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I. lNTRODucnoN 

The design of contra 11 ers for structural systems, pa rti cul arlY . 

those associated with large space structures, has received a considerable· 

amount of attention in the past few years. 1 ' 2' 3,4 ,s. During this time 

methods for providing structural control for problems ranging from 

simple flexible beams6' 7 to complex satellite configuration~s,9 ,lo, 11 

have been reported. These flexible structures are usually required. to 
' ' 

.satisfy not only strength and deflection design criteria~ but also 
. . . -

stringent pointing and vibrational stability criteria. In addition, the 

structural frequencies of large structures tend to approach.orbital 

frequencies, possibly leading to· instabilities. Therefore, active 
' ', 

. .· . 

positioning control and vibration suppression control of these 

structures appear to be required .. For the. design of these controllers, 

in almost all cases, concepts froni modern control theory have been 

applied to a linear model of the original system which in turn was o.b-

·. tained from finite element analysis12 ,l 3,i 4 or from a truncated. modal 

analysis ·of the distributed parameter mode1J5,l6, 17 ·· 

Inherent in these approaches are questions deali hg. with how many 

modes or elements are necessary in order to ge.nerate a good model ,17 , 18 

how many sensors and actuators must be used and where should they be 

located, 19 ,20 , 21 and finally what is the effect of truncation on the 

control design. 

An even more important question concerns the effect of the control 
' ' 

design on the unmodeled or truncated modes (a phenomenon ca 11 ed 

l 
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spillover) .. The. excitation of .these so-call~d residual modes has a 
potentially destabilizing effect on the actual structure. ·The control 

forces which are designed using a truncated· model. to control the modes· .. 

of the truncated model ,tend to spill over irito the residual modes, which 

are not included in the control design analysis~ thus creating possible 

instabilities. 6 In addition,· implementation of these methods requires 

the_ ability to sense the displacement or velocity at some point on the 

structure and process the signal into components for each mqde. These 

signals in turn are fed back into the appropriate actuators. Hence · 

reasonably sophisticated electronics are required to implement such 

controller designs. Although considerable advances in the state-of-the-

art have· been made these past few years and, most 1 i kely, these tech".'· 

ni ques wi 11 be used to design structural contra 11 ers of the future, 

on~ should be willing to explore alternative approachesto structural 

control, especially if they are significantly different, in order to 

extract any additional information which may be revealed about the 

·.subject. 

The purpose of this work is to offer an alternativ-e approach to 

the problem of designing conir<:>ll ers for systems governed by partial 

and ordinary different.ial equations. The technique is based on the 

classical concept of transfer t'unctio_ns which relate the o.utput or 

response of a system to the .input. For simple structures, the dis-

placement (velocity, or slope) at one point can be related to the force 
. ' ' 

applied at another point by an exact transfer function. The accuracy· 

of the transfer function is limited only by the accuracy of the 

mathematical model used to describe the structure. This open-loop 
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transfer function can be used to construct the closed-loop transfer 

function for the case where the displacement (velocity, or slope) is 

fed back to the force. By examining the characteristic equation of 

the cl osed-1 oop transfer function the stability of the closed- loop 

system can be analyzed in detail. The price you pay for this exactness 

is the amount of algebra that is needed to obtain the final result. 

In the chapters which follow, this method will be applied in 

some detail to a flexible cable under tension and to a flexible beam. 

These structural members could also be considered to be elements of a 

larger, more complex flexible structure. The approach taken is to 

develop the transfer function for a cable or beam element and to use 

this fundamental element to obtain the open-loop transfer functions for 

several sensor and actuator locations. 

Utilizing the Laplace transform nature of the solution .for certain 

structural elements, more complex structures can be considered and 

modeled through the use of dynamic stiffness influence coefficients. 

The procedure is similar to the dynamic stiffness matrix analysis used 

for structures, 22 •23 but is carried out here in the domain of the 

Laplace transform. Workability of the dynamic stiffness influence co-

efficients in the Laplace transform plane, for the solution of flexural 

forced vibration problems, has been demonstrated by Beskos and Boley. 24 

Chapter Two is concerned with the vibrating cable. The Laplace 

transform technique will be used to obtain the open- loop transfer func- · 

tions for ca bl es with various boundary conditions. A basic cable 

element will then be developed and the dynamic stiffness matrix method 

applied to examples of varied sen_sor-actuator configurations. 
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The dynamics, stability and control for the cable will be in-

. vesti gated in Chapter Three .. Typical sensor-actuator pairs of interest 

will be examined with appropriate root~loci indicating the behavior of 

the system with various feedback. gains. Selected single-input-single-

output (SISO) systems and multi~input-multi"".output {MIMO) systems will 

be investigated. 

Chapter Four is devoted to the development of various transfer 

functions. for the cantilever beam~ 

Stability and control of the cantilever beam is addressed in 

Chapter Five. 

Chapter Six di scus.ses the development of free.;free beam transfer· 

functions, along with stability a.nalysis and feedback .control. 

· In Chapter Seven the dynamic stiffness matrix is developed for the 

>bearttelement and a structure is created and modeled using the dynamic 

stiffness matrix approach. 

Results, conclusions and recommendations for future research are 
.. . . 

contained fo Chapter Eight. The deve 1 opments presented, coupling the 

Laplace transform and the dynamic stiffness approach with classical 

feedback analysis is unique with this work. Furthermore, little or no 

work has previoµsly been done u·sing multi-input~multi.-output control with 

transcendenta 1 transfer function matrices. The work done here opens the 

door to an area of research which commands considerable attention. It 

is intended that this investigation will offer alternative approaches 

tci the analysis of feedback control of systems governed by ordinary and 

partial differential equations, and provide a stimulus for future 

research; 



II. FLEXIBLE CABLE 

The first structural member to be investigated is a vibrating 

cable. From the governing partial differential equation for the 

cable, several transfer function relationships will be developed. The 

concept of a generic cable element dynamic stiffness matrix will be 

explored. This cable element stiffness matrix will then be used to 

generate transfer functions for more complex actuator-sensor configura-

tions along the cable. It will also be shown that any specific cable 

boundary conditions and control configuration can be obtained by simple 

construction from the cable element dynamic stiffness matrix. 

The vibrating cable is considered to be a continuous or dis-

tributed parameter system, that is one governed by a partial differential 

equation. As shown in Figure la, f(x,t), p(x), and T(x) are the 

distributed force, mass density, and tension in the cable, respectively, 

expressed as a function of position, x along the cable. For this 

analysis, negligible structural damping and no transverse stiffness is 

assumed. The inclusion of damping would not affect the procedure to 

be described at all. !tis only omitted to simplify the results. As 

demonstrated in previous work, 25 damping improves the overall stability 

of the system without changing the relative character of the results. 

The equation of motion describing the transverse motion of the 

cable can be obtained by examining a differential element of the cable. 

Figure lb represents the free body diagram corresponding to a dif-

ferential element of cable of length dx. Applying Newton's second law 

5 
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in the vertical direction, assuming small deflections, only vertical 

motion and ignoring second-order terms in dx, we find that the governing 

partial differential equation of motion of the cable is given by26 

L[r(x) ay(x, t)] ax ·. ax J + f(x,t) = p(x) a2y(x,t) 
at2 

0 .:s_ x .:s_ L (2-l) 

While Eq. (2-1) is the general equation of motion of the cable, it can 

be simplified by certain appropriate assumptions. In addition, any 

solution of Eq. (2-l) will depend on the particular boundary conditions 

of the cable configuration under consideration. In this chapter, 

several configurations are considered. 

Fixed-free cable with a discrete mass at end 

The first configuration to be investigated is a cable of length L 

with constant mass per unit 1 ength, p, subjected to a constant tension 

T. This cable is fixed at one end~ while the other end is free with a 

concentrated mass attached. A control force is acting vertically on 

the mass at the free end. Furthermore, there .is no distributed force 

f(x,t) acting along the cable, {see Figure 2a). For this particular 

prob 1 em Eq. (2-1) reduces to 

P a2x(x,t) = T a2y(x,t) 
at2 ax2 

0 < x < L (2-2) 

with the associated boundary condition at the fixed end x = 0, 

y(O,t) = 0 (2-3) 

By writing Newton 1 s second law for the free end, shown in Figure 2b, the 

boundary condition for the free end x = L becomes, 
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2 
f _ T ay(x,t) I. = ma y(x,t) I (2_4) 
L ax lx=L at2 

x=L 

Eq. {2-2) can now be solved for .the lateral deflection y{x,t). How-

ever, rather than obtain the solution, we seek the relationship between 

the displacement at one point (output) due to a force at another (or 

the same) point (input), in this case that of the mass. The Laplace 

transform of this output over input ratio is known as a transfer func-

tion and relates the output to the input. Hence the solution of Eq. 

(2-2) will be obtained by making use of the Laplace transform. This 

method of solution al so admits any type of excitation or control force, 

harmonic as well as non-periodic. 26 In order to generate unique trans-

fer functions using the Laplace transform method, it is assumed that 

the initial conditions of displacement and velocity are zero. 

y(x,t) = ;(x,t) = 0 (2-5) 

The Laplace transform with respect to time of Eq. ( 2-2) is 

0 < x < L (2-6) 

where s is the Laplace transform variable. The transformed boundary 

conditions a re 

y(O,s) = 0 (2-7a) 

and 

f . - T dy ( x ' 5 )j = ms 2 y ( L , s ) 
L . dx x=L 

(2-7b) 

Rearranging Eq. (2-6) yields, 
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2 
d y(x,s) - ~ s2y(x,s) = 0 

dx2 T 
(2-8) 

The solution to Eq. (2-8) is 

y(x,s) =A sinh ./p/T sx + B cash ./p/T sx (2--9) 

where constants A and Bare determined from the boundary conditions, 

Eq. (2 .. 7). The transfer function Gxl(s) relating the general displace-

ment response to a force on the mass at the end of the fixed-free cable 

is found to be 

y(x,s) = G (s) = sinh/QZf sx 
fl(s) xl s(v'PJ cosh./p/T sl +ms sinhlp/T sL) ( 2-10) 

where the first subscript (x) is the location of the response and the 

second subscript (L) is the locationof the force. By taking the 

derivative with respect to x we have the transfer function relating the 

general slope response to a force on a mass at the end of the cable 

y'(x,s) = · .. !Plf"coshlP/Tsx 
fL · IPF cosh/p/T sl + ms sinh /p/T sl ( 2~ l1) 

Looking at the special case of the response at the free end due to a 

·force on a mass at the free end of the cab le yields the transfer 

functions: 

for displacement, 

y(L,s) sinhljj/T sl 
f L · = s( /Pf cosh/p/T sl + ms sinh/p/T sl) 

and similarly for slope, 

y' (L,s) 
f L 

/p/T cosh/p/T sl = -==----.........,;,,~,_..,..-...,.;...;.----==~ /Pf cosh/p/T sl + ms sinh/p/T sl 

(2-12) 

(2-13) 
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The velocity-force transfer function is obtained by taking the 

derivative of y(L,s) with respect to time. In the s domain this is 

done by multiplying by the transfer variable s. 

(2-14) 

or specifically 

y (L , s ) = --=---_..,....,,s~i ,.._nh.,.._./..:...p /._T_. ....s L----............... -~ 
fl /PT cosh/p/T sl + ms sinh/p/T sl ( 2-15) 

Free-free cable, discrete masses on both ends 

In this case we will examine a constant mass density cable that is 

free at both ends, subjected to a constant tension, with concentrated 

masses at both boundaries. Control forces are applied vertically at 

both ends of the cable (see Figure 3a). The governing partial dif-

ferential .equation is again given by Eq. (2-2). The boundary conditions 

at both ends are found by applying Newton's second law to the free 

bodies at each end of the cable (see Figure 3b). The boundary condi-

ti ons are, at x=O 

f + T ay(x,t)I = m 32y(x2t)I 
1 ax . x=O 1 at x=O 

(2-16a) 

and at x=L 

2 f _ T ay(x,t)I = m a y(x,t)I 
2 ax =L 2 at2 x x=L 

(2-16b) 

Again transfer function relationships are desired so the Laplace trans.,. 

form method will be applied. Taking the Laplace transform of Eqs. (2-2) 

and (2-16) with respect to time, assuming initial conditions of Eq. (2-5), 
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we obtain a solution of the form of Eq. (2-9). Enforcing the boundary 

conditions yields the desired result. Letting 

fl= s(m11PF cosh/p/T sL + pT sinh/p/T sL + m1m2 s2 sinh/p/Tsl 

+ m2 s/p/T cosh/p/T sl) , ( 2-17) 

then the displacement reponse in the s domain is 

y{x,s) = {[..;/PF sinh/p/T sL - m2s cosh/p/T st] sinh/p/T sx 

+ [/Pf cosh/i)/T sl + m2s sinhlP/f sl] cosh;;/f sx}[f ] 
b. . l 

+ {m1s sinh/p/T sx + /Pf cosh/p/T sx} .... ] 
b. [f 2 (2-18) 

Eq. {2-18) now gives an algebraic expression relating the dis-

placement of any point on the cable to the vertical control forces at 

either end. Notice that this free-free cable is a very simple case of 

an unrestrained continuous and discrete parameter system. Several cases 

of interest can be reduced from Eq. (2-18). One such case is that of 

the free-free cable without the discrete masses on the ends. This free-

free cable can be thought of as a basic element which can be used to 

construct more complex structural configurations. This construction 

method, known as the dynamic st'iffness matrix method, will be carried 

out here ~n the Laplace domain. 

Cable configurations having various boundary conditions and 

control force configurations can be constructed from the dynamic stiff-

ness matrix of the free-free cable element. The analysis of these more 

complex configurations tends to be cumbersome when directly applying the 

Laplace transform method used above. The dynamic stiffness method 
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-
uses exact continuous elements.rather than approximate or discrete ele-

. ments as in the case of the finite element method.· Therefore, it gives ·.. . .. . ' 

the. exact solution of the dynamic problem, within the limits of the 

original mathematical model. This method ·also does not require knowledge . 

of the natural frequencies and mode shapes for the computation of the 

response as in the case of the finite element method in conjunction with 
. d. ·1 l . 24 mo a .ana ys1s. 

Dynamic stiffness matrix for the cable element 

The. dynamic stiffness influence coefficients d .. which· make ·up lJ . . . 

the dynamic stiffness matrix in the Laplace transform plane are expres.-

sions' that a.re a function of s and describe the generalized boundary 

forces of a structural element in terms of the generalized boundary 

. displacements .. In this case the dynamic stiffness matrix for . 

a cable element can be developed starting with Eq. (2-18). Assuming 

the discrete masses equal to zero and evaluating the displacement of 

the cable.only at the ends yields a matrix equation of the form 

j(x) = G(s) ~(s) (2.-19) 

where 
T 

j{s) = (y(O,s),y(L,s)) 

and 

and G{s) is the open.- loop transfer function matrix of the free-free. · 

cable. Solving Eq~ (2.-19) for the force in terms of the displacement 

yields 
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-1 
f(s) = G(s) y{s) (2-20) 

or 

f(s) = D{s) y(s) (2-21) 

where D(s) the dynamic stiffness matrix for the free-free cable element 

is found to be 

_ .· .. · .. 1 .. · . ·[s/Pf co.sh/p/T sl -slPf l 
D(s) - sinh/p/T sl , -s/Pf s/Pf cosh/p/T sl (2-22) 

Having obtained the dynamic stiffness matrix in the Laplace domain, a 

powerful tool is now available for constructing other cable configura• 

tions. 

To demonstrate the construction of other cable configurations by 

the dynamic stiffness method, the following examples will be developed: 

Example l is a fixed-free cable with a force at the free end; 

Example 2 is a fixed-free cable with a force at the end and at 

an arbitrary interior point; 

Example 3 is a fixed-free cable with three forces including one 

at the free end; 

Example 4 is a free-free 5=able with three forces, including one 

at each end. 

Examplel. Fixed-free cable, force at free end 

The development starts with the dynamic stiffness matrix given by 

Eq. (2-22). Because the cable is fixed at x=O, we assume f 1(s) in 

Eq. (2-21) sufficient to hold y1 (s) = 0, and can therefore delete the 

first row and column of the stiffness matrix of Eq. (2-22), yielding 
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f2(s) = s/Pf coshlP/f sl Y (s) 
sinh/p/T sl 2 

Solving Eq. (2-23) for y2(s) yields 

sinh/P7f sl 
= s/Pf cosh/p/T sl f 2 (s) 

We can see by comparing Eq. (2-24) with Eq. (2-10) that they are 

(2-23) 

(2-24) 

identical, if the discrete mass in Eq. (2-10) is set equal to zero, thus 

validating the dynamic stiffness method for this case. 

Example 2. Fixed-free cable with force at end and an arbitrary point 

The basic dynamic stiffness matrix for the cable element, Eq. 

(2~22) can be expressed symbolically in Eq. (2-21) as 

f 1 (s)} = d11 

f2(s)J d21 
(2-25) 

By joining two cable elements (see Figure 4), it can be shown that we 

can match displacement boundary conditions to obtain 

i::J = 

dl la dl2a 

d~2bl Fl d2la d22a + dllb (2-26) 

0 d21b d22b Y2 

where the extra subscript indicates to which cable segments, a or b the 

coefficient refers. The cable segment, a is fixed at x=O and therefore 

can assume f 0 sufficient to hold y0 = 0. This allows us to delete the 

first row and column of the dynamic stiffness matrix of Eq. (2-26), 

yielding 
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-
fl rd22a + dl 1 b d12b Y1 

= l d2lb 

(2-27) 
f 2 d22b Y2 

-Solving Eq. (2-27) for y in terms of f yields the transfer function 

matrix equation 

= 1 . . .. · . [s. inh/p/T sx·. cosh/p./T s(L-x) 
s/Pf cosh/p/T sL 

si nh/p/T sx 

sin. h./p. /T sxl 
si nh/p/T SL 

(2-28) 

This is an exact relationship of the displacement at an arbitrary point, 

(1) and the end, (2) with forces at the point and the end of the fixed-

free cable. Note that it is importantwhen constructing the elements of 

the dynamic stiffness matrix that the length L of the element of the 

stiffness matrix Eq. (2-22) be replaced with the length of the cable seg-

ment for which the matrix is being applied, e.g. here d22a contains the 
length x and d22b contains the length (L-x) in place of the L in d22 of 

Eq. (2-22). 

It is now evident that we can, in theory, piece together man_x 

cable segments with many contro-1 forces using the dynamic stiffness 

method. The basic cable element relationship Eq. (2-22) can be 

repeatedly applied for any number of forces acting on the cable by con-

sidering the cable between any two forces or displacements as a basic 

cable element and superimposing them for each element of the cable. 

To reduce the complexity of the terms in Eq. (2-22) we will, for future 

convenience, select the length of the cable as unity and set p = T = 1. 



15 

Eq. (2,..21) with Eq. { 2-22) can now be written as 

[
coshsl 

- s - sinhsl · .. · 
-1 

(2-29) 

Example 3. The fixed-free cable, three forces including one at the 

free end. 

The cable shown in Figure 5 can be described by 

f(s} = D(s) y{s) (2-21) 

where 

and 
T 

y(s) = (yO,yl ,y2,y3) 

and the dynamic stiffness matrix, D(s) obtained from repeated super-

position of Eq. (2-29). is given by 

D(s) = s 

coshxs 
sinhxs 

-1 
sinhxs 

0 

0 

-1 
sinhxs 

coshxs + cosh(z-x)s 
sinhxs · sinh(z-x)s 

-1 
sinh(z-x)s 

0 

0 0 

-1 0 sinh(z-x}s 

cosh(z-x)s + cosh(J-z)s .,.-,-...,..-....,..1 _...--1 

sinh(z-x)s sinh(l-z)s sinh(l-z)s 

-1 
sinh{l-z)s 

cosh(l-z)s 
sinh(l-z)s 

(2-30) 

where x and z are the locations of f1 and f 2 measured from f 0. Again if 

we assume that f 0 is sufficient to hold Yo = 0, the first row and column 

of the matrix in Eq. (2-30) can be neglected and the remaining matrix 



16 

inverted to obtain the transfer function matrix. The result has the 

form 

y(s) = G(s) f(s) 

where 
T 

y(s) = (yl ,y2,Y) 

and 
- T 
f(s) = (f1 ,f2,f3) 

and the transfer function matrix becomes27 

sinhxs·cosh(l-x)s sinhxs·cosh(l-z)s sinhxs 
l G(s) = _.........,__ s coshs sinhxs•cosh{l-z)s 

sinhxs 

cosh{l-z)s·sinhzs s i nhzs 

sinhzs s i nhs · 

(2-19) 

(2-31) 

Example 4. The free-free cable, three forces, including one at each 

end. 

This is an interesting case which has all the ingredients of a 

satellite problem (i.e. rigid body motion as well as structural vibra-

tion). Here the cable is under constant tension and free to translate 

(see Figure 6). The transfer function matrix for this case can be ob-

tained by using the procedures _outlined above. The result is given by 

y(s) = G(s) f(s) (2-19) 

where 
-T y . = (yO,yl ,y2) 

and 

and 
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[ coshs cosh( 1 •x}s 

1 l G(s) 1 cosh(l-x)s coshxs cosh(l-x)s coshxs. (2-32) = si nhs s 
1 . coshxs coshs 

Note that by letting f1 = 0 and ignoring y1, we can delete the second 

row and column of the above matrix. This yields Eq. (2-18) (with 

appropriate change of nomenclature) with m1 = m2 = 0, for the special 

cases of x = 0 and x = L. 

In this chapter we have seen the development of force-deflection 

and force-velocity relationships for several cases of flexible cable 

conf i gurati ans. vJe have also i 11 ustra ted the dynamic stiffness matrix 

approach for generating various cable element-control force configura-

tions and have obtained the transfer functions for several examples. 

Having done this let us now turn our attention to the system dynamics 

and stability of the vibrating cable, and the characteristics of 

vibration suppression control via closed-loop feedback using root locus 

analysis. 



III. FLEXIBLE CABLE--STABILITY AND CONTROL 

When one looks at the question of the stability and control design 

for a dynamical system many avenues of approach can be taken. The 

method chosen for this examination is the classical root-locus analysis 

technique. 

In Chapter Two we developed transfer function matrices relating 

the displacements and forces at a finite number of points along the 

cable. These are exact transfer functions for the system governed by 

Eq. (2-l). The system natura 1 frequencies can be obtained by setting 

the denominator nf each transfer functton equal to zero and solving for 

s, where s = n + iw. It is easily verified that the solution of coshs = 
0 from Eq. (2-24) will yield imaginary values of scorresponding to the 

frequencies associated with a fixed-free cable. ln addition sinhs = 0 

(the free-free cable characteristic equation) yields the frequencies 

associated with a free-free cable including w = 0 corresponding to the 

rigid body motion (in this case pure translation). 

The transfer functions associated with cable velocity at speci-

fied points can be easily obtained from those developed in Chapter Two 

for the displacement, by simply multiplying through bys, the deriva-

tive operator in the Laplace plane. By taking the derivative of G(s) 

with respect to x, the position of some generic point on the cable, 

transfer functions relating the cable slope and the force can be 

determined. 

18 
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Feedback control 

Consider a system with inputs fi' i = 1,2, ..• ,rn and outputs yj' 

j = l,2, ... ,r. Associated with this system is an r x m transfer func-

tion matrix G(s}. One could sense all the outputs and in turn feed 

those back with some gain to all the inputs, requiring a m x r feedback 

matrix K. A block diagram of the system is shown in Figure 7. The 

closed-loop transfer function matrix can be shown to be (for Li the same 

dimension as f) 
-1 

G(s)CL = [Ir + G(s)K] G(s) (3-1) 

where Ir is an r x r identity matrix. The closed-loop system dynamics 

can be determined from the closed-loop characteristic equation 

I Ir+ G(s)K] = 0 (3-2) 

For the case of a single force and a single displacement, i.e., a 

single-input-single-output-system (SISO), all the classic tools for 

control design can be utilized. 28 Again it should be emphasized that 

all results obtained have no assumptions other than those inherent in 

Eq. (2-2). 
The SISO open-loop transfer function for a fixed-free cable which 

rel ates the displacements at some arbitrary point, x, to a force at the 

end of the cable can be obtained from the matrix in Eq. (2-31) by 

selecting the G(l,3) element: 

y(x,s) = sinhxs = G(s) 
f(l ,s) s coshs (3-3) 

Ifs = n + iw is substituted into the transfer function, Eq. (3-3), the 
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open-loop po1es and :zeros can be determined to be: 

zeros n = 0 

poles n = 0 

kn'IT 
w = 2x k even n . 

The open-Toop pole and zero locatfons, for various sensor positions, x 

are shown in Figure 8. 

The closed-loop transfer function can be obtained fromEq. (3-l) 

with Eq. (3-3} and is given by 

sinhxs 
G{s}CL = ~ coshs ~ K sinhxs . (3-5) 

. . 

·with the associated closed loop characteristic equation, Eq. (3-2) of 

s coshs +.K sinhxs = 0 (3,..6) 

. . 
where K.is the feedback gain which we can select. 

In order to ·determine the dynamic characteristics of the closed-

loop system we can .solve the characteristic equation for various values 

of K ranging from zero to infinity or we can make us.e of the rules· for 

construe ting a root locus. 

For the case of displacement feedbac.k from the end of the cable to 

a force at the end of the cable, x = l, the root locus can be predicted 

from the pole-zero plot of Figure 8. Since pol es mi grate to .zeros for 

increasing values of K it is suspected that increasing the gain simply'-

changes the frequency of the system but provides no damping. With an 

infinite gain the frequencies of the closed-loop system approach those 

of a fixed-fixed cable: as would be expected. F1,.1rthermore, we would .. 

expect that h1gher gains are nec~ssary to drive the closed"". loop poles a 
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given distance away from the open~loop poles at the higher frequencies. 

For this particular problem an analytic expression relating the change 

in frequency to the gain can be developed and is given by 

(w0 + ~w) Tan ~w = K (3-7). 

where w0 is the open-loop pole from which the locus starts. Table T 

shows some solutions of Eq. (3~7) for selected frequencies. As can be 

. seen from Table l, it does in fact require more gain to drive a closed-

loop pole a given distance away from an open-loop pole at the higher 

frequencies. 

The solution of the closed-loop characteristic equation, Eq. (3-6) 

for various values of gain from zero to infinity verifies that dis-

placement feedback for this case changes frequency and provides no 

damping. 

If velocity feedback at the cable end is used instead of dis-

placement feedback, the open-loop transfer function has the form 

G(s) = sinhxs 
coshs (3-8) 

where x = l, with the associated closed loop characteristic equation 

coshs + K sinhxs = 0 (3-9) 

The pole-zero plot of the open-loop transfer function is similar to that 

in Figure 8 with the exception of the pole-zero cancellation at the 

origin which is now just a zero. If we let s = n + iw we can obtain 

analytic solutions for the feedback of velocity. The results are 

given by 
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The root locus plot is shown in Figure 9. 

It is seen from the root locus that all the modes are controlled 

by feeding back the velocity at the end of the cable to a force at the 

end. Furthermore no special filter is needed to process the sensor 

signal. For this particular case all modes are affected the same for a 

given gain. For gains less than one, the frequencies of vibration are 

the same as the open-loop frequencies but the motion is damped out. 

For gains greater than one the frequencies jump to those of a fixed-

fixed cable and the motion is also damped. At a gain of one, n = - 00 and 

it can be shown that the system comes to rest in a finite time. 29 

Let us now observe what happens to the zeros of the system when 

we move the sensor from the end where it is co-located with the force, 

to some arbitrary point, x. FromFigure 8 it can be seen that the 

zeros of the system move upward on the imaginary axis as th.e va 1 ue of 

x is decreased. Decreasing x corresponds to physically moving the 

sensor farther away frorri the force. Furthermore, the zeros farthest 

away from the origin of the s plane move a greater distance than those 

closer to the origin for a given sensor position. Hence one can see 

that the pole-'zero-pole pattern which occurs with the sensor at the end, 

x == 1 , wi 11 be disrupted as x decreases from the va 1 ue of l . The 

alternating pattern will be changed initially at large values of w. It 

can easily be shown from Eq. ( 3-'4) that such a change in pattern wi 11 
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occur for the zero associated with kn when 

. k~ 

x = 1 + k ( 3-lJ ) 
. n 

As an example for kn = 2, .x = 0.667, while for kr1 = 24, x = 0.96. It is 

significant that these represent node positions which, for these cases, 

. are for the se.cond and thirteenth mode shapes respectively. 
. . 

It can also be noted that the node of some mode will be crossed. 

when moving a sensor any di stance away from th·e end. vlhen the sensor is 

located just beyond the node of a particular mode, the displacement and 

velocity of this location are opposite those of the end where the force 

is located. Therefore, feeding back information sensed at this loca~. 
·. . ' .' 

ti on to the force at the end is detrimental to control of this mode. 
. . . ·. ' . . . ; . 

Root-1 oci for both displacement .and velocity feedback from a 

sensor located away from the end can be generated from the solution of 

Eqs ~ (3-6) and (3-9), respectively. 
. . 

The generation of root-loci analytically is, in general, not 

practical. Consequently, a computer routine will be employed. Most 

computer routines that generate .roof-loci need to be supplied with 
. . 

polynomial functions or factors ... 3o In this work the solution of a 

.transcendental equation is required. One method of solution, for the 

generation of the root loci, is the use of a computer routine which 

includes an lMSL routine called ZSCNT31 which solves for the roots of 

a set of non-linear simultaneous equations, the complex characteristic 

equation, Eq. (3-2) being one of these sets when separated into real 

·. and imaginary equations. The procedure is to apply repeatedly the 

ZSCNT routine starting with the open:--loop pole position with zero gain 
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-as the first guess. Then, incrementing the gain, solve for the first 

closed•lopp pole position. This pole is then used as the guess for 

solving for the pole at the next gain value and so on. This method is 

found to be highly reliable for calculating root-loci, although 

occasionally sensitive to abrupt changes in locus direction. 

Using this computer routine, the cases where a sensor is located 

at either x = 0.667 or x = 0.50 are examined and the root-loci 

constructed for both the displacement and velocity feedback situations. 

The results are presented in Figures 10 and 11. As seen from Figure 8, 

both of these cases have a repeated pattern open-loop pole-zero distri~ 

bution along the imaginary axis. The case where x = 0.667 represents a 

displacement or a velocity feedback from the node of the second, fifth, 

etc., modes, and shows up as a pole-zero cancellation for those modes. 

At x = 0.50 on the other hand, there is no node at that point for any 

mode {similar to the point at the end of the cable), but two poles 

associated with the first two modes are no longer separated by a zero. 

By examining Figures 10 and 11 we can make the following observa-

tions: 1) As far as the root locus is concerned, if an open-loop pole-

zero cancellation occurs, two open-1 oop poles appear adjacent to each 

other on the imaginary axis, 2) If two open-loop poles appear adjacent 

to each other because of the sensor location, an instability will occur 

for either displacement or velocity feedback. With these observations 

in rni nd we can return to Eq. ( 3-11 ) . Here, for example, we see that a 

sensor at x = 0.96 will cause a pole-zero cancellation for kn = 24 or 

for the thirteenth mode. Up to that point on the imaginary axis there 

is an alternating pole-zero pattern on the imaginary axis. We expect 
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that velocity feedback from that sensor location to the force at the 
. . . ·~ . 

end of the cable would provide darnping up through the thirte.enth mode 

but .would cause instabilities for selected higher modes. 

The cases for velocity and displacement feedback for a sensor 

located at x == 0.9 are shown in Figure 12 .. Here we see that displace-· 

mentfeedback does· indeed simply change the frequencies of the modes 

except where the two poles appear adjacent where gains above a certain 

value cause an instability. For velocity feedback from the same point 

{x = 0. 9) it is seen that the 1 owe r modes a re damped wh i.l e the modes 

immediately above the two poles which appear adjacent are unstable for 

all.gains. 

The.cases whereopen-loop pole:"'"zero cancellations take place on 

the imaginary axis, such as when x = 0.4, 0.667, 0.80 (s·ee Figure 8), 
·. . 

correspond to the placement of the sensor at the node of the mode shape 

associated with the pole cancelled. Consequently this mode is un~ 

.controlled and continues to oscillate unattenuated. As might be 

expected, a sens.or at the node of a mode cannot transmit any information 

about that mode. 

It has bee.n shown that velocity feedback to a co-located actuator . . ' . . . .. . . 

is always stabi 1izing07,32 Thi.s case can be examined here by obtaining 

· the transfer function relating the velocity output at some arbitrary 

point xto the input at the same point. From Eq. (2-3l)this transfer· 

function is equivale:nt to s·G(l, 1} or 

G{s) = si nhxs~c:osh( 1-x)s ,,, it§.1J.· 
coshs f\s:T .. . x 

(3-12) 



26 

The open-loop pole-zero plots for Eq. (3-12) for various values of x 

are shown in Figure 13. Here we see the alternate pole-zero pattern 

is retained for all values of x. Furthermore, where pole-zero cancella-

tions occur (at nodes) there is a second zero to retain the apparent 

alternating pattern, hence damping is assured for all co-located 

actuator and sensor locations. The modes which have nodes where the 

sensor and actuator are located are uncontrolled as indicated previously. 

Closing the loop by applying Eq. (3-1) to Eq. (3-12) the 

characteristic equation, Eq. (3-2), can be solved on the computer as 

previously indicated. 

The root-loci for the case where x = 0.667 and x = 0.9 are pre-

sented in Figure 14. Here the expected results have been verified. As 

can be seen, the effectiveness of the controller on a given mode depends 

upon how far the sensor is from a node of that mode as might be 

expected. 

Multivariable feedback 

In the previous section we saw how one actuator could control all 

the modes of motion. It might be expected however that a better Job 

could be done with more than one sensor and actuator. Here we will 

examine two cases for the fixed-free cable. Velocity and displacement 

at one point fed back into one actuator at the same point and velocity 

at two points fed back into an actuator at each point. We will then 

examine two cases for the free,..free cable. Velocity and displacement 

fed back to an actuator at one end and velocity and displacement fed 

back to actuators at both ends. 
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Case 1 •• Velocity and di spl atement fed back to one force at the erid of 

the fixed-free cable. 

The. transf~r function for this case is given by 

. { ( .. )}. sinhs 
Y .. l _s_ . . .. · s. cos.hs ·. g.11 . . . = f = f 

· · • · ·. ·_ s i nhs . 1-·· - ·_· · 1 
Y1 (s} · · coshs · · g21 ·. 

(3_;13) 

If the feedback control takes the form, 

(3-14) 

the term in brackets fromEq. (3-l) has the form 

l + gl 1. Kl l gl 1 Kl 2 
·· Ir + G(s}K = (3-15) 

g21 Kll l + g21 Kl2 

and the characteristic equation, Eq. {3-2) becomes 

{3-16) 

or 

(3-17) 

Eq. (3-17) is the multivariable feedback closed-loop cha-racteristic 

equation for which a two gain root locus can be constructed . 

. Before we proceed, however, a definition of the zeros o( a MIMO 

system is needed. The term 11 zeros of G(s) 11 has sometimes been used for 

the individual entries of G(s) .33 Although a broader definition has 

been·given for polynomial functions, 33 the definition proposed here is 
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a simple and useful one. A system zero will be defined as 11 any root 

of any term or group of terms which is a cQefficient of a specifiC 

. feedback gain or group of cross gains in the clos.ed-loop cha ractey-is tic 
' . . 

equation.'' The purpose of this definition is to illuminate·where- the 
. . . 

closed-loop poles will tend to go when the feedback gains are :very high~ 

This def_initton will be used when referring to the system zeros·of the 

MIMO- systems tcr follow. 

FromEq~ {3:-17), it can be seen that the open-loop pole locations 

( i .e. , K11 = K12 = 0) a re the same as for the case of only di sp la cement 

feedback, as would be expected since the open-loop pole location~ are 

dependent on boundary conditions .. · The system .zeros, by the definition 

given previously, are also found to be the same as the individual 
. ' . ·. 

·velocity and displacement open-loop transfer functio.n zeros, an 

expected result since the zeros depend on sensor location. 

A two gain root locus will now be generated from the solution of 

Eq. (3~17). Obviously with a two gafo root locus there are many choices 

of how to increment the feedback. gains. Two approaches are investigated 

here. The first is while maintaining constant velocity gain; the 

displacement gain is increased. The second is whi.l e maintai ni.ng 

constant displacement gain, the velocity gain is increased. For the 

first approach, three values of constant velocity gain will be used. 

They are Kv = 0.7617 which yields n = -1 for w equal to the frequencies· 

of the open-loop poles, Kv = 0.964 which yields n =.-2 for (ll equal to 

the frequencies of the open-loop p.oles, and Kv = l.04 which yields 

n = -2 for w equal to the frequencies of the system zeros. For each of 

these constant velocity gains the_displacement gain is incremented from 
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K0 = Oto 25. The second approach is with constant displacement gains, 

K0 = 0.2, 0.5 and 3.5, and incrementing the velocity gain from Kv = 0 

to 25. Both of these approaches generate a family of root-loci, shown 

in Figure 15. As can be seen from Figure 15, if both velocity and 

displacement feedback are used the damping is limited. Increasing the 

displacement gain drives the system back toward the imaginary axis 

(i.e., no damping, just oscillation at a higher frequency). Increasing 

the velocity gain with a small amount of displacement feedback generates 

some damping, but the amount of available damping decreases with in-

creasing displacement gain. Even the slightest amount of displacement 

feedback causes the amount of damping to be limited. l4ith no displace-

ment feedback we saw in Figure 9 that there was no limit to the amount 

of damping~ This situation corresponds to a pole located equidistant 

from two zeros. ~vi th some displacement feedback the closed-1 oop pol es 

are moved closer to the zero above it and we now see from Figure 15 

that the closer the closed-loop pole is to the zero initially the 

smaller the amount of damping that can be generated from velocity feed-

back. This result indicates that there is no advantage in using both 

velocity and displacement feedback for the fixed-free cable unless a 

change of frequency is desired. 

Case 2 - Velocity feedback from an arbitrary point and the end to 

actuators at the arbitrary point and the end. 

The transfer function matrix for this case can be obtained from 

Eq. (2-31) as 
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1 [sinhxs·cosh(l-x)s 
coshs sinhxs 

s ~ nhxsl {f.1 }. 
srnhs f 2 

If the feedback control is given by 

{fl}. = -[Kl .1 
f 2 K21 

the term in brackets from Eq. (3-l) has the form 

gll Kl 2 ·+" gl2K22 l 
l + g21K12 + g22K22 · 

(3-18) 

(3-19) 

(3-20) 

~Je could now follow the procedure used in case one, that is, 

simply extending the SISO controller to a MIMO control system directly. 

For most systems, the extension of SISO design methods to MIMO systems 

is not advisabfe , 34 the di ffi cul ty being the need, in general , to 

design all the entries in the gain matrix, k, simultaneously. A 

properly designed K matrix assures that the interactive effects of the 

MIMO system will contribute to stability rather than instability. It 

was found for SISO feedback for the cable that feeding back velocity and 

displacement to other than co-located actuators can lead to system in-

stabilities. For this reason (although at this stage possibly an 

invalid reason}, we suspect .that for the MIMO system this interactive 

effect would continue to be a destabilizing influence. The problem 

which could arise by the elimination of this cross-gain feedback inter-

action is that the system could become unstable when high values of 

gain are app1ied in both feedback loops. A high value of gain in 

either loop alone usually can be.tolerated. 34 Since there are 
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limitless combinations of the values for the elements of a fully popu-

lated K matrix, initially the system stability will be analyzed without 

cross-gains.·. Some selected, cross-gain cases will then be discussed; 
. . . 

. The characteristic equation associated With Eq. {3-20) is given 

by 

Eliminating cross.-gains, K12 = K21 =0, Eq. (3-21) becomes .. 

l + 9nK11 + 922K2·2 + (gllg22 - g2lgl2)Kllk22 = O · 

(3-21) 

(3-22) 

With appropriate substitutions, the above equation is the closed-loop 

characteristic equation for the system described by the open"'."loop 

transfer function matrix in Eq. (3-18) .. Eq. {3"-22) can be used to 

generate a two gain root .. locus. 
.· ·. 

It is clear from Eq. (3-22) that even though we are fe.eding back 

the velocities only to the co-located forces, there still is some 

inte·raction between the two points. It cannot be determined without 

analyzing Eq:· (3-22) if this interaction is favorable or not. An impor-

tant point to be noted, however, is that the interaction of co .. located 

sensor-actuator pairs is more complex than just a simple superposition 

of individual contributions. 
. .. 

Proceeding with the analysis, substituting in appropriate values 

from Eq~ (3-l8) into Eq. (3-22) yields the closed-. loop characteristic 

·.equation 
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coshs + (_sinhxs•cosh{J.-x)s}K11 + sinhs K22 

+ [{sinhxs·cosh(_l-x)s) sinhs - sfoh2xsJK11K22 = 0 (3-23) 

In this case the open-loop poles are still the same as the previous 

case. The system zeros in this case correspond to_ the zeros of a SISO 

system with a sensor at the end, and the zeros of a SISO system with a_ 

sensor at some specific location x. There are also a.dditional zeros 

__ from the interactive te.rm (th~ last term). For solution of Eq. (3,-23) 

three approaches are taken for each of two cases. The first case is 

velocity feedback from sensors at x == 0.67 and the end to co-located 

forces. The second case is velocity feedback from sensors at x = 0.5 

and the end to co-located forces. The second case was selected since 

-- for each location individually SISO velocity feedback provided a· means 

far driving th~ real parts of the closed-loop poles to negative 00 for 

the case of K = 1 and K = 2 for x = 1 and O .5, respe.cti vely. 

· For each case, first the .end gain will be fixed a,nd the ga~n of 

the interior point feedback will be incr~ased. Next the interior point 

feedback will be fixed and the end gain wi11 be increased.; Finally both 

feedback gains will be varied simultaneously.· Figure 16 shows the 

results for co-located sensor a.ctuator pairs at x = 0.67 a!'ld the end. 

For co .. located sensor~actuator pairs at x = 0.5 and the endJ the general 

MIMO charact~ristic equation, Eq. (~-23) reduces to the form 

coshs + si nhS [K11 + K22 l + U sf nh2s - s 1 nh2 ~J K111<z2 = 0 ( 3-24) 

Figure 17 shows the results for co-located sensor-.actuator pairs at 

x ~ 0.5 and the ~nd. 
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As can be seen from the results ih Figures 16 and 17, for this 

case, the addition of another velocity sensor-actuator pair to the 

system is seen to cause degradation in the performance, (i.e., a reduc-

tion of damping rather than an increase in damping) for the fixed-free 

cable, even for the case (x = 0.5, l) where individually outstanding 

damping was obtained. This result seems counter to what would be 

expected. A possible explanation is that, even though the signal from 

one sensor is only fed back to its co-located actuator, there is the 

interaction term seen in both Eqs. (3-23) and (3-24}. Also, each force 

appears as a forced oscillation at the other sensor location. In addi-

tion, it can be seen from Figure 14 (individual co-located sensors and 

actuators) that increasing feedback gain beyond a certain value reduces 

the amount of damping, the only exceptions being a co-located sensor-

actuator at x = 1 or at x = 0.5, so it is seen that more than the 

slightest amount of feedback from a sensor-actuator pair at a location 

other than at the end of the fixed-free cable causes degradation of 

the performance of the boundary control alone. In no case, however, even 

with both gains very high, does the system become unstable. The 

elimination of the off-diagonal cross-gain terms has not adversely 

affected the stability of the system. 

System performance might, however, be improved by the inclusion 

of the cross-gain terms . To examine the ef feet of cross gains , the 

same two cases (_co-located sensor-actuators at x = 0.67 and l and at 

x = 0.5 and l.) will be investigated using the general characteristic 

equation, Eq. (3-21). For each case, two procedures will be employed. 

First, maintaining constant cross-gain values of K12 = K21 = 0.5, 
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K11 and K22 are increased from values of Oto 25. Second, all gains 

are increased simultaneously. The root-loci for these cases are shown 

in Figures 18 and 19. As can be seen in both cases for a constant 

cross-gain of K12 = K21 = 0.5, the system is unstable for low values of 

direct gain. The closed-loop pole moves from the right-half-plane to 

the left-half-plane when the direct gain values .reach K11 = K22 = 0.5. 

In Figure 18, at higher gains the inclusion of this specific value of 

cross-gain, K12 = K21 = 0.5, is shown to improve damping, but in Figure 

19 it reduces damping as compared with the same cases without cross-

gains. It also can be seen, in Figures 18 and 19, that having cross-

gains of the same magnitude as the direct gains neutralizes the damping 

effect of velocity feedback altogether except for the first mode. 

From these results it can be seen that the question of how to handle 

cross-gain feedback is, indeed, not a simple one and requires further 

investigation. One can conclude, however, that arbitrary inclusion of 

cross gains is risky, but for these cases, elimination of cross gains 

does not effect stability and appears to be a viable approach to 

analysis . 

. Up to this point our analysis has been directed toward fixed-free 

cable configurations. We will now investigate the behavior of the 

free-free cable under tension. 

Free-free cable stability and control 

Two cases will be examined. The first case is a free-free cable 

with velocity and displacement fed back to a co-located force at one end. 

The second case is a free-free cable with velocity and displacement fed 
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back to co-located forces at.both ends. 

First we will examine a free-free cable with both velocity and 

displacement fe.edback to a co-1 ocated force at one end (Figure 6 with 

a force acti.ng at one end only). The transfer function for this case 

is given by 

Y1(s) coshs 
s sinhs 

= fl 
.Y,(s) coshs 

sinhs 

{3-25) 

If the feedback control takes the form, _,. ' . 

fl = -[Kl 1,Kl2J •. {~l} 
. .. . Y1 ' 

(3-2.6} 

the term in brackets from Eq. (3 .. 1) has the rorm 

(3:-15) 

and the characteristic equation, Eq. (3-2) becomes 

or 

s sinhs + (K11 + s K12) coshs = 0 (3.,;27) 

If we lets = n + iw we can obtain analytic solutions for the open-loop 

· pol es and system zeros . 

Poles n = 0 w = 0 

Zeros for di splacernent 
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n = 0 . 
(3-28) 

No solution w = 0 

Zeros for velocity 

n = 0 '. w = 0 . kn odd 

so for the free-free cable we have for the op.en. loop, a pole at n = 0, 

w· = o, corresponding to the rigid body translation. Pure displacement . 

feedback and pure velocity feedback is shown in Figure 20. As can be 

seen in Fi gur.e 20, displacement feedback causes the vi bra ti ona l fre-

quencies to increase without damping, and therigid body pole at zero 

frequency with feedback bec.omesa rigid body oscillation pole. Velocity 

feedback' for the free-free cable, force at one end. is simflar (with 
.. . 

·different frequencies), to the fixed"".free cable velocity feedback result 

(Figure 9), in that poles c:an be driven to n = -00 for all modes, the· 

exception being the zero frequency rigid body mode, where we see a 

pol e-z.ero cancellation, which only means that this mode is uncontrolled 

· with ·velocity feedback alone. 

· ... ·Three two gain root loci plots are shown in Figures 21 and 22. 

·In Figure 21 ther~ are two. gain sequencing schemes shown. ·The first is 

using a constant velocity feedback gain, the. displacement feedback 

gain ts increased. The .second scheme is using a constant displacement 

feedback gain, the velocity gain is increased. It can be seen that, 

feeding back velocity with some specific constant gain while increasing 

the value of the displacement feedback gain to the force at one end of 

the free-free cable causes 'the closed-loop poles to migrate from an 

initial velocity damped position back toward the imaginary axis {two· 
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initial values of velocity feedback gain are illustrated),. This reduc-

tion of damping behavior is true of all the vibrational modes. The 

pattern is similar to the pattern for the fixed-free cable. The effect 

on the rigid body mode is to limit the velocity feedback damping, but 

not to drive the pole back to the imaginary axis. 

The scheme using constant displacement feedback gain of Ko = o.s 
and increasing the velocity feedback gain exhibits the same.behavior as 

the corresponding fixed-free cable case. At low values of velocity feed~ 

. back gain, damping is increased with increasing gain and at higher values, 

damping is decreased with increasing gain. The value of velocity feed-

back ~ain where this switching occurs is the .same for all modes, Kv· = 

l .O. The higher the modal frequency, the smaller the adve.rse effect of 

any particular value of displacement feedback gain on the movement of 
' . 

' . 
the closed-loop pole into the left half plane. these results indicate 

that, for the vibrational modes, the.re is no advantage in using both 

displacement and velocity feedback for the free-free cable unless a 

change of frequency is desired. Control of the rigid body mode, how-

ever~ necessitates the use of displacement feedback, as velocity feed-. 
r 

back alone cannot control the rigid body position of the cable. 

In Figure 22, the ro9t loci are generated by increasing both 

velocity feedback and displacement feedback gains simultaneously. ~ife' 

observe that, for the vibrational modes, increasing feedback gain for 

low values,of gain increases the damping. Increasing feedback gain 

for values of gain greater than K = l.O causes a decrease in damping 

from the maximum damped condition. This behavior is also exhibited by 

the open~loop rigid body zero frequency mode when the loop is closed. 
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With high gain the free-free cable takes ori the vibrational 

characteristics of the uncontrolled fixed~free cable. 

We wil 1 now examine a free-free cable with both velocity and dis-

placement feedback to co.,-located forces at both ends, Figure 6, with 

forces acting only at the ends. The open.,-loop free-free cable transfer 

function for displacement feedback to three forces is given by Eq. 

(2-32}. Eliminating the second row and second column we obtain the 

transfer function for displacement feedback of forces only at the free 

ends of the cable; 

1 [cos.
1 
hs Go(s) = s sinhs (3-29) 

By taking the time derivative of Eq. (3-29), which is simply a 

multiplication by s, we obtain the velocity feedback transfer function 

1 [coshs 
Gv = s i nhs . 1 

Now recognizing that 

and 

where 

and 

(3-30) 

(3-31 ) 

(3-32) 
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we can write 

(3-33) 

If the feedback takes the form 

(3-34) 

then the term in brackets from Eq. (3-1) has the form 

(3-35) 

and the complete characteristic equation is obtained by applying Eq. 

( 3-2). 

Recognizing that feeding back displacements and velocities to 

other than co-located actuators can lead to instabilities, we will again 

set cross-coupled gain values to zero (i.e., K12 = K14 = K21 = K23 = 0). 

In addition, notice that g11 = g22 , g21 = g12 , g31 = g42 and 932 = 941 

from Eqs. (3-29) and (3-30), so further simplification can be made. 

Finally, as a result of symmetry of the free-free cable, the choice of 

equal di sp l acemen t feedback gains K11 = K22 and equa 1 velocity feedback 

gains K13 = K24 is made. 

Under these conditions, the characteristic equation associated 

with Eq. { 3-35) becomes : 

2 2 . 2 . ! 2 2 2 
l + ( 931 ... 941) Kl 3 + 2 931K13 + (gl l - 921) Kll 

+ 2 g 11 Ki i + 2 f g n g 31 - g 21 g 41 ) Kn K13 = 0 (3-36) 



40 

Substituting in appropriate values from Eq. (3-29) and Eq. (3~30) 

yields the closed-loop characteristic equation 

2 . h + 2 . h. K2 + 2· 2 ·· h K • h K2 ssrn s. s srn s• 13 . s cos s• 13 +sin s·. 11 

. + 2s coshs·K11 + 2 s sinhs·K11 K13 = O {3-37) 

By substituting in s = n + iw andexpanding Eq. (3-37) into real and 

imaginary equations, the. open""."1 oop poles and system zeros can be 

obtained ana lyti ca 1 ly. The open-1 oop pol es are the $·ame as the 

previous case with a force only at one end, (i.e., poles at n = O; 

w = 0, w = kd1f' kd. = 1,2,3, · · ·. The system zeros can be obtained by 

using the definition given in Chapter Three in conjunction with Eq. 

(3-37) expanded into real and imaginary equations. This results in 

system zeros at n = O, w = 0, w = kn'IT, kn = 1 ,2 ,3, ~ · · . By observing· 

the pole-zero locations g:iven above, it wou.ld appear that they are a 

series of pole-zero cancellations. However, coincidence of system poles 

and system zeros does not insure cancellation:when dealing with MIMO 

systems. 33 It is helpful to keep this·in mind when looking at the 

root...:loci for this case. 
. . 

Figure 23 demonstrates that displacement feedba·ck to the co-locatt:!d 

forces at the ends of the free•Tree cable causes the vibrational fre-

quencies to increase without damping. The pole at zero frequency cor-

responding to the rigid body motion, with feedback, becomes another 

oscillatory mode as a result of restraining the free ends of the cable. 

At high gains the cable behaves as if it is fixed-fixed. Forvelocity 

feedback al one ( i=; gure 23), ; ncreas i ng the values of gain, drive the 

closed-loop poles to n::; -co at a value of gain of 1.0. Increasing the· 
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gain further drives the closed-loop poles back toward the imaginary 

·axis; most at the same frequency. 

Three two gain root loci plots are shown fn Figures 24 and 25. 

Figure 24 illustrates two gain sequencing schemes. The first scheme 

is, using a constant velocity feedback gain, displacement feedback gain 

is increased. The second scheme is, using a constant displacement 

feedback gain, the velocity feedback gain is increased. 

We can observe that feeding back velocity with some specific 

con.stant gain, while increasing the value of the displacement feedback 

gain to the' forces at the ends of the free-free cable, causes the 

closed.-loop poles to migrate from an initial velocity damped position 

back toward the imaginary axis (two initial values of velocity feedback 
. . . ~ 

gain are illustrated). This redtittion of damping is similar for all 

modes except for the zero frequency mode where the closed-loop pole 

.moves straight in along the negative real axis. 

The scheme using constant displacement feedback gain of K0 = o.5 
and increasing the velocity feed.back gain is similar to previous 

·. ·.' .. ·.'. 
results for the force at only one .. end. At low values of velocity feed-

back gain, damping is increased with in~reasing g,ain,and at higher 

than Kv = l.O damping is decreased with increasing gain. The higher 

the moda 1 frequency, the sma 11 er the effect of ~ny particular value of 

displacement feedback on the movement of the closed-loop pole into the 

left half plane.· Similar conclusions can be made for this case as for 

the case of a force only at one end. 

Figure 25 is a plot of the root loci generated by increasing both 

the velocity feedback and displacement feedback gains simultaneously. 
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VJe observe that for all modes, increasing feedba.ck gain for low values 

of gain increases the damping. Increasing feedback gain for high 

values of gain (greater than K = 1.0) causes a decrease in damping from 

the maximum damped condition. Notice again, that the elimination of 

cross-gain feedback, while possibly not being the best feedback scheme, 

does create a stable closed-loop system even at high values of 

velocity and displacement gain at both ends of the cable. 

In this chapter we have examined the open-loop and closed-loop 

characteristics of various cable configurations. These results yield 

much information useful for the design of flexible structures. To 

expand this body of knowledge we will in subsequent chapters examine 

the characteristics of the flexible beam. 



IV. CANTILEVER BEAM 

In this chapter, the open-loop transfer functions for a canti-

lever beam will be developed for, displacement feedback and velocity 

feedback to a force actuator, and slope and angular rate feedback to 

a moment actuator. 

Transverse vibration of the beam is described by a fourth order 

partial differential equation. The solution of this equation requires 

four boundary conditions, two at each end of the beam. 35 From the 

basic governing partial differential equation for the beam, we will 

develop through the use of the Laplace transform, open-loop transfer 

functions corresponding to various free-end boundary conditions. These 

open'.""loop transfer functions will then be used in Chapterfive to form 

the closed-loop transfer functions needed for stability and control 

analysis. 

A beam element in bending vibration is shown in Figure 26, where 

transverse displacement is given by y(x,t); mass distribution by, 

m(x); flexural rigidity by, EI(x) and force per unit length by f(x,t). 

The classical Bernoulli-Euler beam theory assumes the rotation 

of the beam element to be insignificant when compared to the vertical 

translation, and the shearing deformation to be small in relation to 

the bending deformation. 26 ,35 Timoshenko beam theory does not make 

these assumptions. Neglecting these effects only contributes about 2% 

error in the frequency, if the length of the beam is about 10 times 

its height. 36 Therefore, the mathemati ca 1 ly simpler Bernoulli-Euler 

43 



44 

theory which yields essentiaTly the sam~ results, in terms of 

characteristic behavior, will be used in this development. Again, 

negligible structural damping is assumed. The governing partial dif-

f t . 1 t. f t . f th b . th f . . . b 26 eren ia equa ion o mo ion or e earn 1s, ere ore, given y 

0 < x < L (4-l) 

While Eq. (4-1) is the general equation of motion for the beam in 

bending vibration, it can be simplified by certain assumptions. In 

addition, the solution to Eq. (4-l) will depend on the particular 

boundary conditions of the beam configuration under consideration. 

Several configurations will be considered. 

Cantilever beam, force at free end 

Assuming a uniform cantilever beam with no distributed load 

(Figure 27a), Eq. ( 4- l) reduces to 

EI a4y(x, t) + m a2y(x,t) = O 
ax4 at2 

0 < x < L - - (4-2) 

The deflection and the slope of the cantilever beam must be zero at the 

fixed end, x = O; therefore, at x = 0 the boundary conditions are 

y(O,t) = 0 } 
and 

y 1 (0,t) = 0 
(4-3) 

At the free end,only a force is acting (Figure 27a,b). Therefore, at 

x = L the boundary conditions are 



and 

EI a3y(x, t) 
ax3 

EI a2y(x,t) 
ax2 

x=L 

x=L 
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(4-4) 

= 0 

Again as was stated in Chapter Two, a transfer function relating the in-

put to the output is desired. 

Assuming initial conditions of displacement and velocity are zero, 

Eq. (2-5), the Laplace transform of Eq. (4-2) with respect to the time 

variable, t, is given by 

4 EI d y(x,s) + m s2 y(x,s) = 0 
dx4 

0 < x < L (4-5) 

The transformed boundary conditions are, at x = 0 

and (4-6) 

and at x = L 

and 2 
EI d y(x,s).I = 0 

dx2 x=L 

(4-7) 

The solution to Eq. (4-5) in the Laplace transform plane is given by 



where 
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y(x,s) = A1 (coshax·cosax + sinhax•cosax) 

+ A2(coshax·cosax - sinhax•cosax) 

+ A3(coshax·sinax + sinhax·sinax) 

+ A4(coshax·sinax - sinhax·sinax) 

4;:-:-2 
a = -v' i[f-

(4.,;8) 

(4-9) 

The constants A1, A2, A3 and A4 in Eq. (4-8) are determined by 

applying the boundary conditions Eqs. (4,...6) and (4-7) to Eq. (4-8). The 

result in the s domain is a transfer function Gxl(s), relating the 

displacement at an arbitrary point, y(x,s) to a control force at. the 

end of the beam, fl and is found to be 

,:£(~,s) = Gxl(s) = [ L3
3 ][ 2 1 ·.· 2 -J.[{-coshal·cosal) 

l ~{al) EI ~ash al + cos al 

(coshax•sinax - sinhaX•cosax) + {coshal•sinal 

+ sinhal•cosal)(sinhax•sinax)] (4-10) 

By taking the derivative of Eq. {4-10) with respect to x, the transfer 

function relating the slope at any point on the beam to a control force 

at the end can be obtained. Also by taking the derivative of Eq. (4-10) 

with respect to ti me we can obtain the tra.nsfer function relating the 

velocity at any point to a control force at the end. Taking a time 

derivative in the s plane is simply 

i(x,s) = 5 ·y(x,s) 
fl . fl ( 4-11) 

Applying Eq. (4-11) to Eq. (4-10) and by rearranging Eq. (4-9) such that 
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2~EI S = 2(al) · 4 , 
ml 

We can eliminate the explicits term from Eq. (4-ll) to obtain the 

general velocity-force open- loop transfer function as 

y(x,s) = 
f L r-.(al)~l ~ . 2 ·~ 2 j~ ... U-coshaL•cosaL) L J• Leash al ,. cos al 

(coshax•sinax - sinhax•cosax} + (coshaL·sinaL 

+ sinhal•cosal)(sinhax•sinax)] . 

(4-12) 

(4-13) 

A special case of the relationship of the displacement at the 

free end and the control force at the free end can now be examined. 

From Eq. (4-10) by letting x = L we obtain the expression 

y{t,s) = [ .. L3 .. ][coshal·sinhal - cosal·sinad 
fl ~(aL) 3EI] [ cosh2aL + cos2aL ] 

(4-14) 

Likewise the special case of relating the velocity at the free end to a 

control force at the free end can be obtained by applying Eqs. {4-1 l) 

and (4-12) to Eq. (4-14) and utilizing the result. This yields the 

ve 1 oc ity at x = L, force at x = L open-1 oop transfer function, 

H~~ s) = (al) lffii [cos ha\:: ~t~ : :::2~~5 i nall (4-15) 

Cantilever beam, moment at free end 

The transfer functions for feeding back the slope and angular rate 

to a moment at the end of a cantilever beam can be developed in a 

similar manner. For these cases, the transformed governing differential 

equation, Eq. (4-5), is subject to transformed boundary conditions of: 



48 

at x = 0, 

y(O,s) = 0 

and ( 4-16) 
y' (O,s} = 0 

and at x = L , 

3 . EI d y(x,s) 
dx3 

= 0 
x=L 

and ( 4-17) 

Applying Eqs. (4-16) and (4-17) to Eq. (4-8), the open.loop transfer 

function relating the slope at any point, e(x,s) to the moment at the 

end of the beam, ML, is given by 

e{x,s) _ G (s) _.. L . [ . ·. l ] 
t\ - XL - (aL)EI lcosh2aL + cos2at} 

[-{cosaL•coshaL)(cosax·sinhax + sinax~coshax) 

+ (cosaL·sinhaL - sinaL•coshaL)(sinax·sinhax)] . (4-18) 

Applying Eqs. (4-11) and (4-12) to Eq. (4-18), yields the open-

1 oop transfer function re la ting the angular rate at any point to the 

control moment at the end of the beam, 

e(x,sJ = G (s) = 2(aL). '- . l ] 
ML xL L/Eim {cosh2aL + cos 2aL 

[•(cosaL•coshaL)(cosax·sinhax + sinax•coshax) 

+ (cosaL·sinhaL - sinaL•coshal)(sinax•sinhax)J (4-19) 

By letting x = L in. Eqs. (4-18) and (4-19) slope at free end to moment 

at free end and angular rate at free end to moment at free end relations 
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can be easily obtained. 

General force-displacement, force-velocity, moment-slope and 

moment-angular rate open-loop transfer functions and specific free-end 

transfer functions for the cantilever (fixed-free) beam have now been 

obtained. 

Let us now turn our attention to the question of stability and 

feedback control of the cantilever beam. 



-
V. CANTILEVER BEAM--STABILITY AND CONTROL 

In this chapter we will examine the closed-loop characteristics 

of the cantilever beam in the same manner as the analysis of the cable 

in Chapter Three, In genera 1 we will determine the open-1 oop pol e,..zero 

1 ocati ons and attempt to construct a root locus. In addition we will 

form the closed-loop characteristic equation from Eq. (3 .. 2) and solve 

it directly. 

Displacement and velocity fed back from the end of the beam to a 

force at the end, and velocity and displacement fed back from other 

points on the beam to a force at the end will be examined. In addition 

to the above analysis which will be done for a -generic beam, (i.e. 

E = I = m = l) parameters for a specific beam wi 11 be developed and some 

comments about damping ratio will be made. 

Displacement at end fed back to co-located force actuator 

Examining the roots of the numerator and the roots of the 

denominator of the open- loop transfer function Eq. (4-14), a pole-zero 

plot can be generated. For proper interpretation, one needs to recog-

nize that the poles and zeros, s are actually a multiple of the square 

of a.L. Therefore a solution that yields equal real and imaginary parts 

of a.L, actually results in values of s which lie on the imaginary 

axis of the s plane. Since no structural damping is assumed, the open-

loop poles and zeros for the cantilever beam modeled here are always on 

the imaginary axis. Figure 28 shows the open-loop pole-zero locations 

for the sensor and actuator co-located at the free end of the beam. 

50 
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It can be seen that the pole-z~ro pattern is alternating as would be 

expected, but that the poles and zeros are not equally spaced as they 

were with the cable. 

By closing the feedback loop, as shown in Figure 7, we can write 

the closed-loop transfer function and obtain the closed-loop 

characteristic equation, from which the root locus may be generated, by 

incrementing the value of feedback gain in a. manner similar to that 

described in Chapter Three. 

The characteristic equation for this case can be obtained by 

applying Eq. (3-1) to the open-loop transfer function, Eq. (4-14). From 

Eq. (3-2) the closed-loop characteristic equation for displacement 

feedback at the end of the beam to a co-located force is given by 

[ ~3 ] (cos 2aL + cosh2aL) 
L(al) 2EI] 

+ K (coshaL·sinhaL - cosaL·sinaL) = 0 (5-1) 

The root loci are generated by obtaining the roots of Eq. (5-1) while 

increasing the values of gain, K. 

Velocity at end fed back to co-located force actuator 

Applying Eq. (3-1) to Eq: (4-15), and writing Eq. (3-2) for this 

case, the closed-loop characteristic equation for velocity feedback at 

the end to a force at the end is given by 

["aufrm] (cos2aL + cosh 2aL) 

+ K [coshal·sinhaL - cosal·sinal] = 0 (5-2) 

The roots of Eq. (5-2) for increasing values of K generates the root 
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loci for velocity feedback. The root loci curves for velocity feedback 

and displacement feedback are displayed in Figure 28. Here we see that, 

for displacement feedback, increasing gain causes the frequencies to 

increase to values corresponding to those of a fixed-pinned beam. 37 

Displacement feedback does not affect the damping. As a result, the 

system is neutrally stable with or without feedback. Notice that for 

a specific value of gain, for instance K = 25, the poles for the higher 

modes do not move as far as the poles for the lower modes. This sup-

ports the fact that more energy is required to excite the higher modes. 

We also see in Figure 28 that velocity feedba.ck will stabilize the 

beam oscillations, although not in the same dramatic manner as occurred 

with the cable. The damping of the system increases with increasing 

velocity feedback gain up to a point where, as the gain is further in-

creased, the system starts to return to being neutrally stable. The 

constrained frequencies, 38 those for which K = 00 , are again for a beam 

that is fixed-pinned. 37 The optimum gain for maximum damping for each 

mode appears to be approximately 1 .8 times the optimum value of gain 

for the next lower mode. Therefore, more gain is needed at higher 

modes to achieve maximum damping for the higher modes. Thfs result is 

significant from the standpoint of controller design. Since for a 

single sensor-actuator only one gain is available, different gains 

cannot be used for each mode. Picking the gain that results in maximum 

damping for the first mode, K = 1 .6, we can see from Figure 28 that the 

location of the roots for the higher modes are such that the damping 

for these modes is less than the maximum possible for these modes. 

On the other hand, picking a value of gain which maximizes the damping 
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of.a higher mede~ for exa.~ple .K = 5.2 for<mode three, the· position of 

the-roots for higher and lower modes is less than that for maximum 

damping. Hence for d·esign purposes some tradeoff must be considered. 

Figure 28 displays general root loci that apply to a generic 

uniform cantilever beam. The complex values of s from 

a re plotted wi th 

{ 4"." 12) 

(5-3) 

In addition for displacement feedback the computed gain v&lues assume~ 

L3 
·-.-·· ::i l 2EI 

·. and for velocity feedback the computed gain values assume 
. . 

·. L .· ... l 
IEim-

, .· 

. lo obtain the actual values of s for a specific beam, the computed 

(5-4) 

(5-5) 

values of ·s must be multi pl fedby the factor ·~· for the specific ·· i mL4 · ·. 
beam. To obtain the actual values of di sp-lacement feedback gain for a 

specific beam 

Kactual = Kco111>uted (~1] (5..;.6) 

and· for velocity feedback 

.. (illfil1.E.Lim. Kactual = Kcomputed -CJ 



54 

As a delTlonstration~ one can obtain values of s and values of galn 
- _ .. ·. ,. ·. , . ·.: ' . ' . . ' _-

for a: specific beam •. Parameters of a parti<:ular graphite-epoxy tubular 

beam39 and the .computation of the factors .shown in Eqs. (5-3); (5.;.4) and. . . ·. -. . ·.. . 

{?~5), for this beam, a-re given in Append•ix A. 

Using these factors, Figure 29 shows the most stabl~ closed-loop 

pole positions for the· .. first few modes .of the can ti 1 ev.er beam, feeding 

back the velocity at the end to the force at the end; The damping 

ratio, i;;, can .be calculated from the expression 

i;; = ~ sin e 

where e is given by 

e = sin-1 11 
' (I) 

·.· . .. . . 

(5-8a) .· 

(5-8b) 

Damping.ratio is independent of beam parameters,· since. the values of n 
.. . . . . 

and (I) are multiplied.by the same quantities for a specific beam. 

For a generic cantilever beam., the most stable closed.,. loop pole 
. - . . 

posjtion for any mode (beyond mode one) is described by the following 

expressions: 

The imaginary value is given by, 
' ' .· ' ' ' 2 

(j).== (32·m2 - 40.m + 13) i2- (5-9a) 

and the real value is bounded by 
·. ' ' ' .2 ' .z 

-(8m+ 3} 32 < n < -(8m - 5) 32 {5-9b)' 

where m is the mode number. 

F'rom Eq. (5-9) and Figure 29 it can be seen that although the damping 

ratio, z;, decreases for increasing mod.e number, global· stability of all 

modes is assured. 
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To see the effect of mo.Ving the sensor away from the free end 

of the beam (see Figure 30), we can examine first, the open-loop pole-

zero locaticms for various sensor positfons, x, and second, selected 

. cases of cl osed..;loop dis pl a cement and ve 1 oci ty feedback. 

The open-loop pole~zero locations for various sensor positions., 

x, force at the end, x = L, are obfainedfrom the general.displacement-

farce open'."'loop transfer function given by Eq. (4-10). From Figure 
. . : 

31 it can be se.en that the. pol es and zeros have an alternating pattern -. . . . 

with<the sensor co-located ·~ith the· force at the free end. As the 

sensor 1 oca t ion is moved down the beam away from the force location, the 

zero 1 ocati ons beg.in to move up the imaginary axis, as was true in the 
' . 

simtlar case for the cabl.e. ·When the sensor locati()n is moved .past th.e 

location of a node of a particular mode, the pole'."'zero pattern.is. no 
. : . . . . 

longer alternating, and we see two poles appearing in .sequence without 
. . . 

, . . .· . 

a zero bet\oJeen them. Aswas observed with the cable, it is expected 
. . 

for the beam; that for these sensor locations instability will occur 

when the feedback gain is high enough .. 

To. investigate this further, displacement and vel.ocity feedback. 

for sensors located at x = 0.5 and x = 0.8 will be examined. 

Displacernent feedback, separated sensor-act1;1atar 

For the case of displacement feedback from a sensor located at 

any point on the beam to a control force at the end of the beam, apply-

ing Eq .. (:3-l) to Eq. (4-10), the characteristic equation, Eq. (3-2), 

of the closed-loop transfer function is found to be, 
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. . 

f K [('."'coshatl•cosa.L)(cosha.x·sina.x .,. si.nhttx·cosa.x)·· 

+ (cosha.L·sinal + sinha.L·cosa.L)(siriha.x·sina.x)] .,;.· o {5-10) 
. . . 

To generate ~he. root 1 od ~ for di splaceinent feedbp.ck from a sensor 
• • > .. • ' •• 

located at any specif1cpoi~t to .a force at the end, the roots ofEq. 

(5-10). are obtained as K is increased. · .• ·Figure 32 shows the root loci .· 

.·.of the first few vibrational modes .due to feeding back displ:acement 
. . . 

. '• :· ·.. .·.·.· 

sensed at x = 0.5 and x = 0.8. individually to a control force lbcated 

at the free end. It can be. seen in Figure 32 that, as expected, at high 
. . 

values of fe~dback gain, poles nofseparated by zeros can be 9r1ven 

unstable .. It .can also be observed from Figure 32, that for nort-.c:o.,. 

locat~d sensor-actuator pairs, displacement feedback does> not affect . 

. stability if the displacement feedback gains are small •. · .The closer the 

sensor is to the actuatqr; the larger the valueofdisplacement feed.,.• 

ba,ck gain that can be. used before; ~r.eating ·instability. problems;.· 

. Velocity fee'Clback, ·separated sensor~actuator · 
' ' . . ' . . . . . 

For the case of velocity. feedback.· from a sensor located a;t ·any •.. · 

point on the beam to a control force located at the end of the beam, 
. ' . ·. . 

applying Eq. (3-l) to Eq. (4'."'13), the characteristic equation, Eq. (3 .. 2), 

of the closed-loop transfer function is found to be 

[(o.L)~J (cos2a.L +cosh2atL) 

+ K [(-coshllL•coso.LHcosha.x·sina.x - sinhax·cos<:Lx) 

+ (cosha.L•sina.L + sinha.bcosa.LHsinhax·sina.x)] = O 
.. 

(5-ll) 
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Again the root loci are generated from the solution of Eq. (5-11) as 

the value of K is increased. Figure 33 displays the root loci of the 

first few vibrational modes due to feeding back velocity sensed at 

x = 0.5 and x = 0.8 individually to a control force located at the free 

end of the beam. 

In Figure 33, it can be observed by looking at the first four 

modes, that feedback from a velocity sensor located away from the 

actuator causes instabilities for some modes. Positions of the sensor 

that generate a stable response for a particular mode~ correspond to 

positions on the beam that are in phase with position of the control 

force, as the beam oscillates. A sensor located at a node of a 

particular mode cannot sense the motion of that mode. Locations of the 

sensor that generate an unstable response for a particular mode are 

those that are out of phase with the motion of the actuator location. 

It can also be noted that the stability of a particular mode is 

independent of the value of feedback gain. Unlike the case of dis-

placement feedback, UQstable closed-loop poles are unstable even for 

small values of gain. Although for extremely high values of gain some 

unstable. poles can be driven neutrally stable. It can be seen from 

Figure 33 that feedback from a velocity sensor located at x = 0.5, 

generates stability of mode one, instability of mode two and has litt.le 

effect on mode three, x = 0.5 being very close to a node of mode 

three for the cantilever beam. From this we can conclude, for single-

input-single-output systems, that having a separated velocity sensor 

and a force actuator is at best a risky proposition, although some 

destabilizing energy in the highe~ modes may not be a problem with a 
f 
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small amount of structural da~ping. 25 At worst, it could lead to 

unstable excitation of the lower modes, aggravating the structural 

vibration problem rather than alleviating it. 

In this chapter, we have examined the open-loop pole-zero 

patterns, as well as the closed-loop characteristics of velocity and 

displacement feedback to a force actuator for co-located and separated 

sensor-actuator pairs for the cantilever beam; 

In the following chapter, selected transfer functions will be 

developed and closed-loop characteristics of the free-free beam will 

be discussed. 



VI •. · FREE•FREE BEAM 

The free ... free beam in contrast to the cantilever beam 'has two 

rigid body degrees of freedom, trans.lation and rotation, which ma~es if 

. a ~ood model: of a.missile in free flight40 or of.an orbiting satellite .. · 

In thts chapter, several open..:loop transfer functions for the free-free •.. 

beam with various control boundary conditions wi 11 be developed . 

. Stability a.nalysi s and feedback contra l wi 1 l the ti. be di scuss~cL 
A uniform beam that is free of supports at both· ends and has a .. 

. . . 

control force and a momEmt at each end is sh-0wn in Figure 34a. · Again 
. . . .- . . . . 

the partial differential equatio~ governing the motion of the beam is . 

givenby26 Eq •. {4-1). As a result of the simplifying assumptions made 

·.·· ... in Chapter Four, Eq·. (4-l) redu~es to Eq; (4~2}. Jhe boundary• condi- •.. · 

·. tions can be determined by referring to Figure J4a °and using the. sign· 

ccmvention41 shown in.· Figure 34b. 

and 

and 

and 

The boundary conditions at x :; 0 are 

a3y(x; t} V (x, t) .j .· • = EI - - -
· ... ·· x=O ax3 

2 ( ) M(x,t)1· •. = EI a X xat; 
.. ~=O ax 

at x = L 

V{x, t) I·· ... EI a3x{x,t) · 
. 3 

x=L ax 

M(x, t) j · ... = EI a21{x,tJ 
. x=L ax2 

x=O 

x=O 

x=L 

x=L 
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_; f - l 

= - f 2 

= .. M2 

(6-l) ·.· .. · 

. (6-2) 
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Transforming Eqs. (4-2), (6-l) and (6-2} into the s domain by Laplace 
.. . . '. ·. . . ·. 

·. . .· .. 
transform, th~ relationship of the displacement at any point onthe 

·· free-free .beam as a· function of the forces· and moments at its boundaries 

can· be. found to be . 

y(x,sJ· .·::; { •. ;1 ... [s;nhaL·co~hal - si~bcOsaL} 
· ·· 2a EI L s i nh . !lL - s j n al ·.· J 

. ·· f2 · •[cosaL ·si nhaL . ~ s i"aL •coshct!.] + . 3 2 .· .. ·. 2· .. 
2a El sinh al ... sin al 

+ Ml. ·r.cos2absjnh2al + si.f.aL·cosh2ad./. 
· · 2a2EI sitih2aL .:. stn2aL ·. J . . . 

. M ~ . ·. . . ]}. 
·. + -. 2 · · .• ~ s i naL •Si nh~L ... · .. ·• cos.ax•cosha.x 

· iEI sinh2aL - sin2etL .· . · 

. { .. f'l· t· .. 2 L . . h2 L . 2 L . h2 L·j· + 3 sin a ·c~s 2a + c~s 2a ·s1n a ·•.· . 
· . 4a EI · · sinh al • srn al · · 

+ f 2 [sinaL•.sfohaL ·1··· 
. 2a3El L~inh2aL - stn2aL 

Za:~I t• 1 na~~ ~~~:~ ~ : : ~~~·co shall 

. _ 2 :~I [sinal.·~~~a~ + c~~f ~sinhat.J.} .. ·. 
~ [ sin a ~ sin a . · J 

. . . . 

(6-3) 

· lt is known from previous results for the free~fre·e beam, 25 ,42 that 

feeding back the velocity .or displacement to a non co-located force 
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actuator, or feedback using a co-located sensor of a different degree 

of freedom than the actuator (e.g., angular rate fed back to a force 

actuator) leads to instabilities. The relationships of interest, 

therefore, are those sensor-actuator pairs that are co-located and of 

the same degree of freedom type. The open-loop transfer function 

relating the displacement at x = 0 to the force at x = O is one of these 

pairs, and from Eq. (6-3) is given by 

y(O,s) = 
f 1 

1 rsinha.L•cosha.L - sina.L•cosa.LJ 
2a.3EI [ sinh2a.L sin2a.L 

(6-4) 

Similarly, the displacement-force open-loop transfer function at x = L, 

can be obtained. 

Other relationships of interest are; the slope e(O,s) to moment, 

M1, the velocity, y(O,s) to force, fl, and the angular rate e(O,s) to 

moment, M1, open-loop transfer functions. 

Taking the derivative of Eq. (6-3) with respect to x, the general 

slope equation can be obtained. From this equation, the relationship 

of the slope at x = 0 to the moment at x = 0 is given by 

e(O,s) = _1_ [sinal•cosal + sinhal·coshaLJ 
Ml a.EI [ sinh2a.L - sin2a.L 

(6-5) 

Similarly, the slope at x = L to the moment at x = L relationship can 

also be obtained. The time derivative of Eq. (6-3) yields the relation-

ship of the velocity to the force and moments at either end of the 

free-free beam, and desired transfer functions can be obtained. 
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Free-free beam,.· cl osed-;..loop characteristics· 

_ Displacement at one .end. of the beam feeding back to. a co-located·· 

force .. wi.ll be examfoed, .as well as slope at one end of the beam feeding 
:· . ': : - ·. ; 

back to a co-located moment. 

Feeding back displacement at one end of the free-free beam to a·._. 
. . 

co-located force drives the frequencies toward those of .a free;..pinned 

beam. Likewise, feeding back slope at one end to a co:.. located moment, 

drives the frequencies toward those of a free-guided beam. In both of 

these cases, as.expected, nbdamping is introduce<:!. In a similar 

manner, velocity can be fed back to a co-located force or angular rate 

.· · to a cb-located moment. Results similar to these can .be found else-
. · .. ·· where~42 · 

In thh chapter selected transfer functions for a free-free beam -
- . .. , -

were developed and a brief discussion of closed-loop characteristics. -

was presented. 



VI I. BEAM--DYNAMlC. STIFFNESS- APPROACH 

·. In previous chapters dealing .with the beam, single sp(in beams,. · 

with. singl e..-input-slngl e .. output ;feedback, were: investigated.·.· 
. ! . . .. . 

Recognizing that most practJC:al structures consist of mote· than a· .. . . 

sih~le span beam, it is desirable to expand to.more ~omplex' structures, 

the technique of controllingthe· exact partial differential· equation 

system. lt is also desirable to be able to handl~ m~Jti-fnp~t-multi­
autput control systems. That is, more than one actuator~s.ensor pair 

. . . . . . . 

on the beam .. like structures. A convenient methodfoi ha.nd1ing···both of 

these requirements fs the dynamic stiffness matrix method mentioned in. 
. . . . . . . 

Chapter Two. · In that chapter it was used for severalcases inVolving 
. .. ,. 

. . ·' . 

the flexible cable. The feasibility of this method for synthesizing 

.. · ~truc.tures from beam elements has been demonstrated in the. past~ 22 

Speci ficaHy the use of the dynamic stiffness influence· coefficients in . . . ' . . ·. . . : . .. 
. . 

the Laplace transform plane has been investigated with regard to a · 

single.external exciting force. 24 The use of this'·method in conjunction· 
. . . . 

with feedback of .. control forces, in particula~ mul tt-inptft-rriµlti-output, 
.' . " .· .. . .: - ' 

control, has not been previously' demonstrated .. 

In this chapter the dynamic stiffness matrix for a beam ~lement 
. . . . . 

in flexure will be developed .. This element matrix will then be used to 
. . . 

construct an example case for which the stabi 1 ity and control will be 

.investigated.. The boundary forces\ and displacements for· a uniform beam. 

segment22 shown in.Figure 35 are used in a· standard development of the 

dynamiC stiffne_ss matrix, although in this case using the Laplace· 

63 
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transform. The general solution for the transverse vibration of a· 

beam in :the Laplace transform plane was shown in Chapter four to be 

. y(x ,s) = A1 (coshax•coscix + si nhax ·co sax) 

· + A2 (coshaX·cosax - sinhctx·cosax} 

+ A3 (c()shax•sinax+ sinhax~sinax) 
' ' 

·. + A4 (coshax•sinax - sinhax~stnax) 

Taking the.derivative with respect to x, expressions for 
' ' . - . . 

(4;..8) 

y 1(x,s), y11(x,s} and y111 (x,s) can be obtained .. Expressing the displace-

. ment, y(x,s) and the slope y' (x;s) evaluated at the two ends' (or 
. . . ' 

nodal points) of the beam ·Segment, in terms of the constants, A Yields' 

(?,.. l) 
T . 

. ·where8{s.)= (y(O,s},-y'.(O,s}, y(L,s},-y'.(L,s}) = (01Js),.e1 (s),· .. o2(s),. 

e2(s)) and AT ~ (A1, A2, A3, A4). The nodal forces and moments using 
' ' 

the sign convention established earlier in Figure 34b are given b.Y, 

. f 10;) = Ely"' (0,s) 

f 2(s) = ,..£Iy" 1 (L,s) .. 

.M1(s) = Eiy"(O,s) 

M2(s) = -Eiy"(l.,s) 

Writing the nodal forces. in terms of the same constants, Ayields 

F(s) = [uJ A 

where 
T 

F ( s ) (f 1 ( s ), M1 ( s ) , f 2 ( s ) , M2 ( s ) ) 

By solving Eq. (7-1) for the unknown constants 

(7-2) 

p;.3) '· 
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A = [vJT 1 s(s) {7-4) 

the nodal forces can be found as a function of the nodal displacements 

by 

F(s) = [U}·[W]-l 8(s) (7-5) 

\\/here 

D(s) = [UJ·[W]-l , (7-6) 

D(s) is the dynamic stiffness matrix in the Laplace transform plane. 

The elements of the dynamic stiffness matrix, D(s) for the beam element 

are given in Appendix B. The use ofthe beam element dynamic stiffness 

matrixrD(s), relating the nodal forces to.the nodal displacements 

F(s) = D{s) ~(s) (7-7) 

wil 1 •facilitate the analysis of more complex structures and sensor-

actuator configurations. Structures consisting of beams of various 

lengths, stiffnesses, and moments of inertia, and having various con tr() l 

configurations can be formulated by the dynamic stiffness matrix method. 

To illUstrate the method, an example will be utilized. A canti-

lever beam will be constructed from two beam elements (see Figure 36) 

with two co-located sensor-actuator pairs on the beam. One pair will be 

at the free end and one pair at the intersection of the two beam elements. 

The result for this example is given by 

F ( s) = D( s) 8 ( s) 

where 

and 
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and the dynamic stiffness matrix, D(s) is given symbolically by 

D(s) 

a,, 
d2l 

d12 : 0 
I 
I 

0 

d22 d23 . d24 : 0 0 
,------------------------,----------

d31 d32 l d33 + d11 d34 + a, 2 : d13 d14 
: I I 

d41 d42: d43+.d21 d44 + d22 : d23 d24 
---~-----,-------------------------
0 ° : d31 d32 d33 d34 

I 

0 0 : 
I 

(7-8) 

where the upper left-hand 4 x 4 pertains to the first beam segment and 

the lower right-hand 4 x 4 to the second beam segment. If we assume 

f 0 and M0 sufficient to hold 00 = O and e0 = 0 (the cantilever condition}, 

the first two rows and columns of the matrix in Eq. (7-8) can be 

neglected. Since only force actuators will be used there will be no 

external moment at the end and the internal moments at the intersection 

match leaving a. force vector of 

-T F . = (fl , 0, f 2 , 0) (7-9) 

The remaining 4 x 4 dynamic stiffness matrix can, because of Eq. (7:-9}, 

be reduced to a 2 x 2 matrix by solving explicitly for the slopes in 

Eq. (T-7) in terms of the deflections. The resulting relationship is 

given by 

f 1 01 

= o(s) (7-10) 

f 2 02 

where D(s) is the condensed stjffness matrix. 
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' The re~afoing 2 x 2 can then ·be. inverted to obtain the transfer function 

matrix. The result has' the form 

. 5(s) = G(s) F(s) (7.-11) 
:· . . . ' ' .. .':,_ ': . . 

f~r the OJJen .. foop force-displ~Cement relationship or . 

·. ~{s} = s G(s)F(s) '(7-12) 

· for the velocity~force relatio.nship. 

·· lf the feedback ~ontrol. for velocity fe.edback takes the form, 

. K.1 .. 1· ... ·. · k .·. o1· . 12 
·= - c1~13}. 

· the x::losed• lodp •.transfer fljntti()n. is obtained by ,Eq. (3-l} and .the closed . ..: 

. loolJ's'.§~'tem'dynamics can be>determined from th~ closed.:;Joop. characteHs., · 
' ' ' 

.. tJc equation 

· · I Ir+ G{s) Kl = O .(3.:;2) 

As res~lts in Chapter Three indicated~ the incllisionof cross~gains K12 

a.nd. K21 could ha'le a destabilizing effect so ~hey wi 11 be eliminated. •··· 

·The expansibn of-Eq.·· (3-2) yields the multivariable feedback···· 
' ' ' 

closed-loop characteristic equafion for which a two gairi root focus can 

be constructed as was done in Chapter Three. 

For this.exa!TIPleeach beam segment will be chosen to.bethe same 

length and velocity feedback wn:.1; be utilized. Therefore, velocity will 
.· .· . . - . . 

·be fed back to co-located actuators at x = 0.5 and x ::: 1.0 for the 

cantilever bea.m. ~igure 37 illustrates that with K11 = 0, {Le~ .only 

Vielocit.Y feedback to a co:..located actuator at the end)~ the root locus 
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is identical to that of Figure 28. Thus, verifying that the cantilever 

beam constructed by using the dynamic stiffness matrix approach is 

equivalent to the cantilever beam developed directly in Chapter Four. 

AlsoinFigure 37, it can be seen that feeding back velocity to a co-

located actuator at x ::: 0.5 alone (K22 = 0) generates increased damping 

in modes two and four. This increase in damping is the result of 

x = 0.5 being the location of a peak in the mode shape of mode two 

and mode four. A larger velocity signal is available for feedback at 

these modal peaks. Mode three, on the other hand, has a node near 

x = 0.5. Therefore, as can be seen in Figure 37, there is no damping 

of mode three. 

As was stated previously, MIMO control has the potential for 

better control of more modes than SISO control. 

Figure 38 demonstrates that for the first four modes of the 

cantilever beam, overall damping is improved with two co-located 

sensor-actuator pairs. This result is what one would expect, although 

it is counter to the result for the similar cable case obtained in 

Chapter Three. Having two sensor-actuator pairs, allows us to set 

two feedback gains. Two cases of velocity feedback are shown in Figure 

38. In the first case, K11 = K22 , and in the second case, K11 = 2K22 . 

In both cases, if very high feedback gain is usetl, modes one and two 

can be driven to zero frequency. For case two ( K11 = 2K22 ) more 

damping is available than in the case of K11 = K22 . This indicates 

that the feedback gain for sensor-actuator pairs at an interior point 

should, in general, be higher than the gain for the feedback of the 

end point, for the best dampJng in all modes. Obviously with two 
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sensor~actuator pairs, (at x = 0.5 and x = 1.0) only the first two 

modes can be controlled in the best manner. Although some improve-

ment in damping is seen in those modes which have peaks at the location 

of the interior sensor-actuator pair, e.g. mode four for this case. 

Therefore, a controller design can be initiated based on the system 

characteristics illustrated in Figures 37 and 38. 

In this chapter we have seen that the dynamic stiffness matrix 

method, in the Laplace transform plane, can be utilized to synthesize 

more complex structural and control configurations. We have also 

examined an example of MIMO control for a cantilever beam constructed 

using the dynamic stiffness approach. 



. vln . RESULTS AND CONCLUSIONS 

. In this work, a f6rmulation using exact,transfer functton methods · 
, _. ·.· . ' 

has been applied to the control of systems~ go~erned by partial di f- . 
. . 

ferential equations. Exact transfer functions were developed and.·· 

single':-input.;.single-output ·feedback was applied to various cable and beam 

·.configurations. Using the: exact relationships, dynamic stiffness 
.· . . .· . . 

matrices _were developed for cable and beam elements. These elements were 

then used to construct more complex configurations. Multi-input-multi.:.: 

output feedback control was then investigated. ThE:!re are several sig"." · · 

n.ifi cant results: 

1 ) Exact sdluti ons a re obtained even though a finite number of · 

sensors _and actuators .are .. used. · 

2) ·All vfbrational ~odes can be controlled by using a sihgle co• 

located s~nsor-actuator.at the.boundaryof a fi~ed-free cabl~ or beam. 
. . 

3). Pure signals from the sensors can be used without·any addi~ 

tional signal processing. 

4} The multi-input-multi-output investigation demonstrates· that, 

.even without cross-gains, there Js still interaction between sensor-

actuator pairs. It appears that. this interactive effect needs to be 

included in any multi .. input-multi-output control d.esign. 
. .. . 

: . . 
5) By starting with .fundamenta·l elements of beams and cables, 

reasonably sophisticated.systems ·can be modeled. It should pe pointed 

out, -however, that as the system becomes more general o.r complex, the 

work involved in extracti.ng results increases significantly.· 

70 
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6) It would seem that the use of a multi-input-multi-output 

control system would yield the most benefits, since, as observed in 

the .examples shown, a single actuator does not in general damp all the 

modes in possibly the best manner, the exception being the cable which 

has symmetric locations of poles and zeros, where MIMD control of the 

cable is found to be less effective than SISO. More sophisticated 

multivariable theory than is presently available is needed to deal with 

the transcendental equations encountered here. 

7) Finally with the development of more advanced algebraic 

manipulator routines, computers will be able to do most of the algebra 

required for applying to more complex structures, the approach presented 

here. This may generate interest in developing this approach as an 

alternative to some of the current techniques. The usefulness of any 

technique can only be determined when, eventually, it is used in the 

control of actual hardware. The final word on which approach will prove 

most useful has yet to be written. 

To expand thework done here, some suggested topics to be in-

vestigated are: 

1) A comparison of the exact transfer function models with 

truncated modal models from the standpoint of control system performance, 

and to determine the effects of truncation on model integrity. 

2} The development of multivariable theory and techniques to 

handle transfer function matrices of transcendental nature. 

3) Expand the dynamic stiffness matrix approach in the Laplace 

transform plane to include Timoshenko beam, membrane and plate elements.43 
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4) Oetermi ne an acceptab 1 e 1 i.mit on the spacing of sensors and 

actuators when co-location is not possible. 

5) The development of methods to carry out more of the necessary 

operations numerically instead of a 1 gebraical ly. 
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APPENDIX A 

NOMINAL VALUES OF EXAMPLE GRAPHITE-EPOXY BEAM 

Length = 100 meters 

Outside radius = 10.55 cm 

Wall thickness = 2.275 mm 

Tensile and compressive modulus, E = 3.45 x 1011 n/m2 

Mass density = 1607 ~ 
m 

Area moment of inertia, r = 8.l x 10-6 m4 

The mass per unit 1 ength, m(x) = 2. 397 ~ 

Useful factors--usi nq .·the. above. values 

.··E = 0 .. 108 
fmL4 

/Etm = 25 .88 

2~I = 5.589 
L 
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APPENDIX B 

BEAM ELEMENT DYNAMIC STIFFNESS MATRIX 

IN THE LAPLACE TRANSFORM PLANE .. 
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Tablet Gain Required for Frequency Changes 

Ill l~570 4. 712 ·7.854 . 10. 996 
0 

l:::J.iJ 

0 .0 0 0 0 

.2 0.359 0.996 1. 633 2~269 

.4 0.833 2. 161 3.490 4.818 

.6 l .485 3.634 5.764 ];933 

.. 8 2.441 5.676 8.910 12.145 

l.O 4.003 8.897 13. 789 18.682 

. l ~2 7 .127 15~ 203 23.288 . 31. 369 

,. l.4 17.224 35.439 53.653 71.868 
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Figure 3. Free-Free Cable,..~Oiscrete Mass at Both Ends 
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Figure 4. Fi xed-Free Cable--! nterior and end forces 
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Figure 5. Cable with Several Elements 
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Figure 6. Free-Free Cable 
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Characteristic Equation 

cos h s + K sin h s = 0 
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Figure 9. End-End Velocity Feedback Root locus 
(Fixed-Free Cable) 
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s cosh s + K sinh xs = 0 
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Figure 10. Displacement Feedback to End, x=O. 5, 0. 67, 
<Fixed·free Cable) 
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Figure IL Velocity Feedback to End, x::O. 5, 0.67, (Fixed-Free Cable) 
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Figure 13. Open-Loop Pole-Zero locations, Velocity Feedback 
to Co.,.located Force, {Fixed-Free Cable) 
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(Fixed-Free Cable) 



/ I 
· Kv=.964 Ky=. 76 

Kv =I. 04 

Kv =. 964 Kv =. 76 

K . =. 964 Kv =. 7 6 v 

-I 

95 

Im. 

51r 
2 

37T 
2 

1T 

1T 
2 

Re. 

-2 -I 
K =constant Ko· = constant v . 

Figure 1:5. End-End Velocity with Displacement Feedback, 
Two Gain Root toci , (Fixed-Free Cable) 

Im. 

51T 
2 

Re. 



96 

\-\- Im. \- Im. Im. 
51T 51T 51T -K22=. 964,. 76 2 2 2 

I -o. 9 I 

K2z=. 964, . 76 tr 
2 

K if-964 

K11 =. 964, . 76 1T 

2 

Re. Re. 
I 

-2 -I -3 -2 -I 
K22 =constant K 11 =constant 

K=l.23 

-3 -2 -I 

Kii = K 22 
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Figure 36. Two Element Beam, Dynamic Stiffness Method 
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THE USE OF TRANSFER FUNCTION METHODS IN THE FEEDBACK 

CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 

by 

Richard Morris Amato Goff 

(ABSTRACT) 

The design of controllers for structural systems, particularly 

those associated with large space structures, has received a con-

siderable amount of attention in the past few years. The usual approach 

to designing these controllers is to apply modern control theory to a 

reduced linear system obtained from finite element analysis or from a 

truncated modal analysis. In most of these designs, the sensor signal 

must be processed to separate out the contributions from each mode so 

that it may be sent to the appropriate actuators. The analysis pre-

sented here, on the other hand, obtains exact solutions for a selected 

set of sensor and actuator positions for simple structural elements. 

Sensor signals are fed back directly to the actuators with appropriate 

gains. The method of analysis is that of classical control theory 

using Laplace transforms and the associated open and closed-loop 

transfer functions. Single-input-single-output feedback control is 

applied to various flexible cable and beam,configurations. Root-loci 

for various values of gain are constructed and the system 

characteristics and the global system stability are determined. 

Although the procedure outlined above can be carried out for 

basic structural elements, more complex structures and control 



configurations are synthesized using the dynamic stiffness matrix 

method. With this method, the exact relationships of the basic 

elements can be combined to allow analysis of multi-input-multi-output 

control of more complex. structures. Using this approach, examples for 

flexible cable and beam configurations are presented. It was found 

that exact solutions can be obtained using a finite number of sensors 

and actuators. It was also determined that a single co-located sensor~ 

actuator at the boundary of a fixed-free cable or beam can control all 

the vibrational modes of the cable or beam. Also, pure signals from 

a perfect sensor can be used without any additional signal processing. 

The multi-input-multi-output investigation demonstrates that, even 

without cross-gain feedback, there is interaction between the sets of 

co-located sensor-actuator pairs, It appears that this interactive 

effect needs to be included in any multi-input-multi-output control 

design. By starting with fundamental elements of beams and cables, it 

was shown that reasonably sophisticated systems can be modeled. 

Finally, considerable insight is offered by analyzing the control of 

flexible structures using exact transfer function relationships. 
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