence of the volume fraction of precipitate, fp, predicted by SEAQT
is shown in Fig. C.2. The determined time dependence of the relaxation time, τ , is shown in
Fig. C.3. Note that Eq. (C.1) has negative values below t ≈ 1 (see Fig. C.1), but this does
not cause difficulties when determining the relaxation time.

100
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Figure C.1: The experimentally measured volume fraction of precipitate (or Co-rich phase)
in a Cu–1 at.% Co alloy isothermally aged at 823 K. The black circles are the original data
[51] and the dotted line is the fitting function, fp = fmax

p − e−Kt
n
, where fmax

p = 0.71,
K = 0.3217, and n = 0.5004.
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Figure C.2: The time dependences of the volume fraction of precipitate (or B-rich phase)
in a A–1.0 at.% B alloy system calculated with the SEAQT modeling using T ∗R = 0.089,
T ∗0 = 0.30, N = 104, and N0 = 102.
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Figure C.3: The time dependence of the relaxation time, τ , in a Cu–1.0 at.% Co alloy
system when a sample with some initial concentration fluctuations is annealed at 823 K.
It is estimated using Eq. (C.2) with the result shown in Fig. C.2.

C.2 Scaling to dimensional time for spinodal decom-

position

To scale the relaxation time, τ , to dimensional time for a continuous transformation, the
reported diffusion coefficient [30] and the characteristic wave length of the spinodal mi-
crostructure [77] in a Cu–Co alloy system are used. Atomic diffusion is assumed between
the cube-shaped A-rich (α) and B-rich (β) phases in a A–50.0 at.% B alloy system, where
the edge length of the phases, L, corresponds to half the characteristic wave length of the
spinodal microstructure, λc (see Fig. C.4). The diffusion equation for a constant diffusivity
is given by

∂cα/β

∂t
= D∇2cα/β , (C.3)

where D is the diffusion coefficient and cα/β is the concentration of B-type atoms in the
α/β-phase. The Laplacian can be replaced by expressing the concentration on each of the

six surfaces of the cube as a Taylor series expanded about cα/β at the cube center, c
α/β
0 ,

and summing the series (up to the quadratic terms). With this approximation, Eq. (C.3)
becomes

∂cα/β

∂t
≈ D

6

(L/2)2
(cβ/α − cα/β0 ) , (C.4)

where L is the edge length of the cube-shaped phases and given as L = λc/2. When an
average quantity of concentration of B-type atoms in each phase, 〈c〉α/β, is taken, Eq. (C.4)
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Figure C.4: (a) One dimensional atomic diffusion between assumed cube-shaped phases
with side length, L (each phase corresponds to either α- or β-phase). (b) the schematic
time-evolution process of spinodal decomposition; the broken lines are part way through
the evolution process, and the solid lines are the final distribution. The side length of the
cube-shaped regions shown in (a) would correspond to half of the characteristic wave length
of the spinodal microstructure, λc; i.e., L = λc/2.

is written as
∂〈c〉α/β

∂t
= D

6

(L/2)2
(〈c〉β/α − 〈c〉α/β) . (C.5)

For the equivalent SEAQT system, the concentration change rate is given as

∂〈c〉α/β

∂t
⇒ d〈c〉α/β

dt∗
, (C.6)

where t∗ is a normalized time (t∗ = t/τ). Thus, the relaxation time, τ , is derived as

τ =
(λc/2)2

24D(〈c〉β/α − 〈c〉α/β)

d〈c〉α/β

dt∗
. (C.7)

Note that 〈c〉α/β is a function of time, and D is also time-dependent because the tem-
perature in an alloy system changes with time. Here, however, it is assumed that D is
time-independent and the value used for D is that at the annealing temperature.

The experimental data of the diffusion coefficient and the characteristic spinodal wave
length in a Cu–Co alloy system are, respectively, D = 0.43 exp(−2.22 eV/kBT ) (for Cu–
0.1 ∼ 0.15 at.% Co with 640 ∼ 848 K) [30] and λc ≈ 3.5 nm [77]. Since it is estimated that
T ∗R = 0.089 corresponds to 823 K in Appendix C.1, the spinodal decomposition behavior at
823 K is investigated here for Cu–50.0 at.% Co alloy assuming that the diffusion coefficient
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Figure C.5: The time dependence of average concentration of B-type atoms in A-rich (α)
and B-rich (β) phases calculated with the SEAQT model using T ∗R = 0.089, T ∗0 = 0.30,
N = 104, and N0 = 102. The averages are, respectively, taken from the calculated occupation
probabilities in the concentration ranges 0∼50 at.% B and 50∼100 at.% B.

is not sensitive to the composition. The calculated time dependence of the average concen-
tration of B atoms in each phase using the SEAQT model is shown in Fig. C.5, where the
averages of each phase are, respectively, taken in the concentration ranges 0∼50 at.% B and
50∼100 at.% B. The determined time dependence of the relaxation time, τ , using Eq. (C.7)
is shown in Fig. C.6.
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Figure C.6: The time dependence of the relaxation time, τ , in a Cu–50.0 at.% Co alloy
system when a sample with some initial concentration fluctuations is annealed at 823 K. It
is estimated using Eq. (C.7) with the result shown in Fig. C.5 and the reported experimental
data [30, 77], D = 0.43 exp(−2.22 eV/kBT ) and λc ≈ 3.5 nm.
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Kinetic Pathways of Phase
Decomposition Using
Steepest-Entropy-Ascent Quantum
Thermodynamics Modeling. Part II:
Phase Separation and Ordering

6.1 Introduction

As discussed in Part I [125], the decomposition of a thermodynamically unstable solution
into two stable phases can take place by kinetic pathways differentiated by the spatial distri-
bution of the phases. The equation of motion within the steepest-entropy-ascent quantum
thermodynamic (SEAQT) framework provides a means of predicting the operative kinetic
pathway between the limiting cases of continuous (spinodal phase separation) and discon-
tinuous (nucleation and growth) transformations.

An additional degree of freedom can be considered during decomposition of solid-solutions.
For a binary A–B alloy, the two chemical species can order or cluster on the crystalline
lattice irrespective of whether the transformation pathway is continuous or discontinuous.
The preference for ordering or clustering is determined by the relative chemical affinities
of the solution components. When the two components have a stronger chemical affinity
for each other than for themselves, the stable ground-state structure will tend toward the
ordering of A and B on the crystal lattice. On the other hand, if the two components prefer
to bond to themselves rather than each other, the ground state will be characterized by the
clustering of A and B into two chemically distinct phases (i.e., phase separation).

This general tendency can be quantified by effective pairwise interaction energies, wn =

106
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V
(n)
AA +V

(n)
BB−2V

(n)
AB , where V

(n)
ij is the component-specific nth-nearest-neighbor pair interaction

energy (i, j =A or B). The effective pairwise interaction energies, wn, are convenient param-
eters characterizing chemical affinity in a solid. Considering only 1st-nearest-neighbor pair
interaction energies, the interaction energy can be defined such that w1 > 0 produces order-
ing at the ground state and w1 < 0 produces clustering. Although the 1st-nearest-neighbor
interactions are the largest contribution to the chemical affinity, more distant interaction
energies can be influential. As discussed in references [55, 56, 112], a competition between
ordering and phase separation is expected when the 1st-neighbor and 2nd-neighbor effective
interaction energies have opposite signs (i.e., when w1 > 0 and w2 < 0 or when w1 < 0 and
w2 > 0). Experimentally, such concurrent phase separation and ordering is well documented
in Fe–Be [56], Al–Li, and Ni–Al alloys [111], and they have been broadly investigated by free-
energy analysis [55, 56, 111, 112] and computational simulations [22, 28, 97, 96]. However,
current theoretical frameworks to model the kinetics of concurrent transformations come
with significant limitations.

For example, since molecular dynamics simulations [93] are based on classical mechanics,
their use cannot be justified below the Debye temperature, and they are limited to a time
scale that is extremely short relative to diffusional processes. Although kinetic Monte Carlo
methods [58] and phase field models [54, 103] can simulate much longer times, they are,
respectively, based on stochastic and phenomenological thermodynamics. Physical insights
tend to be lost with stochastic methods, and phenomenological approaches are not strictly
applicable far from equilibrium because they utilize a local/near equilibrium assumption.
Furthermore, in phase field models, different kinetic equations are generally used for con-
served order parameters (e.g., the concentration of atomic species) and for non-conserved
order parameters, (e.g., a long-range chemical order parameter); coupling between the con-
served and non-conserved order parameters is usually ignored, even though it has been
pointed out that coupling can affect the kinetic path of phase transformations [104, 43].

The Path Probability Method (PPM) [61] — an extension of the Cluster Variation Method
(CVM) [60] to time domains — can describe kinetic paths from an initial non-equilibrium
state to an equilibrium state without relying on a stochastic approach or a local/near equi-
librium assumption. The time-evolution of state is taken to be the most probable kinetic
path determined by maximizing a path probability function defined for all possible paths
of the transformation process. It is known that states derived for the long-time limit in
PPM converge to the equilibrium predicted by CVM, and that the calculated kinetic paths
significantly deviate from the steepest descent direction of the free-energy contour surface
[87]. However, the PPM calculation has some drawbacks. Many path variables make it com-
putationally demanding, alloy composition is not automatically conserved during the kinetic
calculations, and it has not been extended beyond applications involving single-phase alloys
[87].

These aforementioned limitations can be circumvented with the SEAQT framework devel-
oped in Part I [125]. With this approach, a unique kinetic path is simply determined from
an arbitrary initial state to stable equilibrium by an equation of motion that follows the
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Figure 6.1: The (a) B2 and (b) L10 lattices. While the B2 structure has a body-centered
cubic (BCC) structure, the L10 structure has a face-centered cubic (FCC) structure. The
gray and black particles represent different atomic species.

direction of steepest entropy ascent with an alloy composition fixed. While continuous and
discontinuous transformations are investigated in Part I, concurrent phase separation and
ordering is explored here using the SEAQT theoretical framework. The paper is organized
as follows. In Sec. 6.2, a simplified energy eigenstructure, or pseudo-eigenstructure, is con-
structed for a lattice that can undergo ordering or clustering using the static concentration
wave method [59]. In Sec. 6.3, hypothetical alloys that are expected to undergo different
decomposition mechanisms are constructed by adjusting the relative values of pair interac-
tion energies, and time-evolution processes are calculated for each alloy system. Finally, the
predicted kinetic pathways from SEAQT are summarized in Sec. 6.4.

6.2 Theory

The SEAQT equation of motion and procedure for specifying initial states are the same as
described in Part I [125]. Whereas the pseudo-eigenstructure constructed from a reduced-
order method (i.e., mean-field approximation) for the alloy system in Part I is parameterized
by the concentration of B-type atoms, ordering and clustering behavior require a description
of the system that includes both concentration and the long-range order (LRO) parameter
(see the schematic of Fig. 1 in Part I). The pseudo-eigenstructure is constructed here by
employing the static concentration wave (SCW) method [59], which is a type of mean-field
approximation. As an illustration, a pseudo-eigenstructure for systems that have a B2 or L10

lattice (Fig. 6.1) at low temperatures is constructed in Sec. 6.2.1. In addition, an expected
phase transformation behavior depending on thermodynamic solution parameters at the
ground state is given in Sec. 6.2.2.
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6.2.1 Pseudo-eigenstructure

As described in Part I [125], the configurational energy in a binary alloy system is given by
[59]

E =
1

2

∑
r,r′

w(r− r′)n(r)n(r′) , (6.1)

where w(r − r′) is a pairwise interatomic interaction energy between two atoms at lattice
sites r and r′ and n(r) and n(r′) are the distribution functions at those lattice points. In the
SCW method, the distribution functions, n(r), for the B2 and L10 lattices are given as [59]

n(r) = c+
1

2
ηeik0·r, (6.2)

where c is the concentration of B-type atoms and k0 are the wave vectors of special-points,
which correspond to the (111) and (001) points for the B2 and L10 structures, respectively.
From Eqs. (6.1) and (6.2), the configurational energy for either lattice becomes [59, 23]

E(c, η) = N

[
1

2
c(1− c)V (0)− 1

8
η2V (k0)

]
, (6.3)

where N is the number of atoms in a system, and V (0) and V (k0) are, respectively, given
by

V BCC(0) = 8w1 + 6w2 + 12w3 + 24w4 + · · ·
V FCC(0) = 12w1 + 6w2 + 24w3 + 12w4 + · · ·

(6.4)

and

V B2(k0) = −8w1 + 6w2 + 12w3 − 24w4 + · · ·
V L10(k0) = −4w1 + 6w2 − 8w3 + 12w4 + · · · .

(6.5)

Here the wn represent the nth-nearest-neighbor effective pair interaction energies.

The energy of the L10 lattice has an additional complication in that it can involve a tetragonal
distortion. When this distortion is taken into account, the energy shown in Eq. (6.3) becomes
[23]

E(c, η) = N

[
1

2
c(1− c)V (0)− 1

8
η2V (k0)− η4e

]
, (6.6)

where e is the contribution of an elastic strain energy stemming from a tetragonal distortion
given by

e = vC11{(1 +
C12

C11

)(ε̄011)2 + 2
C12

C11

ε̄011ε̄
0
33 +

1

2
(ε̄033)2}, (6.7)

where v is the average atomic volume, Cij are the elastic constants, and ε̄0ij are the average
strains.
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The degeneracy of the energy in Eq. (6.3) (or Eq. (6.6)) is given by a binomial coefficient as

g(c, η) =
(Nα)!

(Nα
A)! · (Nα

B)!
· (Nβ)!

(Nβ
A)! · (Nβ

B!)

=

(
N
2

)
!

(Nα
A)! · (N

2
−Nα

A)!
·

(
N
2

)
!

(Nβ
A)! · (N

2
−Nβ

A)!
,

(6.8)

where α and β indicate the sublattice on which A and B atoms predominate in the ordered
lattice, and Nα

A and Nβ
A are, respectively, given by

Nα
A = N

[
1

2
(1− c) +

1

4
η

]
,

Nβ
A = N

[
1

2
(1− c)− 1

4
η

]
.

(6.9)

The energy represented by Eq. (6.3) (or Eq. (6.6)) forms a continuous or infinite spectrum
of energies or energy eigenlevels for the system from which a pseudo-eigenstructure of finite
discrete levels can be constructed using the density of states method developed by Li and
von Spakovsky[73] (see Part I). This set is used by the SEAQT equation of motion to accu-
rately predict the kinetics of system state evolution. The energy eigenlevels, degeneracies,
concentrations of B-type atoms, and LRO parameters for the system are then given by

Ei,j =
1

gi,j

∫ η̄j+1

η̄j

∫ c̄i+1

c̄i

g(c, η)E(c, η) dc dη , (6.10)

gi,j =

∫ η̄j+1

η̄j

∫ c̄i+1

c̄i

g(c, η) dc dη , (6.11)

ci,j =
1

gi,j

∫ η̄j+1

η̄j

∫ c̄i+1

c̄i

g(c, η)c dc dη , (6.12)

and

ηi,j =
1

gi,j

∫ η̄j+1

η̄j

∫ c̄i+1

c̄i

g(c, η)η dc dη . (6.13)

The c̄i and η̄j are prepared as

c̄i =
i

Rc

and η̄j =
j

Rη

, (6.14)

where Rc and Rη are, respectively, the number of intervals in the pseudo-eienstructure for
the concentration of B atoms and the LRO parameter, and i and j are integer values (i =
0, 1, 2, ...Rc and j = 0, 1, 2, ...Rη). The number of intervals, Rc and Rη, is determined by
ensuring the following condition is satisfied [129]:

1

β
� |Ek+1 − Ek|

N
, (6.15)
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where the subscripts for each energy eigenlevel is expressed by k (i.e., Ei,j → Ek). Since
there is a maximum value of accessible LRO parameters for each concentration of B atoms
(i.e., ηmax = 2c and 2(1 − c) for c ≤ 0.5 and c > 0.5, respectively), the inaccessible LRO
parameters are eliminated from the pseudo-eigenstructure.

Note that the B2 and L10 lattices are described by the ordering of an underlying disordered
lattice (body-centered or face-centered cubic) through the use of a single LRO parameter,
η, in the SCW approach. Pseudo-eigenstructures for alloy systems with different ordered
lattices described by more than two LRO parameters can be derived by following a similar
procedure.

The approach used here to describe ordering is equivalent to the Bragg-Williams approxi-
mation or the point-approximation [63, 86] of the cluster variation method. More elaborate
mean-field approximations for atomic configurations are available in the cluster variation
method [60, 63, 86] that incorporate short-range correlations through the use of defined
cluster configurations, but the point-approximation is employed here for simplicity.

6.2.2 Ground-state analysis

In Sec. 6.2.1, pseudo-eigenstructures are constructed for alloys exhibiting one of two types of
ordering: L10 ordering from an initially disordered FCC solid-solution (or FCCs.s.) and B2
ordering from an initially disordered BCC solid-solution (or BCCs.s.). When V (0), V (k0),
and e are assumed to be constant, the energy, Eq. (6.6), can be written, using the reduced
parameters ω and α, as

E(c, η)

V (k0)
= N

[
1

2
c(1− c)ω − 1

8
η2 − η4α

]
, (6.16)

where

ω ≡ V (0)

V (k0)
, α ≡ e

V (k0)
, (6.17)

and it is assumed that V (k0) > 0. The parameter α describes the contribution of strain en-
ergy. When α = 0, there is no tetragonal distortion and no contribution to the strain energy
(which is the case with B2 ordering). The parameter ω reflects the relative contributions of
the nth-nearest-neighbor (effective) interaction energies (see Eqs. (6.4) and (6.5)).

Three representative relations between energy and concentration of B atoms for alloy sys-
tems, ω = −1.0, 0.5, and 1.2, with α = 0 are shown in Fig. 6.2. In the figure, E∗ =
E(c, η)/V (k0) = 0 corresponds to the segregation limit — a straight line connecting the
energies of phases composed of pure A atoms and pure B atoms. The segregation limit
shows the ground-state energy of a phase-separated configuration and facilitates compar-
isons with solid-solutions and ordered phases. The broken lines in the figure are energies of
solid-solutions (η = 0); if the energy of a solid-solution at a given concentration is above (or
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Figure 6.2: The ground-state analysis for three representative alloy systems (ω =
−1.0, 0.5, and 1.2) with α = 0, which correspond to Alloys 3, 4, and 5, respectively,
in the subsequent calculations. The color represents the different alloys. While the en-
ergies of the corresponding solid-solutions (η = 0) are shown by the dashed curves, fully
ordered phases (η = ηmax) are shown by the solid lines. Here, the energies are normalized as
E∗ = E(c, η)/V (k0).

below) the segregation limit, the system prefers phase separation (or solid-solution). The
energies of a solid-solution are decreased by the ordering term in Eq. (6.16), and the energies
of a fully ordered phase (η = ηmax) are shown by the solid curves in the figure. Relative
to the segregation limit, systems with ω < 0 (black lines) will always tend to order, but
systems with ω > 0 (red and orange curves) may order, or cluster, or do both. The reduced
parameters, ω and α, are used to represent hypothetical alloy systems with these different
behaviors in the following calculations.

6.3 Results and Discussion

Phase decomposition in a binary system whose chemical affinity leads to phase separation
(a single solid-solution decomposing into two different solid-solutions) is discussed in Part I
[125]. Additional types of decomposition can be produced by adjusting pairwise interaction
energies to simulate hypothetical alloy systems that favor ordering (Sec. 6.3.1) or both phase
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Table 6.1: The assumed values of ω and α in the three model alloy systems for the ordering
calculations in Sec. 6.3.1. Alloy-1 and Alloy-2 are alloy systems involving L10 ordering on an
FCC lattice and Alloy-3 represents B2 ordering on a BCC lattice. These values correspond
to those used in reference [23].

ω α
Alloy-1 (L10 on FCC) -1.0 0.10
Alloy-2 (L10 on FCC) -1.0 0.05
Alloy-3 (B2 on BCC) -1.0 0.00

separation and ordering (Sec. 6.3.2). The kinetic pathways in these hypothetical alloys from
some initial unstable phase to stable equilibrium phases are explored using the SEAQT
model. All the time scales in the subsequent calculations are normalized by a relaxation
time, τ , but they can be correlated to a real time by following a similar procedure to that
shown in Part I.

6.3.1 Ordering

The values of ω and α for three hypothetical alloys that exhibit ordering are shown in Ta-
ble 6.1. These correspond to the values used in reference [23]. Alloy-1 and Alloy-2 are for
alloys that involve L10 ordering on an FCC lattice and Alloy-3 represents B2 ordering on
a BCC lattice (because there can be no tetragonal distortion in this case, α = 0). Phase
diagrams calculated using these parameters in the SEAQT theoretical framework (see Ap-
pendix D.1) are shown in Fig. 6.3. For all the kinetic calculations, the initial temperature
was chosen to be T ∗0 = 0.5 (normalized temperature T ∗ = kBT/V (k0)) with fluctuations in
the initial state generated using N0 = 102 (see Part I [125] for details).

6.3.1.1 Alloy-1 (FCCs.s. ⇒ L10)

The calculated kinetic ordering processes from a single solid-solution in a A–50.0 at.% B
alloy at two different annealing temperatures, T ∗R = 0.30 and T ∗R = 0.15, are, respectively,
shown in Figs. 6.4 and 6.5 for the ordering system. Each panel in these figures represents a
state of the system at a particular instant of time. The concentration of the B-type atom in
the alloy, c, varies along the horizontal axis, and the long-range order parameter, η, varies
along the vertical axis. The color of each pixel in a panel represents the probability of the
combination of concentration and LRO corresponding to the pixel’s location. The sum of
the probabilities over all possible configurations of concentration and LRO in a given panel
is unity. The change in the configuration probabilities from panel to panel thus shows how
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Figure 6.3: The phase diagrams of the three model alloy systems in Sec. 6.3.1 calculated
using the SEAQT model. The diagrams qualitatively agree with the ones determined by a
free-energy analysis [23]. While there are two-phase regions, FCCs.s. + L10, in Alloy-1 and
Alloy-2, there are only single phase regions, BCCs.s. or B2, in Alloy-3. Here the temperatures
are normalized as T ∗ = kBT/V (k0), and the estimated lines are shown as broken lines.
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the alloy evolves from a chosen initial system state to the equilibrium state.

The initial states (the upper left panels in Figs. 6.4 and 6.5) are the same. Ordering in
Fig. 6.4 takes place at a higher temperature (lower driving force) than in Fig. 6.5. At the
higher temperature of Fig. 6.4, the probability distribution shifts discontinuously to the final
state. The initial probability distribution (near c = 0.5, η = 0) decreases as the ordered phase
suddenly appears (nucleates) near the final state (c = 0.5, η = 1), and order parameters in
the intervening range, say 0.5 < η < 0.8, are essentially zero for all times. This characteristic
is a signature of a discontinuous transformation.

At the lower annealing temperature of Fig. 6.5, the probability distribution ends up at a
similar final state, but it gradually shifts vertically from the initial state corresponding
to the disordered solid-solution to the final equilibrium state corresponding to η = 1 in
the manner of a continuous transformation. The system traverses all values of the order
parameter between η = 0 and η = 1 during the transformation.

The LRO parameter occupancy probabilities for these two cases are shown in Fig. 6.6 for
the same time sequences. Fig. 6.6 (a) corresponds to discontinuous ordering at the higher
annealing temperature. Only disordered and nearly fully ordered states are occupied at
any time. In Fig. 6.6 (b), which corresponds to continuous ordering, the order parameter
gradually traverses all possible ordered states. No nucleation of the stable ordered phase
is required. The appearance of different kinetic behavior (continuous versus discontinuous)
at different annealing temperatures is also obtained by varying alloy composition (e.g., A–
30.0 at.% B and A–40.0 at.% B) and by modifying the initial fluctuations as discussed in
Part I [125].

The discontinuous and continuous transformations discussed in Part I [125] are also some-
times called 1st-order and 2nd-order transitions on the Ehrenfest scheme based upon the ap-
pearance of a discontinuity in a derivative of the free-energy with respect to a thermodynamic
variable like temperature. For 1st-order transitions (discontinuous/nucleation-growth), the
free-energy changes abruptly from one phase to another, whereas the free-energy changes
smoothly between phases during a 2nd-order (continuous/spinodal) transition. In the con-
text of ordering, both 1st- and 2nd-order transitions have been theoretically and experi-
mentally confirmed for L10 ordering [114, 23, 116, 62]. When an annealing temperature is
relatively low/high, the transformation shows 2nd-order/1st-order behavior. The continu-
ous behavior seen in Fig. 6.5 corresponds to a 2nd-order transition (which is also sometimes
called spinodal ordering).

6.3.1.2 Alloy-2 (FCCs.s. ⇒ L10 + L10)

The phase diagram in this alloy system, Fig. 6.3 (b), shows an interesting phenomenon at
low temperatures: a single-ordered phase decomposes into two different ordered phases, each
of which has a different composition.
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Figure 6.4: The calculated kinetic ordering process in a A–50.0 at.% B alloy (Alloy-1 in
Sec. 6.3.1) at T ∗R = 0.30 using N = 104 and N0 = 100. Each panel represents a snapshot
corresponding to a normalized time, t∗, of (a) 0.0000, (b) 0.0220, (c) 0.0260, and (d) 0.0350.
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Figure 6.5: The calculated kinetic ordering process in a A–50.0 at.% B alloy (Alloy-1 in
Sec. 6.3.1) at T ∗R = 0.15 using N = 104 and N0 = 100. Each panel represents a snapshot
corresponding to a normalized time, t∗, of (a) 0.0000, (b) 0.0021, (c) 0.0026, and (d) 0.0032.



Chapter 6 118

Figure 6.6: The time-dependences of the probability distributions in terms of the LRO
parameter at c = 0.5 in the calculated results shown in Figs. 6.4 and 6.5; (a) T ∗R = 0.30 and
(b) T ∗R = 0.15.
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Figure 6.7: The calculated kinetic evolution process in a A–30.0 at.% B alloy (Alloy-2 in
Sec. 6.3.1) at T ∗R = 0.05 using N = 104 and N0 = 100. The normalized time, t∗, of each
snapshot is (a) 0.0000, (b) 0.0018, (c) 0.0022, and (d) 0.0080, respectively.

The calculated kinetic evolution process in a A–30.0 at.% B alloy at T ∗R = 0.05 is shown in
Fig. 6.7. The interesting state parameter in this case is the concentration of B-type atoms.
The probability distributions for the concentrations at each instant of time in Fig. 6.7 are
shown in Fig. 6.8. By the time t∗ = 0.0022 (Fig. 6.7 (c)), the initial solid-solution has
undergone continuous ordering. As time proceeds, the ordered phase decomposes into two
different ordered phases with different compositions, Fig. 6.7 (d). Thus, the kinetic ordering
pathway could be described as “a solid-solution⇒ an ordered phase⇒ two ordered phases”.
This sequence is the result of the kinetic evolution predicted by the SEAQT equation of
motion and cannot be inferred from equilibrium thermodynamic considerations alone.

The transition from a discontinuous to a continuous transformation mode with decreasing
temperature is also confirmed in this alloy. The annealing temperature T ∗R = 0.05 used for
Fig. 6.7 is low enough to place the kinetic pathway well within the continuous transformation
range.
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Figure 6.8: The time-dependence of the probability distributions in terms of the concentra-
tion of B-type atoms in the A–30.0 at.% B alloy at T ∗R = 0.05, which corresponds to the
results shown in Fig. 6.7.

6.3.1.3 Alloy-3 (BCCs.s. ⇒ B2)

While FCCs.s. ⇒ L10 ordering can be a 1st-order transition at relatively high temperatures,
BCCs.s. ⇒ B2 ordering is 2nd-order [26]. The difference can also be seen from the topology
in the calculated phase diagrams (Fig. 6.3). While there is a two-phase region of a solid-
solution and an ordered phase in Alloy-1 and Alloy-2, there are only single phase regions in
Alloy-3. Alloy-3 is used to explore the kinetic difference between the 1st-order and 2nd-order
phase transformations as well as the difference between the 2nd-order transition seen in the
L10 ordering (i.e., spinodal ordering).

The calculated kinetic ordering process in a A–50.0 at.% B alloy system at T ∗R = 0.15 is shown
in Fig. 6.9. Unlike the behavior during L10 ordering (Figs. 6.4, 6.5, and 6.7), there is just one
phase (or peak in probability space) during the phase transformation, and the single phase (or
peak) moves from a disordered phase region into an ordered phase region continuously. This
indicates that although both L10 ordering and B2 ordering at low annealing temperatures
are 2nd-order and continuous, the kinetic behaviors are quite different.
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Figure 6.9: The calculated kinetic ordering process in a A–50.0 at.% B alloy (Alloy-3 in
Sec. 6.3.1) at T ∗R = 0.15 using N = 104 and N0 = 100. The normalized time, t∗, of each
snapshot is (a) 0.0000, (b) 0.0080, (c) 0.0100, and (d) 0.0200, respectively.
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Table 6.2: The values of ω and α in the two model alloy systems for the phase separation
and ordering calculations in Sec. 6.3.2. Both alloy systems involve B2 ordering on a BCC
lattice.

ω α
Alloy-4 (B2 on BCC) 0.5 0.00
Alloy-5 (B2 on BCC) 1.2 0.00

6.3.2 Concurrent phase separation and ordering

In Section 6.3.1, the alloy systems that prefer just ordering are considered. In this section,
alloy systems that have a tendency for both phase separation and ordering are explored by
choosing positive ω in Eq. (6.16). The values of ω for two more hypothetical alloy systems
involving B2 ordering are shown in Table 6.2. No tetragonal distortions can arise from B2
ordering, so α = 0. The corresponding phase diagrams for these parameters calculated with
the SEAQT theoretical framework are shown in Fig. 6.10. For the kinetic calculations in
this section, the normalized initial temperature is set as T ∗0 = 0.5 (T ∗0 = kBT/V (k0)) and
some fluctuation is included in the initial states using N0 = 102.

6.3.2.1 Alloy-4 (BCCs.s. ⇒ B2 + BCCs.s.)

In this alloy, there is a two-phase region of the disordered BCC solid-solution and the B2 or-
dered phase in the calculated phase diagram (Fig. 6.10 (a)). The calculated kinetic pathway
in a A–30.0 at.% B alloy at T ∗R = 0.15 is shown in Fig. 6.11. The initial disordered solid-
solution decomposes continuously and simultaneously into two phases: an ordered phase
and an A-rich solid-solution. This behavior is described as concurrent ordering and phase
separation and has been reported in the Fe–Be system [56], whose experimentally deter-
mined phase diagram has similarities with the one calculated here (Fig. 6.10 (a)). Thus, the
predicted kinetic path is qualitatively consistent with the reported experiments.

6.3.2.2 Alloy-5 (BCCs.s. ⇒ BCCs.s. + BCCs.s.)

The calculated phase diagram shown in Fig. 6.10 (b) in this alloy system suggests a simple
phase separation process of a solid-solution into two different solid-solutions with different
compositions at low temperatures. However, the calculated kinetic behavior in this alloy
system in a A–50.0 at.% B composition at T ∗R = 0.15 (see Fig. 6.12) demonstrates that or-
dering during the decomposition process can take place before the system ultimately reaches
the final equilibrium state of two solid-solutions. The occupation probabilities for non-zero
order parameters eventually disappear as the transformation proceeds.
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Figure 6.10: The calculated phase diagrams for the two model alloy systems in Sec. 6.3.2
using the SEAQT model. Alloy-4 has a two-phase region (BCCs.s. + B2) at low temperatures,
and Alloy-5 has a two-phase region (BCCs.s. + BCCs.s.) below the solvus line, which is a
typical phase diagram seen in an alloy system which prefers just phase separation (see Part I
[125]. Here the temperatures are normalized as T ∗ = kBT/V (k0), and the estimated lines
are shown as broken lines.

Ordered structures have been observed during the spinodal decomposition process in the
Cu–10 at.% Co alloy [15], whose local average compositions are 50 at.% Co and 33 at.% Co.
Although the lattice of 50 at.% Co has not been determined, it would suggest the importance
of including longer-range interaction energies even in simple alloy systems with a positive
mixing energy.

6.4 Conclusions

The SEAQT model with a pseudo-eigenstructure based on the SCW method is applied to
phase separation and ordering processes in a solid-solution in various binary model alloy
systems, and the kinetic pathways are explored. The assumed model alloys are divided into
two groups depending on expected phase transformation behavior: ordering or both phase
separation and ordering. While continuous and discontinuous ordering phenomena take place
in the former group, concurrent phase separation and ordering are readily obtained in the
latter.

In the ordering calculations, while the B2 ordering shows only a continuous transformation
mode, L10 ordering can take place both continuously and discontinuously depending upon
the annealing temperature. Although both B2 and L10 ordering show continuous transfor-
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Figure 6.11: The calculated kinetic evolution process in a A–30.0 at.% B alloy (Alloy-4 in
Sec. 6.3.2) at T ∗R = 0.15 using N = 104 and N0 = 100. The normalized time, t∗, of each
snapshot is (a) 0.000, (b) 0.017, (c) 0.024, and (d) 0.060, respectively.
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Figure 6.12: The calculated kinetic evolution process in a A–50.0 at.% B alloy (Alloy-5 in
Sec. 6.3.2) at T ∗R = 0.15 using N = 104 and N0 = 100. The normalized time, t∗, of each
snapshot is (a) 0.0000, (b) 0.0040, (c) 0.0048, and (d) 0.0100, respectively.
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mations, it turns out that their behaviors are quite different: there is only a single phase
during B2 ordering, whereas two distinct phases evolve during L10 ordering. In addition,
when elastic strain energy from a tetragonal distortion in the L10 ordered phase is small,
it is found that a single L10 ordered phase decomposes into two different ordered phases at
low temperatures. The calculated kinetic path of the decomposition process to the two dif-
ferent L10 ordered phases follows a “solid-solution ⇒ ordered phase ⇒ two ordered phases”
sequence.

In the phase separation and ordering calculations, concurrent phase separation and ordering
is produced in a model alloy system, whose calculated phase diagram has similarities with
the experimentally determined phase diagram in Fe–Be alloy system. Furthermore, an or-
dering behavior during the phase separation process is observed even though a simple phase
separation process from a single solid-solution to two different solid-solutions is expected
from the calculated phase diagram.

Finally, the SEAQT framework has some distinct advantages for modeling kinetic behavior
during alloy decomposition: (a) it can describe kinetic paths from an initial non-equilibrium
state to stable equilibrium without relying upon a stochastic approach or a local/near equi-
librium assumption, (b) alloy composition is automatically conserved during the kinetic cal-
culations, and (c) kinetic paths involving two phases can be calculated in a single theoretical
framework. Furthermore, coupling effects between atomic concentrations and LRO param-
eters are implicitly taken into account.



Appendix D

D.1 Estimation of phase diagrams with the SEAQT

framework

Phase diagrams are usually determined by calculating the free energies of candidate phases
and searching for the phase with the lowest free-energy or searching for phases sharing the
lowest common tangent to the molar free-energies. In this appendix, an approach to deter-
mine phase diagrams with the SEAQT framework without using free-energies is described.

The occupation probabilities at stable equilibrium at T se for a given pseudo-eigenstructure
can be calculated from the (semi-) [69] grand canonical distribution:

pse
k =

gke
−βse(Ek+µANA,k+µBNB,k)

Ξ
, (D.1)

where βse = 1/kBT
se, µA and µB are, respectively, the chemical potentials of A atoms and

B atoms, and Ξ is the grand partition function given by

Ξ ≡
∑
k′

gk′e
−βse(Ek′+µANA,k′+µBNB,k′ ) . (D.2)

The chemical potentials are adjusted to reach a target alloy composition. The stable equi-
librium configuration can be found by searching a peak(s) in the probability distribution.
For example, when peaks in the probability distributions appear in two regions of config-
uration space, two phases are present, and their concentrations are given by an average of
the B concentrations of each peak region. The concentration of each phase is determined at
each temperature considering a series of alloy compositions. Following statistical mechanical
calculations for a solid phase that are quite large in size (a homogeneous system), a large
system size, N se = 1010, is used here for the calculations.
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Chapter 7

Summary and Recommendations

In this dissertation, the SEAQT framework is applied to various solid-state phenomena by
employing a reduced-order method with the density of states method [73] to construct a
pseudo-eigenstructure of an energetically complicated condensed phase. After the SEAQT
formalism is introduced and demonstrated in Chapter 2, the method is applied to several
kinetic solid-state phenomena, including the thermal expansion of fcc-silver (Chapter 3),
the magnetization of bcc-iron (Chapter 4), and the continuous/discontinuous (Chapter 5)
and phase separation/ordering (Chapter 6) in binary alloy systems where a complex eigen-
structure is approximated using atomic/spin coupled oscillators (Chapter 3/Chapter 4) or
a mean-field approximation (Chapters 5 and 6). In each application, the reliability of the
approach is confirmed and the time-evolution processes are tracked from different initial
states under varying conditions (including interactions with a heat reservoir and external
magnetic field) using the SEAQT equation of motion derived for each specific application.
The SEAQT model provides a framework for incorporating kinetics with thermodynamics
and enables one to describe the behavior of materials that are stable or far-from-equilibrium
in a self-consistent way. In addition to this significant benefit, the SEAQT framework with a
pseudo-eigenstructure has advantages over conventional approaches in the specific problems
treated in this dissertation in that it successfully predicts and describes:

• lattice relaxations in any temperature range accounting for anharmonic effects explic-
itly; this is particularly useful at low temperatures (below the Debye temperature)
where classical mechanics (e.g., molecular dynamics simulations) are not well justified.
(Chapter 3)

• low-temperature spin relaxations (T < 500 K) and “fundamental” non-equilibrium
intensive properties (i.e., temperature and magnetic field strength) of spin systems,
both of which are not reliably predicted/described with the use of conventional spin
dynamics simulations. (Chapter 4)

• continuous (spinodal decomposition) and discontinuous (nucleation and growth) mech-
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anisms, which conventional microstructural models necessarily assume beforehand (e.g.,
the cluster dynamics method and Phase Field Modeling). (Chapter 5)

• concurrent phase separation and ordering (there are currently no convenient theoretical
frameworks to model concurrent behaviors). (Chapter 6)

As a final remark, there are three fronts for future progress in the application of SEAQT
to materials science. The first is the need for a more elaborate description of the pseudo-
eigenstructures. The calculated equilibrium and non-equilibrium materials’ properties in the
SEAQT model highly depend upon the pseudo-eigenstructure (or the solid-state model).
In the mean-field approach in this research (Chapters 5 and 6), for example, short-range
correlations between different atomic species are ignored. Since it is known that the short-
range correlations affect kinetic paths of phase transformations in some alloy systems, the
incorporation of these effects is desirable in a future work. The second front is an extension of
the method to heterogeneous systems. Although homogeneous systems are assumed in this
research, most materials are highly heterogeneous at a mesoscopic scale. Lots of interesting
behaviors are observed on that scale (such as unique microstructures depending on a stress
field and lattice misfits). In order to describe heterogeneous systems with SEAQT, the
construction of a network of local systems is required as is done in reference [76]. The third
front is the coupling of different phenomena. The three topics investigated here, thermal
expansion, magnetization change, and the phase decomposition process, for example, are not
independent but strongly depend on each other. For a complete description of solid-state
phenomena, an inclusion of the coupling effects would be essential. To accomplish this aim,
a similar approach used in the calculation of the coupled behaviors of electrons and phonons
[75] could be employed.
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