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Use of Assembly Inspired Instructions in the Allowance of Natural

Language Processing in ROS

by

Takondwa Kakusa

(ABSTRACT)

Natural Language processing is a growing field and widely used in both industrial and and

commercial cases. Though it is difficult to create a natural language system that can

robustly react to and handle every situation it is quite possible to design the system to

react to specific instruction or scenario. The problem with current natural language

systems used in machines, though, is that they are focused on single instructions, working

to complete the instruction given then waiting for the next instruction. In this way they

are not set to respond to possible conditions that are explained to them.

In the system designed and explained in this thesis, the goal is to fix this problem by

introducing a method of adjusting to these conditions. The contributions made in this

thesis are to design a set of instruction types that can be used in order to allow for

conditional statements within natural language instructions. To create a modular system

using ROS in order to allow for more robust communication and integration. Finally, the

goal is to also allow for an interconnection between the written text and derived

instructions that will make the sentence construction more seamless and natural for the

user.

The work in this thesis will be limited in its focus to pertaining to the objective of obstacle

traversal. The ideas and methodology, though, can be seen to extend into future work in

the area.



Use of Assembly Inspired Instructions in the Allowance of Natural

Language Processing in ROS

by

Takondwa Kakusa

(GENERAL AUDIENCE ABSTRACT)

With the growth of natural language processing and the development of artificial

intelligence, it is important to take a look how to best allow these to work together. The

main goal of this project is to find a way of integrating natural language so that it can be

used in order to program a robot and in so doing, develop a method of translating that is

not only efficient but also easy to understand. We have found we can accomplish this by

creating a system that not only creates a direct correlation between the sentence and the

instruction generated for the robot to understand, but also one that is able to break down

complex sentences and paragraphs into multiple different instructions. This allows for a

larger amount of robustness in the system.

.
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Chapter 1

Introduction

1.1 Current State of the Field

Fully autonomous systems are in high demand in this day and time, with companies spending

million to billions of dollars in order to meet the worlds needs through technology. The

applications of this range from Tesla and Uber as they try to build the best fully autonomous

vehicles, to Flippy the burger flipping robot [1], built to autonomously flip burgers. though

a large focus has been placed on these sorts of technologies recently, there have been steady

trends that show the needs for not just fully autonomous systems, but also semi-autonomous

systems systems, requiring human interaction.

In the paper ”HumanRobot Interaction Using Three-Dimensional Gestures” [2], the author

describes how there is now a bridge between humans and technology, in that they no longer

have to work in parallel, but rather, they can work side by side. In this, technology has

developed from joysticks, to touch screens, gesture recognition and,as will be discussed in

this paper, natural language processing. There are many areas in which fully autonomous

1
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systems can be necessary, such as in space with different probes, or even the autonomous

robotic arm which is used in many industrial applications. At the same time there are many

applications that cannot be handled by a human or a robot alone, such as medical devices

and military devices that require high amounts of precision. In the medical field alone there

are multiple different variations of autonomous and semi-autonomous robots being catego-

rized as surgical computeraided design/manufacturing (CAD/CAM) systems and surgical

assistants[3]. The surgical CAD/CAM systems acting more in the fully autonomous case to

digitally reconstruct the body while the surgical assistants assist in the actual precision of

the surgical procedure[4].

In this case, what does it truly mean for the human-robot interaction? What are the prereq-

uisites set to ensure that the interaction is seamless? In the paper ”Human-Robot Interaction

in Handing-Over Tasks”[5], the authors describe seamless human-robot interaction to not

require any training on the part of the human and should be intuitively simple. Never the

less, there will always need to be some for of training/learning that occurs on both ends

for the system to work. The main goal then becomes having a technique that allows for

simplicity while minimizing the amount of training necessary on the human end.

This paper then proposes a complete instruction set that allows for easy interaction between

a human and a rover through text. This natural language processing has been around for

a while but with many limitations to the situations in which it can fit in as well as the

full scope of the instructional capabilities. With this in mind, the main scope of this paper

focuses on implementing natural language processing in order to aid in the traversal of a

rover through different scenarios.
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1.2 Thesis Contributions

There are two main contributions brought in from this work:

• Using N-Grams to categorize sentences in a way that extends to both basic and con-

ditional statements.

• Design and implementation of a complete instruction set in ROS that accounts for the

different possible scenarios that need to occur in the system.

1.2.1 Scope

For this research, the main goal to control a rover through plain text instructions. All the

instructions that come in are expected to be commands that are in some way related to:

• The movement of the different components on the rover, such as the wheels or the

camera

• Measurement of different sensors attached to the rover, such as the ultrasonic sensors

• Getting and Setting of different internal parameters of the rover, such as the robots

speed

On top of this, all instructions will be assumed to be in English. With these in mind, there

are many cases that are not taken into consideration when looking at sentences for processing

that may be the case in other research. These will be discussed in the later chapters.
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1.3 Thesis Layout

This thesis is broken down into seven different chapters ranging from a description of the

current state of the problem as well as some background information, to the results of

the system being designed and the conclusions gained from these results. In chapter 1, I

go over some relevant information on current systems that utilize autonomous and semi-

autonomous systems, pointing out why this work is necessary. Chapter 2 goes over some

relevant terminology needed to understand the rest of the paper, such as what ROS is and

how a set of instructions can be considered complete. Chapter 3 then goes over the different

instruction types that are being used, going into detail as to where they fit in, in the system

and their purpose. The next chapter, chapter 4, goes over how the text processing occurs,

with the N-Gram key matching and Macros to fit the keys into their appropriate instruction

sets. Chapter 5 then goes into the ROS simulation and how the network structure for the

system is designed in order to generate real-time and close to real-time results both physically

and virtually. The last two chapters then go over the results of running this infrastructure

in multiple different situations and what conclusions can be made from these results.



Chapter 2

Literature Review

2.1 Overview

Before diving into the main topic of this thesis, a few terms and ideas need to be discussed.

These set the basic understanding necessary to comprehend some of the more specific details

described in later chapters. The main terms that will be looked into begin with what is

meant by ”instruction completeness” and how the instruction set created for this research

fits within this model. Next I go into explaining what Natural Language processing is, and

how it will be used to build the instructions that will be run in ROS. Finally I will define

what ROS is and the different modules and techniques inside of it that were used in the

experimentation.

5
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2.2 Instruction Completeness

An important question that comes up when looking at the fact that instructions are generated

from the natural language is whether or not the set of instruction types is complete. By this

we mean, can any possible case be covered within natural language, begging the question,

what sort of sentences are expected. Because of the scope of the thesis, instructions cannot

be open ended and are expected to fit into the context of the goals of the rover, which

in this case, is getting from point A to point B, in a manner that is safe. Therefore the

different criteria that need to be met, and for these criteria we look at ”The Instruction Set

Completeness Theorem” [6] which states the following cases:

1. Statefulness: The instruction set must be stateful by state and a next state function

2. Explicit State Change: There must be an instruction to directly and explicitly

modify state.

3. Explicit Next State Change: There must be an instruction to directly and explicitly

modify next state function.

4. Implicit State Change: There must be an instruction to indirectly and implicitly

modify state.

5. Implicit Next State Change: There must be an instruction to indirectly and im-

plicitly modify next state function.

In these cases, explicit means that the operation is intentionally made by the user, while

implicit means that the operation is automatically generated. Since four of the principles

center around implicit and explicit state changes, the theorem is then simplified into the

following three theorems [6]:
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1. Statefulness: The instruction set must be stateful by state and a next state function

2. State Change Principle: There must be an instruction to modify state.

3. Next State Change Principle: There must be an instruction to modify next state

function.

Though these come from the stand point of looking at things in the eye of computer architec-

ture, they seem fitting to the current ideas that are being pursued. This is mainly due to the

fact that both the natural language processing and, especially, the ROS instruction base is

very much state based. Using the ideas listed here, we can form a basis for the completeness

of the instruction sets that are available for use in this thesis.

2.3 Natural Language Processing / Programming

Natural Language Processing (NLP) is the step towards machine learning and artificial in-

telligence as it tries to get the computer to understand human speech, therefore becoming

more human. In essence, the goal of NLP is to get computers and humans to communicate

much more easily, with less learning needing to occur on the human end to accommodate the

technology. As an extension of this, Natural Language Programming (also NLP) is a subset

of this type of research that focuses more on trying to get computers to understand pro-

gramming instructions in terms of natural text rather than through a specific programming

language. There are many tools that try to do this to varying degrees within the scope of

their applications[7][8], but many of them do not follow the cause and effect approach found

in this research, making them more direct instruction oriented. Due to the large variability

in sentences, there are many aspects that need to be taken into consideration for either of
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these to become successful that people take for granted. Here are a few key components that

computers must understand to get the full depth of knowledge of sentence structure[9]:

• Phonological: How words sound when when we hear them (more on the end of speech

recognition)

• Morphological: The ability to break down a word into its basic units, or morphemes,

in order to get the root understanding. For example, taking the word ”worldly” and

understanding its built off of the root ”world” and the extension ”ly”.

• Syntactical: The word organization and how they come to form a complete sentence.

• Pragmatics: Understanding the context in which the sentence is used and using the

context to alter decisions on the overall meaning.

• World: Understanding of the other environmental factors such as the other persons

beliefs and goals.

The paper ”Intelligent Natural Language Processing”[10] simplifies this even more by break-

ing these factors into three separate categories:

• Knowledge about words: Basic understanding about what words mean.

• Knowledge about sentences: Knowledge of how the words are put together.

• Knowledge about discourse: Understanding over how the sentences are used, such

as to ask questions, make commands and convey emotions.

With all of this in mind, it is essential to point out that having a universal NLP algorithm

is far from being established and is not the goal with this research. Like other research and
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work that goes into this field, a certain scope needs to be set on what sort of information is

expected and how much the researchers plan to process that information. Using the scope

defined in the previous chapter, there are several simplifications that can be made to these

components in order to make the processing easier.

2.3.1 Language Structures

A lot of research has been put into looking at the feasibility of using natural language for

programming[11][12][13]. All of this research starts by looking into the structure of the

language and using details on that front to help derive the rules that need to be generated.

Most of these follow the general principles of looking at the following[11]:

• Syntactic Typing: This component is the basis of most languages and helps solve

many ambiguities between sentences. If focuses on looking at the parts-of-speech (noun,

verb, abjective, etc.) and using that as the basis of sorting the wording and defining

meanings.

• Inheritance: Characteristics that can be determined by other factors give, like having

a sub-class from a base-class.

• Reference: Using other objects in a sentence to relate to a specific object. In this

research, all references will be made with respect to the rover, such as ”turn the rover

left” refers to the rover’s left rather than that of the person giving the instruction.

• Conditionals, Iteration, and Stepping: Researchers have found that forming

these types of statements does not occur the same way naturally as it may happen

programmatically[14]. Most sentences are naturally flattened out into what are called
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double-clause structures, basically a cause and effect form. This is essential to look at

as the research will focus on this relationship to drive its instructions.

Looking at these, there are many aspects that need to be focused on for the sentence structure

and combining many of these aspects can lead to a deep understanding of conversation being

had.

2.3.2 Processing Techniques

There are many techniques that can be used in order to process the text, each with their

own benefits and faults. The four major ones are[10]:

• What you see is what you get (WYSIWYG): A top down look at the system.

Breaks down into four modules, one for the each component discussed before (word

and sentence knowledge, semantics and pragmatics).

• Oatmeal: Rather than separating out all of the components, it draws a box around

them all as it tries to encompass all the aspects at once. This is a very non-modular

approach.

• Heterarchy: A modular approach that creates a centralized node that directs the

information to the following modules.

• Pipelined: Another modular view in which the states are separated out like they are

in the first case, but the information can pass back and forth between them to gain

more information from other sources.

For this research, the WYSIWYG approach was utilized in order to have a more logical view

of how the information was being passed from one state to the other. Particularly with this,
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an emphasis was placed on Set-Based Dynamic Reference[15]. In this methodology, I used

sets and set based operations in order to interpret the semantics given within the sentence.

The combination of these two factors keeps the processing logical and and visually simple to

understand and adjust when necessary.

There are then three main approaches that come into play when looking at the sentiment

analysis itself in each of the stages[16]:

• Machine Learning Approach: Both the use of supervised and unsupervised learning

techniques such as SVM’s and Native Bayesian classification.

• Lexicon Based Approach: This is divided into two realms. The first is a dictionary

based approach in which a universal dictionary is used, such as one generated from

WordNet or SentiWordNet. This takes in the opinion words from the text and uses

the dictionaries to narrow down the meaning from common sysnonyms and antonyms.

the second method is a corpus based method that is more context specific as the word

are related to a predefined corpus specific to the project/research.

• Hybrid Approach: Uses the lexicon method for sentiment scoring and then uses the

machine learning on the new trained data to perform the analysis.

Following this same trend of logical visibility, the approach of a corpus based N-Gram method

was chosen. In this, a dictionary of key terms was created as they related to the scope of

the project and these terms were divided according to their syntactic attachments.

Finally, with this system in mind, we have an idea of the approach we can take for the

analysis and can divide that analysis into the components of[15]:

1. Step finder: Identifying the actions that need to be taken.

2. Loop finder: Identify which instructions indicate a repetition that may occur.
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2.3.3 Python and NLP

Python[17] is a programming language with a wide range of capabilities in higher level

programming. Its uses vary wildly from high level data processing[18], machine learning[19],

and even robotics [20]. Its largest benefits are the fact that its easy to get started, friendly and

easy to learn, open-source, and, most importantly, host thousands of third-party modules[17].

With all of this, the largest cost comes in terms of performance, and case studies have been

made to look at how this could effect the overall processing for both ML and NLP[21]. In

the end they do find that the language supports a wide range of methods for both of these

applications.

Python was chosen because of these factors and its inclusion of the NLTK libraries[22] which

are a set of libraries dedicated to machine learning and natural language processing. This

toolkit was developed in conjunction with a computational linguistics course at the University

of Pennsylvania and contains a large set of modules and corpora[23].

2.4 Robot Operating System (ROS)

ROS stands for Robot Operating System and is a collection of tools, libraries, and conventions

used to simplify the task of creating complex and robust behavior [24]. Its popularity stems

not only from the fact that it is open source, but that it is also robust enough to be used

in both simple and commercial products. The ROS website [24] talks about the difficulties

of creating a robust enough software system for a robot, and part of this is due to the fact

that situations that may seem easy for humans could vary wildly in terms of the instance

of the task and the environment. These sorts of variations are hard for any single person

to develop around, and thus the Robot Operating System was developed to help mitigate
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this, through its focus on the connections between embedded systems within the hardware

stack. Also through its focus on real time motion to push designers to partition robots into

real-time and non-real-time subsystems[25].

ROS began as a collaboration between Willow Garage and the Stanford robotics department

in 2007[26] and has since grown to be the leading universal operating system used in large

scale robotics projects. The growth of ROS has become quite exponential since its roots

and this has been measured in two different ways. The first is that the number of public

repositories that contain ROS code has grown exponentially with more and more institutions

contributing open-source packages to ROS[27]. The other parameter that shows this growth

is the number of unique ROS packages that have been created, and this has seen a spike

with the creation of new point cloud sensors, like those used in the Kinect, by Microsoft,

by allowing for more varied 2D and 3D image data[27]. This growth is greatly due to the

wide integration and support ROS has gained from not only academia, but from major

companies in the robotics field such as SRI and Gostai, with government sponsors like

DARPA advocating for its continued use [27]. With all this in mind, this is why this system

was chosen as a means of pioneering this research. Now lets dive into how ROS works.

2.4.1 ROS Design Principles

In the paper ”ROS: an open-source Robot Operating System”, the authors go into detail

about the five philosophical goals that ROS tries to achieve. These are being peer-to-peer,

tools-based, multi-lingual, thin, free and open-sourced[28]. Each of these are described briefly

below:

1. Peer-to-Peer: ROS is built to contain multiple processes, most likely on many sepa-

rate hosts, that are connected at runtime. These hosts are connected in some sort of
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LAN configuration in order to avoid slow wireless links and uses a dedicated lookup

mechanism to allow the processes to find each other at runtime.

2. Multi-lingual: ROS can be used with multiple different programming languages and

is in general language neutral. Currently ROS supports C++, Python, Octave, and

LISP with others still in various stages of development. This is done by defining an

interface definition language (IDL) that sets a neutral standard in which these different

languages can communicate.

3. Tools-Based: In attempt to battle the large complexity that can be obtained when

designing large systems, the designers opted for a microkernal design. In this, they

developed a large number of small tools and applications to run their various systems

rather than one large overbearing tool to control them all. This, though it may lose

some efficiency, is more future proof and robust..

4. Thin: In an attempt to allow code and algorithms used in ROS to be implemented

in other non-ROS projects, the developers focused on pushing users to create libraries

that are ROS independent. These libraries are then tied into the ROS system through

a simple CMake make command, allowing for a more universal use of these algorithms.

5. Free and Open-Source: One of the largest benefits of ROS is that it is open source,

meaning that there are thousands of people contributing to its development at any

time. Though there are other non-open-source comparisons such as Microsoft Robotics

Studio[29] and Webots[30], they are limited when it comes to catching up to new

developments in technology and are scoped to the single design given to them.
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2.4.2 ROS Terminology

There are a few terms that are used in this paper to describe actions and structures inside

of ROS. These terms will be defined here in order to have a clear basis to work off of:

• Nodes: ROS works by facilitating the communication between multiple different

nodes. These nodes perform the computations that are necessary for the robot, such as

sensor reading and processing as well as data and information calculations. Thank to

the multi-lingual nature discussed before, these nodes can be written in multiple differ-

ent languages as long as they follow the appropriate message passing parameters[28].

• Messages: The way in which nodes communicate with each other. They are designed

to use primitive types, such as integers and booleans, and are strictly typed data

structures[28].

• Topic: A location in which nodes can publish data that will be read in by other

nodes. multiple nodes can subscribe and publish to a single topic without knowing the

existence of the other nodes[28].

• Publisher: A node is considered a publisher if it sends a message to a topic.

• Subscriber: A node is considered a subscriber if it reads messages from a topic.

• Service: A service within a node is a routine that gets accessed by another particular

node. This is normally in a blocking manner.

• Client: A node that calls on a service from another node is considered a client.
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2.4.3 ROS Control

As stated in the ROS Design Principles section, ROS is tools based, meaning that it relies on

multiple smaller packages to make the system work. This idea extends to how ROS handles

its control algorithm, through the ROS controls package, which can be seen in figure 2.1[31].

Figure 2.1: ROS Control: Data Flow of controllers

The ros control packages takes the joint state information from the robots actuators and

encoders as inputs. Using a PID controller, it takes these inputs and controls the output,
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usually in term of effort[31]. with this sort of package structure, there are four main goals

that are trying to be achieved. First, it tries to provide a lower entry barrier for exposing

hardware to ROS. Nest it tries to promote reuse of control code and provide ready-to-use

tools. Finally it serves to provide Real-time ready implementation[32].

2.5 ROS and Gazebo

Figure 2.2: Integration of Gazebo and the ros control packages
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Gazebo is an open-source simulation environment, and is used in this research to simulate

the movements of the rover. The reason Gazebo is chosen is due to how closely tied it is to

the mechanisms inside of ROS, to the point that transitioning between software simulation

and actual hardware testing is made a lot easier. Figure 2.2[33] shows how the integration

of Gazebo and the ros control packages work together. In this you can see the Hardware

Resource Interface Layer, where all the joint states and commands are housed. In this layer

is where Gazebo is able to send its simulated information of the hardware to ROS, thereby

emulating the control signals sent by the actual hardware.

2.6 OpenCV

Since computer vision is not a main focus of this research and is, therefore, not touched too

much throughout the work I will only go into a brief description of the OpenCV libraries and

why they were used. As stated in the paper ”Realtime Computer Vision with OpenCV”[34],

there is a growing need for image processing in an attempt to determine what is going on

in front of the camera, so that we can use that information to control robots. The main

problem being that doing any sort of work with images is very computationally expensive

and sometimes requires a compromise in quality in order to make the entire system run[34].

OpenCV is then a group of libraries built to help with image processing, and is built mainly

in C++ and python. The reason we chose to use OpenCV and do image processing in general

was to test more real-life scenarios in which actions done by the robot are based off of what

it can see and detect in the real world.



Chapter 3

Instruction Types

3.1 Overview

Having a robust set of instruction types is key to the full development of this system. The

challenge then is creating an instruction set that not only handles the current cases but is

universal and robust enough to be future proofed. On top of this, the instruction sets need

to make up just a small enough piece of the actions that need to be taken so that they can

easily be concatenated for the most efficient instruction traversal.

The base design of this procedure is built upon the use of different instruction types as

the building block for all the possible instructions. There are five main instruction types,

GET, SET, RUN, CHECK and LOOP instructions, with some having different variations

depending on what is necessary. Each of these instructions are generated based on the

particular wording used as the input (this is described more in more detail in chapter 4).

Each of the sections in this chapter will go over the different instruction type. For each, a

description of the use case will be laid out, a model of the structures design will be shown

19
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with the components explained, and an example will be displayed.

3.2 Basic vs. Conditional Instructions

Before going into the individual instructions, it would be good to note here that the instruc-

tions are broken into two different types, basic and conditional.

1. Basic Instructions:

• Simple instructions that do not require more than a single step or instruction to

be fully complete.

• The GET, SET, and RUN instructions all fall under this category as they all can

be accomplished within a single instruction.

• In the context of natural language, these instructions relate more to actions that

need to be taken. For example ”The car should move forward” is a RUN in-

struction that gives a forward movement action causing the car to move. Though

GET and SET instructions are more internal than external, in the same vein the

instruction ”Set the speed of the car to 50” causes actions internally to change

the car speed.

2. Conditional Instructions:

• Instructions that can take up multiple cycles depending on the instructions that

surround them as well as the conditions that are set on them.

• These instructions are what allow for the allowance of conditional statements in

the program.
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• These instructions can grow as well and can be placed within each other for even

further expansion.

• They must use a terminating key in the text processing stage in order to signify

the end of the instruction.

• CHECK and LOOP instructions are both types of conditional instructions.

• In the natural language context, these are meant to take the case of checks in

the system, that lead to the next actions that should be taken. For example

the instruction ”if the car is less than 30 inches from the wall, stop” causes the

system to analyze the current state of the car and route the appropriate response

due to this. No direct actions are taken from conditional instructions, like they

are for basic instructions, but they are essential for the overall system routing of

conditions in the natural language.

3.3 Base Design

3.3.1 Description

Each of the instructions share some similar qualities that are used to index them as well as

allow for transitions between instructions. This base design is essential to the entire system

and expected in order to meet the minimum requirements of the instructions

3.3.2 Structure

Parameters for subsection 3.3.2

• tier: used in the case of multiple concatenated conditions in order to tell statements
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b a s e i n s t r u c t i o n = {
” t i e r ” : t i e r ,

” i n s t t y p e ” : i n s t type ,
” i n s t c o u n t ” : in s t count ,
” i n s t n e x t ” : i n s t nex t ,
” i n s t f a i l n e x t ” : i n s t f a i l n e x t ,
” parameters ” : {

” count ” : 0 ,
}

}

Figure 3.1: Base Design Structure

that are on the same level

• inst type: Used to define the type of instruction that is going to be used (GET, SET,

RUN etc.).

• inst count: Keeps track of the location of this instruction and is unique to each

instruction. Value also helps in determining the order of the instructions.

• inst next: Used to tell what the next instruction will be after the completion of the

current instruction. In the case of the CHECK and LOOP instructions this is used if

the statement being evaluated comes out to be true.

• inst fail next: Used only in CHECK and LOOP instructions. This is used in the case

that the statement being evaluated comes out to be false. For the basic instructions,

the inst next value is copied over into this section.

• parameters: This section is used differently depending on the instruction type, and

will be further detailed in the other sections.

• count: Used mainly by the Basic instructions, the count identifies the number of

parameters that need to be complete before the instruction is considered accomplished.
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3.4 GET Instructions

3.4.1 Description

GET instructions go under the category of basic instructions and are used to take received

sensor data and store it in a specified variable. This can be proven necessary in the cases

where the condition of the sensor could differ at different states of the instruction process.

This also becomes useful when a single sensor needs to be used for multiple different tasks. It

is important to note that this instruction is run at the moment that it is activated, meaning

that no other instructions are being run while this instruction is being executed.

3.4.2 Structure

b a s e i n s t r u c t i o n = {
” t i e r ” : t i e r ,

” i n s t t y p e ” : get ,
” i n s t c o u n t ” : in s t count ,
” i n s t n e x t ” : i n s t nex t ,
” i n s t f a i l n e x t ” : i n s t f a i l n e x t ,
” parameters ” : {

” count ” : 0 ,
”node” : node ,
” get param ” : get param ,

}
}

Figure 3.2: GET Instruction Structure

Parameters for subsection 3.4.2

• node: Used to identify the node that needs to be communicated with in order to get

the sensor value necessary.
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• get param: Indicates the parameter that needs to be obtained, therefore indicating

the variable that this will be stored in.

3.4.3 Example

A good example of this can be seen in the use of the ultrasonic sensor of the rover. Since

the sensor is not omni-directional, such as a lidar, it can only report the distance from one

direction. Thus, rather than using three separate sensors for each direction, it utilizes the

pan and tilt assembly it is attached to in order to rotate the sensor left, right and forward

and the get instruction is used to get the specific value as follows:

b a s e i n s t r u c t i o n = {
” t i e r ” : t i e r ,

” i n s t t y p e ” : get ,
” i n s t c o u n t ” : 0 ,
” i n s t n e x t ” : 1 ,
” i n s t f a i l n e x t ” : 1 ,
” parameters ” : {

” count ” : 0 ,
”node” : u l t r a s o n i c ,
” get param ” : l e f t d i s t a n c e ,

}
}

Figure 3.3: GET Structure Example

In the above instruction, the left distance is obtained and stored inside its own variable after

polling the node for the ultrasonic sensor.
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3.5 SET Instructions

3.5.1 Description

SET instructions are used in a similar way as GET instructions but rather than waiting to

receive and store a value, a value is sent to a specific node. This is mainly used in order to

modify/adjust a specific parameter within a node in order optimize the functionality. Also

like the GET instruction it is run at the moment that it is activated, meaning that no other

instructions are being run while this instruction is being executed.

3.5.2 Structure

b a s e i n s t r u c t i o n = {
” t i e r ” : t i e r ,

” i n s t t y p e ” : set ,
” i n s t c o u n t ” : in s t count ,
” i n s t n e x t ” : i n s t nex t ,
” i n s t f a i l n e x t ” : i n s t f a i l n e x t ,
” parameters ” : {

” count ” : 0 ,
”node” : node ,
” set param ” : set param ,
” value ” : va lue

}
}

Figure 3.4: SET Instruction Structure

Parameters for subsection 3.5.2

• node: Used to identify the node that needs to be communicated with in order to set

the value parameter.
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• set param: Indicates the parameter that needs to be set within the given node.

• value: The value that the parameter will be set to within the node. The value can be

either a string or number depending on the module being looked into.

3.5.3 Example

A definite use case for this instruction type is when determining the speed at which the rover

should move at. The user may want to adjust this according to the environment or other

variable that may be present as well as just due to just personal preferences. An example of

this can be seen below:

b a s e i n s t r u c t i o n = {
” t i e r ” : t i e r ,

” i n s t t y p e ” : set ,
” i n s t c o u n t ” : 0 ,
” i n s t n e x t ” : 1 ,
” i n s t f a i l n e x t ” : 1 ,
” parameters ” : {

” count ” : 0 ,
”node” : movement ,
” set param ” : speed ,
” value ” : 50

}
}

Figure 3.5: SET Structure Example

In the above example the speed of the rovers movement is changed to 50 (movement speed

ranges from 0 to 100).
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3.6 RUN Instructions

3.6.1 Description

RUN instructions differ from the previous GET and SET instructions as in most cases it both

sends and wait to receive information to and from the other sensor nodes. The information

that is sent is used to start or stop a particular action and the information that is waiting

to be received is used towards signifying the end of the instruction. Due to the variability

of this type of instruction, the length of its parameters is not consistent.

3.6.2 Structure

b a s e i n s t r u c t i o n = {
” t i e r ” : t i e r ,

” i n s t t y p e ” : run ,
” i n s t c o u n t ” : in s t count ,
” i n s t n e x t ” : i n s t nex t ,
” i n s t f a i l n e x t ” : i n s t f a i l n e x t ,
” node data 1 ” : {

” ext ra paramete r 1 ” : extra parameter 1 ,
. . .

}
” parameters ” : {

” count ” : count ,
” node 1 ” : {

” s t a t u s ” : s tatus ,
” achieved ” : achieved ,

} ,
” node 2 ” : {

. . .
}

}
}

Figure 3.6: RUN Instruction Structure
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Parameters for subsection 3.6.2

• node data: Used to indicate the node to which the data needs to be sent to.

• extra parameter: Data that needs to be sent to a particular node to start the specific

action that needs to be accomplished. The information and the amount of information

sent can differ depending on what needs to occur and the node being targeted.

• count: In this case the count is used to indicate the number of parameters that need

to be complete for the instruction to be considered complete. The count is equal to

the number of active parameters in the dictionary.

• node: The nodes (node 1 and node 2) indicate the nodes to which the parameter data

needs to be sent to and tracked from.

• status: States whether or not the node needs to be tracked for a result or not (active

or inactive). If active, the achieved value is looked into.

• achieved: Used when the parameter is active and starts off at false. Once a message is

received from the particular node that the information was sent to and the information

matches the parameter expected the state is changed to true.

3.6.3 Example

A bulk of the instructions that are generated use this form of instruction and this is mainly

due to its high variability. In this example a simple motor turning instruction is used to

demonstrate one of the possible options:

In the example above, a simple ”turn the car left” instruction is used. In this case the

turn duration is dictated by a single timer. It can be seen from this, the ”movement” node
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b a s e i n s t r u c t i o n = {
” t i e r ” : t i e r ,

” i n s t t y p e ” : run ,
” i n s t c o u n t ” : 0 ,
” i n s t n e x t ” : 1 ,
” i n s t f a i l n e x t ” : 1 ,
”movement” : {

” d i r e c t i o n ” : ’ l e f t ’ ,
}
” t imer ” : {

” i n s t c o u n t ” : 0 ,
” time ” : 2 . 0

}
” parameters ” : {

” count ” : 1 ,
” time ” : {

” s t a t u s ” : ’ a c t i v e ’ ,
” achieved ” : False ,

} ,
}

}

Figure 3.7: RUN Structure Example

data has just the single extra parameter of ”direction” while the timer node data has two

parameters. This shows how different nodes can have varying lengths of data that they need

to send. In this case the timer needs to send the instruction count along with the time it

needs to count since the instruction count is used when the timer is finished to identify the

instruction that sent the original request. This is explained in more detain in chapter 5.
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3.7 CHECK Instructions

3.7.1 Description

This instruction acts as an IF statement, and is used to compare two values to each other.

This is the first type of conditional instruction and is essential in allowing for branching

depending on the conditions given. Overall, the complexity does not come in when creating

the instruction, but rather in how the instruction is integrated with the other instructions

around it. The integration is further explained in chapter 4 but it is important to note that

there three types of statements that fall into this category.

The first is the check instruction itself which acts as an IF statement depending on how

it is placed. The second is called a check alt instruction and this is mainly to act as the

alternative to the previous check statement, in the same way as an ELSE IF statement.

The final type in the check fin instruction and is mainly used as a place holder to work as

an ELSE instruction. The structure section below only shows the structure for the check

instruction since the check fin instruction in completely identical to the base structure and

the check alt instruction is identical to the check instruction.

3.7.2 Structure

Parameters for subsection 3.7.2

• inst fail next: Used to jump to the next appropriate instruction in the case that the

condition that being checked returns as false.

• param 1: First parameter used in the comparison, used on the left side of the com-

parison.
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b a s e i n s t r u c t i o n = {
” t i e r ” : t i e r ,

” i n s t t y p e ” : check ,
” i n s t c o u n t ” : in s t count ,
” i n s t n e x t ” : i n s t nex t ,
” i n s t f a i l n e x t ” : i n s t f a i l n e x t ,
” parameters ” : {

” count ” : 0 ,
”param 1” : param 1 ,
”param 2” : param 2 ,
” e q u a l i t y ” : e q u a l i t y

}
}

Figure 3.8: CHECK Instruction Structure

• param 2: Second parameter used in the comparison, used on the right side of the

comparison.

• equality: Used to determine how the two parameters are to be compared to each

other (less than, greater than or equal to).

3.7.3 Example

As stated before, this instruction is meant to be used in the case that it is necessary to decide

on the next instruction that needs to be done, based on a specific condition. The example

in subsection 3.7.3 shows a simple check of if the distance to the wall/obstacle is less than

20 inches away. It should be noted that the inst fail next set in the example assumes that

there is only one statement within the IF statement, this can change depending on the input

given.
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b a s e i n s t r u c t i o n = {
” t i e r ” : t i e r ,

” i n s t t y p e ” : check ,
” i n s t c o u n t ” : 0 ,
” i n s t n e x t ” : 1 ,
” i n s t f a i l n e x t ” : 2 ,
” parameters ” : {

” count ” : 0 ,
”param 1” : ” d i s t anc e ” ,
”param 2” : 20 ,
” e q u a l i t y ” : l e s s ,

}
}

Figure 3.9: CHECK Structure Example

3.8 LOOP Instructions

3.8.1 Description

There are two different types of looping instructions that are used in the program in order to

serve separate types of functionality. The first of these is the normal ”loop” instruction type

and this serves as a WHILE or FOR loop type. Like the CHECK instructions before, this

instruction type checks the conditions listed in its parameters and uses the result of these to

decide the next instruction to be sent out. The main different is that, while the condition

is true, the instructions will keep looping until the condition returns false. This allows for

multiple instructions to run continually in a loop until the condition fails.

The next type of looping instruction is the ”loop wait” instruction type, and this instruction

has a similar blocking idea as that of the RUN instructions. The structure of the loop wait

instruction is equivalent to that of the base loop instruction, with the only difference being

in how they block. Unlike the loop instruction, this instruction does not allow for other

statements to be run before it is complete. Therefore, while the condition in the statement
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has not failed, the robot will be relying on the previous commands that have run until the

condition is failed.

3.8.2 Structure

b a s e i n s t r u c t i o n = {
” t i e r ” : t i e r ,

” i n s t t y p e ” : loop ,
” i n s t c o u n t ” : in s t count ,
” i n s t n e x t ” : i n s t nex t ,
” i n s t f a i l n e x t ” : i n s t f a i l n e x t ,
” parameters ” : {

” count ” : 0 ,
”param 1” : param 1 ,
”param 2” : param 2 ,
” e q u a l i t y ” : e q u a l i t y

}
}

Figure 3.10: LOOP Instruction Structure

Parameters for subsection 3.8.2

• All parameters the same as the CHECK structure parameters

3.8.3 Example

The example below subsection 3.8.3 displays the use of the loop wait instruction type. In

this instruction, the text that it has been translated on states ”when the car is 30 inches

from the wall”. This is a clear example of where the loop and loop wait instruction types

differ. If this were a loop instruction, the condition would be checked and if it passed, the

next instruction in the loop would be implemented. In the case of the example, though, the
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instructions will not move on until the condition is failed. A statement like this, in essence,

should be preceded by an action that will allow for the statements completion. In the case

of the example below, an instruction like ”move forward” should precede this instruction.

b a s e i n s t r u c t i o n = {
” t i e r ” : t i e r ,

” i n s t t y p e ” : loop wait ,
” i n s t c o u n t ” : 0 ,
” i n s t n e x t ” : 1 ,
” i n s t f a i l n e x t ” : 1 ,
” parameters ” : {

” count ” : 0 ,
”param 1” : ” d i s t anc e ” ,
”param 2” : 30 ,
” e q u a l i t y ” : l e s s ,

}
}

Figure 3.11: LOOP Structure Example

3.9 Completeness

As stated in section 2.2, the criteria being used to check for the completeness of the in-

struction set comes from ”The Instruction Set Completeness Theorem”. Using this we can

identify how each of the instruction types fit in.

1. Statefulness Principle: The instruction set must be stateful by state and a next

state function.

The idea of states can be seen in the instruction ordering itself. As the instructions

are ordered sequentially, each instruction acts as the current state of the system. For

example, if the instruction ”The car should move forward for 2 seconds, then stop”
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were given, then two instructions would be generated. One for the first half to start the

movement and the timer, and another for stopping the vehicle. In this case the first

instruction is the initial state, and, once completed, will move on to the next state.

2. State Change Principle: There must be an instruction to modify state.

Explicit and implicit examples of this can be found with the SET and GET commands,

as users can use these to change or acquire the specific state of any of the other available

nodes inside the system. The RUN Command also does this same action as it changes

the states of the nodes depending on the action(s) that need(s) to occur. For example

the statement ”turn left for 3 seconds” will change the state of the movement node

from ”stop” to ”left” as well as turn the timer from ”off” to ”on”.

3. Next State Change Principle: There must be an instruction to modify next state

function.

This idea can be seen in the way state transitions are handled in all the instruction

types through the ”inst next” and the ”inst fail next” tags that are held within. These

modify the state of the instructions by identifying what the next state will be given

that type of instruction. These would be viewed as an implicit means of creating

transitioning between the instructions as the user has no direct control, in the case of

the basic instructions. The conditional instructions, on the other hand, can be viewed

as the explicit way of transitioning between states. This is due to the fact that users

can use the CHECK and LOOP instructions to modify the natural liner flow of the

instructions to fit the conditions that they need.

As it can be seen from the aspects listed above, the instruction set can be seen as complete.

Basically, this is due to its stateful nature, as well as its ability to implicitly and explicitly

handle the current state and the next state functions.
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3.10 Summary

The use of these base instructions build upon the robustness of the system as they allow for

different permutations in the possible actions that can be done by the robot. Through the

variety of instruction types, instruction completeness can be achieved allowing for a robust

set of permutations. The instruction set described in this section is enough to handle the

situations needed by the rover as well as the variety of modulations that natural language

could bring in.



Chapter 4

Text Processing Layout

4.1 Overview

During the text processing stage, the main challenge now becomes finding a way of taking

these natural sentences and not only matching them to plain instructions, but also allowing

for routing conditions for the conditional statements. Not only must syntax and grammar

be looked into, but the overall positioning and pairing of key terms, and how this effects the

type of instruction that is generated.

During the text/natural language processing, there are a few stages that are needed in order

to ensure that the proper instructions are obtained. A large part of this comes from needing

to allow for conditional statements, meaning that certain types of parameters must be placed

around defining the beginning and end of these conditions. The basic steps start with

obtaining the keywords from the sentences, using NGRAM matching to generate macros, if

necessary, and generating the instruction from the given NGRAM options.If an instruction

cannot be created an error is thrown. The full visual of this can be seen in figure 4.1.
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Figure 4.1: Instruction Processing Diagram
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4.2 NGRAM Key Processing

During this stage of the sentence processing, the main goal is to take the sentence and form

it into a keyword string called an NGRAM and then parse the instruction type from it. Since

the goal is to make the text as natural as possible, the program must be able to manage

paragraph structures with conditionals embedded inside them in some way. In order to do

this, not only does the sentence structure matter, but so does the order in which sentences

appear and the terms used to conjoin specific parts.

4.2.1 Converting Paragraphs to key terms

Before key-terms can be obtained, the text document with all the instruction sentences must

be taken in and broken down into paragraphs, and then again into sentences. In order

to do this, the python package called nltk was used, as it had the pre-requisite code for

distinguishing the true endings of sentences vs false positives that could be given within the

sentence.

Once the sentences have been obtained, checks are made to see if any of the following

statements apply:

• Conditional Statement: This check is to see if the statement contains keywords that

would have the program assume it will be a conditional statement that can take in

multiple instructions. This is important, as it is necessary to establish the beginning

and the end of these types of statements in order to obtain the appropriate routing. If

the statement is a conditional statement, then the variable in charge of keeping track

of consecutive loops that have taken place, gets incremented.

• Continuation Statement: If the counter used to signify the level of conditionals that
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we are currently at is greater than 0, when the next sentence is read in, it is checked

to see if it has a continuation statement. A continuation statement, is a sentence that

contains keywords that make it seem like this statement extends what was spoken of in

the previous sentence. If this condition is met, the instruction is taken to be a part of

the conditional statement that was previously found. If the condition is not met, then

the conditional statement is over and the termination delimiter of ”end” is added to the

instruction queue in order to signify this for future functions. The variable in charge

of keeping track of consecutive loops that have taken place, then gets decremented.

The keywords can then be abstracted from the sentence using the designed dictionaries shown

in Appendix A. This should then give an output of an array of key-terms for the sentence.

From here, the term could be taken directly and used for the instruction creation, or they

can first be parsed into macros.

4.2.2 Macros

The general premise of a macro instruction falls under the idea that any complex instruction

is just a combination of multiple simple instructions. The goal of this is to allow for more

natural instructions, that do not seem robotic and can also convey more with less words.

Once the keywords are taken, NGRAMS are used to match the term arrays to possible

macros that could be generated.

It can be seen in Table 4.1 that the macros can be used to greatly reduce the work of the

user by inferring the meaning of complex instructions, and breaking them down into smaller,

and more basic instructions. In this case, rather than the user having to communicate every

single movement that must occur to get the result desired, he or she can directly reference

the end result and the predefined macro can handle the extrapolation.
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Sentence Keywords
Macro Instructions

the car should avoid the wall [”car”, ”avoid”, ”wall”]

[’pan’, ’camera’, ’left’]
[’get’, ’left’, ’distance’]
[’pan’, ’camera’, ’right’]
[’get’, ’right’, ’distance’]
[’pan’, ’camera’, ’center’]
[’if’, ’left’, ’distance’,
’greater’, ’right’, ’distance’]
[’car’, ’turn’, ’left’]
[’otherwise’]
[’car’, ’turn’, ’right’]
[’end’]

Table 4.1: Macro Example 1

Sentence Keywords Macro Instructions
the car should turn left [”car”, ”turn”, ”left”] [”car”, ”turn”, ”left”]

if the car can turn left [”if”, ”car”, ”can”, ”turn”, ”left”]

[”pan”, ”camera”, ”left”]
[”get”, ”left”, ”distance”]
[”pan”, ”camera”, ”center”]
[”if”, ”left”, ”distance”,
”greater”, ”30”, ”inches”]

Table 4.2: Macro Example 2

In the second example, Table 4.2, an even clearer view of the fluidity this allows for in natural

language can be seen. The first row displays a simple command for the car to turn left. This

is easily computed and broken down to its keywords to be made into the instruction. The

only problem with this is that there is a general assumption that the rover is capable of

completing this task, which may not always be true. Therefore, then second instruction

shown takes just as many words to write down but is able to encapsulate more by adding

a safety aspect to the entire scheme. This also removes the need for the user to know the

specific boundaries (such as the turning radius of the car being 30 inches in this case) allowing

them to focus in on other aspects of the system. Though, in both cases, if there became a

safety issue during the running of the commands, there are still fail safes designed in the
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system, explained in the later chapters, it is important for the user to explicitly state the

safety boundaries they feel necessary.

In the end, macros create a robust way of generating complex instructions through the use of

simpler instructions. They also allow for simplicity in the way that instructions are crafted

as well as in how much information the user must know beforehand.

4.3 Instruction Creation and routing

Once the key-terms have been obtained from the previous stage, a process like that used to

generate the macros is used. In this, the structure and order of the keys are matched to

n-grams that decide the type of instruction that needs to be generated. Depending on the

type of instruction currently being written and the previous instructions that may relate to

them, the instructions can then be routed accordingly.

To start off this process, the keyterms are analyzed in order to see what type of instruction

they are. For example, if the statement contains the keyterm ”if” then the statement most

likely routes to a CHECK statement. On the other hand, if it contains the keyterm ”while”

or ”when” then this statement is most likely a LOOP statement. Depending on the type

of instruction it is, cases are created to check for if the terms can be accommodated in the

current syntax of the robot. If the sentence cannot be matched to a specific instruction, then

an error is thrown.
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Figure 4.2: Instruction Creation Example

4.3.1 Basic Instructions

For the instructions that do not require conditions, all that needs to occur if for the text to

be mapped directly into the instruction it is trying to represent. After this the instruction is

placed inside the instruction array in the order that it is processed. An example of this can

be seen in figure 4.2, the the sentence ”The car should move forward for 30 seconds” gets

translated into its instructional form.

In this example it can be seen that the instruction is a direct breakdown of the parameters

given in the statement. As no part of the statement relates to other instructions to come,
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there is no need for any other processing to occur after the instruction has been created.

4.3.2 Check Instructions

Like the basic instructions, check instructions use the N-gram key pairing method to create

matches between the key words and the instruction desired. Due to this there is a direct

match with the keyterms and the instructions that are generated. This can be seen in figure

4.3 in which the sentence ”If the left distance is greater than 30 inches” is translated into

its instructional form. For this instruction, it can be seen that the keyword ”if” is used to

classify this as a CHECK statement, while the other key words are used to establish the

parameters that will be used in the comparison.

Figure 4.3: Check Instruction Creation Example

The complications that come with the CHECK statement instructions are when routing

the statements from one to the other. As stated in the instruction types section, CHECK

statements have three different variations based on how the statement needs to be configured.
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With this, the normal ”check” instruction type is always expected to come before any of the

other variations as this acts as the normal ”if” statement. The other two can then follow

but the ”check fin” acts like the ”else” statement, making it the end of the cases, meaning

that the ”check alt” cannot follow the ”check fin”. Whenever a ”check” type instruction is

encountered, the tier of the instruction is increased for easier routing. Any ”check alt” or

”check fin” instructions that follow are assumed to be in the same tier.

In the figure 4.4, an example of a complete check statement can be seen, as well as how

it would be organized. In this example, the routing done by the different types of check

statements is shown, and it can be seen how the statements are able to fluidly move and

decide the best course of action given the different conditions that need to be met
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Figure 4.4: Check Instruction Routing Example
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4.3.3 Looping Instructions

Figure 4.5: Check Instruction Routing Example

Like the CHECK statements discussed before, the complication that comes with the LOOP

instructions takes place in how the instructions are routed at the end of the condition. The

work in this case is made much simpler due to the fact that multiple alternative cases are not

expected, like is assumed in the CHECK statement case. It is important to note that there

are two types of LOOP instruction types, as stated in section 3. The first type, called the

”loop wait” instruction, does not bear much consideration in routing as it acts like any basic

instruction, in that it does not take in other instructions to be looped through. Rather the

instruction is looped in on itself until the condition is met. On the other hand, the ”loop”
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instruction type can take in other instructions and loop through them until the condition is

met.

In figure 4.5 an example of the loop routing can be seen. This example shows how the

instructions withing the while loop are repeated until the condition is failed, then the final

instruction is run.

4.3.4 Error Handling

There are multiple ways in which errors need to be looked at in this method compared to

traditional programs that just look for syntactical errors. Some aspects that need to be

taken in are the grammatical errors, errors in spelling and, of course, syntactical errors.

Grammatical Errors

When looking at the structure of the sentences, grammar becomes very important as it helps

drive and define the order in which actions occur. Because of this, work needs to be done

in order to check for grammatical problems, and these are the most common ones that are

checked for:

1. Comma placement: As stated in the sections for the conditional statements, efforts

need to be made by the instruction writer in order to separate each action within the

conditional by commas. Due to this, errors are thrown if too many actions are not

separated from one another.

2. Key match errors: If the sentence does not match any of the formats that are allowed

my the syntax.

3. Missing information: Keys are appropriate but there is some missing information

to make the sentence complete.
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ROS Nodal Structure

5.1 Overview

Figure 5.1: ROS Routing Diagram

Due to the networking structure of ROS, there is an abundance of methods that can be used

in order achieve the goals necessary for this research. Because of this, I decided to focus on

a structure that would have a central control unit with several smaller units (nodes) to act

as inputs and outputs for the system. With this in mind, the system shown in figure 5.1

49



50

was used as the main design. In this system, the central control and processing unit is the

Message Broker node, with the Arbiter node acting as a messenger to the other peripheral

nodes. Each node acts as a subscriber and/or a publisher in order to push information

around with some nodes even having specific services attached to them. In the following

sections i will describe the hardware used to implement this system as well as the different

topics and services used by each of the nodes in order to facilitate this communication.

5.2 Hardware

For this system, both hardware and software simulations were used in the testing. Using

ROS, it is then very easy to transfer functionality from one type to the other, by just changing

a few lines within the nodes. In order to make this as seamless as possible, the simulated

rover was designed based off of the actual physical rover. The main difference to note is

that the physical system used an Ackerman steering style while the simulated rover used

a differential steering style. this discrepancy was fixed in the software to ensure that the

two systems had a similar turning radius. With that in mind, both rovers had the following

characteristics:

• 4x wheels (two front and two back)

• 1x pan and tilt module

• 1x camera attached to the pan and tilt module

• 3x ultrasonic sensors (one attached to the front, one to the back, and the last on the

pan tilt module)

• 1x IMU with 6 degrees of freedom
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The physical system is running off of a raspberry pi 3, running Ubuntu Mate with a Teensy

3.2 attached for some low level sensor computing. This system also uses a regulated power

distribution board as well as a dedicated I2C to PWM board in order not to damage the

pins on the raspberry pi. The simulated system is running off of a Intel core I7 laptop with a

dedicated Nvidia geforce 635M graphics card and 12 GB of RAM. The simulations are being

run in Gazebo. Both of these can be seen in figures 5.2 and 5.3.

Figure 5.2: Physical car
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Figure 5.3: Simulated car

5.3 Network Structure

In designing the network for this system in ROS, nodes are at the core of what makes the

system work. Remembering that the main goal of this system is to be able to break complex

instructions up into multiple different smaller instructions, the ideology had to follow through

on the ROS end as well. Because of this, nodes where created that had specific functionality,

and that could be used in a simple and universal way. The idea around this was to have a

central processing node, in charge of the overall logic and instruction handling, then have

multiple smaller nodes in charge of the different aspects of the rover, such as movement and

timing.

The nodes that are used in the project are the following:

• Message Broker:
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– Node Type: Subscriber, Publisher, Client

– Topics:

Subscribes to the ”sensors” topic

Publishes to the ”instruction” and ”status” topics

– Services:

Client for the ”get movement data”, ”set movement data” and ”get ultrasonic data”

services

– Description: This is the main brain of the robot, in charge of handling all of

the instructions. This node receives the instructions that have been sent in and

begins to send the instructions to the arbiter nodes. As the tasks get completed,

the completion messages are sent back to this node, and are used to base the next

instruction that will be run. This node is also in charge to taking care of any

errors that could occur while the hardware is running, such as collision detection.

• Arbiter:

– Node Type: Subscriber, Publisher

– Topics:

Subscribes to the ”instruction” and ”status” topics

Publishes to the ”movement”, ”timer”, ”ultrasonic” and ”pan” topics

– Services: N/A

– Description: The only goal of the arbiter node is to take in the instructions sent

over by the message broker and send them out to the appropriate nodes that they

should go to. Also, in the case that a system stop message has been sent out, this

node is in charge of ensuring that the processes in all the nodes are stopped.
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• Movement:

– Node Type: Subscriber, Publisher, Service

– Topics:

Subscribes to the ”movement” topic

Publishes to the ”sensors” topic

– Services:

Service for the ”get movement data” and ”set movement data” services

– Description: The purpose of the movement node is to take care of all the motor

movements of the rover. This node is in charge of the lateral movements (forward

and backward) as well as any sort of turning that would need to be done. Sensor

measurements are also taken in order to ensure that the vehicle is moving in a

straight path.

• Pan:

– Node Type: Subscriber, Publisher

– Description: This node is in charge of the pan/tilt module attached to the rover.

Attached to this module is an ultrasonic sensor, as well as the camera. This node is

in charge of moving the pan/tilt module by rotating it to its appropriate rotation

degree.

• Ultrasonic:

– Node Type: Subscriber, Publisher, Service

– Topics:

Subscribes to the ”ultrasonic” topic

Publishes to the ”sensors” topic
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– Services:

Service for the ”get ultrasonic data” service

– Description: This node is used to take the measurements of the three ultrasonic

sensors. The measurements for the front and back sensors are published regularly,

once the system has been started, while the measurements of the pan ultrasonic

must be read in through a service call.

• Timer:

– Node Type: Subscriber, Publisher

– Topics:

Subscribes to the ”timer” topic

Publishes to the ”sensors” topic

– Services: N/A

– Description: The main goal of this node is to handle all the precise timing that

could occur in the instruction. Each time a message is is received by this node

an instance of the timer is created that runs for the period of time desired and

publishes a response back once completed.

• Ball Tracking:

– Node Type: Subscriber, Publisher

– Topics:

Subscribes to the ”/camera1/image raw” topic

Publishes to the ”sensors” topic

– Services: N/A
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– Description: This node handles the image processing for the rover. Through the

use of OpenCV, this node takes in the raw image data being sent by the camera

and processes that do see if any obstacles can be detected in the line of sight. A

message is then sent back through the sensors topic as to whether or not that

object has been detected.

Communication had to occur between the different nodes in order to allow for the instructions

and information to flow between them. For this, a mixture of topics and services were used

depending on the type of messaging format that was necessary, with topics being created

for nodes meant to run in the background and pump continuous information while other

tasks were going on, and services being used for tasks that should be completed before other

tasks/instructions can begin.

This is the list of all the topics and services used:

• Instruction:

– Type: Topic

– Description: This topic holds the instructions that need to be sent out to the

different nodes.

• Status:

– Type: Topic

– Description: Used to update the status of the system with the main goal being

to send system wide stop and start messages. This is necessary for particular

nodes if they are sending out continuous information, like the ultrasonic node.

• sensors:



57

– Type: Topic

– Description: The main purpose of this topic is to store all the messages sent in

by the different sensors. Each message sent to this topic contains the information

on which sensor it came from so a separation of topics is unnecessary.

• Response:

– Type: Topic

– Description: This topic holds the instructions that need to be sent out to the

different nodes.

• Movement:

– Type: Topic

– Description: In charge of all the information going to the movement node.

• Pan:

– Type: Topic

– Description: In charge of all the information going to the pan node.

• Ultrasonic:

– Type: Topic

– Description: In charge of all the information going to the ultrasonic node.

• Timer:

– Type: Topic

– Description: In charge of all the information going to the timer node.
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• get movement data:

– Type: Service

– Description: Used to get data from the movement node, like the current action

the rover is trying to take.

• set movement data:

– Type: Topic

– Description: Used to set data in the movement node, like the speed of movement.

• get ultrasonic data:

– Type: Service

– Description: Used to get data from the ultrasonic node. Mainly to get sensor

data for the panning ultrasonic.
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Results

6.1 Overview

There is no universal mechanism for testing natural language programming since, as stated

before, the experience is driven highly by the specific situation it is being designed for.

Due to this, the results will be broken down into different cases, with each explaining the

problem that needs to be solved and how that was possible using the instructions built

with the natural language processor. In each of these cases, a visual representation of the

node routing will be shown. This visual tree diagram is used to show the complexity of the

instruction as well as to ensure that the routing is made as expected. Figure 6.1 can be used

as a key to know what the different arrows and numbers on the diagram mean.

As a review, the main challenges that are being looked at through these tests are as follows:

• The ability to analyze text for any syntactical errors.

• The ability to convert the text into instructions for both basic and conditional state-

ments.

59



60

• The ability to chain these instructions in a logical way as to allow them to flow seam-

lessly between each other.

• Develop a structure within ROS that can take in these instructions and run them.

• Allow for some security in terms of collision detection for the rover to handle au-

tonomously.

Figure 6.1: Instruction Tree Key

We will begin by looking at how the safety features that are built into the system worked as

well as how the basic instructions and complex instructions ran. Then the first case that will

be looked at will be a simple object detection case, testing the camera instructions. After

this I will look into more complex cases as the rover tries to traverse two different mazes.
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6.2 Collision and Error Detection

Errors in the text were caught as expected, throwing an error and indicating the possible

problem that could have caused the error. This was mainly due to the use of the N-gram

structure matching, that looked to ensure that the sentence fell within a specific structure

and anything outside of that structure was subject for correction. In cases where close

matches were seen, in that the structure followed one of the specific formats but may have

added a few extra details, the closest match was taken. This approach seems satisfactory as

human sentences are not an exactly the same from person to person, so this allows for the

variability between users.

In most of the cases tested for the collision detection aspects, the rover was able to come

to a complete stop when it sensed that an imminent collision was about to occur. The only

cases when this did not happen was when the car was moving slightly sideways and scraped

against the wall. This problem is mainly attributed to the design of the car since it only has

a single ultrasonic sensor to detect distance in the left and right direction. It is important

to look at the safety features of this in order to analyze its feasibility in a real life scenario.

Currently, the design of the vehicle itself would have to be readjusted to fit actual safety

requirements.
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Figure 6.2: Collision detection example

6.3 Basic Instructions

In the case of the basic instructions, they all acted as expected. As there is no complication

in their routing, they have a very simple tree as shown in figure 6.4. Also due to its sim-

plicity and nature, the basic instructions had a one-to-one correlation with the number of

instructions that got generated, as shown in the table 6.1. Overall these instructions were

simple enough to work in all the cases they were tested in.
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Figure 6.3: Basic instruction example

Basic Instruction Example

Text Input Instructions Generated

the car should move forward for 2 seconds

turn right

move forward for 2 seconds

turn left

turn left

turn right

8

Table 6.1: Basic Instructions Example
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Figure 6.4: Basic instruction tree

6.4 Complex Instructions

6.4.1 Basic Usage

In the basic usage for the conditional instructions, it can be seen that they share a direct

correlation with the instructions generated, again having that one-to-one ratio like the basic

instructions. In this example, though, macros are used to do some extra work in checking

the environment. Before any checks can occur, the environment needs to be scanned and
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this is shown by the first six node in the tree shown in figure 6.6. After this, it can be seen

how the instructions are cascaded in a way that allows the conditions to adjust the outcome

based on the different inputs given. In the end, each of the paths then come back to the last

node. With this, the functions acted as expected, allowing for the CHECK conditionals to

be presented as they should.

Figure 6.5: Complex instruction example 1

Example 1 Instructions

Text Input Instructions Generated

if the car can turn left, turn the car left

otherwise if the car can turn right, turn the car right

otherwise, move forward for 2 seconds

14

Table 6.2: Complex Instructions Example 1 Instructions
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Figure 6.6: Complex instruction tree 1

6.4.2 Use Case

In this case, a more realistic example is given as the rover attempts to move around an

obstacle. A very direct approach is used in which each of the steps that are expected to be

taken are written out and no macros are used. In the actual case examples later on, the

benefits and drawbacks of this are listed, but here it serves the purpose of viewing how the

text relates to the instructions generated. The direct correlation between the sentence and

the instruction generated can more easily be seen than before, as each sentence, more or

less, is tied to its own specific instruction. Looking at the tree in figure 6.8, it can be seen

where the thee looping instructions are located (nodes 0, 5, and 11). This shows how easily

this design structure can be modified in order to account for different conditions that may

occur.
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Figure 6.7: Complex instruction example 2

Example 2 Instructions

Text Input Instructions Generated

while the car is greater than 40 units from the wall, move forward

turn right

pan the camera left

get the left distance

while the left distance is less than 40 units, get the left distance, move the car forward

the car should turn left

move forward for 3 seconds

get the left distance

while the left distance is less than 40 units, get the left distance, move the car forward

the car should turn left

turn right

pan the camera to the center

19

Table 6.3: Complex Instructions Example 2 Instructions
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Figure 6.8: Complex instruction tree 2

6.5 Case 1: Object detection

In this test case, goal goal was to check for accurate and real-time object detection instruc-

tions in a simple case. As stated earlier, object detection is not a main focus of this research,

but it represents a useful basis for testing. The car begins pointed away from the ball, and

is meant to rotate until it detects the ball, as shown in figure 6.9. The instructions given for

this case are shown in table 6.4, and in this same table it shows that there are 5 instructions

generated from this two part sentence.
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Figure 6.9: Object Detection Path for World 1

Wold 1 Object Tracking

Text Input Instructions Generated

turn the car left.

while the camera cannot see the orange ball,

turn the car right 5 degrees.

5

Table 6.4: World 1 Object Tracking Instructions

The code for this runs and generates as expected, with the instruction tree being shown in

figure 6.10. An analysis of this tree would show that instruction 0 does the first movement to

get the original orientation, followed by instruction 1 which does the continuous check to see

if the object has been detected. If it has not been detected, instruction 2 is called, rotating
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the car 5 degrees. This continues until the ball has been detected and the final instruction

stops the rover. The structure of this is important to note, because the obstacle detection

node is never called outright in any of the instructions, like the other nodes commonly are,

but rather, updates the main message broker node directly when new information is gained.

This was done mainly to test how this system would work comparatively to the other systems

used and it seems to work just as well.

Figure 6.10: Object Detection Tree for World 1

6.6 Case 2: Maze 1

For this case, I show three different methods that can be used to obtain the same result

to solve the first maze. For this maze, the rover must simply move forward until it gets to

the corner, then make a left turn, move forward to the next corner, and then make a right
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turn. As with all the cases, the assumption is made that the end user knows the track and

what actions need to be done, and for this, different variations on the idea are used to show

the varying complexities that can be taken when producing the instructions that need to be

taken.

6.6.1 Path 1

In this first case, the instructions are given directly by the user as to how the movement

should be done and when the turns have to be executed. In this, the simplest and most

direct case, the user tries to track the right wall using the wall follow macro at its default

settings, then constantly checks the forward distance to tell when the rover has neared the

wall. When this happens, the rover turns left, and follows the same procedure into the next

corner and turns right. The main benefit that can be seen from this is that the structure is

very direct, with the user constantly knowing how the rover will react at each instant and it

does not require too much thought on keeping track of the sensors or values being passed.

The main problem, then, comes in from the fact that the instructions are too simple to allow

for smooth movement, making the rover move in a path that follows the default values of

the macros. This allows for inconsistencies between runs, and for poor movement as can be

seen in figure 6.11.
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Figure 6.11: Object Detection Path 1 for Maze 1

Maze 1 Path 1

Text Input Instructions Generated

pan the camera right

get the right distance

while the distance to the wall is more than 30 inches, follow the right wall

turn the car left

get the right distance

while the right distance is less than 50 inches, follow the right wall

turn the car right

pan the camera left

get the left distance

36

Table 6.5: Maze 1 Path 1 Instructions

Another problem is also the repetitive nature of the actions being taken, and this is most

easily seen in the tree in figure 6.12. In this, it can be seen that there are three different

clusters of instructions, centered at nodes 2, 13, and 25, with all of them following the same
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idea of checking to see if the corner has been detected. This is very inefficient as it generates

more instructions than necessary.

Figure 6.12: Object Detection Tree 1 for Maze 1
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6.6.2 Path 2

Figure 6.13: Object Detection Path 2 for Maze 1

Maze 1 Path 2

Text Input Instructions Generated

pan the camera right

get the right distance

set the measurement distance to the right distance

while the forward distance is greater than 30 inches, follow the right wall using the measurement value

stop

turn the car left

get the right distance

set the measurement distance to the right distance

while the right distance is less than 50 inches, follow the right wall using the measurement value

stop

turn the car to the right

pan the camera to the left

get the left distance

set the measurement value to the left distance

while the distance to the wall is greater than 30 inches, follow the left wall using the measurement value

stop

42

Table 6.6: Maze 1 Path 2 Instructions
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For this second path, the same idea as before is used, of directly giving the instructions,

but with the twist that more thought is placed into allowing for a smoother movement of

the rover. This is done by the user constantly setting internal values to be used to judge

distance against, rather than using the default values of the macro. The allowance of this sort

of setting and getting of values makes for smoother movement and more consistent results

between runs as can be seen in figure 6.13. Table 6.6 does show a problem with this in that

the user must constantly keep track of the measurement value at each turn and ensure that

it is being updated accordingly. This path still, as shown in figure 6.14, does not fix the

problems with the inefficient creation of multiple repetitive instructions.

Figure 6.14: Object Detection Tree 2 for Maze 1
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6.6.3 Path 3

Figure 6.15: Object Detection Path 3 for Maze 1

Maze 1 Path 3

Text Input Instructions Generated

pan the camera left

get the left distance

set the measurement value to the left distance

while the camera can not see the orange ball, follow the maze

27

Table 6.7: Maze 1 Path 3 Instructions

In this final case, a macro is used in order to encapsulate the instructions necessary to follow

the maze. With this, it can be seen that the smooth flow of the rover is the same as before

in figure 6.15, and the number of instructions generated is much less in table 6.7. Looking at

figure 6.16, it can be seen that this is due to the fact that all the repetitive instructions have

been reduced, creating a nice and circular flow to the system. The main problem that then
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comes with this is that most of what goes on in the macro acts like a black box, with the user

having not as much direct control of the actions that will be taken by the rover. As shown

in the next section, this may give consistent results for less code, it does not adjust as well

to different scenarios. Another problem with this sort of method is having to know exactly

what other parameters must be taken into account when wanting to adjust the different

internal variables.

Figure 6.16: Object Detection Tree 3 for Maze 1

6.7 Case 3: Maze 2

For this next maze, the rover must travel across the maze and make a left in order to get to

the ball. The main challenge then comes in the fact that there are now multiple paths that

can be taken to reach this same goal. With this in mind, two different cases are shown that

try to accomplish this, with each having its own benefits and drawbacks.
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6.7.1 Path 1

Figure 6.17: Object Detection Path 1 for Maze 2

Maze 2 Path 1

Text Input Instructions Generated

pan the camera left

get the left distance

set the measurement value to the left distance

while the camera can not see the orange ball, follow the maze

27

Table 6.8: Maze 2 Path 1 Instructions

In this first path, the same instructions were given as that at of the last path in the previous

case. With this, like before, no repetitive tasks are generated, as seen in figure 6.18 making

the number of instructions generated minimal, shown in table 6.8. Looking at figure 6.17,

though, it can be seen that, though this path does eventually lead the rover to the ball,
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it does not take the most efficient path possible to do this. This goes back to what was

discussed before in that macros can act as a black box, following a fixed algorithm, and only

being customizable to a certain extent. They are definitely useful for simplifying what needs

to be written but more thought needs to be put into the instructions to allow for better

efficiency.

Figure 6.18: Object Detection Tree 1 for Maze 2

6.7.2 Path 2

In this next case, rather than using a macro to accomplish the whole task, the user breaks

up the task into sections and acts according to what needs to be done for that particular

section as shown in table 6.9 and figure 6.20, this does generate more instructions, therefore

making the tree structure more complex, but figure 6.19 shows that the main benefit is that

the rover moves in a more direct and efficient path. This shows that many aspects need to

be looked into when trying to analyze the over efficiency of the code being generated and

compared to the amount of learning that would need to be done on the users end to best

utilize the system.
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Figure 6.19: Object Detection Path 2 for Maze 2

Maze 2 Path 2

Text Input Instructions Generated

pan the camera left

get the left distance

set the measurement value to the left distance

while the left distance is less than 50 inches, follow the left wall with the measurement value

stop

while the left distance is greater than 30 inches, get the left distance, move forward

stop

set the measurement value to the left distance

while the left distance is less than 50 inches, follow the left wall with the measurement value

stop

while the left distance is greater than 30 inches, get the left distance, move forward

stop

set the measurement value to the left distance

57

Table 6.9: Maze 2 Path 2 Instructions
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Figure 6.20: Object Detection Tree 2 for Maze 2



Chapter 7

Conclusion and Future Work

With the growing trend in autonomous control, it is important to take into account that,

though autonomous systems can solve many problems on their own outright, there are still

many cases in which humans and robots must interact directly in order to solve problems.

Due to this, it is important to take note of the ways in which humans react with each other

and form a basis on how this can be translated into a relationship with robots. For this

reason, this research tries to allow for direct human-robot interaction in a way that not only

allows for direct translation from natural language to instructions, but does it in a way that

is robust and does not require too much learning from the user.

7.1 Conclusion

The main goal of this system was to take natural language text and transform it in a way

that instructions could be generated to encapsulate the different actions that could be taken

by a rover. The text for this was accurately parsed, checking for errors and inconsistencies,

while at the same time being examined for extended capabilities of using a sentence to de-

82
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scribe multiple actions. By using the idea of accomplishing complex actions through the use

of simple actions, I was able to easily move past the challenge of taking in a complex task

and being able to break it down into smaller tasks. The use of N-grams aided in allowing for

syntax matching and allowed for easy translation for both the basic and complex instruc-

tions, solving the challenge of accounting for the conditional statements. The instruction

completeness allowed for a variability of instruction types that could handle the different

situations and structures of sentences that could be posed.

Looking at the results of the cases shown, there is a large amount of robustness that can be

generated from the natural instructions. This robustness allows for various methods to be

used to obtain the same goals and allows the user to choose the specific result that they would

like to obtain. As was shown in those cases, the work load can change in complexity given

how direct the user would like to be, defining just how many macros they would like to use at

a time. This design complexity must be counteracted with the amount of information about

the system that the user is willing to learn in order to account for the overall efficiency. All of

these factors must then be judged against the scenario given in order to gain the best results.

Looking at all these factors I believe that i can accurately state that I have accomplished

the goals that were originally set and have demonstrated the contributions that I set out to

create.

7.2 Future Work

Moving forward, there are many additions that can be added to make the system run more

efficiently and be more robust to different scenarios:

• A more in depth look at the grammar and spelling detection and correction, as this

was not focused on in this research but is essential when there is a human factor as
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the input.

• The introduction of the for loop type of instruction for adding timing constraints on a

looping conditional statement.

• Allowing for multiple conditions to be set rather than just a single condition in order

to allow for more robustness.

• The simplest of these is simply adding more peripherals to the system and trying to

incorporate them in with the instruction types. This would allow for a more interesting

robot by creating larger variability in the number of actions that it can take. One of

these is allowing for interaction between the rover and other obstacles in the area,

meaning that attachments need to be added to interact with these objects and more

complex image processing would need to be used.

• Adjusting the code to allow for multiple rovers to be controlled at once. This could

introduce the idea of the swarm style of robotics in which commands would need to

be generated in order to ensure that the rovers do not collide and are moving in a way

that is efficient for the group.
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Appendix A

Key-terms Charts

Category Name Values

Subject Car Subject rover, car, vehicle

Subject Camera Subject camera

Subject Obstacle Subject wall, obstacle, barrier

Directions Forward Directions onward, ahead, forward, forwards

Directions Backward Directions backward, backwards, back, reverse

Directions Reverse Directions around

Directions Left Directions left, leftward

Directions Right Directions right, rightward

Directions Turning Directions Left Directions — Right Directions — Turning Di-

rections

Directions Pan Directions left, right, up, down, center

Actions Turning Actions turn, pivot, transition, pan, rotate

Actions Movement Actions move, moving, go, goes, going, drive, driving, pro-

ceed, accelerate, accelerating, head

90
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Actions Stopping Actions stop, halt

Units Time Units second, seconds

Units Distance Units inches, units, inch

Units Rotation Units degrees, degree

Magnitudes Larger Magnitudes greater, more, above

Magnitudes Smaller Magnitudes less, fewer, below

Magnitudes Equivalent Magnitudes same, equal

Conditionals Inverted Conditionals until, once

Conditionals Normal Conditionals while

Conditionals Wait Conditionals when, after

Macros Avoid Action avoid

Macros Capability Action can, able

Macros Existence Action is, exists, exist

Macros Collision Action hit, see, sees

Negations Negations not, isn’t, no, haven’t

Table A.1: Key-terms by category
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