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Chinmay Limaye 
 

(ABSTRACT) 
 

As the number of transistors per unit chip area increases, the power dissipation of the 

chip becomes a bottleneck. New nano-technology materials have been proposed as viable 

alternatives to CMOS to tackle area and power issues. The power consumption can be 

minimized by the use of reversible logic instead of conventional combinational circuits. 

Theoretically, reversible circuits do not consume any power (or consume minimal power) 

when performing computations. This is achieved by avoiding information loss across the 

circuit. However, use of reversible circuits to implement digital logic requires 

development of new Electronic Design Automation techniques. Several approaches have 

been proposed and each method has its own pros and cons. This often results in multiple 

designs for the same function. Consequently, this demands research in efficient 

equivalence checking techniques for reversible circuits. 

This thesis explores the optimization and equivalence checking of reversible circuits. 

Most of the existing synthesis techniques work in two steps – generate an original, often 

sub-optimal, implementation for the circuit followed optimization of this design. This 

work proposes the use of Binary Decision Diagrams for optimization of reversible 

circuits. The proposed technique identifies repeated gate (trivial) as well as non-

contiguous redundancies in a reversible circuit. Construction of a BDD for a sub-circuit 

(obtained by sliding a window of fixed size over the circuit) identifies redundant gates 

based upon the redundant variables in the BDD. This method was unsuccessful in 

identifying any additional redundancies in benchmark circuits; however, hidden non-
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contiguous redundancies were consistently identified for a family of randomly generated 

reversible circuits. As of now, several research groups focus upon efficient synthesis of 

reversible circuits. However, little work has been done in identification of redundant 

gates in existing designs and the proposed peephole optimization method stands among 

the few known techniques. This method fails to identify redundancies in a few cases 

indicating the complexity of the problem and the need for further research in this area. 

Even for simple logical functions, multiple circuit representations exist which exhibit a 

large variation in the total number of gates and circuit structure. It may be advantageous 

to have multiple implementations to provide flexibility in choice of implementation 

process but it is necessary to validate the functional equivalence of each such design. 

Equivalence checking for reversible circuits has been researched to some extent and a 

few pre-processing techniques have been proposed prior to this work. One such technique 

involves the use of Reversible Miter circuits followed by SAT-solvers to ascertain 

equivalence. The second half of this work focuses upon the application of the proposed 

reduction technique to Reversible Miter circuits as a pre-processing step to improve the 

efficiency of the subsequent SAT-based equivalence checking. 
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Chapter 1 
 
Introduction 
 
With advancement in semiconductor fabrication technology, the number of transistors per 

chip has increased exponentially over the past few decades. Integrated Circuits with 

millions of transistors dissipating a few Watts of energy are commonly seen in different 

electronic devices. Faster clocking rates and high transistor switching rate has led to 

significant increase in chip power consumption. Also, as transistor sizes approach atomic 

levels, scaling down of the feature size in CMOS designs may usher in many new 

problems and challenges. Although the research community is actively seeking the 

solution to these problems, alternative chip design techniques and new technologies may 

offer promise in the future. 

According to the research done by R. Landauer and C. Bennett [1] [20], power 

dissipation will theoretically be zero (or be a very small quantity) when there is no data 

loss in a circuit. This characteristic property is embodied by reversible circuits. 

Reversible circuits composed of a cascade of reversible gates can be conveniently 

implemented using quantum gates. A reversible gate is a universal gate, in that every 

combinational circuit can be represented as a reversible circuit. This is possible through 

the use of garbage outputs and constant input lines thereby embedding the irreversible 

combinational gate function into the reversible circuit. Sequential circuits too can be 

represented using reversible gates with the timing elements added at the circuit boundary 

(similar to combinational circuits). 
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1.1 Optimization of Reversible Circuits 

Reversible circuits are realized using quantum gates and the cost of each design is based 

upon the total number of gates in the design and the number of input lines per gate. Most 

of the existing synthesis methods rely upon the optimization of an initial sub-optimal 

design and hence investigation of efficient optimization techniques is necessary to ensure 

an acceptable realization cost. Removal of redundant logic also translates to fewer delay 

faults and lower possibility of masking of existing faults. Efficient synthesis and 

optimization techniques for reversible circuits will provide the necessary stepping stone 

for their adaptation and wide-spread use. 

 

1.2 Equivalence checking for Reversible Circuits 

1.2.1 Design Verification and Equivalence checking 

Design Verification is an important step in digital circuit design and often proves to the 

bottleneck in the IC development. Out of the different Design Verification areas, 

Functional Verification takes most of the time and effort. Equivalence Checking ensures 

that the design will perform required operations within the given constraints. Equivalence 

checking is a hard problem since the output must be as expected for all possible input 

vectors, which might be exponential to the number of inputs. There are two main classes 

of Equivalence Checking: Simulation-based Equivalence Checking and Formal 

Equivalence Checking. 

Simulation-based Equivalence Checking, though straight-forward, presents several 

challenges. It requires creation of test benches for various input scenarios. Also, a 



Chapter 1. Introduction 

 3 

functional coverage model is required to determine the sufficiency of the required 

simulations and specific directs test too might be necessary. Though circuit simulation 

usually is reasonably fast, it still may not be feasible to exhaustively simulate all input 

vectors for each scenario.  Hence, symbolic simulation is needed to reduce the number of 

vectors needed.  The creation of such symbolic test suite is also of research interest and 

bears some similarities to formal techniques, although not investigated in this thesis. 

Formal Equivalence Checking (FEC), on the other hand, is a systematic process that uses 

mathematical reasoning to verify that the two designs are equivalent. FEC can overcome 

most of the above limitations of simulation by implicitly exhausting all possible input 

values. Modern day FEC techniques are based around Binary Decision Diagrams (BDDs) 

and Boolean Satisfiability (SAT) solvers. Extensive research has been conducted in these 

areas to provide high performance tools for determining the equivalence of given circuits. 

 
1.2.2 Equivalence checking for reversible circuits 

Conventional equivalence checking techniques can be applied to Reversible Circuits by 

treating them as AND-OR-NOT circuits. However, in this case, the resulting circuit will 

not be reversible and hence this approach may be inappropriate. Instead, if existing 

techniques are altered to ensure that the resulting circuit is also a reversible circuit, it will 

provide several optimization opportunities before conversion to a Circuit-SAT instance 

for use with state-of-the-art SAT solvers. Use of CNF clauses to determine equivalence 

has been researched extensively and hence conversion of a reversible circuit to this form 

is advisable. To reduce the total CNF-clauses and the complexity of the Circuit-SAT 

instance, pre-processing steps can be applied to reduce computation time. The work by 
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Yamashita et al. [6] explores one such approach and it also serves to test the scalability of 

the algorithm proposed in this thesis 

 

1.3 Previous work 

The work done by Feinstein et al [9] attempts to identify redundant gates by exhaustive 

simulation of different versions of the circuit created by controlled modifications. 

Another approach proposed by Zhong et al. [21] involves the use of a cross-point fault 

model to identify redundant gates. However, this work too involves exhaustive 

simulation after identification of potentially redundant gates. Most synthesis techniques 

involve a design optimization step and the optimization algorithm specific to the 

synthesis technique is then generalized to apply to existing circuits. However, in most 

cases, this algorithm involves re-synthesis of sub-circuits rather than identification of 

redundant gates. 

 

1.3.1 BDD-based synthesis and reduction in number of gate inputs 

A BDD-based reversible synthesis approach has been proposed by Robert Wille [2] [3]. 

The design obtained by this method often contains a large number of constant lines and 

garbage outputs. A selective re-synthesis algorithm [5] has been proposed to reduce the 

number of lines in the circuit and the total quantum cost of the circuit. This involves 

selection of a sub-circuit followed by re-synthesis of the logic function realized by that 

sub-circuit. If an alternate implementation with fewer constant lines and/or garbage 

outputs is obtained, the sub-circuit is replaced with this design. The gate lines for this 
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sub-circuit are merged with the rest of the circuit and it is seamlessly integrated into the 

existing design. 

 

1.3.2 Template-based optimization algorithm 

A reversible circuit simplification approach has been proposed by Maslov et al. [17] that 

involves the use of known reversible circuit structures called templates. A template is a 

cascade of two or more gates that has an alternate, equivalent representation usually 

involving fewer gates. The algorithm seeks to match gate structures in the circuit with 

these templates. When a match is found the gate structure is replaced by the equivalent 

structure utilizing fewer gates thereby reducing the circuit cost. This algorithm ensures 

that the number of gates and the gate lines in the circuit are reduced through local re-

synthesis but it may not actually identify redundant gates. A few gate movement rules 

have also been formulated to facilitate grouping of gates for effective application of 

templates.  

 

1.3.3. Window-based optimization algorithm 

The work done by Soeken et al. [5] proposes the use of windows for optimization of 

reversible circuits. The main idea behind use of windows is to consider the sub-circuit 

formed by the gates currently within the bounds of the window. This sub-circuit is 

subjected to existing re-synthesis techniques for local optimization. This work presents 

two approaches for extracting windows from the sub-circuit, namely the Shift Window 

Optimization (SWO) and the Line Window Optimization (LWO). In both cases, the 
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circuit design was improved, but this was achieved through re-synthesis rather than 

removal of redundancies. 

 

1.3.4 Optimization algorithms for Reversible Miter Circuit 

For equivalence checking of reversible circuits, creation of a Reversible Miter circuit 

gives a performance improvement over direct use of conventional Miter circuits and SAT 

methods, as proposed by Yamashita et al. [6]. In case of similar gate structure in both 

circuits, identification of redundant gates (forming an identity gate) is trivial. However, in 

case of diverse structures, the work proposed the use of existing optimization techniques 

which focus more upon re-synthesis rather than redundant gate removal. Consequently, 

this results in higher resource requirement and computation time since identification of 

identity gates can be done without actually performing local re-synthesis. Hence, a low 

cost technique that achieves the same result will fare better compared to existing 

expensive techniques.  

 

1.4 Contribution of this thesis 

This thesis seeks to formalize identification of the non-trivial redundancies present in 

reversible circuits. The proposed algorithm constructs a Binary Decision Diagram (BDD) 

for all target lines within a window (sub-circuit) in the reversible circuit. The BDD 

variables are the circuit lines (both control and target lines), and redundant gates can be 

identified based upon the variables absent in the resulting BDD for the window of 

interest. Any gate that depends on any missing variable(s) as a control line would be 
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redundant. Consequently, this algorithm identifies both contiguous and non-contiguous 

redundancies beyond successively repeated gates. BDDs are constructed using the CUDD 

library [7] from University of Colorado. Use of BDDs does not result in high memory 

requirements or computation times since each iteration considers only a few gates out of 

the entire circuit. 

A potential application of this method is redundancy removal prior to template matching 

or other optimization techniques which are based on re-synthesis of sub-circuits. It is 

possible that the application of our algorithm at intermediate stages of circuit synthesis 

will lower the cost of generating an optimal circuit. To demonstrate this fact, this work 

considers randomly generated un-optimized reversible circuits and identifies non-

contiguous (non-trivial) redundancies within these circuits. Experimental results show 

successful identification of non-trivial redundant logic in a suite of reversible circuits. 

Likewise, this method also serves as a low-cost redundancy removal technique for 

Reversible Miter circuits to facilitate efficient equivalence checking of circuits. 

 

1.5 Organization of this thesis 

The rest of this thesis is structured as follows. In Chapter 2, we go over some of the 

basics of reversible circuit design, Binary Decision Diagrams and Equivalence Checking. 

Chapter 3 presents the basic BDD-based algorithm to identify redundant gates in 

reversible circuits. Chapter 4 presents the application of the algorithm for optimization of 

Reversible Miter circuits. In Chapter 5, we conclude the thesis and propose future work. 
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Chapter 2 

Background 

2.1 Characteristics of Reversible Circuits 

If a logic function is a bijection, it can be implemented using a reversible circuit 

composed of reversible gates. Due to the one-to-one mapping between inputs and 

outputs, each gate must have the same number of input and output lines. Consequently, 

there is no information loss across any gate since each gate output is sufficient to 

determine the gate input.  All irreversible combinational circuits have an equivalent 

representation as a reversible circuit since a reversible gate is a universal gate. Toffoli 

gates [8] and Fredkin gates are popularly used for the implementation of reversible logic 

functions [32]. Of these, only Toffoli gates are considered in this work. The four types of 

Toffoli gates used are NOT, CNOT, TOF and TOF4. Following is a short description of 

each type of gate followed by their logical gate representation. 

NOT (a): a → a ⊕1 

CNOT (a,b): a,b → a, b ⊕a 

TOF (a,b,c): a,b,c → a, b, c ⊕ab 

TOF4 (a,b,c,d): a,b,c,d → a, b, c, d ⊕abc 
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Figure 2.1: Basic Reversible Gates 

For example, the NOT gate has one input, a, and one output, whose function is simply a 

XOR 1 (or negation of a). Hence, the input-output notation a → a ⊕1 states that a (left of 

→) is the input and a ⊕1 (right of →) signifies the output of this gate.  Similarly, the 2-

input-2-output CNOT gate has the input-output mapping shown as   a, b → a, b ⊕a. 

Another view is to consider each Toffoli gate as a multiplexer. A gate with a single 

control line is similar to a MUX with the gate target line and its complement as the MUX 

inputs and the control line as the MUX selection line. Consider the CNOT gate with 

inputs (a, b).  The first (top) output is simply a, and the second output is a XOR b.  In 

other words, the second output is the same as b if a = 0, and is the negation of b if a = 1. 

Yet another representation is obtained by considering each reversible gate as a 

combinational circuit composed of primitive logic gates. For the purpose of circuit 

analysis, this representation may prove useful. However, it converts the reversible circuit 

into an irreversible circuit and it may influence the analysis. Each of the above 

representations are shown in Figure 2.2. 
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Figure 2.2: Representations of (a) Toffoli gate as (b) MUX and as (c) AND-XOR 

combination 

A reversible circuit is fan-out free and has a single gate at each level. For example, the 

reversible circuit shown in Figure 2.3 (generated by Feinstein et al. [9]) has 4 inputs and 

4 outputs, with 11 reversible gates, g1 to g11. Also, feedback paths are not allowed and 

hence all reversible circuits are combinational. State elements may be added, however, 

only at the boundaries of the circuit as in conventional Boolean logic circuits.  

 

 

Figure 2.3: Reversible circuit “random4” 

For Toffoli gates with multiple control lines, the control lines can be logically ANDed 

and the AND gate output connected to the multiplexer selection line. For example, 

consider gate g1 in Figure 2.3.  The third output of g1 is the negation of x3 only if 
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x1=x2=1, otherwise this output is simply the same as x3. Likewise, reversible gates can 

also be represented as a combination of XOR and AND gates. 

 

2.2 Existing synthesis techniques for Reversible Circuits 

Different methods have been proposed for the synthesis of reversible logic, however, they 

are somewhat constrained. Exact synthesis methods have been proposed [10] [11] but 

they are suitable for functions with upto 6 variables. Heuristic methods [12] [13] can be 

applied for functions with more variables. However, the circuits generated may not be 

optimal and post-synthesis optimization is necessary. The work done by Wille et al. [2] 

focuses on the use of BDDs for synthesis and optimization of reversible circuits. The 

synthesis algorithm is capable of generating reversible circuits for large functions, but the 

resulting circuit may have many constant circuit lines. The follow-up work [3] improved 

the synthesized circuit by reducing the number of lines by an average of 17% and 40% in 

the best case. However, it was observed that in some cases, a reduction in the number of 

lines resulted in an increase in the number of gates and/or the quantum cost of the circuit. 

Another synthesis approach involves the generation of a sub-optimal reversible circuit 

followed by matching of contiguous gates in the circuit with known gate templates and 

performing gate reductions by replacing sub-circuits with their equivalent representations 

with a lower cost. [13]. Likewise, there are other synthesis approaches which follow the 

above pattern of producing a sub-optimal design and subsequently optimizing it. Thus, 

efficient generation of optimal reversible circuits remains a challenging task and 

identification of redundancy plays an important role in the circuit design. 
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2.3 Redundant gates in conventional and reversible circuits 

Redundant gates are defined as those gates whose removal will not affect the output of 

the circuit. Redundancies may be specifically introduced into the circuit to ensure 

robustness or may be unintentional due to design flaws. A simple example of redundant 

logic would be a function f given as f = (ab)’ + b’. This can be simplifies as (a’+b’) + b’, 

which reduces to a’ + b’. Thus, in the original function, the second term b’ is redundant 

and its removal will not affect the circuit output. 

In case of reversible circuits, redundancy is usually not desirable since absence of fan-

outs negates the possibility of multiple control paths and getting higher fault tolerance. 

Reversible circuits are implemented using quantum gates and redundant gates contribute 

to higher quantum cost for the circuit. Most reversible circuit synthesis approaches 

involve an intermediate optimization step and presence of redundancies in the final 

circuit design indicates lacunae in the synthesis algorithm. When two identical reversible 

gates are placed next to each other, they form an identity function making both gates 

jointly redundant. Also, reversible circuits may contain non-contiguous redundant gate 

sets as explained in later sections. Identification and removal of such redundancies is 

particularly important for optimization of Reversible Miter circuits, as explained in later 

sections. 

 

2.4. Analysis and identification of redundant gates 

For conventional combinational circuits, the FIRE algorithm [14] is a low-cost technique 

that identifies redundant faults in conventional Boolean logic by extensive use of logic 
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implications. Similarly, it is possible to eliminate redundant gates from reversible circuits 

by application of pre-processing techniques. Recall that reversible circuits can be viewed 

as combinational circuits containing XOR, AND and NOT gates or as a cascade of 

MUXs. Implications can be generated for either of the above two representations of 

reversible circuits. However, because reversible circuits do not have fan-out structures, 

and because there are no direct implications for an XOR gate, implications may not be 

the most suitable method for the identification of redundant gates. Thus, unless the 

reversible gate is a simple NOT gate, a single control line cannot have an implication on 

the gate output. 

Likewise, generation of a simple CNF (conjunctive normal form) formula for the 

reversible circuit has limited use as it can identify only successively repeated gates. 

Identification of repeated gate redundancy is possible by adding the constraint that the 

target output line and the corresponding input line are each other’s complement. 

Subsequently, the CNF formula may be given to a SAT-solver, and if the formula is 

unsatisfiable, it indicates that the sub-circuit under consideration is redundant. However, 

this approach is not helpful in detecting non-contiguous redundant gates.  In this paper, 

we aim to identify contiguous as well as non-contiguous redundant logic in a reversible 

circuit. 

 

2.5 Binary Decision Diagrams 

With the ever-increasing complexity of digital circuits, functional descriptions in form of 

logic equations or Karnaugh Maps grow exponentially with the number of variables. As 
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proposed by Akers et al. [22], a Binary Decision Diagram (BDD) provides a concise 

‘implementation free’ description that yields meaningful results about the logical 

structure and the testing requirements of the function involved. A BDD presents a 

‘diagram’ which tells the user how to determine the output based upon the function inputs 

and can be used to implement large digital functions. 

 

2.5.1 Definition of a BDD 

A Binary Decision Diagram (BDD) is a rooted, directed acyclic graph with 

• one or two terminal nodes of out-degree zero labeled 0 or 1 

• a set of variable nodes u of out-degree two. 

 

2.5.2 Explanation and examples 

Consider the switching function, f = A+B’C. One way to determine the binary value of f 

would be to begin by considering the value of A. If A = 1, then f = 1 and we are done. If 

A = 0, we consider B. If B = 1, then f = 0 and again we are done. Otherwise, we go for C 

and its value will be the value of f. Figure 2.4 shows a simple diagram of this procedure. 

We enter at the node indicated by the arrow and then simply proceed downward through 

the diagram, noting at each node the value of its variable and then taking the indicated 

branch. When a 0 or 1 value is reached, this gives the value of f and the process ends. 

Figure 2.4 shows similar diagrams for some simple functions. 
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(a) f = A + B’C       (b) f  = ABC             (c) f = A ⊕ B ⊕ C  

Figure 2.4: BDDs for simple logical functions 

 

2.5.3 Construction of BDDs 

Binary Decision Diagrams are essentially an if-then-else structure and much work has 

been done to formalize the approach for optimal construction of a BDD for the given 

variable order [23]. An ITE (if-then-else) construct is described as: 

An ITE is a ternary directed acyclic graph in which each leaf is labeled with TRUE, 

FALSE, or a literal, and each internal node has three out-edges pointing to the if-then-

else-parts. The meaning of a leaf is the label on the node, and the meaning of an internal 

node is defined recursively as:  

( if meaning( if-part ) then meaning( then-part ) else meaning ( else-part ) ). 

The notation used to represent an ITE is (A, B, C), where A is the if-part, B is the then-

part and C is the else-part. In terms of a Boolean formula, this can be expressed as: 

z = ite (f,g,h) 
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i.e. z = fg + f ’g 

Each primitive logic gate has a corresponding ITE notation. A given logic function can 

be expressed as a recursive definition of ITE. Eg: a function f = ac + bc can be expressed 

in terms of ITE as f = ite (a, c, ite (b, c, 0)).  

This notation can be conveniently converted into a BDD [19] by mapping the if-then-else 

parts to the corresponding BDDs and merging the common sub-BDDs of the ‘then’ and 

‘else’ parts. If the ITE is a single variable then the corresponding BDD is the variable 

pointing to both 1 and 0. The above ITE expression can be represented as a BDD as 

follows: 

 

Figure 2.5: BDD for f = ac + bc 

Thus, given a function and a variable order, an ITE structure can be used to generate the 

corresponding BDD. For this work, we use the CUDD package to generate the required 

BDDs. This package provides an API toolkit for BDD manipulation and a visual 

representation of the BDD in form of a ZDD, as explained in next sections. 
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2.5.4 Zero-suppressed BDDs 

As proposed by Minato et al. [24], BDDs can be converted into Zero-suppressed Binary 

Decision Diagrams (ZDD) which have a more efficient structure. A BDD can be 

converted into a ZDD by eliminating the nodes whose 1-edge points to the 0-terminal 

node and then directly connecting the incoming edge(s) of the node to the other sub-

graph directly. Thus, for a ZDD, a node is created only if the positive edge does not point 

to the 0-terminal node.  The following figure compares the BDD and ZDD [25] created 

for the function: f = ab + cd 

 

Figure 2.6: BDD and ZDD for f = ab + cd 

 

The CUDD package used for BDD construction provides visual representation of the 

constructed BDD in form a ZDD. For our purposes, the ZDD is sufficient to show the 

variables present in the corresponding BDD. This is because the only variables 
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suppressed by the ZDD are the ones which result in a constant 0 output for all inputs. The 

presence of such variables is not possible in a reversible circuit as it violates the one-to-

one mapping between the inputs and outputs of a reversible circuit. 

 

2.6 CUDD package for BDD manipulation 

The CUDD (Colorado University Decision Diagram) package [7] provides functions to 

manipulate Binary Decision Diagrams (BDDs), Algebraic Decision Diagrams (ADDs) 

and Zero-suppressed Binary Decision Diagrams (ZDDs). This package provides a rich set 

of APIs which can be directly called from C programs. For this work, the CUDD library 

was linked with a C++ program through the g++ compiler to provide an efficient method 

for generation of BDDs. This work uses the CUDD package as a black box utilizing the 

exported functions for construction of BDDs without concerning itself with internal 

details. 

Prior to use of any of the package functions and structures, the package itself must be 

initialized by calling Cudd_Init(). The CUDD package maintains its own special 

hash tables called unique tables which guarantee that each node is uniquely labeled. The 

unique table, along with a few support data structures, constitutes the DdManager 

structure. Manager instance must be initialized prior to use of the package by calling 

Cudd_Init() on it. The DdNode structure and Cudd_bddIthVar() function are 

used to create new nodes in the decision diagram and under the control of a unique 

DdManager instance. The DdManager handles memory allocation, de-allocation and 

garbage collection and all memory can be reclaimed by calling the Cudd_Quit() 
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function on a DdManager instance. Our work mainly uses the following functions and 

corresponding data structures from the CUDD package:- 

 

Function:- Cudd_bddIthvar 

Signature:- 

DdNode * Cudd_bddIthVar( DdManager * dd,  
       int  i  
    ) 

Description:- 

Retrieves the BDD variable with index i if it already exists, or creates a new BDD 

variable. Returns a pointer to the variable if successful; NULL otherwise.  

 

Function:- Cudd_bddXor 

Signature:- 

DdNode * Cudd_bddXor(   DdManager * dd,  
      DdNode * f,  
      DdNode * g  
   ) 

Description:- 

Computes the exclusive OR of two BDDs f and g. Returns a pointer to the resulting BDD 

if successful; NULL if the intermediate result blows up.  

 

Function;- Cudd_bddAnd 

Signature:- 

DdNode * Cudd_bddAnd(  DdManager * dd,  
     DdNode * f,  
     DdNode * g  

   ) 

 

Description:- 
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Computes the conjunction of two BDDs f and g. Returns a pointer to the resulting BDD if 

successful; NULL if the intermediate result blows up. 

 

Function:- Cudd_Not 

Signature:-  

DdNode *Cudd_Not (DdNode * node 

) 

Description:-  

Returns the complemented version of a pointer. 

 

Function:- Cudd_bddXor 

Signature:- 

DdNode * Cudd_bddXor( DdManager * dd,  
     DdNode * f,  
     DdNode * g  

   ) 

Description:- 

Computes the exclusive OR of two BDDs f and g. Returns a pointer to the resulting BDD 

if successful; NULL if the intermediate result blows up.  

 

Function:- Cudd_bddAnd 

Signature:-  

DdNode * Cudd_bddAnd( DdManager * dd,  
     DdNode * f,  
     DdNode * g  
   ) 

Description:- 

Computes the conjunction of two BDDs f and g. Returns a pointer to the resulting BDD if 

successful; NULL if the intermediate result blows up 
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Function:- Cudd_SupportIndex 

Signature:-  

int * Cudd_SupportIndex( DdManager * dd, manager 
       DdNode * f DD whose support is sought 

   ) 

Description:- 

Finds the variables on which a DD depends. Returns an index array of the variables if 

successful; NULL otherwise. The size of the array equals the number of variables in the 

manager. Each entry of the array is 1 if the corresponding variable is in the support of the 

DD and 0 otherwise.  

 

Function:- Cudd_Init 

Signature:-  

DdManager * Cudd_Init( unsigned int  numVars, 
   unsigned int  numVarsZ, 
   unsigned int  numSlots, 
   unsigned int  cacheSize, 
   unsigned long  maxMemory 
   ) 

Description:- 

Creates a new DD manager, initializes the table, the basic constants and the projection 

functions. If maxMemory is 0, Cudd_Init decides suitable values for the maximum size 

of the cache and for the limit for fast unique table growth based on the available memory. 

Returns a pointer to the manager if successful; NULL otherwise. 

 

Function:- Cudd_Quit 

Signature:- 

void Cudd_Quit( DdManager * unique ) 
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Description:- 

Deletes resources associated with a DD manager and resets the global statistical counters. 

(Otherwise, another manager subsequently created would inherit the stats of this one.)  

 

Function:- Cudd_DumpDot 

Signature:-  

int Cudd_DumpDot( DdManager * dd, manager 
     int  n 
     DdNode ** f,  
     char ** inames, 
     char ** onames,  
     FILE * fp 
   ) 

Description:- 

Writes a file representing the argument DDs in a format suitable for the graph drawing 

program dot. It returns 1 in case of success; 0 otherwise (e.g., out-of-memory, file system 

full). Cudd_DumpDot does not close the file: This is the caller responsibility. 

Cudd_DumpDot uses a minimal unique subset of the hexadecimal address of a node as 

name for it. If the argument inames is non-null, it is assumed to hold the pointers to the 

names of the inputs. Similarly for onames. Cudd_DumpDot uses the following 

convention to draw arcs:  

• solid line: THEN arcs;  
• dotted line: complement arcs;  
• dashed line: regular ELSE arcs.  

The dot options are chosen so that the drawing fits on a letter-size sheet.  
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2.7 CNF and Boolean Satisfiability 

2.7.1 CNF and SAT solvers 

Most Equivalence Checking methods have Binary Decision Diagrams (BDDs) or 

Boolean Satisfiability (SAT) based methods as the underlying engine. BDDs often face 

the problem of memory explosion for large circuits and hence SAT-based methods have 

taken the centre stage. A SAT problem accepts the input inform of a Conjunctive Normal 

Form (CNF) and determines an assignment for the CNF literals or concludes that no 

assignment exists. A CNF is a conjunction of clauses, while a clause is a disjunction of 

literals. A literal can be represented by either a positive polarity or negative polarity of a 

signal, and has a value of 1 when the signal is at the corresponding polarity. 

 

Figure 2.7: A simple combinational circuit 

For the circuit shown in Figure 2.7 its CNF formula is 

(A ∨ E)(B ∨ E)(¬A ∨ ¬B ∨ ¬E) 

(¬C ∨ F)( ¬D ∨ F)(C ∨ D ∨ ¬F) 

(E ∨F ∨ ¬G)(E ∨ ¬F ∨ G)( ¬E ∨ F ∨ G)( ¬E ∨ ¬F ∨ ¬G) 

To solve a CNF formula every clause needs to be satisfied, i.e. at least one literal in every 

clause needs to be true. For example in the CNF formula above, for clause (¬C ∨ F) to be 

true, either C = 0 or F = 1 needs to be satisfied. Although the SAT problems are NP-

Complete in nature [15], existing SAT Solvers (Eg: Zchaff [26], MiniSat [27], GRASP 
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[28]) have been known to successfully solve very large CNF formulas with more that a 

million variables and a million clauses. 

 

2.7.2 Miter Circuits 

A Miter circuit is created from two circuits. To check the equivalence of two circuits, C1 

and C2, a Miter circuit can be constructed to compare their outputs through XOR gates. 

As shown in the figure, the corresponding primary inputs (PIs) of C1 and C2 are tied 

together and the corresponding outputs are connected to a dual-input XOR gate. 

 

Figure 2.8: Conventional Miter Circuit 

The equivalence property of the two designs is denoted by the XOR gate output being 

constant 0. If the problem is to be solved by a Satisfiability (SAT) based approach, the 

Miter circuit needs to be converted to a CNF formula. In addition to these clauses a unit 

clause must be added to CNF formula to force the XOR gate 1. Addition of this clause 

implies that the corresponding output pair has dissimilar values and the SAT Solver is to 

provide an input assignment that will not violate this constraint. For circuits with multiple 

outputs, an OR gate can be used to connect all XOR gates and the output of this OR gate 

is forced to 1 in CNF clauses. If a SAT Solver proves that no assignment exists for the 

CNF formula such that the output can be 1, the equivalence of the designs is proved. 
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Chapter 3 

Identification of Redundant gates using BDDs 

3.1 Redundant gates in Reversible Circuits 

Given the two-step process followed by most synthesis algorithms, it is quite possible 

that redundant gates will be present in reversible circuits. Redundant gates increase the 

total gate count and are also responsible for presence of redundant faults. Both of these 

have an adverse effect on the yield. As presented by Feinstein et al. [9], there is a 

possibility of redundant logic being present in non-optimal reversible circuits. In addition 

to this, redundant logic may appear as a combination of gates rather than as a single gate. 

Further, this multi-gate redundant logic may be composed of a set of non-contiguous 

gates, making their detection challenging and difficult. Also, it is possible that two or 

more sets of non-contiguous redundant gates might overlap in the circuit increasing the 

complexity of the problem. 

 

3.2 Brute force method for redundancy identification 

The work by Feinstein uses a brute force approach to identify redundant gates. This 

involves creation of a copy of the circuit with ‘controlled modifications’ and comparison 

of this modified circuit with the original circuit using equivalence checkers. These 

controlled modifications involved removal of two or more gates from the circuit.  Upon 

comparison through equivalence checkers, if the original circuit and the modified
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circuit are equivalent, then gates removed from the original circuit do not affect the 

circuit output i.e. these gates are redundant. 

For large circuits, random selection of gates is necessary as exhaustive gate enumeration 

and deletion is not possible. Two sets of non-contiguous redundant gates were identified 

in the reversible circuit “random4”, as illustrated in Figure 3.1, through exhaustive gate 

deletion followed by simulation-based equivalence checking. In this circuit, no single 

gate is individually redundant.  However, a set of gates, either {g4, g6}, or {g5, g8, g9}, 

could be removed without changing the functionality of the circuit. 

 

 

Figure 3.1: Sets of non-contiguous redundant gates in the circuit “random4” 

The approach presented above is suitable only for small circuits with a few inputs. As the 

number of inputs and gates increases, exhaustive checking is not feasible and a random 

approach may not yield results. This thesis aims to improve the above method and 

provide an efficient and scalable method for redundant gate identification. 

 



Chapter 3. Identification of Redundant Gates using BDDs 

 27 

3.3 Use of BDDs for redundant gate identification 

3.3.1 Selection of sub-circuits 

By definition, a change in the input values of a redundant gate does not affect the output 

of the circuit. Thus, it is necessary to enumerate all possible input values, implicitly or 

explicitly, before declaring a gate to be redundant. However, this needs to be performed 

for every gate, as well as for every group of gates.  Recall that this group of redundant 

gates may not be contiguous, making this search space extremely large.   

To tackle this problem, only small sections of the circuit are considered at a time. This is 

achieved by sweeping through the reversible circuit using windows of gates, where a 

window is a contiguous set of gates.  Within each window, we will examine and check if 

there exists any redundant single or multi-gate logic. This sweep of the circuit is 

performed using overlapping windows. Consequently, all possible instances of redundant 

logic smaller than the window size can be detected by our method. 

 

Figure 3.2: Window of size 4 swept over reversible circuit random4 

The above figure shows three consecutive windows for a window size of 4. The sub-

circuit (formed by window w1) consists of gates g1, g2, g3, g4. The second sub-circuit is 
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formed by shifting the window ahead by one gate. It consists of gates g2, g3, g4 and g5. 

The entire circuit is analyzed sub-circuit by sub-circuit by sweeping windows of varying 

size. As can be seen, this approach effectively scans the entire circuit and hence no 

potentially redundant non-contiguous gate group is missed. 

 

3.3.2 Construction of BDD 

The generation of logic functions for every window of the circuit is performed by 

viewing each sub-circuit as a net of XOR, AND and NOT gates. The CUDD package 

provides APIs for creating a BDD for the above primitive gate types. The BDDs formed 

for each of these functions can be appended and optimized to form the BDD for a given 

circuit output. A BDD implicitly represents the logic function of the gates involved in the 

window.  It is constructed by traversing the complete input space of this sub-circuit and 

hence contains the necessary information to conclude whether a reversible gate output 

line is independent of given input lines within the current window of interest. A BDD 

needs to be generated only for those lines which are a target line at least once in the sub-

circuit. The nodes of a BDD generated for a reversible circuit line indicate the variables 

upon which the output of that line depends upon. 
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Figure 3.3: BDD generated for sub-circuit {g1, g2, g2} 

Consider the sub-circuit and its BDD illustrated in Figure 3.3. The gate output on the 

target line y3 is independent of the line x1, although x1 is a control line for two gates in 

this sub-circuit. Thus, the signal on x1 plays no part in deciding the output y3 for this 

particular window. This implies that all gates within this window which depend on signal 

x1 do not affect the output. Hence, gates g1 and g3 are cumulatively redundant. This can 

be proved by applying the ‘moving rule’ followed by the ‘deletion rule’ as presented in 

[16]. 

In general, reversible gates that depend upon one or more redundant signals in the current 

sub-circuit, as identified by the corresponding BDD, are redundant. This assertion holds 

true in other sub-circuits with non-contiguous gates operating on different target lines, as 

shown in Figure 3.4. The target lines y1 and y3 are present in the BDD as the two root 

nodes. Having two root nodes for a BDD is equivalent to considering the intersection of 
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the two component BDDs. Variables x2 and x4 are absent in the BDD, and thus any gate 

that depends on x2 and x4 would be redundant.  In this case, gates g1, g4, and g5 can be 

safely removed without changing the logic function. This can be proved by constructing 

the truth tables for the original sub-circuit and the optimized sub-circuit. 

Table 3.1 presents the truth table for the sub-circuit illustrated in Figure 3.4. As seen in 

Figure 3.5, the redundant gate set {g1, g4, g5} can be eliminated resulting in an 

optimized version of the sub-circuit. The truth table is the same for both the un-optimized 

and optimized versions and it can be trivially verified for all input vectors for the sub-

circuit. 

 

Figure 3.4: BDD generated for the sub-circuit {g1, g2, g3, g4, g5} 

 

Figure 3.5: Sub-circuit before and after redundancy elimination 
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x1 x2 x3 x4  y1 y2 y3 y4 
0 0 0 0  0 0 0 0 
0 0 0 1  0 0 0 1 
0 0 1 0  1 0 1 0 
0 0 1 1  1 0 1 1 
0 1 0 0  0 1 0 0 
0 1 0 1  0 1 0 1 
0 1 1 0  1 1 1 0 
0 1 1 1  1 1 1 1 
1 0 0 0  0 0 1 0 
1 0 0 1  0 0 1 1 
1 0 1 0  1 0 0 0 
1 0 1 1  1 0 0 1 
1 1 0 0  0 1 1 0 
1 1 0 1  0 1 1 1 
1 1 1 0  1 1 0 0 
1 1 1 1  1 1 0 1 

Table 3.1: Truth Table for redundant sub-circuit 

Redundant gates need not be two instances of the same gate. As seen in the redundant 

sub-circuit in Figures 3.5 and 3.6, three gates can be removed without changing the final 

outputs of the circuit. Both of these sub-circuits are taken from “random4” reversible 

circuit. 

Our work identifies non-contiguous redundant gates for all sub-circuits obtained by a 

window-based sweep of the complete circuit. Since reversible circuits are composed of a 

cascade of reversible gates with a single gate at each level, the following lemma can be 

derived. 

Lemma : In a reversible circuit, redundant gates (either contiguous or non-contiguous) in 

a sub-circuit are also globally redundant. 

Proof: Consider a reversible circuit consisting of windows A, B, and C, linearly 

cascaded.  Without loss of generality, let the window of interest be window B.  Suppose 

there exists a group redundant logic in window B, and let B’ be the new window obtained 
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after removing the redundant logic from B.  Since the logic function for B’ is identical to 

that of B, the linear cascading of A, B’, and C would result in an identical global function 

before redundancy removal.                █ 

The above lemma allows for a safe removal of redundancies (could be non-contiguous) 

within a local window for reversible circuits, making our algorithm both practical and 

feasible. 

 

3.4 Algorithm 

The proposed algorithm considers windows (sub-circuits) of the given reversible circuits 

similar to a peep-hole optimization technique. This is done by sweeping a window of a 

given size over the entire circuit, from left to right, considering different sub-circuits 

present “under the window” for each iteration. During the sweep, sub-circuits sized 

between 3 gates to k gates are analyzed. Currently, the window is simply swept over the 

circuit, shifted ahead by a single gate at a time. Window sizes of 3, 4, up to k gates are in 

use. Future work can focus upon having a dynamic window size based upon a heuristic 

that maximizes the probability of finding redundant logic. 

The complete algorithm is as follows: 

1. For window size w = 3 to k 
2. Consider the sub-circuit currently in the window of size w 
3. Create a BDD for each output line of the window which is a target line for at least 

one gate.  
4. Check if any variable is missing in the constructed BDDs. 
5. Perform intersection of the set of missing input variables in each BDD for all target 

lines. 
6. Gates with one or more control lines in the intersection set obtained in step 5 are 

redundant. 
7. Repeat if some redundant gates are found 
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The CUDD library from University of Colorado was used to construct the BDDs. The 

above algorithm considers at most 6 reversible gates in each window and hence the 

BDDs are very easy to construct. The time taken for BDD generation depends upon the 

number and type of gates in the circuit.  In our experiments, the execution time increased 

linearly with the increase in number of gates in the circuit. An increase in the number of 

variables increases the complexity of the BDD generated per sub-circuit and requires 

additional cost. However, since a BDD is generated on a per-window basis, individual 

BDDs do not explode in memory or cause excessive computational overhead. 

 

3.5 Experimental Results 

The window-sweeping algorithm was implemented and executed on existing benchmark 

reversible circuits [17] [18], in addition to our randomly synthesized reversible circuits.  

First, we confirmed that these optimal circuits from [17] [18] did not include redundant 

gates, as expected. Next, randomly generated reversible circuits (without application of 

any optimization techniques) were considered for our experiments.  Non-trivial redundant 

gates were indentified in many circuits. The random reversible circuits were chosen such 

that there were no successively repeated gates since identifying that redundancy is trivial. 

 

Figure 3.6: Redundant gates in circuit Rand_01 
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For the circuit Rand_01 shown in Figure 3.6, the BDDs generated for a window of size 4 

over gates g16 to g19 contained only variables x1 and x4, thus any gate in this window 

that depends on x3 is redundant. This was true for all the generated BDDs within this 

window. Line x3 is the control line for three gates: g16, g17 and g19 and hence these 

three gates are redundant. After removal of these three gates, gates g18 and g20 also 

become redundant thereby eliminating the last 5 gates in the reversible circuit. Thus, 

gates g16 to g20 form an identity circuit which may be of use for creating new templates 

and extend the work done in [16]. 

 

Figure 3.7: Redundant gates in circuit Rand_02 

Consider circuit Rand_02 shown in Figure 3.7. A window of size 4 over the gates g12 to 

g15 identified three redundant gates as shown in the figure. The intersection of the sets of 

variables eliminated by both the generated BDDs contained x1. The gates with x1 as one 

of its control lines get eliminated as redundant gates. 

Tables 3.2 and 3.3 sum up the results for a few randomly-generated reversible circuits 

obtained on a system with Ubuntu 10.04 OS, Pentium IV 3.2 GHz processor and 1 GB 

RAM. For small circuits with 4 inputs/outputs, upto 25% gates were identified as 

redundant. For circuits with more I/O and large numbers of gates, the number of 

redundant gates identified declined steadily.  For circuits with larger number of I/O, we 
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created two sets of benchmarks.  The first set places denser control signals, while the 

second one has less dense control signals. The circuit names with a ‘_d’ suffix (where 

d=2 to 4) were generated with the less dense control constraint such that each gate will 

have 4 or fewer control lines. These circuits are presented in Table 3.3. Due to use of 

very few control lines per gate, the probability of presence of redundancy in this suite of 

circuits increases. As expected, more redundancies were present and identified. Also, as 

the number of allowed control lines per gate decreased from 4 to 2, the occurrences of 

redundancy increased. In general, due to large number of inputs and high gate count, only 

limited redundant logic was encountered in the random circuits. Nevertheless, our 

method was able to find non-trivial redundant logic in these large circuits as in smaller 

circuits.  The execution times were very short. For circuits with 2000 reversible gates, 

approximately 8.5 seconds were needed. 
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Circuit name Number 
of I/O 

Initial gate 
count 

Final 
Gate 
count 

Time reqd. 
(secs) 

Rand_01 4 20 15 0.090 
Rand_02 4 15 12 0.049 
Rand_03 3 20 18 0.084 
Rand_4_60 4 60 55 0.220 
Rand_4_100 4 100 91 0.416 
Rand_4_200 4 200 188 0.836 
Rand_4_800 4 800 780 3.328 
Rand_5_500 5 500 495 1.992 
Rand_6_800 6 800 790 3.236 
Rand_7_1000 7 1000 996 4.076 
Rand_10_1000 10 1000 998 4.140 
Rand_12_1200 12 1200 1198 5.092 

Table 3.2: Redundant gates in randomly generated reversible circuits 

 

Circuit name Number 
of I/O 

Initial gate 
count 

Final 
Gate 
count 

Time reqd. 
(secs) 

Rand_6_800_4 6 800 792 3.128 
Rand_6_800_3 6 800 782 3.396 
Rand_6_800_2 6 800 776 3.368 
Rand_7_1000_4 7 1000 994 4.208 
Rand_7_1000_3 7 1000 988 4.180 
Rand_7_1000_2 7 1000 986 4.244 
Rand_10_1000_4 10 1000 994 4.120 
Rand_10_1000_3 10 1000 988 4.284 
Rand_10_1000_2 10 1000 978 4.280 
Rand_12_1200_4 12 1200 1194 5.052 
Rand_12_1200_3 12 1200 1196 5.212 
Rand_12_1200_2 12 1200 1170 5.264 
Rand_20_2000_4 20 2000 1994 8.440 
Rand_20_2000_3 20 2000 1990 8.816 
Rand_20_2000_2 20 2000 1986 8.676 

Table 3.3 Redundant gates in constrained pseudo-randomly generated circuits 
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3.6 Limitations of the method 

 

Figure 3.8: Unidentified redundancies in a 3-bit reversible circuit 

The proposed algorithm was less successful for 3-bit circuits, partially due to the reason 

that we will illustrate using Figure 3.8. By applying the ‘moving rule’ followed by the 

‘deletion rule’ as presented in [10], the gates {g1, g3} and {g21, g23} are redundant and 

can be eliminated. However, this is not detected by window sweeping. In the case of {g1, 

g3}, both are NOT gates with the control line same as the target line. Generation of a 

BDD for this target line will still list x2 as a required variable. For gates {g21, g23}, the 

intermediate gate, g22 has x1 as a control line and hence BDD lists x1 as a required 

variable. After elimination of g21 and g23, variable x1 will still affect the output on line 

x3 and hence the BDD is ineffective in identifying redundancies in such situations.  This 

also shows the complexity of this problem, in which multiple approaches may be required 

to identify all redundancies present in the reversible circuit.  

 

3.7 Summary 

Our algorithm compares favorably with existing optimization techniques. The template-

based circuit simplification technique proposed by D. Maslov requires the application of 

multiple templates to the sub-circuit, gradually reducing the number of gates until all 
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redundant gates are eliminated. In contrast, generation of BDD for the sub-circuit 

identifies all redundant gates at once quickly. Also, our method identifies redundant gates 

rather than performing a re-synthesis of the circuit. This may assist in circuit analysis and 

diagnosis in the future. Our method faces the limitation of being unable to identify known 

redundant gates in a few circuit structures. However, this drawback can be overcome by 

application of pre-processing techniques to identify structures which may pose problems 

and deal with them as appropriate. Inspite of use of BDDs, our algorithm has short 

execution times, mainly due to use of circuit windows and selective generation of BDDs. 

Most existing optimization techniques were developed as an extension to circuit synthesis 

procedure. Our algorithm is the first attempt to develop an independent algorithm to 

identify redundant gates in a reversible circuit. 
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Chapter 4 

Equivalence checking for Reversible Circuits 

4.1 Equivalence checking for digital circuits 

Equivalence checking methods have been well-established for irreversible circuits which 

include combinational and sequential circuits. Also, a few equivalence checking 

strategies have been developed for reversible circuits [29] which involve the use of 

QuIDDs [30] or QMDDs [31]. Equivalence checking of combinational circuits primarily 

involves the creation of a Miter circuit and examination of the circuit outputs for all valid 

circuit inputs. The equivalence of the two circuit designs is verified through generation of 

CNF clauses for the circuit and feeding them to a SAT-solver. This procedure can be 

applied to reversible circuits as well. However, given the reversible nature of the circuits, 

the Miter circuit can be modified to determine circuit equivalence at a much lower cost. 

 

4.2 Creation of Miter circuit for Reversible Circuits 

Instead of tying together the circuit inputs and comparing the circuit outputs via XOR 

gates, the two circuits are cascaded end-to-end and the circuit inputs are compared with 

the outputs, as presented in the work done by Yamashita et al. [6]. Given two quantum 

(or reversible) circuits C1 and C2, their reversible miter is defined to be one of the 

following circuits: C1 ・C2
−1, C2

−1 ・C1, C2 ・C1
−1, or C1

−1 ・C2 
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For two equivalent circuits, a cascade of the first circuit and the inverse of the second 

circuit will yield the exact same input vector at the output of the Miter circuit, as 

illustrated in Figure 4.1. 

 

Figure 4.1: Block diagram of a Reversible Miter circuit 

 

4.2.1 Basic Idea 

Every reversible gate is its own inverse and hence two identical reversible gates placed 

next to each other form an identity function. Each reversible Miter places the last gate of 

C1 next to the last gate of C2 (recall that C2 is inverted). If these two gates are identical, 

they can be cancelled out as redundant gates making the second-to-last gates in each 

circuit as the next adjacent gate pair around the join of the two circuits. Even if the last 

two gates are not equivalent, it is possible to check if they are a part of a larger group of 

non-contiguous redundant gates. If the two circuits are functionally equivalent, then all 
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the gates in the Miter circuit will eventually get cancelled out without need for 

simulation-based or SAT-based equivalence checking.  

Application of existing methods of simplification [5] [16] may prove to be expensive. We 

propose the use of our BDD-based redundancy detection algorithm to identify and 

eliminate redundant gates in reversible Miters. As discussed earlier, our algorithm is not 

resource intensive and has short runtime. Its application to equivalence checking shows 

that the algorithm is scalable and Reversible Miter circuits with hundreds of input lines 

and thousands of gates can be processed without memory blowup. 

 

4.2.2 Generation of CNF-clauses for Reversible Miter circuits 

After simplification of Reversible Miter, a few gates may still remain in the Miter. In this 

case, CNF-clauses are constructed for this reduced circuit and given to a SAT-solver to 

determine equivalence. Due to simplification of the two circuits, the number of CNF 

clauses generated is much less compared to those generated after forming a conventional 

Miter circuit for reversible circuits. One approach to generation of CNF clauses is to view 

the CNOT gate as an XOR gate with a bypass wire and a Toffoli gate as an XOR-AND 

combination and a bypass. This representation is identical to the one presented in Figure 

2.8. As proposed by in the work by Yamashita et al, a more efficient clause generation 

exists, presented as follows: 

Consider a Toffoli gate whose control bits are x1 and x2, and target bit is x3. Since the 

Toffoli gate does not modify two of its inputs, there is no need for separate output 

variables. A new variable y1 must be added for the target bit. The logical consistency is 
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given by the condition y1 = (x1・ x2) ⊕ x3 which can be expressed by the following six 

clauses. 

Case x1 = 0 or x2 = 0: 
Clauses: (x1 + x3 + y1) ・  (x1 + x3 + y1) ・  (x2 + x3 + y1) ・  (x2 + x3 + y1). 
Case x1 = x2 = 1 : 
Clauses: (x1 + x2 + x3 + y1) ・  (x1 + x2 + x3 + y1) 
 
The above set of clauses is generated for each gate of the reversible circuit regardless of 

the circuit structure. In the next step, a set of clauses is added which are satisfied only by 

those variable combinations where some circuit output differs from the respective circuit 

input. In this step, it is possible to reuse some of the y variables introduced in the earlier 

step. Without loss of generalization, it can be explained as follows: 

Let a new y variable corresponding to the i-th primary output be yOi . (If there is no target 

bit on the i-th bit-line, we do not introduce a new variable for the i-th primary output, 

since the input and the output functions on the i-th bit-line are the same, and the 

following clauses need not be added) 

A new variable zi is required to express the functional consistency of the i-th bit-line. 

Namely, we consider that zi becomes 1 only when xi ≠ yOi . For this condition, we add the 

following clauses. 

 Case zi = 0. Clauses: (zi + xi + yOi ) ・  (zi + xi + yOi ). 
Case zi = 1. Clauses: (zi + xi + yOi ) ・  (zi + xi + yOi ). 
 
Finally we add (z1 +z2 + … +zn) where n is the number of bit-lines of the circuits. Since 

zi=1 means that the input and the output functions on the i-th bit-line are different, the 

two circuits are different when (z1 + z2 + … + zn) is satisfied. 

Thus, the above construction generates a SAT formula that is satisfied only by those 

input combinations for which the corresponding outputs of two circuits produce different 
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values. A CNF-SAT formula constructed for a miter grows linearly with the size of the 

miter. Compared to conventional Miters, Reversible Miter have a key advantage of being 

significantly smaller due to gate cancellations as explained in next section. 

 
4.3 Optimization of Reversible Miters 

We now discuss the application of our technique to Reversible Miters.  Our algorithm 

performs a window-based sweep of the Reversible Miter. Our algorithm is modified to 

consider windows of varying size around the join of the two reversible circuits in the 

Miter. A total of 10 window sizes are considered. In each window, half of the gates come 

from circuit C1 and the other half come from C2
-1.  The number of redundant gates 

identified in each window is stored and the window with maximum gates eliminated is 

chosen. The redundant gates are canceled out and the process is repeated for the reduced 

Miter circuit till all the gates are eliminated or no redundant gates are identified in any of 

the 10 windows. 

Instead of eliminating gates in pairs (when a pair of identical gates is seen), our method 

can eliminate multiple gates at once. In reversible circuits, it is possible that eliminating 

two gates as redundant by a greedy approach may inhibit identification of a larger group 

of non-contiguous redundant gates and result in a sub-optimal design.  

 

4.4 Results 

Reversible Miter circuits were constructed for small equivalent reversible circuits 

implementing a given function by utilizing different gate structures in each design. 
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Circuits with more than a hundred inputs and thousands gates were also considered. 

However, due to lack of large benchmarks circuits with multiple implementations of 

given functions, we formed a reversible miter of two copies of the same circuit to test our 

approach for scalability. Table 4.1 presents the results of our experiments. 

Circuits forming Reversible Miter No. 
of 
I/O 

Total 
gates 
in 
Miter 

Total 
redundant 

gates 
deleted 

Time reqd. 
(secs) 

nth_prime_inc29 nth_prime_inc29 5 58 54 0.252 
ham7-tc ham7-25-49 7 48 8 0.084 
hwb10-3595 hwb10-3595 10 7190 7190 16.30 
hwb11-8214 hwb11-8214 11 16428 10158 23.47 
hwb11-11600 hwb11-8214 11 19814 12 0.128 
ham15tc1 ham15tc1 15 264 264 0.716 
ham15-tc1 ham15-70 15 202 52 0.340 
ham15-109 ham15-70 15 179 42 0.272 
mod1024adder mod1024adder 20 110 110 0.232 
hwb20ps hwb20ps 25 148 148 0.400 
mod1048576adder mod1048576adder 40 420 420 1.084 
gf2^16_301 gf2^16_301 45 602 602 1.384 
gf2^18_375 gf2^18_375 51 750 750 1.648 
hwb50ps hwb50ps 56 486 486 1.516 
gf2^32_1148 gf2^32_1148 96 2296 2296 5.132 
gf2^50_2647 gf2^50_2647 150 5294 5294 13.14 
gf2^64_4285 gf2^64_4285 192 8570 8570 21.92 
hwb200ps hwb200ps 208 2706 2706 8.213 
gf2^100_10297 gf2^100_10297 300 20594 20594 53.02 
hwb500ps hwb500ps 509 7996 7996 35.84 

Table 4.1: Redundant gates canceled in Reversible Miter circuits 

As shown in the table, our approach can process large circuits in a relatively short time. 

As expected, most Reversible Miters for two copies of a single circuit have all their gates 

marked as redundant and thus can be identified as equivalent. However, as mentioned 

earlier, our method still faces a few limitations with respect to the identification of 

redundant gates dependent upon gate lines used by a non-redundant gate in the window. 

Our algorithm will skip past gates that it cannot identify as redundant. However, if none 
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of the gates in a 10-gate window around the join of the two circuits get marked as 

redundant, the algorithm will terminate. When the window size exceeds 10, BDD-based 

redundancy detection becomes ineffective – the maximum window size in the actual 

proposed algorithm was limited to 10 gates. Consequently, this limits the identification of 

redundancy in known equivalent Reversible Miter circuits. Nevertheless, the elimination 

of gates is helpful to reduce the total number of clauses if a SAT-solver based technique 

is to be used subsequently for equivalence checking. 

Another observation to be made is that the time taken is dependent upon the total number 

of gates in the circuit rather than the number of gate lines. Although our algorithm 

constructs BDDs, it focuses on a sub-circuit in each iteration and constructs a BDD only 

for the target lines in the sub-circuit. Since BDDs need to be computed for all 10 

windows to choose the optimal set of redundant gates to be eliminated, the time required 

increases linearly with the number of gates in the Reversible Miter. 

 

4.5 Summary 

As indicated by the obtained results, application of our algorithm results in significant 

reduction in the total gates present in the Reversible Miter. This translates to fewer CNF-

clauses and higher performance for the SAT-solver. In the ideal case, our algorithm 

cancels out all the gates in the Reversible Miter establishing equivalence without the need 

for subsequent processing. The limitation of our algorithm becomes apparent when a 

Reversible Miter formed of two-copies of the same circuit still has a few gates left over 

after the application of our algorithm. This limitation is the manifestation of the drawback 
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explained in the earlier section for 3-bit reversible circuits. However, in most cases, our 

algorithm results in significant reduction of the size of the Reversible Miter. 

Reduction in the gate count translates to generation of fewer CNF clauses to represent the 

Reversible Miter and hence the SAT-solver requires shorter time to analyze these clauses 

for satisfiability. In addition to removing contiguous gates forming an identity gate, our 

algorithm also eliminates non-contiguous redundant gates thereby identifying more gates 

at a time. 
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Chapter 5 

Conclusion and Future Work 

We have presented a new low-cost method for the identification of non-trivial redundant 

gates in reversible circuits. This approach can be easily extended to larger reversible 

circuits and the cost grows only linearly with the circuit size. The proposed sweeping 

algorithm works best when applied at the intermediate stage between generation of a sub-

optimal reversible circuit and application of optimization techniques. As indicated by the 

results, non-trivial redundant logic was successfully identified in a suite of reversible 

circuits. In a few circuit structures, the algorithm was not as successful as expected. 

However, this limitation can be offset by use of pre-processing techniques to identify 

potentially problematic gate structures which reduce the effectiveness of our algorithm. 

An equivalence checking method for reversible circuits was in existence prior to this 

work, but the application of our algorithm can be used to improve this method. Instead of 

employing expensive optimization techniques initially developed for circuit synthesis, 

use of our low-cost algorithm will prove to be efficient. Also, formation of Reversible 

Miters of thousands of gates with hundreds of input lines provided large reversible 

circuits to test the scalability of our approach. As expected, due to window-based analysis 

and selective generation of BDDs, our approach presents short execution times without 

resource blowup. 

In a few Reversible Miters composed of two copies of the same circuit, our algorithm 

failed to identify all gates as redundant. As mentioned earlier, this limitation can be

avoided by use of appropriate pre-processing techniques. 
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Compared to existing techniques, use of our algorithm presents multiple improvements 

for reversible optimization techniques. Identification and removal of redundant gates will 

reduce both circuit delay faults and masking of existing faults. When applied to 

Reversible Miters, identification of contiguous as well as non-contiguous redundant gates 

will ensure shorter execution times by removing more redundant gates at a time. Also, the 

results show a significant reduction in the total gate count for Reversible Miters thereby 

reducing the total CNF clauses for the subsequent SAT-solver. 

An investigation of pre-processing steps and possible modifications for the algorithm are 

necessary to ensure that all redundant gates are identified. Likewise, instead of generating 

a BDD for each and every window, research is necessary to determine a window size that 

maximizes the probability of finding redundant logic. This window size will change 

dynamically as different sections of the reversible circuit are analyzed for redundancy. 
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