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NOMENCLATURE

[<p] —h L

A | a constant
a . segment désignator
B | a constant
b segment designator.
D dynamic stiffness matrix
d differential operator
d; 5 ' dynamic stiffness influence coéfficfents
modulus of elasticity
E1I C o Flexural rigidity
génera]ized force vector
a force -
- transfer function scaler or matrix
95  element of transfer function matrix
I moment of inertia
I. B identity matrix, (dimension r x r)
iv.; ‘ v.square root of 4],‘arbitrary number
J an arbitrary number
K feedback gain scaler or matrix
k an integer number
L length, element length
M moménf
m -~ mass, an arbitrary number, mode number
MIMO multi-input-multi-output

iX



“real part of d.cdmplex number

an arbitrary number
Laplace variable
single-input-single-output

cable tension

~ time

a matrix
reference control input

shear force

o a matrix

spacié] coordinate, a 1ength

transverse displacement

'a«]éngth

infinity

~a complex variable

a change in, denominator
displacement
generalized displacement vector

partial derivative opekator.

damping ratio

sTope, an ahg]e

3.14159

mass per unit length

frequency, imaginary part of a complex number



Subscripts

0 | left end, initial value
1 left end, center

2 right end

é segment designator

b segment designator

CL closed Toop

D displacement

d denominator

i range index 7
J range index

L ' at the end

n numerator

r range index

\ velocity

vel velocity

X arbitrary position
Superscripts

. | derivative wrt time

derivative wrt space
- a vector
-1 ' matrix inverse

~ condensed matrix

X



I. INTRODUCTION

The design of controllers for structural systems, particularly
those asébciated'with large space structures, has received‘a considerable

1,2,3,4,5

amount of attention in the past few years. During this time

methods~for providing structural control for problems ranging from

Simp]e flexible beams®>’ 8,9,10,11

to complex satellite configuration§
have béen reported. These flexible structures are usually required‘to
‘-Satisfy not only stfength and'deflectionvdesign criteria;lbuf also
Stringent pofnting and vibrationa] Stabi1ity criteria. In addifidn, the
structural frequencies of large structhes,tend to approach orbital
frequencies, possibly leading to instébi]ities. Therefdre, active
position%ng control and vibration suppression contro?jof these
:struétures appear:td be required. ‘For the design of these controllers,
in a]host all céSes, concepts’from'modern control theory have been
applied to a Tinear model of the original system which in turn was ob-

12,1314 o1 from a truncated modal

15,16,17

tained from finite element analysis
‘énalysis of the diﬁtributéd parameter model. "~
| ‘Inherent in these approaches are queétions dealing with how many
modes or elements are'néceSsary in order to generate a good mode],175]8
“how many sensors and actuators must be used and where should they be

located, '?-20-21

and finally what is the effect of truncation on the
contrb] déSign.
An even more important question concerns the effect of thevcontkol

design on the unmodeled or truncated modes (a phenomenon called



" instabilities.

: spi]]over).‘ The.excitafibnvof thesé so-called residual modes has a
potehtia]]y destabilizing efféct on the actual structure. The control
forces which are designed using a trdncated;mode]‘tovcontrol the modes
of the truncated model tend to spill overvinto the resfdua] modes , which
are not included in the control design analysis, thus creating possible
6 In addition, implementation of these methods requires
the‘abi1fty to sense the displacement or velocity at some point on the
~structure and process the signal into components for eachvmode. These
signals in turn are fed back into the’appropriate actuators. Hence
reasonably sophisticated electronics are'required to implement such
éontrol]er designs. Although considerabTe adﬁahces in the state-of-the-
art have been made fhese past few yearsvand, most 1ikely, these tech-
niques will be uséd to design'stkﬁcfura1 controllers of‘the'future,
‘one_should be willing to explore alternative appfoaches'to structural
control, especially if théy are significantly dffferent, in order‘tb
extract any additional information which may be feveaTed about the
subject. | o

The purposebof this work is to~offer an altérnative approach to
the problem of deéigning contfq]lers for systems governed by‘partia] 
and ordinaryvdifferential equations. The technique is based on the
classical concept of transfer fhnctions which relate the output or
response of a system to the‘input. For’simple structures, the dis-
placement (ve]ocity, or slope) at one point cah>be related to the force
,appfied at another point by an exact transfer fuhction. The accuracy
of the transfer‘function_is Timited only by the accuracy of the

mathematical model used to describe the structure. This open-lo0p



transfer'function,can bevused to construct the closed-loop transfer
fuhction for the case where fhe displacement (ve]btity, or slope) is
fedback to the fofce. By‘examfning_the characteristic equation of
the closed-loop transfer function the stability of the closed-loop
- system can be anaiyzed in detail. The price you pay for this exactness
is the amount of algebra that is needed to obtain the fina]lresu1t.

In the chapters which follow, this method will be applied‘in
some detail to a flexible cable under tension and to a flexible beam.
These structural members could also be considered to be elements of a
larger, more complex flexible structure. The~approach taken is to
develop the tranéfer function for a cable or beam élement and to use
this fundamental element to obtain the open-loop transfer functions for
- several sensor and actuator 1ocations;

 Uti1izing the Lap]ace transform nature of the sp1ution for certain
.struétura] e1emenfs, more complex structures can bevconsideféd and
modeled through the use of dynamic stiffness influence coefficients.
'The~pkocedure is similar to the dynamic stiffness matrix aha]ysisvused
for structures,22’23‘but'is carried out here in the domain of the
Laplace transform. Workability of the dynamic stiffness influence co-
efficiénts in the Laplace transform'plane,vfor the solution of flexural
| forced vibration problems, has'beenrdemonstrated by‘Beskos and BoTey.24

Chapter Two is concerned with the vibrating cable. The Laplace
“transform technique will be used to obtain the open-loop transfer func-
tions for cables with various boundary conditidns. A basic cable
eTemeht_w111 then be'developéd and the'dynamicrstiffhess matkix method -

app!ied,to examples of varied sen;o?-actuator configurations.



The dynamics, stabi]ity and control for the cable wi]f be in-
vestiqatedbin Chapter Three. Typ1ca1 sensor- actuator pa1rs of 1nterest
~will be exam1ned w1th appropr1ate root-loci 1nd1cat1ng the behav1or of
T the system with various feedback gains. Selected single—1nput-s1ngle-
output (SISO) systems and mu]tiQﬁnput-mu1ti-outpuf (MIMO) systems wiil.
be investigated. | | |

Chapter Four is devoted to the development of var1ous transfer
funct1ons for the cant1lever beam.

Stability and control of the cantilever beam is addressed in
Chapter Five.
| Chapter Sik'discusses the deve]ooment\of free-free beam transfer
‘funct1ons a]ong with stab111ty analysis and feedback control.

In Chapter Seven the dynam1c stiffness matrwx is deve]oped for the
“beam element and a structure is created and modeled using the dynamic
stiffneés matrix approach.

| Results, conc]usions and recommendations for future reeearch are
contained'in‘Chapter Eight. fhe developments presented; coupling.the
Laplace transform and,the dynemic stiffness approach with classical

~ feedback ana]y51s is unique with this work. Furthermore, 1itt1é'or no
work has prev1ous1y been done us1ng multi-input-multi-output control: w1th
transcendental transfer function matrices. The work done here opens the
~door to an area of research which commands consfderablerattention. It
is intendéd that this investigation will offer alternative approaches

to the aha]ysis of feedback control of systems governed by ordinary and
partial differential equations, and orovide a stimulus for future

research.



IT. FLEXIBLE CABLE

The first structural member to be investigated is a vibrating
cable. From the governing partial differential equation for the
cable, several transfer function relationships will be developed. ‘The
concept of a generic cable element dynamic stiffness matrix will be
explored. This cable element stiffness matrix will then be used to
generate transfer functions for more complex actuator-sensor chfigura-
tions along the cable. It will also be shown that any specific cable
boundary conditions and control configuration can be obtained by simple
construction from the cable element dynamic stiffness matrix.

The vibrating cable is considered to be a continuous or dis-
“tributed parameter system, that is one goyerned by a partial differential
equétion. As shown in Figure la, f(x,t), o(x), and T(x) are the
distributed force, mass density, and tension in the cable, respectively,
ekpressed as a function of position, x along the cable. For this
analysis, neQ]igib]e structural damping and no transverse stiffness is
assumed. The inclusion of damping would not affect the procedure to
be described at all. It is only omitted to simplify the results. As
demonstrated in prev%ous work,25 damping improves the overall stability
of the systembwithout changing the relative character of the results.

The equation of motion describing‘thé transverse motion of the
cable can be\obtained by examining a differential element of the cable.
Figure 1b represents the free body diagram corresponding to a dif-

ferential element of cable of length dx. Applying Newton's second law

-



in the vertical direction, assuming small deflections, only vertical
motion and ignoring second-order terms in dx, we find that the governing

partial differential equation of motion of the cable is given by26

%;‘[T(x)'3¥§§éiﬁﬂ‘ + f(x,t) = e(x) QEX§i§;l., 0<xzL (2-1)
Whi]e Eq. (2-1) is the genefa] equation>of motion of the cable, it can
be simp]ified'by,certaih appropriate-éssumptions. In addition, any
so]ufion’of Eq. (2-1) will dépend on the‘partiCU]ar boundary conditions
| of‘thé‘cab]e configuration under consideration.‘ In this‘chapter,

several configurations are considered.

Fixed-free cable with a_discrete mass at end

| ‘The,firét configuration to be ihvestigated is a cable of ]ength:L
with_constant'mass beh ﬁnit 1ength, 0, subjected to a constant_ténsion
T. This cable is fixéd at one end, while the other end is free with a
Concentrated masslaftached; A control force is acting vertically on
the mass at the free end. Fﬁfthermore; there is no distributed force
~ f(x,t) acting along the cable, (see Figuré 2a). FQr this particular
prob]ém Eq; (2-1) reduces to |

o ylat) g dylxt)
atz ax2

0<x<l (2-2)

with the associated boundary condition at the fixed end x = 0,
y(0,t) =0 - (2-3)

By writing Newton's‘second law for the free end, shown in Figure 2b, the

| boundary condition for the free end x = L becomes,



| 2o
| T gx,t - yx,t) | - (2-4)
X _ 2 . P
x=L L by

, Eq.‘(2-2) can now be solved forfthe'latéra1 deflection y(x,t). How-"
ever, rather thanrbbtain‘the solutioh, we seek the re]atioﬁship between
thé dispiacement at one boint (output) due to a force at another‘(or
the same) point (input), in‘this'casé that of the mass. The Laplace
vtransform of this output over input ratio is known as a transfer func-
tion and re]étes the output to the input. Hence the solution of Eq.
(2-2) will be obtained by making use of the Laplace transform. This
" method of solution also admits any type of éxéitétion or control force,
harmonic as well as non-périodic.26 In order to generate'unique trans- .
,fér functions using the Laplace transfofm method, it is assumed that
the initia];cohditfons‘df displacement and velocity are zero.

y(xt) = §(x,t) = 0 | o (28)
The LapTace transformFWith reépect to time of Eq. (2-2) is
d2 (XS

pszy(x,s) =T . 0<xcx< L‘ (2-6)
dx2 -

where s is the Laplace transform variable. The transformed boundary

conditions are

y(0,s) = 0 (2-7a)
and

PR dxéx,S) |
~dx

. = ms2y(L,s) - (2-7b)
x=L ’ ’

Rearranging Eq.:(2-6) yields,



2000 <y . |
drl63) _ 2 2y(x,5) = 0 (2-8)
dx ‘

The solution to Eq. (2-8) is
y(x,s) = A sinh /o/T sx + B cosh /7T sx = (2-9)

where constants A and B are determinedvfrom_the boundary conditions,
Eq. (2-7). The transfer function GxL(s) relating the general displace-
ment‘response to a force on the maSS»at the end of the fixed-free cable

is found to be

¥(68) s o ey ___sinh/o7T sx
fls) G (s) = s(/”—'cosh/p/ sL + ms sinhvp/ sL) . (2-10)

whererthe first»subscr1pt (x) is the Tocation of the response and the
second subscript (L) is the Tocation of the force. By taking the
‘derivative with respect to x we have the transfer function relating the

‘general slope response(to’a force on a mass at the end of the cable

'(x,s vp/T coshvp/T sx - | ,‘ (2-11)
f = VoT coshv/p/T sL + ms sinh vo/T sl -

Looking at the special case of the response at the free end due to a
- force on a mass at the free end ofvthe.cab1e yields the transfer
functions:

for displacement,

(L s) 3 sinhvp/T sL - (2-12)
L = s(/oT cosh/p/T sL + ms sinhvp/T sL) e

and similarly for slope,

‘ I(L’S ) Vp/ COSh/p_/— T sL (2_]3)
=T COSth/ sL + ms sinhvp/T sL v




The velocity-force transfer function is obtained by taking the
.derivative of y(L,s) with respect to time. In the s domain this is
done by multiplying by the transfer variable s.

y(L,s) = s y(L,s) | | (2-14)
or specifically

(L s) _ s1nh/57- T sL (2-15)
f " VoT cosh/p/T sL + ms s1nh/57_'sL - e

Free-free cab]e discrete masses on both ends

In this case we w111 examine a constant mass dens1ty cable that is
free at both ends, subjected to a constant tension, with concentrated
Vmasses at both boundaries. Contro] forces are applied vertically at -
both ends of the cable (see Figure 3a). The'governing partia] dif-
ferential equation is again given by Eqg. (2-2).‘ The boundary conditions
at both ends afe found by applying Newton's second Iaw}to’the free |
bodies at each end of the cable (see Figure 3b). fhe boundary condi--

tions are, at x=0

. ' 2 :
T ;xgi,t) = m a‘x(xétz (2-16a)
x=0 ot x=0 )
and at x=L
| 2
£y - T axag;;,t)| = m, 2ix,t) (2-16b)
o x=L at =L ,

Again transfer function relationships are desired so the Laplace trans-
form method will be applied. Taking the Laplace transform of Egs. (2-2)

and (2-16) with respect to time, assuming initial conditions of Eq. (2-5),

)



10

we obtain a solution of the form of Eq. (2-9). Enfdrcing the boundary

conditions yields the desired result. Letting .

A = s(m1/3— cosh/o/T sL + oT sinhvp/T sL + m] ) s sinh/p/T sL

+m, 's/p/T cosh/p/T sL) , | v (2-17)
‘then the Qisplacement reponse in the s domain is

(x s) = {[ T sinhvp/T sL - mgs coshvp/T sL] sinhvp/T sk_

+ [/oT cosh/a7T sL + mys sinhvp/T sL] cosh/p/T SXIre g
. —3 , , 1

{mys sinhvp/T sx + VpT coshvp/T sx}
+ - [f,1  (2-18)

Eq. (2-18) now gives an algebraic expression're1ating'the dis-
placement of any point on the cable to the vertical contro]rfdrces at.
»efther end. Notice that this free‘freé cable is a very simple case of
an unrestrained continuous and discrete parameter system. Several cases
of interest can be reduced from Eq. (2-18). One such cése is that of
the free-frée'cab1e without the discrete masses -on the ends. This free-
}free cable can be thought of as a basic element which can be used to
conétruct more comp]ex structura1 configurations. ‘This construction'
method,’knOWn as the dynamic stiffness matrixﬂmethod,;will be éarried
out here in the Lap]aée domain. | |

CabTe’configurations having Various boundary conditions and
cqntrol erce‘configurations can be constructed from the dynamic stiff-
ness matrix of the free-free cable element. The analysis of these more
complex configurations tends to be cumbersome when directly apb1yihg the’

Laplace transform method used above. The dynamic stiffness method
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uses exact cbntinuous elementé.rathér than approximate or discrete ele-
vments‘asyin the case of the finite element method. Theréfore, it gives
the exact solution of the dynamic problem, within the limits of the
origina]smathematica]‘mode]. This method ‘also does not require know]edgev,’
of the haturéT frequencies ahd mode shapes for the computation of fhe
response as in thé:caSe of the finite element method ih conjunction’with

modal ana]ysis.z4

Dynamic stiffness,matrix fof;the cable element

The dynamic stiffness inf]uence coefficients d1.j which make up
the dynamic stiffness matrix in the'Lap]acertransform plane are‘exbres—
| sions that are a function of s and describe the generalized boundary
forteé of a structural element in terms of the generalized boundary
displacements.  In this tase the dynamic stiffness matrix for
a éab]e'élement can be developed starting with Ed. (2-18). Assuming
the discrete masses equé] to zero and‘eva1uating the dispiacement of

the cable.only at the ends yields a matrix equation of the form

1]

¥(x) = 6(s) F(s) | (2-19)

where

T
y(s)

(y(0,s),y(L,s))
and
- T
F(s) = (f;,f,)
and G(s) is the open-loop transfer function matrix of the free-free -
cable . ,Solving Eq. (2-19) for the force in terms of the displacement

yields
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'I - .
G(s) y(s) | (2-20)

f(s)
or“

?(s)

D(s) y(s) a | (2-21)

where D(s) the dynamic stiffness matrix for the free-free cable element

is found to be

sVaT coshva/T sL -svpT

1
0(s) = T 77 <1 | (2-22)

Having obtained the dynamic stiffness matrix in the Laplace domain, a
powerfu]ltool»is now available for constructing other cable configura-
tions. |
To demonstrate the construction of other cab]e configurations by
the dynamic stiffness method, the following examples will be deve]opéd: :
Example 1 is: a fixed-free céb1e with a fofce at the free end;
Example 2 is a fixed-free cable with a force‘at thevénd and ét
an arbitrary interior point; _
| Example 3 is a fixed-free cable with three fbrces inc1ud1ng one
at thé free end; | |
Examp]e 4 is a_free-free cable with threé forces, including oner

at each end.

Examg]e 1. Fixed-free cable, force at free end

~The deve]opment starts with the dynamic stiffness matrix given by
Eq. (2-22). Because the cable is fixed at x=0, we assume f1(s),in
Eq. (2-21) sufficient to hold y](s) = 0, and can therefore delete the |

~first row and column of the stiffness matrix of Eq. (2-22), yielding
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_ SYpT coshvp/T sL | .
Fa(s) sinnv//T st V20 (2-23)

Solving Eq. (2-23) for yz(s) yields

___sinh/p/T sL
y2(s) " svpT coshvp/T sL fZ(S) / (2-24)

We can see by comparing Eq. (2-24) with Eq. (2-10) that they are
identical, if the discrete mass in Eq. (2-10) is set equal to zero, thus

validating the dynamic stiffness method for this case.

Example 2. Fixed-free cable with force at end and an arbitrary point
The basic dynamic stiffness matrix for the cable element, Eq.
(2-22) can be expressed symbolically in Eg. (2-21) as
)] e ) e
= . (2-25)
fals)] [dgy dpp| [Ya(s)
By joining two cable elements (see Figure 4), it can be shown that we

- can match displacement boundary conditions to obtain

fO d11a d12a _ g Yo v
F11 = 19212 9222 * dip Hap| P (2-26)
i 0 - dyyy doopd W3

where the extra subscript indicates to which cable segments, a or b the
coefficient refers. The cable segment, a is fixed at x=0 and theréfore
can assume fo éufficient to hold Yo = 0. This allows us to delete the
first row and column of the dynamic stiffness matrix of Eq. (2-26),

yielding
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f d

11 Tdoga * dyqp dypp] (¥ .
= BRI - (2-27)
do1p dy. |

f 22b! Y2

2

Solving Eq. (2-27) for y in terms of f yields the transfer function

matrix equation

y1(s) | : [éinh/p/T sx-cosh/p/T s(L-x) sinhvp/T sX f]
N = S/oT cosh/o/T sL | ' ' ' -
Yo(s) | sinhvo/T sx - sinhvp/T sL] |f,]
| (2-28)

This is aﬁ exact‘re]ationship of the displacement at an arbitrary point,
(]) and the end, (25 with forces at the pofnt-and the endvof the fixed-
free cable.‘ Note that it is important when constrdcting‘the e]emehtsrof
the dynamib stiffness matrix that the 1ength‘L of the‘elemént»of'the
stjffnesé matrix Ed. (2-22) be reb1aced with thé Tength of’the ¢ab1e_seg?
ment for Which‘the'matrix is being aﬁp1ied; e.g. here d22a’¢ohtéinsvfhe
‘.]ength X and d22b‘contains the Tength (L-x) in p]aceldf‘thé L in d22 of
Eq. (2-22). | |

Itis ndw evident that we can,-in theory, piece together many
cable segment§~with many control forces using the dynamic»stiffnéss |
method. The basic cable e1ément,re1ationship Eq. (2-22) can be
repeatedly applied for any number 6f forces acting on thercabIe by con-
sidering‘the‘cab]e'between any-two forces or disp1acements'as a baﬁic
cable e]ement‘and'superimposing them for each element of the cable.
Td reduce the complexity df>the terms in Eq. (2-22) we will, forvfuturé

~ convenience, Se]ect the length of the cable as unity and set p =T=1.
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Eq. (2-21) with Eq. (2-22) can now be written as

-f] (s) coshs1 -1 ¥ (s) v
| g " | e

~ sinhs] o : . - (2-29)
fols)| -1 coshs1||y,(s)|

Example 3. The fixed-free cable, three forces including one at the
free end.

- The cable shown in Figure 5 can be described by

fls) =)y (2-21)

where |
: T
f(s) = (fy,fy,f,,15)
and '
i _‘T . ‘ -
- ¥(s) = (ygs¥q:¥92Y3)
and'the'dynamiC»stiffness‘matrix;'D(s) obtained from repeated super-

position of Eq. (2-29) is given by

[coshxs -1 x | .
sinhxs - sinhxs 0 ’ Orv
-1 -coshxs + cosh(z-x)s -1 » : 0
( 5' sinhxs sinhxs ~ sinh(z-x)s sinh{z-x)s
D(s) = s} ‘ ' ‘ .
0 -1 N cosh{z-x)s + cosh(1-2)s -1
) sinh(z-x)s sinh(z-x)s =~ sinh{1-z)s sinh(1-z)s
g 0 . -1 ' cosh(1-z;s,
L v sinh(1-2)s sinh(1-z)s]
(2-30)

where x and z are the locations of f] and f2 measured from fo,' Again if
We assume that'fo‘is:Sufficient to hold Yo = 0, the first row and column

of the matrix'in Eq. (2-30) can be neglected and the remaining matrix



16

inverted to obtain the transfer function matrix. The result has the

form

5(s) = 6(s) F(s) | , (2419)

where’
Lo T
oy(s) = (‘y]"yZ"y3)

and
T

and the transfer*function matrix becomes27

sinhxs-cosh(1-x)s  sinhxs-cosh(1-z)s * sinhxs
= ———— |sinhxs-cosh(1-z)s  cosh(1-z)s-sinhzs sinhzs| (2-31)

sinhxs sinhzs sinhs

Example 4. The free-free cab]e;.three forces, inc]dding one ét’each
end. |

Thfs isvan interesting case which has all the 1ngrediehis of a
 sate11ite‘pro51em (i.e. rigid body motion as well as structural vibra-
tion). Here the cable is under constant tension and free to translate
(see Figure 6). The transfer function matrix for this éase can be ob-

tained by usinglthe-procedures putiined above. The result is given by

y(s) = 6(s) F(s) (2-19)
where ‘

-T _

N _(yosy]’yZ)
and ‘

'T_ ‘

f —4(fo,f],f2)

and
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coshs coéh(i#x)s 0

G(s) = g‘g%ﬁﬁg, cosh(1-x)s  coshxs cosh(1-x)s coshxs (2-32)

1 "coéhxs : coshs :

' Notejthat by ]ettfng f]v= 0 and ignoring’y], we can de1e£é the second
row and.cofumn of the’above matrix. This yields Eq. (2-18) (With
appfopriéte‘change of nomenclature) with my = 2 =0, for the spec1a1
cases of x = 0 and x = L.

In th1s chapter we have seen the deve]opment of force—def]ect1on
and force veToc1ty relat1onsh1ps for severa] cases of flexible cable
configurations. Ue have also illustrated the dynamic stiffness matr1xn 
approach,for'génerating‘various cab}e‘e]emeht-contrOI force configura-
‘ tiOnSFand‘have'obtained thevtransfek functions for,sevéra]:exéhp1esr
HaVing’dohé;this let us now turh our‘attention-ththe systém‘dyhamﬁcs
ahd stability of the vibrating cable, and the characteristics_bf
vibration suppress{on control via c]osed—]dbpyféedbéck using root locus

analysis.



ITI.  FLEXIBLE CABLE--STABILITY AND CONTROL

* When one looks at thé quéstion of the stability and control design
for a dynamical system many'évenuésvofrapproach can be taken. The
method chosen for this ekamination is the classical root-]ocus'analysis
technidue. | -

In Chapter Two we developed transfer function matrices relating
| the dispiacements and forces at a finite number of points along the
cable. These are ggggz_transféf functiohs for‘thevsystém governed by
Eq. (2-1). The system nétura] frequencies can be dbtained}by settfng
the denominator of each transfer'function équa] to zero‘and solving for
S, whére s =n+ . 'If is eési]y verified that the solution of coshs =
,O erm Eq. (2—24)>w111 yield 1maginary'va1ues of s corresponding to the 

0

i

frequencies aSSotiated«with a fixed-free cab]é., In addition sinhs
(the»free-ffee cable characterfstic equation) yields the frequencies:

' éssociated witﬁ a free-frée"cabTe including w = 0 corresponding to thé
rigidibody motion (in this case pure tréhs]ation).

The fransfer functions associated with Cab1é've1ocity at speci-
fied,pbintsbcan‘be eaéi]y obtaiped‘ffom those’developed in Chapter Two
for the displacement, by simply multiplying through by s, the deriva-
tive'dpekator in the Lap]ace'plane.‘ By taking the derivative of-G(s)
with respect to x, the'position of some generﬁc point on the cable,
transfer functions relating the cable slope and the force can be

determined.

18



19

Feedback qontro1

~Consider a system‘With inputs fi’ i=1,2,...,mand Qutputs yj,
J ¥v1,25..;,r. Associated with this systemvislan r x m transfer func-
,~tidn matrix G(s). 0ne,cou1d,sen§e.a11.theioutputs and in turn feed
- those back with some gain to a]]:the inputs,'requifing a m x r feedback
matrix K. A 510ck diagram of the_system is shown. in Figure 7. -The
: c]osed-lqop transfer fuhction matrix can be shown to be (for u the same
diménsion as ?)
| o -1 | o

6(s)g = [T, + G(s)K] G(s) | (3-1)
wherekIr is an r x r identity matffx. The closed-Toop syStem'dynamiCS'
can be defermined from the‘closed-]oop,characteristic,éddationf

I+ 6(s)K| =0 ‘ | ] ‘(3,-2)
Fpr the case bf ais{ngle forcefénd a single disp]acement,_i.e., a
‘sing]e?input-Single-output-System (S150), aji‘the cTéssfc toois fok
Vcontrol design éan be uti1ized;28j Again it should be emphasized»that
all results obtained have no assumptions other than those inherent in
Eq. (2-2), e

The SISO open-]oop-transfer funttioh for a fixed-freercablé which
relates the displacements at some arbitrary point, x, to a force at the

“end of the cable can be obtained from the matrix in Eq. (2-31) by
~ selecting the G(1,3) element:

/(x,s) _ sinhxs _ e
f(T,s) s coshs ~ 6(s) . - (3-3)

Ifs=n + i is substituted into the transfer function,'Eq. (3-3), the
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open-loop poles and zeros can be détermined to be:

knn
Zeros n=20 R T kn even | .
. Con kdﬂ ‘ (3-4‘)
poles  n=0 , w=0 , w=-S- |, .‘kd odd

2
The open-loop po?efand'zekO‘1ocations,fof vakiqus sensor positions, x
are shown in Figure 8.

" The closed-Toop transfer function can be obtained from Eq.‘(3-1)

‘with Eq. (3-3) and is given by

sinhxs ~ _ | (3-5)

. G(S)CL = S coshs + K sinhxs

~with the associated closed loop characteristic equation, Eq. (3-2) of
s coshs + K sinhxs = 0 | - (3-6)

where K is the feedback gain which we éan_se]ect.

In order to determine the dynamic characteriﬁtics of the c]osedf‘
loop system we can solve the cﬁaracteristié»equation fok various values
of K rahging from zero to infinity-or we cén-make use of the rules for
constructing a root locus. |

Fbrvthe'éase of displacement feédback from the end'of‘ﬁhe cable to
a force at the end of the cable; x =1, thebroot Tocus can be predicted
from the po]e-iero plot of Figure 8. Since poles migrate to zeros for
increasing values of K it is suspeéted that increasing the gain simply"
changes the frequency of the system but provides no damping. With an
infinite gain the frequencies of the c]ésed-loop system approach those
of a fixed-fixed cable as would be expected. Furthermore, we wou}d 

expect that higher gains are necessary to drive the closed-loop poles a
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given distance away from the open-loop poles at the higher frequencies.
For this particular problem an analytic expression relating the change

in frequency to the gain can be developed and is given by
(wo + Aw) Tan Aw = K , (3-7).

where wg is the open-]oop pole from which the locus starts. Table 1
shows some solutions of Eq. (3-7) for selected frequencies. As can be
seen from Table 1, it does in fact require more gain to dfive a closed-
loop pole a given distance away from an open—]oop pole at the higher
fréquencies.

The solution of the closed-loop characteristic equation, Eq. (3-6)
for various values of gain from zero to infinity verifies that dis-
p]aéement feedback for this case changes frequency and provides no
'dambing.

If velocity feedback at the cable end is used instead of dis—

placement feedback, the open-loop transfer function has the form

| G(S) = sinhxs : (3_8)

where x = 1;_with the associated closed loop characteristic equation

" coshs + K sinhxs = 0 ‘ (3-9)
The pole-zero plot of the open-loop transfer function is similar to that
in Figure 8 with the exception of the pole-zero cancellation at the
origin which is now just a zefo. If we let s = n + iw we can obtain
analytic solutions for the feedback of velocity. The results are

given by
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Tanhn=-K ; = %1 (m odd) s
(3-10)
Tanh n = - %- ;oW = gﬂ- (m even)

'Thesroot Tocus p]ot is shown in Fighre.9
| It is seen from the root 1ocus ‘that a]1 ‘the modes are controlled
by feed1ng back the velocity at the end of the cable to a force at the
end, Furthermore no special filter is needed to process the sensor
~ signal. For this»partﬁcU]ar'ease all modes‘arevaffected the same for a
given gain. Fortgains Tess than one, the freqdencies of vibration‘are
~the same as the open-]oop frequencies but the motion is damped\OOt.
For>gains greater than one‘the frequencies jump to‘those of a fixed-
fixed'cable and the notion~1s also damped. At a gain of one, nv= - and:
it can be shown that the system comes to rest in a finite time. 29 |
Let us now observe what happens to the zeros of the system when
'_We move the sensor from the end where it 1svco-1ocated:w1th the force,
- to some arbitrary point, x. From’thure‘S it ean be seen that the
zeros of the sySteh move upward on the imagfnary axis as the value of
X is decreesed; Decreasing x corresponds to.physica]]y‘moving the
Vsensor farther.away from the force. ‘Furthermore, the zeros farthest
away from the’origin of the s plane move a greater distance than those
o1oser to the origin for a given sensor position' Hence one can see
that the po]e zero-pole pattern whwch occurs with the sensor at the end
x =1, will be disrupted as x decreases from the value of 1. The
a]ternating pattern wi]ltbe changed initia]?y at large values of w. It

can easily be shown from Eq; (3-4) that such a change in pattern will
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occur for the zero associated with k_ when '

X =,_| T K ) (3-]])

As an example for k; = 2, x = 0.667, while for k= 24, x = 0.96. It is
éignificaht,that these represent nodevpositions whiéh, for these cases,
are for the second and thirteenth modé shapesrfespectively; |
| It cah also be noted that the node of some mode will be crossed
when moving a sensor any distance away from the end. Wheh the sehsor ié-.
located just beyond the node bf;a particu]ar mode , the displacement-and
velocity of this location are opposite those of the}end where the force
is located. Therefore, féeding back information sensed at thisblbca-
tion to the force at the<end is detrimenta]ltb control of this mode.
Rootf1oci for both disp]acement and ve]ociiy féedback,from a
sensof ]oéatEd away frqm the ehd can be»generated from the so]dtion of
Egs. (3-6) and (3-9), respectively. . |
The genération of root-]oci'ana]ytically is, in,geneka], not
praética]. Consequently, a éomputef:routine w111vbe employed. Moét
’computer ro&tinesvthat generate root-loci need to.be supplied with

30 ~In this work the solution of a

- polynomial functions or factors.
transcendental equation is requfred. One method of solution, for the
generation of the root loci, is the use of a computer routine which

includes an IMSL routine called ZSCNT3]

which solves for the roots of
a set of non-linear simultaneous equations, the complex chéracteristic
equation, Eq. (3-2) being one of these sets when separated into real
and imaginary équations. The procedure is to apply repeatedly the

ZSCNT routine starting with the open-loop pole position with zero gain
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asithe First guesS; Then, incrementing the gain,'selve for'the‘first
'c]osed-lqep pole position. ThfS po1e is then ueedvas:the guess for
solving fof the pole at thefnext'gain:value aﬁd o) oh;' This method is.
v found to be high]y reliable for calculating rdotF1oci, although |
occasiona]iy sensitfve t0‘abrupt changes ih lQCuS directiOn;
| Using this computer routine, the cases where a Senser is located
at eithef‘x = 0.667 or x = 0.50 are examined and the root-loci
constructed for both the displacement and velocity feedback situationéi
The results are presented in Figures 10 and 11. As seen from Figurev8,_
both of theSe’cases have‘a repeated pattern open-Toop pole-zero distri-
bution along the imaginary axis. The case where x = 0.667 repreéenfs a
displacement or a veToeity feedback from the node of’the}secend, fifth,
etc., modes, and shows up as a pole-zero cancellation for those modes .
| At x = 0;50 on theeother hand;'there is no node at thatfpoiht for any
mode (similar to the point at the end’of the cable), but;two poles
associated With,the first two modes are no longer separated'by a zefe.
By exemining Figures 10 and 11 we can make’the Fo]]owing observa-
tions: 1) As far as the root locus is concerned,vif an open-loop pole- -
zero cance11atfon occurs, two open-1oep‘pe1esrappear adjacent to each
other on the imaginary axis, 2) If two open-loop poles appear adjecent
to each other beeause'of the sensor location, an instability will occur
- for either displacement or velocfty feedback. With these ebservations
in mind we can‘return to Eq. (3-11). Here, for example, we see that a
sensor at x = 0.96 will cause a pole-zero cancellation for kn = 24 or
for the thirteenth mode. KUp to that point on the imaginary axis there‘

is an alternating pole-zero pattern on_the imaginary axis. We expect’
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that velocity feedback from tﬁatrsensor location to the force at the
end of'thercéb1e would provide damping up thrdugﬁ the thirteenth mode
but would céuse 1n$tabi1ities for sé]etted h?ghér'modes.
| The cases‘for velocity and di$p1acement feedback for a sensor
}1ocated at x = 0.9 are shqwn in7Figure 12 . Here we see fhat,diép]ace-
ment feedback does indeed simply change the'fréquenéies of the modes

except where the two poles appear adjacent where gains above a certain

value cause an instabi]ity. For velocity feedback from the4same point

(x = 0.9) it is seen that the lower modes are damped while the modes

immediate1y'above the two poles which appear adjacent ére.unstéble for
all gains. : |
| ‘ The,casés where open-loop pole-zero cancellations take place on
the imagihary'axis, such as when x = 0.4, 0.667, 0.80 (see Figuré 8),
' correépond to thekplacement of’thé sensor at the node of the que~shape
dssociated‘with;the»po1e cancelled. Consequently this mode is un-
controlled and continues to oscillate unattenuated. As might be
expected, a sensor at the node of a mode cannot transmit any information
about that mode. | |

- It has been shown that veiqcity feedbatk'to a co-located actuator

~is always stabi]izing.7’32

This case can be'examined here by obtaining
the transfer function relating the velocity output at some arbitrary
point x to the input at the same point. From Eq. (2-31) this transfer

function is equivalent to s-G(1,1) or

_ sinhxs+cosh(1-x)s _ ﬁ%s; ; '
G(S),‘.b coshs T f(s ix , (3-12)
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‘ The open§1oop poTe—iéro plots for Eq. (3-12) fof vafious'values of x
are shown iﬁ Figure 13. Here we see the alternate pole-zero pattern
is retainéd for a}]_va}ues»df X. Furthe?moré;.wheke bo]efzero>cancé11a-’
tions occuf (at nodes) there is a‘seCOhd‘zeko'to retain}the appérent
a1ternéting pattern, hence damping is assured‘for all co-located
actuator and sensor locations. The modes Which have nodes where the
sensor ahdvactuétor are located are uncontrolled as ihdicated‘previously;
Closing the loop by applying Eq. (3-1) to'Eq; (3-12) the |

characteristié equatidn, Eq. (3-2), can be solved on the computer as
previoué]y‘indicated. | |

“The root-loci_fdr the case where x..= 0.667 and x = 0.9 are pre-
sented in Figure 14. Here the expected resu]ts have been veriffed; As
can bé‘seen, the effectiVeneSs of the controi]er on a giyen mode depends
upon'how far the,sénsor ié-frOm a node of that mode as mightrbé

“expected.

Multivariable feedback

 In the previOus section We saw how one actuator could control ali
the}modes‘of motiOn; ~It‘might,be expeéted however that a better job
“could be done with more than one sensor and actuator. Hefe we wi]l\
examfﬁe two cases for the fixed-free cable. Velocity and'dispiacément
at one poinﬁ_fed back into one actuator at the same pointiahd ve1ocity
at two points fed back into an actuator at each point. ve will then
examine two caseskfor the free-free cable. Velocity and disp]acement,
fed back to an actuator at onevend and velocity and disp1acemeht fed

back to actuators at both ends.
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Case 1. Velocity and displacement fed back to one force ét the end of

the fixed-free cable.

The transfer function for this case is>given by

sinhs

y1(s) S coshs 9 o -

| 3 s fi : (3-13)
. _ sinhs : : ‘
y1(s) coshs | |921]

If the feedback control takes the form,

fp = -k Kl |, - (34

the term in brackets from Eq. (3-1) has the form

Trog Ky 9 Ky

: Ir + G{s)K = , (3-15)
L Tt g Ky |
‘and the characteristic equation, Eq. (3-2) becomes
14997 Kjp #1997 Ky = 0 | (3-16)
or ;
s coshs + (K]]'+ s'K12)siphs =0 : (3-17)

 Eq. (3-17) is fhe multivariable feedback closed-loop characteriéfic
equation for which a two gain root locus can be constructed.

Beforé we proceed, however, a definition of the zeros of a MIMO
system is neéded,‘ The term "zeros of G(s)" has Soﬁetimes beén used for
tﬁe individuai'entries of G(s).33 Although a brbader definition has

33

been given for polynomial functions,™ the definition propoSed here is
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a‘simp1e andVUSefu1 one. A system zero will be deffned as "any root
of any‘term or group of terms Which is a Coefficiént of a specific
feedback‘gainvor group of cross gajns in the c1osed-106p charactefistic
eqUation.ﬁ The ﬁukposé:of this definitionvis to i]lumihate~where the,\-
- closed-loop poles»wi]l tend to go when the feédback gains aré~very high;
This defjnitionlwill’be!used Whénbreferring to the system'Zerbsaof the
MIMO systems to follow. | : |

From Eq. (3-17), it can be seen that the open-loop pole locations
(i.e., Kyp = K]Z = (0) are the same ésAfor the case of only displacement
feedbabk, as would be‘expected since the openf1qop pole 1océtions are
dependent on boundaryfconditions.» The systembzeros,>by'the definitidn
- given previouS]y, are also found to be the same as the ihdiyidua]
rvélocity and displaéementfopen-1oop transfer‘fuhctionkzercs,»an
» ekpected réSu]t since the‘zehos.depend'on sensor-]ocatfon.

N A two gaih root ]dcus will now be generated from thevsolution of
Eq.'(3{17). Obviously with a two gain root locus there are mény choices
of‘how to increment the feedback.gains. Two appkoaches are inyéStigated ‘
here. The first is whi]é maintaining cohstant velocity gain, the
dispTécemeht gain is increased. The second is while méinfaiﬁing.
constant displacement gain, the-ve]ocity‘gain_is'increased.‘ For the:
first approach, three values of constant velocity gain will be used.
~They are KV = 037617 which yields n = -1 for w equal to the frequencies'
of the open—Ioop po]es,‘KV = 0.964 which yie]ds}n =>?2 for equal to
the fkequencies of the open-loop pbles, and Kv = 1.04 which yields
n=-2forauw equal to the frequencies of the system zeros. For each of

these constant velocity gains the displacement gain is incremented from
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~
|

D= 0 to 25. The second approach is with constant displacement gains,

~
1

D = 0.2, 0.5 and 3.5, and incrementing the velocity gain from Kv =0
to 25. Both of these approaches generate a family of root-loci, shown
in Figure 15. As can be seen from Figure 15, if both velocity and
 displacement feedback are used the damping is limited. Increasing the
displacement gain drives the system back toward the imaginary axis
(i.e., no damping, just oscillation at a higher frequency). Incréasing
the velocity gain with a small amount of displacement feedback generates
some damping, but the amount of available damping decreases with in-
éreasing displacement gain. Even the slightest amount of displacement
feedback‘causes the amount of damping to be Timited. With no displace-
ment feedback we saw in Figure 9 that there was no limit to the amount
of damping, -This situatipn corresponds to a pole located equidistant |
from two zeros. With some displacement feedback the,closeq—loop poles
are moved closer to the zero above it and we now see from Figure 15
that the closer the closed-loop pole is to the zero initially the
smaller the amount of damping that can be generated from velocity feed-
back. This result indicates that there is no advantage in using both
velocity and displacement feedback for the fixed-free cable unless a

change of frequency is desired.

Case 2 - Velocity feedback from an arbitrary point and the end to
actuators at the arbitrary point and the end.
The transfer function matrix for this case can be obtained from

Eq. (2-31) as
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y](s), e sinhxs-bbsh(l-x)s - sinhxs f]‘ :
. ~ coshs 5 (3-18)

RIACHI sinhxs sinhs f,

CIf ﬁhe feedback control is given by

D E N T S N I 20 B - R

fol K1 Kol Y2 -
the term in brackets from Eq. (3-1)'has the form
| L N I P S LS PR P .
»Ir + G(s)K = ’ ' (3-20)

91Ky 90K T F 91Ky * 9Ky

We Cou]d,now fo1ldw,the proéedure used in case one, that is,

. simp1y~extending the SISOchntroller to a MIMO control Systemldirectly.'
For most's§stems, the extension of SISO design methods to MIMO systems>'

s not advisabTe,34

the difficu1ty being the need, in general, to
desigh all the entries in the gain'matrix, K, simultaneously. A
pfoper1y designed K matrixjassures that the interactive effects of the
MIMO system will contribute to stability rather:than instabi]ity; It
~was found for SISO feedbatk for the cable that feeding back velocity and
displacement to othék than co-located actuators can lead to system in-
stabilities. For this reason (although at this stage possib1y’én
invalid réason),'we suspect that for the MIMO system‘this‘interactive'
~ effect would continue-to be a destabilizing influence. The problem
which could arise by the elimination of thiskcross-gain’feedback inter-
éétioh is that the system-could‘bécome unstable when High values of
gaih are applied in both feedback Toops. A high value of‘gain in

~either loop a]one-usually can be- tolerated.>* Since there are
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Timitless combinations'of the values for the e]ements_of a fully popu-
latedrKfmatrix, initially the system stability will be analyzed without
croés-gaihs.' Somé selected cross-gain cases will then be dichséed.

The characteristic equation associated with qu (3-20) ié given
by | |
BRI L VIR PP P P I P PRSI PP R PP US PV I

919~ 991Kk T O . (3-21)
‘Eiiminating‘ckossfgains, K]Z = Ky =0, Eq. (3-21) becomes

T K Ok * (01190 - I Kyikpy 0 - (322)
With appropriaté‘substitutions, the above equation is'the closed-]opp
charactekistic equation for the system described by thevopén-loop
| tranéfer,function matrix in Eq. (3-18), Eq. (3-22) can be used to
 generate a two gainﬁroot-1ocus. » | |

It is clear from Eq. (3-22) that‘even though we are féed%hg_back
the velocities only to the co-located forces, there still is some
interaction between the two points. It cannot be determined without
éﬁaTyzing Eq} (3422)‘if this interactidn is favorable or not. An impor-
tant boint to be notéd, however,‘is that the interactibn'of co-located
'sensor—actuator pairs’is more complex than just a simple superpbsitioh
of individual contributions. |

Proceeding with the analysis, substituting in appropriate values
ffom Eq. (3-18) into Eq. (3-22) yields the closed-loop characteristic

equation
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~coshs + (sihhxs?cosh(j—x)s)K]] + sinhs K22

+ [(sinhxs-cosh(1-x)s) sinhs - sinhzxs]K Kon = 0 (3-23)
| ) _ 11722 o

In this case the open-]obp>pq1es are still the same as the previous
case. The systeﬁ zeros in'this'casé correspond to the zeros of a SISO
system with a sensor at the end, and the zeroskof a SISO system with a
sensor at some specific location x. There are also additional zeros:
from the interactive term (the Tast‘term)f For'soTQtion of Eq. (3-23)

three approaches are taken for each of two cases. The first case is

0.67 and the end to coflocated

, ve]ocity feedback from sensors at x
forces. The second case is velocity feedback from sensors at x = 0.5
andvﬁhe end to coAlocéted fofces. The second case was selected éincé
for eaéh ]ocation indivfdua11y’SISO velocity feedback provided a means
,for»qfiving the rea] parts of thé‘closedfloop,ppTes to negative = for
théFCase of K =1 and K =2 for'xﬂ¥ 1 and 0.5, respecti9e1y. |

For each case, first the end gain will be fixed and‘theugain of
the interior point feedback wi11 be fncfeased. Next the interior point
feedback will be fixed and the end gain will be increased. Finally bbth
 feedback gains will be varied simultaneously. Figure 16 shows the
results fbf co-located sensor actuator pairs at x = 0.67 and the end.
For co-located sensor-actuator pairs at x = 0.5 and the end, the general

MIMO characteristic equation, Eq. (3-23) reduces to the form

K ,
: . ] ] l 3 2 1 2 i = -
coshs + Sjnhs {75— +‘K22] + [2 sinh™s - sinh '2]K11K22 0 (3-24)

Figure 17 shows the results for co-located sensor-aCtpator pairs at

x = 0.5 and fhe end.
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As can be seen from the results in Figures 16 and 17, for this-
- case, the addition of another velocity seﬁsor-actuator pair to the
system is seen to cause degradation in‘the performance,.(i.e., a reduc-
»tidn of damping rather than an inCreasé in damping) for thevfixed—freev
cab]e, even for the case (x = 0.5,‘]) where 1ndividua]1y outstanding
damping_was'obtained. This*résd]t seéms counter to what would be
expected; ‘A possible explanation is that,‘even though‘thevsigna1 from
oné sensor»is‘only fed back to its‘co-located actuator, there is the
~interaction term seen in both Egs. (3-23) and (3-24). Also, each force
appears as a forced oscillation at the other sensor lTocation. In addi-
tion,'it can be séeh from Figure 14 (individua]’co-1ocated sensors’and
actUétors) that increasing feedbéck gain beyond a certain‘Qalue reducés |
| the amount of damping, the only éxceptions being a co-1ocated sensor-
: acthator at x = 1 or at x:='0.5, so it istéen that more'than the
S1ightest amount of féedback from a senébr—actuator pair at a 10¢atibn
vother thén at the end of the fixed-free cable causes degradation of
the performance of the boundary control alone. In no case, howevér, even
with both gains very high; does the system“becohe unstaBTe. The
'} elimination of the off—diagoha]_cross-gain terms has not adversely'
afféctéd the stability of.the system. -

System performance might, however, be improved by the incldsion
of the cross-gain terms. To examine the effect‘of cross gains, the
same two cases_(co-]ocated’sensor4actuators‘at x = 0.67 and 1 and at
x = 0.5 and 1) will be inveStigated using the general characteristic
equation, Eq. (3-21). For each case, two procedures will be employed.

’First, maintaining constant cross-gain values of K]2 = K21 = 0.5,
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K]1 and K22 are increased from values of 0 to 25. Second, all gaihs
are increased simultaneously. The root-loci for these cases are shown
in Figures 18 and 19. As can be seen in both cases for a constant
cross-gain of K]2 = K21 = 0.5, the system is unstab]e for low values of
direct gain. The closed-loop pole moves from the right-half-plane to
the 1eft-ha1f—p]ahe when the direct gain values reach K]] =-K22 = 0.5.
In Figure 18, at higher gains the inclusion of this specific value of
cross-gain, K]2 = KZ] = 0.5, is shown to improve damping, but in Figure
19 it reduces damping as compared with the same cases without cross-
gains. It also can be seen, in Figures 18 and 19, that having cross-
gaiﬁs of the same magnitude as the direct gains neutralizes the damping
éffect of velocity feedback altogether except for the first mode.
From these results it can be seen that tbe question of how to handle
cross-gain feedback 15, indeed, not a simple one and requires further
investigation. One can conclude, however, that arbitrary inclusion of
cross gains is risky, but for these cases, elimination of cross gains
does not effect stability and appears to be a viable approach to
analysis. |

- Up to this boint our analysis has been directed toward fixed-free
cable configurations. We will ﬁow investigate the behavior of the

free-free cable under tension.

Free-free cabie stability and control

Two cases will be examined. The first case is a free-free cable
with veTocity and displacement fed back to a co-located force at one;end.

The second case is a free-free cable with velocity and dispiacement fed
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back to co-Tocated forces at both ends.
First we will examine a free-free cable with both ve]qcity and
: displacemént feedback to a co-locéted force at one end (Figure 6 with

a force acting at one end only). The transfer function for this case

fs given by
| | coshs
y](s) s sinhs '
= | f (3-25)
. ' coshs '
»y1(s) sinhs

If the feedback control takes the form,

‘ v, ke
VA ,
the term in brackets from Eq. (3-1) has the form
D L FLS E R L P )
Ir + G{s)K = ‘ , (3-15)
91K T F 9Ky |
and the characteristic equation, Eq. (3-2) becomes
T 9Ky F 9Ky = 0

or »

s sinhs + (K1] +s K12) coshs = 0 (3-27)

If we let s = n + iw we can obtain analytic solutions for the open-Toop
poles and system zeros.

Polesn=0 ;3 w=20 s W T, kd even

Zeros for displacement



(3-28)

1}
o

No solution w
Zeros for velocity
v o
n=0 3 w=0 , w=- , k,odd
vso for the free-free cab1é we have for the open loop,a pole at n = 0,
w = 0, corresponding to the rigid body translation. Pure displacement
feedback andvpure velocity feedback is shown in Figure 20. As can be
seen in FigurevZO, displacement feedback causes the vibrational fre-
~quencies to increaée without damping, and the rigid body pole at zero
| frequency with feedback becomes a rigid body‘oscillatioﬁ pole. Velocity
feedback for thevfree-free cable, force at one end is similér (with
differént ffequenciés), to the fixed-free cable velocity feedback’resuTt v
(Figure,g), in}thét,po]es»can be driven to n = -~ for all modes, the-
exéeption being the zero frequenéy figid body mode, where we’see a |
po]e-zero‘can¢e11ation, which only means that thiS:modé is uncontrolled
- with yé]pcity.feedback.alone; | |
‘:Thrée two gain root Toci plots are shown in Figures 21 and 22.
In Figure 21 there are tWo}gain sequencing schemes shown. The first is
using a constant velocity feeaback gain, the disp1acement feedback
gain is increased.  The second scheme is using a constant'diéplécement
feedback gain, the velocity gain is increased. It can be seén that,
feeding back velocity with some specific constant gain while increasing
fhe value of'the displacement feedback gain to the force at one end of
the free-free cable causes the closed-loop poles to migrate from an

initial velocity damped position back toward the imaginary axis (two
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initial,va]ues of velocity feedbéék gain are i]]ustratedl.'-This reduc-
tion of damping behavior is true of all the.vibrational modes. The
patiern is similar to the pattern for the fixed-freevcable. The effect
on the rigidvbddy mode is to 1ihit the velocity feedback damping, but
not to drive the pole back to the 1maginary.exis. |
The scheme using constant displacement feedback gain of'KD = 0.5
and increasing the velocity feedback gain exhibits the seme.behavior,as
o the,cofresponding fixed-free’cab]e case. At‘1ow va]uee of velocity feed-
B back gain, damping is increased with increésing Qain and at higher values,
damping is decreesed with ihcreasing gain. The value of velocity feed-
Lback gain where this switching occurs is the same for all modes, Kv =
1.0. The higher the modal frequenéy, thevsmeller the adverse effect of
any particular value of disp]aeement feedbackigainvon the movement of"
‘the ciosed-1oop pole into the 1eftvhan plane. Thesebresults indicate
that, for the vibratibna] mddes; there is no ad?antage-jn using both
disp]acement and'velocity feedback for the free-free céb]e unless a
- change of frequency is desired. Control Qf the rigid body mode; de—
eVer, heCessitates the use of displacement feedback, as velocity feed- -
back a]ohe cannotvcbntro1 the-rigid body positien of the cable. |
In Figure 22, the root 1oc} are generated by ihcreasing both

velocity feedback end disp]aeement feedback gains simu?taneouS]y.‘ We
observe that, for the vibrational modes, increasing feedback gain for
low values of gain increases the damping. Increasing feedback gain
’ for‘values of gain greater than K = 1.0 causes a‘decrease»in damping
from the maximum damped condition. This behavior is a1so.exhibited‘by_'

the open-loop figid body.zerovfrequency mode when the 1oop‘is closed.
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Withvhigh,gain the free-free cable takes on the vibrational
characteristics of the uncontrolled fixed-free cable.

- We will now examine a free-free cabie with both velocity and dis-
placement feedback to co-located forces at both ends, Figure 6, with
forces aéting;0n1y at the ehds. The open-loop free-free cable tfanSfer
function for displacement feedback to three forces is given by Eq.
(2-32). E]iminatihg’the seéond row and second column we obtain the
transfer function for displacement feedback of forces only at the free

ends of the cable;

1 coshs 1 » -
6p(s) = ssvmre ‘ (3-29)

S sinhs 1 coshs

By taking the time derivative of Eq. (3-29), which is simply a

multiplication by s, we obtain the velocity feedback transfer;function‘

1 coshs 1 - | (3-301
G, = —— ' ' : 3-30
v sinhs 1 coshs ‘
Now recognizing that
§(s) = 6y(s) F(s) - | (3-31)
and
y(s) = 6,(s) f(s) | (3-32)
where
T
yo= (yys9,)
:T - » . )
| y= (yy¥,)
and
-T;—
flo= (f),,)
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we can write

I A f 0 (3-33)
Ly G, (s)] | ‘

If the feedback takes the form

| O vl
Foo [ n iz e T4} {-z-} . (3-34)
Koy Kop | Koz Kogl LY |
then the‘term in brackets from Eq. (3-1) has the form
| Gy(s) | |
Ir + |=2-==] K - (3-35)
Gv(s) |

and the complete characteristic equation is obtained by applying Eq.
(3-2). | | |

Recognizing that feeding back displacements and velocities to
other than co-]océted actuators can ]eéd.to instabilities, we will égain :
set cross-éoupled gain values to zero (i.e., K]2 = K]4 = K21 = Kyg = 0).
In addition, notice that gy; = 9555 9p7 = 9yp» 937 = g42'and'g32 = 9
from Egs. (3-29) and (3-30), so further simp]ifiéation can be made.
Fina11y, as a resuit of symmetry of the free-free cable, the choice of
equal displacement feedbackrgaiﬁs K11 = K22 éﬂd‘equa] velocity feedback
gains K]3 = K24 is made.

Under these conditions, the characteristic equation associated

with Eq. (3-35) becomes:
L2 22 L ' 2 2\ ,2
1+ (931 - 9g7) Kyg + 2 951K55 + {9y - 957) Ky

+ 2 99Ky 291193 - 9p1947) Kygkyg = O (3-36)
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Substituting in appropriate values from Eq. (3-29) and Eq. (3-30)
yields the closed-loop characteristic equation

2

s~ sinhs + 52 sinhs-K2 2

, . 2
13 +25s ;oshs-K13‘+ 51nhs-K]] |
‘+ 2s coshs-K]] +25s sinhs-K]1K13‘= 0 o (3-37)

By substituting in s = n + o and,exbanding Eq. (3-37) into real and
imaginary equations, the open-loop poles and system zeros can be
obtained analytically. The open-loop poles are the same as the

previous case with a force only at one end,‘(i.e., poles at‘n = 0;
w=0, 0= kdn, kd =1,2,3,"*". The system zeros can be obtained~by
using the definition given in Chapter Three in‘conjunCtion with Eq.
(3-37) expahded.into real and imaginary equations. This résu]ts in
system zeros at n =0, w =0, w = knw, kn =1,2,3,7"". By observing

the pole-zero locations given}above,-it would appear that they are a
series of po1e ~-Zero cahce]]atibns However coincidence of system po]es
and system zeros does not insure cance11at1on when dealing with MIMO
systems,33 It is helpful to keep this in mind when looking at the
root-Toci for th1s case.

| | Figure 23 demonstrates that d1sp1acement feedback to the. co- 1ocated '
forces at the ends of the free-free cable causes the vibrational fre-
quencies tq 1ncrease without damping. The po]e at zero frequency cor-
responding to the rigid body motion, with feedback, becomes another
oscillatory mode as a result of restraining the free ends of the cable.
'At high gains the cable behaves as if it is fixed-fixed. For velocity
feedback alone (Figure 23), inékeasing the values of gain, driVe the

c]oéed-]oop poles to n = -» at a value of gain of 1.0. Increasing the
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gain further drives the‘c1oséd-1oop poles back toward the imaginary
axis,most at the same frequency. |

Thfee two gain root 1oci plots are shown in FigUres_24yand 25.
Figure 24 i]]ustrates two gain sequencing schemes} The first scheme
is, using a constant velocity feedbaék gain;,disp]acément’feedback gain
is inckeased.”‘The second scheme is, usihg a constant displacement
feedback gain, the'velbcity feedback gain is increased.

| We‘can observe that feeding back velocity with some specific

constant gain, while increasing the value of the diép]acément feedback
gain tovthe forces at the endsvof the fréejfree cable, causes the .
c]osed-ioop poles to migrafe from an initial vé]ocity damped position
back toward the imaginary axis (two initia]fva1ues of velocity feedback _
gain are illustrated). This reduction of damping is simi]ar for all
modes.eXCebt for the zero ffequency mode where the closed-loop po]e
‘moves straight in along the negative real axis. | | |

The scheme using constant djsplacement féedback'gain»of KD = 0.5
and‘increasing the velocity fgedback gain is similar torprevidus
‘results for tﬁeifofte!éﬁnohfy 6héiéﬁd{ ’At Tow values of ve]ocity feed-
back gain, damping is increaéed with ingreasing gain,and at.higher
t’han‘Kv =1.0 damping is decreased with increasing gain. The higher
the}moda] frequéncy; the'émalier the effect of any particular value of
disp]acement‘feédback on the movement of the closed-loop pole into the
Teft half p]ane.‘ Similar cdnc]usions can be made for this case as for
the case ofva‘force on]y at one end.

.Figure‘25 is a plot of the root loci genérated by 1ncreasihg both

the velocity feedback and displacement feedback gains simultaneously.
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Wé observe that for all modes, increasing feedback gain for low values
of gain increases the damping. Incfeasing feedback gafn for high
values of gain (greater than K = 1.0) causés a decrease in damping from
the maximum damped condition. Noticefagain, that the eiimination of
croSs?gain feedback, while possibly not being the best feedback scheme,
does create a stable close&-]oop system even af.high va]des of
ve]bcity and displacement gain at both ends of the cable.

‘In this chapter we have examined the opeh-]oop and closed-Toop
characteristics of various cable configurations. These results yield
mdch informationjusefu1‘for the design of flexible structures. To
expand thié body of knowledge wé will in subsequent chapters éxamine

the characteristics of the flexible beam.



IV. CANTILEVER BEAM

In this chapter, the open-loop transfer functions for a canti-
lever béam will be déve1oped for, displacement feedback and velocity
feedback to a fbrce’actuator, and’s1dpe and angular rate feedback to
a moment actuator.

- Transverse vibration of the beam is described by a fourth order

-partial differential equation. The so1ution'of7this équation reQuires
fodr boundary conditions, two at each end of the beam.35‘ From the
‘basic Qoverning partial differential equétion for the beam, we will
devé]op through the use of the Laplace transform, open-loop transfer -
functions corresponding to various free-end boundary conditions. These
opén-]bop transfer functith‘will‘then be used 1h Chapter Five to form
the close&-]oop tfanSfer functions néeded fof stabf]ity}and control
analysis. | |

| A beam e1ement»ih bending vibration is shown ih Figure 26, where
transverse displacement is given by y(x,t): mass distribution by, |
m(x); f1eXUra1 rigidity by, EI(x) and force per unit 1engfh by f(x,t).

' The classical Bernoulli-Euler beam theory}assumes the rotation
of the beam element to be insignificant when compared to the vertical
translation, and the shearing'defdrmation to be small in relation to

the bending deformation.26’35

Timoshenko beam theory does not make
these assumptions. Meglecting these effects only contributes about 2%
error in the frequency, if the length of the beam is about 10 times

itsrheight.36 Therefore, the mathematically simpler Bernou]?i-Eu]er

43
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theory which yields essentja]iy the same results, in terms of
characteristic behavior, will be used in this development. Again,
‘negligible structural damping is assumed. The governing partial dif-

ferential equation of motion for the beam is, therefore, given by26

2 T 2.0, 1] 2
. EI(x) _a_ng_’tl F f(x,t) = m(x) 3 y(x,t) ,
3X2 ‘ 3)(2 - atz

0<x<L . (4-1)

'JWhjle Eq. (4-1) is the general equation of motion for the beam in
bending vibration, it can be éimplified by certain assumbtipnﬁ.’ In

;(addifgbh; fhé‘so1ution to Eq. (4-1) will depend on the particular

boundary conditions of the beam configuration under conside}atibn.

Severa]jconfigurations will be considered.

Cantilever beam, force at free end

Assuming a uniform cantilever beam with no distributed Toad

(Figure 27a), Eq. (4-1) reduces to

| 4 2l ‘ '
Elay(xit2+m9_ﬂ)<_é£l=g , O0<x<L (4-2)
ax ot | -

The deflection and the slope of the cantilever beam must be zerc at the

fixed end, x = 03 therefore; at x = 0 the boundary conditions are

‘and _ (4-3)

y(‘O,t) =0 }
o y'(0,t) =0

At the free end,only a force is acting (Figure 27a,b). Therefore, at

x = L the boundary conditions are
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Byt L.
EI 2 f
and ' A : o (4-4)

e L

8X2

'x=L

Again as was stated in‘Chapter Two, a transfer function relating the in-
put to the odtput is‘desifed. N |

Assuming initial conditions of disp]acemént and velocity are zero,
Ea. (2-5),vthe Laplace transform of Eq. (4—2) with respect»tO'the:time

variable, t, is given by

4 | | | |
e 9068) 4 yxs)=0 , O<x<L (4-5)
dx* ' - L

The transformed boundary conditions aré, at x =.O
- ylo,s) =0 | o |
and - - | o (4-6)
y'(0,s) =0 |
ahd‘at x =1
pp SyO6s) g
‘» dx® - v

and k(4—7)

e Culs)| g
dx2 |

The solution to Eq. (4-5) in the Laplace transform plane is given by
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y(x,s) = A1(coshax-c05ax + sinhax-cosax)
+ AZ(COShax-CDSax - sinhax-cosax)

+ Ag(coshax-sinax + sinhax-sinax)

+ A4(coshaXosinax - sinhdx-sihax) ; _(4-8)
where ‘ o
| 4/ 2 | |
o ms B : »
R A1 —_ (4-9)

The constants A1; A2’ A3 and A4 in Eq. (4-8) are determined by
 applying the boundary conditions Eqs. (4-6) and (4-7) to Eq.'(4e8). The
result in the s domain is a transfer function GxL(s), relating the
7 disp]acement at an arbitraryvpbint,by(x,s) to a control force at the
end of the beam, f, and is found to be |
s) >L3]' ! [
Xi?;,l = GxL(s) = 3 —— -| [(-coshal+cosal)
L ' 2(al) EIJ cosh“al + cos aLJ Co

(coshax-sinax - sinhax-cosax) + (coshab-sinal

+ sinhale<cosal)(sinhax<sinax)] S _ (4-10)

By taking the derivative of Eq. (4-10) with respéct to x, the transfer
fuhction reiating the slope at any point on the beam to a control force
-at the;end cén be obtainéd. Also by taking the derivative of Eq. (4-10)
~with reSpect fo time we can obtgin the transfer functibn‘re1ating'the
velocity at any point td a control force at the end. Taking a time

derivative in the s plane is simply

li;g_slsy_(?_i)_ , (4-11)
L T ,

Applying Eq. (4-11) to Eq. (4-10) and by rearranging Eq. (4-9) such that
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s = 2(a L) E, | | '(4-1‘2)‘

mL

We can eliminate the exp]1c1t s term from Eq (4 11) to obta1n the

‘ genera] ve10c1ty force open-1oop transfer function as

x(x S) 1]
L [(aL)‘/E—I_} [ﬁosh Zol + COSZaLJ[( ~Goshul COSQL)

(coshax-sinux - sinhax-cosax) + (coshaL-sinaL

+ sinhal-cosal)(sinhax-sinax)] . I (4-13)

A special case of the relationship of the displacement at the ‘
free end and the control force at the free end can now be examined.

From Eq. (4-10) by letting x = L we obtain the expression

y(L,s) _ {' L3 }[&oshaL~sinhaL - cbde‘sihaLI (4;14)
) .

Lo [2(an)er coshZol. + cos?al

‘Likewise the,special case of relating the ve]ocity at the ffée end to a
,contro1’force at the free end can bé'obtained by applyjng Eqs{ (4-1])
‘and (4-12)'to Eq. (4414) and Uti1izihg the result. This’yie1d5jthé

velocity at x,='L, force at x = L open-loop transfer function,

X(%,s} - (aL)LEI | coshal - swngaL - cos;L s1naL] S (4-15)
L ! v cosh™alL + cos al '

Cantilever beam,'hOment at free end’

 The transfer functions for feeding back the slope and angu]ar rate
to a moment at the end of a cantilever beam can be developed in a
. s1m11ar manner. For these cases, ‘the transformed govern1ng d1fferent1a1

equation, Eq. (4-5), is subJect to transformed boundary conditions of
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at X = 0, i
y(0,s) = 0
- and - (4-16)
y'(0,s) =0 |

and at x =L,

3 -
dx L : :

dx

- X
and

-M

L

'x=L

Applying Eqs; (4-16) and (4-17) to Eq. (4-8), the opéneYOOp transfer
- function relating the S]ope at any point, 6(x,s) to the moment at the

“end of the beam, M, , is given by

‘ G(X,S} = 6

4 £ (8) =7 L%EI 7 L — |
L aLjE COSh oL + cos OCL o

[1(c05aL-c05haL)(c05ax~sinhax + sinaxscoshax)

+'(c05aL-sinhaL - sinaLocoshaL)(sinax-éinhax)] . (4-18)
- Applying Egs. (4-11) and (4-12) to Eq. (4-18), yields the open-
1oop'trahsfer function relating the angu]ar rate'at'any pdint to_the

N control moment at the end of the beam,

1]

OShZaL +'C052aLJ

8(x,8) - _2al)
= G () = LT |-

[-(cosal-coshal)(cosax-sinhax + sinax-coshax)

+ (cosaL+sinhal - sinal-coshal)(sinax-sinhax)] . (4-19)

By letting x = L in Eqs. (4-18) and (4-19) slope at free end to moment

at free end and angular rate at free end to moment at free end relations
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“can be easi1yfob£ained.

"~ General force-diép]acemént, force-velocify, moment-élopevand
moment;angulér;rate:opeh-]obp transfer functibns and SpeCific free-end
“transfer functions for-the:canti1éver (fixéd—ffée) beam have«how been
obtained;.' B | | o

- Let us now turn our attention to the qUestion of»stability and

‘feEdback control of the cantilever beam.



V. CANTILEVER BEAM--STABILITY AND CONTROL

- In this chapter we will examing the'c1osediloap'characteristics
of the Canti1ever béam in the same manner as the‘ana]ysis of the cab]e},ﬁ
in Chapter Three. In general we will determine the open-]obp pole-zero
' 1ocation§ and attempt to cohstruct a root locus. 1In addition we will
form the c]osed—loop characteristic equation from Ea} (3-2) ahd solve
it d1rect1y

Displacement and ve]oc1ty fed back from the end of the beam to a
- force at the end, and ve]oc1ty and d1sp1acement fed back from other
pointsbon the beam to a force at the end will be examined. ,in addition
to the above ana]ysis”which wii]lbe done forvargéneric beam, (i.e. |
- E = I é mv=‘T) parameters fbr a Specific beam will be developed and same

comments about damping ratio will be made.

D1sp1acement at end fed back to co-located force actuator

Exam1n1ng the roots of the numerator and the roots of the
dehom1nator'of the open-Toop transfer funct1on Eq. (4-14), a po]e-zerov
plot-can be generated. For proper 1nterpretat1on one needs to recog-
nize that the poles and zeros, s are actually a mu]t1p1e of the square
of al. Therefore a so]ut1on that y1e1ds equal real and 1mag1nary parts
of al, actually results in values of s which 1ie on the imaginary
axis of the s plane. Since no structural damping is aésumed, the open-
1oop poles and zeros for the cantilever beam modeled here are always on
'the imaginary axis. Figure 28 shows the open-]oop{bole-zero loéatiohs,

for the sensor and actuator co-located at the free end of the beam.

50
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It can be seen that the po]e-zéro‘pattern is alternating as WOuld be
» expecfed, but that the poles and zeros are not equally spaced as they
were with the cable.

By closing the feedback loop, as shown in Figure 7, we can wrife
the closed-loop transfer function and obtain the closed-loop
characteristic équation, from which the root locus may be generated, by
~incrementing the value of feedback gaih in a manner similar to that
described in Chapter Three.

The characteristic equation for this case can be obtained by
applying Eq. (3-1) to the open-loop transfer function, Eq. (4-14). From
Eq. (3-2) the closed-loop characteristic equation for displacement
feedback at the end of the beam to a co-located force is given by

3 2 2

{_—_TT__‘} (cos®al + cosh®al)

(al)” 2EI ‘

+ K (coshalL+sinhal - cosalLesinal) =0 . ' -~ (5-1)

The root loci are generated by obtaining the roots of Eq. (5-1) while

increasing the values of gain, K.

Velocity at end fed back to co-located force actuator

Applying Eq. (3-1) to Eq. (4-15), and writing Eq. (3-2) for this
case, the closed-loop characteristic equation for velocity feedback at

the end to a force at the end is given by

zaL + coshzaL)

‘ L
[ozleIm] (cos
+ K [coshal-sinhal - cosalLesinal] = 0 . (5-2)

The roots of Eq. (5-2) for increasing values of K generates the root
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loci for velocity feedback. Thesroot 1oci curves for velocity feedback
and disp]acemeht feedback are displayed in Figure 28. Here we see that,
for d1sp]acement feedback, increasing ga1n causes the frequenc1es to
‘ »1ncrease to values corresponding to those of a fixed- -pinned beam 37
‘Displacement feedback does not affect the damplng. As a result, the
system is neutrally stable with or'withOQtffeedback., Notice that forb
a specific value of gain, for instanceeK = 25, the poles for the higher
modes do not move as far as the po]es for the Tower modes. This sup-'
ports the fact that more energy is_required to excite fbe bigher modes.
We also see in Figure‘28‘that ve]dcity feedback will stabilize the
beam osci]]étions elthough not in the same‘dramatic'manner as oecurred’
with the cable. The damping of the system increases with 1ncreas1ng :
ve]oc1ty feedback gain up to a po1nt where ‘as the ga1n is further in-
creased, the system starts to return to be1ng neutra]ly stable. _The}

38

'constra1ned frequenc1es, those for which K = », are again for a beam

that is f1xed-p1nned.37b

The optimum gain fbf maximum damping'fok each
mode appears to be approximately 1.8 times the'optfmum value of gain
for the next 10Wer mode . Therefore, more gein”is needed'et higher
modes to achieve maximum damping for the‘highef modes . This result is
significant from;the'standpoint‘of controller design. Since fer a
single sensor-actuator only one gain is ava{]ab]e, different'gains
cannot be dsedsfor each mode. Picking the gain that results in maximum
damping for~the first mode, K = 1.6, we can see from Figure 28 that the
location of the roots for the higher modes are such that the damping

for these modes is less than the maximum possible for these modes.

On the other hand, picking a value of gain which maximizes the damping
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of a'higher‘mode,'fdf‘eXamp1e7K = 5.2 for mode three, the position of

the roots for higher énd 1ower‘modes is less than'that for maximum

damping. Hence}fbr désign purposes some tra&eoff must be considered.
Figure 28 disp]ays‘general'rootbioCi that apply to a genefﬁc

uniform cantilever beam. The complex values of s from

T

s = 2(al)% 7 (4-12)
: mL :
are plotted with
El
_— = 1 (5-3)
me4.' e

In addition for displacement feedback the computed gain values assume

AT . ‘ ; 5-5
vEIm 1 S _ ( )
To obtain the aCtual Va]des'of,s for a specific‘beam; the computed
values of s4mUSt be multiplied by the factor EEE- for the specific
: m

beam. To obtain the actual values of disp1acement‘feedback gain for a

specific beam

K Z—EI-} o  (5-6)

actual ~ Kcomputed {L3

and for velocity feedback

o Elm ' _ ' .
Kactual = Kcomputed [ L l (5>7)
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- As a demonstfation‘ one‘can obtaih'values of s and va1ues of gain
“forfa Spetific beam Parameters of a part1cu1ar graphlte epoxy tubu]ar

39 and the computat1on of the factors shown in Eqs (5 3), (5- ) and

beam’
(5-5), for th1s beam, are given in Append1x A.

Us1ng these factors, F1gure 29 shows the most stab1e closed- 1oop
~pole positions for the f1rst'few modes of the cant11ever beam, feeding
back the velocity at the end to the force at the end. The damping

ratio, c, can be calculated from the expression

z=-sine o o o (5-8a)
‘where 6 is given by

6 =sinl 0L . (5-8b)
Damping ratio is independent of beam parametefs,;Since.the-values of n
and w are}multiPTied.by the same gquantities for a specific beam.

For a generic cantilever beam, the most stable cloSed—]bop pole »
,positidn_for any mode (beyond mode ohe) is described by the following *
eXpreSsions:

The imaginary value is given by,

= (32 -40m+13) 2> | | (5-9a)
and the realfvaThe is bounded by
2 2 ‘ ’ ,
“(8n+3) Ty <n<-(8n-5) | (5-9b)

where m is the mode number.
From Eq. (5 9) and Figure 29 it can be seen that although the damping
ratio, ;, decreases for,increasing.mode number, global stability of all

modes is assured.
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To see the effect ofjmoV§ng the sensor aWay from the fhee end
of the'beam (see Figure 30), we can examine »first the open-loop pole-
zero 10cat1ons for var1ous sensor pos1t1ons, X, and second selected ’
;cases of closed-Toop displacement and ve]ocuty feedback

The‘open-loop pole-zero Tocations for various sensor positions3
X, forcevet thevend, X =L, aneuobtained-from»the QeneraT diSp]acement?
force open-loop transfer function given by Eq. (4-10). From thune
31 it can be seen that the po]es and zeros have an a]ternat1ng pattern
with the sensor co- 1ocated w1th the force at the free end. As thev
sensor 1ocat1on is moved down the beam away from'the force 1ocationv.the
zero locations begin to move up the imaginary axis, as was true 1n the _
similar case for the cable. When the sensor 1ocat1on is moved past the'
1ocat1on of a node of a part1cu1ar mode, the po]e -zero pattern is no
1onger a1ternat1ng, and we see two po]es apbear1ng in sequence w1th0ut
a zero between them. As was observed wrth the cable, it is expected
‘for the beam ‘that for these sensor locations 1nstab111ty w111 occur ,
when the feedback gain is high enough

To_investigate this_further, disp]acement and ve]dcity‘feedback =

for sensors Tocated at x = 0.5 and x = 0.8 will be examined.

Displacement feedback, separated sensor-actuator

- For the caee of displacement feedback from a sensor located at
any point on the beam to a control force at the end of the beam, apply-
ing Eq. (3 1) to Eq. (4-10), the character1st1c equation, Eq. (3- 2)

of the closed-Toop transfer function is found to be,:
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, 3 : T ,
' {}z-%g——1‘(coszaL +—C0$h2aL)
2(al)7EI

+ K [(-coshaL COSaL)(coshax -sinax - s1nhax cosax)

ot (coshaL +sinal + S1nhaL COSaL)(STHhaX 51nax)] =0 - (5-10)

~ To generate bhebroot loci, fbr’dispTacemenfyfeedback from a sensor
ylocated‘et any specific point to e force ét the end, the'rOOts of Eq.
(5 10) are obta1ned as K 15 1ncreased F1gure 32 shows the root loc1
of the f1rst few v1brat1ona1 modes due to feedlng back d1sp1acement
sensed at x = 0.5 and x = 0.8.1nd1v1dua11y to a control force located
at the fbee eﬁd. It can be seen in Figure 32 bhat; as expected, at high
values of feedback gain poles not'separated by zeros Cah be dkiven
unstable. | It can also be observed from F1gure 32, that for non-co-
lTocated sensor- actuator pa1rs, d1sp1acement feedback does not affect ‘vf
*'stab111ty 1f thevd1sp1acement‘feedback ga1ns are small. - The_cioser:the.
»bsénsor:iS'tOvthe actuetor,bthe lerger’the Qalue'ofvdisp1a¢ement»feed—.}_}s‘

back gain that can‘be used before'creating instabi]ftyiprbb1em$.f

Ve]ocity”feedbaCk, Separated-sensob-actuatok -

':‘vFor'the‘caSe of‘veldcity-feedbaCK from'a'senSQr 1ocated_at~ahyv_
point on the beamltO'aicontro1 force Tocated at the end of the‘beam;
applying Eq._(3-1)eto’Eq. (4-13), the characteristic equation; Eq.'(342),

of the closed-loop transfer function is found to be

L ,
' [Cgfyyffﬁﬂ (coszaL + COShzaL)
+ K [(-coshaL-cosal)(coshax-sinax - sinhax-cosax)

+ (coshaL-sinaL + sinhol+cosol)(sinhax-sinax)] =0  (5-11)
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Again the root loci are generated from the solution of Eq. (5-11) as
the value of K is increased. Figure 33 displays the root loci of the
first few vibrational modeé due to feeding back velocity sensed at

x = 0.5and x = 0.8 1ndividua11y to a control force loéated at the free
end of the beam.

In Figure 33, it can be observed by looking at the‘first four
modes, that feedback from a velocity sensor located away from the
actuator causes instabilities for some modes. Positions of the sensdr
that.genefate a stable response for a particular mode, correspond to
positions on the beam that are in phase with position of the control
force; as the beam oscillates. A sensor located at a node of a
particular mode cannot sense the motion of that mode. Locations of the
sensor thdt generate an unstable response for a particular mode are
those that are ouf of phase wfth.the motion of the actuator location.

It canvalso be noted that the stability of a part1¢u1ak_mode is
independent of the value of feedback gain. Unlike the case of dis-
p1acemenf~feedback, unstable closed-loop poles are unstable even for
small values of gain. Although for extremely high yaiues of‘gain some
unstab]evpo1es can be driven neutrally stable. It can be seen from
Figure 33v£hat feedback from a Ve]ocity sensor located at x = 0;5;
generates stability of mode one, instability of mode two and has little
effect on mode three, x = 0.5 being very close to a node of mode -
threé for the cantilever beam. From this we can conclude, for single-
inbut-sing]e-outbut systems, that having a separated velocity sensor
and a force actuator is at best a risky proposition, although some

destabilizing energy in the higher modes may not be a problem with a
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small amount of structuralvdaﬁping.25 At worst, it toUldv]ead to
- unstable excitation of the lower modes, aggravating the structural
vibration problem rather than a]]e?iating it.

Ih thisvchapter, we have examined the open-1loop poleézero
patterns, as well as the closed-Tloop charactéristics of velocity and
displacement feedback to a force actuator for co-located and separated
sensor-actuator pairé for the canti]ever}beam.

In the following chapter, selected transfer functions wil? be
‘developed and closed-loop characteristics of the free-free beam will

be discussed.



VI. FREE-FREE BEAM

The free-free beam in contrast to the cantilever beam has two

rigid bodyfdegrees of freedom, translation and rotation; which makes it

a good'mode1,of a missile in free flight° or of an orbiting satellite.
“In this chapter, se?era],open-]oop transfer fuhctiohs for the frée?free-
vbeam_With'variousbcontro1 boundary cohditions will bé»deve1oped.
;Stability-analysié,and‘feedback control wi]]vthén:bevdiséuésed; |

| VA uniform beam that is free of supportsiét,both endé‘andjhaé-a :
control force and a moment at each end is shown in Figuré 346.  Again' 
the partial differential equatioh governingfthe motion éf'theﬂbeam is-

26

ngen.by ‘Eq. (4-1). As a result of the simp1ifyingAassumptions made

" in Chapter Four, Eq. (4-1) reduces to Eq. (4-2). The boundary condi-

“tions can be détermined~by_referring to Figure 34afand‘uSingvthe sign B

conVention4]_sden in Figure 34b.
The boundary conditions at x = 0 are
| 3, |
Vix,t)| = EI 3—115§31 = f,
| S 7 ke |
and B : | | -~ (6-1)
' o 2 . B S
Mxt)| = EI ﬁ-liﬁfii = M,
=0 3X %=0
“and at x =L o »
S VOot)| = y(t) o ¢
S Ax=L ax3 2
: x=L -
and o ‘ (6-2)
: L2
_M(x,t)l = EI §.¥$§§El = . M2
el ;

X x=L
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Transforming Eqs.v(4-2); (6-1) and (6-2) iﬁto‘the s domain by Laplace
~ transform, the relationship of the displacement at any point on the
free-freé beam as a function of the forces-and moments at its boundaries‘

~can be found to be

SN f] [;inhaL-CbShaL - singl-cosal’
Y(X,S_) = 3. 2 2
AT 207EI L sinh“al - sin"al
f2. Tcosal-sinhal —.sinaL‘coshaL]

+ -
2051 | sinhZel - sinl

oM fcos%elesinh®ol + sin®al-coshZel|
20561 | sinh%l - sin%al

My T e o

22, ?>s1gaL-s1nhq; t cosax-coshax

a"EI |sinh“ol - sin“al v S

}{~'fl {}inZaL-cbshzaL + coszaL«sinhzaL]
4a ' |

+

+

3 2 . 2

EI sinhal = sin~al
R | . |
+ f sinal-sinhal_
T3 L2 . 2
207EIl |sinh"al - sin7al.
- M IsineL-cosal + sinhal-coshal |
26%E1 | sinh%l - sinl |
_ M |Sinol -coshal + cosol-sinhal }‘
24%E1 | sinh%l - sin%l |

(sinax-coshax + cosaxe.sinhax)

M . . 2
+ ‘21 s1nh2qL - S’"ZQL sinax-sinhax
20"El |sinh"aL - sin7al
f.oo[...2 . 2] ,
+ 31 | SjnhZ“L - S1n2“L (sinax-coshax - cosaxssinhax)
40”EI |sinhTal - sinTal | - ’
(6-3)
- It is known from previous_fesu]tsvfor the free-free beam,zs’42 that

feeding back the velocity or displacement to a non co-located force
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actuator, or feedback using a co-located sensor of a différent-degree
of freedom than fhe actuator (e.g., angular rate fed back to a force
actuator) leads to instabilities. The relationships of interest,
therefore, are those sensor-actuator pairs‘that are co-located and of
the same degree of freedom type. The open-loop transfer function
relating the displacement at x = 0 to the force at x = 0 is onevof these

pairs, and from Eq. (6-3) is given by

y(0,s) _ 1 l}inhaL~coshaL - SinaL'COSaL]

(6-4)
f 20 E1 sinh%al - sinal

Similarly, the disp]acement-force open-loop transfer function at x =L,
can be obtained.
Other relationships df interest are: the‘slope 8(0,s) to moment,
M, , the velocity, y(0,s) to force, f» and the angular rate 6(0,s) to
moment, M],‘opén-]oop transfer functions. -
Taking the derivative of Eq. (6-3) with respect to x, the general
slope equation can be obtained. From this equation, the felationship

of the slope at x = 0 to the moment at x = 0 is given by

~8(0,s) _ 1 [sinaL-cosal + sinhal -coshal (6-5)
M aEI - . 2 . 2
1 » sinh“aL - sin aL
Similarly, the slope at x = L to the moment at x = L relationship can
also be obtained. The time derivative of Eq. (6-3) yields the relation-
ship of the velocity to the force and moments at either end of the

free-free beam, and desired transfer functions can be obtained.
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Free-free beam, c?osedfloop characteristics

~Displacement at one'end»of’thé beam feeding back to a co-located

forcé.wi]} be examined, as well as s]ope.a£70ne end of the»beam'feeding
back to a co-16cated moment. - B

" Feeding back displacement at one end of the free-free beam to a
co-located force drives the frequencféS“toward those of a free-piﬁhed
beam. .Likewiée, feeding batkbslopevaf one end to a cb-]oéated_mbmenf,
 drives-the frgquencies toward those of a free-guided beam. In both of
these cases, as expected, no damping is introduced. In a similar
manner, velocity can be fed back to a co-Tocated force or angular rate
to a co—]bcated moment. 4Resﬁ1ts similar to these can be found else- |
“where .2 | | L

~In thié chépter‘selected transfer functions for é‘freé-freé beah
were deVeloped~and'a briefvdistussion of'c]osed-]oop characteriétics~‘}

was presented.



© VII. BEAM--DYNAMIC STIFFNESS APPROACH

}"In previous chapters dealing‘withvtheibeam, single span'beamsg
,‘with«single*input-sing]e-output»feedback; weresinvesbigated.a
’Recognizing thatimost‘pnaetTCal Structures consist of more fhan.ex.r
;1single span beam, dt is desirab1e to expand tb'mone COmplex structures,
' the techn1que of controlling the exact partial d1fferent1a] equat1on
system. It 1s a]so des1rab1e to be able to hand]e mu1t1 1nput mu1t1-
’output.contro]:systems.' That is, more than one actuator- sensor pair
on the,beamelike structures. A conven1ent method for hand11nq both of
thesekreqUimements is the'dynamjc stiffness matrix method ment1oned in
'Chepten:Two.”'In that‘chapter‘it'was.used for‘severa]‘cases invo1vfng

| the‘f1exib1e cab]e The feas1b111ty of th1s method for synthes1z1ng
"structures from beam elements has been demonstrated 1n the past. 22
Spec1fjca]1y the use.ofkthe dynamic stiffness Influence coeff1c1ents in
.the LabTace'transform plane has been investigated withinegerd to a

4 . “ S
24 The use of this method in con3unct1on :

: sing]e’extenna1‘exciting'force
d‘ w1th feedback of contro] forces, in part1cu]ar mu1t1-1nput-mu]t1-output,
'contro1 has not been prev1ous]y demonstrated ' |

“ In this chapter the dynamic st1ffness matrix for a beam element |
in flexure will be developed. This e]ement matr1x will then be used to
hconstruCt an example.case for which the stability and contro] will be
binvestigated. The boundary forcesfand,disp]atements for\é,uniform beam

: segment22 shown in Figure 35 are used in a standard development of the

dynamic stiffness matrix,valthOUQh in this case using the Lap]ace

63
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transform. The gehera1 solution for the trahsverse vibration'of a

‘béam:in,the Laplace transform plane was shdwnkin Chapter four to be

y(x,s) = A] (coshax-cosax + sinhax-cosax)
o+ A, (coshax-cosax - sinhax-cosax)
+.A3 (coshaxssinax + sinhax-sinax)

_+'A4 (coshaxssinax - sinhax-sinax) v - (4-8)

Taking the derivative with réspect to x,'expressiOhs for
.y'(x,é), y"(x,s) and y"'(x,s) cén_be obtained. Expressing the disp]ace- ‘
“ment, y(x,s) and the s]ope,y'(x,s) eva]uated af the‘tWo endS‘(or |
, noda17poihts) 0f the beam‘segment,‘iﬁ tefms of‘the'constéhts,lﬁ yields

S(é) = [W] A | » . (7-1)
LT |
where §(s) = (y(0,5),-y'(0,s), ¥(L,s),-y'(L,s)) = (87(s), 8;(s), 85(s),

' 62(3)) and Al = (AT,'AZ, A3, A4).: The‘noda]‘fbrcésvand‘momEnts using

the sign convention established earlier in Figure 34b are given by,

fi(s) = EIy"' (0,s)
fo(s) = -EIy"' (L,s) |
2% (7-2)
« VM1(s) = EIy"(O,s)

My(s) = -EIy"(L,s)
Writing the nodal forces in terms of the same constants, A yields

F(s) = [U] A | | | - (7-3)
where

. | ]

F(S) = (f](S), M'|(5)9 fz(s)’ Mz(s))

By éoTving Eq. (7-1) for the unknowh constants
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= 17! a(s) R R ¢

“the nodal forces can be found as a function of the nodal displacements
by | S .
F(s) = [u] [vn“ 5(s) ~ o (7-5)
~ where . _ . o
o0s) = [u]-[l«:]'], )
: D(s) is the dynam1c st1ffness matr1x in the Lap1ace transform plane
! The e]ements of the dynam1c st1ffness matr1x (s ) for the beam element‘,
are.g1ven in Append1x B. The use of the beamvelementidynamie stiffness
matrinD(s), relating,the nodal forces to the nodal disp]aCements
F(s) =D(s) &(s) , (7-7)
fWi11\fac11itatevthé ana1ysis of more complex structuneSTand sen36r4‘\-‘
| actuatbr'configurations, ‘Structuresvconsist{ng'of’beams of:yafiougfb
Iengths,fstiffneSSes,'and:momenté‘bf inentia, and having various control
cbnfﬁgukations can befformu1ated by the dynamic‘stiffneSS matrix method.

To 111ustrate the method ‘an example will be utilized. A canti? f

s 1ever beam w1]1 be constructed from two beam e1ements (see F1gure 36)

'w1th two co- 1ocated sensor actuator pa1rs on the beam One pa1r w11] be

at the free end and One pa1r at the 1ntersect1on of the two beam e]ements." £

The result for th1s examp1e is given by

| F(s) = D(s) &(s) | | IR v 0 )
where | |

T o

- and
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R S '
8 = (855 8> 81> %> %2 8,)

and the dynamic stiffness matrix, D(s) is given symbolically by

A 4z 43 he 100
A R e SN W
oisy = |31 Y2 fa3 A Yty hel o
el Yt et %% )% du) |
0 0% dy d3p da3 3|
: !
|0 0 dpy Cdgp dgz dy

‘»where:the upper 1eft*hand 4 x 4 peftains to the first beam segment and
thé 10wervright-hand~4 x 4 to the second‘beam'segment. If we assume |

~ fp and M ‘sufficient to hold 8y = 0 and 8 = O,(the‘cantilever condition),

0
'ihe‘first-twa rows and columns of the matrix in Eq. (7-8) can be}"

| neg]éCtéd. 'Sin¢e only forcenactuators will be used there will be no
external moment at the end and the*interna?}mdments‘at»tﬁé'intérséction}’

E match{ieaV1ng a force vector of

=T
F 53

= (f, 0, f, 0) . | v, (79

~ The Femaining»4 Xb4»dyhamiC‘stiffness mairix can, because of Eq,v(779),v'
be reduced to a 2 x 2 matrix by‘éo]ving exp]iéit]y for the slopes in
Eq. (7-7) in terms of the deflections. The»reSU1ting relationship 1is

given by

$ob=Bs)q b ' (7-10)

\

where D(s) is the condensed stiffness matrix.
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/ The rema1n1ng 2 x 2 can then be inverted to obtain the transfer funct1on

'matr1x The result has the form

as) = 6(s) Fls) : A S O L
for'the-open-loopforce-disp]acement relationship or

i) eses) B - (-12)

"for_the'velocity-forceVre]atidnship.

©If the feedback‘control for,ve]qcity»feedback takes the~form,
== )

fthe c]osed ~loop transfer funct1on is obta1ned by Eq. (3-1) and the c]osed-
'r1oop system dynam1cs can be determ1ned from the c]osed 1oop character1s- i

t1c equat1on

1+ 6(s) K| =0 | i o (3-2)
As resu1ts‘in‘Chapter'Three indicated, “the inclusion of cross¥ga{ns K]2
and K21 cou]d have a destab111z1ng effect so they w1]1 be el1m1nated

~ The expan§1on«of‘Eq, (3-2) yields the mu1t1var1ab1e feedback

c]osed-]oep cbaracteriStic equation for wh1ch a two.ga1n‘root locus can
Abé constructed as was done in Chapter Three, |

For this example each beam segment will be chosen'to be:the same
]ength,and'VeIocfty‘feedback wilk»be utilized. Therefore, velocity will
be fed back to co-iobated actuators at x = 0.5 and x = 1.0 forethe_
centilever Beam. Figure 37 illustrates that with K]T_= 0, (i.e‘ 0n1y

velocity feedback to a co-Tocated aetuatbr at the end), the root Tocus
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is identical to vth'at'o,f,Figuée 28. Thus, verifying that the cantilever
beam‘constructed'by‘using the dynamicvstiffness/matrix‘approach is
equfva]ent:to[the'eanti]ever'beam deveTOped directly in Chapter Four.
ATso-in Figdre‘37,1it.can'pe'seen,that:feeding backrvelocity to avco-.‘
1ocated'actuator at x = 0.5 alone (K22 = 0);geherates increased dampihg
~ in modes two ahd.four. This increase in damping is the result of |
= 0.5 being the 1ocation of a peak in the mode shape of mode two
. and mode four. A'Iarger ve]ocity signal is aveilable for feedback at
rthese modoihpeaks Mode'three, on the other hénd has‘a node‘near'

= 0’5 Therefore as can be seen in F1gure 37, there is no damping
‘ of mode three |

As was stated previously, MIMO contro] has the potent1a1 for
better contro] of more modes than SISO control. ‘
F1gure 38 demonstrates that for the first four modes of the

cant1]ever beam overall damping is 1mproved w1th two co- 1ocated
' sensor—actuator pairs.  This resu]t is what one would expect a]though
it is counter to the result for the 51m11ar cab]e case obta1ned in
Chapter Three Hav1ng two sensor actuator pairs, a11ows us to set
» two feedbackfga1ns Two cases of ve10c1ty feedback ‘are shown in Figure
‘38. In the first case, K]] = K22, and'1n-the secohd-oase, K]] = 2K22.
In bothvcases, if very high feedback gain'is.used,nmodes'one and two
can be driven to zero frequency; For case two (K]] = 2Ké2) more
damping 1is available than in the ease of K]] = K22‘ This indicates
that the feedhack gafn for sensor-actuator pairs at an interior point
shod]d, fn gehereT, be higher than the gain for the feedback of the

end point, for the best damping in all modes.' Obviously with two
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'sensor-ectuatok pairs, (atix =‘O.5 and x = T.O) only the first two
modes can be controlled in tﬁe best manner. A]though’seme improve-
:meht in damping is‘seen in those modes which have peaks at tHe~1oCation
of'the interior sensor-aetuatprspair,'e.g; mode four ferithis cese,
Therefore, a controller design can be fnitiated based.pn'thefsystem
characteristics illustrated in Figures 37 and 38.

In thjs'chepter we‘have seen that the'dynamic stiffness matrix e
method, in the Laplace trahsformsplane, can be uti]iied to synthesize :
more complexeSfructura]'andvcontrd1 c0nfigurations.' We haVe,elso
exémined an example of MIMO control for a}centilever beam constructed

using the dynamic stiffness approach.



VIII. RESULTS AND CONCLUSIONS

In this work, a formulation using exact transfer function methods
‘has been epplied to’the‘contro] of systemsvgouenned’by partia]hdif-‘
ferentia1 equetions ~Exact transfer funct1ons were developed and
single- 1nput-s1ngle output feedback was app11ed to various cable and beam

conf1gurat1ons; Using the exact re]at1onsh1ps, dynamic stiffness

matrices were developed for cable and beam elements. These elements Were““.

then used to construct more'comp]ex‘configurations. Mu]ti-inputfmuitis
outoutvfeedback contro] was then.investigated. There are Severél sid—e
‘n1f1cant resu]ts |

1) Exact so]ut1ons are obta1ned even though a finite number of
“sensors and actuators are used

2) A11 v1brat10na1 modes can be controlled by us1ng a s1ng]e co-‘
'1ocated sensor-actuator at the boundary of a fixed- free cab1e or beam

3) Pure s1gnals from the 'sensors can be used w1thout any add1-
,t1ona1 s1gna1 processing. | |

| 4) The mu1t1 1nput-mu1t1-outbut 1nvest1gat1on demonstrates that,

even without cross- ga1ns there 1s still interaction between sensor- |
actuator pairs. It appears that this 1nteract1ve-effect needs to be
1nc1uded in any multi- 1nput-mu1t1 output control design.

5) By start1ng with fundamental elements of beams and cab]es,
reasonab]y soph1st1cated systems can be mode]ed. It should be pointed -
‘out, however, thet‘as~thehsystem becomes more general or'complex,‘the

work involved in extracting results increases significant]y;-

70
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6) It would seem that the use of a mu1t1 1nput-mu1t1-output

contro] system would yield the most benefits, since, as.observed in

~the examples shown, a sing1eiactuator_d0es not in‘genera1 damp all the
: vmodes iﬁ possib1y-the,best maﬁher, the exception being the cable whichv
has symhetric’locations ofrpres and zeros, where MIMO control of the
cabie is fbend'to Be‘less effective than SISO. More sophisticated
mu1t1var1ab1e theory than is presently available is needed to deal w1th
the transcendental equations encountered here.

. 7) Finally w1th the deveiopment of more advanced algebra1c
manipulator routines, computers will be able to do most of the algebra
required for app]yihgbto more complex structures, the approach presented
‘here. This may generate interest in developing this approach as‘ah
aiternative-tb sone‘of the‘current techniques. The usefulness of any
techanue can on]y be determined when eventua]]y,1t is used in the
»contro1 of actual hardware. The. f1na] word on wh1ch approach w111 prove -
most useful has‘yet to be written.

To expand the work done here,fsome'suggested topics'to be ih-
vestigated are: | | 7  |

1) A comperison ofvthe exaet transfer fuhction models with
btruncated modal mode1s from the standpoint of control system performance,
and to determ1ne the effects of truncation on model 1ntegr1ty

- 2) The development of mu1t1var1ab1e theory and. techn1ques to

‘handle transfer funct10n matrices of transcendental nature. |

3) Ekpahd the‘dynamic stiffness matrix approach in the Laplace

transform plane to include Timoshenko beam, membrane and plate e]ements.43»
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4) Determine an.acceptab1ej1imit on the‘épacing of sensbrs and
actuators when co-Tocation is‘not_possib1e.
~ 5) The development of methods to carry out more of the necessafy

opérations'numé%ica11y instead of algebraically.
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APPENDIX A
'NOMINAL VALUES OF EXAMPLE GRAPHITE-EPOXY BEAM

Length = 100 meters

Outside radius = 10.55 cm
Wall thickness = 2.275 mm
~Tensile and compressive modulus, E = 3.45 x 1011 n/m2

Mass density = 1607_5% :
: m

Area moment of inertia, I = 8.1 x 108 mt

The mass per unit length, m(x) = 2.397 %ﬂ

Useful factors--using the above values

R 5 S
/R = 0.108
mL4 :

: VEIm
L

= 25.88

2EI .
2L - 5,589

-
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APPENDIX B
BEAM ELEMENT DYNAMIC STIFFNESS MATRIX
IN THE LAPLACE TRANSFORM PLANE
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Table 1 Gain Required»for'erquency Changes
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.570

10.996

— ] el

.224

0, 1 4.712 7.854
o
0 0 0 0 0
2 0.359 0.9 1.633 2.269
4 0.833 2.161 3.490 4.818
5 1.485 3.634 5.764 7.933
.8 2.441 5.676 8.910 12.145
.0 4.003 8.897 ©13.789 18.682
2 7.127 15.203 23.288 131.369
4 17 © 35.439 53.653
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Figure 6. Free-Free Cable
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Characteristic Equation
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Figure 9. End-End Velocity Feedback Root locus
’ (Fixed-Free Cable)
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“Figure Il.  Velocity Feedback to End, x=0.5, 0.67, (Fixed-Free Cable)
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Forces at Both Ends, Two Gain Root Loci,
( Free- Free Cable)
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Figure 26. Beam in Bending Vibration




107

<
-

AUV

" {a) cantilever beam

_
e —"

b)

Figure 27. Cantilever Beam in Bending Vibration, Control
Force at Free End
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Figure 28. Velocity and Displacement Feedback, End - End,
{Cantilever Beam)
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Figure 29. Maximum Damping Ratios for Each Mode, Velocity
Feedback, End to End, ( Example Graphite-Epoxy
Cantilever Beam)
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Figure 30. Cantilever Beam, Arbitrary Sensor Location,
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Figure 32. Displacement Feedback toEnd, x=0.5, 0.8,
(Cantilever Beam)
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Figure 33. Velocity Feedback to End, x=0.5, 0.8, ( Cantilever Beam)
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Figure 34. Free-Free Beam with Control Forces and Moments
at Both ends, and Sign Convention
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Figure 35. Boundary Forces and Displacements, Uniform
Beam Element
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Figure 36. Two Element Beam, Dynamic Stiffness Method
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Figure 37. Velocity Feedback to Co-Located Forces, x=0.5, 1.0,
( Cantilever Beam)
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Figure 38. Velocity Feedback to Co-Located Forces, x =0.5, 1.0,
Two Gain Root Loci, ( Cantilever Beam)



The vita has been removed from
the scanned document



THE USE OF TRANSFER FUNCTION METHODS IN THE FEEDBACK
CONTROL OF DISTRIBUTED PARAMETER SYSTEMS
: by

Richard Morris Amato Goff
(ABSTRACT)

The design of controllers for structural systems, particularly
those associated with large space structures, has received a con-
siderable amdunt'of attention in the past few years. The usual approach
to desighing these controllers is to apply modern control theory toc a
reduced linear system obtained from finite element analysis or from a
truncated modal analysis. In most of these designs, the sensor signal
’must be processed to separate out the contributions ffom each mode‘so
that it may be seht to the appéopriate actuators. The analysis pre-
sented here, on the other hand, obtains exact solutions for a selected
set of sensor and actuator positions for simp]e structural elements.
Sensor signals are fed back directly to the actuators with appropriate:
gains. vThe method of ana]ysié is that of classical control thédry
using Laplace transforms and the associated open and closed-loop
transfer functions. Single-input-single-output feeﬁback control is
applied to various flexible cable and beam ‘configurations. Root-loci
for various values of gain are constructed and the system
characteristics and the global system stabi]ity are determined.

Although the brocedure outlined above can be carried out for

basic structural elements, more complex structures and control



configurations are synthesized using thé dynamic stiffness matrix
method. With this method,,the exact relationships of the basic
elements can‘be combinédvto-allow analysis of multi-input-multi-output
contro]vof more complex structurés. Using this approach, examples for
flexible cable and beam configUrationS are présentedQ It was found
that exact solutions can be obtained using a}finite number of sensors
and actuators. It was also determined that é single co-located sensof-
actuator at the boundary of a fixed-free cable or beam can éontro] a11‘
the vibrational modes of the cable or beam. Also, pure signals from

a perfect sensor can be used without any additionaT signal processing.
The multi-input-multi-output investigation demonstrates that, even
without cross-gain feedback, there is interaction between the sets of
co-located sensor-actuator pairs. It appears that this interactive
effect needs to be includéd'in any mu]ti;inputémulfi—output control
‘design. By»starting with fundamental elements of beams and cablés, it
was shown that reasonably sophisticated systems can be modeléd. e
‘Fina11y, consideréb]e insight is offered by analyzing the control of

flexible structures uSing exact transfer function.re]ationships.
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