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Sequential Dynamical Systems/ Graph Morphisms /
Phase Space Embedding

In this paper we present a new framework for studying the dynamics of biological
networks. A specific class of dynamical systerSsquential Dynamical Systems (SDS),

is introduced. These systems allow one to investigate the interplay between structural
properties of the network and its phase space. We will show in detail how to find

a reduced system that captures key features of a given system. This reduction is based on
a special graph-theoretic relation between the two networks. We will study the reduction
of SDS overn-cubes in detail and we will present several examples.

1. Introduction

Biological networks, like metabolic or regulatory networks, as well as net-
works in general, can be considered as undirected or directed graphs in which
the vertices have states that depend on the states of their corresponding adja-
cencies. One typically has some information about how state transitions of the
respective vertices occur, but it is extremely difficult to analyze the global dy-
namics of the networks as interactions among the vertices occur. Additionally,
it appears to be a generic feature of biological networks that these interactions
take place sequentially.

Accordingly, a mathematical framework designed for the analysis of the
dynamics of biological networks should explicitly take into account: schedul-
ing, the properties of the vertices as state transition functions, and the intercon-
nection scheme,e.the graph itself.

In the following we will introduce a new class of dynamical systems called
sequential dynamical systems, or SDS for short [5, 10]. SDS are basically com-
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236 H. S. Mortveit and C. M. Reidys

prised ofi) state transition rulesj) an undirected graph where each vertex
has a state, aniii) a permutation of the vertices in the graph giving the up-
date order. Thus an SDS is a dynamical system of the §orii, — F}, where

F, = {0, 1} is the field with two elements.

The question of obtaining information about a network thus becomes
a question of understanding the phase space structure of the¢SPB8r
some results on, e.g., reversibilitpvertibility and fixed points we refer
to [2,3,5,10,11].

The phase space of an SDS will usually consist of more than one attrac-
tor. Thus a time series will only visit certain parts of phase space. Likewise for
networks: there will typically be valid states or regimes that are never realized
under the time evolution. It seems fair to believe that constructing a “reduced”
network that produces the same dynamics as the original network in the es-
sential regimes and “throws away” the non-essential regimes should allow for
more insight and has an obvious computational advantage.

In the following we will show how to reduce the phase space of certain
SDS¢ over a graphy. We will do so by considering an SDg over a smaller
graphZ for which there is a covering map (locally bijective graph morphism)
p:Y — Z. In this construction the state transition functions of corresponding
Y and Z vertices are identical, and the dynamics of the SD&presents the
essential parts of the dynamicsgnfin fact, there can be several covering maps
p : Y — Z;, each of which gives rise to a reduced system. This may be viewed
as factorization of the SDS ov&rinto factors which are SDS ovéf;.

Let Y be a labeled graph with vertex-sef¥f =N, =1{1,2,3,...,n},
which we write asy < K, whereK, is the complete graph amvertices. The
edge-set oY is denoted by [&/]. Let S, y(i) be the set ofy-vertices that are
adjacent to vertex, let §; = |S;v(i)| and letd = maxy, é;. The increasing
sequence of elements 6f (i) preceded by is denoted by

él,Y(i)z(i7jlv"'7j8i)' (1)
To each vertex we associate a state € F,, and we writex = (X4, X2, ..., X5)
for the system state. For eakh=1, ..., d+ 1 we have a symmetric function

f : F5 — F,, and for each vertekwe introduce a map

proj [il: Fy — F5™,  (Xav ..o X)) > (X X o0 Xg,). 2)

The map projects from the fuli-tuple x down to the states vertdxneeds
for updating its state. For eache N, there is aY-local mapF;y : F§ — F?)
given by

yi = fBiJrl o prOJY[I ]’
Fiv¥) = (X1, -+, Xiz1, Yi(X), Xig1,s - -+ Xn) - 3)

The functionF,; y updates the state of vertexand leaves all other states fixed.
We refer to the sequencé; v); asFy. Note that for each graphi < K,, a se-
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Towards a Calculus of Biological Networks 237

guence( fy);-k<n induces a sequends,, i.ewe have a mapY < K.} — {Fy}.
We define the mapFy, 1: S, — Map(F}, F}) by

n
[Fy, 7] = 1_[ Friyys (4)
i=1
where product denotes ordinary function composition.

Definition 1 (Sequential dynamical system). Let Y < K,,, let (f,), with
1 <k =< d(Y)+1 be a sequence of symmetric functions, ancrletS, The se-
guential dynamical system (SDS) ovéiinduced by( f,), with respect to the
orderingr is [Fy, «].

We call an SDS homogeneous if it is induced by a sequence of local symmet-
ric functions of the form( f,) = (By)x where B is a Boolean function like,
e.g., parity which returns the sum of its arguments modulo 2.

Example 1. Let Y = Circ, asshown in Fig. 1. With the parity function, i.e.par,:
F3 — T, defined by pary(Xs, X2, X3) = Y_; X; mod 2 update order (1, 2, 3, 4)
and initial state (1, 1, 0, 0) we get

Par(1,1,0,0)=(0,1,0,0),
ParoPar(1,1,0,0)=(0,1,0,0),
PagoPapoPar(1,1,0,00=(0,1,1,0),
ParpoPagoParoPan(1,1,0,00=(0,1,1,1).

a'nd thus [Par Circg» (1’ 2’ 3’ 4)](1’ 1’ 0’ 0) = (09 19 19 l)

Since phase space for an SDS is finite we may identify it with a finite unicyclic
digraph.

Definition 2. The digraphl"[Fy, ] associated to the SO%, ] is the dir-
ected graph having vertex-sg} and directed edgdgx, [Fy, 7]1(X)) | x € F3}.

A subgroupH < QJ will under certain conditions induce a locally bijective
map¢ : Q) — H\ Q5. The graphH \ Q} has vertex seQ’/H (factor space)

and two verticedl, v are adjacent iff there are elemenig G andv € v such
that{u, v} € e[QJ].

This paper is organized as follows. First we introduce the concept of graph
coverings and locally bijective graph morphisms. Assuming we have a graph

4 ——3
Fig. 1. The circle graph on 4 vertices, Cijtc
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238 H. S. Mortveit and C. M. Reidys

coveringey : Y — Z, we show how the phase space of an SDS &/é em-
bedded into the phase space of an SDS dveshere the same local functions
are used. Finally, we develop a criterion based on local bijectivity and sub-
group structure of the-cubeQ? for the existence of covering maps of the form

¢:Q)—Z=H\Q}, H< QJ.

2. Factorization

Recall that a morphism between graphandY’ is a pairg = (¢, ¢») with ¢4:
v[Y] — v[Y']and¢ : Y] — €[Y’] such that

ve={i, jleelY]: ¢2(e) ={:(), p:(D}.

Thus, adjacent vertices Mare mapped t0 adjacent vertices i’ orii) to the
same vertex irY’. A morphism of directed graphs also preserves the direction
of edges.

A graph morphism : Y — Y’ is locally bijective (surjective) if

Vi e v[Y]: Dle,vi Biv(i) = By ((i))

is bijective (surjective). Note that a locally bijective graph morphism does not
have to be bijective as the following example shows.

Example 2. As an example of a locally bijective graph morphism we have ¢ :

Q3 — Ky, see Fig. 2. The map ¢, is defined by ¢, ({0, 7}) = {1}, ¢1({1, 6}) =
{2}, 9:({2, 5}) = {3}, 91({3, 4}) = {4}, and ¢, isthe induced edge-map. There-
sulting graph morphismis clearly bijective.

Asatrivial example of locally surjective graph morphismwe have v : Star, —
Star, asshownin Fig. 3. Here ¢, isdefined by ¢1(0) =0, ¢1(1) = 1, ¢1(2) = 2,
¢’1(3) =2

Definition 3. Let[Fz, o] and[Fy, 7] be two SDS. An SDS-morphism between
[Fz, o] and[Fy, ] is a pair(¢, ) where¢ : Y — Z is a graph morphism and
where® : I'[F;, o] — I'[Fy, 7] is digraph morphism.

25 oo, 3

0 1

Fig.2. The graphsQ3 andK,.
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3
Fig. 3. The graphs Starand Stay.

Given a graph morphisng : Y — Z we want to relate the dynamics of
SDS over the two graphg andZ. The local functions will be the same for the
two graphs unless otherwise stated. To begin, we relate update schedes for

andZ via ¢. Assume| v[Y]| =n and|v[Z]| =mand let¢ (i) = {is, ..., i)}
wherei; <...i, for 1 <i <m. Define the map, : S, — S, by
Ne(m = (T, oy .., ) = (T1g, - -, Tilgys o v oo Tms - v v s 7T1|,,m)- )

For instance, in the example with: Q3 — K,, we haven,(4,3,2,1) =
(37 47 27 57 17 67 07 7)'
Similarly, we define the map: FJ — FJ by

(T(X))k = Xpg - (6)

The dynamics of SDS oveY and Z can now be related in the following
way [12]:

Theorem 1. Let Y and Z beloop-free connected graphs, let ¢ : Y — Z bealo-
cally bijective graph morphism, and let (f;); be a fixed sequence of Boolean
symmetric functions. Then the map 7 induces a natural embedding

T:T[Fz, n] — TI'[Fy, ns(0]. @)

Example 3. To illustrate the implications of Theorem 1 we show how to re-
late the phase space of [Min ,, id,] to that of [Min Qs (0,7,1,6,2,5,3,4)].
From the example above we have the bijective graph morphism¢ : Q3 — K,.
Next note that n,(id,) = (0,7,1,6,2,5,3,4). From, eg., [1] we know that
[Min ,, id,] has exactly two 5-cycles and no fixed points. The two 5-cycles are
shown in the top row of Fig. 4. For convenience we use the map

§iF,— N &0 ...x) =) %2
j=0

to encode states (binary tuples), andwehave, e.g.,(1,1,0,1) — 142+ 8=11
It is straightforward to see that the phase spacéMin (,, id,] is indeed
embedded in the phase spacgéMin Q3 (0,7,1,6,2,5,3,4)].
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Fig. 4. The top row shows the two five-cycles [Min ,, id]. The second row shows the
images of the top cycles undey, and the last row shows the corresponding periodic cy-
cles in the digrapi’'[Min Qi ny(idg)].

We remark that [Min oz, ,(id4)] has two fixed points in addition to the
two 5-cycles shown in the last row in Fig. 4. These fixed points are related by
the graph automorphism y = (07)(16)(25)(34), and consequently, so are their

Brought to you by | University Libraries | Virginia Tech
Authenticated
Download Date | 6/27/17 4:56 PM



Towards a Calculus of Biological Networks 241

Fig.5. The structure of the components iffMin Qi n4(id4)] containing a fixed point.
A single filled circle depicts a single state, while a circled nunibeéepicts that there are
i direct predecessors that do not have any successors themselves.

transients. Sated differently, the two components in I'[Min Q¥ ns(idy)] con-
taining the fixed points are isomorphic. Their structure is shown in Fig. 5.

In view of example 3 it is of interest to determine the locally bijective graph
morphismsy : Y — Z for a given graphy. In the particular case of a locally
bijecitve graph morphisny : Q5 — K,,; we have that it exists if and only if

a specific number theoretic condition is fulfilled.

Proposition 1. Assume 2" =0 modn+1, and let & € S,,;. Then there exists
acovering ¢ : Qf — Ky, and the SDS[Par o, 1,,(7)] has a periodic orbit of
length n 4 2.

Proof. We will establish the existence of the covering mapQ} — K1
under the above condition in the next section. Since a covering map is lo-
cally bijective, we can apply Theorem 1 to deduce that the phase space of
& = [Par,, ] can be embedded into the phase spacg ef [Par o, 1, (7)].
Thus we see thathatever we can deduce about the smaller system @ applies
to the larger system . The phase space @ has 2" points while that ot has
2"*1 points.

One particular consequence of this is that every periodic orbitfavill
also be a periodic orbit fo. We will show that® always have a periodic orbit
of lengthn+ 2. For simplicity we taker =id,,;.

By inspection pay: F) — F} is seen to satisfy the functional relation

11//()(1’ ceey anl’ w(xb ) Xn)) = Xn~ (8)
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242 H. S. Mortveit and C. M. Reidys

As a consequence of this we derive

1
X= (Xl’ X2y vy Xn) = (parn(x)’ X2, X3y oo s Xn)
2
g (parn(x)7 parn(parn(x)a X27 sy Xn)7 X37 sy Xn)
= (parn(x), X1, X3y oo s Xn)
n
= (parn(x)7 Xl? X27 cees Xn—1)7

where> denotes the update of state
In light of the above we obtain the commutative diagram

n [Par g, .id] n
IF‘2 — IFz 9
tpam l Tproj
Fg on+1 Fg,
where
Proj(X, . . ., Xn, Xnp1) = (X1, ..., Xn), (10)
Lpar, (X125« o5 Xn) = (Xq, « .+, Xn, PAR(Xq, .. ., Xn)), (12)
0n+1(xl, X29 ceey XI’H»l) = (Xn+l, Xl’ ceey Xn), (12)
andf) = {x € FI™ | X1 = par, (X, ... , Xp)}.
Note that proj F) — F} and ipy, : F; — F) are inverses. Similarly
we obtain [Par,, id]?(X) = (X,, pan(X), X1, X2, . .., Xo_z) and in general

[Par,, id]® = projo oy, , otpa, showing that the order of an orbit fPar ,,id]
is a divisor ofn + 1.

Along the same lines we can show thar ,, 7] and[Par ,,, id] are topo-
logically conjugated systems. We omit the detalils.

Thus we have that the length of every orbit [Har,,,, 7] is a divi-
sor of n+2. However, it is easy to see that the orbit containing the state
(1,0,0,...,0) always have length + 2. To be explicit we have fan =7

(1000000 —— (1100000 —— (0110000 —— (0011000

|

(0000003 <—— (0000013 <—— (00001190 <—— (0001100 .

Thus we deduce from Theorem 1 th&ear o3, 74(7r)] has a periodic orbit of
lengthn+ 2, and we are done. O
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3. Covering mapsover then-cube

Proposition 1 turns out to be a special case of a more general theory for con-
structing covering maps overcubes. The theory far-cubes, which may also
extend to, e.g., certain Cayley graphs, is facilitated by the factithatin be
viewed both as a group and as a vector space.

In this section we will show how the existence of subgrotips F7 with
certain properties can be used to obtain covering maps. In fact, this leads to
a cascade of sequences of covering maps.

The following two results constitute the core of this theory [12]:

Lemma 1. For any subgroup H" < IF} with [} : H’] > n+1 there exists an
isomorphic subgroup H = H’ that has the property H(x) N H(y) = @ for x #
Y; X, ye{0,ey,...,e}.

The following proposition shows how the subgroups of Lemma 1 induce
covering maps in a natural way:
Proposition 2.

For each subgroup H < F} with the property H(X) N H(y) = @ for X #y;
X,ye€{0,ey,..., e} thegraph H\ @} is connected, undirected and loop-free
and the natural projection

@) — H\ @), v H()

is a covering map.
Proof. We have to show that the-induced restriction mapping:

M€Sstaryy ) (1) * Stallgy (§) —> Staky a3 (71 (8)) (13)

is an isomorphism for arbitrar§ € 5. By construction, reg,,« (+) is sur-
jective andH(X)NH(y) =@ for x £#vy; x,ye{0,e,,..., en}2 is equivalent
to HX+&NHy+§& =0 for x#£Yy; x,ye{0,ey,...,e,} for any & € F.
Therefore rega,,(rw) is injective and the proof of the proposition is
complete. ’ O

Corollary 1. Let n be a natural number. Then we have 2"=0 modn+1
if and only if there exists a subgroup G < I3 with the property F5 = G(0) U
Ui G(e.

Proof. Suppose we have"2= 0 modn+ 1. SincelF} is a p-group there ex-
ists a subgroup in its decomposition serids< F with the property[F] :
H]=n+1. According to Lemma 1, there exists some sdtefepresentatives

{@1, ..., @a} that forms a basis of}. Let f be theF,-homomorphism de-
fined by f(¢;) =€, for i =1,...,n. Clearly, G = f(H) has the property
Fy = G(0)UJ{, G(e), whence the corollary. O
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244 H. S. Mortveit and C. M. Reidys

Corollary 2. There exists a locally bijective graph morphism
0: Q) — Ky (14)

ifand onlyif 2" =0 modn+ 1 holds.

The following lemma establishes a group action of AQ) = {o €
Aut(QY) | o(0) = 0} on graphsH \ Q3.

Lemma 2. Let H < I} be a subgroup and let n € Aut,(Q3). Then we have
H\Q;=nH\Q;3. (15)

3.1 Computation of covering maps

For smalln we can easily compute the various subgroup@f4]. It turns out
that for fixedn < 7 the orbits of the subgroups under A®5) (the isometric
orbits) yield non-isomorphic reduced graphs. Moreovemfer4 the only cov-
ering map images oR} are the ones that can be obtained-B$Q}. One may

speculate if this is true in general. That is, do the isometric orbits yield non-

isomorphic covering images and can all covering images be obtairtéd &5
for some subgroupi.

Tablel. Subgroups of then-cube: The table gives the number of isomorphic-non-
isometric orbits of subgroupll < Q} of the given sizes.

n #(size 2) #(size 4) #(size 8) #(size 16)

4 2 0 0 0
5 3 1 0 0
6 4 4 1 0
7 5 8 5 1
8 6 14 15 6
9 7 22 38 -

Fig. 6. The only two non-isomorphic graphs of the fodrh\ Q3.
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Table2. Subgroups of tha@-cube: The table gives representatives of the isomorphic-non-
isometric orbits of subgroup$! < Q} of the given sizes that satisfy the condition in
Lemma 1. Explicit computations show that the orbits give non-isomorphic reduced graphs
H\ Q} for n < 7. Binary vectors have been encoded as integers.

n Size 2 Size 4 Size 8 Size 16
4 {0, 14}, {0, 15}
5 {0, 28}, {0, 30} {0, 7, 25, 30}
{0, 31}
{0, 56}, {0, 60} {0, 7, 25, 30}, {0, 7, 25, 30,
6 {0, 62}, {0, 63} {0, 7, 56, 63} 42, 45, 51 52
{0,7,57,62}
{0, 15, 51, 60}
{0,112, {0,120} {0, 7, 25, 30} {0, 7, 25, 30, 42, {0, 7, 25, 30,42,
{0, 124, {0, 126} {0, 7, 56, 63} 45,51, 52} 45,51 52, 75,
{0,127} {0, 7,57,62 {0, 7, 25, 30, 97, 76, 82, 85, 97,
{0,7,120 127} 102 120,127 102 120,127
7 {0,7,121, 126 {0, 7, 25, 30, 98,
{0, 15, 51, 60} 101, 123 124
{0,15,113 126, {0, 7, 25, 30, 106,
{0, 15,115 124 109 115 116
{0, 15, 51, 60, 85,
90, 102 105

In Table 1 we have summarized the number of non-isometric orbits for all
subgroups of)} satisfying the condition in Proposition 2 far< 9. In Table 2
orbit representatives are given fox 7. Some of the reduced graphs occurring
in this scheme are shown in Figs. 6 and 7.

3.2 Constructing covering graphs from chain maps

In [6] a way of constructing graph coverings of a given graph is described. We
will outline it briefly. Let SI" denote the set of arcs or sides of the grapithus
each edgdu, v} gives rise to two sidesy, v) and(v, u). Let G be any group.
A G-chain onI™ is a mapg : SI' — G such thaip(u, v) = (¢(v, u))~* for all
sides(u, v) of I". Thecovering map I' = I' (G, ¢) of I" with respect to a given
G-chaing onT is the graph with '] = G x v[I"] and where vertice&y;, v.)
and(g,, v,) are joined by an edge iffv,, v,) € SI" and g, = g.1¢(v4, Vo). I is
clearly well-defined.

Note that the 3-cube is isomorphic to the covering gripltiF,, ¢) of K,
whereg is theF,-chain assigning 1 to each side .
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246 H. S. Mortveit and C. M. Reidys

Fig. 7. All non-isomorphic graphs of the forrhl \ Qj on 16 vertices. In each case there

are two interlocked cubes. The dashed edges show how the two cubes are connected. The
other vertices of the outer cube are similarly connected, but the edges are not shown to
ease visualization. Note that there are 4 lines in figure on the top ¥ightte two lines
connecting the outer cube to the closest vertex and the most distant vertex of the inner
cube coincide.

Moreover we note that the gra@y on the third row in Fig. 7 is isomorphic
to the covering grapls(F,, ¢), where¢ again is thef,-chain assigning 1 to
each side oK.

Another, but quite similar, approach for constructing covering maps uses
so-called “voltage graph” [7—9]. Voltage graphs a@dchains are strongly
related.

4. Synopsis

In this paper we have introduced a mathematical framework suitable for the an-
alysis of network dynamics. A new class of dynamical systems, SDS, that is an
abstract model for the dynamics of networks has been discussed.
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The results on SDS presented in this paper display the interplay between
the structure of the underlying networks and their corresponding dynamics.
Theorem 1 allows one, for particular schedules, to obtain key information
about a given system via a reduced/simpler network. We have shown for the
special case of Booleamcubes how to construct these reduces systems based
on the subgroup structure &f. Networks ovem-cubes can be reduced to
networks over smaller graphs induced by symmetries ohthebe itself.
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