
APECS: Polychrony based End-to-End Embedded System Design
and Code Synthesis

Matthew E. Anderson

Dissertation submitted to the faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Engineering

Sandeep K. Shukla, Chair
Lamine Mili

Alireza Haghighat
Chao Wang

Yi Deng

April 3, 2015
Blacksburg, Virginia

Keywords: AADL, CPS, Model-based code synthesis, correct-by-construction code
synthesis, Polychrony, code generators, OSATE, Ocarina

Copyright 2015, Matthew E. Anderson

APECS: Polychrony based End-to-End Embedded System Design and Code
Synthesis

Matthew E. Anderson

(ABSTRACT)

The development of high integrity embedded systems remains an arduous and error-prone
task, despite the efforts by researchers in inventing tools and techniques for design automa-
tion. Much of the problem arises from the fact that the semantics of the modeling languages
for the various tools, are often distinct, and the semantics gaps are often filled manually
through the engineer’s understanding of one model or an abstraction. This provides an op-
portunity for bugs to creep in, other than standardising software engineering errors germane
to such complex system engineering. Since embedded systems applications such as avionics,
automotive, or industrial automation are safety critical, it is very important to invent tools,
and methodologies for safe and reliable system design. Much of the tools, and techniques
deal with either the design of embedded platforms (hardware, networking, firmware etc), and
software stack separately. The problem of the semantic gap between these two, as well as
between models of computation used to capture semantics must be solved in order to design
safer embedded systems.

In this dissertation we propose a methodology for the end-to-end modeling and analysis of
safety-critical embedded systems. Our approach consists of formal platform modeling, and
analysis; formal application modeling; and ’correct-by-construction’ code synthesis with the
aim of bridging semantic gaps between the various abstractions and models required for
the end-to-end system design. While the platform modeling language AADL has formal
semantics, and analysis tools for real-time, and performance verification, the application
behavior modeling in AADL is weak and part of an annex. In our work, we create the APECS
(AADL and Polychrony based Embedded Computing Synthesis) methodology to allow an
embedded system design specification all the way from platform architecture and platform
components, the real-time behavior, non-functional properties, as well as the application
software modeling. Our main contribution is to integrate a polychronous application software
modeling language, and synthesis algorithms in order for synthesis of the embedded software
running on the target platform, with the required constraints being met. We believe that
a polychronous approach is particularly well suited for a multiprocessor/multi-controller
distributed platform where different components often operate at independent rates and
concurrently. Further, the use of a formal polychronous language will allow for formal
validation of the software prior to code generation. We present a prototype framework that
implements this approach, which we refer to as the AADL and Polychrony based Embedded
Computing System (APECS). Our prototype utilizes an extended version of Ocarina to
provide code generation for the AADL model. Our polychronous modeling language is
MRICDF. Our prototype extends Ocarina to support software specification in MRICDF
and generate multi-threaded software. Additionally, we implement an automated translation
from Simulink to MRICDF, allowing designers to benefit from its formal semantics and
exploit engineers’ familiarity with Simulink tools, and legacy models. We present case studies
utilizing APECS to implement safety critical systems both natively in MRICDF and in
Simulink through automated translation.

That this work received support from the US Air Force Research Labs Contract (FA-8750-
11-1-0042).

iii

Contents

1 Introduction 1

1.1 Problem Statement . 3

1.2 Contributions . 5

1.3 Overview . 6

2 Model Driven Engineering 8

2.1 UML . 10

2.1.1 SysML . 14

2.1.2 MARTE . 17

2.2 MATLAB/Simulink . 19

2.3 Related Work - Formalizing Simulink . 20

2.3.1 Formalizing SIMULINK’s Behavioral Semantics 20

2.3.2 Hybrid-Automata based intermediate formats 21

2.3.3 Translating SIMULINK to Formal Languages 23

2.4 AADL . 23

2.5 Related Works - Model Analysis and Code Generation Techniques for AADL 29

2.5.1 Ocarina . 29

2.5.2 Additional AADL Based Methodologies 31

3 Formal Language Preliminaries 34

3.1 Formal Languages . 34

3.1.1 Synchronous Languages . 35

iv

3.1.2 Polychrony . 40

4 APECS Methodology 47

4.1 Motivation . 47

4.2 Approach . 48

4.3 Toolchain . 51

5 Simulink to Polychrony 58

5.1 Introduction . 58

5.2 Type Inference . 61

5.3 Clock Inference . 65

5.4 Block Translation . 68

6 Case Studies 75

6.1 Elevator . 75

6.2 Phasor Measurement Unit . 81

7 Conclusions and Future Work 86

Bibliography 88

v

List of Figures

1.1 Model Driven Architecture Approach . 2

2.1 UML Diagrams [61] . 11

2.2 SysML Diagrams [31] . 14

2.3 Elevator Car Block . 16

2.4 Elevator Car Requirements . 16

2.5 MARTE Architecture [28] . 18

2.6 Annex Subclause Usage . 28

2.7 Ocarina Frontend . 30

2.8 Ocarina Backend . 31

3.1 Esterel ABRO . 37

3.2 Lustre ABRO . 40

3.3 Signal Function . 41

3.4 Signal Delay . 41

3.5 Signal Undersampling . 42

3.6 Signal Undersampling . 42

3.7 Signal Merge . 42

3.8 Signal Oversampling . 42

3.9 Signal ABRO . 43

3.10 BufferActor . 44

3.11 SamplerActor . 44

vi

3.12 MergeActor . 45

3.13 FunctionActor . 45

4.1 Vee Life Cycle [30] . 48

4.2 Methodology Phases . 49

4.3 APECS Design Flow . 51

4.4 Associating MRICDF source files with AADL 52

4.5 Ocarina Frontend with MRICDF extensions 53

4.6 Passing Thread Information . 54

4.7 Code Distribution . 56

5.1 Sim2Em Translation Flow . 60

5.2 SIMULINK Type Lattice [66] . 61

5.3 Arithmetic Typing Example . 64

5.4 MRICDF Adder . 70

5.5 MRICDF Difference . 70

5.6 Trigger Port Translation . 70

5.7 Inserting Triggers into the System . 71

5.8 Enable Port Translation . 71

5.9 Virtual Connections . 72

5.10 Oversampling Composite . 73

5.11 Undersampling Composite . 74

6.1 Elevator Top Level AADL Model . 75

6.2 Floor Call Panel . 76

6.3 Elevator Car Control AADL Model . 77

6.4 Door System AADL Model . 77

6.5 Door State Table . 78

6.6 Door Controller State Flow . 78

6.7 EmCodeSyn Model of the Door Control Software 79

vii

6.8 MRICDF Process Declaration . 80

6.9 MRICDF Clock Tree . 80

6.10 Resulting thread groups . 81

6.11 Generated OpenDoor Thread . 82

6.12 Generated OpenDoor Function Call . 82

6.13 Roscoe Public PMU . 83

6.14 Simulink PMU . 83

6.15 SFunction Type Filter . 83

6.16 Roscoe PMU in MRICDF . 84

6.17 Test Generation in MRICDF . 84

6.18 Manual Implementation of the Test Generator in MRICDF 84

6.19 PMU Subsystem in MRICDF . 85

6.20 Manual Implementation of the PMU in MRICDF 85

viii

List of Tables

2.1 Supported Blocks [22] . 20

3.1 Esterel Statements . 37

3.2 Lustre Statements . 39

3.3 Signal Function Operators . 41

5.1 Types of Supported Simulink Blocks [49] . 62

5.2 SIMULINK Block Equations [66] . 63

5.3 Supported Simulink Blocks . 69

5.4 SIMULINK to MRICDF Type Mapping . 72

5.5 Overclock Trace (K = 2) . 73

5.6 Underclock Trace (K = 3) . 74

ix

Chapter 1

Introduction

Embedded systems are nearly ubiquitous in modern society. From fly-by-wire and drive-by-
wire to the control of power plants and medical equipment such as pacemakers, the amount
of control software driving safety critical tasks has been steadily on the rise. The complexity
of the systems they operate has also increased over the years from simple sequential pro-
cessors to multi-core parallel processors operating in a distributed environment. Developers
therefore face an increasingly difficult, and seemingly counter-intuitive, challenge of creating
code for such systems that is both safe and reliable while also minimising the cost and time
to market in order to keep up with commercial demands. These distributed real-time em-
bedded (DRE) systems must therefore place the correctness of the product as their highest
priority, yet the productivity can’t be ignored. Model driven engineering (MDE) is a com-
mon approach for easing the burdens of verification by providing a specification at a higher
level of abstraction and automating the engineering process as far as possible. Manual pro-
gramming of concurrency is tedious and error prone, which MBE can alleviate by providing
code generation facilities. For the purposes of safety critical systems its preferable to gener-
ate this code automatically from a formal specification - one with a mathematical basis and
rigorously defined semantics suited to formal analysis. More reliable code generation is only
one aspect of the problem, too often a system is validated at a high-level of abstraction only
to discover that the actual target platform or environment render the deliverable generated
from the specification infeasible. For this reason it is advisable to employ a model that cap-
tures not only the system’s software hierarchy and behavior but also the properties of the
target platform to enable early detection and verification, thereby minimizing time between
specification and error detection and subsequently the cost to correct discovered errors.

A number of MBE standards have been put forth and adopted by various industries. The
Object Management Group (OMG) [6] has produced many modeling languages [28, 31, 61]
as part of their Model Driven Architecture (MDA) approach to MBE. The MDA approach
divides the development process into three distinct phases. The Computation Independent
Model (CIM) describes the requirements of the system from an end-user perspective without

1

Matthew E. Anderson Chapter 1. Introduction 2

necessarily going into the details regarding the intended structure or implementation. As
such it typically is presented in natural language at the business or domain level. From
the CIM a system architect creates a Platform Independent Model (PIM) that models the
structure and composition of the system at a level that abstracts away the technical details
of the underlying platform. In this way a PIM can be mapped to multiple potential target
platforms. Finally, a specialist in the chosen platform creates a platform specific model
(PSM) combining the PIM specification with a platform model (PM). While the PIM is
given at a higher level of abstraction using a language like UML[61] the PM is created
using an appropriate lower level standard such as CORBA[4] or Microsoft’s .NET [5]. The
PSM then represents the final refinement of the original CIM specification from which an
executable or other appropriate deliverable may be generated.

Figure 1.1: Model Driven Architecture Approach

In addition to general solutions such as MDA, some industries have created their own do-
main specific approaches. The automotive industry, for instance, has the AUTomotive Open
System ARchitecture (AUTOSAR)[3]. AUTOSAR is an open standard defined by a consor-
tium of manufacturers in the industry. Its purpose is to provide a standardized methodology
and interface for the development of automotive systems. To accomplish this, AUTOSAR
defines a multilayered abstraction between the vehicle’s microprocessors and any application
software. This abstraction has a well defined, standardized interface so that changes can
be made within the application or hardware layer without disrupting each other. Another
industry example can be found in the avionics industry. The Integrated Modular Avionics
(IMA) [20] approach popularly employed in modern avionics design, allows multiple ap-
plications to operate on a shared computation platform. Each application is partitioned
into its own encapsulated execution environment with memory space reserved for it during
system configuration. ARINC 653 [9] is an industry standard for the specification of an
APplication EXecutive (APEX). The goal of the APEX is to provide a layer of abstraction
between the application partitions and the underlying shared computational platform. This
provides portability and reuse for applications due to ARINC 653’s standardized interface,
and improves hardware modularity by insulating the application layer from changes to those
components.

Matthew E. Anderson Chapter 1. Introduction 3

1.1 Problem Statement

Despite the advantages provided by these existing MBE tools and approaches in terms of
productivity and savings, a number of problems still remain. One major concern is how
to validate the consistency between different abstractions. Consider OMG’s approach, each
layer is conceivably created using a different abstraction and must be translated at each
transition between development phases. This fact alone increases the amount of effort that
must go into each design but it is compounded by the fact that if an error is discovered that
requires correction especially at a later stage of development it can cause a cascade of correc-
tions stemming from the source of the error in a previous phase. AUTOSAR’s multilayered
abstraction between the software applications and the hardware provides code reuse and
modularity. However, to integrate user code, AUTOSAR generates code skeletons that must
be manually completed by the developer. These aren’t updated automatically and therefore
must be manually edited, or new skeletons added, after each system revision. There is no
guarantee that the original semantics of the user code is preserved during the code genera-
tion process [64]. A common problem in these standards is the lack of a formal semantics
necessary to enact correct-by-construction translations for the refinement of a model to a
lower abstraction or for the generation of executable code. Manual implementations and
translations introduce a greater potential for error and require additional testing to verify
that the implementations are consistent with the source specifications.

Addressing these issues requires a methodology that uses a single modeling formalism for its
end-to-end development. The model would need to encapsulate the software architecture,
behavior, and the underlying execution platform. Further, the modeling standard must
be extensible to support the addition of (non-)functional properties (power requirements,
scheduling, etc.) as needed by development tools to facilitate analysis. A single model based
methodology can be rapidly revised and reanalyzed. Introducing hardware to the model
at the same phase as the software, behavior, and requirement properties allows the user
to detect performance and resource inadequacies earlier in development. Ease of revision
and early verification allows for thorough optimization and testing with an ”evolutionary”
approach [43] to prototyping. Finally, specifying component behavior with formal semantics
allows for correct-by-construction synthesis of the final code. The Architecture Analysis
and Design Language (AADL) [63] is an architecture description language (ADL) that was
originally developed to create a comprehensive model of a systems architectural hierarchy -
including both the software and the underlying execution platform. AADL is an extensible
standard with an inbuilt capability for user defined properties and units of measure. Fur-
thermore, it permits the definition of language annexes when it is necessary to extend the
core semantics for the modeling and analysis of user defined properties. The Open Source
AADL Tool Environment (OSATE) is the de facto editor for AADL, providing syntactic and
semantic analysis of textual specifications. Optionally, the developer may make use of avail-
able plug-ins for a graphical front end and some static analysis methods such as real-time
schedulability analysis of the thread components [65]. What OSATE doesn’t currently do is

Matthew E. Anderson Chapter 1. Introduction 4

provide a means of meaningfully utilizing the code associated with the software components.
Code may be referred to by a property that specifies the name and file path as strings, but
such files are not accessed by OSATE. Alternatively, developers may use the Behavioral [62]
and Error Model [29] Annexes to manually specify and simulate the intended operational
and error state behavior of a component, but this approach requires manual maintenance
and introduces the potential for conflict between the modeled behavior and that of the ac-
tual source code. Ocarina [36] is another third party tool that was introduced to provide
code generation support for AADL. Ocarina is capable of syntactic and semantic parsing
of textual AADL specifications. In addition, by accessing the source code files referenced
by the properties of software components in the model it can generate the distributed code
that will execute atop a middleware on the underlying computational platform. Currently,
Ocarina is configured to accept the general programming languages Ada and C/C++. More
recently it has experimented with the limited inclusion of the synchronous languages Esterel
and Lustre. Therefore we wish to determine whether an End to End approach to model
driven engineering using polychronous behavior specifications is feasible using a single mod-
eling formalism throughout. We believe that an approach rooted in AADL’s comprehensive,
extensible standard and supplemented by Ocarina’s automated code generation capabilities
would address the aforementioned issues of delayed hardware integration and throwaway
prototyping. However, there is still the issue of the informal semantics and behavior valida-
tion. While the syntax of these languages are typically well defined this only describes the
structure of a well formed sentence in the language. The actual meaning of these sentences,
their semantics, are understood through descriptions in natural language and examples with
the developer’s intuition being relied upon to fill in any gaps in understanding. Without
well defined, mathematically grounded semantics to provide a means of reasoning about the
correctness formally, one must rely on costly exhaustive testing techniques which are time
consuming. Moreover, such techniques can miss errors as they cannot be guaranteed to be
able to explore all possible execution states. The issue of error detection is compounded by
the fact that the ambiguity of the original semantics itself can cause developers to inadver-
tently create errors while programming.

In this dissertation we propose a methodology and present a corresponding prototype that
implements that approach. Our goal is to design safety critical systems such that the final
product has a minimal incidence of defects or behavioral bugs. In order to achieve this goal
we hypothesized that a unified formal system specification that could be refined through
equivalence preserving transformations would produce verifiable, implementable models for
critical embedded systems. Such a process would reduce the time to market and the costs of
post production validation with its modularity, code reuse, and formal verification through-
out development. To test this hypothesis we defined a methodology for the end to end
development of safety critical systems. We then implemented a prototype framework that
incorporates multiple existing tools and languages as well as extensions and newly customized
tools. This new framework is then used to create example systems. The example case stud-
ies are used to evaluate the framework by comparing the generated results to the original
specification. We look for flow equivalence between them. By flow equivalence we mean

Matthew E. Anderson Chapter 1. Introduction 5

we wish to determine whether the variables that belong to both the specification and the
implementation have the same behavior trace for the same input stimuli.

Our methodology is based on the previously described AADL standard. We utilize a code
generation process based on the work described in Ocarina[36] to generate distributed code
that runs on a high-integrity middleware. We’ve extended the code generation process to
support polychronous specifications provided in MRICDF[41]. Esterel [23] and Lustre[33]
based specifications have been attempted. These languages rely on synchronizing with a
single global clock. On the other hand, polychronous semantics allow different components
to operate at independent rates. We believe this will be advantageous in modeling and
implementing a distributed system. A polychronous approach frees the components in a
distributed system model from the need to synchronize with each other unnecessarily. In ad-
dition to providing rigorous formal semantics for validation, we can also leverage MRICDF’s
epoch analysis to automate the implementation and validation of concurrent threads from a
process level specification thereby mitigating the cost and risk that would be present with
manually created parallelism. Although correctness is of paramount importance, we also
recognize the value of usability and productivity. To that end we believe that its worthwhile
to support the use of other modeling formalisms as a frontend for the initial behavioral
specification. By translating that model into a formal intermediate format we can allow
developers to benefit from existing tools and experience while still leveraging the analysis
and code generation capabilities of our polychronous model of computation. For our pro-
totype implementation we have chosen to implement a Simulink to MRICDF translation.
This translation process is a continuation of the work started in [49] wherein Simulink was
translated to the polychronous language Signal[46]. We’ve chosen Simulink for the fact that
it is a widely known and supported modeling language, having become a de facto stan-
dard in many application domains. We’ve created an automated translation that extracts
and validates the typing and timing properties of the original Simulink model and then ap-
plies that information to an equivalent MRICDF actor network created by a hierarchical,
top-down translation of the Simulink blocks. this is not to say that this approach or the
prototype framework are limited to only implementing models from Simulink specifications.
While we chose these languages for our prototype, the methodology is applicable to and
combination of ADL modeling language with a polychronous behavioral specification. The
framework is flexible enough to support the future addition of other frontend languages or
for the generation of source files in languages other than C/C++.

1.2 Contributions

The contributions of this dissertation are as follows:

Methodology: We describe a new methodology for evolutionary prototyping, verification,
and embedded system development. Through the use of ADLs and polychronous software,
systems can be rapidly prototyped and iteratively refined until they are ready to be imple-

Matthew E. Anderson Chapter 1. Introduction 6

mented by automated generation and distribution. The novelty of this approach is in the
extent to which we have integrated the use of the ADL model and Polychronous behavioral
specification for the purposes of end to end development. By providing front end support for
the existing modeling standard and the translation tools needed to convert them to a formal
intermediate format we aim to automate support for legacy and existing industry standards.

Tool Suite: We have been developing a tool suite to support this methodology. The tools
are based on Ocarina, but with extensions to incorporate polychronous specifications given
in MRICDF. To the best of our knowledge this is the first time a polychronous language
has been used directly as a behavioral annex for AADL. An additional phase has been
added to the mode analysis and code generation step of Ocarina while handling MRICDF
behavioral specifications, so that MRICDF associated processes can be analyzed and have
a multithreaded implementation for them generated and the AADL model can then be
updated accordingly. We also built an automated translation tool to adapt Simulink models
to an intermediate representation in MRICDF for formal verification and code generation.
In doing so we also explore and innovate on relations between polychrony and Simulink.

Case Studies: We provide two case studies to illustrate the core aspects of our methodology.
The first is an elevator implementation that demonstrates the APECS process for modeling
a safety critical system. The scope of this example begins with modeling the underlying
platform and software hierarchy and progresses to the generated the executable code. Our
next case study is a phasor measurement unit (PMU). This PMU has been manually imple-
mented in both Simulink and MRICDF to provide a comparison between a native MRICDF
implementation and the result of a Simulink translation.

1.3 Overview

The remainder of this document is organized as follows:

Chapter 2 describes the state of the art for Model Based Engineering. We examine the UML
family of languages and its application in industry tools. We also look at the MATLAB /
Simulink language and the Architecture Analysis and Design language that feature strongly
in our own proposed methodology.

Chapter 3 covers the preliminary details of formal languages and correct-by-construction
code synthesis. We discuss the goals and general philosophy of the synchronous languages
and give an overview of the most well known formalisms and a comparative look at their
general approaches.

Chapter 4 provides the details of the proposed APECS methodology. We discuss the com-
ponent tools such as Ocarina, OSATE, and Cheddar that form the core of the proposed
development environment as well as descriptions of the roles of the languages and standards
such as AADL (for providing the system model) and MRICDF (polychronous software spec-

Matthew E. Anderson Chapter 1. Introduction 7

ification) that provide the source models for the extended tool chain.

Chapter 5 presents the Simulink frontend extension for APECS and the translation process
from Simulink to an MRICDF intermediate format for verification. Simulink models are
attached by property definition to process components in the AADL system model. They
undergo type and clock extraction and validation before being hierarchically translated into
a behaviorally equivalent MRICDF model.

Chapter 6 contains a number of case studies that demonstrate the methodology, translation,
and code generation processes of APECS. We present the design of an Elevator Control
System in APECS, generating code for the safe operation of the car doors. We use the design
of a Phasor Measurement Unit in both MRICDF and Simulink to compare and contrast the
translation capabilities of our Simulink front end.

Chapter 7 describes our conclusions and the potential future work for this project.

Chapter 2

Model Driven Engineering

Low-level languages have long been the choice for the development of embedded software.
The reason for this choice was their closeness to the underlying hardware platforms which
allowed for detail oriented approaches that could minimize the memory footprint of the
program. Over the years the capabilities of the hardware increased along with the complexity
and utilization of embedded systems in safety critical applications. This led to a gradual
evolution in methodologies that shifted the focus from minimizing hardware requirements
to reducing the development time and the cost of verifying the systems. Model driven
engineering (MDE) is one solution that has been applied to this end, reducing costs and
maximizing the viability of the software. MDE allows developers to create specifications
with interactions between different languages and to build libraries of dedicated models for
reuse in domain specific tasks. These models allow critical behaviors to be predicted before
implementation and, through transformative techniques, for the automated generation of a
final product.

The idea to simplify complex systems for study by creating an abstraction is an old one.
In computer science applications, however, the order of creation is inverted. Rather than
using the model to observe and better understand an existing system, the model is created
in an earlier stage to be used to anticipate the behavior of a future system prior to its im-
plementation. These models capture important aspects of the system being studied while
abstracting away details yet to be determined in future design decisions or those that are
considered unimportant to model validating concerns. They describe the intended behavior
or structure of the desired system and one or more potential configurations that may achieve
the intended results. This allows the model to be more specialized towards specific forms of
analysis than the final system would be. Capturing these requirements and domain specific
properties in the model is important to allow stakeholders (those with an interest in the
product being modeled) of the system under design to conceptualize and agree upon the
requirements and initial specification. A specification describes what the target does while
the implementation describes how it is done. Ideally the specification should be completed

8

Matthew E. Anderson Chapter 2. Model Driven Engineering 9

first because an implementation created from an incomplete specification runs a significantly
greater risk of failing to fulfill its design requirements. Indeed MDE as a whole allows the
developers to visualize the design and its possibilities. The ease with which the model can
be changed relative to a low-level language implementation is not the only factor in MDE’s
versatility either. An abstract model allows the developer to organize and edit information
about a large, complex system. Variations of this system can be saved separately, allowing
teams to explore the relative virtues of multiple potential solutions without necessarily need-
ing to implement them first. There are multiple levels of abstraction that may be employed
in MDE. The highest level models serve a guiding role, being built very early in the design
process. These models focus on the key concepts of the intended system’s purpose and fea-
tures. The goal of these guiding models is to capture the system’s requirements and highlight
the design options available to the stakeholders before the implementation is too far along.
The majority of details regarding actual implementation are abstracted away to focus first
on establishing and correcting the high-level concepts. A Computation Independent Model
employed in the first stage of UML model based analysis approach is an example of this.
As the design process proceeds, the model is refined, additional implementation details are
added and the model grows into an abstract specification of the system’s structure, behav-
ior, or both. By this stage, key concepts and components should have their mechanisms
modeled. This level of abstraction will likely have some amount of correspondence to the
final product. Although some details are yet to be implemented, they will eventually be
described as the model evolves towards completion. Eventually a full specification will be
obtained, containing enough information to build the final system or to generate it through
a model transformation. This is a still a distinct case from prototypes, or examples, which
are created using specific instances. While a model describes its subject, an instance is most
typically part of an actual run-time executable. As such, while the final specification is still
represented using the same semantics and tools as previous general case models, albeit with
greater detail, the instances are specific examples. There are a few notable issues with this
approach to which MDE practitioners usually pay attention. First, there must be trace-
ability between the iterations of the model as it is refined. There is a definite distinction
between refining a specification as design decisions are made and the more random approach
of trying new implementations until a solution is found. Second, there is the issue of ab-
straction. Determining which mechanisms, properties, and resources are essential to the
model and which can safely be abstracted is ultimately a judgement call on the part of the
developer. The details needed for code generation are not necessarily the same as those for a
simple cost analysis. The analysis of those attributes deemed worth modeling allow for the
deduction of the final system’s properties. Through techniques such as co-simulation and
verification, MDE endeavors to ensure the ultimate product is a trusted, high performance
software. As a result, care must be taken when abstracting elements of the system. If done
poorly the model may cease to accurately represent the intended system. For instance, if a
component were erroneously changed from a discrete to a continuous type the fundamental
behavior of that aspect of the system would be altered. There is no clear dichotomy to choose
between a detailed and an abstract model. Rather there is most commonly a spectrum of

Matthew E. Anderson Chapter 2. Model Driven Engineering 10

precision that a model may progress through as it develops over the life of the project. In
addition to the level and choice of , there is also the matter of the context of the model
to consider. The model for a system may be either open or closed. A closed system is self
contained, it models both the intended system and the environmental elements with which
it interacts. An open system on the other hand simply models the intended system and
treats its environment as a black box. Thus it can be said that the component subsystems
of a closed system can be considered open systems. This is especially true of models of open
systems that are encapsulated in a closed model representing a testing environment based
on development requirements and assumptions. Also, while its not semantically required,
a large and monolithic model cannot be effectively distributed among development teams
working concurrently. As a result, most teams in such a distributed development process
will be working with these open subsystems. Annotations are employed by models to track
assumptions about the environment in these situations as well as design decisions and ver-
sions by the development teams on the project. The internal structure and organization of
these models will be made up of structural and behavioral models. Both are important, the
structure of the model is needed to determine and allocate the resources of the system while
the behavior model is necessary for the eventual generation of the embedded software. While
the latter is required to identify problematic or emergent system behaviors, this analysis typ-
ically assumes that a model of the intended system structure exists. Often these models will
be created using different semantics or (subsets) of languages. For instance, the structure of
a UML model will be created using class diagrams while the behavior would be created using
State Charts or Finite State Automata. The MDE approach can be very beneficial in terms
of the reduction of the cost and time required to deliver embedded software. It can greatly
simplify the system for analysis and the verification of safety critical properties. However,
it is also a challenging prospect. The model must be created carefully and well documented
for the traceability necessary to verify that any subsequent refinement and transformation
conform to the original specification. Indeed, the final result will only be as valid as the
guiding specification model whose assumptions and abstractions must be chosen with care.
The models are not themselves programming languages nor do they inherently possess of a
methodology for creating the models they describe. Next we will look at some of the state
of the art languages and tools for MDE, how they are utilized, and how they approach these
issues.

2.1 UML

The unified modeling language (UML) is a general purpose modeling language for the specifi-
cation, visualization, and documentation of software systems. It was first introduced in 1994
as a unification three approaches to object-oriented design: the Object Modelling Technique
(OMT) [60], the Booch method [21], and the Objectory method [39]. Modeling is about
abstracting the object of study to allow the developers to focus on particular properties or
features for study. Rather than creating a singular syntax for representing all the possible

Matthew E. Anderson Chapter 2. Model Driven Engineering 11

areas of study and analysis, UML provides a framework that supports numerous design dia-
grams each of which specializes in representing different aspects of the system being studied.
Figure 2.1 presents the 14 diagrams that belong to the UML 2.0 standard. These diagrams
can be broadly divided into two groups, one describing aspects of system behavior and the
other detailing the structure of the system.

Figure 2.1: UML Diagrams [61]

The structure diagrams provide the facilities to conceptualize the hierarchy and resources
needed to implement the system.

• The Class Diagram is the cornerstone of UML’s structural modeling for object oriented
design. The classes contain the operations and attributes that each are or should be
capable of as well as indicating the relations between classes. Each class is divided into
three fields: name, attributes (variables), and operations (functions/methods). The
relationships are encoded as different types of connecting arrows, potentially annotated
with additional information.

• The Component Diagram represents the structure of components within the UML
model. These components could be logical (business, organizational, etc) or physical.
The component diagram defines the relationships between these components through
establishing interface requirements: defining ports and connections.

• The Composite Structure Diagram describes the internal composition of a structured
class. Conceptually it is similar to a component diagram except it graphically repre-
sents the decomposition of a class into its constituent properties and parts. Thus data

Matthew E. Anderson Chapter 2. Model Driven Engineering 12

and control flows through the class as well as the relationships between parts can be
visually diagrammed.

• The Deployment Diagram shows the relationship between the software architecture
of the system and physical targets. Depending on the implementation chosen the
deployment may describe the architecture at the specification level or the instance
level, with the former not referencing any specific instantiations within the hardware
platforms or software classes.

• The Package Diagram, unsurprisingly, showcases the dependencies between packages.
A Package in UML functions much as a library file does in C/C++, serving to hier-
archically collect other diagram and even other packages under its namespace. The
package diagram shows the contents of a package and how these contents interact with
each other.

• The Profile Diagram is the mechanism by which custom additions may be made to
UML. These additions take the form of stereotypes, tagged values, and constraints. It
is somewhat limited in that it does not allow for fundamental changes to the UML
metamodel but rather for the customization to better fit a specific domain.

• The Object Diagram, though obsolete after the UML 2.4 specification, described a
particular set of instances of the system. It closely resembles a class diagram in usage
and notation, but while the class diagram showed generalized version of the classes, the
object diagram showed specific instances of these classes. The diagram was therefore
a more concrete representation suited for prototypes or test cases of a given class
diagram.

The behavior diagrams allow the clients to specify their expectations in terms of the in-
tended user base, system capabilities, and desired reactions to particular situations. It’s
also intended to allow developers the capability to visually communicate the structure and
interactions of the blocks.

• The Use Case Diagram, also referred to as the Behavior Diagram is used to describe
the intended external users of the system, the key components of the system itself, and
how the two should interface with each other.

• The Activity Diagram, on the other hand, describes the behavior of a component in
terms of a flowchart or workflow. It is sometimes used as a simpler alternative to the
State Machine diagram.

• The State Machine Diagram serves a similar purpose to the activity diagram, de-
scribing the behavior of a component. However, as the name suggests, it employs a
State Machine to describe discrete behavior in terms of states that are connected by
transitions triggered by the arrival of specific events.

Matthew E. Anderson Chapter 2. Model Driven Engineering 13

• The Sequence Diagram describes inter-component behavior rather than the intra-
component descriptions found in the activity and state machine diagrams. It shows
the interaction between objects and the order in which these interactions transpire.
They’re designed to show the sequence of interactions for a particular scenario so that
the businesses could detail the current or desired behavior in specific circumstances.

• The Timing Diagram is similar to the sequence diagram in that it describes the behav-
ior of a component in a particular time frame. It may be used to describe individual
components or it may be used with multiple components to describe their interactions
in that span of time.

• The Interaction Diagram is a variant of the activity diagram that specializes in dis-
playing the control flow of the modeled system components. Indeed it may inline other
interaction models (sequence, communication, timing, etc) within frames inside the
interaction diagram to detail other forms of interaction that occur when the control
flow reaches that point.

• The Communication Diagram, previously referred to as a collaboration diagram, is
similar in purpose to a sequence diagram but instead focuses on the messages being
passed between objects. Indeed, often the same information can be communicated
with either diagram but the order of the messages is more readily apparent in the
sequence diagram while the communication diagram more explicitly shows the full set
of messages.

While it currently enjoys significant use in both system engineering and business require-
ment specification, this high adoption rate exists despite the fact that UML’s development
process produces diagrams as separate entities and then relies on the designers to maintain
consistency across the models. While UML does focus on object-oriented development it is
not a programming language nor is it a methodology in itself. Instead it presents a standard
containing a set of complementary diagrams with loosely defined semantics for use in build-
ing other methodologies and tool suites. These diagrams form the foundation of UML but
the language can be extended in a few ways to support other modeling domains and analysis
techniques. Stereotypes define new model elements derived from existing elements, allowing
the user to customize the component for a specific domain. The stereotypes may have new
special attributes and graphical representations to tailor themselves to their intended role.
Tagged Values are keyword / value pairs that allow the designer to define properties of the
class being modeled, while constraints are model invariants that are expressed formally and
explicitly using the Object Constraint Language (OCL). Yet these extensions proved insuf-
ficient when attempting to apply UML to the software engineering of real-time embedded
systems, and so related specialized languages were created to approach these areas of design.

Matthew E. Anderson Chapter 2. Model Driven Engineering 14

2.1.1 SysML

UML’s adoption by industry in software development along with tool development efforts
led the systems engineering community to consider adopting it for systems modeling. In
2003 the International Council on Systems Engineering (INCOSE) declared it the common
language for systems engineering. However, while its object oriented focus is well suited
for software development, it suffers from a number of limitations at the system modeling
level. Thus in the 2005 release of UML 2.0, OMG attempted to introduce new concepts
and language extensions to improve its applicability for systems modeling. While several
important diagrams such as activity, sequence, and composite structures were added, more
improvements were needed. Collaboration between OMG and INCOSE to further extend
and adapt UML 2.0 for system modeling evolved into a new language called SysML.

SysML is not just a specialized subset of UML. While it shares some diagrams with UML
and modifies others, it also adds a whole new class of modeling diagrams and semantics
for specifying requirements and constraints. Figure 2.2 shows the diagrams available in the
SysML standard.

Figure 2.2: SysML Diagrams [31]

Many of these diagrams are available in UML, but some have been modified. Here we will
briefly highlight the modifications and features added by SysML to those diagrams that were
retained.

• The Activity Diagram is very similar to that of UML. It describes the control flow
between actions and along conditional branches for the component(s) being described.
SysML, however, extends the UML 2.0 functionality, through the use of stereotypes,
with the ability to describe the rate of the flow - whether continuous or discrete. This

Matthew E. Anderson Chapter 2. Model Driven Engineering 15

enables the modeling of continuous systems with SysML activity diagrams, although
by default it is assumed to have a discrete behavior.

• The Block Definition Diagram contains block definitions and models their relationships
with each other. In SysML classes and components are replaced with the more neutral
concept of a block. The block definition diagram therefore serves to replace the class
diagrams of UML. See Figure 2.3 for a brief example of a SysML block.

• The Internal Block Diagram (IBD) describes the internal structure of a block, taking
the place of the composite structure diagram from UML 2.0. Like the composite
structure diagram, this IBD allows for multiple layers of nested composition. One
addition made by SysML to this diagram is the support for flow ports and connections
between such ports on different blocks, describing the movement of the flows within a
block’s structure as well as between blocks.

Additionally, a pair of entirely new diagrams were added. The focus of these diagrams is on
providing the means for the analysis and traceability of requirements and properties of the
system being modeled.

• The Requirement Diagram can be created as a package containing a hierarchical repre-
sentation of one more more requirements and their relationships to each other. SysML
defines four such possible relationships that indicate how each requirement refines,
derives from, or is needed to satisfy or verify that the other requirement is met. In ad-
dition to packages, a requirement block may be defined directly within block definition
and use case diagrams. In these cases the requirement serves to graphically encapsu-
late a textual specification of a requirement of the block or use case with which its
associated. This category of diagrams also allows two types of graphical notes that can
be added to annotate any type of block or diagram: problem and rationale. Problem
notes describe a problem to be solved while the rationales provide a justification. For
an example of a requirement block refer to figure 2.4.

• The Parametric Diagram describe constraints on the parameters of the model. SysML
does not provide a specific constraint language, allowing the user to specify their con-
straints formally (MathML/OCL) or informally. These diagrams merely serve as a
means to record and visually present information on parameter constraints, SysML
itself does not provide analysis tools to determine whether they have been satisfied.

While these diagrams partially overlap with those used by UML, the modifications and new
additions make SysML better suited toward Systems Engineering than its UML progenitor.
These changes were necessary to overcome practical and psychological hurdles faced by sys-
tem engineers working with UML. For instance, the concepts of class and objects that were so
well matched with the object oriented design of software are replaced with the more generic
concept of a block. Blocks are the basic modeling element of SysML, depending on how they

Matthew E. Anderson Chapter 2. Model Driven Engineering 16

Figure 2.3: Elevator Car Block

are defined they can model physical entities of the model platform or model logical/concep-
tual entities. Blocks are defined in the block definition diagram which graphically represents
blocks as compartmentalized rectangles. Each compartment specifies different properties,
although only the name compartment at the top of the block is required to form a valid
definition. Additional properties that may be specified in order to describe the decomposi-
tion of the blocks or to provide the values of quantifiable characteristics of the block. Each
compartment is also labeled to indicate the type of the properties it contains. For example,
the block show in 2.3 shows a block that encapsulates the structure and behavior of an el-
evator car. This block contains two sub-blocks: Panel and Door. These blocks respectively
represent the button panel interface for the elevator and the sensors and apparatus that
control the opening and closing of the door. Finally it contains a value representing the
desired duration a door should be held open before automatically closing.

Figure 2.4: Elevator Car Requirements

While UML 2.0 has diagrams for representing the structure and behavior of the target sys-

Matthew E. Anderson Chapter 2. Model Driven Engineering 17

tem, SysML adds a third category of diagrams for the textual specification of requirements
and for constraints on block properties. In figure 2.4, we see a sample requirement block
for the elevator car. Requirement blocks each have a unique numeric identifier as well as
the specification text. This requirement block describes in plain text a requirement that the
door not be shut while an obstruction is present. While SysML does not provide tools or
methodologies for verifying that these specifications are satisfied, and indeed a natural lan-
guage specification would not be well suited to this task, it is useful for providing traceability
for developers refining the block over the life of the model’s development. Additionally, we
see the specialized comment providing the rationale for the presence of the requirement, in
which stakeholders can clarify the motivations for setting the requirements as they have.

2.1.2 MARTE

While SysML added many necessary features for System’s Engineering, it still had notable
deficiencies when applied to the development of Real-Time Embedded Systems. Considering,
for example, the implementation of a time-triggered, periodic program running on a multicore
system. At first glance this would appear a simple prospect for implementation in UML.
The software application can be modeled as an active class along with the external clock and
devices. The time between activations can be given as an annotation of the activity diagram
inside the application class. However, were we to attempt to generate code from such a
model, UML would be unable to distinguish between the classes that should become software
and those that are devices in the environment. Additionally, the property annotations are
strictly numeric values with no means of explicitly declaring whether the time is in seconds,
milliseconds, etc. While one could assume a base unit of measure for use in the model this
can quickly become cumbersome at an industrial level and is highly error prone. Worse yet,
with no way to distinguish the software and platform components or create explicit allocation
bindings between them, its impossible to test whether the desired real-time parameters of
the system will be fulfilled from the model. Thus in 2009, after much collaboration between
researchers and manufacturers, the first version of the Modeling and Analysis of Real-Time
and Embedded Systems (MARTE) norm was published. Like the UML 2.0 standard on
which it is based, MARTE is not a programming language or a methodology in itself to be
used directly. As with its predecessors, it is a collection of specialized packages meant to be
modular in application and is extensible. It can be said that there are primarily two users
of the MARTE norm. The first are methodologists that will define the modeling capabilities
required for specific domains and then create the language extensions necessary to fulfill
these requirements. The producers take the results of the work done by the methodologists
and implement the tools, and techniques necessary to put it to use in their field. We will not
attempt to discuss the entirety of the MARTE norm here as it is an extensive document at
over 800 pages. Instead we will provide an overview of the packages provided by the norm
and highlight their usefulness for real-time systems.

The foundations of MARTE provide the core concepts and profiles needed to define the

Matthew E. Anderson Chapter 2. Model Driven Engineering 18

Figure 2.5: MARTE Architecture [28]

operational modes of a system.

• The Non-Functional Properties(NFP) in conjunction with the Value Specification (VSL)
declares, qualifies, and applies non-function property information to UML models.

• The Time profile proposes multiple distinct models of time for embedded real-time
systems. The first two are the standard chronometric model of time and one based on a
synchronous paradigm. The final temporal model is the Clock-Constraint Specification
Language (CCSL) that complements the primary Time profile by allowing the users
to describe constraints between the clocks.

• The Generic Resource Modeling(GRM)forms the basis of MARTE’s platform modeling
capabilities. This is at a higher level of abstraction than the norm, modeling the
resources at a system level rather than hardware or software elements which are handled
into more specialized sub-profiles (SRM and HRM).

• Allocation enables the explicit mapping of software applications to elements of the
underlying hardware platform.

Matthew E. Anderson Chapter 2. Model Driven Engineering 19

The Design Model provides the profiles that specialize in the project definition and design
aspects of the model based development process.

• The Generic Component Model(GCM) is essential for the specification of the core ar-
chitecture of embedded systems. It extends UML’s composite structures with domain-
specific features such as the capability to associate behavioral and structural elements
of the model.

• Software Resource Modeling(SRM) provides the core elements for modeling the soft-
ware components of the system.

• Hardware Resource Modeling(HRM) similarly provides the capability for modeling
hardware platforms.

• The High-Level Application Modeling(HLAM) profile provides annotations for specify-
ing the real-time and embedded properties.

The Analysis Model profile library contains Generic Quantitative Analysis Modeling(GQAM)
which provides the features for model-based analysis and is supported by two refined sub-
profiles Schedulability Analysis Modeling(SAM) and Performance Analysis Modeling(PAM).
These profiles extend the modeling standard with a number of key features for real-time
embedded systems modeling and analysis not present in the core UML standard or in the
SysML stand-alone variant. The added capability to specify qualitative and quantitative
measures using explicit units, implement component timings using various temporal models,
and distinguish between hardware and software components are invaluable improvements
over the plain UML norm.

2.2 MATLAB/Simulink

Simulink is a simulation-based, model driven design tool using block diagrams to describe
dynamic systems. Simulink models are organized as functional blocks representing piecewise-
constant functions that operate on discrete-time signals. The primitive blocks of the model
can be broadly grouped into two categories: Interface and Combinatorial. Interface blocks
connect the model with its environment and fall in to the subcategory of sources and sinks.
These connections may be to an external source (e.g FromFile, FromWorkspace), to another
Simulink system (Inport, Outport), or to something internal (Constant). Combinatorial
Blocks are those that modify the values of the signals as they move from source to sink,
applying operations to one or more inputs and instantaneously producing one or more out-
puts. These operations may be arithmetic, relational, logical or something more advanced.
Subsystems are user-defined abstractions that encapsulate primitives and other subsystem
blocks. They define an interface of input and output data ports that creates a standardized

Matthew E. Anderson Chapter 2. Model Driven Engineering 20

interface between the environment and the system’s internal components. The internal com-
ponents of default subsystems may inherit their sampling rate from their inputs or they may
have their own explicitly defined timings. There also exist two variants of the system with
differing implementations of control for the system’s execution. The triggered subsystems
receive an additional control signal. The system and its subcomponents only activate during
instants when a triggering event occurs. A Triggering event is reflected by a change in value
of the control signal either rising, falling or both depending on the user selected settings.
Alternatively, an enabled subsystem operates during instants where the control input, ’en-
able’, is set. Both of these subsystem variants affect their subcomponents beyond merely
establishing hierarchy, complicating the timing requirements in ways that will be explored
later in Chapter 5.

2.3 Related Work - Formalizing Simulink

2.3.1 Formalizing SIMULINK’s Behavioral Semantics

In [22] the authors propose defining formal semantics for the SIMULINK simulation engine.
The state-space of SIMULINK’s dynamical system is represented as a system of equations:
a continuous-time state function fx : R × Rnx × Rnd → Rnx , discrete-time state function
fd : R × Rnx × Rnd → Rnd , and an output function g : R × Rnx × Rnd → Rm. x is
the continuous state and nx is the number of continuous state variables. d is the discrete
state and nd is the number of discrete state variables. m is the number of outputs. The
system of BNF form equations were generated automatically by inspecting the mdl source
file of the model. Currently only a limited number of blocks are supported (Seen in table.
2.1). The chosen blocks come from both the continuous and discrete libraries. A closed

Table 2.1: Supported Blocks [22]

Library Blocks Equations

Source Constant `1 = constant
Sink Output out1 = out1 = `1

Arithmetic operations Add/Mul `3 = `1 + `2 or `3 = `1 × `2
Signal Routing Switch `4 = if(pr(`2), `1, `3)

Continuous-time Integrator `2 = x;
.
x = `1;x(0) = init

Discrete-time Unit Delay `2 = d; d = `1; d(0) = init;

form solution for the discrete and continuous equations is generally not possible, instead
the solution is approximated using a small step size temporal discretization and a numerical

Matthew E. Anderson Chapter 2. Model Driven Engineering 21

solver that is accurate over small time intervals. While this approach formalizes the semantics
of SIMULINK numerical solver, it is limited to a small subset of blocks. Also, unlike the
translation solutions, there are no known existing tools to exploit these new semantics for
static analysis.

2.3.2 Hybrid-Automata based intermediate formats

Hybrid-Automata [35] are finite state machines that are used for modelling systems that
include discrete and continuous interaction. It models both the discrete behavior of the
software and hardware and the continuous behavior of physical, dynamic components. A
hybrid automata is a tuple of the form (S, s0, V, P, T) where

• S is a set of states (also referred to as discrete locations)

• s0 is the initial state, s0εS

• V is a finite set of typed variables

• P is a set of parameters

• T is a set of transitions

In [11] the authors transform Matlab Simulink/Stateflow (MSS) models into an intermediate
format called the Hybrid System Interchange Format (HSIF) [55]. HSIF describes the MSS
model as a network of hybrid automata described by the tuple (HA, V, P, C) where

• HA is a Hybrid Automata

• V is a finite set of variables, which are partitioned into signals(input and output), local
variables Vl, and shared variables Vs

• P is a set of parameters

• C is an input constraint

HSIF was created with the goal of semantic interoperability, allowing an interchange of
models between different tools for simulation, verification, and code synthesis purposes. Each
node or location contains a system of equations: differential and algebraic. The differential
equations describe the continuous time behavior of the system while the algebraic functions
represent dependencies between variables. The authors of [35] have implemented a tool they
call Graph Rewriting and Transformation (GReAT) [10, 42]. GReAT translates the MSS
model by the following steps:

Matthew E. Anderson Chapter 2. Model Driven Engineering 22

Step 1: Enumerate switching signals - these output signals drive switch blocks that can
change the behavioral structure of the system, therefore they must be identified and
tracked.

Step 2: Transform MSS states to HSIF locations - determined by analyzing the MSS
model’s Stateflow machine, combined with the identified switching signals.

Step 3: Transform transitions - map the Stateflow transitions to HSIF location transi-
tions.

Step 4: Generate Behavioral Equations - Generate the differential and algebraic system
of equations based on the SIMULINK blocks and variables.

[a.] Decompose Complex Blocks

[b.] Assign Variables

[c.] Generate Dependencies

[d.] Create Derivatives

Step 5: Generate Invariants

Step 6: Prune unreachable locations

While the original mission statement was to translate any MSS model to an intermediate
format for use in alternative systems, some constraints currently exist with this approach.
Primarily due to limitations in HSIF they have limited their approach to only support:

1. Continuous Blocks (Integrator, Zero-Pole, etc.)

2. Mathematical Operators (Excluding logical blocks)

3. Sources (Constant, In)

4. Sink (Out)

5. Switch

6. Stateflow Diagrams

The fact that the current translation method limits the HSIF model to the continuous
library of SIMULINK make this method incompatible with MRICDF which has discrete
time semantics.

Matthew E. Anderson Chapter 2. Model Driven Engineering 23

2.3.3 Translating SIMULINK to Formal Languages

Synchronous BIP

”Behavior, Integration, Priority” (BIP) [13] is a component framework with three layers. The
behavior layer consists of automata with C code descriptions of the application behavior.
The Priority layer contains the scheduling rules for component interactions. Finally the
Interaction layer describes the relationships between the other two layers. Synchronous
BIP [24] is a subset of BIP specialized for describing synchronous systems. [1] details a
methodology for translating a SIMULINK model into a Synchronous BIP model with the goal
of exploiting the existing BIP validation and code generation tools. The translation is done by
iteratively converting each SIMULINK block into a BIP component. Basic blocks become the
equivalent elementary component in BIP, while structured blocks are traversed recursively
until each of their constituent blocks have been translated. The resulting components are
then composed to form a subsystem component. The translation is limited to only a subset
of blocks from the discrete library due to its synchronous semantics.

Lustre

Another approach that translates SIMULINK into a formal language is presented in [66].
The SIMULINK model is translated into the synchronous dataflow language Lustre[33]. In
addition to Lustre’s precise semantics this approach has the advantage of granting the trans-
lated model access to the model checking [34], testing [57], and the code generation features of
Lustre’s commercial development suite [7]. Much like with the Synchronous BIP translation,
Lustre’s discrete semantics mean they only support the blocks from SIMULINK’s discrete
time library. Additionally, the read and write blocks, while technically part of the discrete
time library, are discarded because their behavior has side effects that are detrimental to
determinism in the model. Despite the discrete time limitation we believe that it is a reason-
able limitation for modelling a digital controller. Our planned translation methodology is
similar to that presented in [66] and will be presented in greater detail in Chapter 5. In short,
typing and clock information must be extracted from the SIMULINK model and checked for
errors. If they are found to be error free then that information is applied to translating blocks
into MRICDF actor networks. It is our opinion that MRICDF’s polychronous semantics are
advantageous in a DRE environment for modeling distributed components that operate at
different rates.

2.4 AADL

Architecture Description Languages (ADLs) provide yet another layer of abstraction, focus-
ing on modeling the interactions between high level components of systems. These compo-

Matthew E. Anderson Chapter 2. Model Driven Engineering 24

nents may be hardware, software, or both but in either case the contents of the components
themselves are generally treated as black boxes, their implementations provided elsewhere.
In this way complex embedded control systems can be undertaken as discrete tasks with
different engineers separately developing component implementations that can then be in-
tegrated into the larger design modeled with the ADL. One such ADL is the Architecture
Analysis and Design Language [63] (AADL). It is a textual and graphical modeling language
defined by the Society of Automotive Engineers (SAE) for the purpose of creating detailed
representations of embedded systems. AADL possesses all of the desired traits described
above - it maps application software to an underlying execution platform and allows for
user defined properties and language extensions. Furthermore it is very user friendly for the
developing engineers as it has seen wide use in commercial projects ranging from aviation to
space.

Components

The AADL standard is a declarative language that creates a comprehensive model of an
embedded system through the use of a component based architecture. Components may be
hierarchical, that is they may be composed of one or more subcomponents. Each compo-
nent in the model is described by a type and an implementation. The component type gives
the category of component as well as the interface features. Meanwhile, the component im-
plementation enumerates the component’s subcomponents and describes their interactions.
The implementation also contains the properties that define the component’s characteristics
and requirements. These properties may be standard, user-defined, or part of a language
annex extension. The available categories of hardware component types are:

1. Processor - The processor component category represents the platform for schedul-
ing and executing software applications. Generally this means they are used to rep-
resent a microprocessor or CPU, but they may also include the functionality of the
operating system - defined as a property of the processor.

2. Memory - The memory component category represents the general storage com-
ponents both volatile and non-volatile (e.g. RAM, ROM).

3. Bus - The bus component category is used to represent physical communication
channels and their associated protocols (e.g. PCI, VME, CAN, etc).

4. Device - The device component category is used primarily to represent physical (or
simulations of physical) entities that interact with the external environment. Generally
they are sensors or actuators in the system. They may also represent an off-the-shelf
component that need not be modelled in detail by the developer.

The available categories of software component types are:

Matthew E. Anderson Chapter 2. Model Driven Engineering 25

1. Data - A data component category in software represents a data type from the
modeled application, while the data component implementation represents the internal
structure of variables (e.g. the fields of a C/C++ struct).

2. Thread - The thread component category is the smallest schedulable unit of soft-
ware, representing an execution path of code that is bound to a particular processor.
A thread is always contained within a process where it is managed by a scheduler.
Threads have a sequential control flow, specified either by annex behavior (described
later) or in associated source code (callable by subprograms). Threads implementa-
tions have specified timings and dispatch protocols. Currently, the dispatch protocols
natively supported by AADL are background, sporadic, aperiodic, and periodic.

3. Process - The process component category represents a protected address space
used to isolate and protect thread memory access.

4. Subprogram - The subprogram component category represents some sequentially
executable block of code (e.g. a function or method). They are called by thread
components or by other subprograms.

There also exists a pair of abstract components thread group and subprogram group that
serve a strictly organizational role in the model.

Finally, there is a generic component category referred to as a System. The system serves
as the toplevel component in an AADL model, containing the software applications and
execution platform as subcomponents. Indeed it is most commonly used as a means of
grouping related subcomponents and providing a standardized interface. The system also
has usefulness as a component for abstraction in an AADL model. It may serve as a ”black
box” or placeholder during early development - defining the interface and run-time proper-
ties necessary to allow the rest of the model to be tested while allowing the precise internal
composition to be determined later. AADL’s capability to define and use alternative im-
plementations can allow for such systems to be quickly adjusted or replaced according to
emerging design decisions in the rest of model.

Communication

Once the components of the model are defined, it is necessary to describe how they interact.
AADL provides a few means of modelling component communication. The most commonly
used method is through the use of ports. Ports are defined as features of the component type
interface. Ports are directional (in, out, or in out) channels that transfer data or events.
There are three port variants:

Event Data - Event data ports communicate event notifications and the data asso-
ciated with them. These messages are transmitted asynchronously and are queued by
the recipient.

Matthew E. Anderson Chapter 2. Model Driven Engineering 26

Event - Event ports function similarly but only transmit the event notifications.

Data - Data ports transmit only data but do not queue messages, only the most recent
message is available to the recipient.

While ports provide a logical description of the communication of data and events between
components, Buses model physical communication channels in a system. An AADL Bus
may be used to model a wide range of physical communication mediums or protocols, from
PCI and CAN Buses to Ethernet or WiFi connections.

Flows are used by AADL to describe the ordering and properties of these logical paths
nested throughout the system model. A Flow can be given as either a Flow Specification, a
Flow Implementation, or an End-To-End Flow. The first is given in the Flow section of a
Component Type definition, and describes whether a feature of that component is a Source,
Sink, or merely a portion of the Path of that Flow. A Flow Implementation is defined in the
flow subsection of a Component Implementation. It describes how the flow travels through
the subcomponents and connections internal to that implementation. Finally, an End-To-
End Flow, also declared in a Component Implementation, gives a complete path overview
from the starting to terminal components of a path.

These Flows can be used to describe any type of logical flow path the designer may desire,
such as data, control, or fault propagation. Properties can be specified for each flow to give
information useful for static analysis, such as communication latency along a path. Such
aspects make Flows a very valuable language component for the analysis of AADL system
models.

Extensibility

AADL is extensible in a number of ways that make it flexible enough to support a wide
variety of system models. One way in which AADL is extensible is through its ability
to define new data types. Ultimately, though, AADL’s focus is on providing an overall
architecture model not a data model. Therefore, the only requirement of a data definition
is that it must have an AADL legal name. If the name of the source data being modelled is
not legal in the AADL standard then the original name can be given as a “Source Name”
property in the data’s component type or implementation definition. However, more detail
may be provided as required by the user. For example, using properties the size of the
data may be defined in bytes. The internal composition of structured data elements such as
C/C++ structs or Ada records may be defined through nesting data subcomponents. For
shared data models, access and synchronization protocols can be defined as properties along
with which components have read, write, or read/write access.

Much of the detail of component behavior and requirements is provided by the definition
and association of properties. The core standard only provides four types of property values:

Matthew E. Anderson Chapter 2. Model Driven Engineering 27

• Bool (aadlboolean)

• String (aadlstring)

• Real (aadlreal)

• Integer (aadlinteger)

Using base types such as these one can declare new properties, as a name and a range of
acceptable values:

Name : type <type definition>

The property type defined may be a subset of one of the basic types, or define a new set of
units, or combination of these. Other new property declarations may instead enumerate an
ordered list of literals or make reference to a particular component or class of components. Of
course, a property may also have a constant value, associating a symbolic name with a value
- not unlike a constant or #define in C\C++. This ability to define new property types,
values, and units of measure, is valuable when creating or applying new domain specific
analyses, software tools, or enabling language extensions.

Language extensions, in particular, are AADL’s preferred solution for adding modelling
capabilities for features, attributes, and behaviors that are not covered by the base standard
or are unable to be fully described by the definition of a new property set. In AADL, these
extensions are referred to as Annex libraries. These libraries are declared inside AADL
packages, with the form:

Annex <name> {** <content> **}

The name given to the annex must be a legal AADL name but the syntax used in the annex’s
content may make use of almost any technical language construct [29]. The only exception is
‘**}’ is reserved to denote the end of the annex. Once defined, an annex may be employed by
declaring an annex subclause in a component below the properties section (e.g. Fig 2.6 gives
a generalized description of how a threads behavior may be described using the behavior
annex.)

The example in Fig. 2.6 described the general syntax of the behavioral annex, but there are
a number of available annexes. The previously mentioned Data Model Annex (DAnnex) [29]
for example, or the Error Model Annex (EAnnex) [29], which allows for the creation of error
state machines to model the occurence and propagation of error states.

Matthew E. Anderson Chapter 2. Model Driven Engineering 28

thread Example

features

x, y : in event port;

end Example;

thread implementation Example.E

annex behavior_specification {**

<state variables> ?

<initialization> ?

<states> ?

<transitions> ?

**};

end Example.E;

Figure 2.6: Annex Subclause Usage

Available Tools

There are also number of tools available that support the AADL standard, its language
extensions, and perform various domain-specific analyses. We will briefly discuss a couple of
these that are most relevant to our work.

OSATE - The “Open Source AADL Tool Environment” (OSATE) [53] is an open source
editor and development environment for the AADL standard. OSATE 2.0 is the most recent
implementation of the development environment. It is built on top of the Eclipse Modelling
Framework [27] (EMF). It uses UML2 [67], an EMF compatible adaptation of OMG’s meta-
model standard as its backend. XText [68], an open source framework for the development
of domain specific languages, provides the front end functionality of OSATE’s text editing
environment. OSATE’s textual editor supports modeling, parsing, and instantiating models
in the AADL v. 2 standard. While the default distribution is strictly a text editor, the
environment is extensible through the use of Eclipse plug-ins.

These extensions include official plug-ins such as ARINC 653 [12] and the previously men-
tioned Error Model Annex. There are also a number of third party plug-ins such as the
Behavior Annex and a graphical model editor [8].

Cheddar - The default OSATE framework excels at detailed modeling of system composi-
tion and provides basic analysis capabilities to check for model coherence, resource usage and
statistics. For more detailed analysis, particularly of nonfunctional and run-time properties,
there are some commonly used plug-in tools, such as Cheddar [65]. It is an Ada based frame-
work for real-time schedulability analysis of AADL models. Cheddar has built in support for
a variety of known scheduling algorithms, as welll as a defined Ada-like extension language
to add new temporal behaviors that are not already covered.

Matthew E. Anderson Chapter 2. Model Driven Engineering 29

2.5 Related Works - Model Analysis and Code Gener-

ation Techniques for AADL

2.5.1 Ocarina

AADL’s capability to model the hardware and software components of a DRE concurrently
and its extensible property set for the description of both functional and nonfunctional
attributes or requirements allow for precise specifications. Its component reuse, refinement,
and inheritance capabilities lend themselves to the desired iterative design approach. What
AADL lacks is an automated step from the final prototype to a fully realized system. Ocarina
[36] addresses this by providing a tool for rapid prototyping through the generation of high-
integrity code from AADL models. This code is generated to run atop a custom high-
integrity middleware called PolyORB-HI[71]. Ocarina is built using a subset of Ada described
by the Ravenscar Profile as suggested in [2]. This subset was chosen for its guarantee of
schedulability and safety properties.

The user manually builds their DRE using their choice of AADL standard. The Ocarina
frontend is modular and can be configured to support either the AADL v1 or AADL v2
standard. The model is fed into the appropriate lexer to tokenize the textual model. The
tokens are parsed to ensure adherence to AADL’s grammar standards. If any errors or
warnings are detected then they are displayed to the user at this point, otherwise an Abstract
Syntax Tree (AST) representing the model is generated. Error-free ASTs are handed off to a
semantic analyzer to be scanned. During its resolution phase, the semantic analyzer performs
some value substitutions to simplify the model before determining whether the semantics
conform with those of AADL. After this, the model is instantiated according to the rules
found in [63] to create an AADL Instance Tree. This tree is then checked for any incoherence,
such as any missing required subcomponents, necessary property definitions, or disallowed
protocols. A coherent instance tree is the final product of the ocarina frontend (Fig. 2.7).

The Ocarina backend (represented in Fig. 2.8) is also modular. Each module represents a
possible target language for the generated code. The first step of the backend is an expansion
of the instance tree, simplifying its structure and annotating it with additional information
necessary for the code mapping process. This expanded instance tree is then transformed
using the syntax in the module of the targeted language to build an intermediate syntax tree.
The intermediate syntax tree is scanned in conjunction with the PolyORB-HI middleware to
generate the final code with hooks into the appropriate middleware services. This generated
code, as well as any attached source code from the user, is tested to ensure it meets the
restrictions of high-integrity systems as described in Annexes D and H of the Ada 2005
standard [38].

Once the code has been generated it must be deployed in a way in which it can be compiled
and executed for the target distributed platform. Ocarina chooses to deploy statically [36]

Matthew E. Anderson Chapter 2. Model Driven Engineering 30

Figure 2.7: Ocarina Frontend

rather than dynamically, analyzing the model at compile time to determine the necessary
PolyORB-HI components and their desired properties. While this design choice requires the
addition of an analysis phase, that process can be automated and it avoids the potential
safety pitfalls present in a dynamic deployment - such as dynamic binding and memory
allocation.

The structure of AADL models is well suited to automating the static analysis process, as
it can already be thought of as detailing the deployment view of the software. Nodes of the
deployed software are analogous to process components in AADL. The tasks of each node
are given by the thread components, and necessary detail and model refinement derives from
those components’ properties. The locations of these nodes in the distributed system can be

Matthew E. Anderson Chapter 2. Model Driven Engineering 31

Figure 2.8: Ocarina Backend

determined by their bindings to the processor components of the hardware portions of the
model with buses and ports to describe the interconnections. Communication between the
nodes of the deployed code is handled using a system of sender/receiver tuples in the glue
code, a detailed description of this approach can be found in [36].

2.5.2 Additional AADL Based Methodologies

AADL’s flexible, high level approach to MDE provides an efficient basis for the modeling
and analysis of complex embedded systems. This fact, coupled with AADL’s widespread use
in the automotive and aerospace domains, has led to research into a number of frameworks
that would aid in formal translation and validation of AADL models or automating code
generation.

Matthew E. Anderson Chapter 2. Model Driven Engineering 32

Translation

A variety of model translations have been proposed. For instance, the Fiacre [17] project
is a TOPCASED [56] based approach that aims to provide a common linguistic pivot point
for ADL analysis. Fiacre serves as an intermediate language into which modeling languages
such as UML, SysML, and AADL may be converted so that they may be analyzed in model
checkers CADP [32] and TINA [16]. For AADL, thread behavior is specified using the
behavioral annex. The work in [13] proposes the translation of AADL into BIP [1]. The
translated model can then be simulated, analysed, and generated into C/C++ code using
BIP’s tool suite. Meanwhile, TASM[69] seeks to transform AADL into Timed Abstract State
Machines in a way that is provably semantics preserving [18].

Language Extensions

Unlike the preceding works that proposed managing AADLs lack of formal semantics through
translation, Compass[25] proposes a new formally defined language derived from AADL. The
System-Level Integrated Modeling language (SLIM) is an AADL derivative that describes
hardware and software behavior. Unlike its predecessor it has been extended with model
behavior and an enriched version of the Error Model Annex [54]. These enhancements
allow it to provide a threefold specification of the model: its nominal behavior, its error
behavior, and fault injections using probabilistic models to inject faults coupled with SAT-
based and symbolic model checking. Compass analyzes the system behavior under nominal
and simulated failure conditions to determine the reachability of errors states. The work
done in [26] continues the development of Compass by applying slicing techniques [52] to
reduce the state space explosion encountered when model checking SLIM specifications.

Polychrony

INRIA has been developing their own polychronous tool chain for AADL [47,48,70]. In this
ongoing work the entire AADL model is translated into Signal by translating from ASME
(AADL Syntax Model under Eclipse) to SSME (Signal Syntax Model under Eclipse) as a
java eclipse plug-in. The translated model accounts for the temporal (thread schedulability,
communication delay) and behavioral aspects of the original system. Originally, the behavior
needed to be specified in the behavior annex but [70] added support for generating Signal
code from a subset of Simulink using Gene-Auto[59]. Additionally, their work in [19] pro-
poses an extended version of the Behavior Annex. They propose adding synchronous aspects
of event triggered guards for state transitions. Such guarded transitions are associated with
actions that occur during the transition. The goal of this is to assist in bridging the gap
between AADL and Signal behavior for translation. There also exist tools built entirely
toward generating executable code from aadl specifications. One is, of course, Ocarina as it
forms the basis of our toolchains code generation, albeit extended to support a polychronous

Matthew E. Anderson Chapter 2. Model Driven Engineering 33

specification. Another is the platform dependent software generation proposed in [29]. The
AADL model describes the target system, annotated with properties that describe the ca-
pabilities and requirements of the target. Using these properties the tool generates code
specific to the target platform by drawing upon a library of C/C++ code snippets. These
works provide the convenience and expedience of automated code generation but lack the
formal verification capabilities of the other approaches. Our work does not deal with fault
or probabilistic models as done with the Compass project. However, it has the advantage
of being compatible with standard AADL models. Furthermore, we can leverage MRICDFs
polychronous model for analysis and multithreaded code generation. Similarly, we believe
this gives an advantage over the other formal translations such as those in BIP and Fiacre.
Indeed, a polychronous approach is more naturally suited toward modeling a distributed sys-
tem wherein the components are operating at different rates. Unlike the other polychronous
approaches, we do not seek to translate the entire AADL model for verification or simulation.
Instead we focus on creating an approach that can be integrated as part of an end-to-end
toolchain.

Chapter 3

Formal Language Preliminaries

3.1 Formal Languages

Low level programming is capable of implementing a large class of applications for real-time
embedded systems. As a result its unsurprising that it is commonly known and widely used
for this purpose. While many real-time services and platform features aren’t natively acces-
sible in these languages, a number of Application Programming Interfaces (API) have been
created to provide them with a standardized means of interfacing with these features. A
prime example of this is the POSIX threads API for C/C++ to provide specialized features
for multithreading controls. However, while these APIs allow developers to support such
a diverse class of applications with low level languages, they still suffer from a number of
drawbacks. For instance, modern embedded systems frequently employ a significant amount
of concurrency both between interacting threads on a processor, other components within
the distributed system, and with the larger environment. Even with the aid of a special-
ized API such as POSIX the manual implementation of these concurrent features is both
tedious and error prone. The developer must, in effect, manually schedule the time triggered
communication aspects of the system and any communication between parallel threads risks
deadlock or creating race conditions. Testing and verifying that the system is free of such
faults then becomes an additional cost. Second, a low level approach makes it difficult to
observe a relationship between a section of code and a component or constraint in the initial
specification. This ambiguity makes it difficult to ascertain whether an element of a thread
can be safely changed or whether it is fulfilling a requirement of the design. Indeed these
threats to the safe and secure execution of the system posed by concerns of thread safety, as
well as the potential for error present in manual implementations, illustrate part of the need
for verification. Yet the correctness of these systems is difficult to determine manually or
even through automated verification tools due in large part to the aforementioned ambiguity
in these low level languages. Even with automation the state space required to exhaustively
test a system will quickly become prohibitively large and can lead to overlooked errors.

34

Matthew E. Anderson Chapter 3. Background and Preliminaries 35

3.1.1 Synchronous Languages

It should come as no surprise then that some designers have looked to higher levels of
abstraction as a solution for simplifying the problem of identifying critical sections and
validating the behavior of the system. These languages are still primarily used for early
development. Their abstraction is well suited to quickly creating prototypes for high-level
specifications that can be verified and simulated. Some, however, have been designed with the
goal of supporting the entire process from initial specification through to implementation.
These tend to rely on automatic code generation to provide the low-level code from the
abstract specification. The correctness of the generated code is guaranteed. This coupled
with the simplified nature of these languages reduces the duration required for development.
The synchronous approach [14] is one such route taken to implement a high-level approach.
It is based on a mathematical foundation that simplifies the system by abstracting away
real-time concerns and replaces them with a strictly logical notion of discrete instants. The
core notion of this abstraction is referred to as synchrony, or the synchrony hypothesis. In
general terms, the synchrony hypothesis divides time into discrete instants between which no
events or computations occur. Working on this assumption the programmer does not need to
be concerned with timing of the computations occurring within an instant, merely assuming
that they will complete before the next instant begins. This offers a platform-independent
model of system behavior that is valid as long as the final system is fast enough to satisfy
the assumptions made by the synchrony hypothesis. We examine four of the synchronous
languages. Two are strictly synchronous, Lustre which uses a data-flow declarative approach
and Esterel which has a control-flow, imperative approach. The other two are polychronous,
both data-flow declarative approaches: Signal and MRICDF. While similar in approach, the
two differ in terms of implementation and approach to model analysis. In the next section
we will provide some preliminary background on the synchronous approach and contrast its
different languages to illustrate its uses as well as our reasoning for supporting its adoption
in our methodology.

Preliminary Definitions

Here we informally introduce some concepts that are necessary to understand the fundamen-
tals of the synchronous languages. As previously mentioned, these languages are all built
around a fundamental assumption called the synchrony hypothesis. This core concept means
that physical time is abstracted away from the model, allowing the developer to focus on the
logical behavior of the system. These systems are also reactive, the arrival of new values on
an input represent an event. When an event occurs it triggers a computation that must be
completed before the next event occurs. Instead of tracking the duration of the computation
in physical time, the behavior is divided up into discrete, logical instants. These instants
represent the boundaries of execution for each such reaction. There is no relation between
these instants and the physical time taken for the computation. Rather the only concern is

Matthew E. Anderson Chapter 3. Background and Preliminaries 36

respecting the assumption made by the synchrony hypothesis and ensuring that the reaction
to any given event is completed before the end of the instant it triggered. A signal is the
totally ordered sequence of events that flow from a source to a sink interface port in the
system. Events that occur within the same instant, regardless of their precise physical time,
are thus said to be synchronous with each other.

Several synchronous programming languages have been implemented around these core prin-
ciples. Each has its own quirks in terms of specification, compilation, and intended applica-
tions but they all share some common attributes. In addition to being event-driven reactive
systems, each language is synchronous. By this we mean that each reaction initiates a
batch of operations that are executed within a common instant. Some implementations
are monochronous, enforcing a single master clock, while others are polychronous and only
enforce synchronicity between components when they must communicate with each other.
This approach models concurrency within the system specification at a high level. As a re-
sult, statements that are determined to be independent of each other will result in generated
code that executes in parallel. Perhaps most importantly, the languages all guarantee de-
terministic execution because all computation and communication will be completed within
a single instant. Thus for any given triggering event, the subsequent output for the end of
that instant can be predicted. With these properties in mind we will now discuss four of the
synchronous formal languages beginning with the monochronous approaches and then the
polychronous models.

Esterel

Esterel[15,23] with its beginnings in 1984 is the oldest of the synchronous languages and well
known, having been used in a number of industrial projects in Europe. As such its perhaps
not surprising that it bears the greatest resemblance to the general purpose programming
languages that preceded it. Esterel’s style and syntax is that of a textual, imperative lan-
guage. Its focus on specifying the control of the target system also makes it fairly unique
among the synchronous languages and also lends a feeling of familiarity to those with a
background in standard software development.

Signals in Esterel serve as both inputs and outputs. A signal may be present or absent
during a given instant as previously defined. Further, the signals may or may not have a
value associated with them. Signals without a value are referred to as pure signals. Tick is
an example of an important pure signal in the language, its an implicit part of all Esterel
programs. Tick is present every instant and represents the global abstract clock that drives
the system. Each occurrence causes all threads to resume their execution from where they last
paused. Signals communicate by broadcasting their presence (and potential value) through
the use of an emit statement. Emitted signals are visible instantaneously throughout the
system. For coherence purposes, signals may either be present or absent but never both.

The basic entity of Esterel is a module. Modules have an interface that defines their input

Matthew E. Anderson Chapter 3. Background and Preliminaries 37

Table 3.1: Esterel Statements

Statement Description
p;q Statement Sequencing - execute p followed by q

p || q Execute p and q in parallel until both have terminated
emit S Make signal S present

emit S(e) Make signal S present with the value e
present S then p else q end If the signal S is present then execute p otherwise execute q

x := y Variable assignment
if e then p else q Data Conditional Statement

loop p end loop indefinitely unless preempted
abort p when S Run p until but not including the instant signal S becomes present

pause Do nothing in this thread until the next instant
halt Do nothing until preempted

and output signals and a body that is made up of statements like those shown in Table 3.1.
An example module is shown in Fig. 3.1.

module ABRO:

input A, B, R;

output O;

loop

[await A || await B];

emit O

each R

end module

Figure 3.1: Esterel ABRO

ABRO is a simple module that waits until both A and B have arrived and then it emits
the pure signal O, it resets each time R arrives. It concisely exemplifies Esterel’s emphasis
on control flow, pairing iterative statements like loop with synchronous concepts like those
involved in parallel reactive behavior of await. ABRO also displays Esterel’s capacity for
preemption and delay. Preemption is performed through the use of special statements, in this
case the loop preempts and reinitializes the program every time R occurs. These statements
can be composed either sequentially, using ‘;’, or in parallel, using ||. With sequential
statements(S1;S2) the first statement must terminate before the second can begin. Parallel
composition meanwhile, (S1||S2), executes S1 and S2 simultaneously and does not terminate
until both statements are finished. In ABRO this can be seen as the module waits for

Matthew E. Anderson Chapter 3. Background and Preliminaries 38

both A and B, in parallel, to arrive before sequentially proceeding to the emission of O. In
addition to the basic statements mentioned previously, Esterel has some derived statements
such as await S which is actually syntactic sugar applied to the commonly used statement
abort halt; whenS as a shortcut. Esterel is not, however, considered a complete language in
its own right. It supplements its otherwise capable framework by calling on external functions
to fill in the gaps within its functionality and data types. The internal behavior of these
external functions is treated as a black box by the compiler. This is a fairly common feature
of synchronous programming that provides the option to quickly extend the capabilities of
the language by calling external sources in standard, informal code but at the cost of reducing
the verifiability of that code segment to its interface and mere assumptions made about its
performance.

Compilation in Esterel concentrates on proving that each reaction is a deterministic func-
tion with a unique solution. That is, the specification should not deadlock due to cyclic
dependencies nor should it have multiple potential solutions. The existence and validity of
a solution in Esterel is reasoned about through the exploration of the set of control states of
the program, with the instants being delineated by halt statements. Being a monochronous
language, the clocks of Esterel signals are all tightly related to an assumed global reference
clock. This clock, represented in Esterel as the pure signal tick, is present in each instant of
the system’s execution. Therefore, the rate of tick is relative to each of the signals in the
specification, such that it must have the highest rate and each other signal’s clock can be
described as a strict subset of tick ’s. In a distributed design, therefore, each component’s re-
action instants are a subset of the master clock’s. Because of this tight relationship, changes
to the signals of a component may change its speed relative to the global clock, which in turn
may require resynchronization between the other components in the system and tick. An-
other side effect of this approach is that code generated from a monochronous specification
for such a distributed design can suffer from inefficiencies that result from being driven by
a single master clock. Although each occurrence of tick signifies the start of a new instant,
when dealing with multiple subcomponents it is quite possible to encounter a scenario in
which none of the signals of a component will have a reaction within a given instant. This
means that the code generation from such a model will unnecessarily wake some components
with tick each instant to check for other present inputs although they may have none.

Lustre

Unlike Esterel, Lustre [33] is a data flow oriented, textual language. The fundamental blocks
of Lustre are referred to as flows and nodes. In Lustre all variables are flows which are
potentially infinite sequences of values. In addition to its value sequence, each flow is also
associated with a clock. Constant variables are flows that have the same rate as the basic
clock. The basic clock serves as the global system clock, much like tick in Esterel. It is
present in every instant during the execution of the system, therefore it has the highest rate
of all the system clocks. There may be slower derived clocks in the system through the use

Matthew E. Anderson Chapter 3. Background and Preliminaries 39

of conditional undersampling, but all can be related as a subset of the base clock.

A variable’s type is given at its declaration. The types available in Lustre are limited to
either integer, real, or boolean. If more advanced types are needed they can be imported
by calling on an external source language, similar to how Esterel calls on external functions
to supplement its functionality. Variable values are determined by an assigned expression
which is composed of constants, operators, and other variables. Each variable is defined in
this fashion exactly once. The operators are defined pointwise so that they may operate on
infinite flows, so that for a given nth instant of execution the operator returns the nth value
of the flow. Lustre supports standard operators for arithmetic, comparison, and conditional
statements. In addition to these basic operators, Lustre has four special temporal operators
shown in table 3.2 along with example flow values.

Table 3.2: Lustre Statements

tick 1 2 3 4 5 6 7 8 9
x 0 1 2 3 4 5 6 7 8

pre(x) nil 0 1 2 3 4 5 6 7
1 → pre(x) 1 0 1 2 3 4 5 6 7

B T F F T F F T F F
y = x when b 0 nil nil 3 nil nil 6 nil nil

z = current(y) 0 0 0 3 3 3 6 6 6

Pre(x) allows recursive definition of variables by generating a flow that is equivalent to the
flow x, except delayed by an instant. The first value of this new flow cannot be inferred
and so defaults to nil, unless the → operator is used to insert an initial value. The when
statement is used for conditional undersampling. X when B generates an output flow that
is a subset of the flow of x, only when B is ‘true’. Finally, current allows for a flow with a
slower clock to be sampled by a faster flow through oversampling. The current(x) operation
returns the value of x’s flow the last time is was present. Nodes are functions of flows, they
define an interface of input and output flows and a body that is a set of equations. In this
way a Lustre model is a system of equations. We present here in figure 3.2 the previously
described ABRO program as it is implemented in Lustre.

The effect of Lustre’s dataflow focus, as opposed to the control flow oriented Esterel, is
immediately apparent in this new implementation. Lustre lacks control statements such as
synchronous iterative loops or globally broadcast signaling to provide concise structure to
the program. Instead the output flow, O, is defined as a function of the current and past
values of the input flows. EdgeA and EdgeB variables track their respective inputs. They
initialize to false and hold that value until their associated input arrives with a true value.
They hold their previous value through the use of the pre operator. An occurrence of ‘true’
on R will force edgeA and edgeB back to false. O, meanwhile, calls the node edge, which

Matthew E. Anderson Chapter 3. Background and Preliminaries 40

node edge (x : bool) returns (y : bool);

let

y = false → x and not pre(x);

tel

node ABRO (A, B, R : bool) returns (O : bool);

var edgeA , edgeB : bool;

let

O = edge (edgeA and edgeB);

edgeA = false → not R and (A or pre(edgeA));

edgeB = false → not R and (B or pre(edgeB));

tel

Figure 3.2: Lustre ABRO

returns ‘true’ only on a false→ true transition of the pair of inputs.

The Lustre compiler performs clock checking to determine whether the clock constraints of
the system are satisfied. Specifically, most operators require that all their operands have
the same clock rates as they can only operate when all the operands are present. Variables
are checked to ensure none are defined more than once to protect system coherence. Fi-
nally, Lustre requires that all specifications are entirely devoid of cycles, which are checked
for during causality analysis. This guarantees well behaved determinism but it can cause
some specifications to be rejected erroneously. If the model passes the causality analysis
without any detected errors then the compiler proceeds to code generation. The nodes of
the specification are first expanded recursively to achieve a flat program hierarchy. This is
necessary to provide context for the flows so that they can be scheduled deterministically
for the generated code. Then a single infinite loop representing a single execution cycle of
the program is constructed. The order of the computations is determined by dependencies
found in the flattened model during causality analysis.

3.1.2 Polychrony

Signal

Unlike Lustre’s basic clock or the pure signal tick in Esterel, SIGNAL [46] does not assume
the existence of a global reference clock. Signal is a textual, data-flow oriented language but
unlike Lustre, which defines each variable(flow) as a function of the values of its input flows,
SIGNAL takes a relational approach where each statement or component creates constraints.
Thus, Relations are the core of the SIGNAL language. The system’s behavior is modeled as
sets of relations between signal flows. As previously mentioned a key difference between this

Matthew E. Anderson Chapter 3. Background and Preliminaries 41

approach and those of the functions described in Lustre is that SIGNAL’s relations imply
both functional constraints on the values and temporal constraints on the clocks of the
involved signals. Further, the way in which an output signal is used will implicitly constrain
the behavior of its component input signals. Relations in SIGNAL have the general syntax
of < id >:=< expr >. The expressions can then be partitioned into one of two operational
sets - monoclocked or multiclocked. All signals that are involved in a monoclocked operation
are implicitly synchronous with one another. Signals involved in a multiclock operation,
however, may have different clock rates. Now we will describe the operational primitives
used in SIGNAL expressions and their implicit clock constraints.

Functions (Monoclock) Functions define instantaneous relations between signals S1...S2.
All input and output signals of the function are, as previously mentioned, implicitly required
to be synchronous. A function in SIGNAL is an output signal, or variable, that is assigned
the result of an operation. The syntax of these functions is given in Fig. 3.3 while a listing
of available operators, by type, is likewise shown in Fig. 3.3.

SO := F (Si1...Sin)

Figure 3.3: Signal Function

Table 3.3: Signal Function Operators

Type Operators
arithmetic + - x xx / modulo

comparison = / = > >= < <=
boolean not and or xor

Delay - $ (Monoclock) The delay operator ($) acts as a buffer, shifting values to later
temporal indices. Initial values must be provided for each buffered position. In this way, delay
allows the user to access past values of a signal and aids in protecting against uninitialized
data access.

SO := Si $ n init [c1...cn]

Figure 3.4: Signal Delay

In Fig. 3.4 we see the general form of the delay statement. N is the size of the buffer while
c1 through cn are constants of the same type as Si and So.

Undersampling - ‘when’ (Multiclock) The keyword when functions much like its Lustre
counterpart, The result of this relation is that so is assigned the value of si only when the
condition is both present and true, otherwise so is absent.

Matthew E. Anderson Chapter 3. Background and Preliminaries 42

SO := Si when < cond >

Figure 3.5: Signal Undersampling

Because this is a multiclock relation, the abstract clocks of the involved signals may not be
identical. The clocks of an undersampling relation are given in Fig. 3.6 where [S] denotes a
signal is present and true.

^SO := ^Si ∗ [cond]

Figure 3.6: Signal Undersampling

Essentially, the clock of the output signal is the intersection of the clock of the input signal
and instants for which cond is true.

Priority Merging - ‘default’ (Multiclock) The keyword default allows the user to merge
the flows of two signals. This is done deterministically, so that the value of S1 takes priority
so long as it is not absent. Otherwise, the value of S2 is propagated.

SO := S1 default S2

Figure 3.7: Signal Merge

The clock of SO is therefore the union of the clocks of the signals S1 and S2. SIGNAL groups

^SO := ^S1 + ^S2

Figure 3.8: Signal Oversampling

sets of relations as processes, much like Lustre’s nodes. As seen in the ABRO example of
Fig. 3.9, a process defines an interface of input and output signals as well as any parameters
needed for initializing constants and a body composed of relational expressions. There are
also two operations specific to processes. The first is the composition operator “|”. This
operation is equivalent to expressing a conjunction of the behaviors of the involved processes
P1|P2. The operation is both commutative and associative and the composed processes
communicate via common signals. Input signals in P1 may be outputs in P2, or vice versa,
but due to data flow’s single definition principle each signal may only be defined, e.g. appear
on the LHS of an expression, once. The other capability unique to processes is the definition
of local signals. An example of this is in the SIGNAL ABRO specification. Location signals
are declared in a where < type >< ID > ...end block. Locally declared variables are limited
in scope to the process in which they were declared.

The ABRO example presented here bears some resemblance to that shown for Lustre. Both
take a data flow driven approach to specifying the system. Note that unlike Lustre this
version starts by explicitly asserting certain clock constraint relations between the differ-
ent signals of the specification. This is necessary later during compilation when SIGNAL

Matthew E. Anderson Chapter 3. Background and Preliminaries 43

process ABRO = (? event A, B, R; !event O;)

(| A_Received ^= B_Received ^= after_R_until_O ^= A ^+ B ^+ R

| A_Received := not R default A default A_Received $ init false

| B_Received := not R default B default B_Received $ init false

| curR := not O default R default preR

| preR := curR $ init true

| O := when A_Received when B_Received when preR

|)

where

boolean A_Received, B_Received, curR, preR;

end

Figure 3.9: Signal ABRO

determines whether the specification is endochronous, having a single master clock that is
present in each instant, and therefore capable of sequential code generation. A Received,
B Received, and preR are all locally declared signals that maintain the state of the system
by tracking whether their associated input signal has arrived. The output, O, is an event
(similar to a pure signal in Esterel) signal whose clock is the intersection of the clocks of the
true values of these three state variables.

Lustre’s approach to parallel composition was to expressly forbid any delay-free cycles, re-
gardless of reachability. Esterel, meanwhile, allows so called “false causal loops” and cyclic
dependencies that are found to reside in unreachable states although this comes at the
cost of having to prove that these specifications have a unique fixed-point solution. The
polychronous approach taken by SIGNAL instead accepts a set of signal relations and the
constraints they imply. From these relations and constraints it may find zero, one, or multi-
ple solutions. This additional flexibility, where all three scenarios have accepted semantics,
can be useful for prototyping and high-level specification - although sequential code genera-
tion still requires the existence of a unique solution as in Esterel. the first step in SIGNAL
compilation is recursive expansion of relations until the process is entirely composed of prim-
itive statements. From the newly expanded process, clock constraints (implied and explicit)
are extracted in order to synthesize a clock hierarchy and determine whether or not a pro-
cess is endochronous. An endochronous process has a single master clock, which is a clock
that when it is absent then no other clocks are present in that instant of the process. For
processes determined to be endochronous, sequential code can be automatically generated
using extracted clock constraints and data dependencies obtained from the specified rela-
tions to determine a static scheduling of tasks. SIGNAL also has access to a model checking
tool Sigali[45], that converts the process specification into a Polynomial Dynamical Equa-
tion System (PDS). The PDS represents the state of boolean signals in “integer modulo 3”
space: presentandtrue → 1, presentandfalse → −1, and absent → 0. Non-boolean signals
are simply either present (1) or absent (0). Thus encoded, Sigali can mathematically rea-

Matthew E. Anderson Chapter 3. Background and Preliminaries 44

son about the reachability, invariance, and attractivity of the specification without having
to fully enumerate the system’s state space as would be needed in an automation based
approach.

MRICDF

MRICDF is a data-flow formalism that provides a graphical interface for synchronous lan-
guage development. The polychronous model of computation used by MRICDF is similar
to that used in Signal, albeit with a different approach to epoch analysis. There are four
primitive actors in MRICDF from which any other necessary actor network can be built.
They are:

• Buffer: This actor emits the value input in the previous instance, essentially delaying its
output signal by an instant. It takes a single input and emits a single output. The buffer
must be defined with an initial value to emit when the first input is received.

Figure 3.10: BufferActor

• Sampler: This actor takes two inputs, the first is of a type of the developer’s choice, while
the second must be a boolean. The sampler emits a value on its single output port only
when there is an event on the first input and the second input is both present and true. The
output rate is the intersection of the input rates.

Figure 3.11: SamplerActor

• Prioritized Merge: The merge actor has two inputs, emitting a value on its single output
whenever an event occurs on either of them. however, should both inputs have an event occur
during the same instant, the value of the first input will always be chosen to be emitted on
the output port. The rate of the resulting output signal is therefore the union of the rates
of the input signals.

Matthew E. Anderson Chapter 3. Background and Preliminaries 45

Figure 3.12: MergeActor

• Function: Finally, the function actor which supports a user selectable number of input
and output ports. The function’s n inputs are implicitly synchronous with one another. A
user defined function, written in C, is applied to the inputs to synchronously generate all
m outputs in the same instant. The internal operation may be any arithmetic or boolean
computation.

Figure 3.13: FunctionActor

Each also has known epoch and boolean equations associated with them that are used in the
analysis and code generation steps, they can be found in [50]. In addition to these primitives,
composite actors may be defined and saved for later use. The composite actors are composed
of any number of primities or other composites, encapsulating a specific task behavior for
reuse.

The process by which the actor network model is analyzed and prepared for code synthe-
sis is referred to as Epoch Analysis. This analysis is carried out by EmCodeSyn[40], the
graphical development environment for MRICDF. First, the actor network is transformed
into a system of boolean equations based on the equations associated with each actor as
previously described. The next step is to make sure there are no dependency cycles within
an instant, the presence of which leads to deadlock situations. This happens if there are
any looped signals in the network that do no have at least one buffer actor in the loop.
Assuming no deadlock situations are identified, its necessary to determine whether the code
to be generated is sequential or multithreaded. The generated code will be sequential if a
Master Trigger can be identified. The Master Trigger must be a signal that is present in
each logical instant. If more than one such signals are found to exist then they must be
synchronous with one another, precedence and data dependence is used to decide which of
the candidates has primacy over the others. The details of how a Master Trigger are de-
termined are discussed in [41], essentially the system of boolean equations is checked for a
unitary positive prime implicate using SMT-based techniques. If no single such signal can be
identified then a sequential implementation is infeasible without using exogenous constraints
to synthesize a master trigger. Making such a modification would change the original model,
so instead the next step is to look for Partial Triggers [51] that would enable a multi-threaded
implementation. A Partial Trigger may be absent in some instants, but there must not be

Matthew E. Anderson Chapter 3. Background and Preliminaries 46

an instant in which all Partial Triggers are absent. Each Partial Trigger is effectively a
Master Trigger for an individual thread.

After the model has been screened for deadlocks and its trigger or triggers have been identi-
fied, EmCodeSyn can generate C code from the actor network. Three files are generated: a
main file that contains the scheduling order determined by the epoch analysis, a header file
with the definitions of all the generated functions and primitives, and a function definition
file that contains as the user defined code for function actors. For sequentially implementable
code, computations are handled as the primitive actors interacting during each round of a
loop. The primitive actors are replaced by equivalent blocks of C code. In the multithreaded
situation, a thread is first generated for each discovered Partial Trigger. The clock trees
of the Partial Triggers are traversed depth first, populating each thread as with the single
sequential code. During the traversals, nodes of the tree are checked to determine whether
they had been tagged as being present under multiple root nodes (Partial Triggers), because
this indicates the node represents a variable shared between threads. Any nodes identified as
shared variables have wait-notify constraint code automatically generated around them for
thread safety. This capacity for correct by construction generation of thread parallelism and
synchronization objects plays a crucial role in the code generation model used by APECS
as described in Chapter. 4

Chapter 4

APECS Methodology

4.1 Motivation

As discussed in Chapter 1, dealing effectively with distributed real-time embedded (DRE)
system development requires the creation of a dedicated methodology that can handle all the
levels of design concerns. The methodology must be able to encapsulate all of the system’s
resources (processors, memory, etc) and model their allocation. Further, the methodology
should make explicit the behavioral expectations of the system (control/data flow, modes,
safety requirements, etc). It is critical that these concerns are addressed so that design-
ers may be able to detect inadequacies within the hardware specifications or architecture
hierarchy early in the design process to minimize the costs of changes. Model Driven En-
gineering (MDE) is a convenient and commonly taken approach to address these concerns.
In Chapter 2 we presented the state of the art in terms of general industry standards for
systems modeling languages. While each language is possessed of its own unique strengths
and weaknesses there were a few key commonalities. None of the modeling languages are
programming languages nor are they directly associated with a particular methodology for
progressing from high-level specifications in their standard to implementable software and
hardware models. As a result it is necessary for the stockholders and designers to create
or appropriate their own tools and process suitable to their domain. Additionally, while all
are capable of specifying the structure of a system and the the flows through that hierarchy,
they lack the semantics and the capacity to describe the implementation of the behaviors of
those components in a formally verifiable way. Recall, for instance, the requirements specifi-
cation given in Figure 2.4. While a helpful reference marker for a developer, it provides the
requirements in natural language absent means of enforcement. In chapter 3 we introduced
the formal synchronous languages which can help alleviate these issues with formally verifi-
able code generation. This chapter presents our methodology and tools designed to address
the concepts and implementation details needed to enable distributed, multi-threaded code
generation from formal software specifications for modeled critical systems.

47

Matthew E. Anderson Chapter 4. APECS Methodology 48

4.2 Approach

APECS is a top-down, model based approach that combines an AADL foundation that
supports the specification, design, and verification of systems with concepts of polychronous
languages to provide formal behavioral semantics and the automated generation of parallel,
executable code. The goals of APECS are therefore to:

• Capture the structure and composition of complex systems

• Integrate polychronous software methods with the modeling and code generation tech-
niques

• Support modularity, reuse, and iterative design refinement.

In order to achieve these goals we propose a top-down methodology (Fig. 4.2) based on
iterative refinement and formal verification.

• Initial Requirements Specification

• Defining the Required System

• Definition Refinement

• Model Optimization

• Validation and Code Generation

Figure 4.1: Vee Life Cycle [30]

Matthew E. Anderson Chapter 4. APECS Methodology 49

This approach is similar to the traditional “Vee” development lifecycle (Fig. 4.1) iteratively
applied at each step as it is refined. APECS uses a model based approach to capture the
structure and resources of the model during this process, while the behavior is specified
separately and associated with the corresponding model component. Now we will provide a
summation of each phase of this approach.

Figure 4.2: Methodology Phases

Initial Requirements Specification

At this step the stakeholders in the system provide their requirements for the deliverable
system. They provide the objectives, top-level use cases, and areas targeted for critical
activities. In our methodology we assume this is something provided at the beginning of the
project. While we intend to eventually generate a formal system model, at some point in its
earliest form the project begins as an informal statement of objectives and features.

Defining the Required System

This phase is for the specification of the system at a high-abstraction level. The intention is
to define just the top-level, mission critical components. These components are treated as

Matthew E. Anderson Chapter 4. APECS Methodology 50

black boxes. Their interfaces are defined per the initial requirements specification and their
required properties are added as component annotations. Using an ADL based approach,
this step consists of creating generic system and device types that can be instantiated with
more specific details as the model matures.

Definition Refinement

The top-level systems are decomposed and populated with subcomponents that fit the re-
quirements of the parent system. This process is carried out iteratively as each system is
decomposed and in turn its subsystems are decomposed until the model is fully flesh out
down to its lowest tier of components. During this phase some systems that were serving as
black box placeholders may be replaced by more specialized model components. For instance
a generic system may be replaced by a device representing a specific off-the-shelf component.
Additionally, behavior specifications are associated with their corresponding components are
they’re defined.

Model Optimization

At this phase the system hierarchy has been fully defined. With the full scope of the system’s
resources and properties available, static analysis techniques are employed and different con-
figurations, hardware bindings, and components instantiations are tested to improve upon
and balance performance with the production costs of the final product. This optimiza-
tion step and the previous refinement step are repeated until the designers are arrive at a
satisfactory solution.

Validation and Code Generation

A number of verification processes are applied using the tools available to perform static
analysis such as real-time and schedulability analysis, type checking, etc. These are all
part of the modeling language and its development environment. A cornerstone of our
approach is the correct by construction generation of multithreaded code after it has been
verified during compilation. This code is then distributed automatically on a high integrity
middleware that runs atop the underlying hardware. In the next section we will describe our
specific implementation and the tools that were created to implement and test the feasibility
of this methodology.

Matthew E. Anderson Chapter 4. APECS Methodology 51

4.3 Toolchain

Further, through its system component’s capabilities of modeling hybrid or generic com-
ponents and the ability to define multiple implementations for a component type, AADL
enables gradual refinement from initial requirements to executable models with the flexibil-
ity for rapid design implementation changes. Too seldom do these approaches address the
issues of combining models and tools for the purpose of insuring consistency between the
modeled specifications and the generated executable. Often, the distributed applications
must be written manually, a tedious task even when using middleware as a buffer between
differing underlying hardware platforms. We wish to integrate automated code generation
tools for the formal language MRICDF with the base AADL tool set. By doing so we can
insure correct by construction code generation from the model specification while reducing
time to market.

Figure 4.3: APECS Design Flow

Now we will discuss the APECS toolchain (illustrated in Fig. 4.3) and how it utilizes the
formalisms and tools presented in the preceding section. In APECS the stakeholder provides
their initial requirements in a form of their choosing: natural language, UML Use Cases, etc.
The developers then must manually define the initial model in AADL using systems and
generic devices to lay out the top level structure according to the initial specifications. The
top level of the model is always a system component, typically referred to as the Complete
System. This complete system is then refined by populating it and its subsystems with
additional AADL components. Generally the execution platform is defined first, so that
the software hierarchy may be properly structured and bound to the underlying hardware

Matthew E. Anderson Chapter 4. APECS Methodology 52

as it is defined. As the refinement progresses more detail is added to the model by means
of property definitions and use of the AADL language annex descriptions addition (non-
) functional property details. Independently of this, the software processes are modelled
in MRICDF. The MRICDF source code is then associated with its corresponding process
component as shown in Fig. 4.4.

process MRICDF_App

features

...

...

end MRICDF_App;

process implementation MRICDF_App.MA

...

Properties

source_name => "MRICDF_Source";

source_language => "MRICDF";

source_location => "../PATH";

end MRICDF_App.MA;

Figure 4.4: Associating MRICDF source files with AADL

After the AADL model has been created and the formal code bound to the software hierar-
chy, it is subjected to various forms of static analysis. Real-time schedulability, for instance,
can be tested using Cheddar. Alternatively, different processor bindings may be tried to
determine optimal distributions of the software components for the model’s resources. Addi-
tional custom analysis techniques may be added by leveraging AADL’s capacity for language
extensions and including add-ons to the modeling environment that can interact with the
custom annexes and properties. Once satisfied that the configuration and performance of
the modelled system meets the requirements, the development proceeds to code generation.
Ocarina is invoked on the AADL system specification. The new frontend of Ocarina (show in
Fig. 4.5 has had two significant steps added before it passes the instance tree to the backend
for code generation.

The MRICDF extension becomes active after the instance tree has been created. The tree
is walked by the tool and any process component found has its properties searched for an
MRICDF binding. Each such binding found identifies a process that must have its threads
identified and generated before the code generation process can proceed. The first step in
accomplishing this is to invoke another of APEC’s tools - EmCodeSyn.

A library call is made to EmCodeSyn, invoking it on the source file(s) bound to the current

Matthew E. Anderson Chapter 4. APECS Methodology 53

Figure 4.5: Ocarina Frontend with MRICDF extensions

target process. The MRICDF source files are analyzed and validated by EmCodeSyn be-
fore generating C/C++ code as described in [50], but with an exception. Normally, when
EmCodeSyn generates C/C++ code from MRICDF it also automatically creates a main
function. When generating code for APECS, EmCodeSyn instead only generates a library
of the individual thread functions. The main with the necessary scheduling will instead be
generated at the conclusion of Ocarina’s backend code generation.

In addition to the location and name(s) of the file(s) to be analyzed, the call passes a pointer
to a struct to EmCodeSyn. After completing its analysis, EmCodeSyn populates this struct,
shown in Fig 4.6, with the number of threads found in the MRICDF source and the names

Matthew E. Anderson Chapter 4. APECS Methodology 54

and types of any shared variables. Upon the return of this struct the next step in the

struct Data {

Std::String Type;

Std::String Name;

};

struct MRICDF_Threads {

int NumThreads;

Data* Shared_Variables;

};

Figure 4.6: Passing Thread Information

MRICDF extension begins, updating the current process based on the returned data (seen
in Algorithm 1).

First a thread component type is instantiated, named “thread {j}” (where j is the current
thread number being instantiated). Then a thread component implementation, “thread {j}.t”
is instantiated. The new thread component implementation is added as a subcomponent to
the current process’s instance. To make use of the generated code, a subprogram is instanti-
ated named “block {j}”. A subprogram call to “block {j}” is registered to the corresponding
thread instance. The necessary source properties are added the the subprogram to indicate
the source function’s name and where the encapsulating file is located. Additionally, the
thread’s dispatch protocol is specified by the addition of requisite properties to the thread’s
instance.

After the thread and its subcomponents and properties have been added, its also necessary to
add any external shared data to the model. The second field of the struct is a two-dimensional
array containing information on the interface and shared data of each of the threads. Each
row represents a thread, and a column exists for each external or shared connection in the
thread. The columns are a struct tuple containing two strings. The first string is the type
of the variable, while the second string is the name. For each thread, its corresponding row
in the variable array is traversed. The process is checked each time a variable is found to
see if the data element already exists or if it is part of the process’s interface. If it does not
exist, then a new corresponding data component is instantiated using the type and name
information from the array. Finally, data access permissions and connections are added to
the process between the data element and the current thread. After the process has been
populated with its threads, their subcomponents, connections, and properties the expanded
instance tree is ready to be handed off to the backend for code generation.

Linking to the files containing these external functions, which have been generated from the
MRICDF model by EmCodeSyn, is handled automatically by the generated Makefile. The
full suite of generated code is organized and distributed as code libraries as shown in Fig.

Matthew E. Anderson Chapter 4. APECS Methodology 55

Algorithm 1 Dynamically Adding Threads to an AADL instance tree

1: function Add MRICDF Threads(Thread Struct)
2: for all processes ∈ Tree do
3: if SourceMRICDF ∈ processi.properties() then
4: for Thread Struct→ NumThreads do
5: new(type, ”thread {j}”)
6: new(implementation, ”thread {j}.t”)
7: processi ← reg(”thread {j}.t”)

8: new(type, ”block {j}”)
9: new(implementation, ”block {j}.b”)
10: ”thread {j}.t”← reg(”block {j}.b”)

11: ”block {j}.b”← prop(SourceLoc)
12: ”block {j}.b”← prop(SourceName)
13: ”thread {j}.t”← prop(Protocol)

14: for all Thread Struct→ V ars do
15: if V arsk → Name 6∈ processi then
16: if V arsk → Type 6∈ processi then
17: new(type, ”V arsk → Type”)

18: new(type, ”V arsk → Name”)
19: processi ← reg(Data.(V arsk → Name))

20: Data Access(Thread {j}, V arsk → Name)

Matthew E. Anderson Chapter 4. APECS Methodology 56

4.7.

Figure 4.7: Code Distribution

Main: The main file initializes and starts the system tasks as defined from the AADL
model and the linked source specifications.

Activity: Each task of the system is declared and defined in the Activity library.
Tasks are derived from each of the thread components in the aadl model.

Subprograms: The Subprogram library defines the calling interface for each of the
functions called by the subprogram calls of the tasks. Internally, they call an external
function that is expected to be defined in the source files.

Deployment: The deployment library contains a protected object designed to act like
a mutex for synchronizing task communication.

Request: The header of the library defines a struct that maps each port in the model.
The struct contains two variables, the first is a union of structs called var. Each struct
in var represents a port in the model, the content of these structs is a variable of a
type matching that of the associated port. The second variable, port, identifies which
port in the union is currently being targetted.

Marshallers: The marshaller library defines the functions to translate network stream
data into application usable data.

PolyORB−HI: Elements from the PolyORB−HI middleware libraries are included
as needed by the generated libraries.

Source Files: The code generated from invoking the EmCodeSyn tool on the linked
MRICDF specifications.

Matthew E. Anderson Chapter 4. APECS Methodology 57

The generated Makefile handles the compilation and linking of the generated and user source
files automatically. In our prototype framework AADL provides the versatile and extensi-
ble foundation for the co-modeling of the system’s execution platforms and and software
hierarchy. The introduction of MRICDF as a behavioral specification supplies a formal,
mathematically rigorous model. Its addition creates a more complete system description
and allows for both automated multithreaded code generation and verification of the soft-
ware. The framework’s comprehensive capture of the system’s structure allows for earlier
analysis of the system and its modular design enables component reuse and refinement from
an initial definition to a verified and fully refined implementable model. In the next chapter
we will describe the process and tool implementation for our optional Simulink frontend
extension for the APECS framework. The goal of this extension is to provide a frontend
with industry familiarity and support the use of existing legacy code. By automating and
verifying its translation into a formal intermediate format additional front

Chapter 5

Simulink to Polychrony

5.1 Introduction

Simulink is a simulation-based, model driven design tool using block diagrams to describe dy-
namical systems. Simulink models are organized as functional blocks representing piecewise-
constant functions that operate on discrete-time signals. The primitive blocks of the model
can be broadly grouped into two categories: Interface and Combinatorial. Interface blocks
connect the model with its environment and fall into the subcategory of sources and sinks.
These connections may be to an external source (e.g. FromFile, FromWorkspace), to an-
other Simulink system (Inport, Outport), or to something internal (Constant). Combinatorial
Blocks are those that modify the values of the signals as they move from source to sink, ap-
plying operations to one or more inputs and instantaneously producing one or more outputs.
These operations may be arithmetic, relational, logical or something more advanced. In ad-
dition to these broad, basic categories there are some temporal blocks that modify the rates
of communication and preserve the states of the system (e.g. Zero-Order Hold, Unit Delay).
Subsystems are user-defined abstractions that encapsulate primitives and other subsystem
blocks. They define an interface of input and output data ports that creates a standardized
interface between the environment and the system’s internal components. The internal com-
ponents of default subsystems may inherit their sampling rate from their inputs or they may
have their own explicitly defined timings. There also exist two variants of the system with
differing implementations of control for the system’s execution. The triggered subsystems
receive an additional control signal. The system and its subcomponents only activate during
instants when a triggering event occurs. A Triggering event is reflected by a change in value
of the control signal either rising, falling or both depending on the user selected settings.
Alternatively, anenabled subsystem operates during instants where the control input, ’en-
able’, is set. Both of these subsystem variants affect their subcomponents beyond merely
establishing hierarchy, complicating the timing requirements in ways that will be explored
in more detail in section 5.2.

58

Matthew E. Anderson Chapter 5. Simulink Frontend 59

The ultimate goal of this translation is the facilitation of an automated toolchain where
software behaviors specified in Simulink are transformed into MRICDF, verified, and then
used EmCodeSyn’s code generation capabilities to create executables targeted for a particular
platform. In pursuit of this goal we attempt to develop a method of model transformation
that, given the same inputs, will produce a new model with identical output behavior.
This approach is supported by the similarities between MRICDF and Simulink models.
Both approaches utilize a graphical approach to model data-flow networks. With Simulink
organized into Subsystems and MRICDF grouped by composite actors both are organized
hierarchically in definition as well as in execution. This means the overall structure of the
model, if not the exact composition, can be preserved after transformation. However, despite
the broad similarities between the two languages there are a number of key differences that
make this translation worthwhile albeit complicated. At the core of this is the issue of
formal semantics. While MRICDF’s semantics are formal and precise, those of Simulink
differ based on simulation settings and their intended behavior is only partially documented
in natural language. To enable an accurate translation to a more formal representation
it is necessary to enforce certain additional restrictions. For instance, while MRICDF is
strongly typed, Simulink allows signals with implicit. MRICDF’s polychronous model of
computation is entirely built around a discrete model of time while Simulink operates in
continuous time. In fact, even the blocks of Simulink’s discrete library technically operate as
piecewise continuous functions. While performing discrete time simulation, each block in the
Simulink model either has an explicitly specified sampling period or it inherits a sampling
rate from its sources. Because the system will be interacting with a larger environment of
potentially unknown timing we require that all of the top-level inputs of the model have
explicitly specified a sampling rate. While MRICDF operates in logical time, it is necessary
to know the sampling rates of the system model to determine the blocks’ computational
rates relative to one another to ensure those constraints are enforced in the generated model
and to statically determine whether the constraints present any conflicts.

We choose a fixed step and discrete simulation solver for the model. This solver computes
the next time step at each instant by adding a fixed-step size increment to the current time
as variable step-size is unsuited for models intended for code generation, it does map to
real-time clocks. It also disallows the use of continuous blocks. At this time, we don’t
support continuous block behavior. The execution mode is left to auto, as either single
or multiple tasking models are compatible with our approach. Auto will choose the mode
appropriate to the current model. Single task mode executes all blocks together at every step
while a multiple tasking groups blocks according to their execution rates as representative
of concurrent, multi-rate executions. Finally, we assume that the Boolean logic signal (BLS)
flag is set. This flag forces the output of logical operations to be Boolean typed. In addition
to being good practice this also simplifies the type inference and verification process.

The translation of MRICDF to Simulink proceeds as shown in Fig. 5.1.

The Simulink model is converted from its original format (.mdl) into an XML file using
the ’ExportToXML’ feature of Simulink’s save system command. The XML source is then

Matthew E. Anderson Chapter 5. Simulink Frontend 60

Figure 5.1: Sim2Em Translation Flow

parsed by our tool building a list of blocks and mapping their typed connections. As they
are parsed, the block types are checked to make sure they are supported for translation. If a
conflict is found then an error is generated along with a message identifying the unsupported
block. Additionally, during this step some virtual blocks are pruned from the model before
it undergoes static analysis. For example, the Goto and From blocks that are used to route
signals in place of drawn lines. If found, a standard connection annotated with the type
and port information from the Goto block is added to the model for each connected From
block and the virtual blocks are deleted. The removal of these blocks is necessary because the
symbolic connections made by these blocks is not reflected in the structure of the model which
disrupts inferencing attempts that are made based on port interconnections. After the blocks
of the model have been parsed, the port data types and activation rate information necessary
for building the corresponding MRICDF network must be extracted. The applications of
these properties and the methods of their extraction is discussed in detail in sections 5.2 and
5.3. Whether the model types or timings are extracted first does not matter, so long as both
are completed before the translation process begins. If an error or other irreconcilable conflict
is found in the model’s properties during this extraction process then the translation will
fail, citing either a type or clock related failure. Otherwise, the translation proceeds using
the extracted properties to hierarchically construct the equivalent MRICDF actor network
from the top down. Each basic block becomes an equivalent MRICDF actor. Systems and
subsystems are translated in a top-down approach, becoming composite actors which are
then populated by the translation of their component blocks.

Matthew E. Anderson Chapter 5. Simulink Frontend 61

5.2 Type Inference

Unlike MRICDF, Simulink does not require that each signal have an explicitly defined type.
That is not to say that Simulink ignores the data types of its signals. Indeed its simulation
engine enforces a set of typing rules and may even reject a model if these rules are found
to have been violated. We present an informal overview of those rules here. First, Simulink
assumes that a signal’s type is double. There are two exceptions to this assumption. The
first is where the designer has explicitly set a different type in the block’s definition. The
second is when the source or sink block of a connection requires a different type, because of
a property of a block (e.g. logical operations require Boolean typed signals). Each blocks
accepted port types are listed in their respective block specification found in [37]. Simulink
will statically analyze a model using these assumptions and will reject any that attempt to
connect ports with incompatible types. The basic types supported by Simulink are: double,
single, signed and unsigned integers from 8 to 32 bit precision, Boolean, and undefined.
Together this type set is denoted by the name TSim. For many blocks it is useful to refer to
two type subsets: numeric (TSimNum = TSim − Boolean) and Boolean. The compatibilities
between each basic type is represented by a type lattice shown in Fig. 5.2.

Figure 5.2: SIMULINK Type Lattice [66]

The existence of the undefined types, denoted by ⊥ at the base of the lattice, is the reason
the type inferencing step is required. In order to create the MRICDF network we must first
obtain explicit types for all of the signals to be instantiated. In addition, some types may
need to be refined using the lattice to avoid conflicts in the generated model. The type
inference process is performed using a breadth first traversal of the model (See Algorithm 2).
The fundamentals of this process are based on the type inference approach used in [49, 66]
as the typing needs of MRICDF are the same as those of Lustre and Signal. Although the
algorithm undertaken to achieve this inferencing is distinct.

At the beginning of the traversal the inputs at the root system level as well as other in-
dependent source blocks, such as constants, are pushed into a dequeue. Since these inputs
are at the top level of the model, their sources are in the environment or in other systems

Matthew E. Anderson Chapter 5. Simulink Frontend 62

Table 5.1: Types of Supported Simulink Blocks [49]

Block Type
Constantα : α, α ∈ TNum
In, Out Port α→ α, α ∈ Tall

Zero-Order, Hold, Unit Delay : α→ α, α ∈ Tall
Gain : α→ α, α ∈ TNum

Arithmetic : α× ...× α→ α, α ∈ TNum
Trigonometric : α× ...× α→ α, α ∈ TNum

Relational Operator : α× α→ Boolean, α ∈ TNum
Logical Operator : Boolean× ...×Boolean→ Boolean

Saturation : α→ α, α ∈ TNum
Difference : α→ α, α ∈ TNum

Switch : α× β × α→ α, α× β ∈ TNum
Discrete Filter : double→ double

Pulse Generator : α, α
Data Type Conversion : β → α, α, β ∈ Tall

Digital Clock : α, α ∈ TNum
Subsystem : special∗

SFunction : special∗

* The type behavior of these blocks is described in the algorithm descrip-
tion

Matthew E. Anderson Chapter 5. Simulink Frontend 63

Table 5.2: SIMULINK Block Equations [66]

Equation Type Equation
y = Constantα : yT = if yT ≤ α then α

else error
y = FromWorkspace *
y = Inportα, y = Outportα yT = xT

ToWorkspace yT = xT

y = Zero−OrderHold(x) : xT = yT

y = UnitDelay(x) : xT = yT

y = Gain xT = yT =
sup(double, xT)

y = Arithmetic(x1, . . . , xn) : yT = xT 1 =
. . . = xT k =
sup(double, yT , xT 1, . . . , x

T
k)

y = Trigonometricα yT = xT =
sup(double, xT)

y = Relational(x1, x2) : xT 1 = xT 2 =
sup(double, xT 1, x

T
2),

yT = Boolean
y = Logical(x1, . . . , xk) : yT = xT 1 = . . . =

xT k = Boolean
y = Saturation yT = xT =

sup(double, xT)
y = Difference yT = xT =

sup(double, xT)
y = Switch(x1, x2, x3 : xT 1 = xT 3 = yT =

sup(xT 1, x
T
3, y

T)
y = DiscreteF ilterα : yT = xT = ifyT ≤

double then double
else error

y = PulseGeneratorα yT = if yT ≤ α then α
else error

y = DataTypeConverterα(x) : yT = ifyT ≤ α then α
else error

y = DigitalClock yT = double
y = SFunction *
y = Subsystem *

* The evaluation of the types of these blocks is described
in the algorithm description

Matthew E. Anderson Chapter 5. Simulink Frontend 64

outside of the model. Therefore if their type isn’t explicitly defined in the model then it
must be assumed to be double. In the case of constant blocks, the type must match that of
the block’s value parameter, otherwise the the model is rejected with a type error violation.
After each block is evaluated, any changes in type are propagated to its connections. Any
block not already in the dequeue that is updated through such a connection is pushed into
the dequeue for evaluation. Each subsequent block is evaluated according to its correspond-
ing typing rules and equations as described in Tables 5.1 and 5.2. The ≤ operator denotes
a relational order between types on the type lattice. For instance int32 ≤ double while
Boolean � single. The sup() operation on the other hand defines the greatest common
refined type between two or more types on the lattice. For example, sup(double, int32) =
int32 while sup(int32, Boolean) = Error.

Figure 5.3: Arithmetic Typing Example

In the arithmetic operation modeled in Fig. 5.3. the two inputs and the constant are
evaluated first. Since the inputs are connected to the environment and their type is undefined
they are assumed to be double. After the two inputs have been processed, the first add block
is appended to the dequeue for evaluation. As an arithmetic block, its supported types
belong strictly the the numeric subset of type primitives. Referring to the type equation
table, the type of an addition block is the Sup() of its inputs and its output and a double -
which forces an Error result for non-numeric values. In this case:

Sup(double, yT , xT 1, x
T
2)

⇒ Sup(double,⊥, double, double)
⇒ double.

The constant contains an integer with the parameter value ’1’. The the second add blocks
type equation takes the form:

Sup(double,⊥, double, int32)⇒ int32.

The result is this propagates to the addition block’s output as well as back to the first
adder, changing its output type requirement to int32 causing it to be pushed into the front
of the dequeue to be reevaluated. Reapplying the Sup() operator with the updated data
types cause its inputs to also change to int32. This further back propagates to the inputs.
If the designer had wished to first carry out an addition operation using double precision
and then use an integer increment, they could achieve this by explicitly carrying out static

Matthew E. Anderson Chapter 5. Simulink Frontend 65

type casting using a Data Type Converter block. This repeated evaluation and and type
propagation process continues until all the blocks have been evaluated with no pending type
changes remaining. Two special cases for the listed type equations are the Subsystems and
S-Functions. Each of these may have input and output types in any combination required
by the designer. In the case of subsystems, the block hierarchy is flattened so that the
subsystem’s component blocks are analyzed directly. Once the types of its input and output
subcomponents have been determined, those types can be compared with the subsystem’s
external connections. SFunction internals, however, are a black box from the perspective of
the Simulink XML schema. As a result the tool is unable to directly validate the types of the
SFunction ports. One approach to dealing with this is to assume the types of the interface
have been explicitly set and verified by the designer. However, this is not ideal for safety and
security validation of the system. It also causes issues for extrapolating the type interface
of the MRICDF function. An alternative approach, illustrated in the PMU case study, is to
create specialized subsystems that define the type interface of the SFunction. This allows
the block’s to be automatically extracted and applied to the generated function.

5.3 Clock Inference

As discussed in section 3.1.2, time in MRICDF is measured in discrete, logical instants.
Each signal s has a clock bs associated with it that represents a totally ordered sequence of
Booleans. A value of true in bs means that s is present and has a value in that instant. Unlike
with monochronous languages such as Lustre or Esterel, these clocks are not necessarily
related to a global base clock. Because they needn’t all synchronize, the logical instants of
the system of the system are said to be partially ordered. The temporal relationship between
signals may be explicitly defined using clock calculus annotations[40] or they may be inferred
from the properties of the actors.

Simulink simulates the behavior of its blocks using piecewise-constant continuous-time signals
that are updated at intervals defined by ticks of a global simulation clock (Tn). The period
of the global clock is defined for the model as a measure of real-time in terms of seconds or
fractions of seconds. Each block in the model then has a sample rate that is defined by a
period (π) and an initial phase (θ) such that when Tn = N ∗ π + θ the block samples its
inputs and updates its output. The rate of a signal is determined the block producing it and
may be scaled to interact with blocks operating at greater or lesser rates through the use
of Unit Delay and Zero-Order Hold blocks respectively. A special case for Simulink timing
is that of triggered and enabled systems. Unlike a basic block, subsystems may optionally
have an additional control signal that determines whether it is active. A trigger activates
when the control signal crosses zero and may be either rising, falling, or either. A subsystem
is enabled so long as the signal driving the enable port holds a value that is greater than
zero. Because these components are disabled at other times the subcomponents of triggered
subsystems must have sample rates that match that of the trigger, while those in an enabled

Matthew E. Anderson Chapter 5. Simulink Frontend 66

Algorithm 2 Type Inference

function Inference(BlockList)
ChangeIn, ChangeOut, T ypeDequeue, Fail
for all blocki ∈ BlockList do

if (blocki.type == ’Input’ and blocki.parent == ’Root’) or blocki.type == ’Con-
stant’ then

TypeDequeue.push back(blocki);
BlockList.remove(blocki);

while ! TypeDequeue.Empty() do Fail = TypeEval(blockj);
if Fail then

Throw Error
else

TypeDequeue.pop front()
UpdateSources(blockj, &TypeDequeue)
UpdateSinks(blockj, &TypeDequeue)

function UpdateSources(Block, Dequeue)
for all Blockj.sources do

if OutPort.type != blockj.InType then
OutPort.type = blockj.InType
TypeDequeue.push front(sourcek)

function UpdateSinks(Block, Dequeue)
for all blockj.Sinks do

if InPort.type != blockj.OutType then
InPort.type = blockj.OutType

if Sinkk /∈ TypeDequeue then
TypeDequeue.push back(Sinkk)

Matthew E. Anderson Chapter 5. Simulink Frontend 67

subsystem execute in the subset of instants where their normal activation coincides with
their parent subsystem being active.

As previously mentioned, each block has a specified sampling rate. By default this rate is -1
which signifies that its rate is inherited from its inputs. It is therefore necessary to infer the
rates of these blocks to insure the communication between actors in the MRICDF network
can be properly synchronized. Similar to the type inference extraction, our approach shares
the same temporal concerns as the other synchronous and polychronous translations carried
out in [49,66]. The fundamental requirements are the same for our MRICDF translation, and
will be repeated here. However, the approach to extraction and its subsequent utilization
differ, particularly with regard to the timing of conditionally activated subsystems. While
the sampling rates are inferred the blocks are also checked for incompatibilities between their
rates and those of their inputs. As with Type Inferencing, the clock inferencing process is
carried out breadth first. It begins with the inputs and other independent source blocks at
the root system level. Because these blocks either have inputs that are part of the external
environment or they simply have no inputs at all it is assumed that they have explicit
non-inherited rates. If not then the analysis will fail and throw a clock inferencing error.
Otherwise the inference traversal continues, comparing each connected pair of blocks. The
result of this comparison has several distinct possible outcomes. If the block is a triggered
subsystem the timing of each input must be equal and must match the rate of the triggering
signal. If this is not the case then the inputs will not be able to be synchronized with the
subsystem’s periods of activity and data will be lost. For other blocks, if the rate is specified
explicitly then it is compared with those of its inputs. Their rates must align such that there
exists an integer coefficient k such that for each input k ∗ Rin = Rblock or Rin = k ∗ Rblock

where Rin and Rblock are the rates of the inputs and the block respectively. Finally, if the
rate is inherited then the inferred rate should be the greatest common divisor (GCD) of the
rates of its inputs. This can be somewhat complicated by the presence of differing phases
in the input rates. The way the sampling rate (π, θ) is calculated is given by the following
formulae:

π =

{
gcd(π1, π2) if θ1 = θ2
gcd(π1, π2, θ1, θ2) if θ1 6= θ2

θ =

{
θ1 if θ1 = θ2
0 if θ1 6= θ2

For example, assume we have an addition block α that receives two inputs with the rates
(6,2) and (4,2). Then α’s inferred rate is :

((6, 3), (4, 3))⇒ (2, 1)

Similarly, if the inputs had the rates ((2,1), (5,3)) then α’s new inferred rate would be:

((2, 1), (5, 3))⇒ (1, 1)

By lowering the period of the sink block, we insure that its possible for the sink block to
be active at any instant where an input may occur. During block translation we will apply

Matthew E. Anderson Chapter 5. Simulink Frontend 68

these inferred properties to synchronize communications between blocks. The pseudocode
for our algorithm is displayed in Algorithm 3. A block type of Source if its part of the
Simulink source library and is at the Root level of the model, therefore either has no inputs
or is receiving its inputs from the environment. The internal input sources of a subsystem
will return the external block connected to the corresponding input port of that subsystem.

Algorithm 3 Clock Inference

function Inference(BlockList)
ChangeIn, ChangeOut, T ypeDequeue, Fail
for all blocki ∈ BlockList do

if (blocki.type == ’Source’) AND blocki.rate == -1 then
return ERROR

else if (blocki.type == ’Triggered’) then
if blocki.rate == -1 then

blocki.rate = GCD(blocki.sources)

if ! Match(InputRates(blocki)) then
return Error;

else if ((blocki.type != Enabled) OR (blocki.type != Subsystem)) then
if blocki.rate == -1 then

blocki.rate = GCD(blocki.sources)
else

if ! MultOrDiv(blocki) then
return Error

At this point each port and associated signal has a known type and rate associated with it.
If no errors have been found then the system may progress to block translation. In the next
section we will describe the block translation process and show how the extracted properties
are applied to the generated actor network. Then we will show how these extracted properties
are applied to the translated model.

5.4 Block Translation

Having inferred and validated the types and timing properties of the Simulink model, the
actual translation may be performed. Due to the discrete nature of MRICDF we have
limited the translation to elements of Simulink’s discrete library. These supported blocks
also include mathematical operations and select virtual blocks. The complete listing of the
currently implemented block translations is given in Table 5.3.

The structure of the Simulink model is such that the component blocks and subsystems of
a (sub)system are nested within their parent block’s definition. This arborescent arrange-
ment is similar to the hierarchical structure of MRICDF. A top-down approach is therefore

Matthew E. Anderson Chapter 5. Simulink Frontend 69

Table 5.3: Supported Simulink Blocks

Block Category Supported Blocks
Temporal Difference, Unit Delay,

Zero-Order Hold
Operational Arithmetic, Relational,

Logical, Trigonometric,
Gain

Sources and Sinks Pulse Generator, Input,
Output, Scope*, Constant,
Digital Clock

Typing Data Type Conversion
Routing From*, Goto*, Switch
Filters Saturation, Discrete Filter
User Code S-Function
Organization Subsystem, Triggered Sub-

system, Enabled Subsystem
* The evaluation of the types of these blocks is de-
scribed in the algorithm description

employed to maintain the organization of the source model. Starting from the root system,
we translate each block by first constructing its interface and then populating it with any
internal subcomponents before finalizing its internal connections.

Simple and Complex Blocks

For simple Simulink blocks this process is fairly straightforward, as most have a direct
counterpart in MRICDF. A unit delay block, for instance, becomes a buffer actor with the
same initial values. By the same token, basic operators become function actors with the
same interface parameters and a body defined in C code that performs the same operation.
For example, a translation of an addition operator from Simulink to MRICDF is shown in
Fig. 5.4. More complex blocks, particularly operations that maintain some internal state,
become composite actors. For example, the difference block outputs the difference between
the current input and the input of the previous computational instant which requires that
the previous input value be preserved for the next instant. The translation of this block
is shown in Fig. 5.5. The simulink difference block is shown on the left. It is translated
into the composite actor ”diff” which has a single input and a single output. The composite
contains four actors: an input and an output actor that correspond to the interface ports, a
buffer actor that preserves the previous input value, and a function actor that performs the
subtraction of the previous value from the current input.

Matthew E. Anderson Chapter 5. Simulink Frontend 70

Figure 5.4: MRICDF Adder

Figure 5.5: MRICDF Difference

Subsystems

The vast majority of practical applications will be composed of many nested subsystems.
These subsystems may be conditionally or unconditionally activated. In either case the
initial approach is the same, the system interface is instantiated as a composite actor and
then recursively populated with an actor network representing its subcomponents. if the
subsystem is unconditional then its translation is complete at this point. If, however, the
subsystem is classified as either a triggered or enabled subsystem then additional steps must
be taken to constrain the activation of these actors. The triggered subsystem is a system
with an additional trigger port. The trigger may be activated by either a rising or falling
edge or both. An edge is defined as a change from negative to positive or positive to negative
in the signal. During instants where no edge occurred, the system is inactive. An inactive
triggered system holds its output values and preserves any discrete internal states until its
next activation.

Figure 5.6: Trigger Port Translation

Internal states are preserved in buffers during periods of inactivity. Similarly, outputs are
latched in buffers and repeat their previous value during instants of inactivity.

Matthew E. Anderson Chapter 5. Simulink Frontend 71

Figure 5.7: Inserting Triggers into the System

Similar to triggered subsytems, enabled subsystems have an additional enable port that
controls when it is active. Rather than being edge triggered, this variant is active so long as
the enable signal is positive. An enabling or disabling event is generated when zero crossing
detecting finds the control signals value has changed. Unlike a triggered subsystem, which

Figure 5.8: Enable Port Translation

always maintains its internal state during periods of inactivity, the enabled subsystem may
opt to reset when activated and optionally it may hold or zero its output while inactive.
We currently default to the same inactive behavior as the triggered subsystem and preserve
the states and outputs between periods of activity. Also, unlike the triggered variant, the
enabled subsystem’s components run normally at their defined rates while the block is active
rather than being wholly restricted by the rate of the enabling signal.

Special Cases

Some supported blocks are considered a special case, in that they are not translated directly
into the MRICDF model. For example, the previously mentioned virtual blocks goto and
from symbolically route the signal from Goto’s input to From’s output without drawing
a connection. MRICDF does not provide such symbolic routing but the issue is easily
resolved by replacing goto/from pairs with an equivalent literal connection as shown in Fig.
5.9. Similarly, the scope actor that Simulink employs to track values during simulation
would not translate directly to MRICDF as EmCodeSyn is not a simulation environment.
While the final deliverable would reasonably be expected to have such debugging components
removed, its a commonly used technique during the model’s development. Therefore to

Matthew E. Anderson Chapter 5. Simulink Frontend 72

Figure 5.9: Virtual Connections

better enable a quick translation flow, scopes are supported as an output to file block in the
generated MRICDF model. This allows for greater compatibility across development phases
and provides an execution trace of the scoped signal for analysis if desired.

Applying Inferred Knowledge

Once the blocks have been translated into actors, we employ the properties that were inferred
in the previous steps. Each actor’s ports and connected signals are assigned the type of their
Simulink counterpart. Although, since MRICDF only natively supports the types integer,
real, and Boolean the types from Simulink are mapped to an equivalent MRICDF type as
shown in table 5.4

Table 5.4: SIMULINK to MRICDF Type Mapping

Equation Type Equation
Boolean bool
single, double real
int16, uint16, int32, uint32 int

After the blocks are defined, the connections between them are created. However, before this
can be done we need to check the system for rate conflicts. For each potential connection,
the source and sink blocks are checked with three distinct possible outcomes. The first is
that the blocks have identical rates in which case no additional changes are required. The
second case is that the source block is slower than that of the sink block. In such a situation
a new composite actor is added that will oversample the source signal. Recall from the clock
inference step that the relative rates of connected signals are required to be integer multiples.
Thus πsink

πsource
= k where k is an integer ¿ 1. The oversample actor samples the source signal

and generates k successive copies on its output. The composition of the Oversample actor is

Matthew E. Anderson Chapter 5. Simulink Frontend 73

Figure 5.10: Oversampling Composite

shown in Fig. 5.10. When an input occurs the count is reset to the constant k − 1 and the
input is propagated through the priority input of the Merge Val actor to the output. the
count then decrements by 1 each instant, outputting a copy of the most recent input from
the prev buffer until the count reaches zero. We know that a new input will arrive every k
instants so we explicitly set a clock relation between the count such that in=when(cnt == 0).
Fig 5.5 gives a sample trace of a sink actor that is twice as fast as its source.

Table 5.5: Overclock Trace (K = 2)

t 0 1 2 3
In In1 ⊥ In2 ⊥

Cnt 0 1 0 1
M 1 0 1 0

Out In1 In1 In2 In2

Because the rates of communicating actors were confirmed as multiples during the initial
extraction and analysis phase we do not need to be concerned with the phase of the com-
municating blocks when calculating the count for the oversampler. The reason for this is
because in order to be considered a multiple, the phase of the sink actor must either be equal
to the phase of the source actor or it must be zero while the phase of the source must be an
integer multiple of the sink block’s period. In either case the actor is inactive until the first
input arrives, after which point the phase of both has already occurred.

The third possibility is that the source is faster than the sink, in which case a composite
actor is inserted to undersample the source signal. This process is similar to that used by
the oversampler except instead of generating k copies of each input it filters the signal to
allow only every Kth value through. The structure of the undersampler can be seen in Fig.
5.11. This actor fires every time it receives an input, thus we explicitly add the rate relation
In=cnt to reflect the fact that the count buffer should be sampled at the same rate as the
input. The initial value of cnt, associated with the first input instant, is set to one. This
allows the initial input to be passed through to the output. In the next instant count will be
zero which will trigger the sampler S1 to reset the count to the constant value k − 1. Each
subsequent instance decrements the count until it again reaches zero. Fig 5.6 gives a sample
trace of a source that has a k = πsource

πsink
= 3.

Matthew E. Anderson Chapter 5. Simulink Frontend 74

Figure 5.11: Undersampling Composite

Table 5.6: Underclock Trace (K = 3)

t 0 1 2 3 4
In In1 In2 In3 In4 In5

Cnt 1 0 2 1 0
M 0 2 1 0 2

Out In1 ⊥ ⊥ In4 ⊥

As with the oversample actor we need not worry about the phase of the actors when cal-
culating the count. Because Simulink forbids the use of a sampling rate where θ ≥ π2 and
because in order to qualify as a multiple θ1 == θ2 or θ2 = 0 and ∃k, θ1 = k ∗ π2 the sample
phases for an undersampling relation must be equal. Otherwise θ1 ≥ π2 > π1 which would
violate Simulink’s timing requirements. If the phases are equal then they are accounted for
by the time of the arrival of the first input.

Chapter 6

Case Studies

In this section we will present case studies that illustrate the APECS process and results.

6.1 Elevator

The first case study models the elevator system of a five story building. Each floor of the
building is serviced by a set of four elevator cars. A call panel on each floor places a request
for service. The service calls and subsequent scheduling of the elevator cars are handled by
a central controller

Figure 6.1: Elevator Top Level AADL Model

The Complete System of the Elevator (Fig. 6.1) is composed of a number of sub-systems and
a central controller. For the sake of readability we only give a graphical representation of

75

Matthew E. Anderson Chapter 6. Case Studies 76

the component composition the AADL systems and eschew representing the communication
port connections. There are five instances of floor systems, once for each floor of the target
building. An Elevator Bank subsystem contains the four elevator cars that service the
building. Finally, its central controller that is made up of a CPU and its attendent memory
and operating software. The subcomponents communicate through a shared bus.

Figure 6.2: Floor Call Panel

The call panels are subsystems of the floors (Fig. 6.2). Each floor has four call panels that
communicate via bus with the central controller to schedule elevator car service. The panel
has two button devices, the first requests to go up while the second indicates a down request.
There is a sensor device that detects when a car has arrived on that floor, and indicates it
by deactivating the pending light associated with that request and sounding a chime.

The elevator car subsystem is composed of a button panel for user interfacing, a controller
to process user requests as well as feedback from the other subsystems, a car motor that
raises or lowers the car, and a Door System that opens and closes the car doors.

The Door System (Fig. 6.4)is responsible for opening and controlling the door of an Elevator
Car as requested. It has its own microcontroller setup to process external inputs both from
the environment and received from user requests via the car’s button panel. In addition,
it has a motor device that physically drives the opening and closing of the door. A timer
device begins counting down after the door has opened, when it reaches zero the door will
automatically begin closing unless some external intervention occurs. Lastly, a sensor device
detects when there is an obstruction in the path of the door.

The first step toward creating the system model in APECS is to define the underlying
platform and architecture. This is accomplished through a top-down approach and the
application of iterative refinement. First, the top-level system, Complete, is defined. As
this component encapsulates the entire model it generally has no defined features. Instead
it serves as an abstraction that organizes the model. This isn’t to say that it cannont

Matthew E. Anderson Chapter 6. Case Studies 77

Figure 6.3: Elevator Car Control AADL Model

Figure 6.4: Door System AADL Model

interact with its environment. Even without ports it may still act or be acted upon through
sensor or actuator devices or through bus communications. The contents of the elevator’s
top-level system are shown in Fig. 6.1. The microcontroller can be modeled as simply a
processor component or it can be further detailed as it is here with its attendent memory,
bus communication, and operating software. Each subsystem is defined in turn, with a
standardized interface. The internal composition and flow of these components can be refined
throughout the design process. The floor subsystem (Fig. 6.2), which is declared once and

Matthew E. Anderson Chapter 6. Case Studies 78

instantiated as needed for each floor in the target building, contains the system for the call
panels that serve as the interface for the passengers. The elevator car (Fig. 6.3) contains
multiple subsystems, such as a control panel for user interaction and a controller that operates
the door of the car. By virtue of its concise control system, multithreading potential, and
safety criticality, the Door System will be the focus of this case study example.

Figure 6.5: Door State Table

After determining the top-down composition of the underlying execution platform in AADL,
the software behavior specifications can be associated with their components in the software
heirarchy. We start by specifying the desired behavior in natural language. The desired
behavior of our elevator door, therefore, is:

• If an open request is received via bus from the Elevator Car parent system, then the
door should signal the motor to begin opening the door and the timer to begin counting
down until the door should automatically close. (The Elevator Car will screen out open
requests if the car is moving.)

• When Timer finishes counting down, it signals the door’s central controller that it
should begin closing the door.

• If a close request is received via bus from the Elevator Car parent system, then the
door should signal the motor to begin closing the door.

• If the sensor detects and obstruction at any point while closing, it signals the central
controller to reopen the door and reset the timer.

The described behavior is depicted both in the state table (Fig. 6.5) and as a stateflow
diagram in 6.6.

Figure 6.6: Door Controller State Flow

Matthew E. Anderson Chapter 6. Case Studies 79

Figure 6.7: EmCodeSyn Model of the Door Control Software

We took this desired behavior and modelled it in MRICDF (Fig. 6.7).

This system receives six inputs. From the top, the first is from the sensor indicating whether
an obstruction has been found. The next two are open and close requests from passengers
relayed from the elevator car. Then timeout is relayed from the timer after the door has
been open for the maximum alloted time. Finally, the last two input signals, come from the
motor when the door has been either fully opened or fully closed respectively. The last two
are necessary to update the elevator car with the current status of the car. Obstruction and
OpenRequests both go to a merge actor, with obstruction taking the priority slot so it won’t
be blocked by an errant ’false’ input via OpenRequests. The output of that merge actor drive
a sampler ’s selector input. While either an obstruction or OpenRequest are true a ’true’
constant signal will be able to propagate through the sampler to activate the openDoor and
StartTimer outputs. These outputs connect to the motor and timer respectively. Similarly,
the CloseRequests and TimeOut inputs drive their merge actor, which in turn drives the
output of a sampler that connects to motor ’s CloseDoor signal. The last two signals, isClosed
and isOpened drive selector actors that output true once the motor signals the door has been
completely closed or opened. The outputs ’opened’ and ’closed’ are relayed to the parent
system Elevator Car to notify its central controller of the current door status.

The AADL process that is modelled by the aforementioned MRICDF specification is given in
Fig. 6.8. In this case, the data, thread, and subprogram subcomponents will all be generated
automatically and added dynamically by APECS.

Matthew E. Anderson Chapter 6. Case Studies 80

process Controller

... // Define Interface

end Controller;

process implementation Controller.C

properties

Source_Language => MRICDF;

Source_Name => DoorControl.xml;

Source_Location => ..\\DoorControl.xml;

end Control.C;

Figure 6.8: MRICDF Process Declaration

Figure 6.9: MRICDF Clock Tree

When APECS notices the MRICDF specification attached to the process definition, the

Matthew E. Anderson Chapter 6. Case Studies 81

specification undergoes epoch analysis by EmCodeSyn. For the door system modelled above
EmCodeSyn finds a set of partial triggers rather than a single master trigger. The forest
of clocks generated is depicted in Fig. 6.9. These partial triggers mean that the control
software can be divided into four indepedent threads, shown in Fig. 6.10. Thread 1 samples
OpenRequest and Obstructions to control the open signal while thread 2 samples timeout
and closeRequest singals to control closing the door. Threads 3 & 4 sample and update the
parent systems control process on the current door status.

Figure 6.10: Resulting thread groups

These four threads are added as subcomponents of the of Controller.C in the instance tree
along with the additional subcomponents as described in Algorithm 1. The updated model
is handed off to the backend for code generation. A sample of the generated thread task for
opening the elevator door is presented in Fig. 6.11 and the code generated for its subprogram
call is presented in Fig. 6.12.

Fig. 6.11 shows a snippet of the code generated for the thread that singlas the door to
open. The thread initializes itself and computes its activation period, based on the timing
properties defined in the software architecture model, through the use of the middleware
functionality. Each iteration of the loop, the thread calls the functions in its subprogram
call sequence and then waits until its next activation period.

The function, ”doorsys block1” serves as a wrapper function that called block1(), which is
declared in the generated code as an external function.

6.2 Phasor Measurement Unit

In this section we will describe the translation of an open-source Simulink model for a Phasor
Measurement Unit (PMU) described by [58] for public use. A PMU provides measurements

Matthew E. Anderson Chapter 6. Case Studies 82

void* openthread_job (void)

{

/*!

* Waiting for other tasks initialization

*/

__po_hi_wait_initialization ();

__po_hi_compute_next_period

(controller_openthread_k);

while (1)

{

/* Call implementation*/

doorsys__block1 ();

__po_hi_wait_for_next_period

(controller_openthread_k);

}

}

Figure 6.11: Generated OpenDoor Thread

void block1 (void);

void doorsys__block1 (void)

{

block1 ();

}

Figure 6.12: Generated OpenDoor Function Call

of the magnitude and phase angle of AC voltages. Synchrophasors are a variant of PMU
that provide time and location stamps along with the collected measurements. These syn-
chrophasors are an essential tool for tracking and reporting on the health of an electrical
distribution system. An individual synchrophasor is typically a part of a larger network of
units that communicate through Phasor Data Concentrators (PDCs) with a central control
facility. The foremost goal of this case study is to demonstrate the validity of the actor net-
work derived from the Simulink translation. Additionally, the validity of a Synchrophasor’s
behavior is critical to business and safety concerns of the public should they fail to detect a
problem in the power grid.

The PMU modelled in Fig. 6.13 has five constant parameters and six outputs. These
constants represent the chosen parameters for the sinusoidal signal representing the electrical

Matthew E. Anderson Chapter 6. Case Studies 83

Figure 6.13: Roscoe Public PMU

signal and the filter coefficients for the measurement units. The top level system also includes
two subsystems. The first is the PMU itself while the second is the Test Signal Generation
that creates a sinusoidal signal and a timestamp for the PMU to sample.

Figure 6.14: Simulink PMU

Within the PMU there are two additional subsystems and an SFunction. These subsystems
pass their inputs directly through to their outputs, providing the signal typing informa-
tion needed to statically verify the SFunction’s interface, as discussed in section 5.2. The
S-Function is a Simulink API wrapper that contains a precompiled .MEX file that was
generated from an external C/C++ or Fortran file.

Figure 6.15: SFunction Type Filter

The result of this translation is shown in Fig. 6.16. While we represent it here graphically, the
actual translation generates a textual MRICDF specification. The generated actor network is
a single top level composite actor with no inputs and the six outputs of the PMU. In addition
to the constant parameters and output port interface actors, this contains two composite
actors representing the test signal generation unit and the composite actor representing the
phasor measurement unit.

The five constant parameters become constant actors as the output blocks similarly become
output actors. Meanwhile each system is translated into composite actors. The composi-
tion of the translated Phasor Measurement Unit is shown in Figure 6.19 while the internal
composition of the test signal generation actor is shown in Figure 6.17.

The actors of the translation of the Test Signal Generator corresponds almost one for one with
those in the original Simulink block diagram with the interface unchanged and operations

Matthew E. Anderson Chapter 6. Case Studies 84

Figure 6.16: Roscoe PMU in MRICDF

Figure 6.17: Test Generation in MRICDF

becoming function actors. The exception is the Digital Clock which has been translated
as a composite actor that produces a numeric output at periodic intervals based on the
parameters of the Simulink block.

Figure 6.18: Manual Implementation of the Test Generator in MRICDF

By contrast, when manually implemented the size of the test signal generator is reduced
each mathematical operation may be condensed into a single function actor. This is possible
because there is no temporal state to be maintained between the operations being combined.
If a buffer actor were present between the actors they would have to have remain separated
to preserve the clock relations of the model.

Similarly the actor network generated from the Simulink PMU subsystem is a 1 for 1 trans-
lation from the original Simulink block diagram with the type filtering subsystems becoming
composite actors and the S-Function being translated into an equivalent function that calls
the same library function(s). This differs only slightly from the manual implementation in
that when designing directly in MRICDF the signal filtering subsystems/composites are not
required.

Matthew E. Anderson Chapter 6. Case Studies 85

Figure 6.19: PMU Subsystem in MRICDF

Figure 6.20: Manual Implementation of the PMU in MRICDF

Chapter 7

Conclusions and Future Work

Developing DREs is a time consuming and error prone task. If software multithreading
is involved then there are additional development concerns regarding the determinism and
reliability of the software’s dynamic behavior. These issues are further complicated when
the DRE in question is a safety critical system. In order to meet the pressures of industrial
competition, developers must work swiftly to bring their products to market. However, to
ensure their products meet safety standards, they must create and test numerous prototypes.
Any prototypes that can’t be refined and incorporated into the final system cost additional
development time that risks being invalidated by a future design revision.

In this paper we present the beginnings of an end-to-end toolchain, APECS that will stream-
line the design flow process from prototype to final product. AADL forms the basis of our
design framework. Its extensibility and capability to comprehensively describe a model,
hardware and software, are crucial to the framework’s ability to maintain a single model
that is supported by all the necessary analyses techniques currently in the toolchain as well
as any future extensions that may be made. Our direct contribution is the ability to formally
specify the system’s software with MRICDF, attaching these specifications to their corre-
sponding components in the model through the AADL’s properties. These specifications are
given at the process level, allowing us to leverage MRICDF ’s multithreaded code generation
capabilities. This approach frees the developers from a fine grained approach, automating the
synchronization and validation of thread behavior for the system. EmCodeSyn, MRICDF’s
code synthesis framework, serves the APECS toolchain by providing this threading analysis.
Ocarina, modified to accept AADL software with MRICDF specifications, generates software
that runs on the target platform atop a high integrity middleware. APECS adds additional
steps to Ocarina’s frontend that allow thread components to be dynamically added based
on EmCodeSyn’s analysis. This constitutes the core of the APECS framework, but we have
plans for a number of extensions.

Currently Ocarina can perform real-time schedulability analysis by invoking the AADL
analysis tool Cheddar on the model. This requires that timing properties be manually

86

Matthew E. Anderson Chapter 7. Case Studies 87

specified for each thread. In the future, we plan to include the work described in [44]
in APECS. The inclusion of this work would allow for thread timings to be automatically
optimized and extracted from MRICDF specifications for the dynamically generated threads.

Currently, MRICDF ’s epoch analysis may only be applied to each process specification
individually. While this allows for the formal verification and validation of each process
in turn, we plan to eventually adapt the epoch analysis for APECS such that it may be
extended to analyze the software of a system as a whole - including bus communications.

In order to better support existing models and to provide a more user friendly interface
for commercial engineers, we further plan to add a Simulink [37] based alternative interface
for APECS. Simulink is a popular tool for embedded software design. Unfortunately, its
semantics are informal and vary depending on the simulator and user options selected. By
extending APECS with the capability to automatically translate Simulink to MRICDF we
will allow developers to use a language with which they’re familiar and still obtain formally
validated, distributed software.

Bibliography

[1] Compositional translation of simulink models into synchronous bip. Technical Report
TR-2010-16, Verimag Research Report.

[2] Ravenscar. http://www.adaic.com/standards/05rm/RM-Final.pdf, 2005.

[3] AUTOSAR. http://autosar.org/, 2014.

[4] CORBA. http://www.corba.org/, 2014.

[5] Microsoft .NET Framework. http://msdn.microsoft.com/en-us/library/

zw4w595w.aspx, 2014.

[6] Object Management Group. http://www.omg.org/, 2014.

[7] P. A. Abdulla and J. Deneux. Designing safe, reliable systems using scade. In In Proc.
ISoLA 2004, 2004.

[8] Adele graphical editor. https://wiki.sei.cmu.edu/aadl/index.php/Adele_

Graphical_Editor, 2014.

[9] AEEC. Avionics Application Software Standard Interface Part 1-3, ARINC Specification
653P1-3, 2010.

[10] A. Agrawal, G. Karsai, and F. Shi. A uml-based graph transformation approach for
implementing domain-specific model transformations. In International Journal on Soft-
ware and Systems Modeling, 2003.

[11] A. Agrawal, G. Simon, and G. Karsai. Semantic translation of simulink/stateflow models
to hybrid automata using graph transformations. Electron. Notes Theor. Comput. Sci.,
109:43–56, Dec. 2004.

[12] Arinc 653 plugin. http://aadl.info/aadl/osate/osate-doc/osate-plugins/

arinc653.html, 2014.

88

Matthew E. Anderson Chapter 7. Case Studies 89

[13] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in
bip. In Proceedings of the Fourth IEEE International Conference on Software Engineer-
ing and Formal Methods, SEFM ’06, pages 3–12, Washington, DC, USA, 2006. IEEE
Computer Society.

[14] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time sys-
tems. Proceedings of the IEEE, 79(9):1270–1282, Sep 1991.

[15] G. Berry. Proof, language, and interaction. chapter The Foundations of Esterel, pages
425–454. MIT Press, Cambridge, MA, USA, 2000.

[16] B. Berthomieu *, P.-O. Ribet, and F. Vernadat. The tool tina: Construction of abstract
state spaces for petri nets and time petri nets. International Journal of Production
Research, 42(14):2741–2756, 2004.

[17] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gaufillet, F. Lang,
and F. Vernadat. Fiacre: an Intermediate Language for Model Verification in the
Topcased Environment. In ERTS 2008, Toulouse France, 2008.

[18] Y. Bertot, P. Castran, G. i. Huet, and C. Paulin-Mohring. Interactive theorem proving
and program development : Coq’Art : the calculus of inductive constructions. Texts in
theoretical computer science. Springer, Berlin, New York, 2004. Donnes complmentaires
http://coq.inria.fr.

[19] L. Besnard, E. Borde, P. Dissaux, T. Gautier, P. Le Guernic, and J.-P. Talpin. Log-
ically timed specifications in the AADL : a synchronous model of computation and
communication (recommendations to the SAE committee on AADL). Rapport Tech-
nique RT-0446, INRIA, Apr. 2014.

[20] P. Bieber, E. Noulard, C. Pagetti, T. Planche, and F. Vialard. Preliminary design of
future reconfigurable ima platforms. SIGBED Review, 6(3):7, 2009.

[21] G. Booch. Object-Oriented Analysis and Design with Applications (3rd Edition). Addi-
son Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2004.

[22] O. Bouissou and A. Chapoutot. An operational semantics for simulink’s simulation
engine. In Proceedings of the 13th ACM SIGPLAN/SIGBED International Conference
on Languages, Compilers, Tools and Theory for Embedded Systems, LCTES ’12, pages
129–138, New York, NY, USA, 2012. ACM.

[23] F. Boussinot and R. D. Simone. The esterel language. In Proc. of the IEEE, volume
79, no. 9, page 12931304, Sept. 1991.

[24] M. Bozga, V. Sfyrla, and J. Sifakis. Modeling synchronous systems in bip.

Matthew E. Anderson Chapter 7. Case Studies 90

[25] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and M. Roveri. Safety,
dependability and performance analysis of extended aadl models. Comput. J., 54(5):754–
775, May 2011.

[26] M. Bozzano, A. Cimatti, M. Roveri, J. Katoen, V. Y. Nguyen, and T. Noll. Codesign of
dependable systems: A component-based modeling language. In Formal Methods and
Models for Co-Design, 2009. MEMOCODE ’09. 7th IEEE/ACM International Confer-
ence on, pages 121–130, July 2009.

[27] Eclipse modelling framework. http://www.eclipse.org/modeling/emf/, 2014.

[28] M. Faugère, T. Bourbeau, R. De Simone, and S. Gerard. Marte: Also an uml profile
for modeling aadl applications. In Engineering Complex Computer Systems, 2007. 12th
IEEE International Conference on, pages 359–364. IEEE, 2007.

[29] P. H. Feiler and D. P. Gluch. Model-Based Engineering with AADL: An Introduction to
the SAE Architecture Analysis & Design Language. Addison-Wesley Professional, 1st
edition, 2012.

[30] K. Forsberg and H. Mooz. The relationship of system engineering to the project cycle.
INCOSE International Symposium, 1(1):57–65, 1991.

[31] S. Friedenthal, A. Moore, and R. Steiner. A practical guide to SysML: the systems
modeling language. Morgan Kaufmann, 2014.

[32] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. Cadp 2010: A toolbox for the
construction and analysis of distributed processes. In P. Abdulla and K. Leino, editors,
Tools and Algorithms for the Construction and Analysis of Systems, volume 6605 of
Lecture Notes in Computer Science, pages 372–387. Springer Berlin Heidelberg, 2011.

[33] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow pro-
gramming language lustre. In Proceedings of the IEEE, pages 1305–1320, 1991.

[34] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-time systems
by means of the synchronous data-flow language lustre. IEEE Trans. Softw. Eng.,
18(9):785–793, Sept. 1992.

[35] T. Henzinger. The theory of hybrid automata. In Logic in Computer Science, 1996.
LICS ’96. Proceedings., Eleventh Annual IEEE Symposium on, pages 278–292, Jul 1996.

[36] J. Hugues, B. Zalila, L. Pautet, and F. Kordon. From the prototype to the final em-
bedded system using the ocarina aadl tool suite. ACM Trans. Embed. Comput. Syst.,
7(4):42:1–42:25, Aug. 2008.

[37] T. M. Inc. Simulink. http:/www.mathworks.com.

Matthew E. Anderson Chapter 7. Case Studies 91

[38] ISO/IEC. Annotated ada 2005 language reference manual. Technical Report
8652:2007(E) Ed. 3, 2006.

[39] I. Jacobson. Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2004.

[40] B. Jose, J. Pribble, L. Stewart, and S. Shukla. Emcodesyn: A visual framework for
multi-rate data flow specifications and code synthesis for embedded applications. In
Specification Design Languages, 2009. FDL 2009. Forum on, pages 1–6, 2009.

[41] B. Jose and S. Shukla. An alternative polychronous model and synthesis methodology
for model-driven embedded software. In Design Automation Conference (ASP-DAC),
2010 15th Asia and South Pacific, pages 13–18, 2010.

[42] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the use of graph transformations for
the formal specification of model interpreters. Journal of Universal Computer Science,
9:1296–1321, 2003.

[43] F. Kordon and Luqi. An introduction to rapid system prototyping. IEEE Transactions
on Software Engineering, 28(9):817–821, 2002.

[44] M. Kracht. Real-time emcodesyn. Master’s thesis, Virginia Tech, Blacksburg, Virginia,
Under Preparation.

[45] M. Le Borgne, H. Marchand, . Rutten, and M. Samaan. Formal verification of sig-
nal programs: Application to a power transformer station controller. In M. Wirsing
and M. Nivat, editors, Algebraic Methodology and Software Technology, volume 1101 of
Lecture Notes in Computer Science, pages 271–285. Springer Berlin Heidelberg, 1996.

[46] P. LeGuernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming real-time
applications with signal. Proceedings of the IEEE, 79(9):1321–1336, 1991.

[47] Y. Ma, H. Yu, T. Gautier, P. Le Guernic, J.-P. Talpin, L. Besnard, and M. Heitz.
Toward polychronous analysis and validation for timed software architectures in aadl.
In Design, Automation Test in Europe Conference Exhibition (DATE), 2013, pages
1173–1178, 2013.

[48] Y. Ma, H. Yu, T. Gautier, J. Talpin, L. Besnard, and P. Le Guernic. System synthesis
from aadl using polychrony. In Electronic System Level Synthesis Conference (ESLsyn),
2011, pages 1–6, 2011.

[49] S. Messaoud. Translating Discrete Time SIMULINK to SIGNAL. Master’s thesis,
Virginia Tech, Virginia, 2014.

Matthew E. Anderson Chapter 7. Case Studies 92

[50] M. Nanjundappa, M. Kracht, J. Ouy, and S. Shukla. A new multi-threaded code syn-
thesis methodology and tool for correct-by-construction synthesis from polychronous
specifications. In Application of Concurrency to System Design (ACSD), 2013 13th
International Conference on, pages 21–30, 2013.

[51] M. Nanjundappa, M. Kracht, J. Ouy, and S. Shukla. A new multi-threaded code syn-
thesis methodology and tool for correct-by-construction synthesis from polychronous
specifications. In Application of Concurrency to System Design (ACSD), 2013 13th
International Conference on, pages 21–30, July 2013.

[52] V. Y. Nguyen, T. Noll, and M. Odenbrett. Slicing aadl specifications for model checking.
In NASA Formal Methods, pages 217–221, 2010.

[53] Open source aadl tool environment - getting started. http://www.aadl.info/aadl/

currentsite/currentusers/open.html, 2009.

[54] S. I. S. of Automotive Engineers. As5506/1 architecture analysis and design language
annex (aadl), vol. 1, annex e: Error model annex. Technical report, SAE, 2006.

[55] U. of Pennsylvania MoBIES team. HSIF Semantics, 2002.

[56] M. Pantel and et al. The topcased project – a toolkit in open source for critical appli-
cations & systems design.

[57] P. Raymond, X. Nicollin, N. Halbwachs, and D. Weber. Automatic testing of reactive
systems. In Real-Time Systems Symposium, 1998. Proceedings., The 19th IEEE, pages
200–209, Dec 1998.

[58] A. Roscoe, I. Abdulhadi, and G. Burt. P and m class phasor measurement unit
algorithms using adaptive cascaded filters. Power Delivery, IEEE Transactions on,
28(3):1447–1459, July 2013.

[59] A.-E. Rugina, D. Thomas, X. Olive, and G. Veran. Gene-Auto: Automatic Software
Code Generation for Real-Time Embedded Systems. In DASIA 2008 Data Systems In
Aerospace, volume 665 of ESA Special Publication, page 28, Aug. 2008.

[60] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-oriented
Modeling and Design. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1991.

[61] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference
Manual (2nd Edition) (The Addison-Wesley Object Technology Series). Addison-Wesley
Professional, 2004.

[62] SAE. Annex behavior specification v1.6. Technical Report AS5506, 2007.

[63] SAE. Architecture Analysis and Design Language v2.0 (AS5506), 2008.

Matthew E. Anderson Chapter 7. Case Studies 93

[64] A. Sangiovanni-Vincentelli and M. Di Natale. Embedded system design for automotive
applications. Computer, 40(10):42–51, Oct 2007.

[65] F. Singhoff, J. Legrand, L. Nana, and L. Marc. Cheddar: a flexible real time scheduling
framework. INTERNATIONAL ACM SIGADA CONFERENCE, ATLANTA, 2004.

[66] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic. Translating discrete-time simulink to
lustre. ACM Trans. Embed. Comput. Syst., 4(4):779–818, Nov. 2005.

[67] Uml 2.x. http://www.eclipse.org/modeling/mdt/?project=uml2, 2014.

[68] Xtext. http://www.eclipse.org/Xtext/, 2014.

[69] Z. Yang, K. Hu, D. Ma, J.-P. Bodeveix, L. Pi, and J.-P. Talpin. From {AADL} to
timed abstract state machines: A verified model transformation. Journal of Systems
and Software, 93(0):42 – 68, 2014.

[70] H. Yu, Y. Ma, T. Gautier, L. Besnard, P. L. Guernic, and J.-P. Talpin. Polychronous
modeling, analysis, verification and simulation for timed software architectures. Journal
of Systems Architecture, 59(10, Part D):1157 – 1170, 2013.

[71] B. Zalila, L. Pautet, and J. Hugues. Towards automatic middleware generation. In Pro-
ceedings of the 2008 11th IEEE Symposium on Object Oriented Real-Time Distributed
Computing, ISORC ’08, pages 221–228, Washington, DC, USA, 2008. IEEE Computer
Society.

