A Methodology for Integrating Maintainability
Using Software Metrics

John Lewis and Sallie Henry

TR 89-2

A Methodology for Integrating
Maintainability Using Software Metrics

by
John Lewis

and

Sallie Henry

Computer Science Department
Virginia Tech
Blacksburg, Virginia 24061

(703) 231-7584

Internet: Henry@vtodie.cs.vt.edu

A Methodology for Integrating
Maintainability Using Software Metrics

(abstract)

Maintainability must be integrated into software early in
the development process. But for practical use, the techniques
used must be as unobtrusive to the existing software development
process as possible. This paper defines a methodology for
integrating maintainability into Iarge-scale software and
describes an experiment which implemented the methodology

into a major commercial software development environment.

L Introduction

Software maintenance has been recognized as the single most expensive
factor in a software project's life. Estimates place the cost of maintenance
from 50 to 70 percent of the total life cycle cost of a software system [HALDSS].
A survey of sofiware managers indicates that they realize the crucial role
which maintenance plays in their budgets. They also stressed the problem
that user demands for enhancements and extensions is often overwhelming. A
majority even agreed that software maintenance is more important than new
development [LIEB78].

Still, the people who manage, design, and implement software face
budget restraints and time dcadlines which enforce only the minimum criteria
for acceptance, that is that the code "works” for some set of test data,.
Unfortunately, correct software according to the test plan does not guarantee

good software in terms of maintenance or other quality factors [MYEG76].

The bottom line is that maintenance is the largest financial drain in a
software system's life cycle, and the creation of software must be approached
from a perspective that minimizes maintenance costs. The control of software
maintenance costs should begin long before the product is delivered to the
customer. Unfortunately, the cost benefits of controlling maintenance at the

development stage is difficult for software management to realize [MUNJ78].

As the complexity level of a piece of software increases, the code
becomes difficult to understand and therefore more likely to contain errors.
Code containing errors musi be modified, but that maintenance is non-trivial
since the code is difficult to comprehend. To compound the problem further, it
has been shown that programs cannot be made more maintainable by simply
changing their code. Belady and Lehman established that maintenance
activities tend to increase the level of complexity of the code, so more
maintenance is likely o be required [BELL76].

This is the ripple effect of software maintenance which must be
controlled at the carliest possible point in the life cycle [YAUS88]. Certainly,
using software engineering techniques increase the maintainability of
software, but they are difficult to measure and enforce. When deadlines come,
good software engineering habits yield to brute force methods which produce

code that merely does not violate the test data.

Software metrics, when defined and used correctly, have been shown to
be good indicators of software complexity [CONS86]. Metrics are quantitative
evaluations of software design or code based on some set of criteria which
contribute to the software's complexity. If metric analysis results were
required to conform to quality tolerances, the development process would not

be compromised.

This research is designed to cxplore the use of specific implementation
techniques and tools to reduce the effort, and therefore the cost, required by

the maintenance tasks of large-scale software projects.

Kafura and Reddy ecstablished the link between the use of software
quality metrics and the efforts of software maintenance [KAFDS87]. The study
explored medium-sized software systems and used the informed input of
experts who were intimately familiar with the system to validate the metrics
results, Kafura and Reddy concluded that the software metrics agreed with the
general maintenance tasks required, that the metrics identified improper
integration of functional enhancements, and that the metrics agreed with the

cxpert, subjective understanding of the system,

Wake and Henry performed a similar study wusing software quality
metrics on a small sample of production code from a major software vendor
[WAKS88]. Using a maintenance history describing the modifications made to
the code, Wake developed regression equations which successfully predicted

the need for maintenance in specific sections of the software.

The research described in this paper was performed in an effort to
support the theory that software metrics can be used during multiple phases of
the software life cycle to monitor maintainability. This paper describes a
methodology for integrating maintainability by using software metrics. A
brief overview of the metrics used in this study is given in the next section.
The methodology is explained in section III followed by an example of how the
methodology has been applied in a commercial software development

envirgnment.

II. Software Metrics

Over the past several years, software quality metrics have been shown
to be valuable indicators in the quantitative evaluation of software and
software designs. For any measurement to be useful, it is important to
understand exactly what that measurement means and how to calculate it
correctly. This section is an overview of the metrics used in this experiment

and a discussion of what kinds of information can be determined from each.

The metrics used in this study were chosen for specific reasons. Of the
many software metrics that have been proposed, only those which are totally
automatable were considered. The amount of data in this analysis immediately
disqualifies any subjective evaluation of the code, or even any objective

evaluation that requires individual attention Or time-consuming processing.

The metrics discussed here are based on a static analysis of source code.
No measurements are made pertaining to the run-time execution of the

software. The metrics are discussed here at the procedure level.

Software quality metrics can be subdivided into threc areas: code
mefrics, structure metrics, and hybrid metrics. Each class is now discussed and

the metrics from each explained.

Code Metrics

Metrics which deal only with the amount of substance a given
procedure contains are called code metrics. The underlying theory is simply
that the more items requiring attention that exist in a procedure, the harder
that procedurc is to understand. A code metric measurement tends to identify

the internal quality of a procedure.

Three types of code metrics arc analyzed in this study. They are lines of
code, Halstead's Software Science indicators, and McCabe's Cyclomatic
Complexity [CONS86], [HALM77), [MCCT76].

Researchers disagree on how to count lines of code. In this study, lines
of code is calculated as the number of statements not including comment or
blank lines. As in Pascal, statements are separated with semicolons in the
language analyzed in this study. Therefore, the number of semicolons

determines the lines of code metric.

Another set of popular code metrics was defined by Halstead. His
measurements are based on the counts of operators and operands within a

body of code. The following values are calculated for a procedure:

nl = number of wunique operators

n2 = number of unique operands

N1 = total number of operators

N2 = total number of operands

n = nl + n2 Vocabulary Size

N = N1 + N2 Length

Since every entity is included in the counts as either an operator or
operand, the sum of the unique elements is called the vocabulary size, and the
sum of the total count of elements is considered to be the Iength, or total

number of tokens, of that procedure.

Given these definitions, Halstead then defines program volume,

program level, and effort.

Program volume is a measure of size based on the length of the
implementation and the size of the vocabulary. The program volume can also
be interpreted as the number of mental comparisons needed (o generate the

program code.

Vv = N x logz(n) Program Volume

Halstead uses an estimator for program level, defined as the level of the
code in which an algorithm is implemented. Program level is considered
inversely proportional to program difficulty. The lower the level, the more
difficult it is to implement the algorithm. Program level is calculated as
follows:

L = 2/nl) x M2/ N2 Program Level

The final Software Science metric used is Halstead's effort, which
attempts to quantify the effort required to generate the implemented code.
The effort calculation is the fundamental metric considered when using
Halstead's Software Science for complexity analysis. Since the volume of the
program dictates the number of mental comparisons needed to implement the
program, and the program level is the reciprocal of the difficulty, the effort

required is expressed as:

E = V/L Effort

Another code metric used in this study is McCabe's Cyclomatic
Complexity, which is defined as a count of the independent logical paths
through a procedure. Intuitively, the more logical branches that a procedure
contains, the more difficult it becomes to trace all possibilities of actual

execution.

Graph theory states that, given a strongly connected graph G with one
component, the maximum number of linearly independent circuits V(G), also

known as the cyclomatic number, is calcylated:

V{G) = E - N + 2 where
E = Number of edges in the graph
N = Number of nodes in the graph

Therefore, McCabe defines cyclomatic complexity to be the cyclomatic number

of a procedure's strongly connected control graph,

Structure Metrics

A second class of metrics, structure metrics, are all based in some way
on the overall structure of the system being examined. These quantitative

evaluations reflect the bigger picture of the programming system structure.

The structure metrics examined are Henry and Kafura's Information

Flow metric and Belady's Cluster metric.

The structure metric developed by Henry and Kafura is discussed in

[HENS81]. The measurement is based on the amount of
information which flows in and out of a procedure. Formally, Henry and

Kafura define two quantities, fan-in and fan-out:

fan-in: The number of flows of information into a procedure plus the
number of global data structures from which a procedure

retrieves information.

fan-out: The number of flows of information from a procedure plus the
number of global data structures which the procedure

updates.

The complexity of procedure p is now defined as follows:

Cp = (fan-in x fan-out)2 Information Flow

The product of fan-in and fan-out is squared because the complexity between

system components is non-linear.

Belady discusses the complexity of a software system in relation to how
it can be subdivided into logical sections called clusters based on the
communication that exists among the individual components IBELL&1]. He
hypothesizes that understanding interconnected elements is more difficult if
their number is large. Furthermore, given the elements, complexity is

proportional to the number of connections.

The complexity of an individual cluster of elements j is given as:

Cj = Nj x E; Cluster Metric

where Nj is the number of nodes within a cluster and E;j is the number of edges

between those nodes.

Belady goes on to define the complexity of the entire system as the sum
of the individual cluster complexities plus the quantity representing the

intercluster communication complexity. That calculation is:

C = ZCj + (NxEp)

where N is the total number of nodes in the entire system, and Eg is the

number of intercluster edges.

Hybrid Metrics

Code metrics are based on the volume of material that make up a given
procedure. Structure metrics take into account the procedure as an entity in
the entire system. The concept of a hybrid metric combines both types of
evaluations. Any arithmetic combination of code and structure metrics is
considered a hybrid metric, although many such combinations do not make

intuitive sense.

Woodfield's Review Complexity metric is based on the number of times a
component of a system needs to be reviewed to completely understand the
system [WOOS80]. Two types of connections beiween procedures are defined. A
control connection exists between a procedure and the procedure which
invoked it. A data connection exists between two procedures p and q if there is

some variable V which is shared.

Woodfield then defines fan_in of a procedure as the count of all control
and data connections for that procedure. The complexity of procedure r is
given by:

fan_inj-1

Cr = Effort x > Rck-1
k=2

Effort is the code metric defined in Halstead's Software Science, RC is a
review constant, given as two-thirds in Woodfield's model. This constant was

also suggested by Halstead.

Metric Collection

As stated before, no metric was considered for use in this research
which was not automatable. When dealing with large-scale software projects,
it is infeasible to address any aspect of the code manually. Therefore, a tool to
perform the analysis on the code and calculate the metric values was

constructed.

The metric analyzer is actually sectioned into two pieces, one to
generate the code metrics and a statistical report, and the second to generate
the data from which the structure metrics are calculated. The analyzer pieces

are shown in Figure 1.

The code metric analyzer statically evaluates each component of
syntactically correct source code and gcnerates the metrics for each
procedure, At amy point, a statistical report can be generated which gives a
breakdown by the LOC, Effort, and Cyclomatic Complexity code metrics,
calculating means, standard deviations, minimums and maximums. Also, based
on a parameter N to the tool, the report identifies the procedures which have
the highest metric values considering the top N perce'nt of the total source
analyzed. Furthermore, from that highest N percent, the report indicates
which procedures overlapped all three code metrics, or any combination of
two code metrics.

This overlap repori provides an immediate indicator of where
potentially serious problems exist. Using threshold values with varying
degrees of confidence, the highest violators of metric tolerances can be
identified and investigated.

The data used to calculate the structure and hybrid metrics is obtained
from the output of an existing tool in the development environment which
will be called the Communication Database. This tool is used to inform a system
developer of the proper order in which to rebuild the components of a sysiem,
based on the use of specific files by other files. The important aspect of the
output of the Communication Database for this research is that it identifies

communication lines between modules,

ITI. The Methodology

Tools are created, metrics established, data validated, and techniques
defined. How then does all this combine into a unified whole? A major goal of
this study was to define a complete methodology for integrating

maintainability into large-scale software.

Another concern came quickly to light as this research began. That
was the realization that established companies which design and implement
large-scale software products are reluctant to make major changes in their
software development process. Many managers view academic research as a
supplier of interesting but abstract ideas and will not implement any changes
which they view as unnecessarily time-consuming. Often times, immediate
deadlines and budget restrictions obscure long-term advantages, even when

the techniques presented are proven to enhance productivity,

This research is no exception. Maintenance is an expensive portion of
the software life cycle, but it is still viewed by many software developers to be
a post-production problem. Managers who are concerned with getting the
product out the door are not going to tolerate a methodology which is
disruptive to their existing software development process. Therefore, an
important characteristic of this methodology is that it be as unobtrusive as
possible.

10

To define such a methodology, it is helpful to examine a fundamental
sofiware development technique called iterative enhancement and how it

relates to current industry practices.

The concept of iterative enhancement, as defined by Basili, describes a
development scheme which inherently supports complexity analysis at the
implementation stage [BASV75]. Iterative enhancement is a practical
approach to the creation of new software systems. In it, a bare skeleton of the
system is fully implemented, then that skeleton is augmented by a particular

feature. After that feature is fully tested, the next feature is added, and so on.

Each iteration consists of designing the implementation of a selected
task, coding and debugging that task, and analyzing the existing partial
implementation at that stage. The analysis also defines what tasks should be
added to the project list, in addition to the features of the final project which
have yet to be implemented. Note that the idea of iterative enhancemeni as
‘used here is different from other techniques which implement an almost
complete system, then iteratively refine and reorganize until an acceptable

design and implementation is achieved,

This technique is rarely used in its purest form. However, a common
approach in industry borders on this concept. In the process of creating a
new software system, many companies set deadlines for specific internal
releases of the software. They also predict a final launch date for the first
shipment to the customer, These deadlines might be manipulated as
unforeseen problems arise, or the release dates can be held firm and
justifications given for any feature not appearing in a particular release that

was originally scheduled.

Each internal release is designed with particular goals in mind, which
allows software management to assess the progress of the development,
Between releases, individual programmers test their code, and when a
collection of related modules are ready, integration tests are performed on

larger sections of the code, The designated release points allow complete

11

System tests to be performed,

These release points correspond to the full system analysis stage in the
iterative enhancement technique. Therefore, they also provide opportunities
to measure the complexity of the System at intermediate points in its

development, and determine where complexity problems are being created.

In large-scale system development, the wuse of the iterative
enhancement concept can also be brought down to lower levels in the
development structure. Unit managers define similar task lists for the work
necessary for their section of the system. Before a system release point
occurs, the smaller sub-systems are frozen so that unit testing can be
performed to establish confidence in the code which falls under these

individual umbrellas,

Each of these points are appropriate places for metric analysis to occur.
Errors found at this Jevel arc more easily fixed since the scope of where the
problem originates is smaller and better understood. Metric evaluation can
indicate where that important testing should be concentrated and where
error-prone code exists. Figure 2 illustrates the integrated concepts of

internal releases and complexity analysis.

Even individuyal programmers can work on their code with this
technique. Once a programmer determines that the code he is responsible for
is fully implemented, metric evaluation can pinpoint exact procedures which
will probably, if not immediately, cause problems. This identified code can be
rewritten or at the very least thoroughly tested. The individual tests run by
programmers can uncover many problems that might not show up until
further in the testing hierarchy under regular circumsiances. Programmers
are highly motivaied to find any problems in their code before it advances to
higher levels of testing where someone else informs them they have a
problem.

12

Complexity analysis can therefore be integrated into extremely early
points of the development and testing process. The earlier an error is

uncovered and fixed, the less costly the change.

Now we can observe the software development process with the metric

evaluation fully integrated into all stages.

Once the functionality of an individual internal release point is defined,
the system designed, and the functionality decomposed to wnit and
programmer levels, the implementation process begins. While studies have
shown that metric analysis is useful at the design phase, specific design
methodologies must be used [HENS87] [HENS88]. On the other hand, all logic is
eventually implemented, which provides a syntactically specific point to do
the analysis. The methodology proposed here is based at the implementation
and testing levels since this causes the least disruption to the existing
development process,

Individual programmers begin implementing their relatively small
portion of the logic for the overall System. Once they establish a functional
subset of their code, they use the metric analysis tool to generate metric values
and a statistical evaluation of their code based on the metrics. This gives
immediate feedback as o the volatile portions of their code.

Based on their analysis, portions of their code can be rewritten to
reduce the complexity levels. This rewriting process itself is highly likely to
uncover logical errors in previously complex procedures. If rewriting is not
considered necessary or feasible, the programmer's testing efforts can at least
be concentrated on the potentially dangerous code.

Once the programmers have established their portions of the system,
picces are brought together for wunit tests. At this stage, the analysis can be
fun on the larger subset of the overall system. Again, the metric analysis can

identify areas that are potentially dangerous, this time from a slightly more

13

global viewpoint. Structure metrics tend to become more important at this
stage since there is more cohesive communication among the larger

components of the code.

After unit testing, a full internal release is established. Metric analysis
at this stage can give an even more global view of the developing system.
Errors concerning integration = problems and high-level communication are

likely 10 be uncovered here.

Once the system intemnal release is tested, new tasks to fix errors and
increase the growing functionality of (he developing system are defined.
Progress toward the next internal release is begun and the cycle repeats itself.
Eventually, the last internal release is performed with little or no problems

detected, and the product is scheduled for an external release.

This methodology was presented t0 a commercial software development
organization with ¢ncouraging results. Plans were made to distribute the
metrics tool to various levels of the developing System process, including the

individual programmers.

An important caution must be made concerning the use of the metric
tool. Any evaluatory technique such as the one described in this research
concludes with the result that something is good or bad. Often managers arc
tempted to use software metrics as yet another way to judge the productivity
and uvsefulness of individuals. This is a dangerous practice. If used as a
managerial retribution tool, the entire concept of metric evaluation will be

undermined.

The metric tool should be used to evaluate code, not people. Some
individuals might be scared into using the tool, but for the most part the use of
metrics in that manner will simply cause disharmony and frustration. If the
methodology is used as intended, to help guide testing processes and identify

error-prone software, the end result will be a software product that is more

14

reliable and mainiainable,

The methodology described in this section incorporates the various
techniques and observations ecstablished by this research. Since it
concentrates on integrating the use of metric analysis without requiring
another complete level to the development hierarchy, the use is practical ag

well as useful.

IV. Application of the Methodology

The methodology described in the previous section wasg actually applied
in a commercial environment. Over 7000 procedures from a givern internal
release of the project code is analyzed. The software from the project is used to
control the functions of g stand-alone machine, Therefore, the system has
characteristics of real-time software, in that it must respond almost
immediately 1o uger requirements and error conditions. Tt is g3 stand-alone
System, and therefore contains its own operating system used to control
peripherals and the environment, Finally, the system ig highly computative
in terms of graphics and data management,

Integration and use of the metric values is the next step in this research
effort. Error data corresponding to a given release of the software system is
used in an attempt (o validate the metric results. Statistical correlations of the

metrics to each other and to the errors validate the resulis.

Correlations among the various metrics and between the metrics and
the error data are essential to gain an understanding of how useful the metrics
are at indicating danger areas and determining which metrics focus on

similar attributes,

The correlation matrix for the code metrics is displayed in Figure 3. LOC
refers to Lines of Code, N, V and EFF are Halstead's length, volume and effort, CC
is McCabe's Cyclomatic Complexity, and ERR represents the number of errors,

15

Note that all of the code metrics correlated very high (values ranging
from 0.852 to 0.998) with ecach other. This verifies previous study's results and
indicates that the code metrics all tend to measure similar aspects of the code,
namely the internal complexity [CANJ85] [HENS88].

The correlations between code metrics and defect occurrences (errors)
is also significantly high (0.814 through 0.843). This indicates that the code
metrics do successfully establish where the errors exist in the source code.
The fact that no one metric shows a substantially higher correlation to errors
than the others indicates that a single given metric cannot used as "the"

metric for the source language and the development environment,

Figure 4 shows the correlations among two code metrics (LOC and V) and
the structure and hybrid metrics. WOOD represents Woodfield's Review
Complexity, CLUS is Belady's Cluster metric, INFO represents Henry and
Kafura's Information Flow metric, and ERR again represents the number of

CITOTrS.,

Error data is once again correlated to all the metrics. Note that the
information flow metric does not correlate well with the code metrics. Again,
this verifies past studies and indicates that the Information Flow structure
metric and code metrics are examining different aspects of software
compliexity.

The Woodfield hybrid metric correlated well with the code metrics, This
is due to the fact that the hybrid metric is, by definition, affected greatly by
Halstead's cffort code metric. Belady's cluster metric also correlated fairly
high to both the code metrics and the other structure metrics. Since this is not
a hybrid metric and not inherently affected by code metrics, this would

indicate that the cluster metric addresses aspects of both types of complexity.

The correlations 10 errors are considerably higher for the structure and

16

hybrid metrics than for the code metrics. This indicates that the structure data
yields a higher understanding of crror-prone complexity in this

environment,

V. Conclusions

The results of this study arc both encouraging and educational. The
research as a whole was accepted well in the commercial environment it was
targeted for, and definite plans are in the works for the fruits of this labor to
be permanenily implemented. Specifically, the following sum wup the results
of this research:

* Software quality metrics have again been shown to identify error-

prone software due to a high level of complexity.

. Maintainability is a characteristic which can (and should) be
integrated into software as jt is produced, instead of dealing with it

only as a post-production process.

* A methodology is defined 1o integrate maintainability using
software metrics as an evaluation scheme for guiding the testing

processes alrcady in place.

* Practical use dictates that such defined methodologies should disrupt

as little of the existing development Process as possible.

Overall the results were positive and motivating. The concentration on
the maintenance aspect of the software development process must be
continued in order to reduce the overwhelming cost of software production

and service.

17

Code Metrics
Code Metric
Analyzer
Statistical
Report

Source Code

Communication

Structure
Database

Data

Figure 1. The Metric Analyzer Tool

18

CDESIGN
DESIGN w
REVIEW
QMPLEMENT

*

(UNIT TESTS
g and
LANALYSIS
INTERNAL
RELEASE
SYSTEM TESTS
<4 and
LANALYSIS
EXTERNAL
RELEASE
Figure 2. Large-scale development process with release points and

metric analysis.

19

LOC

EFF
cc
ERR

Figure 3.

LoC N v EFF CC ERR
1.00

0.987 | 1.00

0.982 | 0.998 | 1.00

0.852 | 0.884 | 0.908 | 1.00

0.989 | 0.998 | 0.993 | 0.861 | 1.00
0.837 | 0.831 | 0.843 | 0.828 | 0.814 | 1.00

Intermetric ang

Error Correlations for Code Metrics.

20

LOC

wWooD
CLUS
INFO

ERR

Figure 4,

LOC \'{ WOOD CLUS INFO ERR
1.00

0.982 1.00

0.925 | 0.901 1.00

0.925 | 0.891 0.999 1.00

0.775 [0.775 | 0.930 | 0.925 1.00
0.837 | 0.843 | 0.936 | 0.919 | 0.884 1.00

Intermetric

and Error

21

Correlations
and Hybrid Metrics.

including Structure

References

[BASV75] Basili, V.R., Turner, A.J., “Iterative Enhancement: A Practical
Technique for Software Development,” IEEE Transactions on Software
Engineering, Vol. SE-1, No. 4, 1975, pp. 390-396.

[BELL76] Bclady, L.A., Lehman, M., "A model of large program development,"
IBM System's Journal, No. 3, 1976 pp. 225-252.

[BELL81] Belady, L.A., Evangelisti, C.J., "System Partitioning and Its
Measure,” Journal of Systems and Software, Vol. 2, 1981, pp. 23-39,

[CANJIS5) Canning, J., "The Application of Software Metrics to Large-Scale
Systems," Ph.D. dissertation, Department of Computer Science, Virginia
Tech, April 1985,

[CASPS0] Cashman, P.M., Holt, AW., "A Communication—()rientcd Approach to
Structuring the Software Maintenance Environment," ACM SIGSOFT,
Software Engineering Notes, Vol. 5, No. 1, January 1980, pp. 4-17.

[CONS86] Conte, S.D., Dunsmore, H.E., Shen, V.Y, Software Engineering

Metrics and Models, The Benjamin/Cummings Publishing Company, Inc.,
1986.

[HALDSS] Hale, D.R., Haworth, D.A,, "Software Maintenance: A Profile of Past
Empirical Research,” IEEE Conference on Software Maintenance, November
1988, pp. 236-240.

[HALM77] Halstead, M.H., Elements of Software Science, New York, Elsevier
North—Holland, 1977,

[HENS81] Henry, S.M., Kafura, D., "Software Structure Metrics Based on

22

Information Flow," IEEE Transactions on Software Engineering, Vol. SE-7,
No. 5, Sept. 1981, pp. 510-518.

[HENS87] Henry, S.M., Goft, R., "Complexity Measurement of g Graphical
Programming Language," Technical Report TR-87-35, Virginia Tech,
November 1987,

[HENS88] Henry, S.M., Selig, CL., "A Metric Tool for Predicting Source Code
Quality from a PDL Design,” Proceedings of the Workshop on Software
Design Metrics, Melbourne, Florida, March 1988.

[KAFD87] Kafura, D., Reddy, R.R., “The Use of Software Complexity Metrics in
Software Maintenance," IEEE Transactions on Software Engineering, Vol.
SE-13, No. 3, March 1987, pp. 335-343.

[LIEB78] Lientz, B.P., Swanson, E.B., Tompkins, G.E., "Characteristics of
Application Software Maintenance," Communications of the ACM, June
1978, Vol. 21, No. 6, pp. 466-477,

[MCCT76] McCabe, T.J., "A Complexity Measure," IEEE Transactions on
Software Engineering, Vol. SE-2, No. 4, December 1976, pp. 308-320,

[MUNIJI78] Munson, 1.B., "Software Maintainability: A Practical Concern for
Life-Cycle Costs,” IEEE Computer Software and Applications Conference,
1978, pp. 54-59.

[MYEGT76] Myers, G.J., Software Reliability, Principles and Practices, New
York, John Wiley & Sons, 1976,

[WAKS88] Wake, S., Henry, S., "A Model Based on Software Quality Factors
which Predicts Maintainability," IEEE Conference on Software
Maintenance, November, 1988, pp. 382-387.

23

[WOOS80] Woodfield, S., Enhanced Effort Estimation by Extending Basic

Programming Models to Include Modularity Factors,

Ph. D. Disertation,
Computer Science Department,

Purdue University, 1980.

[YAUS88] Yau, S.S., Chang, P.S.,
Maintenance,"

pp. 374-381.

"A Metric of Modifiability for Software

IEEE Conference on Software Maintenance, November 1988,

24

