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(ABSTRACT) 

 
Interest in Ultra-wideband (UWB) has surged since the FCC’s approval of a First Report 
and Order in February 2002 which provides spectrum for the use of UWB in various 
application areas.  Because of the extremely large bandwidth UWB is currently being 
touted as a solution for high data rate, short-range wireless networks.  An integral part of 
designing systems for this application or any application is an understanding of the 
statistical nature of the wireless UWB channel.  This thesis presents statistical 
characterizations for the large and small scale indoor channel.  Specifically, for large 
scale modeling channel frequency dependence is investigated in order to justify the 
application of traditional narrowband path loss models to UWB signals.  Average delay 
statistics and their distributions are also presented for small scale channel modeling. 
 
The thesis also investigates narrowband interference cancellation.  To protect legacy 
narrowband systems the FCC requires any UWB transmission to maintain a very low 
power spectral density.  However, a UWB system may therefore be hampered by the 
presence of a higher power narrowband signal.  Narrowband interferers have a much 
greater power spectral density than UWB signals and can negatively affect signal 
acquisition, demodulation, and ultimately lead to poor bit error performance.  It is 
therefore desirable to mitigate any in-band narrowband interference.  If the interferer’s 
frequency is known then it may simply be removed using a notched filter.  It is however 
of more interest to develop an adaptive solution capable of canceling interference at any 
frequency across the band.  Solutions which are applied in the analog front end are 
preferable to digital backend solutions since the latter require extremely high rate 
sampling.  The thesis therefore discusses two analog front-end interference cancellation 
techniques.  The first technique digitally estimates the narrowband interference (this is 
possible because the UWB signal is not being sampled) and produces an RF estimate to 
perform the narrowband cancellation in the analog domain.  Two estimation techniques, 
an LMS algorithm and a transversal filter, are compared according to their error 
performances.  The second solution performs real-time Fourier analysis using transform 
domain processing.  The signal is converted to the frequency domain using chirp Fourier 
transforms and filtered according to the UWB spectrum.  This technique is also 
characterized in terms of bit error rate performance.  Further discussion is provided on 
chirp filter bandwidths, center frequencies, and the applicability of the technology to 
UWB. 
 



 

 iii 

TABLE OF CONTENTS 

CHAPTER 1 BACKGROUND AND MOTIVATION......................................................................... 1 
1.1 INTRODUCTION ..................................................................................................................................... 1 
1.2 IMPULSE RADIO .................................................................................................................................... 3 
1.3 MODULATION ....................................................................................................................................... 6 
1.4 MULTIPLE ACCESS................................................................................................................................ 7 
1.5 INTERFERENCE.................................................................................................................................... 10 
1.6 THESIS OUTLINE................................................................................................................................. 11 

CHAPTER 2 ULTRA-WIDEBAND CHANNEL MODELING ....................................................... 12 
2.1 INTRODUCTION ................................................................................................................................... 12 
2.2 MEASUREMENT PROCEDURE .............................................................................................................. 13 
2.3 LARGE SCALE CHANNEL MODELING .................................................................................................. 16 

2.3.1 Empirical Modeling ................................................................................................................... 21 
2.3.2 Total vs. “Single Path” Path Loss Calculations........................................................................ 23 
2.3.3 Path Loss Results ....................................................................................................................... 23 
2.3.4 Frequency Dependence of Path Loss Revisited ......................................................................... 25 
2.3.5 Shadowing.................................................................................................................................. 28 

2.4 SMALL SCALE CHANNEL MODELING.................................................................................................. 28 
2.4.1 CLEAN Algorithm...................................................................................................................... 29 
2.4.2 Statistic Calculation Methodology............................................................................................. 29 
2.4.3 Small Scale Average Results ...................................................................................................... 30 
2.4.4 Small Scale Statistic Distributions ............................................................................................. 31 
2.4.5 Channel Energy Capture ........................................................................................................... 33 

2.6  CONCLUSIONS.................................................................................................................................... 33 
CHAPTER 3 NARROWBAND INTERFERENCE MITIGATION ................................................ 37 

3.1 INTRODUCTION ................................................................................................................................... 37 
3.2 NARROWBAND INTERFERENCE CANCELLATION:  THEORY AND PREVIOUS WORK.............................. 39 

3.2.1 Linear Prediction Filters ........................................................................................................... 39 
3.2.2 Nonlinear Prediction Filters ...................................................................................................... 44 
3.2.3 Transform Domain Processing .................................................................................................. 47 
3.2.4 Synchronization Assumptions..................................................................................................... 49 
3.2.5 UWB Interference Cancellation................................................................................................. 49 

3.3 CONCLUSION ...................................................................................................................................... 54 
CHAPTER 4 TIME DOMAIN FRONT END NBIC.......................................................................... 55 

4.1 INTRODUCTION ................................................................................................................................... 55 
4.1.1 Approach 1:  Single Tap LMS Cancellation .............................................................................. 55 
4.1.2 Approach 2:  Multi-tap Transversal Filter Cancellation ........................................................... 57 

4.2 FREQUENCY ESTIMATION ................................................................................................................... 59 
4.2.1 Method of Moments.................................................................................................................... 59 
4.2.2 Maximum Likelihood Estimation ............................................................................................... 61 
4.2.3 Simulation Comparison.............................................................................................................. 63 

4.3 SIMULATION ASSUMPTIONS................................................................................................................ 68 
4.3.1 Noise and Interference ............................................................................................................... 69 
4.3.2 LMS Cancellation Algorithm ..................................................................................................... 70 
4.3.3 Transversal Filter Cancellation................................................................................................. 72 
4.3.4 UWB Demodulation ................................................................................................................... 72 

4.4 SIMULATION RESULTS ........................................................................................................................ 74 
4.4.1 AWGN Calibration..................................................................................................................... 74 
4.4.2 Performance of Approach 1:  The Single Tap LMS Canceller .................................................. 75 
4.4.3 Performance of Approach 2: The Transversal Filter................................................................. 80 
4.4.3.1 INR Estimation........................................................................................................................ 82 
4.4.3.2 Frequency Uncertainty ........................................................................................................... 83 



 

 iv 

4.5 CONCLUSIONS..................................................................................................................................... 83 
CHAPTER 5 TRANSFORM DOMAIN PROCESSING................................................................... 85 

5.1 INTRODUCTION ................................................................................................................................... 85 
5.2 CHIRP PARAMETERS ........................................................................................................................... 88 
5.3 FINITE LENGTH EFFECTS .................................................................................................................... 91 
5.4 APPLICABILITY OF SAW FILTERS. ...................................................................................................... 96 
5.5 SIMULATION ASSUMPTIONS................................................................................................................ 97 
5.6 SIMULATION RESULTS ........................................................................................................................ 98 
5.7 CONCLUSION .................................................................................................................................... 102 

CHAPTER 6 CONCLUSIONS AND FUTURE WORK ...................................................................... 104 
 
 
LIST OF FIGURES 
 
FIGURE 1.1 FRACTIONAL BANDWIDTH COMPARISON OF A NARROWBAND AND UWB SIGNAL......................... 2 
FIGURE 1.2 FCC SPECTRAL MASK FOR COMMUNICATIONS AND MEASUREMENTS APPLICATIONS ................. 2 
FIGURE 1.3 (A) GAUSSIAN PULSE AND (B) MAGNITUDE SPECTRUM ................................................................ 3 
FIGURE 1.4 (A) GAUSSIAN PULSE FIRST DERIVATIVE AND (B) MAGNITUDE SPECTRUM.................................. 4 
FIGURE 1.5 (A) GAUSSIAN PULSE SECOND DERIVATIVE AND (B) MAGNITUDE SPECTRUM.............................. 5 
FIGURE 1.6 (A) GAUSSIAN MODULATED RF PULSE AND (B) SPECTRUM.......................................................... 5 
FIGURE 1.7 4-ARY PULSE POSITION MODULATION (PPM) .............................................................................. 6 
FIGURE 1.8 BIPHASE MODULATION................................................................................................................. 6 
FIGURE 1.9 4-ARY PULSE AMPLITUDE MODULATION (PAM).......................................................................... 7 
FIGURE 1.10 ON-OFF KEYING MODULATION (OOK)...................................................................................... 7 
FIGURE 1.11 UWB PULSE TRAIN (NO MODULATION AND NO TIME HOPPING).................................................. 8 
FIGURE 1.12 EXAMPLE FRAME FOR TIME HOPPING UWB............................................................................... 9 
FIGURE 1.13 (A) SPECTRUM OF UNDITHERED PULSE TRAIN AND (B) A MAGNIFIED PORTION OF THE 

SPECTRUM ............................................................................................................................................. 9 
FIGURE 1.14 SPECTRUM OF TIME HOPPED PULSE TRAIN............................................................................... 10 
FIGURE 2.1 MEASUREMENT SETUP................................................................................................................ 13 
FIGURE 2.2 GENERATED GAUSSIAN PULSE ................................................................................................... 14 
FIGURE 2.3 GENERATED GAUSSIAN PULSE SPECTRUM ................................................................................. 15 
FIGURE 2.4 (A) BICONE LOS RECEIVED PULSE AND (B) MAGNITUDE SPECTRUM ......................................... 15 
FIGURE 2.5 (A) TEM LOS RECEIVED PULSE AND (B) MAGNITUDE SPECTRUM ............................................. 16 
FIGURE 2.6 LOS RECEIVED PULSES NORMALIZED ACCORDING TO THEIR RESPECTIVE DISTANCES USING 

BICONE ANTENNAS ............................................................................................................................. 18 
FIGURE 2.7 EXAMPLE RECEIVED POWERS FOR FREQUENCY DOMAIN MEASUREMENTS AT DIFFERENT 

DISTANCES USING BICONE ANTENNAS (IN 1 GHZ INCREMENTS) ........................................................ 19 
FIGURE 2.8 LOS RECEIVED PULSES NORMALIZED ACCORDING TO THEIR RESPECTIVE DISTANCES USING 

TEM ANTENNAS ................................................................................................................................. 19 
FIGURE 2.9 EXAMPLE RECEIVED POWERS FOR FREQUENCY DOMAIN MEASUREMENTS OF DIFFERENT 

DISTANCES USING TEM HORN ANTENNAS (IN 1 GHZ INCREMENTS) .................................................. 20 
FIGURE 2.10 BICONE LOS AVERAGE RECEIVED POWER VS. FREQUENCY..................................................... 21 
FIGURE 2.11 BICONE NLOS AVERAGE RECEIVED POWER VS. FREQUENCY.................................................. 21 
FIGURE 2.12 TEM LOS AVERAGED RECEIVED POWER VS. FREQUENCY ...................................................... 21 
FIGURE 2.13 TEM NLOS AVERAGED RECEIVED POWER VS. FREQUENCY.................................................... 21 
FIGURE 2.14 TEM LOS RECEIVED SIGNAL AND CUMULATIVE ENERGY....................................................... 25 
FIGURE 2.15 PATH LOSS EXPONENT AND STANDARD DEVIATION FOR DIFFERENT FREQUENCIES ACROSS THE 

MEASUREMENT RANGE ....................................................................................................................... 27 
FIGURE 2.16 PATH LOSS EXPONENT AND STANDARD DEVIATION CALCULATIONS FOR DIFFERENT 

BANDWIDTHS (IN 500 MHZ INCREMENTS) ACROSS THE MEASUREMENT RANGE ................................ 27 
FIGURE 2.17 CDF OF THE DIFFERENCE BETWEEN THE AVERAGE AND MEASURED RECEIVED POWER FIT TO A 

LOG-NORMAL DISTRIBUTION (REPRESENTS SHADOWING)................................................................... 28 



 

 v 

FIGURE 2.18 CDF OF RMS DELAY SPREAD FOR VARIOUS SCENARIOS (ALONG WITH BEST GAUSSIAN FIT) 31 
FIGURE 2.19 CDF OF MEAN EXCESS DELAY FOR VARIOUS SCENARIOS (ALONG WITH BEST GAUSSIAN FIT)32 
FIGURE 2.20 CDF OF THE NUMBER OF PATHS FOR VARIOUS SCENARIOS (ALONG WITH BEST GAUSSIAN FIT)

............................................................................................................................................................ 32 
FIGURE 2.21 TOTAL ENERGY CAPTURE WITH INCREASING NUMBER OF RAKE FINGERS ............................... 33 
FIGURE 3.1 CORRELATION LOSS FOR RF PULSES .......................................................................................... 38 
FIGURE 3.2 SYSTEM MODEL FOR DS-SS WITH A PREDICTION FILTER........................................................... 40 
FIGURE 3.3 PREDICTION ERROR FILTER ........................................................................................................ 40 
FIGURE 3.4 TRANSVERSAL FILTER WITH TWO-SIDED TAPS........................................................................... 41 
FIGURE 3.5 LATTICE FILTER.......................................................................................................................... 44 
FIGURE 3.6 ADAPTIVE NONLINEAR PREDICTION FILTER............................................................................... 46 
FIGURE 3.7 DECISION FEEDBACK RECEIVER ................................................................................................. 47 
FIGURE 3.8 TRANSFORM DOMAIN PROCESSING RECEIVER BLOCK DIAGRAM............................................... 47 
FIGURE 3.9 RAKE RECEIVER MMSE COMBINER........................................................................................... 52 
FIGURE 3.10 (A) SPECTRUM OF SIGNAL AND INTERFERENCE (B) ENCODING SEQUENCE, AND (C) TRANSMITTED 

WAVEFORM.......................................................................................................................................... 53 
FIGURE 3.11 BOCK DIAGRAMS OF THE (A) TRANSMITTER AND (B) RECEIVER ................................................ 54 
FIGURE 4.1 TIME DOMAIN FRONT END NBIC CIRCUIT ................................................................................. 56 
FIGURE 4.2 MULTI-TAP TRANSVERSAL FILTER CANCELLATION CIRCUIT ..................................................... 57 
FIGURE 4.3 TRANSVERSAL FILTER ................................................................................................................ 58 
FIGURE 4.4 EVALUATION OF ARCCOS ........................................................................................................... 61 
FIGURE 4.5  METHOD OF MOMENTS ESTIMATE VARIANCE VS. SNR............................................................. 63 
FIGURE 4.6 METHOD OF MOMENTS ESTIMATE MEAN VS. SNR..................................................................... 64 
FIGURE 4.7 METHOD OF MOMENTS ESTIMATE MEAN VS. BLOCK SIZE FOR FS = 4FC .................................... 64 
FIGURE 4.8 METHOD OF MOMENTS ESTIMATE VARIANCE VS. BLOCK SIZE FOR FS = 4FC ............................. 65 
FIGURE 4.9 MAXIMUM LIKELIHOOD ESTIMATE MEAN VS. BLOCK SIZE FOR FS = 8FC ................................... 66 
FIGURE 4.10 MAXIMUM LIKELIHOOD ESTIMATE VARIANCE VS. BLOCK SIZE FOR FS = 8FC .......................... 67 
FIGURE 4.11 TIME DOMAIN FRONT END NBIC SIMULATION FLOW.............................................................. 69 
FIGURE 4.12 TONE INTERFERER (A) OPTIMUM Λ VS. INR AND (B) MEAN OF ERROR SIGNAL ........................ 71 
FIGURE 4.13 QPSK INTERFERER (A) OPTIMUM INR VS. Λ AND (B) MEAN OF ERROR SIGNAL ....................... 72 
FIGURE 4.14 BIPHASE AWGN PERFORMANCE.............................................................................................. 75 
FIGURE 4.15 PPM AWGN PERFORMANCE.................................................................................................... 75 
FIGURE 4.16 LMS PERFORMANCE FOR A AWGN CHANNEL, SNR = 5 DB.................................................... 76 
FIGURE 4.17 LMS PERFORMANCE FOR A MULTIPATH CHANNEL, SNR = 9 DB (A) TONE VS. QPSK AND (B) 

QPSK WITH INCREASING Λ .................................................................................................................. 77 
FIGURE 4.18 LMS PERFORMANCE, PERFECT VS. IMPERFECT CHANNEL ESTIMATION (NO INTERFERENCE 

CANCELLATION) .................................................................................................................................. 78 
FIGURE 4.19 LMS PERFORMANCE, IMPERFECT CHANNEL ESTIMATION (A) TONE AND (B) MODULATED 

INTERFERENCE FOR 1, 5, AND 10 RAKE FINGERS ................................................................................. 79 
FIGURE 4.20 TRANSVERSAL FILTER NBIC BER PERFORMANCE FOR SNR = 5 DB........................................ 80 
FIGURE 4.21 TRANSVERSAL FILTER NBIC BER PERFORMANCE FOR SNR = 7 DB AND 8 DB ....................... 81 
FIGURE 4.22 TRANSVERSAL FILTER RAKE RECEIVER PERFORMANCE SNR = 5 DB....................................... 81 
FIGURE 4.23 INR ESTIMATION USING THE SIGNALS AUTOCORRELATION MATRIX ....................................... 82 
FIGURE 4.24 EFFECT OF FREQUENCY UNCERTAINTY ON TRANSVERSAL FILTER ESTIMATION ...................... 83 
FIGURE 5.1 REAL TIME FOURIER TRANSFORM BLOCK DIAGRAM ................................................................. 86 
FIGURE 5.2 BLOCK DIAGRAM OF INTERFERENCE CANCELLATION ................................................................ 87 
FIGURE 5.3 REAL TIME FOURIER TRANSFORM INTERFERENCE CANCELLATION RECEIVER........................... 87 
FIGURE 5.4 REPRESENTATION OF SIDEBANDS ............................................................................................... 89 
FIGURE 5.5 (A) EXAMPLE RF UWB PULSE AND INVERSE TRANSFORM AND (B) THE CORRESPONDING 

TRANSFORM DOMAIN OUTPUT ............................................................................................................ 90 
FIGURE 5.6 (A) EXAMPLE RF UWB PULSE AND INVERSE TRANSFORM WITH IMPROPER PARAMETERS AND (B) 

THE CORRESPONDING TRANSFORM DOMAIN OUTPUT ......................................................................... 90 
FIGURE 5.7 REAL TIME FOURIER OUTPUT, UWB RF PULSE FC = 4 GHZ....................................................... 92 
FIGURE 5.8 TONE (FC = 4 GHZ), (A) REAL TIME FOURIER OUTPUT AND (B) MAGNIFIED TO SHOW SIDE LOBES

............................................................................................................................................................ 92 
FIGURE 5.9 (A) MAGNIFIED UWB SPECTRUM AND (B) MAGNIFIED TONE SPECTRUM................................... 93 



 

 vi 

FIGURE 5.10 TIME DOMAIN RESIDUAL NARROWBAND SIGNAL AFTER MAIN LOBE EXCISION ..................... 94 
FIGURE 5.11 REAL TIME FOURIER OUTPUT (A) RECTANGULAR AND (B) HANNING WINDOW ....................... 95 
FIGURE 5.12 RECOVERY OF UWB PULSE AFTER CANCELLATION (A) RECTANGULAR AND (B) HANNING 

WINDOW.............................................................................................................................................. 95 
FIGURE 5.13 EFFECT OF WINDOWING IN THE TIME DOMAIN......................................................................... 96 
FIGURE 5.14 SIMULATED AND THEORETICAL (A) BIPHASE AWGN PERFORMANCE AND (B) PPM AWGN 

PERFORMANCE .................................................................................................................................... 98 
FIGURE 5.15 BER PERFORMANCE WITH INTERFERENCE CANCELLATION (A) SNR = 3 DB AND (B) SNR = 6 DB

............................................................................................................................................................ 99 
FIGURE 5.16 BER PERFORMANCE WITH INTERFERENCE CANCELLATION FOR A TONE AND BPSK SIGNAL 100 
FIGURE 5.17 UWB MULTIPATH SIGNAL ..................................................................................................... 100 
FIGURE 5.18 UWB MULTIPATH SIGNALS AFTER APPLYING A HANNING WINDOW ..................................... 101 
FIGURE 5.19 BER PERFORMANCE FOR 3 FINGER UWB RAKE RECEIVER.................................................... 102 
 
 
LIST OF TABLES 
 
TABLE 2.1 LARGE SCALE PATH LOSS PARAMETERS AND SMALL SCALE STATISTICS WITH 15 AND 20 DB 

THRESHOLDS ....................................................................................................................................... 34 
TABLE 2.2 MEASURED PATH LOSS EXPONENTS (N) AND SHADOWING STANDARD DEVIATION (σ) IN 

PUBLISHED MEASUREMENT STUDIES  (MEAN AND STANDARD DEVIATION OF BOTH QUANTITIES ARE 
SHOWN FOR SOME STUDIES) ................................................................................................................. 35 

TABLE 2.3 COMPARISON OF PREVIOUSLY REPORTED UWB SMALL SCALE RESULTS ................................... 36 
TABLE 4.1 FREQUENCY ESTIMATE STANDARD DEVIATION, FS = 4 FC, BLOCK SIZE = 160 SAMPLES............. 65 
TABLE 4.2 FREQUENCY ESTIMATE STANDARD DEVIATION, FS = 4 FC, BLOCK SIZE = 20 SAMPLES............... 66 
TABLE 4.3 MLE MEAN AND ESTIMATE VALUES FOR SNR = 10 DB.............................................................. 67 
TABLE 4.4 FREQUENCY ESTIMATE STANDARD DEVIATION, FS = 4 FC, BLOCK SIZE = 160 SAMPLES............. 68 
TABLE 4.5 FREQUENCY ESTIMATE STANDARD DEVIATION, FS = 4 FC, BLOCK SIZE = 20 SAMPLES............... 68 
TABLE 5.1 WINDOW TYPES........................................................................................................................... 94 



1 

 
Chapter 1  
Background and Motivation 
 

1.1 Introduction 
In February 2002 the Federal Communications Commission (FCC) approved a First 
Report and Order allowing the production and operation of unlicensed ultra-wideband 
(UWB) devices [FCC].   The report specified three target application areas and provided 
corresponding operating frequency ranges and power limitations.  The application areas 
included vehicular radar systems, communications and measurement systems, and 
imaging systems.  The imaging systems class consists of several radar implementations 
and is divided into the following subclasses: ground penetrating radar, wall imaging, 
through-wall imaging, medical and surveillance systems [FCC].  Of all the systems 
mentioned, measurement and communications systems are currently receiving the most 
attention in industry and academia alike.  Communications and measurements are the 
focus of this thesis and all discussion henceforth will be in that context (Note that parts of 
the discussion will be applicable to other UWB systems as well.) 
 
According to the FCC, a UWB system is classified using one of two different measures 
of bandwidth.  A system can either have an instantaneous bandwidth in excess of 500 
MHz or have a fractional bandwidth that exceeds 0.20 (by comparison a narrowband 
signal typically has a fractional bandwidth which is less than 0.01).  Both metrics are 
defined according to the -10 dB points of the signal’s spectrum.  Fractional bandwidth is 
defined as the signal’s bandwidth divided by its center frequency or more precisely as 

2 H L
f

H L

f fBW
f f

−
=

+
 where fH is the highest frequency and fL is the lowest frequency of the 

signal at the -10 dB points [FCC].  These definitions specify that systems with a center 
frequency greater than 2.5 GHz must have a bandwidth greater than 500 MHz and a 
system with a center frequency less than 2.5 GHz must have a fractional bandwidth 
greater than 0.20.  Figure 1.1 below provides an illustration comparing the fractional 
bandwidth of a narrowband signal and a UWB signal, BWNB is the narrowband signal 
bandwidth, BWUWB is the UWB signal bandwidth, and fc is the signal’s center frequency. 
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Figure 1.1 Fractional bandwidth comparison of a narrowband and UWB signal 

 
As Figure 1.1 demonstrates a UWB signal’s bandwidth can cover a large range of 
frequencies.  It is therefore important that UWB devices use a low transmit power 
spectral density in order to not interfere with existing narrowband communications 
systems.  For this reason the FCC has provided a preliminary “conservative” spectral 
mask for all UWB systems.  The spectral mask for communications and measurement 
systems is given in Figure 1.2 below [FCC]. 
 

 
Figure 1.2 FCC Spectral Mask for Communications and Measurements Applications 
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1.2 Impulse Radio 
The FCC’s UWB classifications and specifications provide the opportunity for several 
technologies to be used for UWB communications applications.  Specifically in the area 
of wireless personal area networks (WPAN), modulation techniques such as multi-band 
orthogonal frequency division multiplexing (OFDM) and a direct sequence version of the 
pulse based UWB (sometimes referred to as DS-UWB) are being considered for UWB 
devices.  However these technologies have not traditionally been associated with UWB.  
UWB is typically synonymous with the transmission of ultra short duration (usually 
subnanosecond) pulses, with bandwidths in the gigahertz range.  In fact, impulse radio 
and UWB radar have been in existence since the early 1970’s.  The use of these pulses 
provides many potential advantages for communications.  First, the sharp “rise” and 
“fall” of the pulse causes the pulse’s energy to be spread over a large bandwidth.  This 
provides a low power spectral density for any given frequency and therefore provides the 
possibility for low probability of detection/intercept (LPD/I) communications.  The 
narrow pulses also offer the capability for precise ranging and improved multipath 
resolution. This fine multipath resolution means that UWB is relatively immune to 
multipath fading and thus can have a much lower fading margin than traditional 
narrowband systems. 
 
The following provides an introduction into the basics of pulse-based UWB or impulse 
radio.  First some common UWB pulses are examined.  Many researchers typically 
consider a Gaussian pulse or a derivative of the Gaussian pulse as the theoretical pulse 
shape for UWB communications systems.  A Gaussian pulse can be simply described by 
the following function 

 ( ) ( )21
2 pt t

p t e t
−

= −∞ < < ∞  (1.1) 
where tp is approximately the width of the pulse in seconds.  Figure 1.3 below displays an 
example of a Gaussian pulse with tp = 1 ns and its corresponding magnitude spectrum.  
The -10 dB bandwidth of this signal is approximately 2 GHz. 
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Figure 1.3 (a) Gaussian Pulse and (b) Magnitude Spectrum 
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It is also of interest to consider the derivatives of the Gaussian pulse since it is possible to 
generate these pulses by filtering the original Gaussian pulse or through the use of 
wideband antennas.   The antennas employed in a UWB system can have a significant 
impact on the shape of the UWB waveform and many times results in the differentiation 
of the generated pulse.  For instance, because of the DC energy in the pulse shown above 
the transmitted version of this waveform would have a modified shape.  Most wideband 
antennas have a lower cutoff frequency in the 100’s of MHz and is one reason why 
transmitted pulses are sometimes differentiated.  Antennas are an extremely important 
component of a UWB system and a great deal of consideration should be given to this 
area when designing a UWB system.  A brief mention will be given concerning this in 
Chapter 2 but it is not the focus of the work presented.  For a detailed analysis please see 
[Bueh04][Reed04].  Here we provide examples of the first and second derivatives of the 
Gaussian pulse which are given by 

 ( ) ( )
21

2
2

pt t

p

d tp t e
dt t

−
=  (1.2) 

and 
 

 ( ) ( ) ( )221 12
2 2

2 2 4

1 p pt t t t

p p

d tp t e e
dt t t

− −
= −  (1.3) 

Figures 1.4 and 1.5 provide example plots of the first and second derivatives with their 
corresponding magnitude spectrums, for tp = 1 ns.  Here the -10 dB bandwidths are 
approximately 2.5 GHz and 2.7 GHz. 
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Figure 1.4 (a) Gaussian Pulse First Derivative and (b) Magnitude Spectrum 
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Figure 1.5 (a) Gaussian Pulse Second Derivative and (b) Magnitude Spectrum 

 
 
As shown in Figure 1.2, the FCC spectral mask specifies both the frequency range and 
power limitations for UWB communications devices.  Therefore the baseband pulses in 
equations (1.1) – (1.3) could not be used for communications as they do not meet the 3.1-
10.6 GHz specifications.  However it is possible to modulate a sinusoid using a Gaussian 
pulse, shifting the pulse into the proper frequency range.  Such an RF pulse can be 
described by 
 

 ( ) ( ) ( )
21

2
,sin 2pt t

c UWBp t e f tπ
−

= ⋅  (1.4) 
 
where fc,UWB is the center frequency of the RF pulse.  Figure 1.6 gives an example of the 
RF pulse and its corresponding spectrum for tp = 1 ns and fc,UWB = 6 GHz.  The -10 dB 
bandwidth for this pulse is approximately from 4 – 8  GHz. 
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Figure 1.6 (a) Gaussian Modulated RF Pulse and (b) Spectrum 
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1.3 Modulation 
Any of the pulses described in equations (1.1) – (1.3) can be incorporated into several 
different M-ary or binary modulation schemes.  Of the many possible modulation 
techniques, two are predominately considered in research and industry.  These are pulse 
position modulation (PPM) and biphase modulation. Note that biphase is somewhat of a 
misnomer as a baseband Gaussian pulse does not have a phase parameter associated with 
it, just polarity. 
 
PPM is an M-ary modulation format that conveys information using pulses placed at 
specified delays.  This modulation scheme is typically orthogonal and in the binary case 
its performance is identical to binary frequency shift keying (BFSK) in a purely AWGN 
channel.  Consider Figure 1.7 which gives an illustration of 4-ary PPM modulation.  Here 
Tc is associated with the amount time allocated to transmit one UWB pulse.  Tc is 
therefore divided into M (in this case 4) different time slots of width δ.  The bit or symbol 
which is being transmitted determines which time slot the pulse occupies. 
 

 
Figure 1.7 4-ary Pulse Position Modulation (PPM) 

 
The other prevalent modulation format, biphase, is strictly a binary scheme and encodes 
information into the polarity of the pulse.  Biphase is therefore antipodal and in a purely 
AWGN channel has error performance that is identical to binary phase shift keying 
(BPSK).  Figure 1.8 provides an illustration of biphase modulation where a negative 
pulse represents a 0 and a positive pulse represents a 1. 
 

 
Figure 1.8 Biphase Modulation 
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It is also worth mentioning several other possible UWB modulation techniques.  These 
include pulse amplitude modulation (PAM) and on-off keying (OOK).  PAM is an M-ary 
modulation format where the information is encoded into the amplitude of the pulse.  
Figure 1.9 gives an example of 4-ary PAM.  PAM however is not a particularly attractive 
modulation scheme since it is increasingly energy inefficient with increasing M and 
UWB systems are typically power limited.  Another possible modulation type, OOK, is a 
binary scheme.  In this case the presence or absence of a pulse determines whether a 1 or 
a 0 was sent.  This technique is also not very energy efficient but may be attractive for a 
low cost, low complexity system.  Figure 1.10 provides an example of OOK. 
 

 
Figure 1.9 4-ary Pulse Amplitude Modulation (PAM) 

 
 

 
Figure 1.10 On-Off Keying Modulation (OOK) 

 

1.4 Multiple Access 
Some system designs also incorporate time hopping to provide multiple access (time 
hopping also provides some other advantages which will be discussed shortly).  Time 
hopping is variation of traditional time division multiple access (TDMA).  In traditional 
TDMA a frame is divided into N time slots allowing N users to share a single link.  A 
user is assigned a time slot and transmits in the same time slot each frame.  Time hopping 
adds a variation to this by changing the time slot from frame to frame according to the 
user’s code.  Also when used with UWB more than one pulse is typically used to 
represent a data symbol.  Note that frequency division multiple access (FDMA) is 
impractical for UWB systems.  The large bandwidths of UWB signals preclude this 
option and would also result in a much more complicated receiver design.  Any of the 
above modulation types could be used in conjunction with time hopping but PPM is 
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typically considered in the literature and will be the basis of the following discussion.  An 
example of a time hopping PPM (TH-PPM) system was presented in [Mart02][McKi03a] 
and is given by  
  
 ( ) ( )

[ ]
( )( )/( )  

s

k k k
f j c j N

j

s t A p t jT c T dδ= − − −∑  (1.5) 

where 
• s(k)(t) is the transmitted signal for the kth user 
• A is the amplitude of the pulse, equal to pE  where Ep is the energy per pulse,  

• Ns is the number of pulses used to represent one data symbol, i.e. the pulse 
repetition number 

• p() is the received pulse shape with normalized energy (this assumes all pulses 
received have experienced the same distortion due to the channel),  

• Tf is the frame repetition time (a UWB frame is defined as the time interval in 
which one pulse is transmitted),  

• cj
(k) is the time hopping sequence, often pseudorandom and/or repetitive, 

• Tc is the granularity of the time hop delay (together cj
(k) and Tc determine the 

‘coarse’ time dithering) 
• δ is the PPM time delay parameter, and 
• d[ ]

(k) is a function of the data sequence (the [ ] notation represents the integer 
portion of the argument). 

 
The total received signal is given by 
 ( ) ( ) ( ) ( ) ( )*k k

k
r t s t h t= ∑  (1.6) 

where h(k)(t) is the channel impulse response between the k-th user and the receiver of 
interest [McKi03a]. 
 
Figure 1.11 provides a depiction of an undmodulated pulse train without time hopping in 
which the frame, Tf, represents the time between pulses and Tp represents the pulse width. 
 

 
Figure 1.11 UWB Pulse Train (no modulation and no time hopping) 

 
In contrast, Figure 1.12 provides an example of a time hopping frame where Tf is 
considered the time in which one pulse is sent and is divided into time slots of period Tc.  
Relating back to the earlier discussion of PPM Tc is the same as depicted in Figure 1.7.  A 
pulse is then transmitted in any one of the time slots.  In a multiple access scenario the kth 
user would have a unique code, cj

(k), which is usually pseudorandom, and specifies the 
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time hopping location of the pulse from frame to frame. Modulation then occurs 
independently within the time slot.  Note that if synchronization were possible then 
orthogonal codes could be used.  Regarding modulation, the variable Ns specifies the 
number of pulses that are used to transmit one symbol or bit.  Using Ns > 1 introduces 
time diversity over the period of one symbol. This provides the system with a processing 
or spreading gain equal to Ns.  This in turn improves the ability to properly detect a 
symbol for a given received power at the cost of reducing the data rate.   

 
Figure 1.12 Example Frame for Time Hopping UWB 

 
As previously stated, time hopping actually serves a dual purpose.  Besides multiple 
access, it can also be used to smooth the spectrum of the UWB pulse.  Consider again the 
pulse train represented in Figure 1.11.  Because of the periodic nature of the pulse train, 
transmitting a signal of this nature introduces spectral lines in the pulse’s spectrum.  
Figure 1.13 provides an example of such a signal’s spectrum.  In contrast Figure 1.14 
shows the spectrum of a time hopped sequence created using 16 different time slots.  
Observing Figure 1.13(a) and Figure 1.14 there is a noticeable difference in the 
magnitude of the pulse train’s spectrum.  By employing time hopping the periodicities 
can be greatly reduced. 
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Figure 1.13 (a) Spectrum of Undithered Pulse Train and (b) a Magnified Portion of the Spectrum 
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Figure 1.14 Spectrum of Time Hopped Pulse Train 

 
Another possible UWB multiple access technique is direct sequence spread spectrum 
(DS-SS), sometimes called DS-UWB.  DS-UWB is similar in principle to more 
traditional DS-SS systems such as cellular CDMA (code division multiple access).  Note 
that time-hopping is also a type of CDMA since codes are used to separate user.  DS-
UWB based CDMA uses a binary pseudo-random code, typically with good cross 
correlation properties, to facilitate multiple access.  Each user is therefore assigned a 
unique pseudo-random code and multiple access is achieved by correlating the received 
signal with the correct pseudo-random code.  Note that pseudo-random codes are also 
used with time hopping but the codes are not typically binary sequences. In DS-UWB the 
code is used to modulate a stream of UWB pulses using biphase modulation.  Note that 
since this is a form a spread spectrum (i.e. a large number of pulses are being used to 
represent a single bit) it also offers some interference suppression since the pulse is 
“compressed” when the code is correlated at the receiver (The same holds true for time-
hopping if multiple pulses are used per data symbol). 
 

1.5 Interference 
Lastly, a brief commentary is provided on the interference inflicted and observed by a 
UWB system.  As shown by the spectral mask given in Figure 1.2, UWB 
communications systems are required to maintain a low transmit power spectral density.  
This is primarily a criterion to protect legacy narrowband systems, especially GPS and 
navigation systems.  The interference seen by a narrowband system is expected to be 
minor especially since a majority of the UWB signal’s energy is outside of the 
narrowband signal’s bandwidth.  There have been several research efforts investigating 
the impact of a UWB signal on existing systems.  [Ligh03] presented test results 
examining the effects of UWB signals on many different legacy military systems.  They 
found that UWB transmissions did interfere with some devices more than others and that 
many factors impact the level of interference, including pulse shape and pulse repetition 
frequency.  They found that some devices were susceptible to interference at power 
spectral densities below the FCC spectral mask.  One of the biggest concerns is the 
impact of UWB on GPS since air traffic relies heavily on this technology.  For this reason 
no UWB transmissions are currently allowed in the spectrum allocated to GPS.  The 
bottom line is there still needs to be much characterization done in this area.  
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Regardless of future changes to the spectral mask, UWB will still be susceptible to 
interference from in-band narrowband systems and hence will suffer from limited range.  
There will therefore likely be the need for signal processing techniques which perform 
front end interference cancellation.  Since the problem is similar to that of spread 
spectrum hopefully there will be some crossover from previous spread spectrum front end 
interference cancellation techniques.  Spread spectrum has received considerable research 
attention and will hopefully offer numerous ideas.  Unfortunately techniques such as 
linear prediction filters, which are purely digital, are not yet viable solutions since the 
current state of the art does not allow for a cost effective entirely digital UWB system.  
Some possible solutions include the use of transform domain processing, a combination 
analog-digital cancellation circuit, the use of antenna arrays, and the use of Rake 
receivers to exploit the temporal diversity of the UWB channel.  Explicit interference 
cancellation focuses on front end techniques because narrowband interference could 
easily prevent signal acquisition.  Without acquisition traditional spread spectrum 
rejection techniques can not be applied.  Currently there are no existing techniques which 
are employed in UWB systems and investigations of such techniques are just beginning 
to appear in the literature.  This is discussed in greater detail in later chapters and is a 
major portion of the work presented here. 

1.6 Thesis Outline 
The crux of this thesis focuses on two subject areas related to UWB radio performance, 
channel modeling and interference cancellation.  Chapter 2 discusses analysis conducted 
on UWB indoor propagation measurements, focusing specifically on large scale 
modeling.  The effect of bandwidth is discussed as it relates to path loss, and general path 
loss statistics are discussed.  Chapter 3 discusses narrowband interference and its affects 
on a UWB signal, and introduces existing cancellation techniques, predominately in the 
context of spread spectrum.  The interference cancellation sections discuss two different 
front end interference cancellation techniques.  Chapter 4 concentrates on a combination 
analog and digital cancellation circuit.  The circuit uses a digital algorithm to estimate the 
narrowband interference and subsequently cancels it in the analog domain.  Both a least-
mean-squares (LMS) and a two-sided transversal filter are investigated.  Chapter 5 
analyzes transform domain processing using chirp filters.  This is a purely analog 
technique and is also performed in the front end.  The received signals are transformed 
into the “frequency” domain allowing the narrowband energy contribution to be 
cancelled.  Finally Chapter 6 provides conclusions and the direction of future work. 
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Chapter 2  
Ultra-Wideband Channel Modeling 
 

2.1 Introduction 
Accurate channel models are extremely important for efficient communication system 
design.  The calculation of large and small scale statistics facilitates the creation of such a 
model.  Specifically large scale models are necessary for network planning and link 
budget design and small scale models are necessary for efficient receiver design.  This 
chapter discusses the statistical characterization and modeling of the Ultra-Wideband 
(UWB) indoor channel based on a recent measurement campaign as part of the DARPA 
NETEX program [Muqa03a][Bueh03][Bueh04][Reed04][Donl05][McKi03a]. 
 
Many researchers have presented UWB measurement results investigating both the 
residential and office environments.  Ghassemazdeh and Tarokh reported line-of-sight 
(LOS) and non-line-of-sight (NLOS) path loss results for a residential environment using 
a vector network analyzer (VNA) [Ghas03] for a frequency range from 4.375 – 5.625 
GHz.  Rusch et. al. also investigated the residential setting, presenting large and small 
scale, LOS and NLOS results for 2-8 GHz [Rusc04].  Other campaigns investigated the 
indoor office environment.  Kunisch and Pamp’s measurements used a VNA to 
investigate the frequency range from of 1-11 GHz, reporting path loss and amplitude 
statistics for LOS and NLOS environments [Kuni02].  Yano reported large and small 
scale findings using a time domain (pulse) measurement system with a center frequency 
of 2 GHz and a bandwidth of 1.5 GHz [Yano02].  Cassoli, Win, and Molisch also 
presented large and small scale results using a time domain measurement system 
[Cass02].  There are many other existing measurement results including [Alva03], 
[Hovi02], [Keig03], and [Paga03].  The current work is based on both time domain and to 
a lesser extent frequency domain measurements from the DARPA NETEX project.  We 
build on the existing work by (a) providing additional measurement results, (b) providing 
a detailed discussion of path loss for UWB, (c) discussing link budget ramifications, and 
(d) examining the impact of the common tap delay line small scale modeling approach.  
 
Note that statistics for a large part of the data used in this work was previously presented 
in [Muqa03a].  The current work differs in several ways.  First, the previous large scale 
characterization, did not examine frequency depdendency and used a different reference 
point (i.e., included multipath in the reference).  Secondly, the current work discusses in 
some detail the applicability of the Friis transmission formula to UWB path loss 
calculations and link budget concerns for UWB.  Additionally, the current small scale 
characterization is based on an assumption of a discrete channel model, whereas 
[Muqa03a] simply examined the continuous time impulse response.  Thus, we consider 
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additional information such as the number of paths seen in the channel, the impact of 
discrete channel modeling assumptions and the energy capture of different receiver 
structures.  Finally, it should be noted that the data set considered here is is 
approximately 25% larger than the data set presented in [Muqa03a] due to additional 
measurements being taken by the authors. 
 
Section 2.2 provides a brief introduction to the data set and the measurement procedure.  
Section 2.3 discusses large scale channel modeling, presents the motivation and 
justification for the path loss model used and provides the path loss results.  Section 2.4 
describes the analysis methodology and results for the small scale statistics.  
Additionally, the impact of the discrete channel model assumption on the results is also 
discussed.  Section V presents conclusions. 
 

2.2 Measurement Procedure 
The indoor measurement data represents various indoor LOS and NLOS environments.  
Measurements were taken with both a wideband biconical and a TEM horn antenna.  
Additionally, both time domain and frequency domain measurements were taken using a 
digital sampling oscilloscope and vector network analyzer respectively.  A large portion 
of the time domain measurements and all the frequency domain measurements were 
conducted by Virginia Tech’s Time Domain Laboratory (TDL).  For a complete 
description of their measurement procedure and locations see [Muqa03a][Bueh04].  The 
additional measurements associated with this thesis, taken by the author and Vivek 
Bharadwaj, are now described in detail. 
 
Time domain indoor NLOS measurements were taken as part of the DARPA NETEX 
project.  These measurements supplement the measurements taken by TDL and together 
they are the foundation of the analysis presented in this chapter. 
 
The measurements were taken using a Tektronix CSA 800 Digital Sampling Oscilloscope 
(DSO), a Gaussian pulse generator, and two wideband Bicone antennas.  The setup is 
diagrammed in Figure 2.1. 
 

 
Figure 2.1 Measurement Setup 
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The Gaussian pulse generator is manufactured by Picosecond Labs.  The pulse generator 
allows control of the pulse repetition frequency and also generates a trigger signal.  The 
trigger signal generation is synchronized with the pulse generation and is therefore used 
by the DSO as a reference to begin recording samples.  The trigger signal is used by the 
DSO to perform averaging and therefore must be very stable.  The averaging is 
performed on successive received signals thus is contingent on having a good reference.  
This averaging improves the overall SNR of the recorded signal. 
 
Measurements were taken at various NLOS locations throughout the MPRG student lab 
in Durham Hall.  A single measurement location consisted of a group of local area 
measurements taken on a 1-m by 1-m grid.  The points on the grid were separated by 15 
cm in both the horizontal and vertical direction and contained a total of 49 points.  A 
measurement record was therefore taken at each point and record consisted of 100 ns 
worth of data sampled at an effective rate of 400 GHz. Note that these measurements 
were taken in the evening to provide as static an environment as possible. 
 
The two antennas used, the TEM and Bicone, affect the received pulse shape and 
spectrum in unique ways.  Here we summarize the antenna effects with respect to the 
indoor measurements and modeling.  The generated is Gaussian in shape with a pulse 
width of approximately of 200 picoseconds.  The 10 dB point of the resulting spectrum is 
approximately 7 GHz.  Figure 2.2 and Figure 2.3 provide the time domain generated 
pulse and magnitude spectrum, respectively. 
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Figure 2.2 Generated Gaussian Pulse 
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Figure 2.3 Generated Gaussian Pulse Spectrum 

 
The received LOS pulse may have a different shape than this generated pulse based on 
the antennas used in the system.  The measurements presented here were conducted using 
similar antennas at the transmitter and receiver.  With the Bicone antennas the received 
pulse was observed to be a partial derivative of the generated pulse and for the TEM horn 
antennas the received pulse was observed to be the derivative of the generated pulse.  
This pulse distortion impacts both path loss calculations and the extraction of the channel 
impulse response using the CLEAN algorithm (the CLEAN algorithm is described in 
[McKi03a][Hogb74]).  Consequently a separate LOS measurement, containing only a 
single path, is needed for each antenna configuration and is used for both the large and 
small scale calculations.  These LOS pulses were extracted from reference measurements 
taken at a distance of 1 meter.  The LOS measurements for the Bicone and TEM antennas 
are given in Figure 2.4 and 2.5 respectively. 
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Figure 2.4 (a) Bicone LOS Received Pulse and (b) Magnitude Spectrum 
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Figure 2.5 (a) TEM LOS Received Pulse and (b) Magnitude Spectrum 

 

2.3 Large Scale Channel Modeling 
Path loss is a fundamental characteristic of electromagnetic wave propagation and is used 
in system design (i.e. link budgets), in order to predict system coverage.  Traditionally 
path loss is examined using the Friis Transmission Formula which provides a means for 
predicting the received power.  The formula in general predicts that received signal 
power will decrease with the square of increasing frequency, which has little effect on 
narrowband systems.  However, the large bandwidths of ultra-wideband (UWB) signals 
(typically > 500 MHz), coupled with the general form of the Friis Transmission Formula, 
would tend to suggest that the channel will introduce frequency dependent distortion and 
thus distort the pulse shape.  Thus the Friis Transmission Formula needs to be examined 
more closely to justify its application to UWB. 
 

The Friis transmission formula is based on the flux density of a transmitting source.   

The flux density is given by  

 2
2 /

4
mwatts

d
EIRPF
π

=  (2.1) 

where EIRP is the Effective Isotropic Radiated Power, which assumes that the power is 
radiated equally in all directions by the transmitter, and d is the radius of the sphere for 
which the flux density is being calculated.  
 
Equation (2.1) illustrates that the flux density assumes no frequency dependence and 
shows that with a doubling of distance the flux decreases by a factor of four.  This flux 
density can then be used to determine received power, Pr, by multiplying by Ae, the 
effective aperture of the receive antenna resulting in 

 wattsA
d

EIRPP er 24π
=  (2.2) 
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The Friis formula is typically quoted in terms of the gains of the antennas where the gain 
is related to the antenna’s effective aperture, Ae, by  

 eAG 2

4
λ
π

=  (2.3) 

Rearranging (2.3) by solving for Ae, and substituting the result into (2.2) gives   
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Further, EIRP can be expressed as  
 ttGPEIRP =  (2.5) 

where Pt, is the transmit power and Gt, is transmit antenna gain.  This results in the 
standard Friis Transmission Formula given as   

 
( )2

2

4 d
GGPP ttt

r π
λ

=  (2.6) 

The term 
2

4 d
λ
π

 
 
 

 is typically termed the path loss.  The existence of λ in the path loss 

equation is thus interpreted as frequency dependence in the path loss.  However, this term 
is explicitly an antenna effect.  To make this more obvious, it is instructive to consider 
another type of antenna, a constant aperture antenna.  A constant aperture antenna has a 
flux density which is a function of wavelength given as .   

 2
2222 /
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This flux density can be used in the same manner as above to obtain the expected 
received power: 
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λ
 (2.8)  

This result shows frequency dependence, but here the received power increases with 
frequency.  For systems with a constant gain antenna on one end of the link and a 
constant aperture antenna on the other end of the link, the received power can be shown 
to be independent of frequency [Bueh03]. The bottom line in this analysis is that while 
the received power may be dependent on frequency, the path loss (or more accurately the 
spreading loss) is not.  Frequency dependence is an antenna effect.  To verify this result, 
LOS measurements were taken to examine the received signal power, and consequently 
path loss with distance.  The first measurements consider a case most closely related to 
equation (1-6).  Wideband biconical antennas can be considered to be roughly constant 
gain over the frequency band of interest and were used in many of the measurements.  
The second set of measurements used TEM horn antennas at both the transmitter and 
receiver.  This scenario is somewhere between constant gain and constant aperture 
antennas.  Both analyses used frequency domain measurements, taken using a vector 
network analyzer, and time domain measurements, taken using a digital sampling scope.  
The measurement procedures are described in [Muqa03a]. 

 
Figure 2.6 compares a group of received time domain LOS pulses using biconical 
antennas.  This plot shows received time domain voltage signals that are normalized 
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according to their respective distances1.  It is expected that if no frequency dependence 
exists in the path then all the pulses will retain the same pulse shape.  A few pulses 
exhibit slight variations but otherwise the pulses do indeed maintain the same shape.  A 
complimentary analysis was performed in the frequency domain by comparing the slope 
of the received power for several frequency domain measurements of increasing distance.  
This is depicted in Figure 2.7.  The slopes reveal that there is a frequency dependence in 
the received power as predicted by the Friis equation in (2.6).  However this dependence 
is consistent across all distances examined.  Thus we conclude that the frequency 
dependence is related to the antenna in the LOS channel.   
 
This analysis was repeated for the TEM horn antennas producing similar results.  Figure 
2.8 plots several timed domain LOS TEM pulses that are normalized according to their 
respective distances.  As with the Bicone case, no distortion is observed.  Again an 
analysis was performed in the frequency domain.  Figure 2.9 plots the slope of the 
received power for several distances.  The measurement taken at 14 m is a little noisy but 
in general the slopes are similar. 
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Figure 2.6 LOS Received Pulses Normalized According to Their Respective Distances Using Bicone 

Antennas 

                                                 
1 Since power spreading loss is relative to the square of distance, the loss in voltage is expected to be 
relative to distance.  Thus, normalizing the received signal values with respect to distance should result in 
similar voltage levels. 
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Figure 2.7 Example Received Powers for Frequency Domain Measurements at Different Distances 

Using Bicone Antennas (in 1 GHz increments) 
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Figure 2.8 LOS Received Pulses Normalized According to Their Respective Distances Using TEM 

Antennas 
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Figure 2.9 Example Received Powers for Frequency Domain Measurements of Different Distances 

Using TEM Horn Antennas (in 1 GHz increments) 

 
It is also of interest to examine an NLOS scenario.  The NLOS environment provides the 
opportunity for substantial pulse interaction, frequency selective fading and the 
introduction of frequency dependence into the path loss.  Examining and comparing the 
slopes of LOS and NLOS measurements should provide some insight into NLOS 
frequency dependence.   

 
Figure 2.10 and Figure 2.11 show the averaged received power versus frequency for the 
wideband biconical antennas (this average is taken over all the time domain 
measurements).  Note that the slope of the received power versus frequency is different 
than that given in Figure 2.6.  This is because the current plot includes both the effect of 
the antenna as well as the pulse used for the time domain measurements.  However, 
examining the slopes of these two plots (LOS and NLOS) reveals that they are very 
similar.  This suggests that the NLOS measurements experience the same frequency 
dependence as the LOS measurements.  Based on the conclusion that LOS frequency 
dependence is antenna induced and not channel induced, we can further conclude that the 
NLOS channel also does not exhibit frequency dependence2.  We should emphasize that 
the NLOS measurements were taken at relatively short distances (< 10m).  It is very 
possible that larger distances may reveal frequency dependencies for NLOS channels due 
to the frequency dependence of many materials. 

 
                                                 
2 It should be emphasized that we are talking about the received power versus distance averaged over many 
measurements.  It is certainly true that frequency selective fading will occur on any individual 
measurement. 
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A similar analysis was performed for the TEM horn antennas.  Figure 2.12 and Figure 
2.13 show the slope of the averaged received power versus frequency.  There is a slight 
variation in the shape of the frequency spectrum and slope but in general they are very 
similar.  This again suggests that NLOS path loss does not suffer substantially from 
frequency dependence. We will revist this conclusion shortly.  At this point we simply 
emphasize that the dominant source of frequency dependence in the averaged received 
signal power is due to the antennas rather than the path. 
 

 
Figure 2.10 Bicone LOS Average Received Power vs. 

Frequency 
Figure 2.11 Bicone NLOS Average Received Power vs. 

Frequency 

Figure 2.12 TEM LOS Averaged Received Power vs. 
Frequency 

 
Figure 2.13 TEM NLOS Averaged Received Power vs. 

Frequency 

 

2.3.1 Empirical Modeling  
Section 2.3 provides justification for applying the traditional path loss model to the 
analysis of UWB signals.  In other words, since path loss is not inherently frequency 
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dependent, the traditional narrowband models apply.  Specifically traditional empirical 
models examine the path loss relative to a reference point.  Since the frequency 
dependent effects will be captured in the reference measurement the standard model is 
applicable.  The following provides analysis and results for measurements taken in the 
time domain and frequency domain for LOS and NLOS scenarios. 
 
It is has been shown in many experiments and with theoretical models that the average 
path loss (both indoors and outdoors) increases exponentially with distance [Rapp02]: 

 ( )
n

o

dPL d
d

 
∝  

 
  (2.9) 

where do is a reference distance (typically 1m for indoor measurements).  Specifically, 
the average received power can be modeled as 

 ( ) ( )
n

r r o
o

dP d P d
d

 
=  

 
 (2.10) 

where Pr(do) is the received power at a reference distance which includes the effects of 
the antennas and is assumed to be a free space reference.  This can be calculated using the 
Friis transmission formula (if the antenna gains or apertures are known) or measured.  In 
this work a reference measurement was taken since the antenna gain calculations are 
somewhat problematic for UWB.  Note that in typical narrowband measurements, the 
reference measurement must be averaged over several local measurements to eliminate 
multipath fading.  The reference measurement was taken at d0 = 1 m and the LOS path 
was extracted using time gating to eliminate multipath.  This makes the path loss 
calculations relative to free space at 1m.  The additional average path loss can be 
calculated for any subsequent measurement taken at a distance d, with received power 
Pr(d) using 

 ( ) ( )
( ) ( ) ( ) ( )0

0,r
r rdB dB dB

r

P d
PL d PL d P d P d

P d
= = −

 
(2.11) 

Combining (2.10) and (2.11) results in  
 

 ( ) ( )
( )
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10 1010 log 10 logr

dB
r

P d dPL d n
P d d

   = = −       
 (2.12) 

which allows n to be determined using the path loss values, PLdB, and the distances, d0 
and d.  Therefore (2.12) is used to determine the path loss exponents for each of the 
measurement environments examined here where n is chosen to minimize the square 
error between the linear fit and the pathloss values [Rapp02]. 

 
Note that equation (2.12) represents the average path loss experienced at a distance d.  
The path loss observed at any given point will deviate from this average value due to 
variations in the environment [Rapp02].  This variation has been found to follow a log-
normal distribution in many measurements.  We will examine this observation for UWB 
channels shortly.  Thus, the received signal power can be represented as  
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 
 (2.13) 

where Xσ is a log-normal random variable with standard deviation, σ.  It should be noted 
that typically this variation is attributed to large objects shadowing the receiver, in our 
case it is more commonly due to the amount of multipath available.  

2.3.2 Total vs. “Single Path” Path Loss Calculations 
What we have just described is often termed the “total” path loss.  Since the total 
received signal power is used.  However, UWB signals typically result in many resovable 
multipath components (we will discuss this shortly).  Depending on the receiver structure, 
the entire received signal energy may not be available to the detector.  In fact, many 
receivers may only be able to capture the dominant multipath component.  Thus we are 
also interested in the average power loss experienced by the dominant multipath 
component.  We refer to this as “single path” path loss. 
 
Thus all the received signal was used to perform the “total” path loss analysis.  The 
received signal energy computations, for both the time and frequency domain 
measurements, were calculated in the frequency domain.  For the frequency domain 
measurements, which where taken using a network analyzer over the frequency band 0.1 
– 12 GHz (see [Bueh04] for a complete description of the measurements), the total 
received power was simply taken as the sum of the powers in the frequency band.  For 
the time domain measurements each received signal was transformed into the frequency 
domain using a 216-point FFT.  A portion of the frequency spectrum, which was known to 
have minimal signal power, was then used to calculate an average noise floor3 (NF) and a 
standard deviation (σn) about that noise floor.  A threshold (Threshold) was then set using  

 3 nThreshold NF σ= +  (2.14) 
such that any magnitude in the frequency spectrum greater than Threshold was 
considered to contribute to the total received power. 
 
Note that every measurement location consists of a group of 49 measurements taken over 
a 1 m x 1m grid (see [Bueh04] for a complete description).  These measurements 
comprise a local area.  Path loss calculations for a measurement location is calculated as 
the average of the received energy for the local area.  An average path loss exponent is 
then determined by averaging the received energy over all the locations and performing a 
least-squares fit on all the values of n. 
 

2.3.3 Path Loss Results 
This section presents path loss results that represent approximately 800 time domain and 
400 frequency domain indoor measurements.  The results are presented according to 
antenna type and environment. 
                                                 
3 Note that several different methods were used to ascertain the noise floor including time gating and using 
noise-only measurements.  It was found that there were no significant differences in the results using the 
different noise floor calculation methods. 
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The average path loss parameters for the measurements data, n and σ , are given Table 
2.1.  Again, note that the path loss is relative to free space at a distance of 1m.  
Compared with other UWB measurement campaigns these measurements fall within the 
range of typically reported values but are on the lower end.  Table 2.2 summarizes results 
from other campaigns along with our results.  Examining the “total” path loss results 
given in Table 2.1 a couple general observations can be made.  First, the TEM and 
Bicone antennas have nearly the same average path loss exponent for both the LOS and 
NLOS environments.  However the TEM horn antennas seem to exhibit a higher 
variation in received power.  This is only slightly the case for the LOS environment but is 
very pronounced for the NLOS environment.  The NLOS’s larger variance can be 
attributed to the directional nature of the antenna as this will impact the number of 
received paths and strength of those paths as the receiver is moved throughout the 
environment. 
 
It is helpful also to look at the “single path” path loss as discussed in Section 2.3.2.  This 
provides a more complete understanding of the paths’ behavior and its affect on the path 
loss.  These results are given in Table 2.1.  The LOS measurements were used to calibrate 
the path loss calculations since it is expected that this will always be 2.  The NLOS 
“single path” path loss helps demonstrate that there is significant path loss for an 
individual path loss but the collective energy of the large number of paths results in a 
much lower path loss.  This will be discussed in more detail shortly. 
 
As mentioned, the results given in Table 2.1 are on the low end of previously reported 
results.  The fact that n < 2 for the LOS environments while commonly reported may be 
somewhat counterintuitive.  The following analysis gives a specific example which 
demonstrates the reason path loss can exhibit “better than free space” propagation in LOS 
scenarios.  This example is for a distance of 9 meters and is given in Figure 2.13.  
 
Figure 2.14 illustrates that in this particular case the LOS pulse of the received signal 
accounts for only about 25% of the total received energy of the signal.  This by itself 
would suggest that the path loss would be better than free space but it is helpful to work 
out the exact path loss.  The expected received power in dBm for free space propagation, 

FS
rP , at a distance, d, is given as  

 







−=

0
100 log20

d
dPP FS

r  (2.15) 

where P0 is a reference power measurement taken at distance, d0.  Similarly the measured 
received power, m

rP , at a distance, d, which in a general environment may have a path 
loss exponent different than free space (n = 2), is given as 

 ( ) 







−−=

0
100 log210

d
dPPm

r α  (2.16) 

where α accounts for the deviation from free space.  The value of α and therefore the path 
loss exponent, n, can be determined by calculating the difference between the received 
powers given by equations (2.15) and (1-17), ∆Pr, which is given as 
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r

m
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Substituting the values for ∆Pr from our example and combining equations (2.15) - (2.17) 
gives 

 5.15.0,log108.4
0

10 =→=







= n

d
d αα  (2.18) 

Thus the path loss exponent for this specific example, n = 1.5, is much better than free 
space. 
 

Figure 2.14 TEM LOS Received Signal and Cumulative Energy 

2.3.4 Frequency Dependence of Path Loss Revisited 
With the path loss model justified, we now wish to re-examine our earlier conclusion that 
path loss is not frequency dependent.  Using frequency domain measurements, two 
different approaches to the analysis will be presented.  First, path loss was calculated on 
individual frequency bins by dividing the range of frequencies into ten 1 GHz bins.  The 
received power was calculated for each bin, and using the corresponding bin in the 
reference measurement, a path loss exponent and standard deviation were calculated.  
Comparing the results across the frequency band will provide further insight into 
frequency dependent path loss.  It is expected that that all the bins will have similar path 
loss exponents, although possibly different σ values.   
 
Secondly path loss was investigated for different bandwidths.  Calculations were 
performed such that all bandwidths investigated had a common center frequency, fc.  
Therefore fc was chosen as 6 GHz and the bandwidth was incrementally increased around 
fc in 500 MHz steps.  Path loss calculations were performed for each bandwidth and it is 

Roughly 25% of 
the total energy 
is in the LOS 
path. 

LOS signal at 9m 

Normalized 
Cumulative 
Received energy 
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expected that all bandwidths will have similar path loss exponents but possibly different 
values of σ. 
   
Figure 2.15 plots path loss results versus frequency for 10 different bins from 1 GHz to 
10 GHz.  The path loss exponents and standard deviations represent both the NLOS and 
LOS environments and both the Bicone and TEM horn antennas.  The path loss 
exponents are in general fairly flat.  This statement is confirmed by examining the mean 
path loss exponent, n , and the standard deviation about this mean, nσ .  For the Bicone 
LOS and NLOS measurements these values are ( )1.4, 0.10nn σ= =  and 

( )2.47, 0.15nn σ= =  respectively, and for the TEM LOS and NLOS scenarios they are 

( )1.36, 0.11nn σ= =  and ( )2.46, 0.14nn σ= =  respectively.  This demonstrates that the 
path loss exponent variation is small.  The NLOS Bicone scenario shows a slight increase 
in the path loss exponent with increasing frequency and it is possible that NLOS 
measurements may see some frequency dependence with distance. 
 
The standard deviation of the Gaussian shadowing term, σ, shows some frequency 
dependence, especially for the TEM NLOS case.  Since the antenna is directional and 
because of the possibility of having frequency selective materials the TEM NLOS case 
could see larger variability in the shadowing term.  This should be verified with 
additional measurements.   
 
Figure 2.16 plots the comparison of bandwidth and path loss.  For all cases, Bicone or 
TEM and LOS or NLOS, the path loss exponent was found to be essentially flat.  To lend 
support to this statement the mean path loss exponent, n , and the standard deviation 
about this mean, nσ , were again examined.  For the Bicone LOS and NLOS cases these 
values are ( )1.44, 0.05nn σ= =  and ( )2.45, 0.05nn σ= =  respectively and for the TEM 

LOS and NLOS scenarios they are ( )1.38, 0.05nn σ= =  and ( )2.49, 0.06nn σ= =  
respectively.  This demonstrates that the variation of the path loss exponent is rather 
small.  The plot also shows that the standard deviation shows a decreasing trend with 
increasing bandwidth.  This is expected since larger bandwidth signals exhibit less 
variation in received signal power than smaller bandwidth signals.   
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Figure 2.15 Path Loss Exponent and Standard Deviation for Different Frequencies Across the 

Measurement Range 
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Figure 2.16 Path Loss Exponent and Standard Deviation Calculations for Different Bandwidths (in 

500 MHz increments) Across the Measurement Range 
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2.3.5 Shadowing 
Referring to equation (1-13) shadowing is represented by the term Xσ.  This is modeled as 
a log-normal random variable with standard deviation σ and is used to characterize the 
deviation of received power about the average power.  Note that traditionally this term is 
referred to as shadowing since it may be caused by objects which “shadow” the receiver.  
However this can also simply be caused by the number of reflectors and scatterers in the 
environment.  Additional scattering causes more multipath and thus can result in high 
received signal energy.  Figure 2.17 plots the CDF of the deviation of the measured 
received power from the calculated average.  The curves in general fit a log-normal 
distribution fairly well, however the NLOS scenarios seem to have a little more of a 
deviation from this distribution, especially the TEM case.  It should be noted that the 
TEM NLOS case had the fewest number of measurements and more measurements may 
be warranted to validate the log-normal fit.  Note that the values for the standard 
deviation of each curve is given in Table 2.1. 
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Figure 2.17 CDF of the Difference Between the Average and Measured Received Power Fit to a Log-

Normal Distribution (represents shadowing) 
 
 

2.4 Small Scale Channel Modeling 
Like path loss, small scale statistics are important metrics required to effectively model a 
particular channel and facilitate receiver design.  Combining all the indoor time domain 
data (which consists of 800 time domain profiles), time dispersion statistics were 
calculated for the indoor UWB channel.  Specifically mean excess delay, maximum 
excess delay, RMS delay spread, and the number of paths were calculated.  Also of 
interest were the number of inverted paths and the amount of inverted energy.  These two 
statistics are of interest to the pulse-based UWB systems since pulse polarity is very 
important in certain modulation schemes (for instance, bi-phase modulation). The 
statistics were classified by the measurement environment (LOS or NLOS) and by the 
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particular antenna used (TEM or Bicone).  To calculate these statistics an impulse 
response was first extracted from the channel.  As described in [McKi03a], this impulse 
response is used to model the small scale effects of the channel and is described in the 
traditional narrowband sense using a tapped delay line but with a slight modification.  
The model is a time-invariant linear filter with the channel impulse response, h(t), given 
by 

 ( ) ( )
1

0

N

k k
k

h t a t tδ
−

=

= −∑  (2.21) 

where the polarity of ka  is determined by a binary random variable (the phase term in the 
traditional narrowband model is replaced by polarity in the UWB model).  In order to 
extract the channel impulse response the CLEAN algorithm is used.  A brief explanation 
of this algorithm is provided in Section 2.4.1 [McKi03a][Yano02].  Section 2.4.2 gives an 
explanation of the processing used to calculate the statistics and finally in Section 2.4.3 – 
2.4.5 the results are presented. 
 

2.4.1 CLEAN Algorithm 
The CLEAN algorithm is a time domain deconvolution technique.  CLEAN is an iterative 
process by which a template LOS pulse is used to extract the channel impulse response 
(CIR) from a received signal [McKi03a].  In computing the CIR the CLEAN algorithm 
cycles through the following steps.  First the autocorrelation of the template LOS pulse, 
rss(t), and the cross-correlation between the received signal and the template LOS pulse, 
rsy(t), are computed.  The iterative process then begins by finding the maximum 
correlation peak of rsy(t) and the time delay, τk, associated with the peak, and then 
normalizing the peak by the correlation peak of rss(t) to give the amplitude ak.  The 
autocorrelation, rss(t), is then scaled by ak and subtracted from rsy(t) at the time delay, τk.  
A second iteration is performed to find and remove the next strongest correlation peak.  
The iterative process continues until the maximum correlation peak has dropped below a 
minimum threshold.  The data considered for this analysis used CIRs which were 
extracted using thresholds of 15 dB and 20 dB below the maximum correlation peak.  A 
more detailed discussion of the impact of the CLEAN algorithm on the results is 
presented in [McKi03a]. 

2.4.2 Statistic Calculation Methodology 
As mentioned in Section 2.3.2 each measurement location consists of a group of local 
area measurements taken on a grid (please see [Muqa03a] for further details).  The 7x7 
grid consists of points separated by 15 cm in both the horizontal and vertical directions.  
Because of this spacing and the short time duration of the pulses (< 200 ps) individual 
paths in the profile will move as the receiver is moved amongst the local area points.  
Therefore power delay profiles for a local area could not be averaged together to give one 
power delay profile upon which the statistics could be computed for a local area.  Instead 
statistics were calculated on the individual profiles constituting a local area.  The local 
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area average statistics were then the result of averaging the individual statistics.  
Averaging the local area averages gives the final average statistics. 

 
The statistics were computed using the traditional definitions as found in [Rapp02]. Mean 
excess delay, τ , is given by 

 
∑

∑= 2

2
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kk

a
a τ

τ  (2.22) 

where 2
ka  represents the power in the path at time delay kτ .  Using the same notation, 

RMS delay spread, τσ , is given by 
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τ

τττστ  (2.23) 

The maximum excess delay, maxτ , is simply equal to the max( kτ ).  The number of paths 
is equal to the number of paths contained in a channel impulse response.  The number of 
inverted paths is simply the number of paths which have negative polarity and the amount 
of inverted energy is the percentage of the power contained in the inverted paths. 

2.4.3 Small Scale Average Results 
Table 2.1 presents average small scale statistics that were calculated using channel 
impulse responses computed with 15 dB and 20 dB thresholds.  In every case the 20 dB 
threshold always gives greater values than the 15 dB threshold case (excluding the 
inverted energy statistics, these remain fairly constant).  This is expected since the 
CLEAN algorithm will find more paths in the 20 dB case.  Note the threshold used for 
the CLEAN should be chosen in relation to the SNR of the measurements.  A more 
detailed discussion of the impact of CLEAN threshold is given in [McKi03a]. 
  
Comparing the results for the different environments and the different antennas reveals 
some relative trends for the mean excess delay, the max excess delay, the RMS delay 
spread, and the number of paths.  In general the TEM horn antennas, which are 
directional, always give lower values than the Bicone antennas, which are omni 
directional.  This is expected since an omni directional antenna illuminates more 
scatterers and is able to collect more multipath than a directional antenna.  Also the LOS 
cases always produce lower values than the NLOS which is due to the presence of the 
dominant LOS path. 
 
In terms of inverted paths all cases seem to invert about 50% of the paths except the LOS 
TEM case.  This is intuitive since, due to their directivity, the TEM Horn antennas will 
tend to receive mainly signals from the LOS direction which will be inverted with smaller 
probability. 
 
Table 2.3 gives a comparison of previously reported results for the number of paths, 
mean excess delay, and RMS delay spread.  The results in Table 2.1 are within the range 
of these results and match nicely with some results and not as well with others.  However 
it should be noted that Table 2.3 represents a wide range of environments. 
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2.4.4 Small Scale Statistic Distributions 
Table 2.1 represents averaged results and it is therefore instructive to examine the CDFs 
of these statistics in order to better understand the overall characteristics of the channel.  
CDF calculations were performed for the RMS delay spread, mean excess delay and the 
number of paths.  These are given in Figure 2.18, Figure 2.19 and Figure 2.20 
respectively.  The results represent all 800 time domain measurements.  In general we see 
more variation occurs in the Bicone measurements than the TEM and also more variation 
is apparent in the NLOS than in the LOS.  The TEM horn antenna seems to show vary 
little variance for either the LOS or NLOS case which can be attributed to the directional 
nature of the antenna.  Note that as expected, NLOS channels provide a larger mean in 
the delay statistics as well as a larger variance than LOS channels.  Additionally, Bicone 
antennas also result in both larger means and variations.  An attempt was made to fit each 
curve to a normal CDF, which is the superimposed dotted line.  The Gaussian distribution 
provides a reasonable.  
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Figure 2.18 CDF of RMS Delay Spread for Various Scenarios (Along with Best Gaussian Fit) 
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Figure 2.19 CDF of Mean Excess Delay for Various Scenarios (Along with Best Gaussian Fit) 
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Figure 2.20 CDF of the Number of Paths for Various Scenarios (Along with Best Gaussian Fit) 
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2.4.5 Channel Energy Capture4 
In addition to the previous results, Figure 2.21 represents the total amount of energy that 
a 50-finger Rake receiver could capture performing non-coherent energy capture using a 
number of pulse-matched filters.  The plot illustrates general trends related to the 
directivity of the antennas being used, with much of the total energy being captured with 
few fingers in the TEM cases and requiring many more fingers in the omni-directional, 
Bicone, cases.  (As a note the energy capture never reaches 100% due to the inter-pulse 
interference.  This is the result of the closely spaced paths and this is particularly evident 
in the TEM LOS case). 
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Figure 2.21 Total Energy Capture with Increasing Number of Rake Fingers 

 

2.6  Conclusions 
This chapter has presented large and small scale results of the indoor UWB channel, and 
contributes additional data to the already existing group of reported measurement results.  
Furthermore, an analysis of frequency domain data has been provided which reinforces 
the theorectical anlaysis demonstrating that the frequency dependence of the received 
power is an antenna effect and that path loss is not frequency dependent for the distances 
investigated.  Link budget considerations were also discussed.  Further, the CDFs of the 
reported small scale statistics were examined.  This analysis provided some insight to the 
effects of the different antennas in certain environments on the observed small scale 
statistics.  Finally an analysis of energy capture vs. Rake fingers also provided some 
                                                 
4 Note that all the energy capture results were obtained by convolving a 500 ps Gaussian pulse with the 
CIRs extracted from the measurement data and then correlating with that same pulse to find the energy in 
the fingers. 
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insight into the effects of the antenna and environment on the distribution and relative 
strengths of the received paths.   

 
 

 

Table 2.1 Large Scale Path Loss Parameters and Small Scale Statistics with 15 and 20 dB Thresholds 

Bicone TEM 
Total Peak Total Peak 

 n σ (dB) n σ (dB) n σ (dB) n σ (dB) 
LOS 1.3 2.6 2 0.71 1.3 2.8 2 - 

NLOS 2.3 2.4 2.7-4.3 
2.97-
3.98  2.4 5.1 3.35 6.3 

 
Bicone TEM 

15 20 15 20 
  
  
  NLOS LOS NLOS LOS NLOS LOS NLOS LOS 
Mean Excess Delay (s) 1.60E-08 5.19E-09 2.01E-08 1.05E-08 2.36E-09 5.52E-10 5.59E-09 1.22E-09 
Max Excess Delay (s) 6.57E-08 2.84E-08 7.86E-08 5.68E-08 1.61E-08 2.65E-09 4.31E-08 1.24E-08 
RMS Delay Spread (s) 1.37E-08 5.41E-09 1.62E-08 8.50E-09 3.27E-09 7.53E-10 7.09E-09 1.70E-09 
Number of Paths  72.8415 24.2753 153.9571 64.5884 28.7333 6.4188 99.1556 15.7607 
Inverted Paths  49.00% 47.61% 49.30% 48.68% 50.71% 39.54% 49.81% 43.93% 
Inverted Energy  44.23% 45.02% 45.36% 45.63% 

 
 
 
 
 
 34.26% 24.19% 37.67% 25.97% 
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Table 2.2 Measured Path Loss Exponents (n) and Shadowing Standard Deviation (σ) in 
Published Measurement Studies  (mean and standard deviation of both quantities are 
shown for some studies) 

Researchers n  : Mean n  : Std. 
Dev. σ (dB) : Mean 

σ (dB) : 
Std. 
Dev. 

Distance (m) 

1.3-1.4 (LOS) 2.5-3 (LOS) Virginia Tech 
(office) 2.3-2.4 (NLOS) 

 
2.6-5.6 (NLOS) 

 5-49 (LOS) 
2-9 (NLOS) 

AT&T (Res.) 
[Ghas03]  1.7 /3.5  (LOS/NLOS) 0.3 /0.97 1.6/2.7 0.5/0.98 1-15 (LOS) 

1-15 (NLOS) 

U.C.A.N. 
[Alva03]  

1.4/3.2(soft)/4.1(hard) 
LOS/NLOS/NLOS  

0.35 
LOS/1.21(soft) 

/1.87(hard) NLOS 

 4-14 
(LOS/NLOS) 

France 
Telecom 
[Paga03]  

1.5 / 2.5 (LOS/NLOS)   
 2.5-14 (LOS) 

4-16 (NLOS) 

1.6 (lab)1.7(flat) LOS 
3.7 (office/lab/NLOS) CEA-LETI 

[Keig03]  
5.1 (flat/NLOS) 

 4 / 4 (LOS/NLOS) 
 1-6, 1-8 (LOS 

2-20,7-17 
(NLOS) 

Intel 
(Resident.) 
[Rusc04] 

1.7/4.1 (LOS/NLOS)  1.5/3.6 
(LOS/NLOS) 

 1-11 (LOS) 
4-15 (NLOS) 

2.7- 3.3 (on body) IKT, ETH 
Zurich 

[Zaso03] 4.1 (around the torso) 
  

 
0.15 – 1.05 

2.04 (d<11m) Cassioli/ 
Molisch/Win 

[Cass02] -56+74log(d) (d>11) 
 4.3 

 8-11 (NLOS) 
11-13(NLOS) 

1.04,1.4,1.8 LOS Oulu Univ. 
[Hovi02]  3.2, 3.3, 3.9 NLOS 

  
 1-30 (LOS) 

4-14 (NLOS) 
Whyless 
[Kuni02]  1.58/1.96 LOS/NLOS    2.5-16 

(LOS/NLOS) 
Time Domain 

[Yano02]  2.1 (LOS/NLOS)  3.6  2-21 
(LOS/NLOS) 
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Table 2.3 Comparison of Previously Reported UWB Small Scale Results 

Researchers τ (ns) τσ (ns) num paths 

LOS 

Virginia Tech(Office) 5.19 5.41 24 

TDC [Yano02] 
[Pend02]  4.95 (0-4m) 5.27 (0-4m) 24 

CEA-LETI [Keig02a]  4-9 14-18  

6.53 (home) 11.45 (home) 3.4 (home) 
CEA-LETI [Keig02b]  

6.42 (office) 10.07 (office) 2 (office) 
AT&T [Ghas02b]   1.6  

AT&T [Ghas02a]   1.1-16.6, mean 4.7  

Intel [Pret02] 
[Foer02b]  4 9 7 

802.15 model 
[Foer02a]  5.1 5.3 24 

 

NLOS 

Virginia Tech(Office) 16 13.7 72 

USC [Cram99] 
[Cram02a] 
[Cram02b]  

~59-126 ~45-74  

10.04 (0-4m) 8.78 (0-4m) 36.1 (0-4m) TDC [Pend02] 
[Yano02]  14.24 (4-10m) 14.59 (4-10m) 61.6 (4-10m) 

CEA-LETI [Keig02a] 17-23 14-18  

16.01 (4-10m) 14.78 (4-10m) 46.8 (4-10m) 
CEA [Keig02b]  18.85 (10-

20m) 17.64 (10-20m) 75.8 (10-20m) 

AT&T [Ghas02b]   2.7  

AT&T [Ghas02a]   0.75-21, mean 8.5  

Intel [Pret02] 
[Foer02b] 17 15 35 

802.15 model 
[Foer02a] 10.4/14.2 8/14.3 36/62 

Hashemi  
(survey paper of 

various non-UWB 
indoor results) 

[Hash93] 

 

20-50, 25 (small/med office) 
<120,200 (large office) 

70-90,<80 (office) 
<100 (university) 

8.3 (LOS), 8.3, 14.1 (NLOS) 
(office) 
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Chapter 3  
Narrowband Interference Mitigation 
 

3.1 Introduction 
UWB offers many potential advantages for wireless communications and ranging, 
however a major drawback is that it is highly susceptible to narrowband interference.  
Consequently the error performance suffers and the systems range is limited.  Even 
though the bandwidth of a UWB signal is extremely large, especially compared to a 
potential narrowband interferer, the narrowband interferer has a much higher power 
spectral density.  This can be extremely detrimental to a UWB receiver.  The following 
discussion provides some analysis into the nature of the narrowband interferer’s impact 
on a UWB receiver. 
 
Consider a narrowband tone interferer modeled as 
 
 ( ) ( )sin 2 ci t A f tπ φ= +  (3.1) 
 
where fc is the center frequency of the signal and φ  is a random phase offset.  Note that 
over the duration of a UWB pulse a narrowband interferer, even if it is digitally 
modulated, will appear as a tone.  Therefore, when examining a single pulse, any type of 
narrowband interference can be characterized by simply using equation (3.1).  The 
interferer’s impact can be characterized according to its center frequency, the UWB pulse 
width (i.e. bandwidth), and the type of UWB pulse, baseband or bandpass.  Likewise the 
phase of the interferer, relative to the phase of the pulse, can also cause varied 
performance.   
 
First the impact of the interferer’s center frequency is discussed.  Consider a Gaussian 
modulated RF pulse (as described in Chapter 1) given by 
 
  ( ) ( ) ( ),sin 2 c UWBp t g t f tπ=  (3.2) 
 
where g(t) is the Gaussian pulse given in equation (1.1) and fc,UWB is the center frequency 
of the resulting pulse, p(t).  As might be intuitive, an interferer with the same center 
frequency as that of the pulse is possibly the most detrimental to the system’s 
performance.  This interferer’s impact is most easily quantified by determining the 
correlation loss between an uncorrupted pulse and a pulse in the presence of a 
narrowband interferer.  Therefore, correlation loss is expressed as a fraction, taking the 
correlation of p(t) with p(t) + i(t) divided by the autocorrelation of p(t).  The plot 
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therefore shows the energy reduction associated with narrowband interference.  Figure 
3.1 plots the relationship between correlation loss and frequency for several different 
pulse widths (i.e. bandwidths), specifically tp = 800 ps, 1200 ps, 1600 ps, and 2000 ps 
with fc,UWB = 10 GHz.  (Note that the correlation loss reported is a worse case analysis 
and is calculated for the relative phase of each interferer which is the most detrimental.  
The impact of phase will be discussed shortly.).  It can be seen that the correlation loss 
peaks at the center frequency of the pulse and then falls off as the frequency increases or 
decreases, moving away from fc.  The impact also varies as a function of pulse width.  As 
expected this variation is directly correlated with the spectrum of the pulse.    
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Figure 3.1 Correlation Loss for RF Pulses 

 
As previously mentioned the relative phase alignment of the UWB signal and the 
narrowband interferer also has an impact on the performance degradation.  Since the 
UWB signal was created using a sine wave with a phase of zero, the results are presented 
by simply varying the phase of the interferer from 0 to 2π.  The impact of the relative 
phases was investigated for the same frequencies and pulse widths used in the discussion 
concerning correlation loss.  It was determined that for the range of frequencies 
investigated that as the phase of the interferer was varied from 0 to 2π the impact of the 
interferer also varied.  This impact is measured in terms of its constructive and 
destructive interference.  The interference was found to be cyclic and varies in a 
sinusoidal fashion as a function 2π.  The impact of the relative phase also varies from 
frequency to frequency but the periodic nature remains the same.  In general for a UWB 
pulse and NBI signal with equal center frequencies the most degradation is caused by an 
interferer that is 180 degrees out of phase and the degradation is the least when the 
interferer is completely in phase.  However as frequency changes so does the phase 
causing the most degradation. 
 
Using “spreading” with the UWB receiver also impacts performance in the presence of 
narrowband interference.  “Spreading” is the transmission of multiple pulses per data 
symbol.  This introduces time diversity in the received signal, and averaging over the 
repeated pulses improves BER performance at the expense of decreasing the data rate.  In 
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the presence of narrowband interference the averaging will help improve the BER 
performance of the system. 

3.2 Narrowband Interference Cancellation:  Theory 
and Previous Work  
 
As mentioned, existing narrowband technologies pose a serious threat to the proper 
operation of a pulse-based ultra-wideband (UWB) communications system.  Compared to 
UWB, a narrowband signal’s power spectral density (PSD) level is much greater.  
Consequently the system suffers unless the interference can be mitigated.  This chapter 
provides some background information on narrowband interference cancellation.  Very 
little literature exists on narrowband interference cancellation as it relates to UWB. The 
provided introduction will therefore mainly focus on direct sequence spread spectrum 
(DS-SS).  This area has and continues to receive a great deal of attention and because the 
interference problem is very similar (in terms of a wideband signal in narrowband 
interference) and most of the solutions for DS-SS could be applicable to UWB. 
 
The majority of the techniques used for suppressing narrowband interference involve 
filtering.  The goal of any of these filters is to cancel or suppress the interference while 
not distorting the desired signal, consequently improving the system’s performance in 
terms of SNR and BER performance.  These filters constitute two general categories; 
estimation or prediction filters and transform domain filters.  Examples of each of these 
filters will be discussed in detail in the following sections. 
 

3.2.1 Linear Prediction Filters 
A linear prediction filter can be described as a whitening operation that makes the output 
samples of the filter uncorrelated.  The goal is to eliminate the narrowband interference 
while incurring an acceptable level of distortion in the desired signal.  Linear prediction 
filters operate on the assumption that future values of a wideband signal tend to be 
uncorrelated with current values while the narrowband interference exhibits correlation 
between its past and future values.  This temporal correlation can be exploited to predict 
the narrowband interferer and cancel it from the received signal [Last97][Proa96]. 
 
A block diagram of the receiver structure incorporating a linear prediction filter is given 
in Figure 3.2.  Using this system the received signal can be modeled as 
 ( ) ( ) ( ) )(tntitstr ++=  (3.3) 
where r(t) is the received signal, s(t) is the desired signal, i(t) is the narrowband 
interference and n(t) is the additive white Gaussian noise (AWGN).  From this point 
forward the system model is examined using discrete values, where j denotes discrete 
time, and the received signal samples will be represented by 
 jjjj nisr ++=  (3.4) 
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Figure 3.2 System Model for DS-SS with a Prediction Filter 

 
In general the linear prediction filter pictured in Figure 3.2 can be a one-sided prediction 
error filter, as shown in Figure 3.3, or a two-sided transversal filter, as show in Figure 
3.4.  The discussion from this point forward mainly focuses on the latter since its 
symmetry offers a simpler implementation and has also been shown to exhibit nearly 
equal or better performance than the prediction error filter [Li82].  However the analysis 
is valid for both filters. 
 

 
 

Figure 3.3 Prediction Error Filter 
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Figure 3.4 Transversal Filter with Two-sided Taps 

 
The filter depicted in Figure 3.4 attempts to produce an estimate of the interference, jî , 
and then subtracts the estimate from the received signal, jx , cancelling the interference.  

The sample jx  is the central tap of the filter and jî  is given by 

 
, 0

ˆ
N

j k j k
k N k

i a x −
=− ≠

= ∑  (3.5) 

Thus the output of the filter jy  is given by ˆ
j j jy x i= −  and the optimum weights of the 

filter taps, NN aaaa ,,,,, 11 …… −− , can be determined by minimizing [ ]2
jyE , i.e. 

minimizing the mean square error of the filter.  According to the orthogonality principle, 
in order to minimize mean square error, the error, in this case jy , must be orthogonal to 
the data, j mx −  where 1≥m .  This minimization is given by 

 
, 0

0, 1
N

j k j k j m
k N k

E x a x x m− −
=− ≠

   − = ≥  
   

∑  (3.6) 

which yields 

 [ ] [ ]∑
≠−=

−=
N

kNk
jjkjj kmRamR

0,

 (3.7)  

 
where [ ] { }mjjjj rrEmR −=  is the autocorrelation of the received signal [Papo02].  This is 
the well known Weiner-Hopf equation and can be solved to find the optimum tap weights 
of the filter.  However this requires knowledge of the received signal’s autocorrelation 
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function, which in practice will not be known and is also likely time varying [Proa96].  
This motivates the need for adaptive algorithms which can be used to update the tap 
weights of the filter.  Common adaptive algorithms include the LMS and RLS estimation 
techniques.  The LMS algorithm can be represented by three basic relationships [Last97]: 
 

1. The filter output: j
H
jj xwy =   (3.8a) 

2. The adaptation error: jjj yd −=ε  (3.8b) 

3. The tap weight adaptation: *
1 kkkk xww εµ+=+  (3.8c) 

 
where j denotes discrete time, yj is the filter output, wj is the tap-weight vector, xj is the 
tap-input vector, H indicates the Hermitian (i.e. conjugate transposition), εj is the 
estimation error, d is the desired response, µ is the step-size parameter and * denotes the 
conjugation.  Several adaptive algorithms and receiver structures which can be employed 
are now discussed. 
 
In [Ketc82] Ketchum and Proakis examine and compare the performance of several 
adaptive algorithms (Note their analysis was performed for a one-sided prediction error 
filter).  In general they divide the algorithms into two categories: nonparametric and 
parametric (linear prediction).  The first category, nonparametric, employs the Fast 
Fourier Transform (FFT) to perform spectral analysis upon which an estimate of the 
transversal filter can be designed.  It was found that this method presented a viable means 
for narrowband interference suppression.  However this implementation requires a 
relatively large number of samples to obtain a good estimate and requires a larger order 
filter to obtain the same notch filter when compared with the linear prediction algorithms.  
Therefore the performance of the second category, parametric algorithms, will be 
discussed in more detail as it provides a simpler solution and is the more prevalent 
method.  
 
Ketchum and Proakis divide the parametric category into three algorithms, the Levinson 
Algorithm, the Burg Algorithm, and the Least Squares Algorithm.  The linear prediction 
methods are based on modeling the narrowband interference as white noise passed 
through an all-pole filter.  The suppression filter is then determined by using the 
estimated poles as the coefficients for the all-zero transversal filter, rendering the output 
white.  The following introduces the three different algorithms. 
 
Referring to equation (3.7), the Weiner-Hopf equation can be represented in matrix form 
by 
 mmm baR =  (3.9)  
where mR  is the mm ×  autocorrelation matrix, ma  is the vector of filter coefficients, and 

mb  is the vector of autocorrelation coefficients [ ]mR jj .  When the matrix mR  is a 
Toeplitz matrix it can be efficiently inverted using the Levinson-Durbin algorithm.  This 
algorithm is order recursive and can be used to determine the coefficients [Ketc82].  In 
order to make this algorithm adaptive there must be a way to determine the 
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autocorrelation of the received signal.  This is typically done by directly estimating 
[ ]mR jj  using the received data and is given by 

 

 [ ] [ ] [ ]∑
−

=

+=
mN

n
jj mnrnrmR

0

ˆ  (3.10) 

 
The second algorithm, the Burg algorithm, operates using the same principle as the 
Levinson algorithm and can be considered an order recursive least squares algorithm.  
The algorithm uses the Levinson recursion in each iteration and forces the filter 
coefficients to satisfy the Levinson-Durbin recursion (for a detailed analysis please see 
[Ketc82]).  The third and final algorithm is the Least Squares algorithm, which is 
different from the Burg algorithm in that the coefficients are not constrained to satisfy the 
Levinson-Durbin recursion.  Also the coefficients are obtained in the least squares sense 
by minimizing over the entire set of filter coefficients.  The solution to this is comparable 
to the set of equations (3.8a) – (3.8c). 
 
Ketchum and Proakis' analysis compared the performance of the different adaptive 
algorithms and examined multiband interference as well.  For the sample size 
investigated they found that all the algorithms performed equally.  However it was noted 
that for small sample sizes the Burg and least squares algorithm would outperform the 
Levinson algorithm simply because the estimate of the autocorrelation for the Levinson 
algorithm will be poor.  In their simulations they also considered a type of matched filter 
receiver variation of the prediction filter.  If the signal is represented by ( )fS  and the 
noise-whitening filter by ( )fH , then the matched filter will have the frequency response 

( ) ( )fSfH **  and will maximize the output SNR.  It was found that the matched filter 
implementation leads to significant improvements in performance when compared with 
using only the linear suppression filter.  It is also of interest to examine the suppression 
filter’s performance in the presence of several narrowband interferers.  For the multiband 
interference it was found that the filter will suppress the interference provided there are 
enough degrees of freedom to assign at least one complex-conjugate pair of zeros in each 
band.  In other words the number of coefficients should be twice the number of 
interference bands. 
 
In a complimentary analysis in [Ilti84][Mils88], Iltis and Milstein investigated three 
different interpretations of the suppression filter for performing linear least squares 
estimation and compared their performance in the presence of a single tone jammer and a 
narrowband Gaussian jammer.  The first implementation uses a suppression filter to 
subtract the narrowband interference from the received signal (Criterion 1).  The second 
implementation uses the structure suggested in [Ketc82], which implements a 
suppression filter followed by a matched filter and the whitening filter (Criterion 2).  
Lastly the third structure employed an all-zero filter which generates an infinitely deep 
notch in the frequency response at the location of the interferer (Criterion 3). 
 
Iltis [Ilti84] reported that when employing Criterion 1 the performance improves as the 
strength of the jammer increases and also that using the suppression filter alone is less 
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effective against Gaussian jammers than tone jammers.  For Criterion 2 they found that 
the performance degraded with an increase in the Gaussian interferer’s power but that 
some improvement can be seen if the number of filter taps is increased.  They attribute 
the worsening performance to the finite number of filter taps, meaning only a finite 
number of zeros can be placed in the interference band.  Increasing the number of taps 
therefore improves performance however some jammer energy will always pass through 
the suppression filter.  It is also shown that the matched filter performance was superior 
to that of just the prediction filter.  However the two-sided transversal filter was found to 
perform equally as well as the matched filter prediction filter in the presence of either a 
tone or Gaussian noise jamming.  It is interesting to note that the two sided matched filter 
actually showed a degradation in performance. 
  
The LMS algorithm discussed previously is known to have a slow convergence rate and 
therefore structures other than the transversal filter have been investigated.  One such 
structure is the lattice filter [Mils88] and is given in Figure 3.5.  It has been shown that 
each section of the filter converges individually and independently from the other 
sections and therefore an adaptive version of this filter can result in a much faster 
convergence than the LMS algorithm [Mils88]. 
 

  
Figure 3.5 Lattice Filter 

 

3.2.2 Nonlinear Prediction Filters 
The linear prediction filters discussed in the previous section are designed on the 
assumption that the signal, js , and the noise, jn , are Gaussian random processes.  
However a DS-SS signal appears to be non-Gaussian noise to the filter and therefore 
linear prediction methods are suboptimal.  The optimum estimator is consequently based 
on nonlinear filtering techniques [Last97][Proa96]. 
 
The narrowband signal is still modeled as an autoregressive (AR) process in which the 
output is the result of passing AWGN through an all-pole filter.  In [Vija90] it is shown 
that the optimum estimates for the nonlinear filter can be found using a series of Kalman-
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Bucy filters.  However this implementation is extremely complex and not suitable for 
implementation.  Therefore Vijayan and Poor use an approximate conditional mean 
(ACM) filter to estimate the filter coefficients.  [Vija90] also concluded that the ACM 
filter outperformed the Kalman filter as the order of the autoregression was increased.  As 
shown in the linear filters the determination of the coefficients once again requires prior 
knowledge of the interference which is not known and therefore requires an adaptive 
algorithm to be implemented. 
 
Note that the received signal is the sum of an autoregressive process and a white process. 
This yields an autoregressive moving average (ARMA) process with the same 
autoregressive parameters as the interference.  Therefore the estimation is concerned with 
estimating the autoregressive parameters of an ARMA process.  It was found that directly 
adapting the ACM filter using estimates of the AR parameters was not plausible because 
the ACM filter is sensitive to variations in the parameters (a derivation of the ACM filter 
is given in [Vija90]).  Vijayan and Poor examine two adaptive algorithms to determine 
the coefficients, an LMS algorithm and a nonlinear gradient algorithm.   
 
The Widrow LMS algorithm, which is widely used to adapt the coefficients of linear 
transversal filters (and is given by equations (3.8a) – (3.8b)), was used along with a 
nonlinear transformation to determine the nonlinear filter coefficients.  The predicted 
value of the current state is given as a linear function of the previous estimate modified 
by a nonlinear function of the prediction error.  A diagram of the adaptive nonlinear 
prediction filter is given in Figure 3.6.  For illustrative purposes the equation for the 
linear prediction filter is given by [Vija90] 

 ( )[ ]∑
=

−− +−=
L

i
ikikik zkaz

1

ˆ1ˆ ε  (3.11) 

For the nonlinear filter an assumption is made that the error, kε , is the sum of a Gaussian 
random variable and a binary random variable (this same assumption was used in the 
derivation of the ACM filter).  Assuming the variance of the Gaussian random variable is 

2
kσ  then the nonlinear transform shown in Figure 3.6 is given by 

 ( ) 







−= 2tanh

k

k
kkk σ

ε
εερ  (3.12) 

The representation of the prediction of kz  for the nonlinear transversal filter is then given 
by 

 ( ) ( )[ ]∑
=

−−− +−=
L

i
ikikikik zkaz

1

ˆ1ˆ ερ  (3.13) 

It is then possible to update the weights using the Widrow LMS algorithm as given in 
equations (3.8a)-(3.8c).  However first an estimate of 2

kσ  is need.  This variance is 
approximated by 1ˆ 2 −∆= kkσ  where k∆  is a sample estimate of the prediction error 
variance.  In contrast to the linear prediction filter, the updating of the nonlinear filter 
depends explicitly on the previous predicted values as well as the previous filter inputs. 
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Figure 3.6 Adaptive Nonlinear Prediction Filter 

 
The above mentioned LMS algorithm is a gradient algorithm based on linear prediction 
and therefore Vijayan and Poor investigated a nonlinear gradient algorithm.  However 
their results determined that the nonlinear gradient algorithm offered no appreciable 
advantages over the LMS algorithm while at the same time requiring many more 
computations.  Also the results were compared with a linear two-sided interpolation filter. 
The nonlinear LMS filter was found to perform significantly better than the linear filter in 
both sinusoidal and autoregressive interference.  However Vijayan and Poor noticed that 
occasionally the non-linear filter would not offer much improvement over the linear 
filter.  Vijayan and Poor conjecture that the error surface of the non-linear filter has a 
high possibility of having local minima and therefore the algorithm is not always 
guaranteed to converge to the global minimum.  On the other hand the linear filter uses a 
gradient algorithm and is guaranteed to converge to a local minimum. 
 
Another possible non-linear filter configuration is the decision feedback filter [Last97] 
[Mils88].  A block diagram of this filter is given in Figure 3.7.  The basic concept of a 
decision feedback filter is that performance may be improved if the interference can be 
whitened without the desired signal being present.  Ideally the desired signal would be 
subtracted from the received signal leaving only interference and noise.  The interference 
could then be whitened without distorting the desired signal.  Obviously the desired 
signal is not known and must be estimated.  The estimate is taken from the receiver’s 
estimate of the data symbol.  Since the replicated signal is generated from the estimated 
data symbol it is possible that this estimate may be incorrect.  This can lead to error 
propagation and poor performance.  [Mils88] gives results which show that the ideal 
decision feedback filter outperforms a linear suppression filter of the same size.  It was 
also reported that error propagation had a minimal impact on the performance of the 
decision feedback filter.  However it seems that in low SIR situations the decisions would 
be very poor and cancellation would not be very effective. 
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Figure 3.7 Decision Feedback Receiver 

 

3.2.3 Transform Domain Processing 
Transform domain processing is another filtering technique for suppressing narrowband 
interference.  A receiver employing this technique would utilize a device that allows the 
computation of a real-time Fourier transform.  Figure 3.8 below gives a general block 
diagram of a transform domain receiver.  The switch or gain function in the block 
diagram allows the interference to be suppressed either through soft limiting or by 
notching.  In UWB it would not be currently practical to digitally sample the signal and 
copmute an FFT.  This is due to the extremely large bandwidths of the signal.  The 
following discussion is therefore directed toward the use of a SAW filter to perform this 
operation.   
 
 

 
Figure 3.8 Transform Domain Processing Receiver Block Diagram 
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The Fourier transform and inverse Fourier transform blocks can be realized using SAW 
filters.  This is accomplished by using the SAW filter to perform the convolution of two 
FM chirp waveforms.  It is described in [Mils77] that the convolution of two signals can 
be performed using the nonlinear interaction of two properly modulated oppositely 
traveling waves.  By applying the two RF signals ( ) tjetf ω  and ( ) tjetg ω  as inputs to 
opposite ends of a SAW device the convolution of ( )tf  and ( )tg  can be obtained.  The 
following analysis explains the convolution operation [Mils77].  
 
While in the SAW device’s medium these two signals ( ) tjetf ω  and ( ) tjetg ω  can be 
represented at any point x and for any time t by 

 ( )kxtje
v
xtf −






 − ω  and ( )kxtje

v
xtg +






 + ω  (3.14) 

where v is the velocity of the wave and k is a propagation constant.  The following three 
signals are produced when the two waves overlap within the device (assuming a second 
order nonlinearity): 
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where K is a constant representing the strength of the nonlinearity of the SAW device.  
The first two terms represent second order harmonics, but the last term is the term of 
interest and represents the product of two envelope functions.  In order to complete the 
convolution these terms need to be integrated.  The SAW device automatically performs 
this integration with the integration length being L.  L is the length of the SAW device.  
For large values of L (L > 10λ) the term in (3.17) is the only important term and the 
output of the SAW device is given by 

 ( ) ( ) ( )
22

2 2

2
LL t v

L Lt v

x xy t K f t g t dx Kv f g t d
v v

τ τ τ
+

− −

   = − + = −   
   ∫ ∫  (3.18) 

Thus, this gives the convolution of ( )tf  and ( )tg  with a time compression factor of two.  
Using this convolution technique it is possible to produce a real-time Fourier transform 
by using FM chirp waveforms as inputs to the SAW device.  The inputs are then given by 
 ( ) ( )2ttjetf ∆+ω  and ( )2ttje ∆+ω  (3.19) 
where ( )tf  is the signal to Fourier transformed and 2∆ is the linear rate of change of the 
FM chirp’s angular frequency.  The output of the SAW device then yields 
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 ( )∫
+

−

∆−v
Lt

v
Lt

tj defKv 2

2

4 ττ τ  (3.20) 

which is the Fourier Transform for appropriate values of L and v (note that the scaled 
frequency is 4t∆).  The frequencies for which the Fourier transform is valid is related to 
the rate of change of the FM chirp and the length of the SAW device.  Representing the 
right range of frequencies allows cancellation to be performed in the frequency domain. 
 
Results presented in [Mils88][Mils80] demonstrate that transform domain processing can 
significantly improve system performance.  As an example they found that a system with 
a processing gain of 31 and transform domain processing performs almost as well as a 
system with a processing gain of 255 which is almost a 10 dB improvement. 
 
The results presented in [Mils88] used notching to remove the NBI.  However it is also 
possible to suppress the interference by simply limiting the NBI power to a determined 
threshold.  The trade off is leaving some NBI power in the signal versus removing UWB 
signal power.  This is important depending on the output of the Fourier transformation.  If 
the transformation produces significant side lobes in the narrowband interferer’s 
spectrum then limiting is likely best so that removing too much UWB signal power is 
avoided. 
 

3.2.4 Synchronization Assumptions 
Depending on the type of interference cancellation technique used synchronization may 
or may not be needed.  For example a decision feedback canceller assumes that 
synchronization of the desired signal can be performed since the symbol estimate is used 
in the cancellation.  However the prediction filters do not suffer from this requirement.  
Synchronization can be performed after the cancellation of the interference.  This is also 
true for the transform domain processing technique.  The interference cancellation can be 
implemented on the front end and acquisition and synchronization can be performed after 
cancellation.  However in any of the cases if the front end is overwhelmed than the 
desired signal may be pushed to far into the noise floor and the cancellation will not be 
able to negate this. 

 

3.2.5 UWB Interference Cancellation 
The previous narrowband interference cancellation techniques were discussed in the 
context of spread spectrum.  Work focusing specifically on UWB is much less prevalent.  
However the topic has begun to garner much research attention since it will likely be vital 
to the operation of a UWB receiver.  This section discusses several techniques that have 
been investigated for UWB communications and radar systems. 
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For the following discussion the received signal is assumed to be 
( ) ( ) ( ) ( )x k s k i k n k= + +  where s(k) represents the desired signal, i(k) represents the 

interference, and n(k) represents the noise. 
 
First, techniques related to UWB synthetic aperture radar (UWB-SAR) will be discussed.  
Huang and Liang suggest a Gradual RELAX (GRELAX) approach in [Huan99].  The 
RELAX algorithm is used for sinusoidal estimation and is described in [Li96].  The 
RELAX algorithm is described by the following. 
 

The interference is described by ( ) 2

1

n

N
j f k

n
n

i k e πα
=

= ∑ . 

 
Let, 1 2[ ]Kα α α= "α  and ( ) ( ) ( )1 2[ ]Kf f fω ω ωΩ = " .  The parameter 
estimates are then given by 
 
 { } { } 2ˆ ˆ, arg min , αk k k kf f xα α= − Ω .  (3.21) 

 
Minimizing the right side of this equation with respect to α gives 
 

 ( ) 1
ˆ H H xα

−
= Ω Ω Ω .  (3.22) 

 
The estimates of the frequencies [ ]1 2, , , T

Kf f f f= "  are found by minimizing 
 
 ( ) 2

1 21
, , , KC f f f P x⊥

Ω="   (3.23) 
 
where P⊥

Ω  stands for the orthogonal projector onto the null space of HΩ .  This gives 
 
 ( ) 1H HP

−⊥
Ω = Ι − Ω Ω Ω Ω .  (3.24) 

 
The GRELAX algorithm suppresses the interference by applying the RELAX algorithm 
to a small number of sinusoids in stages.  The GRELAX is described by the following 
steps as detailed in [Huan99]. 
 

1. Decide the number of stages L and the number of sinusoids in each stage M; 
2. Take ( ) ( ) ( )0 , 1 , , 1

T
x x x x N = − "  as the initial input of the RELAX algorithm 

at the first stage; 
3. Estimate the parameters of the M sinusoids at the present stage using the RELAX 

algorithm; 
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4. Synthesize the estimated RFI with the estimate parameters 3 and subtract it from 
the input of the present stage.  Take the residual value as the input of the RELAX 
algorithm at the next stage; 

5. Repeat 3 and 4 until L stages have been processed. 
  
They conclude that the GRELAX exhibits slightly reduced performance over the RELAX 
algorithm but that it has good computational efficiency and robustness. 
 
Another suppression technique for UWB SAR is presented by Juhen, Vezzosi, and Le 
Goff in [Juhe99].   They suggest an LMS technique for suppression in UWB SAR 
measurements.  For this algorithm the interference is described by 
 

 ( ) ( ) ( )
1 1

sin cos
M M

i i i i
i i

i k a w k b w k
= =

= +∑ ∑ .  (3.25) 

 

Therefore i(k) is estimated to minimize the quadratic error criterion ( ) ( ) 2

0

N

k
x k i k

=

−∑ .  

This gives î Az=  where the LMS problem is Az x=  with: 
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The solution is found by finding ẑ  to minimize 
 

( ) ( ) ( )2 2t t t t tJ z x Az x Az x Az x x x Az z A Az= − = − − = − +  
 

Then ( ) 1
ˆ T Tz A A A x

−
=  is found using the derivative expression 

( ) ( )2 2 0t t tJ z
x z A A

t
∂

= − + =
∂

 and the LMS solution gives ( ) 1ˆ T Ti A A A A x
−

=  which then 

can be subtracted from the received signal.  The authors simulated the performance and 
found that target recognition is greatly improved when implementing the suppression 
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algorithm.  The simulation was conducted for an SIR = -18 dB and with 15 RF 
interferers. 
 
The following discuss a couple techniques for UWB communications.  Boubaker and 
Letaief analyze a MMSE Rake receiver for interference cancellation in [Boub03].  An 
advantage of this receiver is that it doesn’t require knowledge of the interferer’s 
parameters.  A block diagram of the receiver is given in Figure 3.9. 
 

 
Figure 3.9 Rake Receiver MMSE Combiner 

 
 
The receiver output is given by 
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where 

s sj N j Na β      
= + +r S I n .  The MMSE linear combiner uses the weight vector 

0 1, ,rw
p

T

Lω ω −
 =  "  and the UWB and narrowband channel gain vectors are respectively 

defined as 0 1, ,S
p

T

s LN G Gρ −
 =  "  and 0 1, ,

p

T

Lβ β β −
 =  " .  0 1, ,I

p

T

LI I −
 =  "  is the 

sampled narrowband interferer and 0 1, ,n
p

T

Ln n −
 =  "  is the sampled noise.  The linear 

MMSE detector has the form of ( )ˆ sgn
s sj N j Nyα      

=  where w is chosen to minimize the 

mean square error, given by ( )2
w r

s s

T
j N j NMSE E a      

 = −  
, and the MMSE weight 

vector w is given by ( ) 1*w R R R SS I N
−= + + .  The authors simulated a realistic UWB 

channel and found that the Rake combining achieves acceptable performance even with 
SIR = -20 dB [Boub03]. 

∫

⊕

⊕

�∫
Path 

Selection 
MMSE 

Combining 

fjT

fjT

( )rec l f j
j

w t jT Tτ− − −∑

( )prec L f j
j

w t jT Tτ− − −∑

ˆ ja( )x t
�



 

 53 

 
Milstein and da Silva presented a spectral encoding technique in [Silv03].  The basic 
premise is to apply a spreading sequence, like CDMA, but in the frequency domain.  
Interference suppression can be accomplished by placing a spectral null in the waveform 
at the interferer’s frequency.  Figure 3.10 taken from [Silv03] illustrates this encoding. 
 

 
Figure 3.10 (a) Spectrum of signal and interference (b) Encoding sequence, and (c) Transmitted 

waveform. 

 
Figure 3.11, taken from [Silv03], gives a block diagram of the basic transmitter and 
receiver operation.  PN(ω) is the spreading sequence, and F(ω) is the Fourier transform 
of f(t). 
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Figure 3.11 Bock diagrams of the (a) transmitter and (b) receiver 

 
They propose to use SAW devices for the Fourier transform portion of the receivers as 
discussed in Section 3.2.3.  They found that the system performance can be greatly 
improved using this technique and at an SIR value of -15 dB the signal approaches the 
normal BER curve without the narrowband interference.  Note that this approach assumes 
that the frequency of the interferer is known. 

 

3.3 Conclusion 
This chapter provided an introduction to the impact of narrowband interference on UWB 
receivers.  Narrowband interference can prevent acquisition and cause poor error 
performance.  This motivates the need for front end narrowband interference suppression.  
Suppression techniques have been widely researched for DS-SS and those techniques 
have been introduced in this chapter.  Several previous UWB techniques were also 
discussed.  The subsequent chapters will provide an analysis of two interference 
suppression techniques for UWB.  Chapter 4 will look at a combination analog-digital 
LMS algorithm that is similar in application to a LMS linear prediction filter.  Chapter 5 
will analyze the use of transform domain processing with SAW filters. 
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Chapter 4  
Time Domain Front End NBIC 
 

4.1 Introduction 
Many digital signal processing techniques have been investigated to suppress or mitigate 
narrowband interference in the presence of a wideband signal.  These techniques exist 
mainly for spread spectrum systems and since in principle the problem is the same for 
UWB, these techniques may also be applicable to UWB.  Typically suppression is 
achieved using either linear or non-linear prediction filters and are purely digital.  
However current digital technology does not allow for a cost effective realization of a 
completely digital UWB system.  It is therefore necessary to investigate techniques which 
are either purely analog or a combination of analog and digital.  In this chapter we 
specifically investigate time-domain techniques which perform narrowband interference 
rejection in the RF front end.  Note that this does not necessarily mean that the circuit is 
entirely analog.  In fact, digital techniques can be used, but use sampling rates 
commensurate with the narrowband interferer bandwidth rather than the UWB signal 
bandwidth.  
 

4.1.1 Approach 1:  Single Tap LMS Cancellation 
Figure 4.1 presents a block diagram for a combination analog and digital interference 
canceller that performs time domain cancellation in the RF front end.  The circuit was 
previously presented in [McKi03a][McKi03b] and is similar to a circuit introduced in 
[Odli02].  The circuit attempts to track a narrowband interfering signal in the digital 
domain and then cancel it in the analog domain.  The advantage of this approach is 
derived from the fact that the sampling and digital processing occur at a rate 
commensurate with the narrowband signal bandwidth, which is relatively low. 
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Figure 4.1 Time Domain Front End NBIC Circuit 

 
The performance of the circuit is contingent on several factors.  First, there are two stages 
which require the use of a mixer.  The purpose of this mixer is to down-convert the 
incoming signal into an inphase (I) and quadrature (Q) representation allowing digital 
signal processing to be performed.  Subsequently, the result of the digital algorithm must 
be up-converted in order to allow the interference cancellation to occur in the analog 
domain.  An inherent assumption then is that the center frequency, fc, of the narrowband 
interferer is known.  It is desired to have an adaptive canceller which can operate on an 
interferer with unknown parameters.  This therefore requires frequency estimation to be 
performed.  An analysis of the ability to perform this frequency estimation is given in 
Section 4.2, in which a method of moments and a maximum likelihood estimation 
technique are investigated. 
 
Now let’s consider the performance of the digital portion of the circuit.  Following the 
down-conversion, the resulting signal is lowpass filtered, sampled, and passed to a digital 
least mean squares (LMS) update algorithm.  In this stage, the performance of the circuit 
(algorithm) is related directly to the strength of the narrowband interferer compared to the 
noise it observes, or the interference to noise ratio (INR).  The INR of the cancellation 
circuit is determined by the thermal noise in the system and the noise contributed by the 
UWB signal.  It was shown in [McKi03a][McKi03b] that after performing the lowpass 
filtering the noise contribution of the UWB signal can be properly modeled as AWGN.  
As a result, the combination of the UWB signal and thermal noise can simply be modeled 
as Gaussian noise. 
 
Once the signal is down-converted and sampled, the narrowband interference is estimated 
using digital filter techniques.  In the first approach the LMS algorithm is used along with 
a one-tap canceller to perform the interference estimation by successively updating the 
weights of the I and Q channels.  This update is defined by  
 , 1 , , , ,X j X j X jw w m X I Qλ+ = + =  (4.1) 
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where λ  is the weight update parameter ( 0 1λ< ≤ ), m is the down-converted and filtered 
I or Q values, and w represents the I or Q weights used to estimate the narrowband signal.  
The inputs to the algorithm are then the previous weight approximations and the current I 
and Q message values, mI and mQ. Note that these message values are the I and Q values 
of an error signal.  This error signal represents the difference between the actual and 
estimated interference.  Therefore, at each iteration the algorithm attempts to minimize 
the error signal, eventually converging to a steady state, which provides the maximum 
amount of cancellation.  The rate of convergence of the LMS algorithm is directly related 
to the weight update parameter, λ. The choice of λ is discussed in Section 4.3. 
 

4.1.2 Approach 2:  Multi-tap Transversal Filter 
Cancellation 
The LMS algorithm is known to have slow convergence and therefore abrupt phase 
changes seriously degrade the interferer canceller’s performance, making it particularly 
ineffective against modulated interference, especially BPSK and QPSK.  This approach 
would likely be more amenable to continuous phase modulation.  Therefore a second 
approach using a two-sided transversal filter (which performs much better with a 
modulated interferer), was also investigated.  Figure 4.2 provides a diagram of the 
cancellation circuit used for the transversal filter. 
 

 
Figure 4.2 Multi-Tap Transversal Filter Cancellation Circuit 

 
Figure 4.3 details the implementation of the transversal filter. 
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Figure 4.3 Transversal Filter 

 
The filter performs the cancellation based on a block of past and future samples of the 
signal.  The samples are populated by the A/D conversion in Figure 4.2.  The delay given 
in the circuit therefore accounts for the processing delay of acquiring the N future 
samples and performing the calculations.  Since the successive samples of the signal are 
highly correlated, the filter can predict the current sample of the narrowband interferer 
based on past and future values.  The algorithm is implemented using the following steps. 
 

1. Compute the estimate of the interferer, T
j jd a x=  

2. Compute the error signal, j j jy x d= −  
3. Calculate the new filter weights, 1j ja a yxµ−= +  

 
In the above steps jx  is the current received signal value, ja  is the vector of filter 

coefficients [ ]1 1,N Na a a a− −" "  and x  is the vector of past and future received signal 

values 1 1,j N j j j Nx x x x− − + +  " "  for 0N ≠ , as shown in Figure 4.3.  The value Tc is the 

sample time.  The output jy  represents the residual narrowband interference and noise.  
The value of jd  represents the estimate of the interferer. Based on this the weights are 
updated with every sample of the received signal and the output of the multi-tap 
transversal update algorithm is the estimate of the interferer, jd .  This value is then 
upconverted and subtracted from the received signal. 
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4.2 Frequency Estimation 
A fundamental component of the digital LMS narrowband interference cancellation 
circuit is the ability to estimate the frequency of the interferer.  The following discussion 
examines two frequency estimation techniques taken from [Kay93].  The first technique 
uses a method of moments and the second technique is the maximum likelihood 
estimator. 
 

4.2.1 Method of Moments 
In the method of moments technique, the received discrete time signal is assumed to be 
[Kay93] 
 
 [ ] ( ) [ ]0cos 2 0,1,..., 1x n A f n w n n Nπ φ= + + = −  (4.2) 
 
where w[n] is zero mean white noise with variance σ2 and f0 is the frequency to be 
estimated.  For this method of estimation the phase, φ , is considered to be uniformly 
distributed between  zero and 2π, ( [ ]0, 2Uφ π∼ ), and is independent of w[n].  Making 

this assumption allows [ ] ( )0cos 2s n A f nπ φ= +  to be treated as a realization of a wide 
sense stationary (WSS) random process.  To verify this assumption the mean and 
autocorrelation of s[n] are examined.  The expected value of the signal is given by 
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and the autocorrelation is given by 
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 (4.4) 

 
The autocorrelation of the white noise, w[n], is given by [ ] [ ]2

wwr k kσ δ=  and therefore 

using the result of equation (4.4) the autocorrelation of the received signal, [ ]xxr k , 
becomes 
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 [ ] ( ) [ ]
2

2
0cos 2

2xx
Ar k f k kπ σ δ= +  (4.5) 

 
In order to estimate the frequency using the method of moments rxx[1] is used . This is 
given by 

 [ ] ( )
2

01 cos 2
2xx
Ar fπ=  (4.6) 

 
This allows the estimation to be performed without knowledge of the noise variance.  An 
estimate of the frequency is then given by 
 

 [ ]
0 2

ˆ 11ˆ arccos
2 2

xxr
f

Aπ
 
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 (4.7) 

 
where the autocorrelation rxx[1] is estimated by 
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In equation (4.7) the term representing the average power of the sinusoid, 2 2A , must 
also be estimated.  This estimation is given by 
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and the frequency, f0, is finally estimated using 
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 (4.10) 

 
Note that the estimate of f0 is the normalized frequency of the signal (f0/Fs where Fs is the 
sampling frequency) such that the estimate found for f0 is between 0 and ½.  In [Kay93] it 
is shown that for a high SNR this method has an expected value which is equal to f0.  Kay 
also provides an expression for the variance of the estimation that highlights limitations 
of this method.  It is noted that the variance of the estimate decreases most rapidly for 
increasing block size for f0 = ¼ while for f0 near 0 and ½ the variance decreases much 
less rapidly.  This results from the use of  the arccos() function in the estimation.  This 
can be seen in Figure 4.4.  Observe that slight variations in the value of x[n] near the 
points -1 and 1 cause large variations in the output due to the steepness of the curve near 
those values. 
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Figure 4.4 Evaluation of Arccos 

 

4.2.2 Maximum Likelihood Estimation  
The second frequency estimation technique considered uses a maximum likelihood 
estimator derived from the PDF of the received signal.  Again the received signal is taken 
as 
 
 [ ] ( ) [ ]0cos 2 0,1,..., 1x n A f n w n n Nπ φ= + + = −  
 
which results in the PDF of w 
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where 0A > , and 00 1 2f< < .  The maximum likelihood estimate of f0 is then found by 
maximizing p(w) or minimizing the argument of the exponential in the PDF with respect 
to 0f .  Therefore the following expression needs to be minimized [Kay93] 
 

 
( ) [ ] ( )( )

[ ] ( ) ( )( )

1 2
0 0

0

1 2
0 0

0

, , cos 2

cos cos 2 sin sin 2

N

n

N

n

J A f x n A f n

x n A f n A f n

φ π φ

φ π φ π

−

=

−

=

= − +

= − +

∑

∑
 (4.12) 

 
By letting  
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 ( )0 01 cos 2 cos 2 1
T

c f f Nπ π= −  …  

 ( )0 00 sin 2 sin 2 1
T

s f f Nπ π= −  …  
 
and transforming J into a quadratic using the following transformation 
 
 1 cosAα φ=  
 2 sinAα φ=  
 
the following relationship is given 
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1 2 0 1 2 1 2, , x c x c s

x H x H
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J f sα α α α α α

α α

′ = − − − −

= − −
 (4.13) 

 
where [ ]1 2

Tα α α=  and [ ]H cs T= .  It is shown in [Kay93] that the minimizing solution 
for equation (4.13) is given by 
 
 ( ) 1T Tˆ H H H xα
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=  (4.14) 

which results in 
 

 

( ) ( ) ( )

( )( ) ( )( )
( )( )

1 2 0

1 1

1

ˆ ˆ ˆ ˆ, , x H x H

x H H H H x x H H H H x

x I H H H H x

T

T
T T T T

T T T

J fα α α α
− −

−

′ = − −

= − −

= −

 (4.15) 

 

since ( ) 1
I H H H HT T−

−  is an idempotent matrix.  In order to estimate the frequency f0, 
equation (4.15) needs to be minimized or accordingly the following needs to be 
maximized [Kay93]: 
 

 ( ) 1
x H H H H xT T T−

 (4.16) 
 
Upon substitution of the definition of H this yields  
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 (4.17) 

 
Finding the maximum value of equation (4.16) according to f0 determines the MLE 
estimate for f0. 
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4.2.3 Simulation Comparison 
The following serves to compare the performance of the method of moments and MLE 
estimation techniques.  The performance is measured in terms of the mean and variance 
of the estimates for different values of SNR (SNR values are determined relative to the 
tone’s average power).  It is common that these techniques will show improved 
performance for increasing block size.  The comparison therefore examines block sizes of 
20, 40, 80, and 160 samples.  
 
Method of Moments 
Recall the discussion concerning the method of moments estimate from Section 4.2.1.  It 
was mentioned that as f0 approaches 0 the variance is expected to become increasingly 
worse. Figure 4.5 compares the effect of increasing the sampling rate (therefore 
decreasing f0) on the estimate variance for a tone with fc = 2.5 GHz.  Notice that as f0 
approaches 0 the variance becomes increasingly worse.  For demonstration purposes this 
comparison was computed assuming the amplitude of the tone was known, as in equation 
(4.7).  The variance also exhibits the same behavior when the amplitude must be 
estimated (as given by equation (4.8)) but the mean estimate of the frequency becomes 
much worse as well.  Figure 4.6 displays the method of moments mean estimates for 
increasing sampling rates, again for fc = 2.5 GHz.  As SNR increases the mean converges 
towards the correct value but at SNR = 10 dB the higher sampling rate estimates are still 
considerably poor.  Notice that for Fs = 4Fc the variance and mean are considerably better 
than the other cases.  As mentioned this is expected since f0 = ¼ when Fs = 4Fc.  The 
following analysis therefore only examines f0 = ¼ for the methods of  moments. 
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Figure 4.5  Method of Moments Estimate Variance vs. SNR 
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Figure 4.6 Method of Moments Estimate Mean vs. SNR 

 
Figures 4.7 and 4.8 present the mean and variance respectively as a function of block size 
and SNR for the method of moments. 
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Figure 4.7 Method of Moments Estimate Mean vs. Block Size for Fs = 4Fc 
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Figure 4.8 Method of Moments Estimate Variance vs. Block Size for Fs = 4Fc 

 
As expected the variance decreases with an increase in block size and also as SNR 
increases.  The mean slightly deviates from 2.5 GHz and is more evident for the smaller 
block sizes.  Note however that the simulation results represent an average taken over 
5000 iterations per SNR value.  Running the simulation over a much larger number of 
iterations would likely bring the mean values even closer to the actual estimate.  In an 
attempt to quantify and compare techniques, Table 4.1 below gives the standard 
deviation,  σ, of the estimate along with its percentage of the sampling frequency (σ/Fc) 
for Fc = 0.5, 0.9, and 2.5 GHz (Fs = 4Fc)with SNR values of 5 and 10 and a block size of 
160 samples.  Table 4.2 provides the same for a block size of 20 samples.  It is observed 
that with the SNR = 5 dB that a block size of 160 samples outperforms the case for the 
SNR = 10 dB and a block size of 20 samples. 
 

 
Table 4.1 Frequency Estimate Standard Deviation, Fs = 4 Fc, Block Size = 160 Samples 

  SNR = 5 dB SNR = 10 dB 
Fc (GHz) σ (MHz) % Fc σ (MHz) % Fc 

0.5 6.35 1.27 2.55 0.51 
0.9 11.28 1.25 4.70 0.52 
2.5 31.88 1.28  12.91 0.52 
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Table 4.2 Frequency Estimate Standard Deviation, Fs = 4 Fc, Block Size = 20 Samples 

  SNR = 5 dB SNR = 10 dB 
Fc (GHz) σ (MHz) % Fc σ (MHz) % Fc

0.5 22.61 4.52 11.38 2.28 
0.9 40.11 4.46 20.65 2.29 
2.5 113.14 4.53  56.78 2.27 

 
Maximum Likelihood Estimation 
A similar analysis is provided for maximum likelihood estimation (MLE) as was given 
for the method of moments technique.  As would be expected block size again reduces 
the variance of the estimate.  Figures 4.9 and 4.10 provide plots of the estimate mean and 
variance for increasing block size with a sampling rate of Fs = 8Fc.  Due to the lengthy 
program runtime required to simulate this estimation, the simulation could only be run 
over 200 iterations per SNR value.  Therefore the plot of the mean is a little noisy, 
however for more iterations the plots are expected to more closely estimate the actual 
frequency.   
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Figure 4.9 Maximum Likelihood Estimate Mean vs. Block Size for Fs = 8Fc 
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Figure 4.10 Maximum Likelihood Estimate Variance vs. Block Size for Fs = 8Fc 

 
It is also of interest to examine the effect of the sampling frequency.  Unlike the method 
of moments estimation, the MLE does not see a change in the mean estimate as the 
sampling rate increases (as f0 approaches 0) but it does exhibit the same type of increase 
in variance.  In order to better demonstrate the trade off between sampling frequency and 
block size, Table 4.3 provides the mean and variance values for increasing block size and 
sampling rate for an SNR values of 10 dB.  Examining the mean values it can be seen 
that they all display similar accuracy.  However examining the variance it is observed 
that the values increase with sampling rate and decreased block size but are much more 
sensitive to block size. 
  

Table 4.3 MLE Mean and Estimate Values for SNR = 10 dB 

    MLE Estimate Mean (SNR = 10 dB) MLE Estimate Variance (SNR = 10 dB) 
    Relative Sampling Frequency Relative Sampling Frequency 
    4 6 8 10 4 6 8 10 

20 2.4989 2.4990 2.4941 2.5035 408566.8 796205.8 1683976.3 2574540.0
40 2.4998 2.5002 2.5009 2.5001 43741.7 101828.4 198946.6 311004.9 
80 2.5002 2.5003 2.5005 2.5000 6209.8 15398.1 25587.0 37845.3 

B
lo

ck
 S

iz
e 

160 2.5000 2.5000 2.4998 2.5000  762.9 2120.0 3592.4 4708.5 
  * Values are in GHz  *Values are 109 
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Tables 4.4 and 4.5 provide the standard deviation of the estimate along with its 
percentage of the center frequency.  These are given for Fc = 0.5, 0.9, and 2.5 GHz with 
an SNR = 5 dB and 10 dB and for block sizes of 160 and 20 samples respectively. 

 
Table 4.4 Frequency Estimate Standard Deviation, Fs = 4 Fc, Block Size = 160 Samples 

  SNR = 5 dB SNR = 10 dB 
Fc (GHz) σ (MHz) % Fc σ (MHz) % Fc

0.5 0.33 0.07 0.17 0.03 
0.9 0.55 0.06 0.34 0.04 
2.5 1.65 0.07  0.87 0.03 

 
Table 4.5 Frequency Estimate Standard Deviation, Fs = 4 Fc, Block Size = 20 Samples  

  SNR = 5 dB SNR = 10 dB 
Fc (GHz) σ (MHz) % Fc σ (MHz) % Fc

0.5 6.84 1.37 4.04 0.81 
0.9 12.68 1.41 6.81 0.76 
2.5 34.19 1.37  20.21 0.81 

 
 
 
Conclusion 
Comparing the two methods reveals that the mean estimates are fairly comparable but 
that the MLE technique offers an estimate which has a much lower standard deviation 
when compared to the method of moments.  This suggests that MLE should be the 
method of choice.  However the maximum likelihood estimation calculations are 
computational intensive simply because of the matrix inversion involved.  Also the 
matrix inversion will increase in difficulty as the block size increases.  In practice this 
would need to be taken into consideration.  So for high SNR scenarios it may be 
acceptable to use the method of moments.  Averaging could also be used to improve the 
estimate.   It also should be noted that the Method of Moments technique provides fairly 
good estimation. 
 
Note also that these results tend to suggest that a very high sampling rate is required to 
estimate the interference.  In practice however the signal could be down-converted to an 
intermediate frequency using a nominal value.  This does not affect the estimation of the 
frequency but eases sampling rate requirements for the system.  Also note that these 
estimation techniques do not account for multiple interferers. 
 

4.3 Simulation Assumptions 
The results presented later in this chapter attempt to quantify the performance of the 
narrowband canceller in terms of bit error rate (BER).  Before presenting those results it 
is important to provide the general assumptions and definitions used in the simulations. 
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In general the simulation is performed in two separate blocks, baseband and RF.  The 
motivation for this approach is simply to ease the processing burden on the simulation.  
The NBIC can be performed using complex baseband.  The residual interference 
resulting from the cancellation is then injected into the UWB demodulation.  Figure 4.11 
provides the general simulation flow. 
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Figure 4.11 Time Domain Front End NBIC Simulation Flow 

4.3.1 Noise and Interference 
The most important definitions are in regards to calibrating the addition of noise to the 
system.  Note that all BER simulations performed relate the error performance as a 
function of signal to interference ratio (SIR) for a given signal to noise ratio (SNR).  The 
SNR for the system is defined as 
 

 
0

bESNR
N

=  (4.18) 

 
where Eb is the energy per bit of the UWB system and N0 is the noise power spectral 
density.  Note that it was assumed that each bit was represented by a single pulse and 
therefore the energy per bit is given by the energy in one pulse.  The energy per pulse is 
always normalized to one.  SIR then is defined as the ratio of the UWB signal energy to 
the narrowband interferer energy.  For these simulations narrowband signal energy was 
defined as a function of the pulse repetition rate (PRR), i.e. the number of UWB pulses 
per second, and the spreading gain of the UWB system.  PRR refers to the number of 
pulses transmitted per second and spreading gain refers the number of pulses representing 
a single bit.  However as previously mentioned the spreading gain is simply one and 
therefore is not a factor in the calculation of SIR. (The effects of spreading gain will be 
further discussed with the results.)  Therefore, SIR is then simply a function of PRR and 
is defined as  
 

 b

t

ESIR
E

=  (4.19) 

 
where Et is the energy in the tone.  Et is defined by 
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where Fs is the sampling frequency.  Energy is therefore calculated over the interval 

1
PRR

.  This calculation is also identical to the ratio of the average UWB power to the 

average interferer power.  
 
As noted, the simulator was constructed by combining a complex baseband simulation 
block with an RF simulation block.  The complex baseband block performs the 
interference estimation using either the LMS algorithm or the transversal filter.  This was 
accomplished by representing the down-converted I and Q channels of the narrowband 
interferer in complex baseband notation in which case the channels are represented  by 
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I A

Q A

φ

φ

=

=
 (4.21) 

where φ  is the random phase term of the narrowband interferer.   
 
So to keep the noise power consistent in the separate simulation blocks noise was added 
to the complex baseband samples based on the specified SNR for the UWB signal.  The 
ratio of the energy in the interferer to this noise is referred to as the interference to noise 
ratio (INR).  The value of INR is not directly used to add noise to the system but for 
comparison purposes, some means of quantifying the INR ratio is necessary. INR is 
therefore defined as 
 
 dB dB dBINR SNR SIR= −  (4.22) 
 

4.3.2 LMS Cancellation Algorithm 
After adding noise, the LMS portion of the simulation is performed, producing as its 
output the error signal of the LMS algorithm.  This error signal represents the residual 
narrowband interferer power after cancellation. 
 
Before moving on to the description of the RF simulation block it is important to describe 
the effect the noise has on the choice of λ.  As mentioned in the introduction given in 
Section 4.1.1, the value of λ directly impacts the rate of convergence of the LMS 
algorithm and therefore the ability of the circuit to cancel the interference.  The 
performance of the circuit is obviously also affected by the noise in the system and 
consequently the noise affects the choice of λ.  For instance, if the system has a poor INR 
value, then a large λ will cause large fluctuations in the estimate of the interference and 
will actually add interference to the system.  In this situation it is more advantageous to 
have a smaller value of λ thereby letting the algorithm gradually converge.  The converse 
is also true.  In a high INR scenario it is suboptimal to have a lower value of λ as the 
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system will converge very slowly and the full potential of the algorithm will not be 
realized.  It is better to have a larger value of λ letting the error converge faster and 
canceling more of the interference.  Therefore depending on the INR there exists an 
optimum λ that provides the maximum amount of interference cancellation.  Quantifying 
this optimum λ is most precisely done by measuring the mean of the LMS error signal.  
This signal directly reflects the amount of cancelled interference.  Simulations were run 
using a 400 kHz sampling rate and a PRR = 1 MHz.  Note that using the provided 
definition of INR, changing the PRR will simply shift the plots.  Specifically, increasing 
the PRR, which corresponds to an increase in interferer amplitude for the same SIR 
value, provides the same results for lower values of INR.  Decreasing the PRR will cause 
a shift to higher values of INR.  Figure 4.12a plots the optimum λ value versus INR for a 
tone interferer using the definition given in equation (4.22).  Figure 4.12b plots the 
corresponding mean of the error signal in dB.  Similarly, Figure 4.13 plots the same 
information for a QPSK signal with a data rate of 10 kHz.  Note that there is a difference 
in the λ versus INR relationship for a tone and a modulated interferer.  The modulated 
interferer requires a larger λ value for a smaller value of INR.  Due to the need to track 
the interferer when there is an abrupt change in the phase of the interferer (i.e. a change 
in the symbol) the λ value must be larger in order to change more rapidly.  Notice that 
there is also a decrease in the amount of cancelled narrowband interference, which 
directly relates to a worsening in BER performance. 
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(b) 

Figure 4.12 Tone Interferer (a) Optimum λ vs. INR and (b) Mean of Error Signal 
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(b) 

Figure 4.13 QPSK Interferer (a) Optimum INR vs. λ and (b) Mean of Error Signal 

 

4.3.3 Transversal Filter Cancellation 
The transversal filter simulation is performed using the same methodology as the LMS 
cancellation.  The cancellation blocks are simply interchanged.  The addition of noise is 
handled in the exact same manner as previously described.  Note also that the modulated 
interference was created using a square root raised cosine pulse shape with a roll-off 
factor of 0.35 and a symbol overlap of 10 symbols, since this represents a practical 
implementation. 

4.3.4 UWB Demodulation 
The RF simulation block performs the UWB demodulation and consequently determines 
the error performance of the system.  Demodulation is performed in two types of 
channels, a purely AWGN channel and an AWGN channel with multipath.  Regardless of 
the channel the samples of the error signal are converted into an RF narrowband signal 
and added to the UWB signal. 
 
The demodulation procedure in the AWGN channel is rather straightforward.  A unit 
energy pulse is corrupted by both the addition of Gaussian noise and the appropriate level 
of narrowband interference (either the original narrowband interferer or the residual of 
the LMS cancellation).  Correlation is subsequently performed using a unit energy pulse 
and the error performance is calculated. 
 
The demodulation of the multipath channel is less straightforward.  First the channel is 
described.  The multipath channel is simulated using a channel impulse response (CIR) of 
the form (as described in Chapter 2) 
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where the polarity of ka  is determined by a binary random variable.  In Chapter 2, 
modeling results were presented based on CIRs of this form.  These results were 
extracted from actual indoor line of sight (LOS) and non-line of sight (NLOS) 
measurements.  [Venk04] presented a channel model based on these measurements which 
could be used to statistically emulate the measured channel.  This model is referred to as 
the Split-Poisson model and is used to generate the CIR for the results presented in this 
work.  The Split-Poisson model is similar in definition to the common Saleh-Valenzuela 
indoor channel model [Sale87] except that it defines multipath as arriving in two clusters, 
where the Saleh-Valenzuela model randomly determines the number of multipath 
clusters.  For the Split-Poisson model each cluster is defined by the arrival of paths 
according to a Poisson distribution meaning that the paths have exponential inter-arrival 
times.  The probability distribution of the kth path within  a cluster is then defined by 
   
 ( )( ) ( )( )1 1| exp , 0k kk kp kτ τ λ λ τ τ− −

 = − − >   (4.23) 

 
in which k paths are generated according to the mean arrival rate λ.  The path amplitudes 
within a cluster are assumed to decay exponentially and therefore the mean path 
amplitudes are given by 
 
 k

k e τ γβ −=  (4.24) 
 
where γ defines the rate of decay for the cluster.  The amplitudes of these paths have been 
shown to follow a log-normal distribution about their expected value and therefore the 
path amplitudes varied according to the standard deviation of the distribution, σ.  The 
Split-Poisson model creates a CIR by generating two separate clusters defined by the 
parameters [ ]1 1 1, ,λ γ σ  and [ ]2 2 2, ,λ γ σ  respectively.  These clusters are then added 
together with the second cluster delayed by time, t1.  The first cluster is expected to have 
greater amplitude and is therefore scaled by a factor α in order to keep the decay of 
energy consistent.  For the performed simulations the parameter values were set to those 
which matched the NLOS Bicone measurement data.  These values were 9

1 1 4 10λ −= × , 
9

1 18 10γ −= × , 1 3.3σ = , 9
2 1 0.9 10λ −= × , 9

2 22 10γ −= × , and 2 6σ = . 
 
When using the multipath channel it is desired to obtain performance curves which 
represent the average performance of the statistical channel model (Note that all CIRs are 
normalized to unit energy so as to not artificially add energy to the received signal).  In 
order to obtain the average performance of the multipath channel a total of 1000 CIRs 
were generated for each SIR value.  Each channel realization was then simulated using 
100 bits resulting in BER curves which were calculated as an average of the 1000 CIRs 
per SIR value and a total of 100,000 bits.  Note that the narrowband interferer will fade 
differently with each CIR, causing both better and worse performance.  However for 
simulation purposes this was not incorporated and the value of the interferer remained 
constant, keeping the SIR for a particular SNR constant across the CIRs. 
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When simulating the multipath channel it is also of interest to evaluate the performance 
of a Rake receiver.  Therefore a Rake receiver’s performance for 1, 5, and 10 fingers was 
examined.  It has been shown that for a Rake receiver maximal ratio combining (MRC) is 
the optimal combining technique, in terms of maximimizing SNR, and is therefore the 
combining technique used.  However MRC requires the use of channel estimation.  This 
was accomplished by sending 20 pilot pulses through the channel.  The channel estimates 
for each finger were determined as an average of the estimates of the pilot symbols.  This 
estimation was performed in the presence of the narrowband interferer but not AWGN 
noise.  Note that this does not represent a practical scenario however it is done to isolate 
the degradation caused by the narrowband interferer. 
 

4.4 Simulation Results 
One of the most important metrics for measuring a communication system’s performance 
is the bit error rate (BER).  BER results are presented here as a means for demonstrating 
the potential improvement in system performance when using a digital LMS or 
transversal filter narrowband interference cancellation circuit.  The following system 
parameters remained constant for the ensuing analysis: fc = 6 GHz, fc,UWB = 6 GHz, Tp = 1 
ns, PRR = 1 MHz,  and Fs,LMS = 400 kHz (40 times the data rate). 

4.4.1 AWGN Calibration 
Before examining any interference scenarios, the performance is first provided for a 
purely AWGN channel in order to validate the proper operation of the simulation.  Figure 
4.14 provides these results for biphase (or polarity) modulation with the SNR = 3 dB and 
SNR = 6 dB.  The plot displays the simulated values versus the theoretical values (The 
theoretical values are the same as BPSK).  Similarly Figure 4.15 provides results for a 
binary PPM case which are also compared against the theoretical results (The PPM 
scheme used was orthogonal and binary so the performance was compared with BFSK).  
The correct operation of the UWB demodulation was verified.   Note that in the figure the 
straight lines represent the theoretical values and the symbols represent the simulation 
results.   
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Figure 4.14 Biphase AWGN Performance 

 

 
Figure 4.15 PPM AWGN Performance 

 

4.4.2 Performance of Approach 1:  The Single Tap LMS 
Canceller 
First it is of interest to look at the performance of the LMS algorithm in an AWGN 
channel with narrowband interference.  This can be thought of as a means of calibration 
and demonstrates the potential usefulness of the LMS algorithm.  It also provides some 
insight into the performance of λ.  As mentioned in section 4.3 there exists a λ which is 
optimum depending on the level of noise observed.  However using the optimum λ would 
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require INR estimation and would considerably increase the complexity of the system.  
Therefore it is desirable to maintain a constant value of λ for which a small value of 
performance loss will be tolerated.  Figure 4.16 provides a plot of the BER performance 
in an AWGN channel, in the presence of a tone interferer, and with a system SNR = 5 
dB.  The plot demonstrates that there is the potential for considerable performance 
improvement using the LMS algorithm (Note this was done using a tone interferer).  The 
plot also demonstrates that the performance gain is dependent on the value of λ.  If λ is 
too large the system is limited by the amount of noise.  It is possible to reduce this value 
to achieve improved cancellation.  However as λ is continually decreased eventually the 
performance at higher INR values (lower SIR values) will deteriorate.  This is the result 
of adapting at a slower rate resulting in the algorithm mitigating less of the interference.  
On the other hand at lower INR values (higher SIR values) if the rate of change is too fast 
then additional noise will be added to the system.  So examining the plot it can be seen 
that as λ is decreased from 0.15 to 0.01, the performance at -40 dB is degraded but the 
performance at the higher INR values is slightly improved.  The value of λ should be 
chosen based on a tolerable amount of interference being added to the system.   
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Figure 4.16 LMS Performance for a AWGN Channel, SNR = 5 dB 

 
For communication systems, especially UWB, the performance in a multipath channel is 
of significant interest as it represents many practical situations.  Here the performance is 
evaluated in terms of a Rake receiver using the CIRs described in Section 4.3.  The first 
analysis assumes MRC with perfect channel estimation (i.e. complete knowledge of the 
channel).  Figure 4.17a provides these results for 1, 5, and 10 fingers and for an SNR = 9 
dB.  BER results are given for both a tone and a modulated signal with equal λ values. 
Note the drastic difference in performance for a modulated signal and a tone interferer.  
The modulated case must adjust with every change in the symbol and is therefore unable 
to cancel the interference as well.  However, these are for equal values of λ.  Recall from 
Figure 4.13 that a modulated interferer requires a much larger value of λ than a tone 
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interferer.  Figure 4.17b demonstrates this fact.  However notice that as before with 
Figure 4.16, with a constant λ there is a trade off in performance at the higher and lower 
values of SIR. 
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Figure 4.17 LMS Performance for a Multipath Channel, SNR = 9 dB (a) Tone vs. QPSK and (b) 
QPSK with Increasing λ 

 
The previous plot assumed perfect channel estimation.  Figure 4.18 demonstrates the 
impact of using imperfect channel estimation when a narrowband interferer is present 
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(without cancellation).  At a BER of 0.03 there is a loss of over 10 dB in SIR when using 
10 Rake fingers and imperfect channel estimation.  Note that when using 1 Rake finger 
the impact is much less significant.  This is likely due to the fact that the first path is the 
most dominant path.  It is interesting to note that the imperfect estimation completely 
eliminates the Rake gain. 
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Figure 4.18 LMS Performance, Perfect vs. Imperfect Channel Estimation (no interference 

cancellation) 

 
Figure 4.19 below shows the performance of imperfect channel estimation with 
interference cancellation for a tone and a modulated interferer.  The plots show results for 
1, 5, and 10 fingers.  Notice that the trade off mentioned for Figure 4.16 is present when 
canceling the modulated interferer.  Note that the required λ for sufficient cancellation in 
the case of the tone is much lower for the multipath channel than for the AWGN case.  
This is because the CIR and the pulse have been normalized to unit energy, so instead of 
all the energy being concentrated in one pulse (the AWGN case) it is spread over all the 
multipath components.  However the amplitude of the interferer remains the same and 
therefore the multipath channel is more sensitive to the interference and must converge 
more slowly and more smoothly, requiring a smaller value of λ (Note this is just an effect 
of the simulation setup).  Also, observe that the performance with a modulated interferer 
is extremely poor.  This is due to the fact that the LMS algorithm converges too slowly 
over the 40 samples representing one modulated symbol.   
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Figure 4.19 LMS Performance, Imperfect channel Estimation (a) Tone and (b) Modulated 
Interference for 1, 5, and 10 Rake Fingers 
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Note that the presented results for modulated interference were performed using a square 
pulse to create the modulated interference.  In order to represent a practical scenario the 
simulation was rerun using a square root raised cosine pulse shape with roll-off factor of 
0.35. However there was no change in performance for the LMS algorithm. 

4.4.3 Performance of Approach 2: The Transversal Filter 
As demonstrated in the Section 4.4.2 the LMS cancellation performs rather poorly in the 
presence of a modulated interferer, specifically QPSK.  Therefore it is necessary to 
investigate techniques more suited to the abrupt phase changes associated with BPSK and 
QPSK modulation.  Figure 4.20 plots the potential improvement when using a 30 tap 
two-sided transversal filter capable of predicting a square root raise cosine BPSK 
modulated interferer.  Note however that the values of µ  were not constant for the plot.  
The particular values used for this plot were 0.001µ =  for 55 30SIR− > > −  and 

0.01µ =  for 30 5SIR− > > − .  As SIR increases, meaning INR decreases, the filter’s 
estimate of the signal becomes worse and actually adds a small bit of error to the system.  
However overall the method shows significant gains in performance. 
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Figure 4.20 Transversal Filter NBIC BER Performance for SNR = 5 dB 

 
Figure 4.21 plots the results for an SNR of 7 and 8 dB.  The values of 0.001µ =  for 

55 30SIR− > > −  and 0.01µ =  for 30 5SIR− > > −  were again used.  Again significant 
performance gains are exhibited. 
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Figure 4.21 Transversal Filter NBIC BER Performance for SNR = 7 dB and 8 dB 

 
It is also of interest to consider the mulitpath channel and Rake receiver performance.  
Consider the CIRs used in Section 4.4.2 and described in Section 4.3.4.  Figure 4.22 
illustrates the Rake receiver performance for the transversal filter (again using the 
previously mentioned values of µ ) for SNR = 5 dB.  Notice that there is a tremendous 
improvement when NBIC is used.  Note that the NBIC results used Rake finger 
estimation in the digital backend.  This demonstrates the transversal filter’s ability to 
sufficiently cancel the interference so that estimation can be performed. 
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Figure 4.22 Transversal Filter Rake Receiver Performance SNR = 5 dB 
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4.4.3.1 INR Estimation 
The previous results demonstrate the possible need for the ability to turn the cancellation 
on or off or to adapt the update parameter, µ , depending on the INR.  This can be 
accomplished by estimating the INR of the signal using the signals autocorrelation 
matrix. 
 
The autocorrelation matrix, xxR , is estimated as follows. 
 
 [ ] ( ) [ ] ( )1 1xx xxR n R n r rγ γ ′= − − +  (4.25) 
 
where r is a vector of received samples and γ is the update parameter.  It is expected that 
the diagonal elements will represent the signal and noise power and the off diagonal 
elements will represent only the signal power since the noise is uncorrelated from one 

sample to the next.  The INR is then defined by 2

1 2

X
X X−

 where 

1 2

xx

X X

R

 
 
 =
 
 
 

" "
# %
# %
# %

.  Figure 4.23 below shows the autocorrelation of a square root 

raised cosine modulated waveform.  The plot shows that the estimate of the INR is not 
the actual INR.  However comparing the INR values it can be seen that the relative 
differences between the estimates and the actual INR values are the same.  This technique 
could therefore be used to determine the need for cancellation.  If the INR is low then it is 
not desirable to perform the cancellation.  It is also possible that the INR estimate could 
be used to adjust the update parameter, γ. 
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Figure 4.23 INR Estimation using the Signals Autocorrelation Matrix 
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4.4.3.2 Frequency Uncertainty 
The effect of frequency uncertainty on the performance of the transversal filter 
cancellation also needs to be considered.  The transversal filter is capable of tracking any 
residual frequency inserted by the narrowband interference down-conversion process.  
The residual frequency results from a non-exact center frequency estimate of the 
narrowband interferer.  Note that high frequency components would not affect the 
baseband signal since they would be filtered after the down-conversion.  However lower 
frequency components that can not be filtered are of interest.  Consider the following 
example.  Figure 4.24 shows the ability of the transversal filter to track the interferer in a 
very high SNR situation.  The plot represents a 10 kHz baseband signal with a 5.6 kHz 
residual carrier frequency.  The transversal filter is the same as above, with the number of 
taps equal to 30. 
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Figure 4.24 Effect of Frequency Uncertainty on Transversal Filter Estimation 

 
Figure 4.25 demonstrates that the transversal filter has no problem estimating the 
baseband signal when a residual sinusoidal term is present. However since the signal 
estimate must be upconverted and subtracted from the actual narrowband signal the 
frequency uncertainty caused by the frequency estimation process will cause the 
subtraction to be suboptimal and the cancellation will be less effective. 

4.5 Conclusions 
In conclusion the LMS interference canceller doesn’t seem to provide much promise.  It 
performs satisfactorily for a tone interferer; however this doesn’t represent a practical 
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situation.  In a real world scenario the interferer will mostly likely be a modulated signal 
and in this case the cancellation circuit provides little benefit, if any at all.  This is due in 
large part to the slow convergence of the LMS algorithm and consequently its inability to 
adequately track the narrowband interferer.  This highlights the need for an algorithm 
with a much faster convergence.  Therefore a two-sided transversal filter was examined.  
This implementation shows much promise for canceling narrowband interference.  There 
is a drastic improvement over the LMS algorithm when a modulated interferer is present.  
Note that it may be worth while to investigate a block LMS or normalized LMS 
algorithm.  The normalized LMS algorithm is helpful in situations where an adaptive 
update rate parameter is necessary. 
 
Also note that frequency estimation could prove to be a challenging aspect of the circuit.  
Since there is a need to estimate the frequency of carriers in the gigahertz ranges this 
could require extremely high sampling rates.  However it is possible to perform the 
estimation of the interferer’s frequency using an intermediate frequency, therefore 
reducing the sampling rate requirements. Note also that there may be other means of 
estimating the narrowband center frequency, such as an analog transform, or the 
approximate carrier frequency may be known. 
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Chapter 5  
Transform Domain Processing 
 

5.1 Introduction 
Real time transform domain processing is an analog signal processing technique capable 
of determining the spectral components of a signal as a function of time.  The 
transformed signal can subsequently be processed.  The processing is generally a type of 
filtering operation performed in the “frequency” domain.  Typically transform domain 
processing is implemented using linear FM chirps (an in depth discussion of this will be 
given shortly).  As mentioned in the interference cancellation background section in 
Chapter 3 this technique dates to the early days of spread spectrum when digital hardware 
did not yet provide a viable digital signal processing solution.  Milstein authored several 
papers in the late 1970’s and early 1980’s which provide a nice introduction to the 
technique of transform domain processing [Mils77][Mils80].  A book by Kino is also an 
excellent source for the fundamentals of signal processing using linear FM chirps 
[Kino97].  The subsequent discussion provides an explanation of the real time Fourier 
transform processing technique. 
 
The linear FM chirp is the basic component of real-time Fourier transform domain 
processing.  A linear FM chirp is a sinusoidal signal whose frequency increases or 
decreases linearly with time. These signals are referred to as up-chirps or down-chirps 
respectively.  A down-chirp can be represented mathematically as 
 
 ( ) ( )2cos ac t t tω β= −   (5.1a) 
or in complex baseband notation  

 ( ) ( ){ }2

Re aj t tc t e ω β−
=  (5.1b) 

 
where aω  is the initial frequency and β  is the rate of change.  The characteristics of the 
transform are directly impacted by the choice of aω  and β .  This is discussed in detail in 
section 5.2.   
 
In general the real time Fourier transform of ( )tx  is produced by first modulating the 
signal of interest by ( )c t given in equation (5.1).  The modulation introduces the 

frequencies of  ( )tx  into the signal ( )c t  in the form of sidebands on either side of the 
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chirp’s original frequencies.  For example, if ( ) ( )ttx cωcos=  then the resulting signal 
formed by modulating ( )tx  by the chirp ( )c t  is 
 

 ( ) ( ) ( ) ( )2 2 21 1cos cos cos cos
2 2c a a c a ct t t t t t t t tω ω β ω β ω ω β ω− = − + + − −  (5.2) 

 
This signal is simply two down-chirps with shifted initial frequencies.  Using the 
modulated signal in equation (5.2) and a matched filter, a real time Fourier output can be 
obtained.  The filter is matched to the original chirp given in equation (5.1).  The matched 
filter is simply the time reverse of equation (5.1) and is therefore an up-chirp. Figure 5.1 
represents the processing used to produce the real time Fourier output, ( )F t , where the 

box in the figure is a filter with impulse response ( )2cos at tω β+ . 

 
Figure 5.1 Real Time Fourier Transform Block Diagram 

 
This process is now inspected more closely.  Consider first the result of simply passing 

( )c t  through its matched filter.  The output is the autocorrelation of ( )c t , peaking at the 
instant when the chirp is completely contained within the filter.  Now consider this in the 
context of producing a real time Fourier output.  Examining equation (5.2) we see that 
because ( )tx  is a tone the result of the modulation is two chirps with shifted initial 
frequencies (specifically a cω ω+  and a cω ω− ).  Accordingly this suggests that a pulse 
will result when these chirps align with their matched filter.  Therefore a real time Fourier 
transform matched filter must contain the frequencies of these new chirps.  The ability to 
represent a range of frequencies is therefore contingent on the filter length being longer 
than that of the modulating chirp.  It is the ratio of the lengths of the modulating chirp 
and the filter which will determine the resolution of the system.  (Filter length and the 
impact of the chosen chirps will be discussed in sections 5.2 and 5.3)  The matched filter 
operation just described can be represented mathematically by the convolution operation.  
Let the signal to be transformed be ( )tx .  The output of the operation depicted in Figure 
5.1 is given by [Mils80] 
 

 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

22

0

2 2

0 0

2 2

0

cos cos

1 1cos cos 2 sin sin 2
2 2
1 cos 2 2 2
2

T

a a

T T

a a

T

a a

F t x t t d

t t x t d t t x t d

x t t t d

τ ω τ βτ ω τ β τ τ

ω β τ β τ τ ω β τ β τ τ

τ ω τ βτ β τ ω β τ

= − − + −

= + + +

+ − + − −

∫

∫ ∫

∫

 (5.3) 
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which is approximately 

 ( ) ( ) ( ) ( )2 21 1( ) 2 cos 2 sin
2 2R a I aF t F t t t F t t tβ ω β β ω β≈ + − +  (5.4) 

where ( )RF ⋅   and ( )IF ⋅  represent the real and imaginary parts of the Fourier transform of 
( )f t . 

 
Notice that the Fourier transform is represented by the first two terms in equation (5.3).  
This is expressed in equation (5.4).  The third term in equation (5.3) can be ignored in 
practical systems since it can be effectively filtered out.  It is also possible to configure a 
system where the third term is canceled [Mils80].  However for the purposes of the 
system discussed here the third term is not important as we are only interested in the 
magnitude of the spectral components as they relate to one another and not the absolute 
transform. 
 
Interference can be mitigated by applying an appropriate filtering operation to a real time 
Fourier signal.  This is accomplished by either limiting or notching the real time Fourier 
output whenever it exceeds a specified threshold.  The threshold is represented by 

( )2H tβ  in Figure 5.2 below. 
 

 
Figure 5.2 Block Diagram of Interference Cancellation 

 
Following the cancellation of the interference, the signal is inverse transformed using the 
time reverse of the matched filter (in this case a down-chirp).  The output is then 
modulated again by the original down-chirp to “down-convert” the signal.  Figure 5.3 
gives the block diagram for the complete interference canceller using a real time Fourier 
transform.  The output of this circuit is passed to the UWB receiver for synchronization 
and detection. 
 

 
Figure 5.3 Real Time Fourier Transform Interference Cancellation Receiver 

 
Note the lowpass filter required after “down-conversion”.  This is necessary to remove 
the double frequency term introduced by the “down-conversion”. These frequencies can 
be removed using an appropriate lowpass filter.  Consider modulating equation (5.2), 
again by the down-chirp.  This results in equation (5.5).  (Note that this analysis does not 
represent all of Figure 5.3.  The transform and inverse transform do not need to be 
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represented in the equation.  It is only intended to validate the need for the low pass 
filter).   
 

 
( ) ( ) ( ) ( )( )

( )( )

2 2

2

1 1cos cos cos cos 2 2
2 4

1 cos 2 2
4

c a c c a

c a

t t t t t t

t t

ω ω β ω ω ω β

ω ω β

− = + − +

+ + −
 (5.5) 

 
Examining equation (5.5) the second two terms are chirps that have shifted to higher 
frequencies as a result of the modulation.  Precisely, the chirps have been shifted to twice 
the initial frequency of the original chirp and also by the frequency of ( )tx , resulting in 
down-chirps with twice the rate of change of the original down-chirp.  These terms can 
be effectively removed using a proper lowpass filter.   
 

5.2 Chirp Parameters 
As mentioned in the previous section, the chirp filter and the modulating chirp are both 
finite in length.  The parameters of these signals must be correctly chosen in order to 
properly represent the frequencies of interest and correctly perform the inverse transform.  
First the parameters are briefly introduced.  The linear FM chirp is defined by its initial 
frequency, aω , and its linear rate of change, β .  This is accomplished by providing a 
starting frequency 0f , an ending frequency 1f , and a time duration for the chirp, cT , 
such that 
 

 0 1
0, a

c

f f
f

T
β ω

−
= =  (5.6) 

 
The bandwidth of the chirp is then given as 10 ffB −= .  Often a center frequency, 

fc,chirp, is also specified which is defined as 0 1
, 2c chirp

f ff +
= .  The time-bandwidth product 

of the chirp, given as cTBTB ⋅= , is a metric often used to characterize these devices.  In 
general, larger time bandwidth products will provide better frequency resolution for the 
system.  However just looking at the time bandwidth product does not give information 
about the actual frequencies, bandwidths, and lengths of the chosen chirps, which are of 
vital importance.  It is more important to choose the chirp filters based on these values. 
 
As previously mentioned, the spectral content of the output is directly related to the 
frequencies contained in the chirp matched filter.  As shown in equation (5.2), 
modulating by a chirp results in both lower and upper sidebands being introduced around 
the initial chirp.  These sidebands can be thought of as representing positive and negative 
frequencies of the signal.  Negative frequency of course does not exist but it is often 
times used in Fourier analysis.  Figure 5.4 provides an illustration of this where f = 0 
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represents the position of the original chirp and cf  is the frequency of the modulated 
signal. 
 

 
Figure 5.4 Representation of Sidebands 

 
It is unnecessary to represent both sidebands in the Fourier output because they represent 
the same frequency.  Recall that for a given modulating chirp signal the resulting Fourier 
output is completely controlled by the definition of the matched filter (Note the matched 
filter will be discussed in relation to the original down-chirp but bear in mind that it is 
really just the time reversed version of the down-chirp discussed).  It was mentioned in 
section 5.1 that the region for which the real time Fourier transform is valid is directly 
related to the length of the matched filter.  This is because a valid output is only obtained 
when the modulated signal is fully contained within the matched filter.  Consider a filter 
whose initial frequency is aω , rate of change is β  and length is cT .  If the matched filter 
has length sT  then the range of frequencies that can be represented is given as 

( )0, s cT Tβ −   , which is simply the bandwidth of the filter minus the bandwidth of the 
modulating chirp.  This represents a situation where the matched filter includes the 
frequencies of the modulating chirp.  But, as can be envisioned, this range can be shifted 
so that only a specific range of frequencies is represented.  For instance it may be of 
interest to only represent the operating frequencies specified by the FCC for UWB 
operation (3.1 – 10.6 GHz).  In this case the initial frequency of the matched filter would 
be defined as 3.1 GHzaω −  which would result in the frequency range of 

( )3.1 GHz,  3.1 GHz + s cT Tβ −    being observed.  The length of sT  can be adjusted 
accordingly to control the upper portion of this frequency range.   
 
It is imperative that the chirp filter has the proper bandwidth and operating frequency 
range in order to not only observe the spectral components but also to properly perform 
the inverse transform.  In general, for the case of the down-chirp, being able to do so is 
dependent on the lowest frequency component of the modulating chirp being greater than 
the largest spectral component of the signal of interest.   This is because the lower 
sideband of the modulated signal is used for the processing.  For instance consider Figure 
5.5 which provides the real time Fourier output and its corresponding inverse transform.  
These results were produced with a matched filter bandwidth of 12 GHz and a 
modulating chirp with a bandwidth of 4 GHz.  The signal was a 1 ns RF pulse with fcUWB 
= 6 GHz.  The signal is inverse transformed without distortion and notice that this is 
possible with a small portion of the spectrum not being represented.  Figure 5.6 shows a 
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similar analysis for a filter bandwidth of 8 GHz instead of 12 GHz.  In this example the 
frequency range for which the signal needs to be observed is not chosen properly.  The 
modulating chirp is 4 GHz, the matched filter is 8 GHz, and therefore the real time 
Fourier output can represent a bandwidth of 4 GHz.  Because of the matched filter 
starting frequencies the output represents a range of 0 to 4 GHz but the UWB signal has a 
center frequency of 6 GHz.  The real time Fourier output therefore cannot represent the 
majority of the spectrum.  This causes distortion in the inverse transform of the pulse.  
This illustrates the need to choose the frequencies of the match filter such that all the 
frequencies of interest are represented.  This will allow interference anywhere in the band 
to be mitigated and improve the result of the inverse transform. 
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Figure 5.5 (a) Example RF UWB Pulse and Inverse Transform and (b) the Corresponding 
Transform Domain Output 
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Figure 5.6 (a) Example RF UWB Pulse and Inverse Transform with Improper Parameters and (b) 
the Corresponding Transform Domain Output 

 



 

 91 

5.3 Finite Length Effects 
As mentioned in section 5.1 the length of the signal of interest compared to the matched 
filter has an effect on the representation of frequencies and correct computation of the 
inverse transform.  It also directly affects the shape of the output spectrum, especially as 
it relates to narrowband interference. 
 
Consider the case where only the linear FM chirp is passed through its matched filter 
where ( ) ( )2

0 ttjetu βω −=  is an up-chirp and ( ) ( )2
0 ttjeth βω +=  is the matched filter, down-

chirp.  Note that UWB is not generally considered in the context of complex baseband, 
however it is used here to ease analysis.  In the end only the magnitude of the result is of 
interest. The output of the matched filter is then the convolution of ( )tu  and ( )th  and is 
given by [Kino87] 
 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ττττ τβτωβττω deedthuty ttjj∫∫
∞

∞−

−+−−
∞

∞−

=−=
2

0
2

0  (5.7) 

 
However since the input chirp is time limited with length T  the integral becomes 
 

 ( ) ( ) ( ) ( )( ) ττβτωβττω deety
T

T

ttjj∫
−

−+−−=
2

2

2
0

2
0  (5.8) 

 

This yields ( ) ( ) ττββττω deety
T

T

tjj ∫
−

−+=
2

2

22
0 . After integration the result becomes 

 

 ( ) ( ) ( )2
0

sin βττω

β
β −= je
Tt

TtTty  (5.9) 

 
Note that the result contains a term in the form of ( ) xxsin  which is the sinc function.  
This term contributes side lobes in the real-time Fourier output.  The width of the main 
lobe is determined by the bandwidth of the modulating chirp signal.  Just for reference 
the 4 dB and 10 dB lobe widths will be discussed.  Based on the definition of the sinc 
function the 4 dB and 10 dB points occur at approximately π/2 and 0.74π respectively or 
when 2 Ttβ π=  and 2 3 2Ttβ π= .  The times associated with these points are therefore 

2t Tπ β=  and ( )3 2 2t Tπ β= .  Accordingly the pulse widths are double this and given 
by  
 

 3 22 , 2
2 2p pT T

π πτ τ
β β

   
= =   

   
  (5.10) 

 
In terms of spectral analysis it can be seen that the side lobes can make it problematic to 
distinguish between individual frequency components.  For the purposes of interference 
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cancellation it is not of interest to actually distinguish between spectral components but 
rather just to cancel or mitigate them. The mitigation is performed by limiting the power 
of the narrowband interferer according to a threshold.  The threshold is defined relative to 
the UWB’s signal power, as discussed in section 5.1.  However the side lobes will 
adversely affect this process as they contribute energy over the entire band of the UWB 
signal and are difficult to remove.  Note that notching the interference is not an option as 
it would remove a large portion of the UWB signal energy.  Consider the output shown in 
Figure 5.7.  This portrays an example real time Fourier transform of a UWB RF pulse 
with fc,UWB = 4 GHz.  The chirp filter parameters were f0 = 20 GHz, f1 = 8 GHz, and Ts = 
120 ns and the modulating chirp parameters were f0 = 20 GHz, f1 = 16 GHz, Tc = 40 ns.  
Figure 5.8 shows the output for a 4 GHz tone interferer with an SIR = -40 dB at a PRR of 
1 MHz, as well as a magnified plot which displays the side lobes.  Observe that the side 
lobes have magnitudes which are greater than the largest magnitude of the UWB 
spectrum.  Figure 5.9 shows a magnified portion of the tail of the tone’s spectrum from 
Figure 5.8 along with the corresponding portion of the UWB spectrum.  Even in these 
portions of the spectrum, the magnitude of the tone’s contribution is greater than the 
UWB signal’s. 
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Figure 5.7 Real Time Fourier Output, UWB RF Pulse fc = 4 GHz 
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Figure 5.8 Tone (fc = 4 GHz), (a) Real Time Fourier Output and (b) Magnified to Show Side Lobes 
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Figure 5.9 (a) Magnified UWB Spectrum and (b) Magnified Tone Spectrum 

 
When trying to mitigate the interference it is not possible to remove all the energy 
contributed by the side lobes.  Accordingly this results in residual narrowband 
interference after cancellation.  The remaining interference is concentrated in certain 
areas.  Consider again the plots shown in Figure 5.8.  The frequency output, which is 
shown as a function of time, actually corresponds directly to portions of the signal in the 
time domain.  For instance if the main lobe of the spectral output was excised this would 
leave portions of the narrowband signal at the ends of the signals.  This is shown in 
Figure 5.10 where the main lobe and several of the side lobes on either side have been 
excised.  It does not always make sense to notch the interference in a practical scenario 
since it could result in the majority of the UWB signal energy being removed, however it 
is done here purely to demonstrate the contribution of the side lobes.  Since the 
interference suppression is a front end process and intended to be used before the UWB 
receiver the residual interference could causes problems with acquisition and 
synchronization eventually leading to an increased bit error rate.  However, if we are 
using a system that estimates pulse shape the distortion to the UWB pulse may be 
tolerable. 
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Figure 5.10 Time Domain Residual Narrowband Signal After Main Lobe Excision 

 
 

It is possible to reduce the side lobes by windowing the transformed signal.  This 
windowing is analogous to windowing utilized in FIR filters.  The effect of using these 
functions is a reduction in the amplitude of the side lobes and a widening of the main 
lobe.  This trade off is present with all windowing functions.  Therefore a window must 
be chosen that provides a tolerable main lobe width and at the same times has acceptable 
side lobe levels.  Table 5.1 gives some common windowing functions with their 
corresponding main lobe widths and side lobe levels. BT is the bandwidth of the 
modulating chirp multiplied by the main lobe width, in time.  For example a chirp with a 
bandwidth B, and using a rectangular window, would have a main lobe width at 3 dB of 
T = 0.89(1/B). 

Table 5.1 Window Types 

Weighting Function 
Peak side 
lobe level 

(dB) 
BT (3dB) BT (6dB) Far sidelobe 

falloff rate 

Rectangular -13 0.89 1.21 1/t 
Bartlett -27 1.28 1.78 1/t2 
Hanning -32 1.44 2 1/t3 
Hamming -43 1.3 1.81 1/t 
Finite Gaussian -42 1.33 1.86 1/t 
Blackman -58 1.68 2.35 1/t3 

 
Figure 5.11 provides a comparison of the side lobes for a rectangular window and a 
Hanning window using the same chirp parameters specified for Figures 5.8 – 5.10.  The 6 
dB bandwidths for these windows are 30.25 MHz and 50 MHz respectively (Note that 
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these values are specific to the chirps used).  Relative to the UWB spectrum, the increase 
in the main lobe width is negligible.  However the reduction in the side lobe levels is 
significant and can lead to considerable improvement in the cancellation performance.  
Figure 5.12 provides an example of this.  The cancellation was performed by limiting the 
real time Fourier output according to the output of the UWB signal in the presence of an 
interferer with an SIR = -50 dB.  Reducing the side lobes allows the UWB pulse to be 
recovered more accurately while still canceling the interference.   
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Figure 5.11 Real Time Fourier Output (a) Rectangular and (b) Hanning Window 
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(b) 

Figure 5.12 Recovery of UWB Pulse after Cancellation (a) Rectangular and (b) Hanning Window 

 
Note that using windowing does improve performance but it also presents other 
challenges.  Applying windowing results in a scaling and shaping of the time domain 
signal being transformed.  The effect is that the beginning and end of the transformed 
signal are significantly attenuated in the time domain.  Proper operation would require the 
UWB signal to be centered in the window.  Otherwise the signal would be attenuated and 
the error performance would increase.  This would also be problematic if it was desired to 
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use a rake receiver as multipath components would be rendered less significant near the 
edges of the window. Figure 5.13 shows an example of the effect of the Hanning window 
used for the analysis in Figure 5.12. The plot represents the result of the inverse 
transformation.  This demonstrates the need for the UWB signal to be positioned in the 
center of the transform window. 

 
Figure 5.13 Effect of Windowing in the Time Domain 

 
One last quick note concerning the main lobe of the Fourier output.  Referring to equation 
(5.10) it can be seen that the width of the main lobe is reduced if the bandwidth of the 
modulating chirp is increased.  It is possible to increase the chirp bandwidth in two ways, 
by either increasing β or increasing the length, Tc.  Both of these result in the width of the 
main lobe being reduced in terms of time, however the interpretation for each is different.  
If β is increased then both the bandwidth of the filter and the modulating chirp are 
increased.  Therefore even though this reduces the width of the main lobe, the bandwidth 
which it represents remains the same.  On the other hand, increasing the length of the 
chirp results in both a decrease in the width of the lobe and a decrease in the spectrum it 
covers, which is desirable.  So by increasing the length of the modulating chirp it may be 
possible to improve performance.  However doing so may require the filter to be 
lengthened as well since it will reduce the frequency range of the output. 
 

5.4 Applicability of SAW Filters. 
Several industry professionals have been contacted and it doesn’t appear that there are 
any readily available commercial SAW chirp filters.  Previous uses for these devices, 
such as radar compression, can now use digital processing techniques, and as stated by 
one of the contacts, the chirp Fourier transform industry is “virtually dead”.  This 
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particular contact says, “(they) haven’t developed a new pulse compression system in the 
last 15 years”.  So for now acquiring these devices may be difficult and expensive. 
 
Also the limits on these devices do not meet the requirements for a UWB system.  For 
example, the UWB signals would be occupying the 3.1 – 10.6 GHz portion of the 
spectrum, but the highest center frequency mentioned is 1.5 GHz.  These center 
frequencies and likely bandwidths would not be suitable UWB.  The type of materials 
and construction limit the achievable center frequencies and bandwidths. 
 

5.5 Simulation Assumptions 
The following provides a description of the assumptions made when simulating the BER 
performance using the transform domain processing technique.  The determination of SIR 
is the same as the description provided in Chapter 4 however the definitions are 
reproduced here for completeness. 
 
All BER simulations performed relate the error performance as a function of signal to 
interference ratio (SIR) for a given signal to noise ratio (SNR).  The SNR for the system 
is defined as 
 

 
0

bESNR
N

=  (5.11) 

 
where Eb is the energy per bit of the UWB system and N0 is the noise power.  Note that it 
was assumed that each bit was represented by a single pulse and therefore the energy per 
bit is given by the energy in one pulse.  The energy per pulse is always normalized to 
one.  SIR then is defined as the ratio of the UWB signal energy to the narrowband 
interferer energy.  For these simulations narrowband signal energy was defined as a 
function of the pulse repetition rate (PRR) and the spreading gain of the UWB system.  
PRR refers to the number of pulses transmitted per second and spreading gain refers the 
number of pulses representing a single bit.  However as previously mentioned the 
spreading gain is simply one and therefore is not a factor in the calculation of SIR (The 
effects of spreading gain will be further discussed with the results).  Therefore SIR is 
simply a function of PRR and is defined as  
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where Et is the energy in the tone.  Et is defined by 
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and Fs is the sampling frequency.  The energy in the tone is therefore simply the sum of 
its squared samples over the period between UWB pulses (i.e. 1/PRR).  
 
The simulations performed the interference cancellation using transform domain 
processing to limit the real time Fourier output, thereby reducing the effects of the 
interference.  The simulation was calibrated such that the process of transforming and 
inverse transforming did not artificially add or remove energy.  This was accomplished 
by passing a UWB pulse through the transform domain operation and forcing the pulse 
amplitudes to be equal at the input and output of the operation.  Note that this was done 
with a UWB pulse alone.  Any loss incurred from adding the UWB signal and performing 
cancellation was not modified.  Once calibrated, the cancellation was performed by 
adding narrowband interference to a series of 1000 UWB RF pulses, with each pulse 
being centered in the middle of the modulating chirp window.  Using the transform 
domain processing technique interference cancellation was performed by hard limiting 
the interference.  This results in an output which could be demodulated.  AWGN noise 
was then added to this resulting signal and demodulation was performed in a series of 
iterations.  If it was desired to simulate 100,000 bits then 100 iterations were performed 
on the 1000 UWB pulses. 
 

5.6 Simulation Results 
This section presents a BER performance analysis in order to evaluate the usefulness of 
interference cancellation using transform domain processing.  Because of the challenges 
discussed in section 5.3 these results are preliminary and are to serve as a proof of 
concept.  First however Figure 5.14 provides plots which serve as a form of calibration 
by demonstrating the simulation properly performs demodulation on the UWB signal.  
This is provided for both biphase and PPM modulation.  Note this does not include 
interference mitigation or transform domain processing.  This was simply done to verify 
that proper operation of the demodulation. 
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Figure 5.14 Simulated and Theoretical (a) Biphase AWGN Performance and (b) PPM AWGN 
Performance 
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Figure 5.15 provides plots which demonstrate the performance of interference 
cancellation.  These simulations were conducted using, f0 = 20 GHz, f1 = 8 GHz, and Ts = 
120 ns for the chirp filter and f0 = 20 GHz, f1 = 16 GHz, Tc = 40 ns for the modulating 
chirp.  The signal was a UWB RF pulse with fc,UWB = 6 GHz in the presence of a 
narrowband interferer with a fc = 6 GHz.  The figures are for SNR = 3 dB and 6 dB 
respectively.  Notice that when using the Hanning window the performance is improved 
considerably.  Figure 5.15a also compares the effects of using a rectangular window 
versus a Hanning window.  As expected the rectangular window performs considerably 
worse. 
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Figure 5.15 BER Performance with interference cancellation (a) SNR = 3 dB and (b) SNR = 6 dB 

 
Recall that with the LMS cancellation circuit the presence of a tone interferer versus a 
modulated interferer had a large impact on the performance of the interference 
cancellation.  However for the case of transform domain processing the window over 
which the real time Fourier transform is being performed is considerably smaller than 
symbol duration of any modulated interferer.  Therefore the bandwidth of the narrowband 
signal will not be visible in the spectrum output and performance will not be affected. 
Additionally, we consider magnitude-based cancellation which would not be affected by 
modulation.  Figure 5.16 illustrates that the cancellation performs equally well in the 
presence of a BPSK signal when compared to a tone. 
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Figure 5.16 BER Performance with Interference Cancellation for a Tone and BPSK Signal 

 
A simple simulation was also conducted to illustrate previous issues concerning 
multipath.  Consider the multipath signal shown in Figure 5.17.  The signal was created 
using 3 taps at 0, 10, and 16 ns, with amplitudes of 0.74278, -0.37139, and 0.55709 
respectively.  This CIR has unit energy and the UWB pulses had center frequencies of 6 
GHz and a pulse width of 1 ns. 
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Figure 5.17 UWB Multipath Signal 
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Figure 5.18 shows the effects of transform domain processing when using a Hanning 
window (The same effect was demonstrated in Figure 5.13).  Note that this result 
assumes that the first path was aligned in the center of the chirp modulating signal, (i.e. 
the first path’s amplitude was not affected). 
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Figure 5.18 UWB Multipath Signals after Applying a Hanning Window 

 
Figure 5.19 shows the results of the performing simulations with the above multipath 
signal.  The simulations were run assuming perfect knowledge of the paths after the 
transform domain processing.  As shown the processing severely attenuates the last two 
multipath components.  The second multipath component is barely noticeable and the 
third component is no longer noticeable.  This results in the receiver being unable to use 
all the paths that were initially available.  This is shown in the plot where only two paths 
are available for use after cancellation.  Also the two finger case does not offer much of 
an improvement over the 1 finger case. 
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Figure 5.19 BER Performance for 3 Finger UWB Rake Receiver 

 
Note also that these simulations were conducted with the interferer’s center frequency 
equal to the UWB signal’s center frequency.  This represents a worse case scenario as 
this frequency will be the most detrimental to system performance.  As shown in Chapter 
3, as the narrowband interferer’s center frequency moves further away from the UWB 
signal’s center frequency the impact of the interferer lessens. 
 

5.7 Conclusion 
The analog nature of the transform domain circuit makes it attractive for UWB systems. 
For an environment with AWGN and narrowband interference simulation results show 
that a significant improvement can be achieved in terms of error performance.  However 
it was found that to achieve satisfactory performance windowing must be performed.  
The windowing reduces the interferer’s sidelobes in the “frequency” domain and allows 
the inverse transform of the UWB pulse to be more accurate after cancellation.  However 
this also requires that the UWB signal be positioned close to the center of the modulating 
chirp window.  This is required because these windowing functions inherently reduce the 
amplitude of the signal near the edges of the transform domain processing window.  
Since this amplitude reduction is observed in the time domain, this could cause problems 
in a multipath or single path scenario. This was demonstrated using the simple multipath 
simulation in Section 5.6.  The rectangular window does not suffer from this, however 
the hard limiting cancellation leaves some residual interference near the edges of 
transform domain processing window and does a poor job of reproducing the UWB 
signal.   Lastly a major challenge is to find devices suitable for performing the chirp 
Fourier transform.  It is not believed that SAW chirp filters can achieve the necessary 
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center frequencies for the UWB signal and there is no active commercial market for these 
devices.  Note that the bandwidths and center frequencies are limited by the materials 
used to make the SAW devices.  There is literature concerning superconductive filters, 
which have higher center frequencies and bandwidths, and are capable of performing 
chirp Fourier transforms.  However these devices do not appear to be in the commercial 
market.  Note that it is possible that this technique may be applicable to optical 
processing. 
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Chapter 6 Conclusions and Future Work 
 
This thesis presents analysis of two very relevant UWB topics, channel modeling and 
interference cancellation.  The channel modeling work builds on previous results and 
provides insight for both large and small scale modeling.  The narrowband interference 
cancellation sections analyze two types of front end cancellation circuits, one time 
domain and one frequency domain technique. 
 
General background information on ultra-wideband was presented in Chapter 1, covering 
pulses, modulation, multiple access, and current FCC regulations.  Chapter 3 provided 
background information on interference and previously researched techniques for 
mitigating interference.  The majority of the presented background research covered 
topics initially suggested for spread spectrum communications with the thought that these 
techniques could also be applied to UWB.  Some background was given for UWB 
techniques as well, although there are far fewer articles as of yet. 
 
Chapter 2 presented the results pertaining to channel modeling.  The NLOS measurement 
campaign and the data processing methodologies were described for the large and small 
scale results.  The large scale work mainly focused on frequency dependent path loss and 
ultimately concluded that UWB may exhibit some dependency due to the antennas but 
that the channel is not frequency dependent (Note that it is possible that certain materials 
could cause pulse distortion).  The data’s path loss exponent and standard deviations were 
calculated and compared with preciously reported results.  The values matched 
reasonably well.   
 
The small scale analysis also presented traditional statistical calculations, such as RMS 
dealy spread, mean excess dealy, and max excess delay.  These results were compared 
with previously reported values and were found to match reasonably well.  Further 
analysis looked at the statistical distribution of the small scale statistics.  Comparing the 
CDFs it was found that the small statistics in general adhere to a Gaussian distribution. 
 
Chapter 4 looked at the time domain NBIC technique.  The proposed technique attempts 
to estimate the narrowband interferer in the digital domain and cancel it in the analog 
domain.  This allows sampling to be commensurate with the narrowband signal.  Two 
cancellation algorithms were investigated, an LMS algorithm and a transversal filter.  The 
LMS circuit was determined to be inadequate for cancellation because of its slow 
convergence.  The cancellation circuit offered no significant gains in the presence of a 
modulated interferer.  However the transversal filter performed very well and has some 
promise.  It was found to offer significant gains in both an AWGN and multipath channel 
in the presence of a modulated interferer.  Future work in this area would include 
characterization of a transversal filter with an adaptive weight update parameter, µ.  
Using the signal’s autocorrelation matrix to estimate INR for this purpose was briefly 
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discussed.  Further investigations of the effects of filter length and sampling rate would 
also be of use. 
 
Chapter 4 also investigated two frequency estimation techniques, a method of moments 
and a maximum likelihood estimation algorithm.  These techniques were both capable of 
estimating the frequency of a tone, however there were some tradeoffs.  The maximum 
likelihood estimation performs better than the method of moments estimation but suffers 
from being much more computationally intensive.  The method of moments on the other 
hand suffers from a higher variance and a worsening performance with increased 
sampling rate.  If the inverse matrix computation required by the MLE can be tolerated it 
is the definite choice.  Future work in this area would include looking into the 
performance of other frequency estimation techniques, possibly in the frequency domain 
and possibly analog. 
 
Lastly, in Chapter 5 the frequency domain cancellation technique, transform domain 
processing, was discussed.  Transform domain processing uses a chirp Fourier transform 
to facilitate cancellation.  The chirp Fourier transform produces the spectrum of the 
inputted signal as function of time.  This allows the interference to be mitigated in the 
“frequency” domain by limiting its power.  The results determined that it is possible to 
achieve significant performance improvement using transform domain processing.  
However it was also found that there are some limitations.  First there are limitations on 
SAW filter technology that currently make it inapplicable to UWB.  Also it was found 
that to achieve reasonably good performance windowing must be performed.  Windowing 
causes attenuation in the time domain and possibly causes loss of signal energy if the 
transform is not properly synchronized.  Future work could include determining other 
means of implementing the chirp Fourier transform besides using SAW technology.  Also 
performing synchronization in the transform window could be investigated. 
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