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ABSTRACT 

In this report, we develop a general theory of the relationship between life history and population structure 
for largemouth bass. In its most usable form the model is represented by a stochastic integral equation that is 
analagous to the classical Lotka model for age structure of populations. The corresponding differential equations 
can also be used successfully when closed-form solutions are available or when the phenotype dimension is low 
enough to permit numerical solution. 

Three general conclusions are presented. First, population dynamics may be appropriately viewed as a 
consequence of life history phenomena. This view suggests that, at least where prediction of population 
structure or where explanation of the phenomena is desired, such phenomena as density-dependence may be 
most appropriately described by analyzing effects of population structure and density on life history in the 
population. The second conclusion is that variation in life history may be important in determining population 
structure. Terms describing effects of variation are explicitly included in the model equations. The magnitude of 
these terms, however, is completely unknown for any life histories with which we are familiar. The third 
conclusion to be drawn is that population structure, at least averaged over time, should be fairly stable in large 
populations. Effects of variation in small populations, on the other hand, have not been analyzed and might be 
Important. 

Applications to largemouth bass populations are not conclusive for any realistic fisheries management 
problems, but are intended to illustrate some possible uses of the model. Some conclusions may be drawn from 
these, however. The application to effects of exploitation on catchability makes plausible the hypothesis that 
declining catchabi lity under exploitation is due to removal of more catchable fish. The other applications provide 
some justification for using size-structured models rather than more conventional age-structured populat\on 
models. 

Three other approaches could be used as substitutes for this theory. The first is to develop the model 
equations in terms of the structure function F(!, t) rather than the corresponding "density" f(T, t). Although this 
requires somewhat fewer assumptions, the results are more complicated and more tedious to prove. The second 
approach is to apply a Fourier transform to derive a differential equation for the "characteristic function" of 
population structure. This approach is even more tedious than using the structure function and is less intuitive 
but leads to equations that are more amenable to numerical solution. The third approach is one of strict 
simulation of life history phenomena with an appropriate summary of population structure. This technique 
would be very useful for studying applied problems but is also limited by lack of generality in the resulting 
predictions unless considerable computation is done with a variety of assumptions. 

As usually occurs, the research contained in this report has led to more questions than it has answered. 
Further research is needed to: 

1) develop all alternative forms of this theory, preferably in the context of specific fisheries problems; 
2) develop methods for solving the model equations under fairly general assumptions; 
3) determine in more detail the statistical properties that the models predict; 
4) relate size structure and abundance of prey to food consumption, growth, and mortality of bass, 

especially as they lead to density-dependence; and 
5) determine effects of year-class fluctuations on production and yield of bass populations. 
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I. INTRODUCTION 

Managers of largemouth bass (Micropterus salmoides) populations are usually confronted with highly 
variable habitats containing a diverse fish community and several species may be concurrently harvested. The 
literature on bass management is disjointed and often contradictory. Rarely is there a coherent generalized 
understanding of the structure, dynamics, and production capability of the populations to be managed. 

In an effort to enhance understanding of fish population dynamics and thereby increase management 
capabilities, mathematical models or theories have been formulated which attempt to describe how fish 
populations behave. Some of these models have become classical tools in fisheries management. 
Unfortunately, none of the models is particularly useful for the bass manager because each assumes dynamic 
independence of fish populations and other ecosystem components. 

The largemouth bass occupies a variety of habitats from the saline coastal marshes of Louisiana to the 
bore al lakes of the Canadian Pre-Cambrian shield. In the southern part of the United States, it is most successful 
in warm, shallow reservoirs, and in the everglades, lakes, and clear sluggish canals of Florida. In the Midwest 
and along the Atlantic coast bass are most abundant in larger reservoirs and smaller lakes fringed with shallow 
weedy bays. Near the northern limits of its range, in Ontario and Quebec, the largemouth bass has a scattered 
distribution determined largely by temperature. Throughout its range, the largemouth bass thrives in 
agricultural ponds and clear sluggish rivers (Robbins and MacCrimmon 1974). 

Although fish communities containing only bass (Buck and Thoits 1970) or bass and one other species 
(Swingle 1950, Regier 1963a, and Regier 1963b) have been extensively studied, under natural conditions there 
are usually many fish populations to consider. Jenkins ( 1968) reported positive correlations of standing crops of 
largemouth bass with the standing crops of spotted gar, spotted bass, white bass, black and white crappie, chain 
pickerel, gizzard shad, top minnows, bluegill, warmouth, longear and green sunfish, channel and blue catfish, 
bullhead, carp, and largemouth buffalo in 140 reservoirs. Jenkins· analysis illustrates the potential complexity of 
fish communities containing largemouth bass. 

Angler diversity, i.e., the variety of sport fishermen, is also high. Some anglers exclusively pursue a single 
fish species, while others exhibit little species preference. Management strategies for a trophy bass fishery may 
be very different from those for a family-oriented fishery. Recent work (Anderson and Funk 1974, Anderson 
1975 a,c) has shown the need for greater understanding of the influence of fishing on bass populations and of 
factors influencing the quality of bass fishing. 

One possible approach to improving the management of largemouth bass fisheries is by use of models 
(Lackey, Powers, and Zuboy 1975). Simulation models provide a framework for describing complex systems, 
allow rapid and inexpensive evaluation of alternative management strategies, help identify gaps in available 
data, and provide a means of constructing and evaluating theories explaining the behavior of a fishery. 

In a model, representing each relationship between components of a bass population may be relatively 
simple. For example, the population density of one age group of some species may influence survival of fry of 
another species. When many such relationships are integrated, however, the behavior of the model may be 
extremely complex. Further, a manager is frequently faced with the question: "What will happen if I follow a 
particular management strategy?" Often the tool best suited for addressing this question and the complexity of 
the interrelationships is computer simulation. For example, a manager could easily examine the probable impact 
of changing bass size limits if he had a suitable simulator of a bass population. 

A very difficult decision in fisheries management or research is which and how much data to collect. Data 
are expensive to collect, analyze, and interpret and the benefits of data collection may be unclear. Simulation can 
serve to identify the type of data to be collected and its frequency and location of collection, and to appraise the 
costs and likely benefits of having it analyzed and used. 

Modeling and simulation are heuristic tools. Often, a modeler must hypothesize the existence and form of 
relationships that have never been considered. His ideas may then be tested empirically for relevance and 
validity. 

Deutsch (1966) has suggested that models are devices for putting items of information into the context of 
other items. As theories, models help us find contexts for our data; as information retrieval schemes, they help 
us find data for our contexts. Thus, a model of dynamics of largemouth bass populations should incorporate as 
much of the existing information on largemouth bass populations as possible and should provide information on 
the behavior of such systems for use in management theory. 

The objective of this bulletin is to present a conceptual population dynamics theory with applications to 
largemouth bass populations. 



II. MODELS 

There is nothing inherently exotic about modeling or models. A model is simply a verbal, graphical, physical, 
or mathematical abstraction of a real system (lackey 1975). Verbal models may be as simple as, "A fishery, 
either recreational or commercial, is a system composed of three major interlocking components: habitat, 
aquatic biota, and man." A fishery can also be described by graphical models. A physical representation of a 
system, such as an artificial stream aquarium, is another type of model. Physical models allow laboratory control 
over certain variables of a system while maintaining certain useful physical characteristics of that system. 
Mathematical models quantitatively simulate real systems through arithmetical calculations. Currently, 
fisheries modeling usually connotes modeling of a mathematical nature. 

Uses of Models 
Most models, even those seemingly unrelated, are really quite similar in philosophy and approach, but there 

is substantial variation between models when they are viewed according to their intended use or function. 
The evolution of fisheries models has not followed a discrete path, but rather a dis1ointed and often circuitous 
route. Major trends apply equally to recreational or commercial fisheries and marine or freshwater fisheries, but 
with different evolutionary trends being of greater importance when evaluated by scientific effort expended. 

Modeling in fisheries management can be Justified in many ways, some of which result in benefit/cost 
ratios greater than unity and others which do not. As a group, fisheries modelers have tended to oversell the 
potential management benefits derivable from modeling, a characteristic all too frequent in emerging scientific 
disciplines. The potential benefits of modeling in fisheries management are many, and it is clearly preferable to 
err on the conservative side as an advocate. 

The first and perhaps most obvious potential benefit of modeling in fisheries management is organization. 
Fisheries are highly complex systems and modeling (graphical or mathematical) does provide a medium for 
clarification and organization. Used in this context, a model is a theory about the structure, dynamics, and 
function of a fishery or a component of a fishery. 

A second potential benefit of modeling in fisheries management is as a self-teaching device to the builder or 
user. There may not be a better way to develop an understanding of a fishery than to formally model it. Some 
fisheries models, particularly computer-implemented models, serve as useful management exercises in 
universities (Titlow and Lackey 1974). 

Identifying gaps in our understanding of resource systems is a third potential benefit from modeling in 
fisheries management. In modeling, the modeler may become painfully aware of areas of missing data. 
Acquisition of these data may well be top priority for improving management. Sensitivity analysis in modeling 
will identify the parameters of most importance in determining model output, and data acquisition and/or 
research efforts may be allocated accordingly. 

Models used as research tools may be considered as a category of potential benefits. Manipulation of the 
model itself may generate "data" which are unattainable from the real system. For example, the impact of 
rainfall and water temperature may each have an impact on certain biotic components, and certain 
combinations of rainfall and temperature levels have been observed in the field to quantify the impact. 
Exercising the model may perm it a reasonable assessment of the general relationship by interpolation (based on 
existing data combinations). 

The fifth and most discussed potential benefit of modeling in fisheries management is predicting impact of 
alternative management decisions or external influences. Historically, managers of commercial fisheries have 
been interested in predicting impact of a proposed fishing or exploitation rate expressed in the form of a season, 
mesh size, or quota. Recreational fisheries managers wish to estimate the impact of decisions on the number of 
realized angler-days, catch, or some other measure (Lackey 1975). 

Criteria for Evaluating Models 
Theories, taxonomies, models, and schemes for information classification and retrieval are all alike in one 

important respect: they are devices for putting items of information into the context of other items. When we 
speak of the "need for a theory," we usually mean that we have at hand some items of information and that we 
are seel<ing a context of other data in which they will be meaningful, or more meaningful than before. When we 
speak of the "need for information," on the other hand, we mean that we have at hand some more or less 
organized information which gives rise to our "questions" or requests for data and that we are seeking to locate 
some items of information or data which will be relevant in that context, and thus wil! function as "answers"to 
our questions. A model used as a theory helps us to find contexts for our data: it tells us where to put them, or 
what to make of them. A model used as an information retrieval and organizational scheme helps us find data for 
our contexts of management analysis. A mode! of largemouth bass population dynamics, for example, serves 
multiple purposes. It should explain population behavior by placing information about the biology and ecology of 
the largemouth bass into a population context, while placing population phenomena in a form useful in the 
context of fisheries management. 
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There are several characteristics which an adequate mode! must possess, at !east to some extent. These 
include generality, realism, comprehensiveness, and completeness. Any increase in one or more of these 
characteristics necessitates an increase in the complexity of the model. Deutsch (1966) has identified several 
criteria for evaluating models which can be interpreted in the context of the characteristics just mentioned. Each 
of these can be related to complexity. 

There are two aspects of complexity which must be considered: structural complexity and functional 
complexity. Structural complexity is roughly the number of quantities and relationships considered in a model. 
Functional complexity is the number and difficulty of the rules for using the model. Functional complexity 
generally will increase with an increase in structural complexity in a series of rapid increases and temporary 
plateaus (Fig. 1 ). 
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Figure 1. Relationship between functional and structural complexity in models. 
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The organizing power, or the number and extent of integration of independently established phenomena, of 
a model can be expected to increase at rapid rates with increases in complexity in simple models and at much 
slower rates in more complicated models (Fig. 2). 

COMPLEXITY 

PREDICTIVE 
RANGE 

Figure 2. Relationship between model complexity and its organizing power and predictive range. 
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The predictive range, or number of verifiable predictions, of a model will be very sensitive to the quality of a 
model but appear to increase toward an asymptote as complexity is increased (Fig. 2). The asymptotic limit is 
expected because the number of possible predictions from a given information base is finite, at least in a 
practical sense. 

One of the often mentioned advantages of models is the low average margin of predictive error they provide. 
Quantitative predictions not based on models are rare. Nonetheless, models should be looked at more closely 
than they generally are in this respect. The two components of predictive error, precision and accuracy, are 
difficult to measure but it appears that as the complexity of a model increases, its accuracy or closeness to reality 
becomes asymptotic. Uncertainty, which is approximately the inverse of precision, will increase exponentially 
(Fig. 3) beyond some level of complexity. 

UNCERTAINTY 
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Figure 3. Relationship between model complexity and accuracy and uncertainty. 

5 



We must consider cost as well as performance of a model. Establishment cost increases as complexity 
increases. Beyond a certain point this is probably linear. Operating cost usually follows functional complexity 
(Fig. 4). 
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Figure 4. Relationship between model complexity and operating and establishment costs. 
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There are two other characteristics which need mention: fruitfulness and self-transcendence. Fruitfulness, 
the probability of a model leading to new observations and experiments, is most likely increasing at low 
complexity and decreasing at high complexity. Self-transcendence, the probability of leading to a new and better 
model, will decrease as models become more complex and less room is left for improvement, but may increase 
somewhat for highly complex models which are likely to be replaced by simpler but equally powerful models (Fig. 
5). 

FRUITFUL!'ESS 
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Figure 5. Relationship between model complexity and self-transcendence and fruitfulness. 
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Each of these criteria is largely independent of the purposes for which a model is constructed. Benefits of 
modeling previously mentioned include heuristic value, evaluation of alternative theories, development and 
analysis of alternative management strategies, and tactical planning. These uses of models are valid, but there 
are few models in existence which have been used for each of these purposes. The heuristic value, however, is 
the only benefit on which we can always depend. 

Suppose, for example, that we want to test two alternative growth functions for largemouth bass by 
comparing model predictions with measured growth of fish within a population. If a model were already 
available, it would certainly be less expensive than an experiment following the growth of individual fish. A 
comparison of length-frequency predictions based on the two growth functions might reveal that one is more 
realistic than the other. There are real restrictions on the utility of models used for this purpose, however. Any 
such comparison is statistical. Because model predictions are uncertain, we are faced with two distributions of 
possible outputs. The usefulness of the model in this situation corresponds to the power of a statistical test. The 
sensitivity of the mode! to the alternatives and the precision, or variance, of predictions wi II determine the power 
of the test (Fig. 6). If the model is highly sensitive and very precise, we will have a powerful test. Populations, 
however, are stochastic and realistic population models will usually have low precision. If the tested alternatives 
are very different, and if the function is very important in determining output, we will have high sensitivity and a 
powerful test. If either of these conditions fail, however, the test will not be very powerful and whatever 
confidence level we choose is likely to lead to accepting a false alternative. 
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Figure 6. Experimentation with models and the relationship to precision, sensitivity, and power. 
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A similar argument applies to alternative fisheries management strategies. Thus, to evaluate alternative 
strategies effe'ctively, the strategies must be very different in their effects and must have a powerful influence on 
the managed system. Given a particular strategy, or set of activities, we may wantto optimize our efforts. This is 
called tactical planning. The sensitivity of the rn0del once again influences the value of the model. If we have 
restricted our alternatives to a set of very similar tactics and if sensitivity is low, the alternatives will not produce 
very different yields (Fig. 7). In this case a broad range of tactical combinations will be near optimal and planning 
should take the form of minimizing costs within that range. 

ACCEPTABLE RANGE 

TACTICS 

Figure 7. Relationship between management (tactical planning) and predicted yield. 
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Ill. ISSUES IN LARGEMOUTH BASS MANAGEMENT 

1. Sport and prestige seem to be major factors making largemouth bass popular among anglers. Anderson 
(1975a) has argued that the quality of bass fishing is best measured by an index incorporating catch rate, size of 
fish caught, species combination creeled, and positive value from fish caught and released. 

Bass become catchable between 250 mm and 300 mm (10-12 inches) in length, but angling techniques and 
preferences are highly size selective so that catchability declines (Bennett, et al. 1968). Observations by Bennett 
(1949), Lagler and De Roth (1953), and Anderson and Heman (1969) suggest that this decline in catchability may 
be due to learning by bass; however the possibility that declining catchability is due to removal of inherently 
more catchable individuals from the population has not been rigorously studied. 

Data presented by Redmond (1974) indicates that catchability varies seasonally with very low rates in 
winter and peaks of catchability in spring and fall. Holbrook (1975) presented evidence that relative catchability 
of females compared to that of males is high in early spring, declines before spawning season, then again 
increases. Overall, female bass constitute a significantly larger percentage of the total bass harvest in fishing 
tournaments. 

2. A common consequence of harvesting biological populations is a decline in average age of individuals in 
the exploited population (Usher 1973). Harvesting organisms, including most fishes, before they reach 
maximum size leads to a decline in average size of harvested individuals. The effect of exploitation on size 
distribution is magnified when exploitation rate is higher on smaller fish than on larger ones. Thus, under 
significant exploitation, the quality of bass fishing generally declines. This has led many managers to impose 
fishing regulations to limit harvest or change the pattern of exploitation. Fox ( 1975) summarized the history and 
present status of bass fishing regulations in the United States. Anderson (1977) presents alternatives to 
traditional bass harvest regulations. 

Because fishing seasons and creel limits have not generally altered the level of bass harvest or size­
selectivity of angling, size limits are the principal regulation in current use. Ricker (1945) presented a 
mathematical model showing that yield can be increased by use of minimum size limits. Anderson (1974, 1975 
a,b) has emphasized use of size limits in maintaining a desirable size structure and balance between bass and 
bluegill, Lepomis macrochirus. His concern with management of predator-prey relations led to consideration of 
protecting certain size ranges of bass while allowing fishing for bass both smaller and larger than the protected 
ones. 

Bennett (1974) and Rasmussen and Michaelson (1974), on the other hand, found that bass smaller than the 
minimum size limit exhibited slower growth and caused a "piling up" of fish Just below legal size. Sanderson 
(1958) found that a lowered minimum size limit in the Potomac River Basin resulted in higher yield and 
increased average size of fish actually kept by anglers. 

3. The concept of "balance" was developed by Swingle (1950) to describe the range of satisfactory size 
and species distributions in bass-bluegill ponds. This concept has been used extensively to define objectives for 
managing fish communities in ponds and small lakes. Management strategies required to establish and 
maintain balance vary widely from region to region (see, e.g., Dillard and Novinger 1975). Although acceptable 
strategies for achieving balance in different regions have been found by trial and error, the functional causes of 
variation are not well understood. 

Jenkins and Morais (1977) have greatly extended the concept of predator-prey balance by comparing the 
size distribution of predators to the size distribution of available prey. Lawrence (1958) showed that maximum 
prey size available to largemouth bass was limited by bass mouth size. Jenkins and Morais found similar 
relationships for other predatory fishes, then compared cumulative (by size) biomass of predators to available 
prey abundance. Using this approach, they found 9 of 23 study reservoirs to be deficient in available prey in some 
size range. 

4. The dynamics of size structure in bass populations is complicated by wide fluctuations in year-class 
strength. Fluctuations in production corresponding to fluctuations in year-class strength (Houser and Rainwater 
1975) suggest that potential yield from larger lakes is strongly dependent on recruitment. Clady (1977), 
however, found that production and biomass remained relatively constant despite year-class fluctuations. Clady 
suggested that this was due to density-dependence, both within and between cohorts. It is not known whether 
density-dependent variation in growth rates acts to stabilize size structure despite fluctuations in year-class 
strength. 
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IV. CONCEPTUAL MODEL OF LARGEMOUTH BASS POPULATIONS 

The management issues described in the preceding section suggest the need for a fairly general theory of 
the dynamics of largemouth bass populations, especially the dynamics of their size structure and production 
The traditional models used to describe fish populations are deficient in two respects: most are either 
unstructured (Shaefer 1954) or age-structured (Beverton and Holt 1957) and are therefore difficult to use in 
analysis of populations in which many animal characteristics are size-specific. They also fail to incorporate 
stochastic variation in growth rates, mortality rates, or other life history functions. It is, therefore, desirable to 
construct a general population model which explicitly incorporates population size-structures, variation in life 
history, and permits calculation of production, yield, and the size structure of harvest. 

In the remainder of this bulletin a model will be developed based on the relationship between life history and 
population dynamics, its relationship to various other models will be shown, and its application to largemouth 
bass in a special case for which sufficient data are available will be illustrated. 

Life History 
Life history has been defined as the history of the changes which an organism passes through in its 

development from the egg, spore, or other primary stage until its natural death (Webster 1959). In common 
usage life history also refers to certain fixed traits which influence the course of an organism·s life. This usage is 
formalized in the following definitions. 

Definition: A trait is an attribute of an organism that can, at least potentially, be observed (either instantaneously 
or through repeated or continuous monitoring) without reference to the environment, community, or population 
in which the organism lives. This definition excludes those characteristics which can only be observed in the 
context of the organism's surroundings, such as habitat preferences and food preferences. However, spatial 
location, stomach contents or food habits, age, length, weight, sex, and physiological state are included in this 
definition. 

Definition: The particular values of a set of traits, taken together, will be referred to as a phenotype. 
A life history can now be defined as the changes in phenotype that occur through an organism·s life. This 

would require, however, that a life history describe each change of phenotype rather than describe the 
ontogenic processes leading to the changes. Therefore, 

Definition: A life history is a description of the process by which an organism's phenotype changes in time from 
the organism's origin until its death. 

Definition: The specific sequence of development resulting from a life history will be called a life. 
Suppose that the dynamics of a particular finite list of traits is to be described by a life history. Let a unique 

numerical representation be associated with every possible state of each trait. This will be done most 
conveniently using positive real numbers for continuous traits and positive integers for traits with discrete 
states. At any moment, an organism may now be described by a vector-variate in which each position is 
associated with one trait. Such a vector will be called a trait vector or phenotype and will be denoted by 
T (T,, ... ,T 

0
)'. The set of all possible trait vectors will be denoted by T and called a trait space. 

Trait vectors will generally change with time from an organism·s origin at some time It, to ,ts death at a later 
time td. Because any time tdtb, td] can be written as t = tb + a where a is the organism's age, trait vectors may be 
viewed as depending on age and the time of birth t,,. This dependence will be denoted by writing I (a: tb)with aE 
[O, Id - tt,1. The function I (a; tbi now represents ihe life of an organism. 

It is implicit in the distinction between a life and a life history that the specific life is not determined by life 
history. In particular, a life is a random function of time taken from the set of all possible lives according to a 
probability function generated by the life history, which is a stochastic process. Thus, particular lives will 
generally be denoted by I (a; tb,wl for 1,, i. ll. a parameter specifying the particular outcome of the stochastic life 
history. Clearly, a life in this context corresponds to a sample path from the life history. Correspondingly, the life 
history is equivalent to a probability distribution on the space of possible lives and can be denoted by {T (a; tb,,,,I: 
"' c n i or simply (I (a; lb)). 

Traits of organisms generally change in two ways: continuous processes and event processes. In a 
continuous process, a trait will change in a smooth, regular fashion. Spatial movement and growth in length are 
continuous processes. Event processes, on the other hand, entail sudden jumps in the value of a trait. 
Reproduction and death are characteristically event processes. Some traits will change in a mixed fashion. 
Stomach contents of bass, for example, will take significant positive jumps when the bass feeds, then decline in 
a continuous fashion as digestion proceeds. 

Continuous stochastic processes are generally either differentiable or non-differentiable as appropriate 
rate functions either exist or fail to exist. Since most life histories will have reasonable rate functiorls, e·.g., 
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swimming velocity or metabolic rates, we will assume that all continuous processes in the life history are 
differentiable except at isolated points. If a non-differentiable process were appropriate, the methods of Ito (Ito 
1950, 1951, Ito and McKean 1965) could be used in place of the following arguments. 

Event processes are specified by a rate function which describes temporal occurrence of events and a jump 
function which describes magnitudes of changes in traits which occur at each event. We will assume that rate 
functions of both continuous and event processes and jump functions of event processes will depend only on the 
present state of the organism and its environment, and not its past life. This assumption, known as the Markov 
assumption, can be circumvented by assuming that there is a trait that functions as a memory in the trait vector. 
Indeed, it seems likely that for most life history phenomena some real trait will in fact function in this capacity 
whenever such a model is nec~ssary. 

Finally, because virtually all traits will be bounded by biological possibility, the entire life history process 
may be assumed to be of second order; ie., ElfI(a; lb)· I' (a; lb)] finite for all ae[O, td - tbl-

Under the above assumptions, the following notation will be used: 

1 I Let£ 11, a; tbl = 3~(I(a; tbl_} be the derivative of the continuous part of the life history. 2 is well-defined 
except at times when discrete events occur. 

2) Let r(J:, a; ti) be the rate function of the event process. 
3) Denote the vector magnitude of the Jump occurring at any discrete event by J Assume j is taken from a 

distribution function H(J; la, tbl- If the distribution has density populations, it will be denoted by h(j; T, a, t ), 
4) Denote the rate function of the death process by 11(I, a; tb)- The probability that an organism born at ti met/; 

will survive to age a will be given by A(a;tbi Ep[exp(-f~ p(!(t,"1), t; tb,01))]. 
5) Summarize the probability that an organism survives to age a and has phenotype .E' with Pi~Ti, i "1, ... , n, 

for arbitrary I by the function F(T; a, tbi- Clearly, F(Q; a, tbi= 0 and F(:, a, tb) = A(a; tb);:;1.0. The function Fis similar 
to a distribution function except that its upper bound, A (a; tb), is less than 1.0. If there is a function analagous to a 
density, it will be denoted by fll a, lt)-

Now suppose that h and f both exist. The time-dependent "density" function f(I; a, tb) is a summary of the 
likelihood of the phenotypes "[in T for an organism of age a but born at time lb. Any information concerning the 
relationship between phenotype at one age and phenotype at another is lost. Nonetheless, the temporal 
dynamics off is an important problem with repercussions in population dynamics. 

Theorem· Given the assumptions and notation stated above, the density function f must satisfy the differential 
form: 

3 f C:r_; a, tb) 

3 a 
J 

T 

n 
,: 

i=l 

n 
z 

j=l 

2 
3 [o, ,(T, 

l -

3T, 3T, 
l J 

- ~ 3[mi (:r_, a; tb) f(I; a, tb)] - µ(I, a; tb) f(I; a, tb) (1) 

i=l. 3Ti 

where mi and oij are the instantaneous means and covariances of the continuous changes in traits T1 and Ti. 

Interpretation: The differential form (1) may be interpreted as follows: any change in the likelihood of an 
organism having phenotype T with a change in age must be due to changes in the probability of survival to that 
age or flux in the likelihood or the phenotype due to continuous or Jump processes. The first term on the right 
hand side (RHS) of (1 I is the likelihood of a Jump from another phenotype ending at phenotype I, while the second 
RHS term is the likelihood of a jump from phenotypeJ_to some other phenotype. The next two terms describe flux 
in the density due to the continuous process g. The final term is the likelihood of death occurring at age a with 
phenotype T. 
Derivation:see Appendix A 

The integro-differential operator for phenotype density functions will hereafter be referred to as the life 
history operator and will be denoted 

Lf 
,l f 

n rl 

+ 1: = a a 
i=l 

(m, f) 
l ,, 
I, 0 

l 

n 
z 

i=l 

2 
n3 (o,,f) 

l + µf + rf - J 
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In the above analysis, dependence on time has been denoted by dependence on a, tb- To simplify notation in 
later analysis, this will hereafter be denoted by a, t where t-a = lb-

Populations 
Biological populations have been described in various ways. Wright (1931) defined a population as the 

collection of organisms in a gene pool. Odum (1971 ), on the other hand, referred to a population as "a collective 
group of organisms of the same species occupying a particular space." The essential characteristics of a 
population are that it is a group of organisms which through reproduction is persistent for periods longer than 
the life-length of its members and which is genetically or reproductively integrated. The following definitions 
provide an operational interpretation of the population concept. 

Definition: A group of organisms is closed with respect to reproduction, or reproductively closed, if every 
offspring of a member of the group is a member of the group at its birth and every organism born as a member of 
the group is an offspring of members of the group. 

Definition: A group of organisms is self-renewing if it is reproductively closed and if every organism in the group 
having a positive probability of reproducing during the remainder of its life has a positive probability of 
reproducing while it is a member of the group. 

Definition: A group of organisms is a population if it is self-renewing and cannot be partitioned on the basis of life 
history into disjoint groups that are reproductively closed. The self-renewing nature of populations is the key to 
dynamics of populations. 

Suppose that every individual in a population is characterized by values of a set of traits which include age. 
To simplify later notation, use£' for (a, I')' where explicit use of age is not required. Define a population structure 
function, N(P, t), as the number of individuals in the population attime t with phenotype .1S'....E-If the population is 
sufficiently large, N(E, t) will be essentially continuous in the continuous variates of .E-The corresponding 
"density" function n(E, t) will then have expected value))\P, t) =Lt; (P, t) where the summation is over all 
members of the population. The function71 is then subject to a functional equation similar to the life history 
operator equation (1), namely, a ( ) a 2( ) a a n m. n n n o .. n 

_ _ll + _ll + z: 1 
l: r. a 

1
~ + u n + r n - f . .. f nrhd T = 0. (2) 

at aa i=l a Ti i=l j=l Ti Tj T 

In addition, we have the boundary condition at a = 0 
n(O, I; t) B(I, t) (3) 

where S(T, t) is the expected number of births of organisms with traits Tat time t. The system of equations(2) and 
(3) is essentially a generalization of the model proposed by Sinko andStreifer (1967) to include more than one 
trait other than age, jumps in phenotype rather than only continuous alteration, and continuous stochastic 
processes as well as deterministic ones. 

The system (2) and (3), however, has two major faults: it is comparatively intractable in the general form and 
cannot be used to predict statistical properties of the population. Under very restrictive assumptions generally 
involving absence of temporal variation in life history parameters, and thereby excluding density dependence 
and environmental variation, the equations can be solved analytically fort/. In principle, the equations can be 
solved numerically under more general assumptions, but the standard centered-difference and grid techniques 
require an extremely large number of grid points to achieve reasonable solutions for problems in large 
dimensions. Furthermore, the equations only allow prediction of the expected density function and do not 
account for effects of statistical fluctuations in finite populations. 

A more fruitful approach is to use stochastic integral equations corresponding to (2) and (3). When applied to 
the density nthe equations will be deterministic and entirely equivalent to (2) and 13). When applied to the actual 
density n, the integral form will be stochastic. Unfortunately, in the absence of restrictive assumptions, the 
equations developed below are nonlinear and only slightly more tractable than the differential form. Current 
work by mathematicians on stochastic integral equations, however, holds some promise for analytical solution 
(see e.g., Bharucha-Reid 1972). 

In the discussion of life history, the initial phenotype of a neonate was not explicitly discussed. The initial 
value of the density f at time tb la= 0), if taken for an arbitrary individual born at time tb, would be a result of 
parental influence and environmental conditions. This may be made explicit as follows: Let b(t'n, t; fp) be 
the actual rate of production of neonates with phenotype !'n by parents with phenotype Pp at time t, expressed as 
offspring per parent. Then B(£'n, t), the net rate of production of neonates with phenotype l'n at time t by the 
population is given by 

B(P ' t) = l -n p f · · · f b ( P , t ; P ) n ( P · t) dT 
-n -p -p' 

T 
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where pis the number of parents for which each offspring is counted in the integral. If only one sex is included, p 
will be 1; if both sexes are counted, p will be 2. 

Assuming B(f:'., t) is sufficiently large for all times t, n(f'., ti can be approximated by 

n (_['_, t) ~ f >, .. J B ci:_, t) f (_['_, t; I, t) dTd, ( s) 

T 
where fl£', t; £'n ,T) is the likelihood an organism born at timer with phenotype _l:'.n will survive to time t and have 
phenotype!'- If, however, the population description is begun at time t = Owith initial density n(E; 0), some of the 
population density at later times may be attributed to original members of the population. In particular, if Kif 2, 12 ; 
£'1, t1) is the likelihood that an organism with phenotype _P1 at time 11 will survive to time 12 and have phenotype 
P2 , then t 
- n(_l'_, t) "'f·' ,J [K(_['_, t; .l'.n• O) + J

0 
B(.l'.n, ,) f(_E_'_, t; _P-n, ,)dt] dT, (6) 

T 
Now define an expected fertility function ¢(1,T) equivalent to the standard demographic fertility function 

(e.g., Keyfitz 1968) by "(t ,) = J ... J J ... J J ... J b(P , t; p ) f(P • t; l', t) dT dT dT, 
•• --n -r> -i:> - np 

T T T 
q,(t,T) is then the expected number of offspring produced at time t by an individual born attimerin the absence of 
other information on the individual's life. Then using¢ and substituting (6) in (4), we have the expected birth rate 
at time t as 

B(t) = q(t) + _l_ ft ¢(t, t) B(t) dt (7) 
p 0 

where q(t), the contribution of the initial population is 
l A q(t) = - f ¢(t, a-t) 
p t 

n(a-t, o) da. 

where A is the maximum age of reproducing individuals. This is essentially the model of Lotka (1925) and Feller 
(1941 ). 

In the present context, an analagous argument leads to a stochastic version of this equation, namely 
1 t B(t, w) = q(t, w) + - f ¢(t, ,; w) B(,; w) d, wca (8) 
p 0 

where w indexes the particular outcome of the process. It is shown in Appendix B that this equation has a unique 
solution subject to conditions which follow from our earlier assumptions, except that it is also assumed that the 
maximum reproductive rate over all phenotypes may not exceed the greatest lower bound of the temporal 
average of mortality rate up to any age. In the case thatthe death rate p(a, t) is constant, this condition guarantees 
that the population is expected to become extinct in finite time. 

Heretofore, few assumptions have been made about the fertility function rp It; wl. In the remainder of this 
work, it will be assumed that q,(t; w) is density independent and that equation (8) is linear. The model as developed 
above is more general than those of Sinko and Streif er ( 1967) or Lotka ( 1925). It is well known that the Lotka 
age-structured model is the limiting version of the Leslie matrix model as the time step;:,_ t approaches 0. Sinko 
and Streifer showed that their model was a generalization of the models of Von Foerster(1959), Oldfield(1966), 
Trucco (1965), Bailey (1931 ), Hoyle (1963), Verhulst (1938), and Pearl and Reed (1920). The assumption of 
linearity reduces this generality, but serves to make the model more tractable. 

Before illustrating the application of the model, two further results will be demonstrated. First, under the 
assumption that survival, reproduction, and abundance are stochastically independent, the expected number of 
births follows the Lotka integral equation in the expected reproduction and survival rates. Although it will not be 
established here, these conditions also appear to be necessary. Secondly, under the linearity assumption, the 
model implies an asymptotically stable density function over the entire set of traits. 

Theorem: If the processes B(t; w) and ¢It T; w) are uncorrelated, then 
t 

Ea[B(t;w)] = E0[q(t;w)]+! 0 E0 [¢(t,,;w)] Ea[B(,;w)J d, 
If the processes Alt; r; w) and b(t, T; w) are also uncorrelated, then 
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Proof: Since A{t, 7; w), b(t,7; w), and B(t,.7; w) are nonnegative we may interchange the integral and expectation. 
Hence, 

Esl[B(t; w)] l\
1

[q(t; w)] + Erl[!~ ¢(t, ,; w) B(r; w) dr] 

= E [q(t; w)] + JtE
1
l[¢(t, T; w) 8(1; w)] dT 

Sl o 

E
1
i,[q(t; w)] + f~\

1
[¢(t, r; w)] E[ll(1; w)] <lT 

by the assumption that \f>(t, T; w) and 8(7; w) are uncorrelated. Then sinceA(t,r; w) and b (t, 7; w) are uncorrelated, 
E11 [ (t, 7; w) l = En [ ¢(t, 7; w) l En [ b(t, 7; w)]. 

When the assumptions of this theorem are not met, the expectation will not hold and the deterministic 
models will be inaccurate. 

It is well known that the deterministic age-structured model is asymptotically stable for any nonzero initial 
population (Lopez 1967). Because the expected value of the birth process, in the usual models, obeys a law 
similar to the law governing the stochastic birth process, it is reasonable to expect that the asymptotic population 
structures will be similar. In particular, it is apparent that 

Esl[n(a, t; w)] = ED[A(t, t-a; w) B(t-a; w)] = ED[A(t, t-a; w)] ED[B(t-a; w)] 

under the assumption of independence of A, B. Hence, under the assumptions of the last theorem, the expected 
value of n(a, t) will be identical to its value in the expected value model. It is unknown at this point whether the 
randomness of the various processes will lead to any particular fluctuations in population structure. 

Theorem: A population of organisms having time and density independent life histories will have an 
asymptotically stable expected density function. 

Proof: By the argument given above, the population will have an asymptotically stable expected age structure 
n(a, t). But the expected distribution of phenotypes at a given age is f(T; a, t) so we have expected structure 
function n(a, T; t) = n(a, t) f(T; a, t). -- -

Lopez (1967) has shown rigorously that the age structure predicted by the classical model is of the form 
n(a, t)=Ner(t-a) A(a), where r is the asymptotic growth rate of the population and N is the initial abundance. If we 
assume that the population has approximately constant abundance, then r = 0 and ilia, t) is proportional to l (a). 
Therefore n(a, T, t) = NA (a) f(T; a, t) for t sufficiently large. 

One special case is of particular interest here: namely, where a trait1j is determined by age with T, = m; (a). 
Then the distribution ni /T. ) is obtained by a standard change of variables and we have ,1 i (T,, t) = 
\: na (mff 1 (T;I, t) . . mij 1 It;, ti where the summation runs over all solutions of m1 (a)= T, , provided there are 
1at most countably many such solutions for any T1 (Harris 1966). In this case where m, (a) is monotone, this trait 
distribution and corresponding differential equation reduce to the model of "physiological age distributions" 
studied by Van Sickle ( 1976). 
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V. APPLICATION OF THE MODEL 

The four issues in largemouth bass management discussed in a previous section were the principal 
motivation for developing the model. None of these issues can be resolved here because of an absence of 
empirical information on which to base specific models. The purposes of this section are (1 )to illustrate use of 
the model and outline possible directions to their solution, and illustrate some of the effects of exploitation; (2) to 
present a possible approach to selection of size limits; (3) to outline the information necessary for a theoretical 
investigation of the predator-prey balance concept of Jenkins and Morais (1977); and (4) to derive. through the 
differential equation form of the model. formulae for production and yield using a size-structured model. 

Effects of Exploitation 
Two potential effects of exploitation will be illustrated here: the possible impact of fishing on average 

catchability and the typical effect of fishing on population size structure. 
Suppose that a population of bass is to be exploited over a short period during which no reproduction occurs. 

Further. suppose that during this period the catchability of each individual fish is fixed at some value c having a 
distribution f(c; t) in the population at time t. If all individuals have a common, invariant natural mortality rate µ 
and if effort E is constant over the period, then f(c; t) obeys the differential equation: 

with the initial density f(c; o) = g(c). Now 
a~(~- t) = -(c E + µ) f(c; L) 

1 a f ( c ; L) a ln f ( c · t )_ 
-[(c-;t) at at -(cE+ll) 

so that 

f(c; t) = exp [ln f(c; t)] = exp [- (cE + u)t] f(c; o), 
The expected catch rate at time t will then be 

C(t) = f: cf(c; t) de=!: ce-(cE + u)t f(c; o) de, 

As an example, suppose g(c) is a gamma density with parameters<½, n. Then 

C(t) = !
00 

0 

-(cE + µ)t 
ce 

- t 
e cm 

1 
-;_(n) n -ac n-1 d \ a e c c 

'(n) (a+ Et)n f
00 

c(a + Et)n -(a+ Et)c n-1 
o e c de 

n -1.Jt 
nn e 

n+l 
(a+Et). 

Since the abundance of the population is declining with time, mean catchability will be c(t)/f (;t), or n/(a + ET) 
n 

The variance of catchability will be ( E )2 A graph of catchability under these 
a+ t . 

assumptions is shown in Figure 8. 

The second aspect of exploitation to be discussed here is its effect on population size structure. Again, a 
simple model will illustrate the point. Suppose that bass grow in weight, z, according to the van Bertalanffy 
equation: 

1:(z) JK [z 
00 

1/J 2/J 
z -z], 

or 
z(a) = z (1-J -Ka)J' 

'" 
Also assume that bass are subject to a constant natural mortality rate µ over all sizes beyond the size of 
recruitment and that through some mechanism recruitment is constant. Then the last theorem implies that the 
asymptotic size structure of the population is given by 

n ( z) = exp [ - ua ( z) ] / g ( z) , 
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If we now impose a fishing mortality rate f on all sizes, the resulting stationary size structure will be given by 

~ 
1 

( z) = exp [ - ( µ + f) a ( z) ] / g ( z) , 

These size structures are illustrated in Figure 9 for the case z,,,, = 500, K = 0.3, µ = 0.4, f = 0.4 
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Figure 8. Change in average population catchability resulting from removal of more catchable individuals. 
Graph based on an initial gamma distribution of catchability with parameters a= 10, n = 2. Eis effort 
per unit time. 
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Figure 9. Size structure of an artificial populafo,n with asymptotic individual size 2 00 = 500, instantaneous 
growth rate K = 0.3, and natural mortality nm, r, = 0.4 without exploitation (u) and with a fishing mortality 
rate off= 0.4 (e). 
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Selection of Size Limits 
Once again, assume a simple population having von Bertalanffy growth and constant natural mortality. 

Assume that fishing mortality rate f is constant for all fish that are legally subjectto capture and zero elsewhere. 
Also, suppose that f is not affected by changes in size limits. Size limits might then be chosen as follows: 

Principle: It should be required that a fish which has been caught be released if and only if its expected value 
when released exceeds its present value. 

A number of measures of value may be appropriate in various situations. Assume for simplicity that value 
corresponds to biomass yield. In the absence of regulations, the expected value of a fish known to be alive with 
body weight z at some time may be calculated as follows: 

1) Under t~e assumptions, the distribution of age at death is given by (f +11) e - ( 11 + f )(a--a(Zo)) _ The distribution 
of fge at death given that death is due to capture is identical and the probability of death due to capture is 

f+µ' 

2) The distribution of size at capture will then be given by (f + 11 ) exp[-( Ii+ f) (a(z) - a(z ))] _J
1
--

1
. 

0 g l 

3) Expected value is then given by 

EV(zo) = f: µ /:en i,[7:-5' (f + p) e-(f + p)(a(z)-a(zo)) dz, 
0 

4) Substituting for g(z) and a(z), we have 

EV (z ) = f 
0 

(f+p)a(z) 
e o 

z 
g(z) 

-(f + µ) a(z) 
e dz 

= f ([ + \J) a(z ) Jzoo 1/3 2/3 -1 (~ )l/3] (f 0 
3K e z z [ z z - z] [l -

0 00 00 

f (f + p) a(z ) /zoo <-"-J113 [l - (3. )1/31 (f + p)/k-1 

3K e 
0 dz z z z 

0 00 00 

(1 + 3K -Ka(z ) 
6K -2Ka(z) 

3K 
z + f + K + f + K + µ + f + K 00 µ e o - p e o 

+ P) / K 

-3Ka(z 
e o 

+ 2K 
p + f + 3K 

-(µ + f + 3K) a(z ) -
2K 

µ + f + 2K 
-(p + f +K)a(z )], 

e o e o 

Thus the maximum of EV(z0 ) occurs at 

z 
0 

1/ (11 + f + K) 

1 µ+f+K 
2

00
(1-exp[-Klnl( 3) J])3 ,, 

) 

Thus any zone of protection should center about the roint 2c,. Under more general assumptions, the calculations 
are naturally more complex but can be done numerically. Searches for optimal limits are also possible. 

Predator - Prey Relationships 
At present, it is not possible to predict the response of a bass population to the size structure of available 

prey. Such predictions require an understanding of the functional responses of bass to prey size distribution in 
terms of feeding behavior, energetics, and mortality. Resolution of this issue will require further investigation of 
prey selection by bass; the influence of size of prey on digestion rate, feeding frequency, and energetic efficiency; 
and the response of bass to net energy availability in terms of growth !ability and mortality rates. 
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Production and Yield 
Production over a time interval [t 1, t2J is defined as the total biomass elaborated by a population during the 

interval {Chapman 1967). Thus, production during [t 1, t2J is equivalent to the net change in standing crop, plus 
the total weight of fish dying during the interval. 

Once again, suppose a size structured model with z representing body weight. Then population biomass is 
given by f z ~ z n{z; t) dz= W{t). Now using Liebniz rule, 

0 
z a w(t) = J 00

2 
a n(z;t) dz 

a t a a t iz 
which according to our model, if growth is continuous and deterministic, is 

aw(t) = _1z
00 

[a(g(z)n(z; t)l 1 2
00 

3t o 3z z dz - o zn(z; t)n(z; t) dz. 

On integration by parts this becomes 
Z Z a w ct) 

a t = fa
00 

g(z;t)n(z;t)dz - fa
00 

zµ(z;t)n(z;t) dz , 

assuming no individuals survive to z~ and no reproduction occurs. Because production is typically computed over 
times not including spawning, this will often be appropriate. Now, because production is change in biomass plus 
biomass lost through death, instantaneous production is given by 

p , ( l ) = _a I{ ( t) + f z 00 f z 
00 

clt o zi,(z;t)n(z; t) dz = o g(z; t)n(z; t) dz. 

Production over the interval [t 1, t2J is therefore given by 

P(t t ) = ft2 f 2
m 

l' 2 g(z, t)n(z, t)dzdt. 
t l o 

Yield is the biomass removed from the population by fishing. The instantaneous yield from a population may 
therefore be computed as 

Y' (t) ,, / 200 zr(,; L)n(z; t)dz, 
0 

and yield over a period of time will be given by 
t z 

Y(t
1

, t
2

) = f 2 /
0

00 zf(z; th(z; t) dzdt. 

tl 
Van Sickle (1976) has shown these yield and production equations to be equivalent to traditional equations 

under certain assumptions. 
The more interesting problems of production and yield in bass populations must await further empirical 

investigation of the patterns of variation in bass growth. 
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VI. APPENDICES 

APPENDIX A: 

Derivation of Life History Operator Equation 

Let F{I; a, tb) be the probability that an organism described by the given life history has phenotypeE".STat age 
a. Any change in F(I; a, tb) must be the result of flux across the boundary of the solid given by Q'.::.E''.::I due to the 
growth and event processes or a result of the death process. Hence, 

T T 
-J

0
n ... ;

0
1µ(.!:'_;a,tb)f(.!:'_;a,tb)dP 1 ... dPn 

Tn Tl_ 
-J

0 
.. . J

0 
H(I;.!:'_,a,tb)f(.!:'_;a,tb)r(.!:'_;a,tb)dP 1 ... dPn 

+!; ... J,-H(I;.!:'_' ,a,tb)f(.!:'_' ;a,tb)r(.!:'_' ;a,tb)dP 1 ... dP~ 
n l 

where H = 1 - H, Sis the surface of the solidO<P<T, ds is a surface element, and n is the inward normal ofS. Now 
since H = 1 - H, the second RHS term may-be-written as -

whence (la) becomes 

a F C'!: ; a , tb) 

a a 

T 

J • '·'. 
0 

Tl 
J h_P'; _P, a t) dP'•··dP 

o ' b 1 n 
and h is non-negative, 
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so by the general Fubini-Stone Theorem, we may interchange the order of integration, obtaining 

(2a) 

Bharucha-Reid (1972), in proving the N-dimensional forward Kolmogorovequation, has shown that terms of the 
form of the last RHS term are equivalent to 

T Tl n n J
0 

••• J
0

[i: 

n a 
l: 

i=l 

i=l 

T 
f. ':. 

0 
f (.!'_; a, tb) dl' 

1 
• • · dPn, interchanging differentiation and 

integration on the left hand side and collecting terms gives 

T 
0 = J.':. 

0 

Tr 

T 
J 1 

0 aa 

_ J.\1. fw 
() 0 

h(l~'; ~' n, th) r(.!:_; a, t ) f(P· a, b _, 

n n / n 
E ,: a [ '\. (.!'_; a, tb) f (t; a, tb) l - [ 

i=l j=l ar. ar. i=l 
1 J 

Butl is arbitrary, so the integrand must be zero. 
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APPENDIX B: 

Proof of the Existence and Uniqueness of a 
Solution to the Integral Equation of the Birth Process 

Theorem: The stochastic integral equation 

J t 
B(t· w) ~ n(t· w) + -'f ¢(t, 1; w)B(1; w) <lT 

) 'I ' p 0 
wen (1 b) 

has a unique random solution B(t; w) in the space C of all second-order stochastic processes defined on R+ which 
are bounded and continuous in mean-square. such that !I B(t; willcS p for some p > o, if 

I 
. I 111 -v ( t - T) i) I 

1 
¢ ( t , T ; w) .::_ Me for O < T < t < m, 

where v and M are positive constants; 

ii) q(t; w) s C; and 

* * * * 
iii) I I q ( t; w) 11 c .::_ P [ 1 - M / v ] and M < v 

where M* is the infimum of the set of all constants M satisfying (i) and v* is the supremum of all v satisfying A(a; 
w).$,e -va for all a. 

Proof.' It has been shown by Bharucha-Reid (1972) that under conditions equivalent to (i) and (ii) there exists a 
unique random solution of the form ( 1 b) if the Banach spaces involved are admissible with respect to the integral 
operator 

t (Tx) (t; w) = f ¢ (t, T; w) X (T; w) ds. (2b) 
0 

Therefore, it is sufficient to establish that the pair of spaces (C. C)·is admissible with respect to the operator T 
given by (2b) and verify that q(t; w) is in the space C. 

Taking the norm in L2 (sl ,A, P), the space of all measurable functions defined on R+ such that the function is 
bounded in mean-square for all t,Rt, we have 

II (Tx) (t; w)ll .::.f~ II¢ (t, T; w) X (T; w) II dT 

< ft Ill ¢(t, T: w) Ill 
0 

II X (T; w)III dT 

< sup 11 X (t; w) l 111 ¢ (t,T;w) Ill dT 
0 

t<O 

II II f
t -v(t-T)d 

< X (t; w) c M 
O 

e T, 

Thus, since 

f
t -v(t - T) 

e dz 
0 

1 
\) ( 1 - 3 -v t) ' 

M 

11 (Tx) ( t; w) I I < 11 x ( t; w) 11 c ( v) ( 1 - e -v t) t > 0. 
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Therefore (TX) (t;w) is bounded in means-square and is in C by definition. Hence the pair (C,C) is admissible with 
respect to the operator T. Since 

sup 11 

t>O 
x(t; w) II = IICTx)(t; w) II 

C C 

-Vt 
::. II x(t; w) II (M/v) sup (1 - e ) 

C 

M 
=vllx(t;w)llc 

the norm of Tis M* Iv* where M* is the least upper bound of b(t; w) for almost all wand e v '+ a is the greatest 
lower bound of A (a; w) for all a and almost all w. 

Now, we must verify that q(t; w) is in C. We will assume that the size of the population at time O is finite and 
bounded by N>O; i.e., 

00 

f n(a, o; w) da < N for almost all wcD 
0 

Then 

"' q(t; w) ft K (0, a, t) b(a, t; w) n(a - t; 0; w) da 

* -v t 1~ 
< e M N < 00 for almost all w by the assumption that 

0 

* b(a, t; w) is bounded by M 

2 
JD I q ct; w) I di/ ( w) < 

and K(o, 

* 
JD le 

-\) t 

* -v t * 
(e M 

a, t) 

* M N 

l 
N ) 

0 

0 

< 

2 

I 

< 00 

and so by definition q(t; w) is in the space L2(u, A, P). Also 

lhCt;w)II= 
2 

f D lq(t; w) I dP(w) 

* -v t 
e Therefore 

di/ (w) 

which means that q(t; w) is bounded in,L 2(11,, A, R). Therefore there exists a unique random solution of the 
stochastic integral equation (1b) provided that M*<v* and llq(t;w) 110 - M'N' ;S. 1, [1·M' / v* l since we 
have 

llq(t; w) II = sup llq(t; w)ll
1 

= M*N*whereN*istheinfimumofN,completingtheproof. 
C l> () •? 
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APPENDIX C 

List of Symbols 

- trait vector or phenotype description where each vector 
element represents one trait 

- space of possible trait vectors 

- time 

-- times of birth, death 

- age 

- w specifies a particular outcome from the set of lives 
indexed by .ll 

- derivative of the continuous part of the life history 

rate function of the life history event process 

distribution of phenotypes resulting from the event 
process; h is the corresponding density 

- instantaneous death rate function 

- probability of survival to age a, given birth at tb 

- probability an organism survives to age a and has 
phenotype P <T. f (T; a, tb) is the corresponding density 
over T. 

- vector containing age and trait vector 

- number of individuals in a population at time t with 
phenotype ~S.E-n (P, t) is the corresponding 'density.' 

- expected value of n (P, t) 

- expected number of births at time t of organisms with 
phenotype T. 

- actual rate of production of neonates with phenotype 
£0 by parents with phenotype _t' P at time t. 

- actual number of births at time t of organisms with 
phenotype .l'.n. 

- substitute time parameter 
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K (!'_2' t2; 

~ ( t' 1) 

C 

E 

µ 

C(t) 

z 

k 

z 
00 

f 

EV(z) 

w ( t) 

p (tl' t2) 

y (tl' t2) 

!'.1' tl) 
- likelihood that an organism with phenotype f 1 at time 

t 1 will survive to time t 2 and have phenotype P2 

- expected number of offspring produced at time t by an 
individual born at time t 

- catchability 

effort per unit time 

natural mortality rate 

average catchability at time t 

- body weight 

- von Bertalanffy growth rate 

- asymptotic size 

- fishing mortality rate 

- expected value of a fish of size z if released rather than 
kept when captured at that size 

population biomass at time t 

population between times t 1, t 2 

- yield in the interval from t 1 to t 2 
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