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Synopsis

The penalty-Galerkin finite-element method is used to simulate the flow of a
polystyrene melt over a rectangular slot placed perpendicular to the flow direc-
tion. The White—Metzner constitutive equation is used with a Carreau model
viscosity function and a shear rate-dependent relaxation time defined so that the
primary normal stress difference is exactly reproduced by the model in simple
shear flow. Values of the stress field predicted by the simulation are compared
with those obtained experimentally by means of flow birefringence. As observed
by others, the limiting elasticity value as determined by the Weissenberg number
(We) for convergence of the algorithm decreased with increased refinement of the
mesh. However, good agreement is still found between predicted values of stress

iging the coarse mash and thaoce meacsiired hy maoaang aof flow hirafrincenecse Thig
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work suggests that there may be an optimum mesh for a given flow and consti-
tutive equation which will still give physically realistic results. The Weissenberg
number for the melt used in the experimental study asymptotically approcached a
value of about 1.5 with increasing shear stress, suggesting that it may not be
necessary to reach excessively high values of We for simulations involving some
polymer melts.

INTRODUCTION

Although considerable progress has been made in the last
several years in the simulation of viscoelastic fluid flows, there
are still two major unresolved problems: (1) the breakdown of nu-
merical algorithms for nearly any type of nonlinear constitutive
equation at values of elasticity parameters where the predicted

flow behavior is just starting to deviate from that predicted for in-
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elastic models; (2) the lack of experimental data for fluids whose
rheological properties are described by the constitutive equation
used in the simulation with which to compare the predictions of
the simulations. Due to this lack of sufficient experimental data,
we cannot be sure whether the predicted streamlines and stress
IJBIQB are pnysu‘:&uy LOI’I'BCE even unaer conultlons Wnen Eﬂe nu-
merical algorithm is convergent.

As an example of the last point we cite the work of Davies and
co-workers,! who carried out a simulation of both planar and
axisymmetric 4:1 contraction flows using three different consti-
tutive equations. They observed that vortices were predicted for
both an upper convected Maxwell model and an Oldroyd four-
constant model. However, as the finite-element or differences

meshes were refined, the size of the vortex decreased. This
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coarse meshes were numerical artifacts. Furthermore, they com-
pared their results with the streak photographs of Walters and
co-workers,?? who presented results for both a Boger fluid and a
highly shear-thinning polyacrylamide solution. The Boger fluid
exhibited no vortices in planar entry flow while the polyacryla-
mide solution did. In this case the rheological properties mea-
sured in shear flow of the Boger fluid are best described by the
Maxwell and Oldroyd models, while the polyacrylamide solution
properties are best described by the White—~Metzner model. No
vortices were predicted with the White—Metzner model either,
but convergence of the numerical algorithm occurred at very
low values of the Deborah number (De) where De = Ay and A is
the relaxation time and ¥ is the shear rate. In any event, the
predictions of the simulation in the case of the White—Metzner
model are just opposite to what is observed.

Another point of interest in Walters et al.’s work was that the
highest limiting value of De was obtained for one of the meshes
with an intermediate degree of refinement and with further re-
finement this value decreased. These results then raise the ques-
tion of whether there is an optimum mesh size which will give
the highest possible limit of De and still give physically accept-
able predictions. To answer this question it will be necessary to

1. 1 Tahla £1 nlioats Aota A3 ffa ot
have available flow visualization data on different yUI._yl.ul::J. ic

fluids whose rheological properties can be accurately described
at least for viscometric flow and hopefully for simple exten-
sional flow.
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Another flow situation where there are some experimental data
available is that of flow over a rectangular cavity placed perpen-
dicular to the flow direction.*® This flow is associated with the
hole pressure.” The first simulations reported in the literature
were concerned with predicting the ratio of the hole pressure (Py)
to the primary normal stress difference (N,) as a function of the
Reynolds number (Re) and De and comparing this to the theo-
retical values in the limit as both De and Re went to zero.* '
Jackson and Finlayson!! carried this work further by using a
corotational Maxwell model with empirically defined viscosity
and relaxation time functions. They were able to fit the vis-
cometric properties of the polystyrene solutions used by Baird'
exactly. Their predicted values of P, /N, agreed well with those

reported by Baird.” They noted, however, that there were severe
convergence difficulties, especially when the slot width to die
height ratio became less than 0.5. Malkus and Bernstein'® used
the integral constitutive equation of Curtiss and Bird** in their
simulation of the hole pressure. Based on their calculations they
were able to explain the validity of the Higashitani and Pritchard
theory,'® which relates Py to IN;,. Although they did not compare
their predictions directly with experimental data, they arrived
independently at the same conclusions as Pike and Baird,'® who
used flow birefringence to determine the stress field in the region
of a slot placed perpendicular to the flow direction for a poly-
styrene melt. Malkus and Webster'” computed the ratio of Py /N,
for the Maxwell model using both the finite-element method and
the finite-difference method. They compared their results with
the predictions of the calculations for the second-order fluid and
found good agreement. They also concluded that their calcula-
tions corroborated experimental evidence that N; can be pre-
dicted via Py measurements.

The purpose of the present report is twofold. First, we want to
determine whether it is possible to simulate the stress field, mea-
sured by means of flow birefringence, for flow of a polymer melt
over a rectangular slot placed perpendicular to the flow direction
when the constitutive equation at least fits the viscometric prop-
erties of the melt used in the flow experiments. Second, we would
like to investigate the effect of mesh refinement on not only the
predictions of the stress field, but also on convergence of the nu-
merical algorithm by comparison with the stresses measured by
means of flow birefringence. This article will particularly con-
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centrate on two regions of the flow. One is along the centerline
of the slot and the other is along the mouth of the slot.

GOVERNING EQUATIONS

The steady incompressibie flow of viscoelastic fluids is governed
by the following equations:
(i) the equation of motion

pv -VNuv=—Vp - V-T + pg, (1)
(i1) the continuity equation
V-v=20, (2)

(iii) an appropriate constitutive equation which relates T to v.
Here T is the extra stress tensor, v is the velocity vector, and p is
the isotropic pressure. We also follow the convention that a tensile

atraca 1a noagatriva 18
SULLESS 15 [ICEaulvVe.

In this paper we use the White—Metzner model:
v
T + AT = —n(vy 3

where 'f‘ denotes the contravariant Oldroyd or upper convected
time derivative of the extra stress tensor, A(¥) is a shear rate-
dependent relaxation time, and ¥ is the shear rate defined as
V'1/2v:y where ¥ is the rate of deformation tensor. For the vis-
cosity function, n(y), we use the Carreau model

n=nJfl + &y @)

where 7, 1y, and K are parameters in the model. In simple shear
flow the primary normal stress difference, N,, is given as:

Ny = 2n(PA(9¥? (5)

We then fit the viscometric data of the polystyrene melt which
are shown in Figure 1 with an empirical function of the follow-
ing form for A(y):

My)=c +czlny (6)
where ¢; and ¢; are constants. In this way N, is exactly predicted
by the White—Metzner model in shear flow. We should add that
although we can fit the viscometric properties of polystyrene ex-
actly, the White—Metzner (WM) model does not fit the uniaxial
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Fig. 1. Viscosity and primary normal stress data for polystyrene(Styron 678)

at 190°C from ref. 5. (1) Cone-and-plate steady shear; (V) cone-and-plate dynamic;
(<) capillary rheometer; (O) slit die.

extensional properties of the melt exactly.' In particular, the
WM model eventually reaches a critical extension rate where
the extensional viscosity, 7., becomes infinite which is contrary
to the behavior exhibited by polystyrene. However, because the
extension rates are not high throughout the region of interest
and because the critical rate is larger than those found here,
it should not present a major problem. This will not be true for
all flows.

PENALTY-GALERKIN FINITE-ELEMENT METHOD

The weak form of the equation of motion for the case in which

the inertial terms are neglected is:2%?

Jf[T:Vw + p(V - w)]dQ -—§ (w-t)ds =0 &)
1 N
where w is the vector representation of the test functions for v,

and v, and t is the stress (traction) vector acting on the boundaries
of the region ). The incompressibility condition is treated as a
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constraint on the velocity field which allows us to express the
pressure as

P = vV v (8)

where vy, is the penalty parameter and is taken in this work to be
1 x 10% = n,, where 7, is the zero shear rate viscosity. On substi-
tution of Eq. (8) into Eq. (7), we obtain the weak penalty form of
the equation of motion as follows:

ff[T:VW+yJ_V-u)(V-w)]dﬂ—%w'tds=0. (9
Q S
The Galerkin form of the constitutive equation is given as:
v
Jfu-[T + AHT + n(H¥dQ = 0, (10)

where u is a tensorial representation of the test functions for the
xx, xy, and yy components of T.

The region ) is subdivided into rectangles and the velocity and
stress fields are represented over each rectangular element by the
following polynomial approximations:

v, = Evgk)q’k(x’y)7 (11)
k

T, =2 TPW¥,(x,y), (12)
k
where the ¥, are taken as bilinear functions of (x,v) and v{¥ and
T# are the nodal values of the components of the velocity and
stress fields, respectively. On substituting Eqs. (11) and (12) into
Egs. (9) and (10) and replacing the test functions by ¥,, we obtain
the penalty-Galerkin form of the governing equations. The ele-
ments of the stiffness matrix are evaluated using four-point
quadrature, while reduced integration is used on the penalty
terms. The pressure is recovered by means of post computations
at the center of each element.
The discretization process just described leads to a system of
nonlinear equations of the following form:

SX)-X=PF. (13)

To solve this system of equations we follow the procedure de-
scribed by Coleman?? which is basically a Picard iteration tech-
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nique. The system of equations in (13) is linearized by evaluat-
ing S(X) at the previous solution, X”, and then solving for a
new solution, X*', as indicated below:

S(X™ - X' =F. (14)

The iterative scheme given in (14) is used with S(X) chosen to be
independent of the nodal values of 7. In order to accelerate the

- X
convergence, X" in (14) is replaced by an extrapolated value, X,

where
X, =cX"+ (1 — c)X*! (15)

and the optimum value for ¢ was found to be 0.8. The convergence
criterion is

Xn+1 _ Xn

where ¢ is chosen to be 0.01 * 75,.

Three meshes are used in the work and are presented as shown
in Figure 2. The number of nodes and elements for each mesh are
listed in Table I. The main difference between meshes 1 and 2 is
the number of elements placed across the mouth of the slot and
in the region from the bottom of the slot to the upper wall. The
main difference between meshes 2 and 3 is that in mesh 3
more elements are added upstream and downstream of the slot
region. In addition, there is more refinement of the mesh near
the walls in the undisturbed flow region.

A no-slip velocity boundary condition is used along the solid
boundaries while the velocity field at the inlet and outlet posi-
tions is assumed to be that of laminar fully developed shear flow.
The boundary conditions at the inlet and outlet nodes are estab-
lished by first solving the problem using the generalized New-
tonian fluid model with the boundary conditions that the traction

TABLE 1
Convergence Limits for Three Finite-Element Meshes

No. of Degrees of  Critical Wall Shear  Critical Weissenberg

Mesh Elements Freedom Stress (KPa) Number
1 84 535 24.0 1.02
2 256 1450 14.0 0.73
3 328 1860 9.0 .54
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Fig. 2. Finite-element meshes used in this research. The actual dimensions
are: slit height (H) = 2.54 mm, the slot width (B) = 0.81 mm, and the slot
depth = 3.25 mm.

vector is known along the inlet and outlet elements and there is
no-slip of the fluid along the solid boundaries.

COMMENTS ON BIREFRINGENCE RESULTS

Although details of the birefringence measurements are
presented in detail elsewhere,” it is important to make a few
comments about these measurements. The repeatability of the
measurements was of the order of =5%. The accuracy of these
measurements was due in part to the alignment of the optical
system which allowed the generation of nearly parallel light
rays passing through the flow region. Accurate temperature con-
trol of the melt by use of four separately controlled heaters along
the die was another key factor in assuring accurate birefringence
measurements. By maintaining the melt temperature to within
+0.5°C, the density variation across the measuring path was
minimized. The most difficult part of the measurements was the

: - -
- T3 7
*—“ﬁmm L]
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measurement of the principal optic (stress) directions which ap-
pear as diffuse black lines through the sample. Only by rotating
the analyzer back and forth around the angle desired could the
regions of constant principal stresses be identified. Eventually
a shear rate was reached where viscous heating as well as side
wall effects made the measurements of the isolinics, lines of con-
stant principal stress difference, impossible. It should also be

natod that valiioe of tha nirinecinal diractione and nrinecinal
ILULEO Lildu YVaiuts UL Wil PrijfiCiparl GLICUliUils 4dlill plialjvipas

stresses were extrapolated to various points in space from the
measured points by means of linear interpeclation.

RESULTS AND DISCUSSION

The flow region of interest here is shown schematically in
Figure 3. There are two regions which we will pay particular
attention to and concentrate our comparison between predicted
values of the stress field and those measured by means of flow
birefringence. These are the centerline of the slot and the slot
mouth. The slot centerline is chosen because the validity of the
Higashitani and Pritchard theory as discussed by Malkus and
Bernstein'® and Pike and Baird!® depends on the integration of
N,/20 along this path. This integration path can be rather com-
plex as there is at least one singular point in N,;/20 near the

FLOW DIRECTION ——>

S

T
: SLOT MOUTH
i
f
|
|
]

Fig. 3. Schematic of flow over a rectangular slot showing the two regions of
interest in this research.
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centerline of the slit. The slot mouth is also an interesting region
because it includes two corners and is near the dividing stream-
line which separates flow in the cavity from the main flow in the
die. We first compare stresses predicted by the simulation using
the three different meshes with experimental values for condi-
tions where the algorithm is convergent. We then look at results
obtained with mesh 1 (coarse mesh) since it gave a convergent
solution over a much wider range of values of We and o,.

We first compare solutions obtained for the three meshes for
conditions where convergent solutions were obtained. Figure 4
shows plotted values of the reduced shear stress versus the re-
duced y-coordinate taken along the centerline of the slot. Here
we see there is not only very good agreement between the re-
sults obtained using three different meshes, but that all the re-
sults agree well with the flow birefringence data. The only place
where the agreement is not good is in the region below the mouth
of the hole. In this region, for these conditions, the stresses are
so low that accurate flow birefringence data is difficult to obtain.
Figure 5 presents a similar plot for the reduced normal stress
values. Here again we see agreement is quite good between the

15
STYRON 678
190°C
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Fig. 4. Reduced shear streas versus the reduced y-coordinate along the center-
line of the slot at a wall shear stress of 8.93 KPa. The solid line is the flow
birefringence (—) data taken from ref. 5. Meshes: A = 1;[1=2; O = 3.
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Fig. 5. The normal stress difference reduced with respect to the primary nor-
mal stress difference at the wall versus the reduced y-coordinate at a wall shear
stress of 8.93 KPa. The solid line represents the flow birefringence data taken
from ref. 5. Meshes: A = 1,1 =2; O = 3.

values obtained using different meshes as well as with the flow
birefringence data. In Figures 6 and 7 we compare values of o/
o, and the reduced normal stress difference, respectively, ver-
sus reduced distance across the mouth of the slot. We see that, in
general, values determined using different meshes and those
measured by means of flow birefringence are in good agreement.
However, for mesh 2 the shear stress values are in poor agree-
ment with the other results. We are uncertain as to the cause of
this, but believe it must be related to the elements having angles
greater than 90°. Also, at this position, the flow is no longer
viscometric as the normal stress difference does not follow the
shear stress. Furthermore, at the inlet corner the shear stress
actually decreases rather than rises sharply, while there is some
significant increase in the normal stress difference. The normal
stresses seem to relax over the slot but then rise sharply at the
exit plane of the slot. This behavior is observed in both the ex-
perimental values and in the simulated values of stress.
Although there was good agreement between the values of
stress obtained using the three different meshes, at the next in-
crement of stress {(a wall shear stress of 9.0 KPa), the algorithm
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Fig. 6. Reduced shear stress versus the reduced x-coordinate across the mouth
of the slot at a wall shear stress of 8.93 KPa. The solid line represents flow

birefringence (—) data from ref. 5. Meshes: A = 1; [ =

2; O = 3.
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Fig. 7. Reduced normal stress versus the reduced x-coordinate across the

mouth of the slot at a wall shear stress of 8.93 KPa. The

solid line represents flow

birefringence data from ref. 5. Meshes: A = 1; ] = 2; O = 3.
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would no longer converge for mesh 3. There was no warning in
the stress values in the two regions we studied that convergence
difficulties were imminent. A summary of the convergence limits
for the three meshes is given in Table I. Here we see that the
highest limiting value of We, where we have taken We = N,,w/
20, where N,,w and o, are values of N, and & evaluated
at the wall shear rate, is obtained for the coarse mesh. This be-
havior has been reported by others for other flow problems.!#?
Because it has been reported that coarse meshes used in entry
flow simulation can lead to erroneous predictions of vortices, we
now look in more detail at the predictions of our simulation
using mesh 1, to see how accurate the predictions are, especially
as stress levels increase.

Figures 8 and 9 are plotted values of the reduced shear stress
and normal stress difference versus reduced distance across the

slot mouth, respectively, for various levels of wall shear stress.
Although reduced shear stress values agree well with each other

2r STYRON 678
190°C
MESH |

8.23 KPA
12.04 KPA
1420 KPA
16.00 KPA
18.00 KPA
2200 KPA
2000 KPA
BIREFRINGENCE A

A

|eJomOpp

Fig. 8. Reduced shear stress versus the reduced x-coordinate across the mouth
of the slot for various wall shear stress levels (KPa: A = 8.23; A = 12.04;
O = 14.20; B = 16.00; O = 18.00; V = 22.00; ® = 20.00). All calculated values
were obtained using mesh 1.
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Fig. 9. Reduced normal stress difference versus the reduced x-coordinate
across the mouth of the slot for various wall shear stress levels (KPa: A = 8.23;
V = 12.04; [ = 14.20; @ = 16.00; © = 20.00). Mesh 1 was again used to obtain
the calculated values.

except in the case of the data obtained at a wall shear stress of
12.04 KPa, there is considerable scatter of the predicted values
about the flow birefringence data. On the other hand, the normal
stress differences agree well with each other and the flow bire-
fringence values. In Figure 10 we have plotted reduced values of
N,/20 versus reduced shear stress along the centerline of the
slot for two different wall shear stress levels. There is good agree-
ment between the predicted values and those measured by
means of flow birefringence. Hence, we see that although the
mesh is coarse, we still get reasonable agreement between pre-
dicted and measured values of stress and that the agreement is
still good even as we approach conditions when the numerical
algorithm fails to converge.

As a further check of the results obtained using the coarse
mesh, we compare values of the hole pressure calculated by tak-
ing the difference of (Tyy + p) at the upper die wall and at the
bottom of the slot with values predicted using cone-and-plated
data and the Higashitani and Pritchard theory. The values of
(Tyy + p) were evaluated at the centerline rather than by aver-
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Fig. 10. Reduced ratio of the normal stress to twice the shear stress ratio
versus the reduced shear stress along the centerline of the slot. The solid line
represents flow birefringence (—) data from ref. 5. The calculations were carried
out at two wall shear stress levels (A = 12.04; O = 16.00) using mesh 1.

aging over the width of the slot. In Figure 11 we observe reason-
able agreement between the two sets of values. Again in spite of
the coarse mesh we can still get reasonable predictions, and at
higher stress levels than are possible with the finer mesh.

As shown in Table I the use of the coarser mesh allowed us to
extend the limiting value of We from 0.54 to 1.02. However, the
wall shear stress limit increased by nearly a factor of 3. Certainly
the convergence problem is still a limiting factor in carrying out
numerical simulations of viscoelastic fluid flows. We believe part
of it is related to the constitutive equation used in the simulation.
For example, in the case of the upper convected Maxwell model,
We is predicted to increase linearly with increasing shear stress.
Hence, in order to reach reasonable values of shear stress, values
of We must be of the order of 2 to 3. However, not many polymeric
fluids behave in this manner. To illustrate this point we consider
the data presented in Figure 12 in which we have plotted We
versus shear rate for polystyrene. Values of N,/2¢ along with
G'/G*, where G’ is the storage modulus and G* is the complex
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Fig. 11. Calculated values of the hole pressure versus wall shear stress com-
pared with values predicted using the Higashitani and Pritchard (—) theory and
cone-and-plate data.
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Fig. 12. Weissenberg number versus shear rate for the polystyrene melt used
in this study. (O = N,/20; (1= G'/G*.)
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shear modulus, are plotted here. Although the values of N,/2o
are difficult to obtain in the cone-and-plate apparatus beyond a
value of 1.0, values of G'/G* may allow us to look at the behavior
of We at higher values. What we observe is that for the polymer
used in this work, We approaches an asymptotic value of about
1.5. Furt uhermore, the constitutive cqua.tluu used here fits this
behavior. Hence, if we reach a value of We of 1.5, we should be
able to carry out calculations up to shear stresses where the
onset of melt fracture occurs, which is surely adequate for most

polymer processing operations.

CONCLUSIONS

We have shown here that it is possible to predict stresses which
acoree aguantitativelv with values measurad hv means of flow bhire-

Sy MR ALvAVR A VLY Yavad Vo2 ARSI 1225 L2 AR

frlngence when we use a constitutive equation which at least fits
the viscometric properties of the melt used in the experiments.
We have also found, at least for the case of the hole pressure,
that the coarser mesh leads to sufficiently accurate values of
stress while permitting us to reach a more reasonable value of
elasticity before the numerical algorithm fails to converge. This
suggests that there may be an optimum mesh for a given flow
problem and constitutive equation. This work also indicates that
the elasticity of polymer melts, as determined by the Weissenberg
or Deborah numbers, may reach an asymptotic value rather than
continue to increase linearly with shear stress. Hence, for engi-
neering applications it may not be necessary to reach values of
We much greater than 2.0. The work also points out the im-
portance of coupling experiments on well characterized fluids
with the numerical studies.

This work was supported by grants from the Petroleumm Research Fund
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