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ABSTRACT

In this thesis, we present a simple and efficient a posteriori error estimation procedure for
a discontinuous finite element method applied to scalar first-order hyperbolic problems on
structured and unstructured tetrahedral meshes. We present a local error analysis to derive
a discontinuous Galerkin orthogonality condition for the leading term of the discretization
error and find basis functions spanning the error for several finite element spaces. We de-
scribe an implicit error estimation procedure for the leading term of the discretization error
by solving a local problem on each tetrahedron. Numerical computations show that the
implicit a posteriori error estimation procedure yields accurate estimates for linear and non-
linear problems with smooth solutions. Furthermore, we show the performance of our error
estimates on problems with discontinuous solutions.

We investigate pointwise superconvergence properties of the discontinuous Galerkin (DG)
method using enriched polynomial spaces. We study the effect of finite element spaces on the
superconvergence properties of DG solutions on each class and type of tetrahedral elements.
We show that, using enriched polynomial spaces, the discretization error on tetrahedral el-
ements having one inflow face, is O(hP*?) superconvergent on the three edges of the inflow
face, while on elements with one inflow and one outflow faces the DG solution is O(h?*?)
superconvergent on the outflow face in addition to the three edges of the inflow face. Fur-
thermore, we show that, on tetrahedral elements with two inflow faces, the DG solution is
O(hP*?) superconvergent on the edge shared by two of the inflow faces. On elements with
two inflow and one outflow faces and on elements with three inflow faces, the DG solution is
O(hP2) superconvergent on two edges of the inflow faces. We also show that using enriched
polynomial spaces lead to a simpler a posteriori error estimation procedure.

Finally, we extend our error analysis for the discontinuous Galerkin method applied to lin-
ear three-dimensional hyperbolic systems of conservation laws with smooth solutions. We
perform a local error analysis by expanding the local error as a series and showing that its
leading term is O (h?*1). We further simplify the leading term and express it in terms of an
optimal set of polynomials which can be used to estimate the error.
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Chapter 1

Introduction

Partial differential equations arise in a number of applications, such as fluid flow, heat
transfer, solid mechanics, biological processes, and astrophysics. These equations often fall
into one of the three types: hyperbolic, parabolic and elliptic equations. Our emphasis in this
thesis is on hyperbolic conservation laws, which describe a number of interesting problems
in diverse areas in science and engineering.

There are quite a number of different methods for solving differential equation computa-
tionally. Among these are the widely used finite difference, finite volume, and finite element
methods, which are techniques used to derive discrete representations of the partial derivative
operators and give an approximation for the exact solution. If one also needs to advance the
equations in time, there is likewise a wide variety of methods for the integration of systems
of ordinary differential equations.

Discontinuous Galerkin methods (DG methods) are a family of locally conservative, stable
and high-order accurate methods that are easily coupled with other well-known methods and
are well-suited to adaptive strategies. For these reasons, they have attracted the attention
of many researchers working in computational mechanics, computational mathematics and
computer science. They provide an appealing approach to address problems having discon-
tinuities, such as those arising in hyperbolic conservation laws. The DG method does not
require the approximate solutions to be continuous across element boundaries; it instead
involves a flux term to account for the discontinuities.

1.1 Review of Past Work and Historical Perspective

Over the past several years, significant advances have been made in developing the discon-
tinuous Galerkin finite element method for solving fluid flow and heat transfer problems.
Certain unique features of the method have made it attractive as an alternative to other



popular methods such as finite volume and finite elements.

DG methods form a class of numerical methods for solving partial differential equations.
They combine features of the finite element and the finite volume framework and have
been successfully applied to hyperbolic, elliptic and parabolic problems arising from a wide
range of applications. DG methods have, in particular, received considerable interest for
problems with a dominant first-order part, e.g., in electrodynamics, fluid mechanics and
plasma physics. The DG method was developed first to solve the neutron transport equation
[53]
ou+V - (au) = f

where o is a real constant, a (x) is a piecewise constant, and u is unknown. The method was
then studied for initial-value problems for ordinary differential equations [6, 19, 49, 41, 45],
hyperbolic [26, 27, 29, 30, 32, 18, 37] and diffusion and convection-diffusion [13, 16, 17,
20, 24, 31, 35, 36, 38, 39] partial differential equations. The method may be regarded as
a cross between a finite volume and finite element method and it has many of the good
properties of both, for example, it has the following properties: (i) locally conservative, (ii)
well suited to solve problems on locally refined meshes with hanging nodes, (7ii) exhibits
strong superconvergence that can be used to estimate the discretization error, (iv) has a
simple communication pattern between elements with a common face that makes it useful
for parallel computation, (v) can handle problems with complex geometries to high order,
and (vi) does not require continuity across element boundaries, it instead involves a flux
term to account for the discontinuities, which simplify both h-refinement (mesh refinement
and coarsening) and p-refinement (method order variation).

The first analysis of this method was presented by LeSaint and Raviart [49], showing a
rate of convergence of O (h?) in the £ norm on a general triangulated grid, where h is the
mesh size and optimal convergence rate O (h?™1), on a Cartesian grid with a local polyno-
mial approximation of order p. Later, this result was improved by Johnson and Pitkaranta
[52] to O (hP*1/2)-convergence on general grids. Hesthaven and Gottlieb [51] confirmed the
optimality of this convergence rate by a special example. These results assume the exact
solution to be smooth, whereas for linear problems with nonsmooth solutions the method
were analyzed in [25, 50]. Techniques for postprocessing on Cartesian grids to improve the
accuracy to O (h?T1) for linear problems have been developed in [28, 44, 55].

For nonlinear systems of conservation laws, Chavent and Salzano [23] constructed an explicit
DG Method, by discretizing in space using the DG method with piecewise linear elements
to obtain an explicit semi-discrete scheme. Then to solve in time, they use a simple Euler
forward method. Later, Chavent and Cockburn [22] modified the scheme by introducing
a slope limiter, introduced by van Leer [56], to improve the stability of the scheme. The
Runge-Kutta Discontinuous Galerkin (RKDG) methods were introduced by Cockburn and
Shu [30]. They used a piecewise linear DG method for the space discretization, a special
explicit TVD second-order Runge-Kutta time discretization, and a modified slope limiter to
maintain formal accuracy of the scheme at extrema. A generalized approach for high-order



accurate RKDG methods for scalar conservation laws, was developed by Cockburn and Shu
[29]. Cockburn, Lin, and Shu [27] extended the RKDG method to one-dimensional systems,
and then Cockburn, Hou and Shu [26] to multi-dimensional scalar equations.

Regardless of which DG method is used, a posteriori error estimations are needed to guide
adaptivity and stop the refinement process in an adaptive framework and to provide a mea-
sure of the numerical solution with respect to the exact solution. According to Adjerid et
al. [5], a good a posteriori error estimate should:

(i) be asymptotically correct in the sense that they converge to the true error under h and
p-refinement,

(7i) be computationally inexpensive to compute relative to the solution cost,
(#i) be robust by giving accurate estimates for a wide range of meshes and method orders,

(iv) supply relatively tight upper and lower bounds of the true error in a particular norm,
and

(v) provide local error indicators that can be used to compute global error estimates in
commonly used norms.

The efficiency of the a posteriori error estimates is measured by the effectivity index which
is the ratio of the estimated error to the exact error. Ideally, the effectivity indices should
approach unity under mesh refinement.

Asymptotically exact a posteriori DG error estimates for hyperbolic problems were first con-
structed for one-dimensional hyperbolic problems by Adjerid et al. [6]. Later, Adjerid et al.
8,9, 10, 11, 12] presented asymptotically exact implicit error estimates for multi-dimensional
problems on rectangular meshes. Krivodonova and Flaherty [48] showed that the leading
term of the local discretization error on triangles having one outflow edge is spanned by a
suboptimal set of orthogonal polynomials of degree p and p + 1 and computed DG error
estimates by solving local problems. Adjerid et al. [1, 7] constructed asymptotically exact
a posteriori error estimates for a local discontinuous Galerkin method applied to convection
and convection-diffusion problems. Adjerid and Baccouch [2, 3, 4] investigated the super-
convergence properties of the discontinuous Galerkin method applied to scalar first-order
hyperbolic partial differential equations on structured and unstructured triangular meshes.
They showed that the discontinuous finite element solution is O (hP*2) superconvergent at
Legendre points on the outflow edge for triangles having one outflow edge. For triangles
having two outflow edges the finite element error is O (h?*2?) superconvergent at the end
points of the inflow edge. With these results they constructed asymptotically correct global
a posteriori error estimates by solving a local hyperbolic problem on each triangle.



1.2 Problem Statement

Let d denote the space dimension, x = (z1, ..., xd)T the space variable defined on a domain
Q) C R? and t the time variable defined on [0,7]. Let us consider a system of hyperbolic
conservation laws [14, 57|

w+V-Fu) = w+) ——=r(u),xeR,te0,T], (1.2.1a)
u = g,att=0, (1.2.1b)

with well posed boundary data prescribed on 0€2. The symbol V refers the spacial gradient
operator, the components of the solution u = u (x,t) = (uy (x,1),...,u, (x,1))" are the
densities of various conserved quantities, and V - F (u) is the divergence of the flux function
F(u) = (F; (u),....F, ()", where F; (u) : R* — R? is the i** component of the flux F.
The function g describes the initial condition of u.

For instance, the three-dimensional Euler equations have the following form:

u, +F(u), +G(u),+H(u),=0,inQCcRte|0,T], (1.2.2)
where
u = (p,pu,pv, pw, E)T, (1.2.3a)
F(u) = (pu,pu® +p, puv, puw,u (E +p))" (1.2.3b)
G(u) = (pv, pw,pv’® +p, pvw,v(E —|—p))T, (1.2.3c)
H(u) = (pw,puw, pow, pw? +p,w (E+p))" (1.2.3d)

and p, u, v, w, p, respectively, denote density, x, y, 2 components of velocity, and pressure.
E' is the total energy per unit volume, defined as £ = pe + %p (u? + v? + w?), where e is

c
specific internal energy given by a caloric equation of state e = —2— with v = = denoting
c

p(y=1)’ 5
the ratio of specific heats.
Although the DG formulation applies to arbitrary conservation laws, our discussion is re-
stricted to the following hyperbolic problems:

(i) A convection reaction problem
a.Vu+ ¢ (u) = f ((L’, Y, Z) ) (.Z', Y, Z) S Qv (1248‘)
subject to the boundary condition

U’|8Q— =g (xvya Z) ) (125&)

with ¢ (u) is a smooth function and 092~ = {(x,y, 2z) € 92| a - n < 0}, where n denotes the
outward unit normal vector.



(7) A nonlinear scalar hyperbolic problems of the form
V-Fu)=f(r,y,2), (x,y,2) €Q, (1.2.6a)
subject to the boundary condition
u(z,y,z) =ho(z,y,2), (x,y,2) € 00, (1.2.7a)

where F: R — R3 « : R> — R, f and hy are analytic functions. We further assume
that F(u) is such that the boundary 92 can be split into inflow 9Q~, outflow Q" and
characteristic 9Q° boundaries using a(u) = F'(u).

(7i) A first-order symmetric linear hyperbolic system in multiple space dimensions of the
form

d
ou
A, = t),xeQ,te|0,T], 1.2.8
WD A =gkt 0.7) (12:80)
with source term g : (0,7) x  — R™, subject to the initial and boundary conditions
u(x,0) = uy(x),x€Q, (1.2.9a)
d - d -
(Z niAi> u(x,t) = (Z n,-Ai> up (x,t),x € 0t € (0,T), (1.2.9b)
i=1 i=1
where Ay, Ay, ..., Ay are constant matrices in R™*™ m is the size of the system, n denotes

the unit outward normal on 02, and
if M = Pdiag (A, Mg, ..., \p) PT =
M~ = Pdiag (min(A,0),min ()y,0),...,min(\,,0))P7T,

where A\, Ao, ..., A\ € R

1.3 Research Goals

In this thesis we extend the error analysis of Adjerid and Baccouch [2, 3, 4] and Adjerid and
Weinhart [54], to three-dimensional hyperbolic problems using general tetrahedral meshes.
First, each tetrahedron is of Class I, II and III, respectively, if it has one, two and three
outflow faces. Moreover, elements are of Type 1, 2 and 3, respectively, if they have one,
two and three inflow faces. We perform a local error analysis on an arbitrary tetrahedron
by constructing a family of similar tetrahedra with size h and having the same center. This
family of tetrahedra is such that as h — 0 the limit is the common center. Assuming we
compute a p-degree DG approximation of a smooth solution, we expand the local error as a
power series with respect to h and prove that the leading term of the DG error is a O(hP*™1)
polynomial of degree p+1. We further simplify the leading term and express it in terms of
an optimal set of polynomials which will be used to estimate the leading term of the error.
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We investigate the pointwise superconvergence properties of the DG method, using enriched
polynomial spaces. We study the effect of finite element spaces on the superconvergence
properties of DG solutions on each class and type of tetrahedral elements. We show that
the discretization error on tetrahedral elements having one inflow and one outflow faces is
O(hP*?) superconvergent on the outflow face and on the three edges of the outflow face. On
tetrahedral elements with one inflow face, we prove that the discretization error is O(hP*2)
superconvergent on the three edges of the inflow face. Furthermore, we show that, on
tetrahedral elements with two inflow faces, the DG solution is O(h?*?) superconvergent on
the edge shared by two of the inflow faces. On elements with two inflow and one outflow
faces and on elements with three inflow faces, we establish O(hP*?) superconvergence on two
edges of the inflow faces.

We further present an error estimation procedure to compute accurate DG error estimates
on structured and unstructured tetrahedral meshes and solve several linear and nonlinear
problems to validate our theory for smooth and discontinuous solutions.

Finally, we present an a posterior: error analysis for the discontinuous Galerkin discretization
error of first-order linear symmetric hyperbolic systems of partial differential equations with
smooth solutions. We perform a local error analysis by expanding the local error as a series
and showing that its leading term is O (hP*1).

1.4 Outline

In this dissertation, we will discuss the numerical approximation of hyperbolic equations
using the DG method. In Chapter 2, we introduce our notations and present the discon-
tinuous Galerkin formulation for three-dimensional conservation laws. This chapter also
includes an overview of orthogonal basis functions, and numerical quadratures on triangles
and tetrahedra.

In Chapter 3 we present the problem and state its discontinuous Galerkin formulation for
the space of polynomials of degree not exceeding p. A local error analysis for each class of el-
ements is presented. Then we construct optimal error basis functions and spaces and present
an a postertor: error estimation procedure. We present several computational examples to
validate our theory.

Chapter 4 is devoted to proving new pointwise superconvergence results for all classes and
types of elements using enriched polynomial spaces. After a summary of our supercon-
vergence results, we show how to construct efficient and asymptotically correct a posterior:
finite element error estimates for all classes and types of elements. Finally, we provide several
examples showing the DG errors and their rates of convergence under mesh refinement.

In Chapter 5, we extend our error analysis to three-dimensional nonlinear hyperbolic prob-
lems and present an a posterior: error estimation procedure. Then we test our a posteriori



error estimates on problems having smooth and discontinuous solutions to show their effi-
ciency and accuracy under mesh refinement.

In Chapter 6 we present an a posterior: error analysis for the discontinuous Galerkin dis-
cretization error applied to first-order linear symmetric hyperbolic systems with smooth
solutions.

Finally, we conclude and discuss our results in Chapter 7. A short summary and an outline
of future work are given.



Chapter 2

The Discontinuous (Galerkin Method
for Hyperbolic Problems

In this chapter we introduce our notations and present the discontinuous Galerkin formu-
lation for three-dimensional conservation laws. We also include an overview of orthogonal
basis functions, and numerical quadratures on triangles and tetrahedra.

2.1 Notations

Throughout this dissertation, we use the £? norm of a function f (x,y, 2) over a domain €

defined by
o= | [/ 17 v o) dndya:
Q

The local error is denoted by € = u — U, where u and U, respectively, denote the exact and

numerical solutions.
The divergence and Jacobian of a differentiable vector function

a(z,y,2) = (a1 (v,9,2), a2 (2,9, 2) a3 (v,y,2))" are defined by
(3a1 0a2 8@3
Ox + oy * 0z’

1
2

V-a(x,y,z) =

and

J(a(ry2)=| %2 %2 %2



The gradient (or gradient vector field) of a scalar function w (z,y, z) is denoted by Vu and

is defined by
T
Vu = @,@,% )
ox’ dy’ 0z

2.2 The Discontinuous Galerkin Method

To illustrate the basic ideas of the discontinuous finite element method, we consider the
hyperbolic conservation laws (1.2.1), and partition the domain 2 into a collection of N
elements such that

ﬁ:

J

cC=

1Aj ’
then multiplying (1.2.1a) by a test function v, integrating over the element A;, and applying

Stokes’ theorem to write

/ viudx —/ vI'F (u) dx+/ vI'F (u) - ndo = / vl (u) dx, (2.2.1)
A, A; oA, A;

where n is the normal vector to 0A;.

On A, u is approximated by U; € P, (4;), where P, consists of polynomials of degree
not exceeding p on A;, and v by V taken from the same function space as U;, with j =
1,2,..., N. Substituting u and v, respectively, by U and V in equation (2.2.1), we obtain

the discontinuous Glerkin finite element formulation

/ VU, dx — /
A A

In the traditional finite element, the field variable Uj; is forced to be continuous across the
boundary. However, the discontinuous Glerkin method allow to U; to be discontinuous
across the boundary. Therefore, across the element, the following two different values are
defined at the two sides of the boundary:

V'F (Uj)dx+/

VTE (U;) - ndo = / Vir (Uj)dx.  (2.2.2)
oA A,

J

U; (x) = Sl_i)rré+ U; (x +sn), and UJ (x) = sli}rréi U, (x+sn).
Moreover, we note that U, is piecewise smooth function and is discontinuous only at the
element boundaries. The solution u and F (u) are smooth within (but excluding) the bound-
ary. There is no direct coupling with other elements, except between elements sharing the
same boundaries (faces in case of tetrahedral meshes). The field values F (Uj;) at the inter-
face between two elements, are not unique. Cockburn and Shu [29] present several possible
numerical flux functions. An example of numerical flux that can apply to vector systems
and employs upwind information is the Lax-Friedrichs function [29]

[(F(Uj (x)) + F (U] (x))) = Anax (F (U (x)) = F (U] (x))) ]

9



with

Amax = max ||,
1<i<m

where \; for 1 < i < m are eigenvalue of the Jacobian matrix [F - n], = 7 (F (u) - n).
u

The discontinuous formulation expressed in (2.2.2), may be viewed from different perspec-
tives, which all involve the cross-element treatments either by weakly imposing the continuity
at the element interface, or by using numerical fluxes, or by boundary constraint minimiza-
tion.

Finally, selecting a time integration strategy, typically, this is performed by classical Runge-
Kutta integration scheme [29] with a time step chosen according to the Courant-Friedrichs-
Levy (CFL) condition.

2.3 Orthogonal Polynomial Basis on Tetrahedra

In our error analysis we use the complete space of polynomials of degree not exceeding p

defined as
1L{M—ZZZWm“]} 23.)

m=0 =0 7=0

and the enriched polynomial spaces £,, U,, and M, defined in (4.1.1). The spaces L,, Uy,
and M, are suboptimal but they lead to a simpler a posteriori error estimation which we
present in chapter 4.

The finite element space P, is shown in Table 2.1 and has dimension

P+ (p+2)(p+3)

dim (P,) = 5

(2.3.2)

Let P> (x); —1 < 2 < 1, denote the n-degree Jacobi polynomial defined by the Rodrigues’
formula [46]:

(_1)” -4 —p d" d+n ptn
=0 () (=)™ (1) 6 p > -1,

P (@) =

which can also be computed using the following recursion formula [46]:

Pyt (x) = 1,
1
P (x) = 5@—p+(@+p+2)a),
ap Pyl (x) = (a) +a)x) P (x) — ap Py’ (x),

10



22y 2’z
2 2
ry® zyz 1’z
P ylz y? 2
1

T

3

>y a3z
I
3.2 2
vy wy’r vy’ a2
Y FO I T I

3
4

Table 2.1: The space P;.

where
al = 2(n+1)(n+d6+p+1)2n+6+p),
ai = (2n+d5+p+1) (6% =p°),
ad = 2n+6+p)2n+6+p+1)2n+5+p+2),
ap = 2(n+8)(n+p)2n++p+2).

An orthogonal basis for P, on the reference tetrahedron defined by the vertices v = (0,0, 0),
vy = (1,0,0), v = (0,1,0) and v4 = (0,0, 1) is given in terms of Jacobi polynomials [46] as

P (€:1,C) = PR (€1, €) By (n, €) PE21720(C) ym, g, > 0
of degree m + g + r, where
_ 25
PO’O _ 1—¢— m PO,O -1
m (£, C) (L=¢—=n)" Py p— ,
_ 2
2m~+1,0 _ 2m+1,0
Pq " (7776) - (1_C)‘1Pq * < _1>7

(1-=¢)
P3m+2q+2,0 (C) _ Pr2m+2q+2,0 (QC N 1)

Y

1 prl—n pl-n-n
[ enetiacande = cgpdudusnm.
0 0 0

11
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‘PgA,o = 1
©ho= CH+n+2a-1
Plo= CH+3n-1
508 1= 401
02 o= CZ+2(n—+6CE—20+n?+6nf—2n+6E2 —6£+ 1
olo= (Z+6{n+2C€—2C+59%+ 10nf —6n— 26+ 1
oo = 60F+6(n+12¢6€—T¢—n—26+1
po= (F+8n—20+10n" —8ny+1
W= 6F+18n—7¢(—3n+1
W8, = 15¢2—10¢+1
3 _ 43¢0+ 1207 — 37 + 3(n? + 24¢n — 6(n + 30¢E7 — 24¢¢
¥0,0 = +3¢ + 13 + 12n2€ — 302 + 30nE2 — 240 + 31 + 2063 — 3062 + 126 — 1
s _ (P49 +6¢%E — 3¢7 4 15¢n? + 48¢nE — 18(Cn + 6¢£% — 12¢€ + 3¢
PLOT 47 4 4202€ — 1502 + 42062 — 48n€ + 9y — 6€2 + 6€ — 1
5 8C3 + 16¢%n + 48C2€ — 17¢% + 8(n? + 48¢nE — 18Cn + 48CE? — 54(¢€
Y017 110¢ — n? — 6n¢ + 2 — 662 4 66 — 1
1 ¢34+ 13¢%n + 2¢%€ — 3¢% + 33¢n? + 24(n€ — 26¢n — 4CE + 3¢ + 213
Y20 = +42n2¢ — 3302 — 24n€ + 13n 4+ 26 — 1
1 _ 8¢5 +48(¢%n+16¢%E — 17¢7 + 40¢n? + 80¢nE — 54¢n — 18¢E
P17 110¢ — 5% — 100€ + 6n 4 26 — 1
Poo = 283 +28(%n+56¢%¢ —42¢% — 14Cn — 28CE + 15( +n+ 26 — 1
09, = 3 +15(%n — 3¢ + 45¢n? — 30Cn + 3¢ + 351° — 4517 + 15n — 1
W9 = 8 +64¢%n — 17¢% + 80¢n? — 72(n + 10¢ — 10n% + 8y — 1
oV 5 = 2803 +84(%n —42¢Z —42{n+ 15 +3n— 1
00 .= 565 —63¢CZ+ 18 —1

Table 2.2: Orthogonal basis functions for the space P3 on the reference tetrahedron.

The orthogonal functions o7, of degree < 3 are presented in Table 2.2.

In our analysis we will also use the two-dimensional (k + [)-degree orthogonal polynomials
[46] given by

2

¢, (&.m) = 28 PY° (E -~ 1) (1 —n)F P02 — 1) k.1 >0, (2.3.3)

where L, and P;‘f’p, respectively, denote Legendre and Jacobi polynomials shifted to [0, 1].

The set of polynomials {gpfk, k1> O} satisfy the £2? orthogonality on the reference triangle
defined by the vertices (0,0), (1,0) and (0, 1)

1 1-n
/ / Phpldédn = L 61,01 (2.3.4)
0 0

2.4 Numerical Integration Rules

Numerical integration constitutes an important part of any finite element computation. The
most popular methods for approximating integrals are Gauss quadrature, where weights and
nodes are selected to obtain the highest degree of precision possible.

12



In our computations we use Gauss quadrature rules on the canonical triangle {(¢, 1), —
£ <1,—1<n<—¢} of the form

/ / ff(f,n) dédy ~ if;wif@,m),

where n denotes the number of integration points. Gaussian integration points and weights
on the canonical triangle are given in [42].
Quadrature on the reference tetrahedron {(£,7,(),0 < ¢ <1,0<n <1-£,0<( <1-{—n}

has the form
1 pl-g 1—5—4
L[ renodan~ sz (010G,
0 0 0

where n denotes the number of integration points. We use Keast quadrature formulas with
degree of precision 8 for numerical integration over tetrahedra [47]. For the sake of complete-
ness we present the weights and points in Table 2.3; for higher degrees of precision we use
Grundmann-Moeller quadrature [43]. Matlab codes for these two quadratures can be found
in [21].
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0.250000000000000

0.250000000000000

0.250000000000000

-0.039327006641293

0.617587190300083

0.127470936566639

0.127470936566639

0.004081316059343

0.127470936566639

0.127470936566639

0.127470936566639

0.004081316059343

0.127470936566639

0.127470936566639

0.617587190300083

0.004081316059343

0.127470936566639

0.617587190300083

0.127470936566639

0.004081316059343

0.903763508822103

0.032078830392632

0.032078830392632

0.000658086773304

0.032078830392632

0.032078830392632

0.032078830392632

0.000658086773304

0.032078830392632

0.032078830392632

0.903763508822103

0.000658086773304

0.032078830392632

0.903763508822103

0.032078830392632

0.000658086773304

0.450222904356719

0.049777095643281

0.049777095643281

0.004384258825123

0.049777095643281

0.450222904356719

0.049777095643281

0.004384258825123

0.049777095643281

0.049777095643281

0.450222904356719

0.004384258825123

0.049777095643281

0.450222904356719

0.450222904356719

0.004384258825123

0.450222904356719

0.049777095643281

0.450222904356719

0.004384258825123

0.450222904356719

0.450222904356719

0.049777095643281

0.004384258825123

0.316269552601450

0.183730447398550

0.183730447398550

0.013830063842510

0.183730447398550

0.316269552601450

0.183730447398550

0.013830063842510

0.183730447398550

0.183730447398550

0.316269552601450

0.013830063842510

0.183730447398550

0.316269552601450

0.316269552601450

0.013830063842510

0.316269552601450

0.183730447398550

0.316269552601450

0.013830063842510

0.316269552601450

0.316269552601450

0.183730447398550

0.013830063842510

0.022917787844817

0.231901089397151

0.231901089397151

0.004240437424684

0.231901089397151

0.022917787844817

0.231901089397151

0.004240437424684

0.231901089397151

0.231901089397151

0.022917787844817

0.004240437424684

0.513280033360881

0.231901089397151

0.231901089397151

0.004240437424684

0.231901089397151

0.513280033360881

0.231901089397151

0.004240437424684

0.231901089397151

0.231901089397151

0.513280033360881

0.004240437424684

0.231901089397151

0.022917787844817

0.513280033360881

0.004240437424684

0.022917787844817

0.513280033360881

0.231901089397151

0.004240437424684

0.513280033360881

0.231901089397151

0.022917787844817

0.004240437424684

0.231901089397151

0.513280033360881

0.022917787844817

0.004240437424684

0.022917787844817

0.231901089397151

0.513280033360881

0.004240437424684

0.513280033360881

0.022917787844817

0.231901089397151

0.004240437424684

0.730313427807538

0.037970048471829

0.037970048471829

0.002238739739614

0.037970048471829

0.730313427807538

0.037970048471829

0.002238739739614

0.037970048471829

0.037970048471829

0.730313427807538

0.002238739739614

0.193746475248804

0.037970048471829

0.037970048471829

0.002238739739614

0.037970048471829

0.193746475248804

0.037970048471829

0.002238739739614

0.037970048471829

0.037970048471829

0.193746475248804

0.002238739739614

0.037970048471829

0.730313427807538

0.193746475248804

0.002238739739614

0.730313427807538

0.193746475248804

0.037970048471829

0.002238739739614

0.193746475248804

0.037970048471829

0.730313427807538

0.002238739739614

0.037970048471829

0.193746475248804

0.730313427807538

0.002238739739614

0.730313427807538

0.037970048471829

0.193746475248804

0.002238739739614

0.193746475248804

0.730313427807538

0.037970048471829

0.002238739739614

Table 2.3: A 45-point quadrature on a tetrahedron
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Chapter 3

Discontinuous Galerkin Error
Estimation for the Space P,

In this chapter, we extend the error analysis of Adjerid and Baccouch [2, 3, 4] to three-
dimensional hyperbolic problems on general tetrahedral meshes. We perform a local error
analysis on an arbitrary tetrahedron by constructing a family of similar tetrahedra with size
h and having the same center. This family of tetrahedra is such that as A — 0 the limit
is the common center. Assuming we compute a p-degree DG approximation of a smooth
solution, we expand the local error as a power series with respect to A and prove that the
O(hP*1) leading term of the DG error is a polynomial of degree p+1. We further observe
that the leading term of the error satisfies a DG orthogonality condition which simplifies the
form of leading term of the error. For instance, on a tetrahedron of Class I, the leading term
may be written in terms of orthogonal polynomials of degrees p and p+1 only. We further
simplify the leading term and express it in terms of an optimal set of polynomials which
will be used to estimate the error. Similarly, optimal error basis functions are derived on
elements of Class II and II1. Moreover, on the outflow face of an arbitrary element of Class I
the local error is O(h?**2) on average. Finally, we present an error estimation procedure to
compute accurate DG error estimates on structured and unstructured tetrahedral meshes and
solve several linear problems with both smooth and discontinuous solutions. All numerical
examples show that the proposed error estimates are very accurate for smooth solutions.

3.1 Discontinuous Galerkin Formulation

In this section we consider linear first-order hyperbolic scalar problems on a bounded do-
main Q2 C R3. Let a = (a1 (z,y,2), a9 (z,y,2),a3 (x,y,z))T and n, respectively, denote
a non zero velocity vector and the outward unit normal vector. The boundary of € can
be witten as 9 = 90~ U 9QT U 90°, where 90~ = {(x,y,2) € 9Qla-n <0}, I0T =
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{(x,y,2) € 0Qa-n > 0} and 9N° = {(x,y, z) € IQ| an = 0}. The boundaries 92—, INT, IN°,

respectively, are called inflow, outflow and characteristic.

Let u (x,y, z) be the solution of the hyperbolic problem

a-Vu+tcu = f(z,y,2), (z,y,2) € Q, (3.1.1a)
8&1 8@2 8a3
4 = — = 11
V-a 8x+8y+8z 0, (3.1.1b)
Ulpa- =9 (2,9, 2), (3.1.1c)

and assume that a (z,v,2), c(z,y,2), f(z,y,2) and g (x,y,z) are selected such that the
exact solution u (z,y, z) € C* ().

In order to obtain the weak discontinuous Galerkin formulation, we partition the domain
() into a regular mesh having N tetrahedral elements A;, 7 = 1,2,..., N and assume, for
simplicity, that this can be done without error. Let us further assume that each face in the
mesh is either, inflow, outflow or characteristic.

In the remainder of this chapter we omit the element index and refer to an arbitrary element
by A whenever confusion in unlikely, with its boundary I' = ' U T~ U T'°, where I'*, I'~
and I'°, respectively, denote the outflow, inflow and characteristic boundaries.

Multiplying (3.1.1a) by a test function v, integrating over an arbitrary element A, and
applying Stokes’ theorem we write

//r wmwda+//F+ a~nuvd0—///A (a- Vv — cv)udrdydz = // Afvd:cdydz. (3.1.2)

Now, we approximate u (x,y, z) by a piecewise polynomial function U (z,y, z) whose restric-

tion to A is in P, consisting of complete polynomials of degree not exceeding p given by
(2.3.1).

Next, we define the space SV consisting of piecewise polynomial functions
SNP = U, Ulx € P,}, (3.1.3)

and consider the discrete DG formulation which consists of determining U € S™* such that

// a-nUVda+// a-nUVda—/// (a-VV —cV)Udzdydz
= r+ A

= ///A fVdrdydz, V'V € P, (3.1.4)

In order to complete the definition of our DG method we need to select the upwind numerical
flux U on '™ as

2

it T c 90
_ {“ ifr-co (3.1.50)

U~, otherwise
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for the standard DG method and the corrected flux

j

it T c 90"
- {“ it co (3.1.5b)

U+ E~=, otherwise

for a modified DG method, where U~ is the limit from the inflow element sharing '™, i.e.,
if (z,y,2) € I'", then
U™ (z,y,2) = lim U ((z,y,2) + sn),

s—0+

and F is an a posteriori error estimate that will be defined in section 3.3.

Subtracting (3.1.4) from (3.1.2) with v = V' to obtain the DG orthogonality condition for
the local error e = u — U for all V € P,

/y-a”mwwg+/KJ’“dWU—/Xéﬁrvv—wvﬁmmmZ:Q (3.1.6)

We map a physical tetrahedron A having vertices v; = (z;,v;, z;), 1 < i < 4, into the reference
tetrahedron A with vertices v; = (0,0,0), vo = (1,0,0), v3 = (0,1,0), v4 = (0,0,1), by
the standard affine mapping illustrated in Figures 3.1 and 3.2. The inverse of this mapping
F~': A — Ais given by

(61O (6m.0), 2 (6 O = I (v (6 1)

+ (Vs —v1) (7] - %) + (v3 — vq) <C - }L) . (3.1.7)

such that

~

F(Vz) = \A/l and F (.szk) = Ejka 1 < i,j,k‘ < 4,

where Fij, = v;v;vi, and Fjj; = V,;V,; Vi, respectively, denote the faces of A and A.

An element of Class I and Type 1 is shown in Figure 3.1 (upper-left) with I'" = Fogy,
't = Fioy and I'° = Flo3 U Fia4 while element of Class I and Type 2 shown in Figure 3.1
(center—left) has '™ = F234 U .F134 > F+ = f124 and FO = f123. An element of Class I and
Type & is shown in Figure 3.1 (bottom—left) with I'” = Fozqa U Flaz U Flaa and 't = Fioa4.
In Figure 3.2 (upper-left), we show an element of Class II and Type 1 with I'™ = Fogy,
't = Floa U Fiza and I'° = Fio3 while the element of Class II and Type 2 shown in Figure
3.2 (center-left) has I'™ = Fazq U Fiog and I'T = Fioq U Fiz4. An element of Class III and
Type 1 is shown in Figure 3.2 (bottom-left) with '™ = Fo34 and I'" = Fioq U Fioz U Fiag.

In order to show the explicit dependence of the mapping on h = diam (A), we consider
a family of similar tetrahedra parameterized by the diameter h such that as h — 0 these
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g 4 EEEEEEE Outflow
o, | — Inflow

Characteristic

Vy

\'

Vz é'/’
(a) Ay TF = Frog, I = Fosa (b) Ay q: TF = Fioy, I'™ = Fozy
% = Fioz U Fisg [0 = Flos U Fiss

¢,
Vau
S
>
V3
Vo
V2 gi”
(€) Ayo: T = Frog, (d) Ay TF = Fioy,
I = Foza U Figa, IO = Frog '™ = Fosa U Fig, [0 = Flog
é’ 4
Vi
|
vy T
. Vo
(e) A1,3: F+ = ]:124 (f) A173: f+ = j:124
'™ = Faz4 U F134 U Fia3 '™ = Fozs U Fiza U Fiog

Figure 3.1: Mapping of physical elements of Class I (left) to corresponding reference elements
(right).
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n
vy *
(a) Ag1: T = Frog U Fusa, (b) As, 1 It = ]:124 U Fiza,
I~ = Fogy, [0 = Fiog [~ = Fogy, [0 = Flog
é: A
V4
S
vy
! Vo
V'Z ‘fb
(¢) Ago: T = Frog U Fiaa, (d) Ago: TF = Fiog U Fia,
I'™ = Fozq U Fio3 '™ = Fozq U Fios
¢t
.
Vy
= __TZ
V3
\g
/
Sy
(e) Asq: It = Fioq U Figa U Fras, (f) Az TF = Frog U Fizg U Fras,
'™ = Fosa f‘_zf:'234

Figure 3.2: Mapping of physical elements of Class II and I1I (left) to corresponding reference
elements (right).
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tetrahedra converge to the center vz = ¥H¥2¥at¥a By the law of sines and the fact that
the angles in these tetrahedra are the same as h — 0 we have

Vg — V1 = hul, V4 — V1 = hUQ7 V4 — V1 = hu3,

where the vectors u;, us, and us are independent of h.

Letting z = uy ({ ) + uy (77 — —) +ug (C — }l), the affine mapping (3.1.7) is written as

(1} (€>n7C7 h)7y($7777C7h>72<£7777C5h))T = V1234+Zh7

and its inverse Jacobian matrix J = %J 0, where Jg is a 3 x 3 matrix independent of h.

By the affine mapping the DG orthogonality (3.1.6) becomes

// (Ja) ﬁé‘Vda+//F+ (Ja) neVda—/// VV—cv> ededndC =0, (3.1.8)

for all V € P,, where [~ and I'F, respectively, denote the inflow (Ja-f < 0) and outﬂow
(Ja -1 > 0) boundaries of A with respect to the vector Jé and unit normal i on A. Here
we also have

a(é,n,¢,h) =a(x(&n,¢h),y(&n ¢ h),2(§m0,¢R)),
é(é’ n? C’ h) = C('I(S? /’77 €7 h)’ y(é" 177 C? h)’ Z(g’ n? C? h))?
€&, ¢ h) = e(x(&n, ¢ h),y(&m, ¢ h), 2§, h), h).

Note that €(&,7n,(, h) depends explicitly on h since U depends on z, y, z and h with all
derivatives of U with respect to h exist at h = 0.

Therefore, the DG orthogonality condition (3.1.8) becomes

// &~ﬁ€Vda+// &-ﬁ€Vda—/// (&,-VV—héV) edednd¢ = 0, (3.1.9)
- Pt A

for all V€ P,, where & = Joa.

In the remainder of this chapter we will omit the ~ unless needed for clarity. In our error
analysis we need Taylor series of the analytic function Joa(z,y, z, h) about the center of the
element A. Applying Taylor’s theorem we expand Jpa as

d(€7n767h‘) = Qg + thak(£7777c>7 (3110&)

k=1

where ay, € [P;]? are obtained by the chain rule as
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1 d*a(x(§,n,¢,h),y(En,¢ h),2(&n,( h))

ay (57 7, C) = EJO : dhk o )
and
ao = (o, 8,7)" = Joa (1/4,1/4,1/4). (3.1.10b)
Similarly, Maclaurin series for ¢ and € can be written as
C<§7 7, Ca h) = Z hka(gu 7, C)v Ck<§7 7, C) € P/m (3111>
k=0
and
e(&,, ¢, h) ZQk EMORF, Qu(&n, Q) € Pr. (3.1.12)

In the next section we will investigate the local DG error on elements of Class I, II and III.

3.2 Local DG Error Analysis

For the sake of the local error analysis we solve a problem on one element of size i with
Ulp- = u, i.e., € = 0 while in practice we only need e~ = O (h?2). We start by stating
and proving the following preliminary result.

Lemma 3.2.1. Let ag # 0 in R3, A the reference tetrahedron with T~ (ag-n < 0) and T'F
(ap - n > 0), respectively, are the inflow and outflow boundaries and n be its unit normal
vector. If Qp € Py, k=0,1,...,p satisfies

//F+ ao - nQyVdo + ///A (—ap - VV)Qurdédnd¢ =0,V V € P, (3.2.1)

then
Qr=0,0<k<p (3.2.2)

Proof. Using Stokes’ theorem we write (3.2.1)
// ap - nQpVdo + /// ag-VQpVdédnd( =0,VV € P,. (3.2.3)
Adding (3.2.1) to (3.2.3) with V = @ we obtain

// ag - anda—l—// ag - anda—//|a0 n|Qido =0,0<k<p.
_ I

This leads to Q; = 0 on ' UT'" which, when combined with (3.2.3) for V' = aq- VQy, yields
ay - VQr =0 on A and completes the proof. n
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In the next theorem we state and prove several orthogonality conditions for the leading DG
error term.

Theorem 3.2.1. Let u € C*(Q) and U € P, respectively, be the solutions of (3.1.1a),
(3.1.1¢) and (3.1.4) with U|p- = u. Then the local finite element error can be written as

e(&m¢h) =Y Qi (&n,Q), (3.2.4)
k=p+1
where
// ao-nQyido = 0, (if ¢c#0), (3.2.5)
T+
// ap-nQrdoc = 0, k>p+1, (if c=0). (3.2.6)
T+
Furthermore, on the outflow boundary the local error satisfies
// ag-neds = O (h"*?), (if ¢ #0), (3.2.7)
T+
// ap-nedo = 0, (if ¢=0). (3.2.8)
T+

Proof. Substituting (3.1.10), (3.1.11) and (3.1.12) in (3.1.9) and collecting terms having the
same power of h we obtain the following series

Y ZuhF =0,V VeP, (3.2.9)

k=0

Zo = // ao -nQyVdo — /// ao - VVQod¢§ dndC, 'V € Py,
r+ A

and
Iy = // Qg - Ile[/ do — ﬂ/ [ao -VV (,)k — CU(;)kfl[/ ]df drldC’ V e ”)p’ E>0.
I+ A

where

Thus Z, =0, VV € P,. By Lemma 3.2.1, Q, =0, £ =0,1,...,p which proves (3.2.4).
The leading term satisfies

/ /F a0 nQp Vo — / / /A (@o - VV) Qpirdédnd¢ =0,Y V € P, (3.2.10)

while for k > p + 2
// Qo - HQkaO' - /// ((ao : VV) Qk - C(]VQk_l) dgd?]dc = 0, YV e Pp. (3211)
r+ A
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Testing against V' = 1 in (3.2.10) yields (3.2.5), similarly, we prove (3.2.6) by testing against
V' =11in (3.2.11) with ¢ = 0.

Multiplying (3.2.4) by ag - n and integrating over I' we obtain

ag - nedo = hk//a-nQda,
J[ e 3o [ v ne

=p+1
which by (3.2.5) establishes (3.2.7). The orthogonality condition (3.2.8) follows from (3.2.6).
[

In particular for elements of Class I, we state and prove the following theorem.

Theorem 3.2.2. Let u € C*(Q) and U € P,, respectively, be the solutions of (5.1.1a),
(3.1.1¢) and (3.1.4), with U‘ = u. Let A be a tetrahedron of Class I, then the leading
-

term Qpy1 of the local finite element error satisfies

///A Qp1Vdédnd¢ = 0,VV €P,q, (3.2.12)

//F+ ap-nQ, Vdo = 0,VV P, (3.2.13)
and forp+2 <k <2p+1

///A QrVdédnd( = 0,V V € Pyyy, (3.2.14)

//p+ ap-nQVdo = 0,V V € Py ji1. (3.2.15)
Furthermore, on the outflow boundary the local error satisfies

// ao - nedo = O (K*P?) . (3.2.16)
T+

Proof. On an element of Class I with one outflow face at n = 0, (3.2.10) becomes for all
Vep,

/ / ao - nQ,i1 (£,0,0)V (£,0,0) dédC + / / / (—ag - VV) Qpirdédnd¢ = 0. (3.2.17)
r+ A

We now consider the set II, of all monomials of degree ¢ and establish (3.2.12) and (3.2.13)
by proving

// Qp1Vd&dnd¢ =0,V V ell,_;,1<q<p, (3.2.18)
A
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and

// Qper (€,0,0) V (£,0,¢)déd¢ =0,V V €1, 0 < g < p. (3.2.19)
T+
Setting V' =1 in (3.2.17) yields

/ /F a0 0Qpe (6,0,¢) dedC =0, (3.2.20)

thus, satisfying (3.2.19) for ¢ = 0.

Testing against V = 97" 9¢7, 1 < i< q g > 0and 0 < j < i — 1 and substituting the
resulting equation into (3.2.17) to obtain

/// Qpi1 (&1, Q) ag-V (7 7¢7)dédnd( = 0,1 <i<gand 0 < j <i—1, (3.2.21)
A
where the face integral in (3.2.17) has vanished (V' (£,0,¢) = 0). The condition (3.2.21) for

V=¢miymigd 1 <i<qgand 0 < j <i—1,is equivalent to (3.2.18) for all V' € II,_;. Thus,
we have established (3.2.18).

Testing against V' = £97%¢7 | is redundant in the sense that ay-V (£97n"7¢7), 1 < i < ¢ and
0 <j<i—1, form a basis for II,_1, and ag - V (§27°¢?) can be expressed in terms of this
basis. Thus, (3.2.21) is also satisfied when j = 4. Using (3.2.18) in (3.2.17) yields (3.2.19).
Combining results for ¢ = 0,1,...,p proves (3.2.12) and (3.2.13).

For k = p+2, (3.2.11) yields

//r+ a0 NGy do = ///A (a0 - VV) Qpa = CoVQpin) didnd( =0,V V € P,. (3.2.22)

Using the orthogonality conditions (3.2.12) we obtain

//F+ ao - nQ,Vdo — ///A (ag - VV) Qpiadédnd¢ =0,V V € P,_y. (3.2.23)

By induction we can show that for p+2 <k <2p—+1

//F+ ay - nQ,Vdo — ///A (ap - VV)Qrdédnd( =0,V V € Pop_jt1. (3.2.24)

Using (3.2.24) and the same argument as in (3.2.12) and (3.2.13) we establish (3.2.14) and
(3.2.15).

Finally, testing against V' =1 in (3.2.15) we obtain

Z h’“//F+ ao - nQy (§,7,¢) do = O (h**?)

k=p+1

which completes the proof. n
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A direct consequence of Theorem 3.2.2 is the following corollary.

Corollary 3.2.1. Under the assumptions of Theorem 3.2.2 the leading term @QQp1 of the
local finite element error can be written as

p+1 4
Qp—i—l f /'77 Z Z ]901 jj + Z Z Cp,+190f+jlj Z? (3225&)
i=0 j=0 i=0 j=0
p+1
Qp+1(£,0,0) Z Cr el (6,€), (3.2.25b)
p+1 p ol i
Qp-l—l (57 UE C) = Z Cf+1¢;)+1 —1 (57 C) + n Z Oz 3901 ]] (5 n, C) (3225C)
i=0 1=0 i=0 j=0
Furthermore, forp+2 <k <2p+1
k
m=2p—k+1

k

Qe(€0,0) = ZC%;l (3.2.26h)

m=2p—k+2 i=0
k—1

Qe (&n.¢) = Qu(§0.Q0+n > V" (EnQ), (3.2.26¢)

where Y™ and U™ are in the span of {o"~"* s 1=0,1,..0,m, j=0,1,...,i}.

Proof. Since {(pf}} are orthogonal, (3.2.12) yields (3.2.25a). Splitting the leading term Q)41
as

Qerl(fa 777 C) = Qp+1 (67 07 C) + 77QP<€7 777 C)a Qp € Ppa (3227)

and applying (3.2.13) leads to (3.2.25b). Equation (3.2.25¢) follows directly from (3.2.27)
and (3.2.25b).

Following the same line of reasoning, we establish (3.2.26a), (3.2.26b) and (3.2.26¢) from the
orthogonality conditions (3.2.14) and (3.2.15). O

In the remainder of this section we state and prove several orthogonality conditions on
elements of Class II and III. Let I'y, T's, I's and I'y, respectively, denote the faces n =
0, (=0, ¢=0and 1 —¢&—n— =0 of the reference element A shown in Table 3.1.

In the following theorem we state several orthogonality results on A of Class II.
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Type 1 Type 2 Type 3
Class I | Class II | Class III | Class I | Class II | Class I
Ay Ag As A, Ago Ays
Inflow F4 F4 F4 F4, FQ F4, FQ F4, FQ, Fg
Outflow Fl Fl, Fg Fl, F27 Fg Fl Fl, Fg Fl
Characteristic | 'y, I's Iy — I's — —

Table 3.1: Reference element for each class and type.

Theorem 3.2.3. Let u € C™ () and U € P,, respectively, be the solutions of (3.1.1a),
(8.1.1¢) and (3.1.4), with U) ,B,7)" be such that A is a tetrahedron
-

of Class II with T™ =T'1 UT's. Then the leading term Qp41 of the local finite element error
satisfies the following orthogonality conditions for all V € {7} @ Pyt withi,j = 0,1,

(1-J) / BQuvio+(1-i) [ 0Q Vo + J[[arta

=wu. Let ag = («

VV) dédnd¢ = 0, (3.2.28)

/ [ @0+ 59 Quuadeanic o (3.2.29)
and
//F anQp+1da+B///A Qp+1dédnd¢ = 0, (3.2.30)
J[ peQuado+a [[[ Quuacanc = o (3:2.31)
Furthermore, for 1 < k < p we have
/ /F Ik Q, 1 Vdo + ( / /F BELERQ, 1 Vdo +
/ / /A (an — BE)" Qi (ag - VV) dédnd, =0, YV € P,y , (3.2.32)
and
//F MR Qpdo + (— //F BEERQdo = 0. (3.2.33)
Finally, for elements of Class II and Type 1, (i.e. v =0) we have
//F+ ag-nQ,,(Fdo =0, k=0,1,...,p. (3.2.34)
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Proof. Testing against '’V in (3.2.10) and noting that &'77V]. = 0 for j = 1 and
Vi, = 0 for i = 1 yields (3.2.28), which, in turn, since V (§nV) = V'V (&) + VYV,
yields

/ / / (o) + BE) Qe VlEdnd( + / / nQyit (a0 - VV) dédndC = 0,5V € Pyy |
. . (3.2.35)

which for V' =1 proves (3.2.29).
Testing against £V (with (4,7) = (0,1)) and nV (with (4,5) = (1,0)), (3.2.28) gives

I/ Qi1 (0.0 Vil 4.5 [ @uvasanac

+///A 101 (a0 - VV)dédnd¢ =0,¥ V € Py (3.2.36)
and

/[ s 0. vir o [[[ @puvaganac

+ / / /A EQpr (a0~ VV) dédnd =0,V V € Py . (3.237)

Testing against V' =1 in (3.2.36) and (3.2.37), respectively, yields (3.2.30) and (3.2.31).

Next, multiplying (3.2.36) by a and (3.2.37) by £ and subtracting the resulting equations,
we obtain (3.2.32) for £ = 1. Now, using (3.2.32) (with £ = 1) and taking as test functions
EV, nV for Ve P,_, to find

- / [ 5Eun (6.0, Vi + / / /A o () — BE) Qi VdedndC
+///A (an — BE) EQpi1 (ag - VV) dédnd¢ =0,V V € Py, (3.2.38)

and

/ /F 0y (0.0,) Vil + / / /A B (o — BE) Qi Vdedndc
+ / / /A (an — BE) nQpsr (a0 - VV) dedndC = 0,5 V € Py_y. (3.2.39)

Multiplying (3.2.38) by 5 and (3.2.39) by a and subtracting the resulting equations, we
obtain

/ BQp1 (£,0,0) Vd£d<+// PP Qpir (0,1, ) Vilnd(
I
+ (][ @n = 597 Quer (a0 9 dedndc = 0.9V € P
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Repeating the same argument k times for 2 < k < p, we establish (3.2.32). Testing against
V = 1in (3.2.32) yields (3.2.33). Finally, testing against ¢* in (3.2.10), for k = 0,1,...,p
and noting that ag - V(¢*) = 0, we obtain (3.2.34) which completes the proof. O

In the next theorem we state and prove new orthogonality conditions for elements of Class
111

Theorem 3.2.4. Let w € C*(Q) and U € P,, respectively, be the solutions of (5.1.1a),
(3.1.1¢) and (3.1.4), with U~ |- = u. Let ag = (a, 8,7)" be such that A is a tetrahedron
of Class III, with T =T, UTyUTs. Then the leading term Qi1 of the local finite element
error satisfies the following orthogonality conditions for all V € {finjCl} ® Pp—(itj+1) with
i? j?l = 07 1

1=3) [[ s@uivio =i [[ a@uuvar+ -0 [[ 2@uvis

I I's Iy
+// Qp+1 (ag - VV') dédnd¢ = 0, (3.2.40)
A

///A (ang + BEC + vEn) Qpr1d&dndC =0, (3.2.41)

and
=0 [[ BEe) Quvio+ -1 [[ a(c) Quvis
=0 [[ @) Qv+ [[[ (a0 (cre)") @puavasinac
+ / / /A (€Y Qper (ag - VV) dédndC = 0, (3.2.42)

for all V€ Pp_pr with1 <n<nk<p,n=(i+j+1) andi,jl=0,1.
Furthermore, for 1 <k <p andV € P,_; we have

[ e —an ™ Quavis — [[ an(eg - an) " Quavio (3.2.43)
ry I's

o [[[ vion— 59" Quavao + [[[ (an - 56 Qs (a0 - V) deanac =0
Finally, on the outflow boundary we have

//1“1 BEFLERQ, 1 do + (—=1)* //1“3 F Ik Q,  do

+ //F v (an = BE)" QpiVdo =0 for 1 <k <p. (3.2.44)
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Proof. Testing against {'n¢'V in (3.2.10), for V € Pp_(iyj4r), yvields (3.2.40).
From (3.2.40) withi=j=1l=1and V € P,_5 we have

/ / /A (an + BEC +En) QpoaVddndC + / / [ 00Qr (aa- 9V) dsnc = 0. (3249

which, for V' =1, yields (3.2.41).

Again, testing against (SinjCl)k V,V € Py with £ > 1 and n < nk < p, (3.2.40) yields
(3.2.42).
Next, testing in (3.2.40) against £V ((¢,7,1) = (1,0,0)) and nV ( (¢, 7,1) = (0,1,0)) we obtain

/r1 PEQpriVido + //1“2 YEQp1Vdo + Oz// AQpﬂVd{dndC

+ // | €@ (a0 V) dedndC =0,V €y, (3.2.46)
Il nQuaVia + // QpuaVide + J[[ @uvasanac
+ [ [ Qi (@ V) dedndc =0, VP (3.247)

Multiplying (3.2.46) by £ and (3.2.47) by «, subtracting the resulting equations to obtain
(3.2.43) for k = 1. Now, use (3.2.43) (with k = 1) and testing against £V, nV, V € P,_, we
find

//Fl B2EQpVdo — //r3 a*néQp1Vdo + //M Y€ (BE — an) QpVdo (3.2.48)
+ [[[ a6 = an Quavaganac + [[[ (56— an) €Ques (an - V) deinic ~o,

/F1 B2EnQpiVdo — //r3 " QpiVdo + // (B — an) Qpi1Vdo (3.2.49)
// B(BE —an Qp+1Vd§dnd§+// (BE — an) Qpi (ag - VV) dédnd¢ = 0.

Multiplying (3.2.48) by 5 and (3.2.49) by a and subtracting the resulting equations, we
obtain

/ BQp 1 (£,0,0) Vdsd<+// 1P Qpir (0,1, ) Vilnd(
1N
///A (an — BE)? Qpy (ag - VV)dédnd( = 0,¥ V € Py .

Repeating the same argument k times for 3 < k < p, we establish (3.2.43). Finally, testing
against V' =1 in (3.2.43) yields (3.2.32) and completes the proof. O
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3.3 A Posteriort Error Estimation

In this section we present an error estimation procedure by first constructing bases functions
for the leading term of the DG error and stating a weak problem on each element to compute
error estimates. In order to construct efficient and asymptotically exact a posteriori error
estimates for the leading term ()11 on each element, we assume that the global error has
the same behavior as the local error holds on all elements, i.e., we write

p+1 4

(w—U)(z,y, 2, h) ~ E(&,1,¢.h) = Qpa(&,m, O = ZZZ &Pk (€, 0),

=0 j=0 k=0

where Q11 € Ppy1 and E satisfies the following orthogonality conditions on the reference

element
// ag-nEVdo — /// (ap-VV)Edédnd( =0,V V € P,. (3.3.1)
T+

Testing against V = ¢} ~[ , 0 < s <r < g < p, yields

chk |:// ao - ngpj kk:(pr ssda - /// aop - V(pr ss) (p;:]k,kdfdndg =0. (332>

Let m = dimP, = (p+1)(p+2)(p+3)/6, n = dim Ppy1 = (p+2)(p+3)(p+4)/6 such that
n—m=(p+2)(p+3)/2. Thus, if

C = (Co,Cl, e ,Cp+1)T S Rn,

and
& = (B, D,.... D)7 = (¢, b1s o Dpir) s
where
C, = (06,07 011,07 011,17 e acé,m C%,lv ce acé,z)a
and

¢ ((100 ,00 (10[1 017 ()00 1 y et 790?,07 . 7()0?71,17 ) 80?73‘,]‘7 R %08,l)7
the orthogonality conditions (3.3.2) may be written in a matrix form AC = 0 where

+
Clij://r‘ aon@szda—///A(aoVCIJJ)CI)dednd(, j:1,2,...,n, i:1,2,...,m.

(3.3.3)
A direct computation reveals that the dimension of A'(A), the null space of A, is (p+2)(p+
3)/2, p=0,1,2,3 on all elements.
Without loss of generality we assume ag = (a, £, fy) such that g # 0 and let A = % =
We now define the finite element space

E={C"®, CeN (A},

=R

for the error and state the following lemma.
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Lemma 3.3.1. The polynomial space £ is isomorphic to the null space N (A), and the
leading term Q41 may be written as

E = Quul™ = dixi,
=1

where x; = CT®, i =1,2,....,n—m, with {C1,Cs,...,C,_,} being a basis of N'(A).
Furthermore, on elements of Class I, there exists a basis {x1, X2, -+, Xn—m} independent of
A and .

Proof. The application F : N(A) — &£ such that F(C) = C*® is clearly an isomorphism.
Thus, every basis {C1,Cs,...,Cp_n} for N(A) is mapped into a basis {x; = CT®, o =
CI®,... xnom=CF &) of £

Applying (3.2.25a) on an element of Class I and noting that for V€ P,, ao-VV € P,_; is
orthogonal to Qp+1 on A, (3.3.3) with 8 # 0 may be written as

aij = / pP;®;do, j=1,2,....,n,i=1,2,...,m.
I+

Thus, the null space of A is independent of A\ and p which completes the proof of the
lemma. ]

Remark 3.3.1. Lemma 3.53.1 gives an optimal basis for the leading error term Qpi1 and re-
p+2)p+3)p+d), ~_@+2)(p+3)
6 2 ’

duces the number of degrees of freedom fromn =

which leads to a more efficient error estimation procedure.

In the following section we construct the error basis functions ;.

3.3.1 Error Basis Functions

We follow Lemma 3.3.1 to find a basis of N(A) and construct basis functions for £. For
instance, a basis of N(A) for p = 0 on a reference element of Class I is given in terms of
the canonical vectors e;, i = 1,2,3,4 in R?* as

_ _ 2 1
Ci=e, Cy=3e1+e3 C3=—3e1+ey,

¢ = (@8,0: 90(1),0: 90(1),07 908,1)T7
and y; = C]®, i =1,2,3.
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P=0] x1=¢50 X2= 3P0+ ¥l X3 = —3¢00 + %04
X1 = %50 X2 = %%1),0 + 010

p=1| xz3= _%90(1),0 + ¥4 X4 = %908,1 + %‘P?,o + ©9,
X5:%9081_%S0(1),0+‘P(1)1 X6:—%¢81+9082
X1= ¥h0 X2 = 5650+ #1g
X3 = =780 + Vb1 X4 = 55901 T 5910 + 50

P=2| Xs= 3%61 — 7910 T P11 X6 = 5901 + bz
X7 = @%8,2 ‘1‘1%80(1),1 + 0%908,0 + Spg,o X8 = %;08,02 + 1_(1595?,1 - %90(2),0 + 90(2),1
X9 = 15%02 — 3¥P11 T Pio X10 = —5%o02 T Po3

Table 3.2: Error basis functions on a reference tetrahedron of Class 1.

If e;, i = 1,2,...,10 are the canonical vectors in R'?, a set of basis vectors in N(A) for
p=1 are

4 1
Ci=¢5 Cy=zestes, C3=—zexter,

C4 = %63 + %64 + €g, C5 = —%63 + 264 + €9, CG = —%64 + €10.
With
0 1 0 0 2 1 1 0 0 0 \T
P = (900,0, 0,05 ¥1,00 P0,15 P0,00 P1,00 Y015 P2,00 P1,1> 900,2) )
the basis functions for £ are given by y; = CI®, i =1,2,...,6.

Error basis functions for p = 2 are computed using Mathematica and are shown in Table 3.2.

Error basis functions on a reference tetrahedron of Class II are obtained following the pre-
vious lemma, i.e., we compute a basis for N'(A) which depends on A and p and construct
the basis functions for £ shown in Table 3.3.

Similarly, error basis functions for p = 0,1 on a reference tetrahedron of Class III are
shown in Table 3.4. Error basis functions for higher-degree polynomials are computed using
Mathematica and are not presented here.

3.3.2 Error Estimation Procedure

Integrating (3.1.4) by parts shows that the DG solution U on a physical element A satisfies
// a-n ((7 - U) Vdo + /// (a-VU+ cU) Vdxdydz = // fVdxdydz, (3.3.5)
- A A
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X2
X1 = 3()(11)‘?8,0 + Qpé,m X2 = —ﬁSOg,o + 90(1),()7

p=0
X3 = —3¢00 + Pou; : : : :
. A 0 MTA+p+3X2+4) A(BAH+A2+2)
X1 = T l00w1)2 P00 50407 P00 T T 30407 P10
A(BA+4pu+r2+2) 9
5001 Po1 T ¥o0s
o A 0 (BA2+A34+A(5u—2)—4) A(A—ptA?)
X2 = +2(/\+1)2(‘0070 N 5(A+1)° 0,0 T T30g07 P10
)\(7)\+20,u+)\2+6) 1
p=1 1_1 3001 Po,1 T 100
X3 = —5%00 T 10(>\+1)<P01 + 900 1 : \
_ A 2A(A+p+1) 6AZ—8A3+2A(5u+13)+12)
X4 = — ()\+1)2 SOO,O + _()\+1)3 0,0 15(>\+1)3 ()01,0
(15,\2+,\3+A(40u+17)+3) 0
3000+ 1)° ©o,1 T P20
3(A\—2
X5 = %90(1)0 - 10((/\+1)) wo1 + #% 1,
X6 = 5908 + 900 25
Table 3.3: Error basis functions on a reference tetrahedron of Class II, ay = («
A=a/B, p="/8
X 2
p=0 X1 = m%ﬁgo +®ho Xe= 3(§\+—u421)9000 +¢%
- A—3u+1
X3 = 3(,\J(rzi1))'% ot 908% ) ( )
_ Alpt1 ABA+4p+4 A +2p+2
X1 = T 00t 1) (‘000 ™ (A+u+1)2 9000 + 15(Ap+1)2 Y 0
4 AQ+2u+2) +
30(Ap+1)? ,1 900,0
o Aws) o (CwENH2AeiD-4) | ABA+4p)
X2 = 10(A+p+1)2 70,0 5(A+pu+1)? #0,0 15(A+put1)? 901 0
_ A(A+2p46) + 1
T30 ()\+u+1)§¢071 1,0
_ 3w (—4pFN =52 22 (u+1)+1) "
X3 = 5(A+u+1)29[(g0 3 5Ot 1)2 0.0 = 50tpr1)? “Ro
+u+ 1
+ 10(A+p+1)2 QOO 1T ¥0,1
p=1 _ (3uA(ut10) 4 ButA@H10) (15u—8\2—TA(u—2)+12)
X T 00 1)? (’000 5(A+p+1)? 700 15(A+u+1)? Y10
(6u+X2+2M(u+7)+3)
30(A gt 1)2 w01+ 50
_ L 3u(-2) e (N —5p2+A(—6p+2)+1)
X5 = 5(A+u+1)2 70,0 T 5(A4pu+1)2 ¥0,0 5(A+ut+1)? ¥1,0
_Q=2@Ap43) 0 4 0
108+u)+1)2 013 (/9\01;> s
— 3pu(A+1 0 p(A+1) 1 +
X6 = _2()\+u+1)2 (/\+u+1)2 900 ,0 (>‘+U+1)2 801 0+
(2u7>\2+2p2+2>\(y D-1) g
2 tpt1)’ o1+ o2

Table 3.4: Error basis functions on a reference tetrahedron of Class III, ay = («

A=a/B, p="/B.
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where the numerical flux U is given by (3.1.5a) or (3.1.5b).
Next, we consider the following weak formulation for the exact solution u

// a-nu Vdo + // a-nuVdo — /// (a-VV + cV)udrdydz = // fVdzxdydz,
- T+ A A

(3.3.6)
withu=U+eand u™ =U" ~, respectively, the finite element error on A and I'".
The weak formulation (3.3. 6) can be written as

//_a n U +e” Vda—i—//ﬁa n (U +e)Vdo
—///A (a-VV +cV) (U +e)drdydz = ///Adexdydz. (3.3.7)

Applying Stokes’ theorem to write

//“'“((6_—6))Vd0+///A(a-V(e))dedydz
_ ///ArVda:dydz—//Fa.n(U_U) Vo, s,

where r = (f —a - VU — cU) is the interior residual.

In order to estimate the finite element error e = v — U on A we assume that the leading
term of the DG error exhibits the same asymptotic behavior as the local error on A. Thus,
the DG error e on A is approximated by

E (2,9, > de (2,9, 2), (2,9, 2), C(2,, 2)). (3.3.99)

and determined by solving the weak finite element problem

// n(E-—E) Vda+/// a-VE)Vdrdyd:
/// rdedydz—//_a n (U —U)Vdo, YV €E, (3.3.9b)

This local weak formulation can be approximated by

[ anz—pyvio=—[[ an@ -v)vie vvee 5510,

The accuracy of a posteriori error estimates is measured by the ratio of the error estimate
over the true error. In this manuscript we use the element effectivity indices in the L? norm

as
1Ellya,

Tellos,”

(3.3.11)

j =
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and the global effectivity index

Bl
 ellyg
Ideally, the effectivity indices should approach unity under mesh refinement, thus, the error
estimates are asymptotically exact.

0

(3.3.12)

The following are the main steps of our modified DG method with error estimation.

1. Create a mesh for the domain 2

2. Find the set Z° of elements whose inflow faces are on the domain inflow boundary
o0,

3. For k = 1,2,..., find the set Z* of all elements not in Z*~! whose inflow faces are
either on 92~ or are shared by an element from Z*~!.

4. For k=0,1,..., find the DG solution and error estimate:

(a) Compute the DG solution U on each element in Z* by solving the DG finite ele-
ment problem (3.1.4) with boundary conditions (3.1.5a) or (3.1.5b), respectively,
for standard and the modified DG method.

(b) Compute the error estimate £ on each element of Z* by solving (3.3.9).

3.4 Computational Examples

We solve several linear hyperbolic problems on uniform and general unstructured tetrahedral
meshes and test our a posteriori error estimation for the standard and modified DG methods.
In order to test the robustness of our procedures we use the following three families of meshes.

1. A family of uniform meshes obtained by partitioning the domain [0, 1]? into n® cubes,
n = 7,8,...,16 and subdividing each cube into five tetrahedra [40]. The resulting

meshes have N = 5n® = 1715,2560,...,20480 tetrahedral elements with diameter
V2

hmaa} - n

2. A family of uniform meshes obtained by partitioning the domain [0, 1]* into n® cubes,
n=7,8,...,16 and subdividing each cube into six tetrahedra [40]. These meshes have

N = 6n® = 2058,3072, . ..,24576 tetrahedral elements with diameter hy,qp = V2,

n

3. A family of unstructured meshes generated by COMSOL software [33] with maximum
mesh size hyp.x = 1/n, n = 1,2,...,10 which yields ten unstructured meshes having
N = 24,192,476, 943,2121,3731,5846, 8713, 12525,17120 tetrahedral elements. See
Figure 3.3 for two typical meshes having 943 and 8713 elements generated by COMSOL.
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Figure 3.3: Unstructured tetrahedral meshes (obtained by COMSOL) having 943(left) and
8713(right) elements on [0, 1]3.

Example 3.4.1.

Let us consider the following linear hyperbolic problem
—3u, — Tuy + 13u, = 3"+ (2,y,2) € Q=1[0,1)%, (3.4.1a)

subject to the boundary conditions on the inflow boundary I'” such that the exact solution
is given by
u(z,y,z) ="Vt (3.4.1Db)

We solve (3.4.1) with the exact inflow boundary condition, U~ = u, using the standard and
the modified DG method on uniform tetrahedral meshes having N = 1715, 2560, . ..,20480
elements and p = 0,1,2,3. We present the L? errors ||e|| and ||e|| = ||u — U — E|| , their
orders of convergence, the maximum and minimum element effectivity indices, and the global
effectivity indices in Tables 3.5 and 3.6.

Next, we solve (3.4.1) using the modified DG method on unstructured tetrahedral meshes
having N = 24,192,476, 943,2121,3731, 5846, 8713, 12525,17120 elements and present the
L? errors |le|| and ||e.|]| = |[u — U — E]|| , their orders of convergence, the maximum and
minimum element effectivity indices, and the global effectivity indices in Table 3.7.

We observe that the effectivity indices for the standard DG method deviate significantly from
unity for all meshes and do not converge to unity under mesh refinement. This confirms that
the DG error on an element does not behave like the local DG error unless the flux is an
O(hP*?) approximation of the true flux. This motivated us to construct the new modified

36



DG method with a numerical flux corrected by the error estimate and which yields much
more accurate results. We note that the modified DG errors are smaller than the standard
errors for the same meshes and polynomial degrees. The corrected modified DG solution
U + E is O(h"™?) convergent to the true solution while the modified DG solution is only
O(hP™1) for constant coefficient problems. Moreover, the effectivity indices are close to unity
for all meshes and polynomial degrees and they converge to unity under mesh refinement.

We also solve problem (3.4.1) using the modified DG method and the approximated weak
formulation for the error (3.3.10) on uniform meshes having N = 5n® elements with p =
0,1,2,3. The L? errors, their orders and effectivity indices presented in Table 3.8 show that
modified DG method exhibit optimal O(h?T!) convergence rates and the effectivity indices
approach unity under mesh refinement.

Example 3.4.2.

Let us consider the following linear hyperbolic problem

—x—2y+3
—Uy — 2uy + 3u, = — e ki - (z,y,2) e Q=10,1, (3.4.2a)
(1+22+y2+22)2
and select the boundary conditions such that the exact solution is
1

IRV TR

u(z,y,z) (3.4.2b)

We solve problem (3.4.2) using the modified DG method on uniform meshes having N = 5n?
elements with p = 0,1,2,3. The L? errors, their orders and effectivity indices presented
in Table 3.9 show that modified DG method exhibit optimal O(hP*!) convergence rates.
Furthermore, the effectivity indices for the modified DG are close to unity and converge
under mesh refinement.

Next, we solve (3.4.2) using the modified DG method on the unstructured tetrahedral meshes
having N = 24,192,476, 943,2121,3731, 5846, 8713, 12525,17120 elements and present the
L? errors |le|| and ||e.|]| = ||[u — U — E|| , their orders of convergence, the maximum and
minimum element effectivity indices, and the global effectivity indices in Table 3.10. Again
the method exhibits optimal convergence rates and the effectivity indices converge to unity
under mesh refinement.

We also solve problem (3.4.2) using the modified DG method and the approximated weak for-
mulation for the error (3.3.10) on uniform meshes having N = 5n? elements with p = 0, 1,2, 3.
The L? errors, their orders and effectivity indices presented in Table 3.11. We observe that
modified DG method exhibits optimal O(h?™!) convergence rates and the effectivity indices
approach unity and mesh refinement. We note that U + E is O(h?T!) convergent to the true
solution, while it is O(h?*?) convergent if F is computed using the weak formulation (3.3.9b)
as shown in Table 3.9.
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p=0
N [ Telbg | order | Tecbo | order | Oamin | Oamas |0
1715 3.4639e-01 - 3.0300e-01 - 0.0668 1.7226 | 0.3984
2560 3.0492e-01 | 0.9549 | 2.6829e-01 | 0.9111 | 0.0667 1.7406 | 0.3901
3645 2.7232e-01 | 0.9600 | 2.4040e-01 | 0.9319 | 0.0665 1.7536 | 0.3831
5000 2.4605e-01 | 0.9627 | 2.1797e-01 | 0.9296 | 0.0664 1.7640 | 0.3777
6655 2.2441e-01 | 0.9663 | 1.9923e-01 | 0.9429 | 0.0663 1.7724 | 0.3730
8640 2.0627e-01 | 0.9682 | 1.8356e-01 | 0.9416 | 0.0662 1.7792 | 0.3691
10985 | 1.9085e-01 | 0.9709 | 1.7011e-01 | 0.9508 | 0.0662 1.7849 | 0.3657
13720 | 1.7758e-01 | 0.9722 | 1.5855e-01 | 0.9500 | 0.0661 1.7897 | 0.3629
16875 | 1.6604e-01 | 0.9743 | 1.4842e-01 | 0.9568 | 0.0661 1.7939 | 0.3603
20480 | 1.5591e-01 | 0.9754 | 1.3954e-01 | 0.9562 | 0.0660 1.7974 | 0.3581
p=1
1715 1.6053e-02 - 1.4907e-02 - 0.0424 1.0042 | 0.2810
2560 1.2524e-02 | 1.8594 | 1.1664e-02 | 1.8371 | 0.0420 1.0046 | 0.2794
3645 1.0047e-02 | 1.8706 | 9.3771e-03 | 1.8531 | 0.0419 1.0049 | 0.2783
5000 8.2401e-03 | 1.8820 | 7.7041e-03 | 1.8652 | 0.0420 1.0052 | 0.2777
6655 6.8805e-03 | 1.8919 | 6.4413e-03 | 1.8782 | 0.0421 1.0054 | 0.2773
8640 5.8321e-03 | 1.8999 | 5.4661e-03 | 1.8868 | 0.0422 1.0056 | 0.2771
10985 | 5.0066e-03 | 1.9068 | 4.6966e-03 | 1.8955 | 0.0423 1.0057 | 0.2769
13720 | 4.3450e-03 | 1.9125 | 4.0792e-03 | 1.9016 | 0.0423 1.0058 | 0.2768
16875 | 3.8065e-03 | 1.9178 | 3.5760e-03 | 1.9083 | 0.0424 1.0060 | 0.2767
20480 | 3.3624e-03 | 1.9224 | 3.1607e-03 | 1.9131 | 0.0424 1.0060 | 0.2767
p=2
1715 3.5980e-04 - 3.4323e-04 - 0.0238 1.0498 | 0.3315
2560 2.4287e-04 | 2.9433 | 2.3252e-04 | 2.9163 | 0.0236 1.0507 | 0.3360
3645 1.7105e-04 | 2.9765 | 1.6406e-04 | 2.9610 | 0.0234 1.0507 | 0.3403
5000 1.2502e-04 | 2.9754 | 1.2010e-04 | 2.9603 | 0.0233 1.0501 | 0.3428
6655 9.4271e-05 | 2.9617 | 9.0664e-05 | 2.9501 | 0.0232 1.0494 | 0.3442
8640 7.2938e-05 | 2.9485 | 7.0234e-05 | 2.9343 | 0.0231 1.0485 | 0.3450
10985 | 5.7596e-05 | 2.9504 | 5.5518e-05 | 2.9375 | 0.0230 1.0476 | 0.3460
13720 | 4.6238e-05 | 2.9639 | 4.4615e-05 | 2.9503 | 0.0229 1.0468 | 0.3474
16875 | 3.7635e-05 | 2.9841 | 3.6340e-05 | 2.9734 | 0.0229 1.0459 | 0.3492
20480 | 3.1013e-05 | 2.9985 | 2.9965e-05 | 2.9890 | 0.0228 1.0455 | 0.3510
p=3
1715 6.3532e-06 - 6.0112e-06 - 0.0157 1.0111 | 0.3502
2560 3.7927e-06 | 3.8634 | 3.6049e-06 | 3.8293 | 0.0154 1.0109 | 0.3505
3645 2.3955e-06 | 3.9012 | 2.2831e-06 | 3.8780 | 0.0153 1.0109 | 0.3523
5000 1.5843e-06 | 3.9242 | 1.5134e-06 | 3.9028 | 0.0152 1.0108 | 0.3539
6655 1.0887e-06 | 3.9357 | 1.0415e-06 | 3.9209 | 0.0151 1.0107 | 0.3554
8640 7.7314e-07 | 3.9340 | 7.4055e-07 | 3.9189 | 0.0150 1.0107 | 0.3561
10985 | 5.6441e-07 | 3.9314 | 5.4117e-07 | 3.9186 | 0.0149 1.0106 | 0.3566
13720 | 4.2178e-07 | 3.9306 | 4.0485e-07 | 3.9163 | 0.0149 1.0106 | 0.3569
16875 | 3.2144e-07 | 3.9380 | 3.0881e-07 | 3.9250 | 0.0148 1.0106 | 0.3575
20480 | 2.4910e-07 | 3.9502 | 2.3952e-07 | 3.9370 | 0.0148 1.0105 | 0.3582

Table 3.5: L? errors, orders and effectivity indices for the standard DG method applied to
problem (3.4.1) on uniform meshes having N = 5n? elements for the spaces P,, p =0,1,2,3.
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p=0
N [ Telbg | order | Tecbo | order | Oamin | Oamas |0
1715 2.9960e-01 - 1.6053e-02 - 0.9476 1.1220 | 1.0198
2560 2.6212e-01 | 1.0009 | 1.2524e-02 | 1.8594 | 0.9538 1.1070 | 1.0181
3645 2.3306e-01 | 0.9974 | 1.0047e-02 | 1.8706 | 0.9586 1.0952 1.0168
5000 2.0975e-01 | 1.0002 | 8.2401e-03 | 1.8820 | 0.9626 1.0858 | 1.0156
6655 1.9071e-01 | 0.9983 | 6.8805e-03 | 1.8919 | 0.9658 1.0780 | 1.0146
8640 1.7482e-01 | 0.9999 | 5.8321e-03 | 1.8999 | 0.9686 1.0716 | 1.0137
10985 | 1.6139e-01 | 0.9988 | 5.0066e-03 | 1.9068 | 0.9709 1.0661 1.0129
13720 | 1.4986e-01 | 0.9998 | 4.3450e-03 | 1.9125 | 0.9729 1.0614 | 1.0122
16875 | 1.3988e-01 | 0.9990 | 3.8065e-03 | 1.9178 | 0.9746 1.0573 | 1.0116
20480 | 1.3114e-01 | 0.9998 | 3.3624e-03 | 1.9224 | 0.9762 1.0538 | 1.0110
p=1
1715 9.7472e-03 - 3.5980e-04 - 0.9083 1.0519 | 1.0101
2560 7.4596e-03 | 2.0031 | 2.4287e-04 | 2.9433 | 0.9192 1.0458 | 1.0093
3645 5.8961e-03 | 1.9970 | 1.7105e-04 | 2.9765 | 0.9278 1.0409 | 1.0086
5000 4.7751e-03 | 2.0014 | 1.2502e-04 | 2.9754 | 0.9348 1.0370 | 1.0079
6655 3.9471e-03 | 1.9982 | 9.4271e-05 | 2.9617 | 0.9405 1.0337 | 1.0074
8640 3.3164e-03 | 2.0009 | 7.2938e-05 | 2.9485 | 0.9453 1.0310 | 1.0070
10985 | 2.8261e-03 | 1.9989 | 5.7596e-05 | 2.9504 | 0.9494 1.0287 | 1.0066
13720 | 2.4367e-03 | 2.0005 | 4.6238e-05 | 2.9639 | 0.9529 1.0267 | 1.0062
16875 | 2.1227e-03 | 1.9991 | 3.7635e-05 | 2.9841 | 0.9560 1.0249 | 1.0059
20480 | 1.8657e-03 | 2.0002 | 3.1013e-05 | 2.9985 | 0.9587 1.0234 | 1.0056
p=2
1715 2.2252e-04 - 6.3532e-06 - 0.8752 1.0305 1.0042
2560 1.4897e-04 | 3.0048 | 3.7927e-06 | 3.8634 | 0.8890 1.0277 | 1.0038
3645 1.0466e-04 | 2.9976 | 2.3955e-06 | 3.9012 | 0.9004 1.0252 1.0035
5000 7.6278e-05 | 3.0023 | 1.5843e-06 | 3.9242 | 0.9096 1.0232 1.0032
6655 5.7317e-05 | 2.9985 | 1.0887e-06 | 3.9357 | 0.9173 1.0214 | 1.0029
8640 4.4143e-05 | 3.0015 | 7.7314e-07 | 3.9340 | 0.9238 1.0199 | 1.0027
10985 | 3.4721e-05 | 2.9993 | 5.6441e-07 | 3.9314 | 0.9293 1.0186 | 1.0025
13720 | 2.7797e-05 | 3.0013 | 4.2178e-07 | 3.9306 | 0.9341 1.0174 | 1.0024
16875 | 2.2601e-05 | 2.9997 | 3.2144e-07 | 3.9380 | 0.9383 1.0164 | 1.0023
20480 | 1.8621e-05 | 3.0009 | 2.4910e-07 | 3.9502 | 0.9420 1.0155 1.0022
p=3
1715 3.8956e-06 - 8.4228e-08 - 0.7860 1.0156 | 1.0030
2560 2.2825e-06 | 4.0035 | 4.3753e-08 | 4.9049 | 0.8149 1.0136 | 1.0026
3645 1.4254e-06 | 3.9973 | 2.4512e-08 | 4.9193 | 0.8371 1.0121 1.0023
5000 9.3502e-07 | 4.0018 | 1.4587e-08 | 4.9264 | 0.8547 1.0109 | 1.0021
6655 6.3872e-07 | 3.9986 | 9.1105e-09 | 4.9384 | 0.8690 1.0099 | 1.0019
8640 4.5094e-07 | 4.0011 | 5.9244e-09 | 4.9459 | 0.8807 1.0091 1.0017
10985 | 3.2741e-07 | 3.9992 | 3.9871e-09 | 4.9477 | 0.8906 1.0084 | 1.0016
13720 | 2.4341e-07 | 4.0008 | 2.7628e-09 | 4.9497 | 0.8990 1.0078 | 1.0015
16875 | 1.8471e-07 | 3.9995 | 1.9629e-09 | 4.9546 | 0.9062 1.0073 | 1.0014
20480 | 1.4268e-07 | 4.0006 | 1.4252e-09 | 4.9598 | 0.9124 1.0068 | 1.0013

Table 3.6: L? errors and effectivity indices for problem (3.4.1) using the modified DG method
on uniform meshes having N = 5n? elements for the spaces P,, p = 0,1, 2, 3.
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p=0
N | Tlelog [ order | Teclg | order | ammm | Oaume |0
24 1.2423 - 1.9127e-01 - 0.8581 1.2251 1.0625
192 6.1422e-01 | 1.0162 | 5.5121e-02 | 1.7950 | 0.9238 1.1620 | 1.0425
476 4.7248e-01 | 0.6471 | 3.2789e-02 | 1.2811 | 0.8782 1.1442 1.0118
943 3.6819e-01 | 0.8669 | 1.9908e-02 | 1.7345 | 0.8809 1.1883 | 1.0046
2121 2.8091e-01 | 1.2125 | 1.2014e-02 | 2.2634 | 0.9037 1.1082 1.0050
3731 2.3522e-01 | 0.9736 | 8.6014e-03 | 1.8327 | 0.9151 1.0995 1.0043
5846 2.0161e-01 | 1.0002 | 6.4742e-03 | 1.8429 | 0.9092 1.0918 | 1.0022
8713 1.7554e-01 | 1.0370 | 4.8318e-03 | 2.1913 | 0.9328 1.0682 1.0030
12525 | 1.5818e-01 | 0.8840 | 3.9963e-03 | 1.6120 | 0.9451 1.0718 | 1.0019
17120 | 1.4036e-01 | 1.1347 | 3.1523e-03 | 2.2517 | 0.9427 1.0720 | 1.0020
p=1
24 1.5617e-01 - 1.5700e-02 - 0.8968 1.1535 1.0213
192 3.8243e-02 | 2.0299 | 2.3789e-03 | 2.7223 | 0.9456 1.1220 | 1.0200
476 2.5148e-02 | 1.0338 | 1.3144e-03 | 1.4632 | 0.8883 1.1427 | 1.0084
943 1.4583e-02 | 1.8943 | 6.0792e-04 | 2.6803 | 0.8649 1.2019 | 1.0032
2121 8.6147e-03 | 2.3588 | 2.7321e-04 | 3.5842 | 0.8933 1.1333 | 1.0028
3731 5.9949e-03 | 1.9886 | 1.6530e-04 | 2.7562 | 0.9177 1.1039 | 1.0028
5846 4.4744e-03 | 1.8976 | 1.1182e-04 | 2.5354 | 0.9019 1.1424 | 1.0013
8713 3.3727e-03 | 2.1168 | 7.3732e-05 | 3.1189 | 0.9045 1.0882 1.0018
12525 | 2.7415e-03 | 1.7594 | 5.4546e-05 | 2.5589 | 0.9245 1.0831 1.0009
17120 | 2.1551e-03 | 2.2842 | 3.8053e-05 | 3.4173 | 0.9333 1.0890 | 1.0014
p=2
24 1.3130e-02 - 1.0244e-03 - 0.9173 1.1337 | 1.0264
192 1.6180e-03 | 3.0206 | 7.5291e-05 | 3.7662 | 0.9569 1.0816 | 1.0161
476 9.9069e-04 | 1.2098 | 4.3144e-05 | 1.3732 | 0.8670 1.1226 | 1.0079
943 4.1263e-04 | 3.0445 | 1.4898e-05 | 3.6963 | 0.8224 1.1343 | 1.0024
2121 1.8990e-04 | 3.4777 | 5.3293e-06 | 4.6068 | 0.7354 1.1254 | 1.0021
3731 1.0915e-04 | 3.0376 | 2.6278e-06 | 3.8781 | 0.8753 1.1288 | 1.0021
5846 7.1829e-05 | 2.7143 | 1.5817e-06 | 3.2931 | 0.8976 1.1021 1.0013
8713 4.6621e-05 | 3.2370 | 8.7999e-07 | 4.3913 | 0.7475 1.0834 | 1.0014
12525 | 3.4164e-05 | 2.6394 | 5.9287e-07 | 3.3530 | 0.8337 1.0926 | 1.0007
17120 | 2.3753e-05 | 3.4498 | 3.6549e-07 | 4.5912 | 0.8221 1.0860 | 1.0012
p=3
24 8.3118e-04 - 5.2796e-05 - 0.9308 1.1141 1.0230
192 5.1438e-05 | 4.0142 | 1.8696e-06 | 4.8196 | 0.9642 1.0625 1.0132
476 3.1925e-05 | 1.1764 | 1.1723e-06 | 1.1512 | 0.7970 1.1083 | 1.0070
943 9.2356e-06 | 4.3114 | 2.9574e-07 | 4.7873 | 0.7303 1.1497 | 1.0020
2121 3.3315e-06 | 4.5695 | 8.7329e-08 | 5.4664 | 0.5758 1.0968 | 1.0020
3731 1.5809e-06 | 4.0884 | 3.6117e-08 | 4.8426 | 0.7082 1.0887 | 1.0014
5846 9.2656e-07 | 3.4660 | 1.9267e-08 | 4.0764 | 0.6201 1.2761 1.0011
8713 5.1258e-07 | 4.4336 | 8.8672e-09 | 5.8115 | 0.5423 1.0764 | 1.0012
12525 | 3.3928e-07 | 3.5033 | 5.5606e-09 | 3.9620 | 0.6686 1.1702 1.0007
17120 | 2.0813e-07 | 4.6380 | 3.0086e-09 | 5.8299 | 0.4434 1.0761 1.0009

Table 3.7: L? errors and effectivity indices for problem (3.4.1) using the modified DG method
on unstructured meshes having N elements for the spaces P,, p = 0,1, 2, 3.
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p=0
N leloe | order | Jeclo | order | Oamm | Oamax |0
1715 2.9974e-01 - 1.4991e-02 - 0.9213 1.1082 1.0081
2560 2.6223e-01 | 1.0011 | 1.1621e-02 | 1.9069 | 0.9306 1.0952 1.0078
3645 2.3316e-01 | 0.9976 | 9.2721e-03 | 1.9174 | 0.9379 1.0850 1.0075
5000 2.0984e-01 | 1.0004 | 7.5701e-03 | 1.9248 | 0.9438 1.0768 1.0071
6655 1.9079e-01 | 0.9985 | 6.2966e-03 | 1.9327 | 0.9487 1.0700 1.0068
8640 1.7489¢e-01 | 1.0002 | 5.3197e-03 | 1.9375 | 0.9528 1.0643 1.0065
10985 | 1.6145e-01 | 0.9990 | 4.5537e-03 | 1.9426 | 0.9563 1.0595 1.0062
13720 | 1.4991e-01 | 1.0000 | 3.9421e-03 | 1.9460 | 0.9593 1.0554 1.0060
16875 | 1.3993e-01 | 0.9993 | 3.4459e-03 | 1.9499 | 0.9619 1.0517 1.0057
20480 | 1.3118e-01 | 1.0000 | 3.0379e-03 | 1.9525 | 0.9642 1.0486 1.0055
24565 | 1.2347e-01 | 0.9994 | 2.6983e-03 | 1.9556 | 0.9663 1.0458 1.0052
29160 | 1.1661e-01 | 0.9999 | 2.4126e-03 | 1.9577 | 0.9681 1.0433 1.0050
34295 | 1.1048e-01 | 0.9995 | 2.1700e-03 | 1.9601 | 0.9697 1.0411 1.0048
40000 | 1.0495e-01 | 0.9999 | 1.9623e-03 | 1.9618 | 0.9712 1.0390 1.0047
p=1
1715 9.7643e-03 - 4.0733e-04 - 0.8607 1.0675 1.0004
2560 7.4708e-03 | 2.0050 | 2.7346e-04 | 2.9840 | 0.8769 1.0594 1.0011
3645 5.9039e-03 | 1.9985 | 1.9192e-04 | 3.0063 | 0.8898 1.0530 1.0015
5000 4.7808e-03 | 2.0027 | 1.4003e-04 | 2.9915 | 0.9002 1.0479 1.0016
6655 3.9513e-03 | 1.9993 | 1.0545e-04 | 2.9757 | 0.9089 1.0437 1.0018
8640 3.3196e-03 | 2.0019 | 8.1463e-05 | 2.9665 | 0.9162 1.0401 1.0019
10985 | 2.8286e-03 | 1.9999 | 6.4189e-05 | 2.9774 | 0.9224 1.0371 1.0020
13720 | 2.4387e-03 | 2.0015 | 5.1412e-05 | 2.9950 | 0.9277 1.0345 1.0021
16875 | 2.1243e-03 | 2.0000 | 4.1757e-05 | 3.0151 | 0.9324 1.0323 1.0021
20480 | 1.8670e-03 | 2.0010 | 3.4354e-05 | 3.0235 | 0.9365 1.0303 1.0021
24565 | 1.6538e-03 | 2.0000 | 2.8602e-05 | 3.0229 | 0.9401 1.0286 1.0020
29160 | 1.4751e-03 | 2.0008 | 2.4076e-05 | 3.0137 | 0.9434 1.0270 1.0020
34295 | 1.3239e-03 | 2.0000 | 2.0464e-05 | 3.0066 | 0.9463 1.0256 1.0019
40000 | 1.1948e-03 | 2.0007 | 1.7542e-05 | 3.0033 | 0.9489 1.0243 1.0019
p=2
1715 2.2287e-04 - 7.7680e-06 - 0.7942 1.0229 | 0.9950
2560 1.4916e-04 | 3.0071 | 4.6294e-06 | 3.8762 | 0.8154 1.0213 | 0.9962
3645 1.0477e-04 | 2.9996 | 2.9133e-06 | 3.9321 | 0.8335 1.0191 0.9970
5000 7.6345e-05 | 3.0037 | 1.9208e-06 | 3.9535 | 0.8482 1.0175 0.9974
6655 5.7362e-05 | 2.9995 | 1.3169e-06 | 3.9604 | 0.8607 1.0169 | 0.9978
8640 4.4174e-05 | 3.0022 | 9.3402e-07 | 3.9482 | 0.8713 1.0169 | 0.9980
10985 | 3.4744e-05 | 3.0001 | 6.8122e-07 | 3.9429 | 0.8804 1.0167 | 0.9982
13720 | 2.7814e-05 | 3.0021 | 5.0859e-07 | 3.9435 | 0.8883 1.0164 | 0.9985
16875 | 2.2613e-05 | 3.0006 | 3.8700e-07 | 3.9602 | 0.8953 1.0160 | 0.9987
20480 | 1.8630e-05 | 3.0018 | 2.9929e-07 | 3.9821 | 0.9014 1.0156 | 0.9989
24565 | 1.5532e-05 | 3.0005 | 2.3476e-07 | 4.0060 | 0.9069 1.0151 0.9990
29160 | 1.3083e-05 | 3.0011 | 1.8660e-07 | 4.0169 | 0.9118 1.0147 | 0.9991
34295 | 1.1124e-05 | 3.0001 | 1.5018e-07 | 4.0154 | 0.9162 1.0143 | 0.9991
40000 | 9.5373e-06 | 3.0008 | 1.2231e-07 | 4.0019 | 0.9202 1.0139 | 0.9992
p=3
1715 3.8988e-06 - 1.0151e-07 - 0.7656 1.0149 | 0.9966
2560 2.2840e-06 | 4.0047 | 5.2896e-08 | 4.8817 | 0.7921 1.0134 | 0.9972
3645 1.4261e-06 | 3.9984 | 2.9670e-08 | 4.9090 | 0.8131 1.0126 | 0.9977
5000 9.3545e-07 | 4.0025 | 1.7668e-08 | 4.9202 | 0.8306 1.0115 0.9980
6655 6.3898e-07 | 3.9991 | 1.1037e-08 | 4.9362 | 0.8454 1.0106 | 0.9982
8640 4.5110e-07 | 4.0015 | 7.1819e-09 | 4.9386 | 0.8578 1.0098 | 0.9984
10985 | 3.2752e-07 | 3.9996 | 4.8359e-09 | 4.9410 | 0.8685 1.0091 0.9986
13720 | 2.4348e-07 | 4.0012 | 3.3526e-09 | 4.9432 | 0.8778 1.0085 0.9987
16875 | 1.8476e-07 | 4.0000 | 2.3824e-09 | 4.9517 | 0.8859 1.0082 0.9988
20480 | 1.4271e-07 | 4.0010 | 1.7298e-09 | 4.9595 | 0.8930 1.0081 0.9990
24565 | 1.1198e-07 | 4.0001 | 1.2799e-09 | 4.9684 | 0.8993 1.0079 | 0.9990
29160 | 8.9090e-08 | 4.0007 | 9.6320e-10 | 4.9741 | 0.9048 1.0077 | 0.9991
34295 | 7.1764e-08 | 4.0000 | 7.3593e-10 | 4.9776 | 0.9098 1.0075 0.9992
40000 | 5.8451e-08 | 4.0005 | 5.7012e-10 | 4.9769 | 0.9144 1.0073 | 0.9992

Table 3.8: L? errors and effectivity indices for problem (3.4.1) using the modified DG method
and the approximated weak formulation for the error (3.3.10) on uniform meshes having
N = 5n? elements for the spaces P,, p=0,1,2,3.
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p=0
N llells o order lleclls o order OA min | OA,max [
1715 1.0803e-02 - 5.3947e-04 - 0.9169 1.2099 0.9944
2560 9.4551e-03 | 0.9981 | 4.1486e-04 | 1.9669 | 0.9145 1.2244 0.9952
3645 8.4053e-03 | 0.9992 | 3.2889e-04 | 1.9714 | 0.9127 1.2351 0.9958
5000 7.5657e-03 | 0.9988 | 2.6714e-04 1.9738 0.9114 1.2431 0.9962
6655 6.8782e-03 | 0.9995 2.2127e-04 1.9767 0.9105 1.2492 0.9966
8640 6.3055e-03 | 0.9992 | 1.8628e-04 | 1.9783 | 0.9098 1.2540 0.9969
10985 | 5.8206e-03 | 0.9997 | 1.5897e-04 | 1.9803 | 0.9092 1.2578 0.9972
13720 | 5.4051e-03 | 0.9994 | 1.3726e-04 | 1.9814 | 0.9087 1.2608 0.9974
16875 | 5.0448e-03 | 0.9998 | 1.1971e-04 | 1.9829 | 0.9083 1.2633 0.9976
20480 | 4.7296e-03 | 0.9996 | 1.0533e-04 | 1.9838 | 0.9080 1.2654 0.9977
p=1
1715 4.3912e-04 - 1.7130e-05 - 0.9667 1.0237 0.9998
2560 3.3617e-04 | 2.0007 | 1.1555e-05 | 2.9487 | 0.9713 1.0212 0.9998
3645 2.6559e-04 | 2.0008 | 8.1585e-06 | 2.9549 | 0.9743 1.0193 0.9999
5000 2.1511e-04 | 2.0008 | 5.9721e-06 | 2.9609 0.9769 1.0180 0.9999
6655 1.7776e-04 | 2.0009 | 4.5022e-06 | 2.9643 0.9788 1.0164 0.9999
8640 1.4936e-04 | 2.0008 | 3.4774e-06 | 2.9683 | 0.9801 1.0154 0.9999
10985 | 1.2726e-04 | 2.0008 | 2.7415e-06 | 2.9708 | 0.9816 1.0145 0.9999
13720 | 1.0972e-04 | 2.0008 | 2.1993e-06 | 2.9733 | 0.9829 1.0136 0.9999
16875 | 9.5574e-05 | 2.0008 | 1.7912e-06 | 2.9752 | 0.9838 1.0130 1.0000
20480 | 8.3996e-05 | 2.0007 | 1.4781e-06 | 2.9772 | 0.9848 1.0123 1.0000
p=2
1715 1.2847e-05 - 5.5804e-07 - 0.9438 1.0720 0.9985
2560 8.6110e-06 | 2.9963 | 3.2908e-07 | 3.9551 0.9448 1.0775 0.9987
3645 6.0499e-06 | 2.9971 2.0640e-07 | 3.9604 0.9455 1.0814 0.9988
5000 4.4113e-06 | 2.9979 1.3592e-07 | 3.9651 0.9460 1.0842 0.9989
6655 3.3148e-06 | 2.9983 | 9.3112e-08 | 3.9687 | 0.9463 1.0863 0.9990
8640 2.5535e-06 | 2.9987 | 6.5903e-08 | 3.9721 0.9465 1.0878 0.9991
10985 | 2.0086e-06 | 2.9989 | 4.7946e-08 | 3.9743 | 0.9467 1.0890 0.9992
13720 | 1.6083e-06 | 2.9992 | 3.5708e-08 | 3.9767 | 0.9468 1.0900 0.9993
16875 | 1.3077e-06 | 2.9993 | 2.7136e-08 | 3.9785 | 0.9470 1.0907 0.9993
20480 | 1.0775e-06 | 2.9995 | 2.0989e-08 | 3.9801 0.9470 1.0914 0.9994
p=3
1715 4.3921e-07 - 2.0224e-08 - 0.9650 1.0266 0.9987
2560 2.5753e-07 | 3.9980 | 1.0474e-08 | 4.9277 | 0.9697 1.0249 0.9990
3645 1.6080e-07 | 3.9985 5.8543e-09 | 4.9388 0.9724 1.0212 0.9991
5000 1.0551e-07 | 3.9991 3.4765e-09 | 4.9462 0.9756 1.0196 0.9992
6655 7.2070e-08 | 3.9994 | 2.1685e-09 | 4.9522 | 0.9786 1.0181 0.9993
8640 5.0887e-08 | 3.9997 | 1.4088e-09 | 4.9568 | 0.9808 1.0167 0.9994
10985 | 3.6946e-08 | 3.9998 | 9.4712e-10 | 4.9607 | 0.9822 1.0157 0.9995
13720 | 2.7468e-08 | 4.0001 | 6.5561e-10 | 4.9639 | 0.9828 1.0148 0.9995
16875 | 2.0843e-08 | 4.0001 | 4.6540e-10 | 4.9667 | 0.9838 1.0139 0.9996
20480 | 1.6101e-08 | 4.0002 | 3.3772e-10 | 4.9690 | 0.9849 1.0133 0.9996

Table 3.9: L? errors and effectivity indices for problem (3.4.2) using the modified DG method
on uniform meshes having N = 5n? elements for the spaces P,, p = 0,1, 2, 3.
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p=0

N llells o order lleclls o order OA min | OA,max [
24 4.4631e-02 - 7.2492e-03 - 0.9072 1.0660 0.9883
192 2.2423e-02 | 0.9931 | 2.0201e-03 | 1.8434 | 0.9266 1.0743 0.9946
476 1.6478e-02 | 0.7597 | 1.3667e-03 | 0.9638 | 0.8488 1.1024 0.9959
943 1.3271e-02 | 0.7525 9.2814e-04 1.3450 0.8124 1.1570 0.9993
2121 1.0015e-02 1.2614 | 4.8471e-04 | 2.9113 0.8705 1.1205 1.0000
3731 8.3494e-03 | 0.9976 | 3.4583e-04 | 1.8517 | 0.8938 1.2834 1.0000
5846 7.1101e-03 | 1.0423 | 2.5820e-04 | 1.8956 | 0.7843 1.1655 0.9995
8713 6.2194e-03 | 1.0023 | 1.9864e-04 | 1.9640 | 0.8445 1.1282 0.9997
12525 | 5.5558e-03 | 0.9579 | 1.5306e-04 | 2.2129 | 0.8020 1.2234 1.0000
17120 | 4.9715e-03 | 1.0547 | 1.2556e-04 | 1.8801 0.8397 1.1901 0.9999
p=1
24 6.4496e-03 - 1.0624e-03 - 0.9036 1.0364 0.9788
192 1.6743e-03 | 1.9456 | 1.4584e-04 | 2.8649 | 0.9423 1.0573 0.9962
476 1.0889e-03 | 1.0611 | 6.9086e-05 | 1.8427 | 0.9402 1.1042 1.0021
943 7.4144e-04 1.3360 | 3.7764e-05 | 2.0995 0.9010 1.0934 0.9987
2121 3.8325e-04 | 2.9573 1.5933e-05 | 3.8673 0.9434 1.0518 0.9987
3731 2.6385e-04 | 2.0477 | 9.3452e-06 | 2.9264 | 0.9387 1.0536 0.9994
5846 1.9917e-04 | 1.8241 | 5.8635e-06 | 3.0238 | 0.9409 1.0583 1.0001
8713 1.5413e-04 | 1.9199 | 4.0410e-06 | 2.7878 | 0.9563 1.0359 1.0001
12525 | 1.1827e-04 | 2.2484 | 2.8100e-06 | 3.0844 | 0.9634 1.0350 0.9997
17120 | 9.6815e-05 | 1.9000 | 2.0712e-06 | 2.8953 | 0.9633 1.0334 1.0000
p=2
24 9.6475e-04 - 9.9804e-05 - 0.9338 1.0929 0.9937
192 1.1810e-04 | 3.0301 | 8.1798e-06 | 3.6090 | 0.9325 1.0579 0.9977
476 5.3176e-05 1.9680 | 3.9522e-06 1.7940 0.9220 1.0526 0.9933
943 2.8492e-05 | 2.1690 | 2.1122e-06 | 2.1779 0.8200 1.1014 1.0018
2121 1.1337e-05 | 4.1299 | 5.1692e-07 | 6.3080 | 0.9467 1.0927 0.9995
3731 6.5722e-06 | 2.9903 | 2.6299e-07 | 3.7064 | 0.9347 1.0784 0.9999
5846 4.1194e-06 | 3.0305 | 1.4453e-07 | 3.8836 | 0.8717 1.0947 0.9997
8713 2.8160e-06 | 2.8487 | 9.0756e-08 | 3.4846 | 0.8904 1.0511 0.9994
12525 | 1.9291e-06 | 3.2115 | 5.3179e-08 | 4.5381 0.8749 1.1863 0.9999
17120 | 1.4051e-06 | 3.0083 | 3.7066e-08 | 3.4259 | 0.9237 1.1098 0.9998
p=3
24 8.5074e-05 - 1.9427e-05 - 0.8686 1.0589 0.9617
192 6.6187e-06 | 3.6841 | 8.3147e-07 | 4.5463 | 0.9354 1.0482 0.9928
476 3.0334e-06 1.9243 | 2.8148e-07 | 2.6713 0.9294 1.1184 1.0057
943 1.6934e-06 | 2.0262 1.1230e-07 | 3.1941 0.8150 1.0814 0.9905
2121 3.7579e-07 | 6.7468 | 2.0285e-08 | 7.6689 | 0.9318 1.0800 0.9977
3731 1.8445e-07 | 3.9034 | 9.3848e-09 | 4.2277 | 0.9079 1.1340 0.9984
5846 1.0102e-07 | 3.9057 | 4.0051e-09 | 5.5239 | 0.9269 1.0812 0.9995
8713 6.4030e-08 | 3.4145 | 2.4732e-09 | 3.6102 | 0.8566 1.1009 0.9997
12525 | 3.6863e-08 | 4.6877 | 1.1388e-09 | 6.5841 0.9377 1.0544 0.9995
17120 | 2.4935e-08 | 3.7107 | 7.1453e-10 | 4.4243 | 0.9245 1.0453 0.9999

Table 3.10: L? errors and effectivity indices for problem (3.4.2) using the modified DG
method on unstructured meshes having N elements for the spaces P,, p =0, 1,2, 3.
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p=0
N H@HZQ order ”60”279 order eA,min QA,max 0
1080 1.2694e-02 - 1.2321e-03 - 0.6826 1.0952 0.9610
1715 1.0882e-02 | 0.9994 | 9.9228e-04 | 1.4045 | 0.6693 1.0973 | 0.9612
2560 9.5233e-03 0.9986 8.2935e-04 1.3432 0.6863 1.0987 0.9614
3645 8.4654e-03 0.9998 7.1245e-04 1.2900 0.6950 1.0997 0.9616
5000 7.6194e-03 | 0.9992 | 6.2461e-04 | 1.2489 | 0.7028 1.1004 | 0.9617
6655 6.9268e-03 | 0.9999 | 5.5637e-04 | 1.2138 | 0.7030 1.1010 | 0.9618
8640 6.3498e-03 | 0.9996 | 5.0182e-04 | 1.1861 | 0.7086 1.1014 | 0.9619
10985 | 5.8613e-03 | 1.0000 | 4.5723e-04 | 1.1625 | 0.7110 1.1017 | 0.9619
13720 | 5.4428e-03 | 0.9997 | 4.2008e-04 | 1.1434 | 0.7132 1.1020 | 0.9620
16875 | 5.0799e-03 | 1.0001 | 3.8866e-04 | 1.1270 | 0.7166 1.1022 0.9620
20480 | 4.7625e-03 | 0.9998 | 3.6171e-04 | 1.1135 | 0.7193 1.1023 | 0.9621
24565 | 4.4823e-03 | 1.0001 | 3.3834e-04 | 1.1017 | 0.7224 1.1025 0.9621
29160 | 4.2333e-03 | 0.9999 | 3.1787e-04 | 1.0918 | 0.7221 1.1026 0.962
p=1
1080 5.9807e-04 - 2.9725e-05 - 0.9498 1.0638 0.9972
1715 4.3934e-04 | 2.0008 | 1.9163e-05 | 2.8478 | 0.9539 1.0537 | 0.9974
2560 3.3634e-04 | 2.0007 | 1.3165e-05 | 2.8116 | 0.9557 1.0451 0.9975
3645 2.6572e-04 | 2.0008 | 9.5031e-06 | 2.7672 | 0.9563 1.0433 | 0.9975
5000 2.1522e-04 | 2.0007 | 7.1318e-06 | 2.7245 | 0.9568 1.0418 | 0.9976
6655 1.7785e-04 | 2.0007 | 5.5209e-06 | 2.6862 | 0.9584 1.0391 0.9976
8640 1.4944e-04 | 2.0007 | 4.3868e-06 | 2.6426 | 0.9591 1.0391 0.9976
10985 | 1.2732e-04 | 2.0007 | 3.5612e-06 | 2.6049 | 0.9596 1.0381 0.9976
13720 | 1.0978e-04 | 2.0006 | 2.9440e-06 | 2.5683 | 0.9599 1.0373 | 0.9976
16875 9.5626e-05 2.0006 2.4721e-06 2.5324 0.9607 1.0372 0.9976
20480 8.4043e-05 2.0006 2.1038e-06 2.4993 0.9609 1.0363 0.9977
24565 | 7.4444e-05 | 2.0006 | 1.8113e-06 | 2.4692 | 0.9612 1.0360 | 0.9977
29160 | 6.6400e-05 | 2.0005 | 1.5756e-06 | 2.4392 | 0.9616 1.0357 | 0.9977
p=2
1080 2.0415e-05 - 1.5050e-06 - 0.9134 1.1048 | 0.9881
1715 1.2865e-05 | 2.9954 | 8.5917e-07 | 3.6364 | 0.9239 1.0877 | 0.9882
2560 8.6220e-06 | 2.9970 | 5.3299e-07 | 3.5757 | 0.9260 1.0831 0.9883
3645 6.0572e-06 | 2.9977 | 3.5282e-07 | 3.5026 | 0.9275 1.0752 0.9884
5000 4.4165e-06 | 2.9984 | 2.4541e-07 | 3.4456 | 0.9285 1.0669 | 0.9884
6655 3.3186e-06 | 2.9986 | 1.7746e-07 | 3.4012 | 0.9292 1.0627 | 0.9884
8640 2.5564e-06 2.9991 1.3255e-07 3.3537 0.9297 1.0733 0.9885
10985 | 2.0108e-06 | 2.9992 | 1.0163e-07 | 3.3184 | 0.9302 1.0695 0.9885
13720 | 1.6100e-06 | 2.9994 | 7.9653e-08 | 3.2877 | 0.9305 1.0704 | 0.9885
16875 | 1.3090e-06 | 2.9995 | 6.3619e-08 | 3.2579 | 0.9308 1.0705 0.9885
20480 | 1.0786e-06 | 2.9997 | 5.1634e-08 | 3.2342 | 0.9310 1.0667 | 0.9886
24565 | 8.9928e-07 | 2.9997 | 4.2493e-08 | 3.2140 | 0.9312 1.0710 | 0.9886
29160 | 7.5758e-07 | 2.9998 | 3.5403e-08 | 3.1938 | 0.9313 1.0676 | 0.9886
p=3
1080 8.1482e-07 - 5.8877e-08 - 0.9254 1.0664 | 0.9910
1715 4.4003e-07 | 3.9970 | 2.8875e-08 | 4.6219 | 0.9263 1.0600 | 0.9912
2560 2.5800e-07 3.9981 1.5712e-08 4.5576 0.9282 1.0551 0.9913
3645 1.6110e-07 3.9986 9.2597e-09 4.4891 0.9299 1.0576 0.9915
5000 1.0570e-07 | 3.9992 | 5.8047e-09 | 4.4324 | 0.9297 1.0501 0.9915
6655 7.2202e-08 | 3.9994 | 3.8211e-09 | 4.3871 | 0.9304 1.0559 | 0.9916
8640 5.0981e-08 | 3.9997 | 2.6186e-09 | 4.3431 | 0.9299 1.0574 | 0.9917
10985 | 3.7014e-08 | 3.9998 | 1.8552e-09 | 4.3061 | 0.9293 1.0522 0.9917
13720 | 2.7519e-08 | 4.0000 | 1.3512e-09 | 4.2774 | 0.9305 1.0575 0.9917
16875 | 2.0882e-08 | 4.0001 | 1.0079e-09 | 4.2480 | 0.9302 1.0572 0.9917
20480 | 1.6131e-08 | 4.0002 | 7.6738e-10 | 4.2249 | 0.9308 1.0541 0.9918
24565 | 1.2657e-08 | 4.0002 | 5.9470e-10 | 4.2051 | 0.9304 1.0577 | 0.9918

Table 3.11: L? errors and effectivity indices for problem (3.4.2) using the modified DG
method and the approximated weak formulation for the error (3.3.10) on uniform meshes
having N = 5n® elements for the spaces P,, p =0, 1,2, 3.
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Example 3.4.3.

Next, we consider the following linear hyperbolic problem with variable coefficients
(2 +3)up + (y+ 3uy + (2 +3u. = f (z,9,2), (x,y,2) € 2=1[0,1]%, (3.4.3)

where we select f and the boundary conditions such that the exact solution is given by
(3.4.1Db).

We solve problem (3.4.3) using the modified DG method on uniform meshes having N = 5n?
tetrahedral elements for p = 0,1,2,3. We present the errors, orders and effectivity indices
in Table 3.12. We again observe that the error estimates are accurate and asymptotically
exact under mesh refinement.

Example 3.4.4.

We consider the following divergence-free linear hyperbolic problem with variable coefficients
(4 + 3+ (2 4+ 3y + (2 + 3w = [ (2,,2), (1,3,2) €Q=[0,1F,  (34.4)

where we select f and the boundary conditions such that the exact solution is given by
(3.4.2b).

We solve problem (3.4.4) using the modified DG method on uniform meshes having N = 5n3
tetrahedral elements for p = 0,1,2,3. We present the errors, orders and effectivity indices
in Table 3.13. We again observe that the error estimates are accurate and asymptotically
exact under mesh refinement.

Example 3.4.5.

We consider the following divergence-free linear convection-reaction problem
iy 4 Uy + 1w, +mu = f(2,9,2), (2,9,2) € 2=1[0,1]", (3.4.5)

and select f and the boundary conditions such that the exact solution is given by (3.4.2b). We
solve problem (3.4.5) using the modified DG method on uniform meshes having N = 6n?,
n =17,8,...,16 tetrahedral elements for p = 0,1,2,3 and present the errors, orders and
effectivity indices in Table 3.14. We again observe that the error estimates are accurate
and asymptotically exact under mesh refinement for reaction diffusion problems. We also
note that we solved the weak error problem (3.3.9) where we dropped the reaction term
and expect to obtain more accurate estimates by including the reaction term in the error
estimation problem.

Example 3.4.6.

45



p=0
N | Tlelog [ order | Teclg | order | ammm | Oaume |0
1715 4.0253e-01 - 4.5996e-02 - 0.8555 1.0331 | 0.9640
2560 3.5193e-01 | 1.0062 | 3.9695e-02 | 1.1033 | 0.8554 1.0339 | 0.9606
3645 3.1236e-01 | 1.0125 | 3.4938e-02 | 1.0837 | 0.8556 1.0316 | 0.9579
5000 2.8095e-01 | 1.0060 | 3.1231e-02 | 1.0646 | 0.8559 1.0315 | 0.9557
6655 2.5516e-01 | 1.0101 | 2.8246e-02 | 1.0541 | 0.8555 1.0363 | 0.9539
8640 2.3378e-01 | 1.0056 | 2.5794e-02 | 1.0436 | 0.8552 1.0339 | 0.9524
10985 | 2.1566e-01 | 1.0085 | 2.3738e-02 | 1.0375 | 0.8545 1.0398 | 0.9512
13720 | 2.0017e-01 | 1.0052 | 2.1992e-02 | 1.0312 | 0.8541 1.0375 | 0.9501
16875 | 1.8674e-01 | 1.0073 | 2.0487e-02 | 1.0274 | 0.8538 1.0425 | 0.9492
20480 | 1.7501e-01 | 1.0048 | 1.9177e-02 | 1.0235 | 0.8534 1.0404 | 0.9484
p=1
1715 1.1524e-02 - 5.2082e-04 - 0.9739 1.0796 | 1.0278
2560 8.8166e-03 | 2.0052 | 3.6182e-04 | 2.7280 | 0.9676 1.0792 1.0245
3645 6.9598e-03 | 2.0079 | 2.6390e-04 | 2.6794 | 0.9661 1.0778 | 1.0218
5000 5.6347e-03 | 2.0046 | 2.0038e-04 | 2.6133 | 0.9629 1.0779 | 1.0197
6655 4.6539e-03 | 2.0066 | 1.5692e-04 | 2.5651 | 0.9610 1.0766 | 1.0179
8640 3.9092e-03 | 2.0041 | 1.2615e-04 | 2.5090 | 0.9587 1.0776 | 1.0165
10985 | 3.3294e-03 | 2.0056 | 1.0355e-04 | 2.4664 | 0.9573 1.0758 | 1.0152
13720 | 2.8700e-03 | 2.0037 | 8.6543e-05 | 2.4206 | 0.9556 1.0774 | 1.0141
16875 | 2.4992e-03 | 2.0049 | 7.3413e-05 | 2.3849 | 0.9546 1.0754 | 1.0132
20480 | 2.1961e-03 | 2.0033 | 6.3089e-05 | 2.3481 | 0.9532 1.0773 | 1.0124
p=2
1715 2.4991e-04 - 1.0260e-05 - 0.9581 1.1026 | 1.0195
2560 1.6727e-04 | 3.0064 | 6.3174e-06 | 3.6320 | 0.9515 1.1031 1.0170
3645 1.1739e-04 | 3.0069 | 4.1396e-06 | 3.5889 | 0.9516 1.1022 1.0150
5000 8.5527e-05 | 3.0053 | 2.8567e-06 | 3.5204 | 0.9468 1.1026 | 1.0135
6655 6.4221e-05 | 3.0061 | 2.0507e-06 | 3.4780 | 0.9475 1.1019 | 1.0122
8640 4.9446e-05 | 3.0046 | 1.5226e-06 | 3.4223 | 0.9436 1.1024 | 1.0112
10985 | 3.8874e-05 | 3.0053 | 1.1612e-06 | 3.3853 | 0.9446 1.1017 | 1.0103
13720 | 3.1115e-05 | 3.0041 | 9.0652e-07 | 3.3409 | 0.9414 1.1022 1.0095
16875 | 2.5290e-05 | 3.0047 | 7.2144e-07 | 3.3101 | 0.9426 1.1016 | 1.0088
20480 | 2.0833e-05 | 3.0037 | 5.8399e-07 | 3.2749 | 0.9397 1.1020 | 1.0083
p=3
1715 4.1702e-06 - 1.5088e-07 - 0.9480 1.1119 | 1.0189
2560 2.4425e-06 | 4.0060 | 8.2495e-08 | 4.5214 | 0.9428 1.1135 1.0166
3645 1.5240e-06 | 4.0049 | 4.8737e-08 | 4.4685 | 0.9414 1.1120 | 1.0147
5000 9.9940e-07 | 4.0046 | 3.0645e-08 | 4.4035 | 0.9381 1.1135 1.0133
6655 6.8231e-07 | 4.0045 | 2.0221e-08 | 4.3622 | 0.9372 1.1121 1.0121
8640 4.8159¢-07 | 4.0039 | 1.3892e-08 | 4.3140 | 0.9349 1.1135 1.0111
10985 | 3.4954e-07 | 4.0040 | 9.8609e-09 | 4.2824 | 0.9342 1.1122 1.0103
13720 | 2.5980e-07 | 4.0034 | 7.1988e-09 | 4.2460 | 0.9326 1.1136 | 1.0096
16875 | 1.9710e-07 | 4.0036 | 5.3799e-09 | 4.2214 | 0.9321 1.1123 | 1.0089
20480 | 1.5222e-07 | 4.0030 | 4.1043e-09 | 4.1934 | 0.9310 1.1136 | 1.0084

Table 3.12: L? errors and effectivity indices for problem (3.4.3) using the modified DG
method on uniform meshes having N = 5n® elements for the spaces P,, p=0,1,2,3.
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p=0
N | Tlelog [ order | Teclg | order | ammm | Oaume |0
1715 1.2873e-02 - 1.3952e-03 - 0.7377 1.1044 | 0.9837
2560 1.1260e-02 | 1.0029 | 1.2623e-03 | 0.7499 | 0.7190 1.1178 | 0.9815
3645 1.0007e-02 | 1.0015 | 1.1734e-03 | 0.6198 | 0.7036 1.1551 | 0.9795
5000 9.0080e-03 | 0.9980 | 1.1114e-03 | 0.5155 | 0.6967 1.1886 | 0.9776
6655 8.1922e-03 | 0.9961 | 1.0666e-03 | 0.4313 | 0.6608 1.2315 | 0.9757
8640 7.5142e-03 | 0.9928 | 1.0333e-03 | 0.3644 | 0.6505 1.2599 | 0.9739
10985 | 6.9414e-03 | 0.9905 | 1.0080e-03 | 0.3103 | 0.6216 1.2973 | 0.9720
13720 | 6.4517e-03 | 0.9872 | 9.8822¢-04 | 0.2668 | 0.6062 1.3274 | 0.9702
16875 | 6.0281e-03 | 0.9846 | 9.7258e-04 | 0.2312 | 0.5857 1.3572 | 0.9683
20480 | 5.6582e-03 | 0.9811 | 9.5998e-04 | 0.2021 | 0.5675 1.3911 | 0.9664
p=1
1715 4.1383e-04 - 4.1523e-05 - 0.8482 1.2147 | 1.0032
2560 3.1727e-04 | 1.9898 | 3.0976e-05 | 2.1944 | 0.8440 1.2171 1.0036
3645 2.5095e-04 | 1.9908 | 2.4083e-05 | 2.1372 | 0.8385 1.2029 | 1.0039
5000 2.0346e-04 | 1.9915 | 1.9196e-05 | 2.1524 | 0.8343 1.2244 | 1.0040
6655 1.6827e-04 | 1.9919 | 1.5695e-05 | 2.1130 | 0.8310 1.2023 | 1.0040
8640 1.4149e-04 | 1.9922 | 1.3059e-05 | 2.1133 | 0.8283 1.2282 1.0040
10985 | 1.2064e-04 | 1.9923 | 1.1054e-05 | 2.0815 | 0.8261 1.2099 | 1.0040
13720 | 1.0408e-04 | 1.9923 | 9.4830e-06 | 2.0690 | 0.8242 1.2305 1.0039
16875 | 9.0712e-05 | 1.9922 | 8.2384e-06 | 2.0393 | 0.8198 1.2152 1.0038
20480 | 7.9768e-05 | 1.9921 | 7.2330e-06 | 2.0167 | 0.8162 1.2320 | 1.0036
p=2
1715 1.3201e-05 - 1.3271e-06 - 0.8277 1.1806 | 1.0078
2560 8.8522e-06 | 2.9928 | 8.6794e-07 | 3.1799 | 0.8142 1.1951 1.0066
3645 6.2208e-06 | 2.9950 | 5.9748e-07 | 3.1702 | 0.8199 1.2029 | 1.0059
5000 4.5374e-06 | 2.9950 | 4.2879e-07 | 3.1489 | 0.7949 1.2072 1.0052
6655 3.4102e-06 | 2.9964 | 3.1795e-07 | 3.1380 | 0.8028 1.2094 | 1.0047
8640 2.6275e-06 | 2.9963 | 2.4221e-07 | 3.1270 | 0.7849 1.2105 1.0043
10985 | 2.0671e-06 | 2.9971 | 1.8875e-07 | 3.1157 | 0.7879 1.2108 | 1.0039
13720 | 1.6554e-06 | 2.9970 | 1.4989e-07 | 3.1101 | 0.7792 1.2128 | 1.0035
16875 | 1.3461e-06 | 2.9976 | 1.2105e-07 | 3.0980 | 0.7786 1.2157 | 1.0032
20480 | 1.1094e-06 | 2.9976 | 9.9125e-08 | 3.0958 | 0.7757 1.2175 1.0030
p=3
1715 4.3286e-07 - 5.9356e-08 - 0.7749 1.2296 | 0.9980
2560 2.5414e-07 | 3.9880 | 3.5130e-08 | 3.9278 | 0.7485 1.2753 | 0.9983
3645 1.5884e-07 | 3.9903 | 2.2162e-08 | 3.9113 | 0.7185 1.2658 | 0.9987
5000 1.0431e-07 | 3.9913 | 1.4696e-08 | 3.8991 | 0.7568 1.2635 | 0.9990
6655 7.1295e-08 | 3.9928 | 1.0125e-08 | 3.9084 | 0.7160 1.2632 | 0.9992
8640 5.0368e-08 | 3.9934 | 7.2040e-09 | 3.9124 | 0.7542 1.2606 | 0.9995
10985 | 3.6584e-08 | 3.9945 | 5.2600e-09 | 3.9292 | 0.7473 1.2520 | 0.9997
13720 | 2.7209e-08 | 3.9949 | 3.9285e-09 | 3.9385 | 0.7548 1.2457 | 0.9999
16875 | 2.0654e-08 | 3.9957 | 2.9908e-09 | 3.9530 | 0.7722 1.2408 | 1.0000
20480 | 1.5958e-08 | 3.9960 | 2.3161e-09 | 3.9614 | 0.7680 1.2384 | 1.0002

Table 3.13: L? errors and effectivity indices for problem (3.4.4) using the modified DG
method on uniform meshes having N = 5n® elements for the spaces P,, p=0,1,2,3.
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p=0
N llells.q order lleclls o order OA min | OA,max [
2058 1.4554e-02 - 3.5720e-03 - 0.9678 1.2684 1.0635
3072 1.2736e-02 | 0.9994 | 3.1487e-03 | 0.9447 | 0.9715 1.2789 1.0674
4374 1.1321e-02 | 0.9994 | 2.8157e-03 | 0.9490 | 0.9745 1.2880 1.0704
6000 1.0190e-02 | 0.9994 | 2.5468e-03 | 0.9528 0.9769 1.2944 1.0728
7986 9.2639e-03 | 0.9995 2.3249e-03 | 0.9561 0.9789 1.3005 1.0748
10368 | 8.4923e-03 | 0.9995 | 2.1388e-03 | 0.9590 | 0.9806 1.3052 1.0765
13182 | 7.8394e-03 | 0.9995 | 1.9804e-03 | 0.9616 | 0.9820 1.3096 1.0779
16464 | 7.2796e-03 | 0.9995 | 1.8438e-03 | 0.9639 | 0.9832 1.3130 1.0791
20250 | 6.7945e-03 | 0.9996 | 1.7249e-03 | 0.9660 | 0.9843 1.3162 1.0802
24576 | 6.3701e-03 | 0.9996 | 1.6205e-03 | 0.9679 | 0.9853 1.3189 1.0811
p=1
2058 3.4699e-04 - 4.8510e-05 - 0.8394 1.1896 0.9636
3072 2.6691e-04 | 1.9650 | 3.5227e-05 | 2.3961 0.8383 1.1693 0.9687
4374 2.1163e-04 | 1.9702 | 2.6719e-05 | 2.3470 | 0.8542 1.1622 0.9727
6000 1.7188e-04 1.9747 | 2.0952e-05 | 2.3078 0.8581 1.1809 0.9761
7986 1.4235e-04 1.9776 1.6873e-05 | 2.2714 0.8541 1.1701 0.9789
10368 | 1.1982e-04 | 1.9803 | 1.3883e-05 | 2.2420 | 0.8637 1.1670 0.9812
13182 1.0224e-04 1.9822 1.1627e-05 | 2.2154 0.8656 1.1763 0.9833
16464 | 8.8261e-05 | 1.9840 | 9.8826e-06 | 2.1936 | 0.8619 1.1711 0.9850
20250 | 7.6964e-05 | 1.9853 | 8.5061e-06 | 2.1740 | 0.8686 1.1699 0.9866
24576 | 6.7703e-05 | 1.9865 | 7.4004e-06 | 2.1576 | 0.8697 1.1738 0.9879
p=2
2058 1.8959e-05 - 1.5185e-06 - 0.8940 1.0458 0.9690
3072 1.2725e-05 | 2.9860 | 9.5542e-07 | 3.4698 | 0.8914 1.0471 0.9731
4374 8.9500e-06 | 2.9876 | 6.3911e-07 | 3.4136 0.9002 1.0507 0.9763
6000 6.5322e-06 | 2.9888 | 4.4836e-07 | 3.3644 0.8962 1.0534 0.9789
7986 4.9124e-06 | 2.9899 | 3.2671e-07 | 3.3210 | 0.9026 1.0556 0.9810
10368 | 3.7869e-06 | 2.9907 | 2.4551e-07 | 3.2837 | 0.8998 1.0574 0.9828
13182 | 2.9805e-06 | 2.9915 | 1.8926e-07 | 3.2512 | 0.9055 1.0588 0.9843
16464 | 2.3878e-06 | 2.9921 1.4904e-07 | 3.2234 | 0.9008 1.0601 0.9856
20250 | 1.9423e-06 | 2.9927 | 1.1952e-07 | 3.1991 0.9055 1.0611 0.9868
24576 | 1.6011e-06 | 2.9931 | 9.7358e-08 | 3.1783 | 0.9019 1.0620 0.9878
p=3
2058 5.5606e-07 - 3.9205e-08 - 0.8819 1.0465 0.9724
3072 3.2719e-07 | 3.9717 | 2.0612e-08 | 4.8148 | 0.8557 1.0759 0.9758
4374 2.0482e-07 | 3.9768 1.1710e-08 | 4.8005 0.8968 1.0535 0.9784
6000 1.3466e-07 | 3.9805 7.0730e-09 | 4.7853 0.8803 1.0493 0.9805
7986 9.2120e-08 | 3.9833 | 4.4899e-09 | 4.7680 | 0.8989 1.0459 0.9823
10368 | 6.5125e-08 | 3.9854 | 2.9697e-09 | 4.7507 | 0.9062 1.0489 0.9837
13182 | 4.7332e-08 | 3.9871 | 2.0334e-09 | 4.7321 0.9089 1.0417 0.9850
16464 | 3.5220e-08 | 3.9884 | 1.4338e-09 | 4.7139 | 0.9145 1.0474 0.9861
20250 | 2.6745e-08 | 3.9895 | 1.0371e-09 | 4.6948 | 0.9165 1.0424 0.9870
24576 | 2.0673e-08 | 3.9905 | 7.6695e-10 | 4.6762 | 0.9223 1.0415 0.9878

Table 3.14: L? errors and effectivity indices for problem (3.4.5) using the modified DG
method on uniform meshes having N = 6n?® elements for the spaces P,, p=0,1,2,3.
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(right).

We consider the following problem with a contact discontinuity
Uy 4+ au, =0, (z,y,2) € Q=1[0,1]", (3.4.6a)
subject to inflow boundary conditions on 9€2~ such that the true solution is given by

emtyle 1 0.25 if x—z/a<b

u(z,y,z) = { P 2> (3.4.6b)

The true solution has a contact discontinuity on the plane x — z/a = b. If we chose a mesh
where all elements are on either side of the discontinuity, the previous theory applies and our
error estimates converge to unity under mesh refinement, as shown in Figures 3.4 and 3.5.
However, if we allow elements to intersect the discontinuity plane, the error estimator fails
to provide an accurate error estimate on elements near the discontinuity which may further
pollute neighboring elements with a smooth solution.

First, we consider a special mesh such that every element intersecting the discontinuity plane
has one inflow face, one outflow face and two characteristic faces. Moreover, we assume that
the neighbors of each discontinuity element sharing the inflow and outflow faces are also
discontinuity elements. Thus, on this mesh, the elements having a discontinuous solution
do not pollute neighboring elements with smooth solutions. We illustrate this by solving
(3.4.6) with a = 1 and b = 1/3 and apply exact inflow boundary condition, U~ = u, using
the modified DG method on uniform meshes having N = 6n3 = 16464 tetrahedral elements
and p = 0, 1. The local effectivity indices of Figure 3.6 show that local and global effectivity
indices, as expected, are close to unity on all elements except at the discontinuity.

Next, we solve (3.4.6) with a = 1/2 and b = 0 on a general unstructured mesh having
N = 17120 tetrahedral elements with p = 0, 1 and plot the local effectivity indices in
Figure 3.7. These results show that the error estimate, as expected, performs poorly near
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the discontinuity and the region polluted by it. These pollution effects can be reduced by
local adaptive h-refinement resulting in fine meshes near the discontinuity and/or applying
appropriate limiting.
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Figure 3.7: Effectivity indices on the planes y = 0, 1/3, 2/3, 1 for Example 3.4.6, with
a=1/2,b=0 using Py (left) and P; (right) on a unstructured mesh.

Example 3.4.7.

We consider the following problem with a contact discontinuity
Uy =0, (z,y,2) € Q=1[0,1], (3.4.7a)

subject to the boundary conditions on the inflow boundary I'” such that the exact solution
is given by
et +0.25 if 2z <

u(x,y,z) = { e it 2> (3.4.7b)

QO ==

We solve (3.4.7) with the exact inflow boundary condition, U~ = u, using the modified DG
method on uniform tetrahedral meshes for p = 0,1,2,3. We present the local effectivity
indices in Figures 3.8, 3.9, 3.10 and 3.11.

The exact solution has a contact discontinuity along z = % Therefore, the smoothness
assumption of Theorem 3.2.2 is violated and as a result we expect our a posteriori error
estimates to perform poorly near the discontinuity. We observe that the local effectivity

indices close to unity in regions where the solution is smooth.
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Figure 3.8: Effectivity indices on the planes y = 0, 1/3, 2/3, 1 for Example 3.4.7, with P,
and using uniform meshes having N = 2058 elements (left) and N = 16464 (right).

1 1 1 1
0.8 0.8 0.8 0.8
1' 06 ! 06 ! 06 ! 06
2 2 2 2
Z 051 04 Z05 04 05 04 Z05 04
N 0 N 0 N 0 N 0
0! 0.2 0 0.2 0 02 0 0.2
0 . 0.5 0 . 0.5 0 . 0.5 0 . 0.5
08 X Axis 0 08 X Axis 0 08 X Axis 0 08 X Axis o
1 1 1 1
y Axis 1 y Axis 1 y Axis 1 y Axis 1
1 1 1 1
0.8 0.8 08 0.8
" 06 ! 06 ! 06 ! 06
2 2 2 2
< 051 04 £05 04 <05 04 £ 05 04
N 0 N 0 N 0 N 0
0 0.2 0 0.2 0 02 0 0.2
0 05 0 . 05 0 g . 0 05
05 X Axis 0 05 X Axis 0 05 X Axis 0 05 x Axis o
y Axis 11 y Axis 11 y Axis 11 y Axis 11

Figure 3.9: Effectivity indices on the planes y = 0, 1/3, 2/3, 1 for Example 3.4.7, with P,
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3.5 Conclusion

We investigated higher-order discontinuous Galerkin methods for three-dimensional scalar
first-order hyperbolic problems on tetrahedral meshes. We constructed simple, efficient and
asymptotically correct a posteriori error estimates for discontinuous finite element solutions
an we explicitly write the basis functions for the error spaces. The leading term of the
discretization error on each tetrahedron is estimated by solving a local problem. Our modified
DG method and a posteriori error estimates are tested on several linear problems to show
their efficiency and accuracy under mesh refinement for both smooth and discontinuous
solutions.
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Chapter 4

Superconvergence Error Analysis

In this chapter, we investigate the pointwise superconvergence properties of the DG method
described in section 3.1 using the enriched polynomial spaces £, and U, defined below. We
study the effect of finite element spaces on the superconvergence properties of DG solutions
on each class and type of tetrahedral elements. We show that, using the space £,, the
discretization error on tetrahedral elements having one inflow and one outflow faces, is
O(hP*?) superconvergent on the outflow face. For the space U, the discretization error on
tetrahedral elements with one inflow face, is O(hP™2) superconvergent on the three edges of
the inflow face, while on elements with one inflow and one outflow faces the DG solution is
O(hP*2) superconvergent on the outflow face in addition to the three edges of the inflow face.
Furthermore, we show that on tetrahedral elements with two inflow faces, the DG solution
is O(hP™2) superconvergent on the edge shared by two of the inflow faces. On elements with
two inflow and one outflow faces and on elements with three inflow faces, the DG solution
is O(hP™2) superconvergent on two edges of the inflow faces. Finally, we show that using the
enriched space M, defined below leads to a simpler a posteriori error estimation procedure.
In the next section, we define the enriched polynomial spaces £,, U,, and M, derive the
weak DG formulation for the method and present superconvergence analysis.

4.1 Introduction

Before starting our error analysis, let us define the following enriched polynomial spaces on
the reference element

L, = P,Uspan ({&7'¢"i=0,1,...,p+1}), (4.1.1a)
U, = PpUspan ({770 eI 0 < i <p+1}),  (4.1.1D)
M, = PyUspan ({n(&"n'7¢7),0<4,j <p}), (4.1.1c)
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1 1
§ §
n ¢ n ¢
& &
&n &¢ &n &C
n” n¢ ¢ n” n¢ ¢
& &
&*n & &n &%
&n® En¢ £ &n® En¢ €
n’ n’¢ n¢® ¢ n’ n*¢C n¢® ¢?
¢t &
&n ¢ &n ¢
g? &g ¢ g &g £
& EnC &n¢ &¢P &P En*C En¢ E¢P
nt ¢ n*¢t n¢® ¢t o0t P Pt ¢

Table 4.1: Monomials in black for P, (left) and L3 (right).

where P, is the complete space of polynomials of degree not exceeding p given by (2.3.1).
The finite element spaces L£,, U, and M, are shown in Tables 4.1, 4.2, 4.3, and have the
following dimensions

dim(£,) = dim(P,)+ (p+2), (4.1.2)
dim (U,) = dim(P,)+3(p+1), (4.1.3)
dim (M,) — dim (P,) + +1)2(p *2) (4.1.4)

In order to obtain the weak discontinuous Galerkin formulation for the linear first-order
hyperbolic scalar problem (3.1.1), we partition the domain €2 into a regular mesh having
N tetrahedral elements A;, j = 1,2,..., N, and assume, for simplicity, that this can be
done without error. Assume the mesh is such that each face is either, inflow, outflow or
characteristic, as discussed in chapter 3.

We multiply (3.1.1a) by a test function v, integrate over an arbitrary element A, and apply
Stokes’ theorem to write

// a-nuvda+// a-nuvdcr+/// (—a - Vv + cv) udedydz = // fvdzxdydz. (4.1.5)
r- r+ A A

Next we approximate u (x,y, z) by a piecewise polynomial function U (z,y, z) whose restric-
tion to A is either in £,, U,, or M, defined in (4.1.1).
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n* n*¢ 47762 ¢? n’ ¢ 477@’2 ¢
§ §
&n ¢ &n ¢

En* &n¢ £¢°
&’ ¢ En¢t E¢C°
nt n*¢C n*¢? n¢® (!

En* e ¢
En® &P En¢t &¢
nt ¢ ¢ n¢® ¢

Table 4.2: Monomials in black for Py (left) and Us (right).
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&n €% &n £
&n® En¢ €% &n® En¢ €%
n* n’¢ n¢* ¢ n’ n*¢C n¢® ¢
¢t ¢
&n &% &n &¢

En® &n¢ ¢
& En*C n¢t &¢P
nt ¢ ¢ n¢® ¢!

&n? En¢ ¢
& En*C &n¢t £¢°
nt ¢ ¢ n¢®

Table 4.3: Monomials in black for P, (left) and Mj (right).



From here on, we use W, to denote either £,, U,, or M, and let S™? denote the space of
piecewise polynomial functions

SNP = {U,Ula € W,}.

The discrete DG formulation which consists of determining U € SV such that

// a-nUVda+// a-nUVda—/// (a-VV —cV)Udzdydz
- I+ A

= // A fVdzdydz, V'V € W,. (4.1.6)

In order to complete the definition of our DG method we need to select the corrected upwind
numerical flux U on '~ given by (3.1.5), where the error will be discussed later in section 4.5.
Subtracting (4.1.6) from (4.1.5) with v = V' leads to the DG orthogonality condition for the
local error € = u — U for all V € W,

// a-ne Vdo + // a-neVdo + /// (—a-VV +cV)edrdydz = 0. (4.1.7)
r- r+ A

We map a physical tetrahedron A having vertices v; = (xi,yi,zi)T, 1
reference tetrahedron A with vertices vi = (0,0,0), vo = (1,0,0), v3 = (0,1,0), v4 =
(0,0,1), by the standard affine mapping (3.1.7).

Thus, after applying the affine mapping (3.1.7) with & (&,7,¢, h) and V (€,1,¢), the DG
orthogonality (4.1.7) becomes

/ / (Ja) - he Vdo + / / (Ja) - heVde
. -

_ ///A ((J&) VYV — héV) édedndC =0, YV e W,, (4.1.8)

where T~ and AIA“L, respectively, denote the inflow (Ja-f <0) and outflow (Ja-h>0)
boundaries of A with respect to the vector Ja and unit normal in on A. Here J denotes the
Jacobian matrix of the affine mapping (3.1.7) and

a(é,n,¢h) = a(x(&n,¢h),y&n ¢ h),z(En,( ),
é(&)ﬁ?Qah) = c(x<5777’Cah)vy(gaThC?h)7z(€7777<7h))7
&&n ¢ h) = ex(&n, ¢ h),y&n ¢ h),2(&n,¢ h),h),

where €(&, 1, (, h) depends explicitly on h since

€(&,m, ¢ h) = u(@(&n, ¢ h),y(&n, ¢ h),2(&n.¢ h))
_U(x<§7777 Ca h)? y(£7 m, Cv h)? Z(f, n, C? h)? h)7
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and as discussed in section 3.1, this dependance is smooth such that € has derivatives at
h =0.

Therefore, the DG orthogonality condition (4.1.8) becomes

// &~ﬁ€‘Vda+// &-ﬁ€\7da—/// (&-VV—héV) edednd¢ = 0, (4.1.9)
e £+ A

for all V € W,, where @ = Joa, Jo is independent of h as in (3.1.8).

In the remainder of this chapter we will omit the = unless needed for clarity. In our error
analysis we need Taylor series of the analytic function Joa(&,n, ¢, h) about the center of the
element A. Applying Taylor’s theorem we expand Jqa as

d(€707C7h) = Qg + thak(£77]7c>7 (4110)

k=1

where ay, € [P;]? are obtained by the chain rule as

d*a (x (&n,0,h),y(&n,( h), 2(En,¢ h))

ay (§,n,¢) = —Jo

i -
and
ao = [o, B,7]" = Joa (1/4,1/4,1/4). (4.1.11)
Similarly Maclaurin series for ¢ can be written as
C(S? m, Ca h) = Z hka(&a 7, C)? Ck(é-? 7, C) € Pk (4112)

k=0

Finally, we write a Maclaurin series of ¢ with respect to h as

e(&,m,¢,h) ZQk &m.0)h (4.1.13)

where Qk(£7 n, C) € Pk

In the next section we will state few preliminary results that will be needed in the supercon-
vergence error analysis.

4.2 Preliminary Results

For the sake of the local error analysis we solve a problem on one element of size h with
Ulp- = u, i.e., € = 0 while in practice we only need ¢~ = O (hP*2). We start by stating
and proving the following lemma.
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Lemma 4.2.1. Let ag # 0 given in (4.1. 11) A be the reference tetrahedron, and n be its

unit normal vector. If Q € Pr, k= 0,1,...,p satisfies
// ay - nQ,Vdo + /// —ay - VV)Qpdédnd¢ =0, vV eW,, (4.2.1)
T+
then
QRQr=0,0<Fk<np. (4.2.2)

Proof. Since W, is either L,, U,, or M,, i.e. it contains P,, the proof follows the same line
of reasoning as for Lemma 3.2.1. m

In our analysis we need two sets of orthogonal polynomials in £2 with respect to the weight
functions w = — (1 —n — () and w = 7 on the reference tetrahedron.

First, the following lemma gives a set of orthogonal polynomials in £2 with respect to the
weight function w =& — (1 —n — ().

Lemma 4.2.2. If P,:’t denote Jacobi polynomials (2.3), then the polynomials

q~271 — (1 o (1_ﬂ<)>m<1 o C)m+anll,O( 2¢ . 1)PiZm+2,O<

= - 1)P2m+21+3 0(2< )’ (423>

(1-9

for 0 <m,i,5,m+i+j < p, satisfy the orthogonality condition on the reference tetrahedron
// / (1= 0 — ) TG dEdndC = IS ibm. (4.2.4)
Thus, {cj{?,() <m,i,jm+i+7 < p} is a basis for Pp.
Proof. Applying the change of variables
: 2§ L2y
f=—" 1 h=-—"0" _1(=2 -1, 4.2.5
l—n—-¢ 1-¢ (425)

the polynomial ¢} can be written as

@ (EnC) = <1 ; ﬁ)m (1 ; é)m“ plo (é) Pz'2m+2’0 (%) Pj2m+2i+3,o <CA) .

Using the Jacobian of the mapping (4.2.5)
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and noting that

E—(1—n—0¢) = _(1;5)(1;?7)(1;07

one can write

///A (1 =0 = Q) @} qpdedndC = =L 1515,

where
[1 = P7170 (é) déa
[2 — / (1_2,7)m+n+2 P2m+20 (ﬁ) P2n+20 (77) dﬁ,
1
1 m+n+itk+3 . R N~
I, — / <T<> ]ngm+21+3,0 (C) PlZn+2k+3,0 (C) ac.
1

The integral I is zero if m # n. When m = n, I becomes the orthogonality relation for the
Jacobi polynomials P 2m+2,0 (1) which yields Iy = 0if k # ¢. Finally, I3is zeroif j 1, m =n

and k = [ by the orthogonality of Jacobi polynomials PijJr2z+3 0 (C > and Plzm””?’ 0 <C ) O

The following lemma gives a set of orthogonal polynomials in £2 with respect to the weight
function w = n on the reference tetrahedron.

Lemma 4.2.3. If P,:’t denote Jacobi polynomials (2.3), then the polynomials

qw P’i‘O <£+77 B 1> ((ﬁZ)) Pi2m+270 (1 B %) (1- Omﬂ Pj2m+2i+3ﬁ (2¢-1), (42.6)

for 0 <m,i,j,m+1i+j < p, satisfy the orthogonality condition on the reference tetrahedron
/// NG5 Gd€dndC = ¢ 0ik0t0mn- (4.2.7)
A
Thus, {qZP,O <m,i,jym+i+7 < p} is a basis for P,.

Proof. The transformation

3 3
n — wzl—f—ﬁ—C )
¢ ¢

maps the reference tetrahedron A into itself and the polynomials g;; to ¢"; which yields

/// (1=n= Q) 5 G ddndC = / / /A wgl g dwd€dC.

Applying Lemma 4.2.2 completes the proof. n
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In the next section we will investigate the local DG error analysis and superconvergence
points on elements of Class I, 11, III, and Type 1, 2, 3 using the enriched polynomial spaces
L,, U, and M,,.

4.3 DG Superconvergence Error Analysis

Now we are ready to state our superconvergence results for the local discretization error
using the enriched polynomial spaces £, and U,,.

Since £, and U, contain P,, the results of Theorems 3.2.1, 3.2.2 and Corollary 3.2.1 still
hold. Moreover, the DG solution in the enriched spaces satisfies additional orthogonality
conditions that will be used to prove superconvergence. Guided by the work of Adjerid
and Baccouch [2] for triangular meshes, we will show several pointwise superconvergence
results. For instance, using the space £,, we show in the following theorem that the leading
term Q41 of the local finite element error is O(hP*?) superconvergent on the outflow face
of elements having one inflow and one outflow faces.

Theorem 4.3.1. Let u € C™(Q) and U € L,, respectively, be the solutions of (3.1.1a),
(3.1.1c) and (4.1.6), with U™ |- = u. Let A be a tetrahedron of Class I and Type 1 (i.e.
one inflow and one outflow faces), then the local finite element error can be written as

€ (&, ¢, h) Z R*Qx (€,1,0) (4.3.1)

k=p+1

and its leading term Qp+1 satisfies,

// A Qp1Vdédnd( = 0,VV eP,y, (4.3.2)
and
//F+ ap-nQ, \Vdo = 0,VVeL, (4.3.3)
Furthermore,
Qp+1(£,0,() = 0,0n the outflow face, (4.3.4a)
Qpa1 (£,1,0) = HZZ S5 (Em,.0) on A, (4.3.4b)
=0 j=0

where q;k are defined in Lemma 4.2.5.
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Proof. Substituting (4.1.10), (4.1.12) and (4.1.13) in (4.1.9) and collecting terms having the
same power of h we obtain the following series

Yzt =0, vVVeL, (4.3.5)
k=0
where
Zy = // ag - nQoVdo — /// ay - VVQod€ dndc, Ve ,Cp,
I+ A
and

Z = //F+ ao - nQVdo — ///A[ao VV Qi — CoQu1V]dE dndC, V€ L,, k> 0.

Thus Z, =0, VV € £,. By Lemma 4.2.1, Q;, =0, k=0,1,...,p which proves (4.3.1).
The leading term @), satisfies

// aonQyir (£,0,0) V (€,0,0) dgdg—/// (a0 - VV) QyurdédndC = 0,5V € L,. (4.3.6)
T+ A

Since P, C L,, (3.2.12) holds which in turn yields (4.3.2). Similarly, (3.2.13) holds which
implies (4.3.3) for all V' € P,. Thus, it remains to show (4.3.3) for all V' € L,\ P, to establish
(4.3.3).

Testing against V (£,1,¢) = &PH79¢7 7 =0,1,...,p+ 1 in (4.3.6), and noting that

ay-VV = 5(% (&) =0, forj =0,1,...,p+1,

yields (4.3.3).
Next, we write Qp41 as

Qp—l—l(g? n, <) - Tp+1(§7 C) + nfp(fv m, C)a (437>

where
rp+1(§7 C) = Qp-l—l(f? 07 <)7 and fp € 7Dp'
Substituting (4.3.7) in (4.3.3), yields

5 / /F & OVIE0.QdEAC = 0, Y V € £, (43.8)

which establishes (4.3.4a) and (4.3.4b), since restriction of £, to the face n = 0 is the space
of polynomials of degree not exceeding (p+ 1) in £ and (. O]
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V2

S

Figure 4.1: Superconvergence points (red) using the space £, on elements of Class I and
Type 1.

In Figure 4.1, we illustrate the superconvergence result stated in Theorem 4.3.1.

Noting that, the enriched polynomial space £, can be expressed in terms of the two-
dimensional orthogonal basis functions ¢} (£,¢) (2.3.3) as

'C - {Q|Q—ZZZngnk 190; ] §<)}U8pan({§0p+l Z(&vC)aZ’:0>1v"'ap+1})a

k=0 =0 75=0
(4.3.9)
where £p|77 = span {gp f (),0<j<i<p+ 1} is the space of (p + 1)-degree polyno-
mials in & and C.
Thus, using an enriched polynomial space Wp for the DG solution on elements of Class [
and Type 1 such that P, C W, C L, leads to the following superconvergence results.

Corollary 4.3.1. Let u € C* () and U € Wp, respectively, be the solutions of (3.1.1a),
(3.1.1c) and (4.1.6), with U™ |~ = u. Let A be a tetrahedron of Class I and Type 1 (i.e.
one inflow and one outflow faces), then the following results hold:

(i) If W, = P,Uspan {777 (£,(),j=0,1,...,i— L,i+1,...,p+ 1} fori=0,1,...,p+
1, then the leading term Qp11 on the outflow face can be written as

Qpr1(€,0,0) = Cl ™1 (£,0), (4.3.10)

and the DG error is O (hP*?) superconvergent at the zeros of P "

(i) If W, = PpuSpan{ PR (e ¢) k ...,z'—1,i+1,...,j—1,j+1,...,p+1}
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for 0 <i < j <p+1, then the leading term Q,41 on the outflow face can be written as

Qpr1(£,0,0) = Crg™ 7 (€,0) + Cag? 7 (£,0), (4.3.11)

p+1—1

and the DG error is O (hPT2) superconvergent at the intersection of the zeros of ¢t and

p+1— J
¥

(iii) If W, = P, U span {gop“ EQ) k=2i0<i< floor(f%l)}, then the leading term
Qp+1 on the outflow face can be written as

floor(2 + )

Qp+1(£,0,¢) = Z Crpbipt (€,€) (4.3.12)

and the DG error is O (hPT2) superconvergent on the edge ( =1 — 2€.

Proof. The proof of (i) and (i) follows the same line of reasoning as for Theorem 4.3.1.
For assertion (7ii), we note that on the line ( = 1 — 2¢ the Legendre polynomials

2
L; <—1—§< —1> P (0) =0, fori=2k+1k >0,
which yields .

Wi)ﬂ_z (£,1—-28) =0, fori =2k+1,k>0.

Next, following the same line of reasoning as for Theorem 4.3.1 establishes assertion (777). O

In order to illustrate the superconvergence result stated in Corollary 4.3.1, assertion (i), we
plot the zero level curves of ), ¢ for p =0, 2, ¢1, ¥J for p =1 and @}, ¥3, @3, ©3 for p = 2,
respectively, in Figures 4.2, 4.3 and 4.4. Thus, the DG solution is O(h**?) superconvergent
on the zero level curves.

In Corollary 4.3.1, assertion (i7) and p = 0, we combine in Figure 4.5 the zero level curves
of ¢} and ¢?. In Figure 4.6 we combine the zero level curves of ¢f and ¢i, p3 and 9,
o7 and @Y for p = 1. For p = 2, we combine the zero level curves of o and ¢?, 3 and
o3, b and 03, ©? and P, p? and ¢, @) and @Y in Figure 4.7. Thus the DG solution is
O(hP*2) superconvergent at the intersection of the zero level curves of any pair of functions
(P71 1) with i .

Next, let (x, 1 < k < p+1—1, are the roots of the Jacobi polynomial Pjﬁlg for 0 <i <p,
p+1— floo'r(er

ttoonery - and @ with i ¢ {13, 2 floor (P}

vanish at the points (1—2@,@)’ 1<k<p+1—i Thus, if W, =P, Uspan{, oh > o2

_ pL .
Z;iof(lg() 2 ), "7}, the DG solution is O(hP+?) superconvergent at the points (13<k )
2

for1<k<p+1—i.

the functions ¢, @5 2 @22 ...,
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Figure 4.2: Superconvergence points at the zero level curves (red) of ¢} (left) and 9 (right).
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Figure 4.3: Superconvergence points at the zero level curves (red) of ¢ (left), o1

and ¢ (right).
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Figure 4.4: Superconvergence points at the zero level curves (red) of ¢} (top-left), ©? (top-
right), 3 (bottom-left) and ¢§ (bottom-right).
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Figure 4.5: Superconvergence points at the intersection of the zero level curves (marked by
x) of ¢} (blue) and 9 (red).
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Figure 4.6: Superconvergence points (marked by x) for DG solutions as in Corollary 4.3.1
assertion (7i).
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Figure 4.7: Superconvergence points (marked by x and the dashed line) by combining gp?_i
and @?ﬂ, for 0<1i,5 <3, i#j.
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For general tetrahedral elements, we need to consider more enriched polynomial spaces to
show superconvergence results.

Before we prove our next pointwise superconvergence results, we note that I'y can be param-
eterized as

Fi = {EnQ.¢=1-¢-n0<n<1-£0<E< 1},
= {(57%)»77:1—5—C70§C§1—5,0§§§1},

then for a given function g (f n,¢), we have

o= [ [ atenr—e-mane= [ [ otcn1-c-n dean,
=/0 /01£g<§,1—§—<,<>d<d£=/0 /Olcg(é,l—é“—g‘?)dgdg,

1 pl-p 1 pl—c
— [ [ s-n-caqdcan=[ [g-n-cnodndc. (133
0 0 0 0

Let v;, i = 1,2,3,4 be the vertices of the reference tetrahedron defined in section 3.1, and
Iy, Ty, I's, Ty, respectively, denote the faces n =0, ( =0, £ =0, 1 —& —n — (¢ =0 of the
reference element.

In the next theorem, we prove that the local discretization error is O (h?*2) superconvergent
on the edges vovs, vovy, and vsvy of the inflow face using the space U, on elements of
Type 1.

Theorem 4.3.2. Let u € C>(2) and U € U, respectively, be the solutions of (3.1.1a),
(3.1.1c) and (4.1.6), with U~ |- = u. Let A be a tetrahedron of Type 1, with I'y being the
inflow face on the reference element. Then the local finite element error can be written as
(4.8.1), and its leading term Qp+1 satisfies

/// (E+n+C—=1)(ag- VQp1) Vdédnd( =0,V V € Py, (4.3.14)
A
and
1-€6—¢
Qp+1(§,1 -6 —(,C) — m/@ ap-VQpidn = 0, (4.3.15a)
1-€—n
Qp1 (§m, 1 =& =) — m/o ag-VQpd¢ = 0, (4.3.15b)
1-n—¢
Qpr1 (=1 —¢n,() — m/o ag-VQpi1dé = 0. (4.3.15¢)

Furthermore, the leading term Qpy1 is zero on the edges vovs, Vovy, and vivy

Qrtilvavs = @rtilygy, = @otilyyy, = 0. (4.3.16)
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Proof. Applying Lemma 4.2.1 yields (4.3.1). Now, substituting (4.1.10), (4.1.12) and (4.3.1)
into (4.1.9) yields the following orthogonality condition for the leading term ,1

//F+ ap-nQ,Vdo — /// ayg-VV)Qpdédnd{ =0,V V € U,. (4.3.17)
Applying Stokes’ theorem we write

— //_ ao - nQp1Vdo + ///A (ap - VQpi1) Vdédnd¢ =0,V V € U,. (4.3.18)
Testing against V = (£ +n+ ¢ — 1)V in (4.3.18), where V € P,_; U span {€°, 77, (*}, and

noting that V|- = 0 leads to (4.3.14).
Testing against V = £°¢7 in (4.3.18) for 0 < 4,5,i+j < p+ 1 yields

1o .y -
[ [ @uer-e-cogoa— i [[] @ vaum eciemic~o,
(4.3.19)
which, in turn, can be written as

1 p1—¢ 1-¢§—¢ o
/0 /O {Qp+1 (5’1_5_<’4)_m/0 (ao'VQp+1)d7]} §¢7ded¢ = 0. (4.3.20)

and leads to (4.3.15a).
Next, testing against V' = &'/ in (4.3.18) for 0 <4, j,i+j < p+ 1 yields

Lopi=¢ o o
Qpi1 (&;m, 1 =& —=n) &P dndé — i (ao - VQpi1) &'’ dnd€d¢ = 0,
(a+B+7) A
0o Jo
(4.3.21)
which, in turn, can be written as

1 pl—¢ 1-6—¢ o
/0 /O {Qm En1—=&§—n)— m/o (ao - VQpi1) d(} Enldndé = 0. (4.3.22)

and leads to (4.3.15Db).
Similarly, testing against V' = n¢? in (4.3.18) for 0 <, j,i + j < p+ 1 yields

bopl=¢ o o
L[ ema=n-connoad - i [[[ a0 Vo iodsmac—o
o Jo
(4.3.23)
which, in turn, can be written as

1 p1-¢ 1-n—¢ o
] {QPH (=n=Cn0) - b [ (@0 Q) df} Wl = 0. (4.3.24)
o Jo 0
this leads to (4.3.15¢), and (4.3.16) follows directly from (4.3.15). O
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Similarly, we have the following superconvergence results for elements of Class [ and Type 1
(i.e., one inflow and one outflow face), using the space U,,.

Theorem 4.3.3. Let v € C™(Q) and U € U,, respectively, be the solutions of (5.1.1a),
(3.1.1c) and (4.1.6), with U~ |- = u. Let A be a tetrahedron of Class I and Type 1 (i.e.,
a=v=0and f <0), then the local finite element error can be written as (4.3.1) and its
leading term Qp41 satisfies,

// Qp+1Vdldnd¢ =0,V V € P,\ span (5). (4.3.25)
A

where S = {&icH 0 <i,j,k<p, andi+j+k=p—2},
and Qp11 can be written as

sp(p*-1)

Qpi1 (§m,¢) =1 Z Cithi (§,1,C) (4.3.26)

with {wi,z’ =1,2,..., %p (p* — 1)} being an orthogonal basis for span (S) with respect to the
weight function n.

Furthermore, the leading term Q,+1 1s zero on the outflow face n = 0, and on the edges vovs,
VoVy, and ViVvy, i.e.,

Qp+ilps = Qp+1|vQV3 = Qp+1|V3v4 = Qp+l|v2v4 =0. (4.3.27)

Proof. From Theorem 3.2.2, it suffices to show (4.1.12) for all V' € U\ P,.
Since an element of Class I and Type 1 is a particular case of Type 1, (4.3.17) holds and
yields the following orthogonality condition for the leading term Q,+1

ov
/] Wy G dedndC = 0.V € Uy, and g, € P, (4.3.28)
A

where we used the fact that a = v =0 and Q41 (£,0,¢) = 0 (from (4.3.4a)).
Noting that av € P,\ span (S) establishes (4.3.25).

Next, let {¢za 1,2,...,%]) (p* — 1)} be an orthogonal basis for the polynomial space
span (S) with respect to the weight function 7, and using Gram-Schmidt algorithm to con-

struct orthogonal basis {VJJZ,Z =1,2,..., %p (84+9p + 3p2)} for the polynomial space P,\ span (5),

such that
/ / / nibjdédnd¢ = 0.

Thus, the orthogonality conditions (4.3.25) leads to (4.3.26).
Combining (4.3.4a) and (4.3.16) estabhshes (4.3.27). O

In the next theorem, we state and prove new superconvergence results for the local dis-
cretization error using the space U, on elements of Type 2.
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Theorem 4.3.4. Let u € C* () and U € U, respectively, be the solutions of (3.1.1a),
(3.1.1¢c) and (4.1.6), with U~ |, = u. Let A be a tetrahedron of Type 2, with I'y and I'y
being the inflow faces on the reference element. Then the local finite element error can be
written as (4.3.1), with its leading term Q,11 satisfying

S, c6 6D @ V@) Vilandc = 0.9 V € Py Uspan (77 7)).
(4.3.29)

and

]

(Oé + 6 + 7) Qp+1 (67 n, 1- § - 77) + 7Qp+1 (57 n, 0) - / (a’O : va-‘rl) dC = 07 (4330)
0

Furthermore, the leading term QQ,11 is zero on the edge vavs
Qpiily,e, = 0. (4.3.31)
Proof. Applying Lemma 4.2.1 we obtain (4.3.1). Substituting (4.1.10), (4.1.12) and (4.3.1)

into (4.1.9), and applying Stokes’ theorem yields (4.3.18), with I'" =T’y U T4

Testing against V = ((E+n+(—1)V € U, for all V € P, o U span ({n*~1,¢P7'}) in

(4.3.18), and noting that V| = 0 leads to (4.3.29).
Testing against V = '/ € U, in (4.3.18) for 0 < i,j,i+ j < p+ 1 yields

(a+6+7// Quir (61,1 — € — ) Epddé — v// Qi (€1, 0) € diyd

/ /1 g/1 . (ag - VQpi1) EPdCdnde = 0, (4.3.32)

which can be written as

1 pl—¢
[ {<a+@+v>@pﬂ (€L~ € — 1) 4 7Qpis (€,1,0)
1-¢—
_/ n (ao - VQpi1) dC} n'¢/dndé = 0. (4.3.33)
0

Thus, we obtain (4.3.30).
Next, substituting 7 = 1 — ¢ in (4.3.30) and noting that ap - n < 0 on the inflow faces (i.e.
(a+ B +7)+7<0), yields (4.3.31). O

In the next theorem, using the space U, on elements of Class I and Type 2, we show that
the local discretization error is O (h?*2) superconvergent on the edges vovs and vivy.

Theorem 4.3.5. Let u € C* () and U € U, respectively, be the solutions of (3.1.1a),
(3.1.1¢c) and (4.1.6), with U~ |, = u. Let A be a tetrahedron of Class I and Type 2 , with
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['s and Ty are the inflow faces on the reference element and o« = 0. Then the local finite
element error can be written as (4.3.1), and its leading term Qp11 satisfies (4.3.29), and

1-€—n
(ﬁ + 7) QP+1 (67 , 1 - 6 - 77) + 7@p+1 (5, n, 0) - /0 (CLO : VQp+1) dC = 0, (4334&)
1 1—
/ / nanpH (&,1,0)dédn =0, for 0 < j <p+1, (4.3.34b)
0 0

1-C—n
—(B+7)Qpn (1 =C=n,m,0) + / (@o - VQpi1) d€ = 0. (4.3.34c)
0
Furthermore, the leading term QQp11 s zero on the edges vovs and v3vy

QP+I|V2V3 = Qp+1|v3v4 = 0 (4335)

Proof. Equation (4.3.34a) follows from (4.3.30), where a = 0.
Letting a = 0 in (4.3.17), and testing against V =1 and V = ¢/, for 1 < j < p+ 1 yields

1 pl—¢
/0 /0 Qp+1(£,0,¢) d¢de = 0, (4.3.36)

/ / / 71Q, 41 dEdndC = 0. (4.3.37)

Now, testing against V' =1 in (4.3.18), we obtain

and

1-¢ 1-¢
(6+7)/0 i Qp+1(§v7771_5_77)d77d§+7// Qp+1 (&,1,0) dnd§

/// ( s %2“>d£dnd< —0, (4.3.38)

where we used the fact that a = 0.
The first integral can be written as

1-¢

1 pl—¢ 1
8 /0 /0 Qi (61— € — ¢,¢) dCde + /0 Quir (6211 — € — ) dnde.  (4.3.39)

0

The third integral can be written as

5 /0 1 /0 o ( /0 PH%@“@) dede + 4 /0 1 /0 - ( /0 H_n%dg) dndé,  (4.3.40)

which after integration, leads to

1 pl—¢
8 / / (Qpir (61— €= C,O) = Qpin (6,0, 0)y dCde +
0 0
1 pl—t
7/ / {Qp—l—l (fa n, 1 - g - 77) - QP—H (57 n, 0)} dndf (4341>
0 0
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Substituting (4.3.39) and (4.3.41) in (4.3.38) yields

1 r1=¢ 1 pl—py
8 /0 /O Qpir (6,0,0) dCde + 27 /0 Qe n0ydsan=o. (4.3.42)

Using (4.3.36) leads to
1 1-n
/ Qp41 (§,1,0) d&dn = 0. (4.3.43)
o Jo

Testing against V =177,1 < j < p+1 in (4.3.18), we obtain

IS E 1 op1-¢
(6+7)/0/0 anp+1(£,n,1—€—77>dnd§+v// 7’ Qpi1(€,1,0) dndg

/ / / ( OQPH %?1) i dédndC = 0. (4.3.44)

The first integral in (4.3.44) can be written as

1 1€ .
5/0/0 (1= €)Y Qpur (6,1 — € — ,C) dCde

1 opl-e
T / / W Qe (Em,1 — € — 1) dide, (4.3.45)

while the third integral in (4.3.44) can be written as

B/ /1£</1“ an“ >d§d§+’y/ /15( /16778@12“ C>dnd§. (4.3.46)

We integrate by parts the first term and integrate the second term with respect to (, to
obtain

1 p1-¢
_c_cy £ _ Jj—1
o[ [ a-e-orquier—e-coac—ja [[[ wiQundam
1 1€
+7/ / 77J {Qerl (67 7, - 5 - 77) - Qp+1 (57 n, O>} dndg (4347)
o Jo
Substituting (4.3.45) and (4.3.47) in (4.3.44) and using (4.3.37), we obtain

1 pl-¢
2 /D /O P Qpen (€,7,0) didg = 0. (4.3.48)

Combining (4.3.43) with (4.3.48) yields (4.3.34Db).
Testing against V = (' € U, in (4.3.18), for 1 <i<p+1land0<j,i+j <p+1,leads to

1 p1-¢ 1-C¢—n o
/ / {— (B+7)Qpr1(1—n—¢,n,¢) + / (ao-VQpi1) dg} Cldnd¢ = 0. (4.3.49)
0 0 0
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Testing against V =n’, 0 < j < p+ 1, and using (4.3.34b), we obtain

L orl=¢ 1-n—¢ ,
/ / {— (B+7)Qp1 (1 —=n—¢,n,¢) + / (ao - VQpi1) df} ndnd¢ = 0. (4.3.50)
0 JO 0

Combining (4.3.49) and (4.3.50), yields (4.3.34c).
Substituting n = 1 — ¢ in (4.3.34a), ( = 1 —n in (4.3.34c), and noting that ag-n < 0 on the
inflow faces, we obtain (4.3.35) which completes the proof. ]

For an element of Type 8 with the space U),, we show in the following theorem that the local
finite element error is O (hP*2) superconvergent on the edges vovs and vivy.

Theorem 4.3.6. Let u € C> () and U € U, respectively, be the solutions of (3.1.1a),
(3.1.1c) and (4.1.6), with U~ |~ = u. Let A be a tetrahedron of Type 3, with 'y, I's and 'y
being the inflow faces on the reference element. Then the local finite element error can be
written as (4.3.1) and its leading term Qu41 satisfies

// | EC(E 0+ ¢ = 1) a0 Qi) Vddnd = 0.7 V € Py, (4.3.51)

and

1 1-n 1-n )

/0 { /0 0Qyer (0,7,€)dC + /0 o (g,n,md&}nfdn:o, for0<j<p+1, (43.52)

an—H an—l—l
o8 on

1-n—¢ B 9
(B + ’7) Qp+1 (1 -n- Ca n, C) + an+1 (Oa n, C) - /0 (ﬂ %;:;1 + v %Z.Jrl

1-§—n
(a+B) Qpr1(&n 1 =& —n) +7CQp+1 (§,1,0) — /0 (a + ) d¢ =0, (4.3.52b)

) d¢ = 0. (4.3.52¢)
Furthermore, the leading term (Q,11 is zero on the edges vavs and vsvy

Qp+1|VQV3 = Qp+1|V3V4 = 0 (4353)
Proof. Applying Lemma 4.2.1 we obtain (4.3.1). Now, substituting (4.1.10), (4.1.12) and
(4.3.1) into (4.1.9), and applying Stokes’ theorem yields (4.3.18), with '™ =Ty UT, UT}.
Testing against V = (n — (1 =& —()) &V € U, for V € P,_5 in (4.3.18), and noting that

Vp— = 0 leads to (4.3.51).
Testing against V' = 1 in (4.3.17) yields

1 pl—g
/0 /0 Qi (6,0, ) dCdg = 0. (4.3.54)

while testing against V =177,1 < j < p+ 1 in (4.3.17) leads to

/ / /A 7 1Qp1dédnd¢ = 0. (4.3.55)
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Now, testing against V' =1 in (4.3.18), we obtain

1-¢

1
(Oé+ﬁ+7)/0 [ en 1~ manie
1-¢

1
o / " 0 (0,1, C) dCdn + / Qpi1 (6,1,0) dide

0

/NG e ST

Using (4.3.13), the first integral can be written as

1 pleg 1 pl-¢
—_p = d —&— d
a/O/0 Quir (1 -1 c,n,cmcnw/ofo Qpor (61— € — (. ) dCde

(4.3.56)

1 1-¢
+7/ Qpt1 (§,m, 1 — & —n)dndE, (4.3.57)
0 0

while the fourth integral in (4.3.56) can be written as

J (L e [ [ e

o (e o

which, after integration, leads to
1 1-n
o[ [ @ == 6.0 = Qs 0o O i +
1 pl¢
5[ [ @61 =€ 6.0~ Gt (0.0} deds +
o Jo
1 pl—¢
1 =8 —n)— Q) ,1,0)} dnd§.
7/0/0 {Qp+1 (§m, 1 =& —n) — Qps1 (§,n,0)} dndé
Substituting (4.3.57) and (4.3.59) in (4.3.56) yields
1 pl—¢ 1 pl-p
o[ [ Quteoodirze [ [0 0m0

1 1-n
+27/ Qpt1(§,n,0) dédn = 0.
0 0

Using (4.3.54), (4.3.60) becomes

1 1-n 1-7
/O (a /0 Quin (0,7,C) dC + /0 @pH(f,n,md&) dn =

7

(4.3.58)

(4.3.59)

(4.3.60)

(4.3.61)



Next, testing against V =771 < j < p+ 1 in (4.3.18), we obtain
1 pl-¢
(a+ﬁ+7)/ / 7 Qp1 (§,m,1 =& —n)dnd§
0 0
1 pl-n 1 opl-¢
va | / Qe O, Odcdn [ [ i@y (6m,0) e
0 0 0

an—l—l an-i-l an-H ; B
///( on T aC )ndﬁdndé—o. (4.3.62)

Using (4.3.13), the first integral can be written as
1 plg 1 pl¢
j o Y ¢
o[ [ v —n—cnoaan+s [ [ 0= 0 Qg1 —g -0 dcas

1 opl-¢
+7/0 /0 0 Qpr1 (§,m,m, 1 — & —n) dndg. (4.3.63)

The fourth integral in (4.3.62) can be written as

L s [ [ (] i)
[ e

We integrate the second integral by parts, and integrate the first and the third integrals,
respectively, with respect to £ and (, to obtain

1 1-n )
” / / P {Quir (1= 1 — €. C) — Qi (0,7.0)} dCdn
0 1 0 e
‘W/O /0 W {Qpt1 (§,m,1 =& — 1) — Qpi1 (§,1,0)} dnd€

+5/01/01_£{<1—s—onpH(s,l—f—c,o}dcd&

8 [[[ v @pudsanac. (4.3.64)

Substituting (4.3.63) and (4.3.64) in (4.3.62) and using (4.3.55), we obtain

1 ] 1-n
/ 7’ (a Qp+1(0,n,¢)d¢ +
0 0 0

Combining (4.3.61) with (4.3.65) yields (4.3.52a).
Next, in order to prove (4.3.52b), we need to show

1 pl—g
(a+P) /0 / {@pﬂ (61 — € — ) dnde + 7 Qi (€:1,0)

1-n

1-¢—¢
—/ (f%?l + 58@’“) dg} Eldndé =0.for 0 <i,j<p+1.  (4.3.66)
0
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Testing against V =n/,0 < j <p+ 1 in (4.3.18), and using (4.3.52a), we obtain
1 op1-¢
@+ 5+9) [ [ 0@ (€1~ € — ) dnde
8Qp+1 an-H OQp+1 _
/// ( S e | wdgdndC = 0. (4.3.67)

Integrating 6%’2“ with respect to (, leads to (4.3.66) for i =0and 0 < j <p+ 1.
Testing against V = '? for 1 <45, + 7 <p-+1in (4.3.17), to obtain

o /0 1 /0 { /0 o z’f“nf'czpﬂdf} dCdn + B /O 1 /0 a { /0 1_£_Cj5injlc2p+1dn} aCde = 0.

(4.3.68)
Integrating by parts the first and the second integrals, respectively, with respect to £ and n
yields

1 1-n o
a/o/o (L=n=0'"WQpr1 (1 =n—¢n,¢)d¢dn

1 pl-¢ .
+5// (1€ =€) €Qpu (61— € — ) dCde

NUAG e B 0

Using (4.3.13), (4.3.69) becomes
1 p1-¢
[ [ {erneueni-c-n

1=€—n o
—/ <aan+1 + ﬁanH) dC} Enldnds =0, for 1 <i,j,i+j5 <p+1. (4.3.70)
0

73
Noting that the orthogonality conditions (4.3.70) are the same as (4.3.66), except the integral
with the coefficient v is missing. Next we show that this missing integral is zero for 1 <
t,J,t+j<p+L
Testing against V = '/, for 1 < 4,7, +j < p+1in (4.3.18), yields

1 pl—¢
/0/0 {(a+ﬁ+7)Qp+1(£,77,1—5—77)+7Qp+1(£,77,0)

B 1=¢=m 0Qp11 anH 0Qp11
| (“ e T ey T o

> dg} Endnde = 0. (4.3.71)

Qp+1

Integrating in the third integral with respect to ¢, leads to

1 pl—g
/0/0 (@4 847) Qs (Em.1— € — 1)+ 29Qper (€,1,0)

1—-¢—
- / ! (f%?l + 5862”“) dg‘} Enldnds = 0. (4.3.72)
0
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Subtracting (4.3.72) from (4.3.70), we obtain

27/ / Qp+1(§,m,0) & dnd§ =0, for 1 <i,j,i+j<p+1. (4.3.73)
0 0

Combining (4.3.73) and (4.3.70), leads to (4.3.66) for 1 <i,j5,i+j <p+ 1.
Next, testing against V = ¢",1 <i < p+1in (4.3.17), yields

1 rl=¢ 1 pl-ny 1—n—C¢
i B i1 _
8 /0 /0 EQpe1 (6,0, 0) dCdé — o /0 /0 ( /0 i€ Qp+1d£) dCdn =0.  (43.74)

Using (4.3.13), the first integral can be written as

/ / EQpi (61,1 — € — ) dCde — / / a / Q”“d@dnds, (4.3.75)

while integrating by parts the second integral in (4.3.74) with respect to £ and using (4.3.13),
leads to

//1§5Qp+1§77, — & —n) dnd§ — //1£/1§77 QpHdCdndg. (4.3.76)

Substituting (4.3.75) and (4.3.76) in (4.3.74), yields

// [(@+8)Qpur (€11 —€—)

1-€—n
—/ (ﬂ%g“ + ﬁan“) d(} Edndé =0,for 1 <i<p+1. (4.3.77)
0

Noting that the orthogonality conditions (4.3.77) are the same as (4.3.66) with j = 0, except
for the integral with the coefficient 7 is missing. Next we show that this integral is zero for
1< <p+1.

Testing against V = &4 for 1 <i < p+ 1 in (4.3.18), yields

1 pl-¢

/O /0 { (a4 B4+7) Qps1 (§,m,1 =& —n) +7Qp41 (£,1,0)

i /1571 (aan—H + Ban-l—l ’)/an—H
0

o€ aC

in the third integral with respect to (, leads to

) dg} idnde = 0.

Qp+1

Integrating

// (@t B) Qpor (6,11 — € — ) +29Qpir (6,1,0)

1-¢—
— / ! <0z8%?1 + 58627’“) dg} Ednd¢ = 0. (4.3.78)
0
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(¢) Type 2 (d) Ay 2 and Type 3

Figure 4.8: Superconvergence points (red) using the space U, for each type of element.
Subtracting (4.3.77) from (4.3.78), we obtain

1 pl—¢ ‘
27/ / Qp+1(£,n,0)'dnd§ =0, for 1 <i,j,i4+j <p+1. (4.3.79)
0 0

Combining (4.3.79) and (4.3.77) leads to (4.3.66) for 1 <1i < p+1 and j = 0, which completes
the proof of (4.3.66).

Now, using (4.3.66) yields (4.3.52b).

The proof of (4.3.52¢), follow the same line of reasoning as for (4.3.52b).

Finally, substituting ( =1—mn, 7 =1—¢ in (4.3.52a) and (4.3.52b), respectively, and noting
that ap - n < 0 on the inflow faces, yields (4.3.53) which completes the proof. O

We summarize the new superconvergence results in Table 4.4 and Figure 4.8 for all types of
elements and the space U,,.

Next, we consider an element of Class I and show that using the space M,, leads to a more
efficient a posteriori error estimation proceeder.

81



Type 1 Type 2 Type 3

'S
L
s
5
I's

Xu
X
X\;
X

I':n=0

Fg . C == 0
['3:£=0
[y:(+&+n=1
Edgey : vivy
Edgey : vivy
Edges : vovy
Edgey : vivs
Edg€5 . V3Vy
Edge6 I VaVs
=(0,0,0)

= (1,0,0)
=(0,1,0)
(0,0,1)

N ENENENEN BN ENENEN I PPN g

SIS XSS XS] XXX X X X
NSNS X SN X X | X[ x| x| x| X
XIS XA X XXX | X[ X|X]|x
NSNS X S X XX X[ x| x| X

NI N X NN X N X | X XXX

V4 =

Table 4.4: Superconvergence points using space U,.

Theorem 4.3.7. Let u € C* (2) and U € M, respectively, be the solutions of (3.1.1a),
(3.1.1c) and (4.1.6), with U™ |- = u. Let A be a tetrahedron of Class I, then the local finite
element error can be written as (4.5.1) and its leading term Q,+1 satisfies the following
orthogonality conditions,

/ / Q1 Vdednd¢ = 0,YV eP,, (4.3.80)
A
// ag - nQp+1VdU = O, VVe Mp. (4381)
T+
Furthermore,
p+1
Qp+1(£,0,0) = ZCPH PHTE.C), on the outflow face, (4.3.82a)

Qpr1(§,1m,¢) = Qpr1(£,0,0) +7]ZZ Criai” JZ] (&,n,0), on A, (4.3.82b)

=0 7=0

where q;k are defined in Lemma 4.2.5.

Proof. Applying Lemma 4.2.1 leads to (4.3.1). From Theorem 3.2.2, it suffices to show the
orthogonality conditions (4.3.80) for V' € P,\P,_1.
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Substituting (4.1.10), (4.1.12) and (4.3.1) into (4.1.9) yields the following orthogonality con-
dition for the leading term @Q)p44

//+ ao - Q41 (£,0,0)V (£,0,¢) ded( — /// (@ - VV) QyurdédndC = 0.Y V € M,
r A
(4.3.83)
Testing against V (£,7,¢) = n (£'7¢*) in (4.3.83), 0 < 4,5,k < p—1,i+j+k = p and
noting that V (£,0,¢) = 0 and
span {a'O -V (fiﬁjﬂck) 70 < i>j> k < pﬂ +] +k= p} = Pp\Pp*b

yield (4.3.80) for V € P\ P,_1.

Using (4.3.80) leads to (4.3.81).

On the outflow face, (4.3.82a) follows directly from (4.3.81) and (3.2.25b). Writing Q41 as
(4.3.7) and substituting into (4.3.80) yields

///A rpi1 (& O VdédndC + ///A 07y (.17, OV dEdnd¢ = 0, ¥ V € P, (4.3.84)

Testing against V = &iniCk for 0 < 4,4, k,i + j +k < p — 1, the first integral can be written

as
1 pl—¢ 1—¢—¢ 1 pl—¢
i ok j _ e itHleisk
/0 /0 Eicr i (€,0) /0 W dndédc — /0 /O (1= & — )P Hieichr, 1 (€, C)dedc.

(4.3.85)

Combining, (4.3.85), (4.3.81) and (4.3.84) yields
/// nrp(&,m, ()Vdédnd{ =0,V V € P,_;. (4.3.86)

A
Using Lemma 4.2.3 we write
P n 7 '

(&1, ) = Ciyai =55 (&m,€) - (4.3.87)

n=0 i=0 j=0
By the orthogonality (4.3.86) and (4.2.7) we obtain (4.3.82b). O

4.4 Factoring the Leading Term of the DG Error

In this section we introduce Groebner bases, which will alow us to factor the leading term
Qp+1 of the local finite element error. First, in the following subsection we review basic
algebraic geometry results [34].
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4.4.1 Basic Algebraic Geometry and Notations

Let f1, fa2,..., fs be polynomials in Clxy, 2o, . .., x,], which denotes the set of all polynomials
in x1,9,...,x, with coefficients in C. Then the set

V (fi, foy -y fs) = {(ar,a9,...,a,) € C": fi(ay,aq,...,a,) =0 forall 1 <i< s},
is called the affine variety defined by fi, fo,..., fs.

Definition 4.4.1. A subset I CC [z, x,...,x,] is an ideal if it satisfies:
(1) 0 €L

(ii) If f,g €1, then f+g €1l

(i) If f € I and h € Clxy, 29, ..., 2], then hf € L.

If f1, fa, ..., fs are polynomials in Clxy, zo, ..., x,], then the set

<f17f27"'7f8> = {Zhifi:h17h27"'7hsEc[xlﬂx%"'vxn]}v
i=1

is an ideal of C [z1, x9, ..., x,] and is called the ideal generated by fi, fa, ..., fs [34].

Definition 4.4.2. Let V CC" be an affine variety. Then we set
I(V)=A{feClxy,za,...,x,] : f(a1,as,...,a,) =0 for all (ay,as,...,a,) € V}.

The observation is that I (V) is an ideal and is called the ideal of V [34].
Next, we define the affine variety by an ideal I (V) CC [z1, z, . .., x,].

Definition 4.4.3. Let I(V) CC [z, 22, ...,2,] be an ideal. We will denote by V (I) the set

V() ={(a1,as,...,a,) € C": f(a1,a9,...,a,) =0 forall f €1}.

The following proposition holds.
Proposition 4.4.1. V (1) is an affine variety. In particular, if 1= (f1, fo,..., fs), then
V(I) :V(fl)f%-'-?fs)'

Proof. Consult [34]. O

The operation on varieties corresponds to the operation of intersection on ideals and is given
by the following result.
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Theorem 4.4.1. IfI and J are ideals in C[xq,x2,...,2,], then V(INJ) =V (H)UV (J).

Proof. Consult [34]. O

Definition 4.4.4. Let I CC [z, xs,...,2,] be an ideal.
(i) The radical of 1, denoted /1, is the set

{f: f™ €1 for some integer m > 1}.
(i) I is prime if whenever f,g € Clxy,2a,...,x,] and fg € 1, then either f € 1 or g € 1.

Thus we have the following proposition.

Proposition 4.4.2. Let I, J be any ideals in C[z1,xs,. .., x,], then to following holds:

(i) VINI =vVINVJ.
(i3) If 1 is a prime ideal then VI =1.

Proof. Consult [34]. O

4.4.2 Groebner Bases

In order to introduce Groebner bases, we will use the following terminology.

Definition 4.4.5. A monomial ordering > on C[xy,xa, ..., x,] is any relation on the set of
monomials X, o € Z%, satisfying:

(i) > is a total (or linear) ordering on Z2,.

(ii) If a > B and y € Z%,, then o+ > B+ 1.

(iii) > is a well-ordering on Z%,, i.e. every nonempty subset of Z2, has a smallest element
under > .

Definition 4.4.6. Let f =) a,x® be a nonzero polynomial in C |z, xa, ..., x,] and let >
be a monomial order. The leading term of f is

LT(f) = Gmuitideg(s) - X490,

where multideg (f) = max (a € 2%, such that a, # 0), (the mazximum is taken with respect
to >).

Definition 4.4.7. Let I CC[xy,xo,...,x,] be an ideal other than {0}.
(i) We denote by LT (1) the set of leading terms of elements of I. Thus,

LT (I) = {cx : there exists f € I with LT (f) = ex“}

(ii) We denote by (LT (1)) the ideal generated by the elements of LT (I).
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Thus, a Groebner basis for an ideal I is defined as follows.

Definition 4.4.8. For a given monomial order. A finite subset G = {g1,g2,...,9s} of an
ideal 1 is said to be a Groebner basis (or standard basis) if

(LT (g1), LT (92) ;.- LT (9s)) = (LT (I)) .

For a given monomial order, every ideal I CC [z}, x9, ..., x,] other than {0} has a Groebner
basis [34].

The next proposition states that the remainder is uniquely determined when we divide by a
Groebner basis.

Proposition 4.4.3. Let G = {g1, 92, - . ., gs} be a Groebner basis for an ideal 1 CC [z, za, ..., x,]
and let f € Clxy,x9,...,x,]. Then there is a unique r € C[xy, s, ..., x,] with the following

two properties:
(i) No term of r is divisible by any of LT (¢1), LT (g2),..., LT (gs).
(i) There is g € I such that f =g+ .

Proof. Consult [34]. O

4.4.3 Factoring Polynomials in C [{, 7, (]
Before stating our main result on factoring the leading DG error term we state and prove
several lemmas.

Lemma 4.4.1. Let Q. (§,n,() be a polynomial of degree k > 3 that is identically zero at
these locations: (i) n =20, (1) E+n+=1and =0, (iii) E+n+(=1and ( =0. Then
Qr (&,m,C) can be factored as

Qr&n¢) = n((1=&=n—=0)q (&n,¢) +£Cqs (§,m,Q)) (4.4.1a)
= n((€+n+C—1)Ry+C(n+¢—1)Ry), (4.4.1b)

where q,, R, qs, and Ry, respectively, are polynomials of degree r,r’ < k—2, and s, s’ < k—3.

Proof. Noting that @, = 0 at points of the form (i), (i), (ii1) is equivalent to Q; = 0 on
the set

VMUV (E+n+(-1IUV{E+n+(—17), (4.4.2)

which, in turn, is equivalent to
Qe I(V((mMUV{(E+n+( -1 UV{E+n+(—10)), (4.4.3)

Using Theorem 4.4.1, leads to
Qr eT(V((mN(E+n+ -1 N{E+n+(—-1,0)). (4.4.4)
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Next, by the strong Nullstellensatz Theorem [34], we have

le\/<77>ﬂ<f+77+C—175>ﬂ<5+77+f—174>7 (445>
which by Proposition 4.4.2; yields
Qr eI NVE+N+C=LENV{E+n+(—1,0). (4.4.6)

Since the ideals (), (€ +n+ ¢ —1,§) and ({ +n+ ¢ — 1,() are all prime, so equal to their
own radical, we have

QremMnNE+n+(—1LNE+n+¢—1,0). (4.4.7)

Let J=(mN{E+n+¢—1,N{E+n+(—1,(), an ideal of C[¢,n,(]. To test whether
Q. € J, we need a Groebner basis for J

mE+n+¢=1),n¢C(n+¢—-1)},

computed with Mathematica.
Now, @ € J if and only if Q) can be written as

Qr(&n ) =n+n+¢—=1)Ry+nl(n+{—1)Ry,

for some polynomials R, and Ry. Using Mathematica, we can show that the ideal K =
n(E&+n+¢—1),n&C), has the same Groebner basis as J. Thus K = J, which completes
the proof. n

Lemma 4.4.2. Let Q. (§,n,() be a polynomial of degree k > 3 that is identically zero at
these locations: (1) E+n+¢=1and =0, (it) {+n+¢=1and { =0. Then Qr (&,1n,C)

can be factored as

Qk (ga n, C) = (1 - £ /. C) qr (ga n, C) + £CQS (57 n, C) ) (448&)
= +n+¢-1)Ry+C(n+¢—1)Ry, (4.4.8b)

where q,, R, qs, and Ry, respectively, are polynomials of degree r,r’ < k—1, and s, s’ < k—2.

Proof. Noting that @ = 0 at points of the form (i), (ii) is equivalent to Q) = 0 on the set

V({E+n+(—-LHUV{E+n+C—1,0), (4.4.9)

which, in turn, is equivalent to
Qe I(V({{E+n+C-1,)UV({(E+n+(—1.0)). (4.4.10)

Using Theorem 4.4.1, leads to
QreI(V{{E+n+C -1 NE+n+¢—-1.0))). (4.4.11)
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Next, by the strong Nullstellensatz Theorem [34], we have

Qv e VE+N+C -1 N{E+n+(—1.0), (4.4.12)
which by Proposition 4.4.2, yields
Qr € V{E+N+C -1, NV(E+n+C—1,0). (4.4.13)

Since the ideals (€ +n+ (¢ —1,§) and (£ +n+ ¢ — 1,() are all prime, so equal to their own
radical, we have

Qre(+n+¢—1)NE+n+¢—1,0). (4.4.14)

Let J=(mN{E+n+¢—1,0)N{E+n+¢—1,§), an ideal of C[¢,n,(]. To test whether
Q. € J, we need a Groebner basis for J

{E+n+¢-1),¢n+¢-1)},

computed with Mathematica.
Now, Q. € J if and only if ); can be written as

Qk(£>777<):<£+77+C_1)Rr’+c<n+g_1)Rs/a

for some polynomials R,» and Ry. Using Mathematica, we can show that the ideal K =
(E+n+ ¢ —1,£C), has the same Groebner basis as J. Thus K = J, which completes the
proof. ]

Lemma 4.4.3. Let Q. (§,n,() be a polynomial of degree k > 3 that is identically zero at
these locations: (i) E+n+(=1and =0, (ii)E+n+(=1andn=0, (i) E+n+(=1
and ¢ = 0. Then Q (&,m,C) can be factored as

= +n+(-1)Rs+nn+¢—1)Ry, (4.4.15b)

where q., R, qs, and Ry, respectively, are polynomials of degreer,r’ < k—1, and s, s’ < k—3.
Proof. Noting that @ = 0 at points of the form (i), (i) is equivalent to Q) = 0 on the set

which, in turn, is equivalent to

Qr eI(V(E+n+( 1)UV {(E+n+(—1n))UV(({+n+(—1,0)), (44.17)

Using Theorem 4.4.1, leads to
Qe I(V((E+n+C—1HNE+n+C-1Lnn{+n+¢—1.0)). (4.4.18)
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Next, by the strong Nullstellensatz Theorem [34], we have

le \/<f+77+f—175>m<f+77+§—1777>m(&"‘ﬁ‘i‘c—lao, (4419>

which by Proposition 4.4.2; yields
Qe VEHN+C-LNVE+n+C— LN V(E++(—10). (4.4.20)

Since the ideals (¢ +n+ (¢ —1,&), ((+n+ ¢ —1,n) and ({+n+ ¢ — 1,() are all prime, so
equal to their own radical, we have

Qre(+n+C—1N{E+n+ -1 n(E+n+—1,(). (4.4.21)

Let J=(+n+¢—1,)NN{E+n+¢—1,n)N{E+n+¢—1,(), anideal of C[¢,7n,¢]. To
test whether () € J, we need a Groebner basis for J

{€+n+¢—=1),¢nn+¢—1)}, (4.4.22)

computed with Mathematica.
Now, @ € J if and only if Q) can be written as

Qu(&n ) =E+n+C—1)Ry+n{(n+¢—1)Ry, (4.4.23)

for some polynomials R,» and Ry. Using Mathematica, we can show that the ideal K =
(€ 4+n+ ¢ —1,1n8C), has the same Groebner basis as J. Thus K = J, which completes the
proof. O

Lemma 4.4.4. Let Q. (§,n,() be a polynomial of degree k > 3 that is identically zero at
these locations: (i) E+n+ (=1 and ( =0. Then Qx (§,71,() can be factored as

= (+n—1)Rv+(Ry, (4.4.24D)

where q,., R, qs, and Ry , respectively, are polynomials of degree r,r’ < k—1, and s, s’ < k—1.
Proof. Noting that @ = 0 at points of the form (%) is equivalent to @, = 0 on the set

V({{E+n+(—1,0), (4.4.25)

which in turn is equivalent to

Qe I(V({{E+n+C—1.0)). (4.4.26)

Next, by the strong Nullstellensatz Theorem [34], we have

QreVIE+n+C—1,0). (4.4.27)
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Since the ideal (£ +n+ ¢ — 1,() is prime, so equal to his own radical, we have

Qre(+n+¢—1,0). (4.4.28)

Let J = (¢ 4+n+(—1,(),anideal of C[{,n, (]. To test whether @y € J, we need a Groebner
basis for J

{E+n—1,¢). (4.4.29)

computed with Mathematica.
Now, @ € J if and only if Q) can be written as

Qr (&n,¢) = (E+n—1) Ry + (Ry, (4.4.30)

for some polynomials R, and Ry. Using Mathematica, we can show that the ideal K =
(€ 4+n+¢—1,(), has the same Groebner basis as J. Thus K = J, which completes the
proof. O]

As a direct consequence of the last four lemmas, we have the following factoring of the
leading term ()41 of the local finite element error.

Theorem 4.4.2. Under the same assumptions of Theorem 4.3.2, the leading term of the
discretization error Qp+1 can be factored as

QP-H (Sa m, C) = (1 - g /R C) qr (57 m, C) + n€CQS (57 m, g) ) (4431&)
— (€4+n+C—1)Ru+Cn(n+C—1) Ry, (4.4.31D)

where q., Ry, qs, and Ry, respectively, are polynomials of degree r,v" < p,and s,s' < p — 2.
Furthermore, if A is a tetrahedron of Class I and Type 1 (i.e. a« =~ =0 and  <0), then
Qp+1 can be factored as

Qp-i—l (ga m, C) =7 ((1 - 5 /R C) er (57 m, C) + SCQS (57 m, g)) ) (4432&)
— n<(§+n+c—1)RT/+C(77+C—1)§S'>a (4.4.32b)

where q,, Rr/, ds, and RS/, respectively, are polynomials of degree r,r’ < p—1,and s, s’ < p—2.

Proof. Using (4.3.16), one can verify that )41 is zero at points of the form (3), (i), (iii) of
the Lemma 4.4.3, which in turn leads to (4.4.31).

Next, from (4.3.4a) and (4.3.16), @,+1 = 0 at points of the form (i), (i), (iii) of the Lemma
4.4.1. Thus, (4.4.32) follows from Lemma 4.4.1. O

In the next theorem, for elements of Type 2 we show the following factoring for the leading
term of the discretization error.

90



Theorem 4.4.3. Under the same assumptions of Theorem 4.4.2, the leading term of the
discretization error Qp+1 can be factored as

QP+1 (ga n, C) - (1 - f —-n—- C) qr (57 n, C) + CQS (57 n, C) ) (4433&)
= (+n-1)Rv+(Ry, (4.4.33b)

where q., Ry, qs, and Ry, respectively, are polynomials of degree r,r' s, s < p.
Furthermore, if A is a tetrahedron of Class I and Type 2 (i.e. A12), Qpi1 can be factored
as

Q1 (§m,¢) = (L=&—n— C)ér(énC)JrfCt’js(énC), (4.4.34a)
= E+n+C¢-1DR +{(n+¢—-1R (4.4.34b)

where q,, Rr/, qs, and RS/, respectively, are polynomials of degree r,r' < p,and s,s' <p—1.

Proof. Equation (4.4.33) is obtained by combining Theorem 4.4.2 and Lemma 4.4.4. Next,
Theorem 4.3.5 and Lemma 4.4.2 lead to (4.4.34). O

On elements of Type & and using the space U, the leading term of the discretization error
Qp+1 have the following factorization.

Theorem 4.4.4. Under the same assumptions of Theorem 4.3.6, the leading term of the
discretization error Qpy1 (§,1,C) can be factored as

Qi1 (&m.¢) = (L=8=n=0)a (§n,C) +&Cqs (§,1,C) (4.4.352)
= (E+0+ (=R +C(n+ (1) Ry, (4.4.35b)

where q., Ry, qs, and Ry, respectively, are polynomials of degree r,v" < p,and s,s' <p — 1.

Proof. Equation (4.4.35) is obtained by combining Theorem 4.3.6 and Lemma 4.4.2. O

4.5 Basis Functions for DG Error Estimation

In order to compute efficient a posteriori error estimates for the leading error term 41, on
all elements using the spaces £,, U, and M, for the DG solution, we construct optimal finite
element spaces for the error and solve a local problem on each element. Next we construct
basis functions for the error by approximating the true error u — U by its leading term E as

p+1 4

J
(w—=U) (2,y,2,h) = E(&n0,(,h) = Qper (§m, OB =Y N> " dh i, (61,0),

i=0 j=0 k=0
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and applying the orthogonality conditions

//m do - nbVdo — ///A (ag - VV) Edédnd( = 0,V V € W, (4.5.1)

Testing against V = ¢} ~[  in (4.5.1) with 0 < s <r < ¢ < p, yields

p+1 4

DI [ avneiaettdn = [[[ fan Do) o acandc)| -

i=0 j=0 k=0
(4.5.2)
Let m = dimW,, n = dim P,4,. Thus, if

C =(co,C1,...,Cp1) € R,

and
D= (D1, Dy,...,0,)" = (61,02, ..,0ps1)
where
C = (Cé,oa Cll,U? Cll,l? . >C§,l) )
and

¢ (‘)OOO’(PZIOI’QDOIW"?%DS,Z)?

the orthogonality conditions (4.5.2) may be written in a matrix form AC = 0 where

aij://F+a0-n(IDZ-CDde—///A(aO-V@i)@jdfdndc, j:]_??,...,n, i:1,2,,...,m.

Without loss of generality we assume ay = («, £, ’y)T such that g # 0 and let A\ = %, W=
We now define the finite element space

E={C"®,CeN(A)},

™R

for the error and state the following lemma.

Lemma 4.5.1. The polynomial space £ is isomorphic to the null space N (A), and the
leading term Qp41 can be written as

E = Qh"t! = Z d;i X,
=1

where x; = CI®,i=1,2,....,n—m, with {C1,Cs,...,C,_,.} being a basis of N (A).
Furthermore, for element of Class I and Type 1, the basis {Xx1,X2; - Xn—m} s independent
of X and .

Proof. The proof follows the line of reasoning used in Lemma 3.3.1. O]
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Remark 4.5.1. Lemma 4.5.1 gives an optimal basis for the leading error term (Qp+1 and
(P+2)(p+3)(p+4) p(p—1)
2

tom =

for the space U,,. This technique leads to a more efficient error estimation procedure.

reduces the number of degrees of freedom from n =

In the following section we construct the error basis functions y;.

4.5.1 Basis Functions for Element of Class I, Il and IIT

We use the space U, and follow Lemma 4.5.1 to find a basis of N(A) and construct basis
functions for £. For instance, a basis of N(A) for p = 2 on a reference element of Class I
and Type 1 is given as

1 4 1 2 1 1 2
¢ (-5

48 14 r
— 0 - 0 -——.=010-20=-.1
60’ 9 s 13 gy 03303y ’0) ’

_ (.0 1 0 0 0 \T
P = (SOO,Oa ¥0,0: 1,00 0,15 - - -5 90073) )
and

X:CT<I>:%n(3c2+4((n+2§—1)+n2+n(4§—2)+3£2—4§+1).

Error basis functions for p = 3,4 are computed using Mathematica and are shown in Table
4.5.

Similarly, error basis functions for elements of Class I and Type 2 are shown in Table 4.6,
while basis functions on elements of Class I and Type 3 are shown in Table 4.7.

Error basis functions on a reference tetrahedron of Class II ant Type 1 are obtained following
the previous lemma and using space U, i.e., we compute a basis for N'(A) which depends
on u and construct the basis functions for £ shown in Table 4.8.

Error basis functions for elements of Class II and Type 2 are shown in Table 4.9.

Similarly, error basis functions for p = 2 on a reference tetrahedron of Class III are shown in
Table 4.10. Error functions for higher-degree polynomials are computed using Mathematica
and are not presented here.

Remark 4.5.2. Using the enriched space Uy, and applying Lemma 4.5.1 show that the
dimension of the error space € is one. Thus, we have several interior superconvergence
surfaces for each class and type of elements. For instance, for elements of Class I and
Type 1, the DG solution is O(hP™2) superconvergent on the surfaces given by the following

equations
n=vVC+&-20-2{+1,

n=-VEHE-20-2%+1,
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X1=—gn | +30° + 07 (18 = 7) + 1 (27¢* — 285 +5)
—6¢% +6¢% — 2162 + +126%106 — 1
3¢ +4¢(n+26 1)+
p=3| = -2) +§7(4§—<<27§+3§2—21§ﬁ1
( +¢ (4n(9€ — 1) + 54E% — 44€ + 4)
1

+C (9n? + 2n(18€ — 5) + 272 — 206 + 1) )

X3 = +12(9€ — 1) + 1 (2762 — 226 + 2) + 18¢3
+3¢%(9¢ — 1) — 30£% 4136 — 1
32+ 4 26 — 1 2
= g 57— 30p-+3) (X, LGSRV
33n* + 4n3(66¢ — 23) + 6% (99¢2 — 92¢ + 15)
+55¢* — 80¢3 + 36¢2 + 12 (44€% — 69¢% + 30¢ — 3)
X2 = =0 % ( 1193 4+ 6n%(11€ — 3) + 9 (1162 — 8 + 1) >
+44€3 — 54E% 4 18¢ — 2
+1656% — 368£3 + 27062 — 726 +5
¢3(20 — 1107m) + 1 (220€3 — 495¢% + 306 — 43)
L3¢ ( 20m2(11€ — 4) + 31 (55£% — 60¢ + 9) )

+55m3 4+ —30£2 4 24€ — 2
+573(66¢ — 29) + 3n% (1652 — 200€ + 43)
+18¢2(5n — 1) + 55n* — 40€3 4 7262 — 36¢ + 4
C3(20 — 220€) + 3n? (16562 — 110€ + 8)
L6c ( n*(55€ — 5) + 3n (55¢% — 30€ + 2) + 110&3 )
—1206% +27¢ — 1

467 (11063 — 15062 + 51€ — 3) + 275¢* — 580¢3

+18¢2(106 — 1) + 109°(11€ — 1) + 387€2 — 86¢ + 4
3¢3(n(55¢ — 5) — 10 + 1) + (55 — b) — 20€® + 33¢?
1 +¢ (20n2(11€ — 1) + 67 (55E2 — 5OE + 4) — 60£2 + 48¢ — 4)
X5 =36 | 42 (16562 — 140€ + 11) + 1 (11063 — 21062 + 99€ — 7)
—14¢€ +1
9¢? (5562 — 20€ + 1) 4 275&* — 56063 + 354€2 — 726 + 3 )

X3 = —1107

X4 = —ﬁﬁ

Xo = 1ien | +4C (37 (5567 — 20€ + 1) + 22063 — 2556 + 66 — 3)
+3n? (5562 — 20€ + 1) + 21 (220€% — 255€2 + 66¢ — 3)

Table 4.5: Error basis functions for elements of Class I and Type 1 using the space U,,.
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p=2 Xl(

3 (6 —3) +2(Bu—2)(26 — 1) + (n—1) (3% — 4+ 1))
(107 +18¢%(26 — 1) +9¢ (38 —4E + 1) + (€ — 1)*(46 — 1))
+37*(C(3p —4) + (1 —2)(26 = 1)) +n*(u — 3)

X2 =

X3

(€—1) ( p? (176€2 — 1156 +9) — 36 )
+54E% — Ty (3462 — 236 +2) + 3
19 12 (8042 — 652€ + 58)
T 4o | 46212 — 226 +2)
+u (—T89€% + 646€ — 60)
+3¢2 (20p% — 16p + 3) (9¢ — 1)
105¢CH (i + 1) — 403 (u(78¢ — 4) — 39¢ + 9)
—36¢? (5 (51€% — 40€ + 3) — 96£2 + 86¢ — 11)
p (524€% — 340 + 26) — 178¢2

X1 = +u | —12¢(6—1) ( +128¢ — 13 )

(e qy (#8558 —502¢ + 31)
—3(95¢2 — 58¢ + 5)

( 20 (642(A1€ — 3) + p(61 — 465€) + 12(9¢ — 1))

62 | 472 (33¢2 — 24€ + 1) + p (—660€2 + 558 — 59)
16 (27€2 — 226 + 2)
12(42¢ — 24€ — 23)
630 (a4 1) + 4oy ( F0(42C + 363€ — 66) — 816 + 9 )
( 143 (1 + 1) + 9C2(u(58€ — 8) — 23€ + 1)

21

+C (1 (T38€2 — 606E + 57) — ATTE2 + 384€ — 33)
(€ — 1) (1 (158€2 — 103€ + 8) — 166£2 + 113¢ — 10)
g, (1€ (1863 — 3062 + 13 — 1) + (€ — 1)? (45€2 — 26€ + 2)
o ( $20¢3(9¢ — 1) + 182 (2762 — 22€ + 2)
o2 2C((23€ = 1) = 40¢ + 6) + 3(7p — 20)¢?
I 452 — 14p)e — 6
—6°(7¢(p + 1) + p(€§ — 4) +37€ = 8) — Ldn*(p + 1)
g2 21¢% (1 + 1) — 4¢(9ué + 6 — 54¢& + 13) )
T\ 2108 + T + 14162 — 132¢ + 19
+3¢2(1u(34€ — 3) — 20€ + 3) )
—6n [ +2¢ (1 (7562 — 58¢ + 4) — 60€2 + 52¢ — 6)
(€ — 1) (32082 — 19u€ + p — 40€2 + 29¢ — 3)
L ( 20¢3(9¢ — 1) + 18¢2 (27€2 — 22¢ + 2)
+18¢ (18¢3 — 30€2 + 13¢ — 1) + (€ — 1)2 (45€2 — 26¢ + 2)
FAP (21 (4 1) + 150 — 11p + 51€ — 15) + 21n*(u + 1)

)

)

Table 4.6: Error basis functions for elements of Class I and Type 2 using the space U,,.
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4C3(5u_1)+9§22((”(4“ _)3)+/€<8(§_4))_3£H> |
n*(2u — 7) + 2n(u(5€ — 2) — 13¢ 44
p=2|x= +(n+£-1) 120 (462 —BE+1) — 1062 + 8¢ — 1 )
+6¢ (3 — 5) + 2n(u(6€ — 3) — 7€ +3)

+3u (362 —4E+1) — 62+ 66— 1

Table 4.7: Error basis functions for elements of Class I and Type 3 using the space U,, with
A= —1

2

5 CPON+3) +4C (2A2E + 606 — 3N+ 26— 1)
ol TU 46 —1) (A6 + 90— 3N+ 3¢ — 1)

P=20XZ N+ €= 1) (8C + C(ONE + 198 — 10) + (£ — 1)(3AE + 5¢ — 2))
+312 (C(8A +4) + 3NZE + 9NE — 4N +4€ — 2) + P (BA + 3)

Table 4.8: Error basis functions for elements of Class II and Type 1 using the space Us.

AC3 (16042 + 10541+ 36)
a2 (320036 = 1) = 124(§ +17) + 27(7€ — 4)
3 1) (320042 + 960 + 270)
(€ — 1) (6442(€ — 1) — 311(23€ + 13) + 90€ — 36)
+6¢ ( +4n (322 (€ — 1) — 3u(7€ + 2) + 99¢ — 45)
+n? (64p% — 151 + 144)
82012(€ — 1) — 18u(5€ + 1)

HE=D fo13e — 4

o+ | ( 64%(€ — 1) — 18u(7€ — 1) )
T\ +9(89¢ — 26)
+2n? (162 — 18 + 99)

Table 4.9: Error basis functions for elements of Class II and Type 2 using the space U,,, with
A=1
2
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C? (2443 + 9612 + 98 + 48)
L 302 < 21 (1613 + 7612 + 961 + 45) + 16p>(26 — 1) )
442 (376 — 18) + 24u(7€ — 3) + 9(7€ — 4)
n* (12u3 + 72p% + 101 + 48)
4 1°(86 — 4) + 24p2(2 — 1)
p=2|x=| +6¢ T\ pp(70€ — 31) + 33¢ — 15
+4p° (387 — 46+ 1) + 24p% (382 — 4 + 1)
+u (89€2 — 112€ + 23) + 6 (5E% — T¢€ + 2)
n (12p2(19€ — 8) + 4p(118¢ — 37) + 267¢ — 78)
+n+E—1) | +(€—1)(12u2(7€ — 2) + 4u(32¢ — 5) + 39¢ — 12)
+2n% (362 + 64 + 33)

Table 4.10: Error basis functions for elements of Class III and Type 1 using the space U,,
with A = 2.
2

Figure 4.9: Interior superconvergence points (red) using the space U, for elements of Class
I and Type 1.
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1.0

(¢) Agqi: A=1land p=0

(a) Ao: A=0and p= 7%

1.0

(d) Agp: A=2and p=-1 (e) Agi: A=1and p=1

Figure 4.10: Interior superconvergence points (red) using the space Us.

addition to the outflow face n = 0, and illustrated in Figure 4.9.

On other classes and types of elements, the DG solution is O(hP™2) superconvergent on the
zero level surfaces of the corresponding error basis functions given in Tables 4.6, 4.7, 4.8,
4.9 and 4.10 where the interior superconvergent surfaces depend in A and p. Instances of
interior superconvergent surfaces are shown in Figure 4.10.
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4.5.2 FError Estimation Procedure

Integrating (3.1.4) by parts shows that the DG solution U on a physical element A satisfies

// a-n<U—U>VdS—I—/// (a-VU+cU)dedydz:// fVdzdydz, YV € W,
- A A

(4.5.5)
where the numerical flux U is given by (3.1.5a) or (3.1.5b). In order to estimate the finite
element error e = u — U on A we assume that the leading term of e exhibits the same
asymptotic behavior as the local error on A. Thus, the error e on A is approximated by

E (z,y, 2 Zdle .y, 2),n(x,y,2), C(x,y, 2)), (4.5.6a)

which satisfies the weak finite element problem

// n(E-—E) Vda+/// a-VE)Vdxdydz
/// rVdadydz — // a-n(U —U)Vdo, VV €E, (4.5.6b)

where r = (f —a - VU — cU) is the interior residual.

This local weak formulation can be approximated by
// a-n(E_—E)Vdaz—// a-n(U"—U)Vdo, VV €E. (4.5.7)

The accuracy of a posteriori error estimates is measured by the ratio of the error estimate
over the true error. The local and global effectivity indices are given by (3.3.11) and (3.3.12).

The following are the main steps of our modified DG method with error estimation.

1. Create a mesh for the domain 2

2. Find the set Z° of elements whose inflow faces are on the domain inflow boundary
o0,

3. For k = 1,2,..., find the set Z* of all elements not in Z¥~! whose inflow faces are

either on 9~ or are shared by an element from Z*~1.

4. For k=0,1,..., find the DG solution and error estimate:

(a) Compute the DG solution U on each element in Z* by solving the DG finite ele-
ment problem (4.5.5) with boundary conditions (3.1.5a) or (3.1.5b), respectively,
for standard and the modified DG method.

(b) Compute the error estimate £ on each element of Z* by solving (4.5.6).
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4.6 Computational Examples

We solve several linear hyperbolic problems on uniform and general unstructured tetrahedral
meshes and test our a posteriori error estimation for the standard and modified DG methods.
In order to test the robustness of our procedures we use the following three families of meshes.

1. A family of uniform meshes obtained by partitioning the domain [0, 1]? into n® cubes,
n = 1,2,...,10 and subdividing each cube into five tetrahedra [40]. The resulting

meshes have N = 5n3 = 5,40, ...,5000 tetrahedral elements with diameter A,q, = \/75

2. A family of uniform meshes obtained by partitioning the domain [0, 1]* into n® cubes,
n=1,2,...,20 and subdividing each cube into six tetrahedra [40]. These meshes have

N = 6n® = 6,48, ...,41154 tetrahedral elements with diameter A, = Y2.

n

3. A family of unstructured meshes generated by COMSOL software [33] with maximum
mesh size hy.e = 1/n, n = 1,2,...,10 which yields ten unstructured meshes having
N = 24,476, 2121,5846, tetrahedral elements. See Figure 3.3 for two typical meshes
having 953 and 8713 elements generated by COMSOL.

In the following examples we compute L> error norm ||e||w =, where = is either the face I'y
or the edges vovs, vovy, v3vy, as follows

lellor, = max leler, s llelier, = ma e (60,65,
lellocmay = 05 lell vy + lelevan, = ma le (€1 = &,0)la,
el = 5 lell v+ leleyun, = ma le (60,1 =€)l
el = 0% lell vy, s lelieyn, = max le (0.1 = m)l,

and
[ max {llelle el oy €l wav s 1ol vy, } + F A5 of Class T and Type 1

e { el wyvy el v el v, if A, of Type I,
||€||OO,F* =
1I§nja§>]<V{HeHOOV2V3}, if A; of Type I,
| et {llel vy lellonsy, } if A, of Type 111

where N the number of elements on the mesh and (&;,7;,(;), 1 <i < M are the quadrature
points presented in Table 2.3 for p < 3, or the quadrature points in [43] for p = 4.
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Example 4.6.1.

Let us consider the following linear hyperbolic problem
—19u, = —19e"V* (z,,2) € Q =[0,1]°, (4.6.1a)

subject to the boundary conditions on the inflow boundary I'~ such that the exact solution
is given by
u(z,y,z) ="Vt (4.6.1b)

We solve (4.6.1) with the exact inflow boundary condition, U~ = u, using the standard and
the modified DG methods on uniform meshes having N = 6n®, n = 10, 11, ..., 19 tetrahedral
elements for p = 1,2,3. Since all elements of the mesh are of Class I and Type 1, then the
leading error term is zero on the outflow face for the space £,, both the standard and the
modified DG methods give the same results. We present L™ error ||e||sr+ on the outflow
face, the L? errors ||e||aq and ||e||2q = ||u — U — E||2.q, their orders of convergence, the
maximum and minimum element effectivity indices, and the global effectivity indices in Table
4.11. We observe that the error estimates are accurate and asymptotically exact under mesh
refinement for the standard and the modified DG methods, which confirm the pointwise
superconvergence results on elements of Class I and Type 1 using L,,.

Next, we solve (4.6.1) using the modified DG method on uniform meshes having N = 6n?,
n=1,2,...,11 tetrahedral elements for p = 2, 3,4 and using the space U,. We present L>
error ||e]|sor+, the L? errors ||e||2.0 and ||e| |20 = |[u—U—E||2.q , their orders of convergence,
the maximum and minimum element effectivity indices, and the global effectivity indices in
Table 4.12.

Let Oy = denote the order of convergence for the error, where = is either the face I'; or
the edges vovs, vavy, vsvy. In Table 4.13, we present the order of convergence Oy pr, and
Ocovavss Ocovavay Ooovsva, Tespectively, on the face I'y and the edges vovs, Vavy, vavy.

We observe that the effectivity indices for the DG method converge to unity under mesh
refinement, and the DG solution is O(h?*?) superconvergent to the true solution on the
outflow face I'y and on the three edges vovs, vovy, vivy of the inflow face.

Example 4.6.2.

Let us consider the following linear hyperbolic problem
—3u, — Tuy + 13u, = 3"V (2,y,2) € Q= [0,1]%, (4.6.2a)

subject to the boundary conditions on the inflow boundary I'” such that the exact solution
is given by

u(z,y,z) ="tV (4.6.2b)
We solve (4.6.2) with the exact inflow boundary condition U~ = u, the modified DG methods
on uniform meshes having N = 6n3, n = 1,2, ..., 10 tetrahedral elements using the spaces
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p=1
N ”6”2,9 order ||e||oo,Fl order ”66”279 order GA,min 9A,max 0

6 6.1083e-01 - 8.2607e-01 - 1.6375e-01 - 1.0152 1.0858 1.0427
48 1.6605e-01 | 1.8792 | 1.9579e-01 | 2.0770 | 2.2986e-02 | 2.8327 | 1.0049 1.0508 1.0301
162 7.5107e-02 | 1.9567 | 7.6039e-02 | 2.3326 | 6.9908e-03 | 2.9356 1.0029 1.0354 1.0222
384 4.2532e-02 | 1.9767 | 3.6806e-02 | 2.5222 | 2.9803e-03 | 2.9636 1.0021 1.0270 1.0174
750 2.7311e-02 | 1.9850 | 2.0479e-02 | 2.6273 | 1.5343e-03 | 2.9756 | 1.0016 1.0219 1.0143
1296 1.9003e-02 | 1.9893 | 1.2530e-02 | 2.6944 | 8.9079e-04 | 2.9821 | 1.0013 1.0185 1.0122
2058 1.3979e-02 | 1.9919 | 8.2122e-03 | 2.7409 | 5.6218e-04 | 2.9860 | 1.0011 1.0160 1.0106
3072 1.0712e-02 | 1.9935 | 5.6693e-03 | 2.7751 | 3.7719e-04 | 2.9886 | 1.0010 1.0141 1.0093
4374 8.4691e-03 | 1.9947 | 4.0760e-03 | 2.8013 | 2.6521e-04 | 2.9904 | 1.0009 1.0126 1.0083
6000 6.8632e-03 | 1.9955 | 3.0276e-03 | 2.8221 | 1.9351e-04 | 2.9918 | 1.0008 1.0114 1.0076
7986 5.6742e-03 | 1.9961 | 2.3099e-03 | 2.8389 | 1.4548e-04 | 2.9928 | 1.0007 1.0104 1.0069
10368 | 4.7693e-03 | 1.9966 | 1.8021e-03 | 2.8528 | 1.1212e-04 | 2.9936 | 1.0007 1.0096 1.0064
13182 | 4.0647e-03 | 1.9970 | 1.4329e-03 | 2.8645 | 8.8227e-05 | 2.9943 | 1.0006 1.0089 1.0059
16464 | 3.5055e-03 | 1.9973 | 1.1580e-03 | 2.8744 | 7.0667e-05 | 2.9948 1.0006 1.0083 1.0055
20250 | 3.0542e-03 | 1.9976 | 9.4912e-04 | 2.8830 | 5.7473e-05 | 2.9953 1.0005 1.0077 1.0051
24576 | 2.6847e-03 | 1.9978 | 7.8759e-04 | 2.8905 | 4.7370e-05 | 2.9957 | 1.0005 1.0073 1.0048
29478 | 2.3785e-03 | 1.9980 | 6.6073e-04 | 2.8971 | 3.9502e-05 | 2.9960 | 1.0005 1.0068 1.0045
34992 | 2.1218e-03 | 1.9981 | 5.5971e-04 | 2.9030 | 3.3285e-05 | 2.9963 | 1.0004 1.0065 1.0043
41154 | 1.9045e-03 | 1.9983 | 4.7827e-04 | 2.9082 | 2.8306e-05 | 2.9965 | 1.0004 1.0061 1.0041
p=2

6 1.3908e-01 - 1.1144e-01 - 2.5449e-02 - 1.0224 1.0797 | 1.0512
48 1.9500e-02 | 2.8343 | 1.5002e-02 | 2.8930 | 1.8066e-03 | 3.8163 | 1.0091 1.0428 | 1.0297
162 5.9212e-03 | 2.9395 | 3.8635e-03 | 3.3459 | 3.6696e-04 | 3.9311 | 1.0056 1.0295 | 1.0207
384 2.5218e-03 | 2.9671 | 1.3982e-03 | 3.5329 | 1.1739e-04 | 3.9617 | 1.0041 1.0227 | 1.0159
750 1.2973e-03 | 2.9786 | 6.2114e-04 | 3.6362 | 4.8357e-05 | 3.9747 | 1.0032 1.0184 | 1.0129
1296 | 7.5287e-04 | 2.9847 | 3.1628e-04 | 3.7019 | 2.3399e-05 | 3.9816 | 1.0026 | 1.0155 | 1.0108
2058 | 4.7497e-04 | 2.9883 | 1.7750e-04 | 3.7474 | 1.2658e-05 | 3.9857 | 1.0022 1.0133 | 1.0093
3072 | 3.1859e-04 | 2.9906 | 1.0713e-04 | 3.7809 | 7.4312e-06 | 3.9885 | 1.0019 | 1.0117 | 1.0082

4374 | 2.2396e-04 | 2.9922 | 6.8426e-05 | 3.8065 | 4.6445e-06 | 3.9904 | 1.0017 | 1.0105 | 1.0073
6000 1.6338e-04 | 2.9934 | 4.5721e-05 | 3.8267 | 3.0499e-06 | 3.9918 | 1.0015 1.0094 | 1.0066
7986 1.2282e-04 | 2.9943 | 3.1699e-05 | 3.8431 | 2.0845e-06 | 3.9929 | 1.0014 1.0086 | 1.0060
10368 | 9.4640e-05 | 2.9950 | 2.2662e-05 | 3.8567 | 1.4726e-06 | 3.9937 | 1.0013 1.0079 | 1.0055
13182 | 7.4464e-05 | 2.9956 | 1.6628e-05 | 3.8681 | 1.0697e-06 | 3.9944 | 1.0012 1.0073 | 1.0051
16464 | 5.9637e-05 | 2.9960 | 1.2475e-05 | 3.8778 | 7.9555e-07 | 3.9949 | 1.0011 1.0068 | 1.0047
20250 | 4.8499e-05 | 2.9964 | 9.5411e-06 | 3.8862 | 6.0388e-07 | 3.9954 | 1.0010 | 1.0063 | 1.0044
24576 | 3.9971e-05 | 2.9967 | 7.4211e-06 | 3.8935 | 4.6661e-07 | 3.9958 | 1.0009 | 1.0060 | 1.0042
29478 | 3.3330e-05 | 2.9970 | 5.8585e-06 | 3.8999 | 3.6622e-07 | 3.9961 | 1.0009 | 1.0056 | 1.0039
34992 | 2.8082e-05 | 2.9972 | 4.6864e-06 | 3.9056 | 2.9143e-07 | 3.9964 | 1.0008 | 1.0053 | 1.0037
41154 | 2.3881e-05 | 2.9974 | 3.7932e-06 | 3.9107 | 2.3480e-07 | 3.9966 | 1.0008 | 1.0050 | 1.0035

6 2.3664e-02 - 1.0298e-02 - 2.5804e-03 - 1.0122 1.1056 | 1.0599
48 1.6983e-03 | 3.8005 | 6.8399e-04 | 3.9122 | 9.4132e-05 | 4.7768 | 1.0035 1.0580 | 1.0319
162 3.4568e-04 | 3.9261 | 1.1672e-04 | 4.3608 | 1.2825e-05 | 4.9161 | 1.0018 1.0397 | 1.0217
384 1.1066e-04 | 3.9593 | 3.1576e-05 | 4.5446 | 3.0846e-06 | 4.9532 | 1.0011 1.0302 | 1.0164
750 4.5598e-05 | 3.9733 | 1.1198e-05 | 4.6456 | 1.0178e-06 | 4.9690 | 1.0008 1.0243 | 1.0132
1296 | 2.2067e-05 | 3.9807 | 4.7448e-06 | 4.7098 | 4.1071e-07 | 4.9774 | 1.0006 | 1.0204 | 1.0110
2058 1.1939e-05 | 3.9851 | 2.2800e-06 | 4.7543 | 1.9054e-07 | 4.9824 | 1.0005 1.0175 | 1.0095
3072 | 7.0095e-06 | 3.9880 | 1.2032e-06 | 4.7869 | 9.7914e-08 | 4.9858 | 1.0004 | 1.0154 | 1.0083
4374 | 4.3811e-06 | 3.9901 | 6.8265e-07 | 4.8118 | 5.4412e-08 | 4.9881 | 1.0003 | 1.0137 | 1.0074
6000 | 2.8770e-06 | 3.9915 | 4.1032e-07 | 4.8315 | 3.2164e-08 | 4.9898 | 1.0003 | 1.0123 | 1.0067
7986 1.9664e-06 | 3.9927 | 2.5851e-07 | 4.8475 | 1.9988e-08 | 4.9911 | 1.0002 1.0112 | 1.0061
10368 | 1.3892e-06 | 3.9935 | 1.6935e-07 | 4.8607 | 1.2946e-08 | 4.9922 | 1.0002 1.0103 | 1.0056
13182 | 1.0091e-06 | 3.9942 | 1.1467e-07 | 4.8718 | 8.6808e-09 | 4.9930 | 1.0002 1.0095 | 1.0051
16464 | 7.5049e-07 | 3.9948 | 7.9862e-08 | 4.8812 | 5.9957e-09 | 4.9937 | 1.0002 1.0088 | 1.0048
20250 | 5.6968e-07 | 3.9953 | 5.6995e-08 | 4.8894 | 4.2481e-09 | 4.9942 | 1.0002 1.0083 | 1.0045
24576 | 4.4019e-07 | 3.9957 | 4.1552e-08 | 4.8965 | 3.0775e-09 | 4.9947 | 1.0001 1.0078 | 1.0042
29478 | 3.4548e-07 | 3.9960 | 3.0868e-08 | 4.9027 | 2.2734e-09 | 4.9952 | 1.0001 1.0073 | 1.0039
34992 | 2.7493e-07 | 3.9963 | 2.3317e-08 | 4.9083 | 1.7088e-09 | 4.9954 | 1.0001 1.0069 | 1.0037
41154 | 2.2150e-07 | 3.9966 | 1.7877e-08 | 4.9132 | 1.3043e-09 | 4.9958 | 1.0001 1.0065 | 1.0035

Table 4.11: L? errors and effectivity indices for problem (4.6.1) using the standard and
modified DG method on uniform meshes having N = 6n? elements for the spaces L£,, p =
1,2,3.
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p=2

N llells.q order llell oo = order lleclls o order | OA min | 9A max 0

6 4.9668e-02 - 2.4679e-02 - 5.0118e-01 - 0.6274 0.9190 | 0.8368
48 6.9806e-03 | 2.8309 | 5.6507e-02 | 3.1488 | 1.7462e-03 | 3.8210 | 0.8349 0.9790 | 0.9529
162 2.1540e-03 | 2.8999 | 1.3717e-02 | 3.4917 | 3.5412e-04 | 3.9351 | 0.9045 0.9894 | 0.9764
384 9.2719e-04 | 2.9301 | 4.8199e-03 | 3.6355 | 1.1318e-04 | 3.9649 | 0.9357 0.9932 | 0.9852
750 4.8041e-04 | 2.9466 | 2.1037e-03 | 3.7154 | 4.6596e-05 | 3.9773 | 0.9526 0.9951 0.9895
1296 | 2.8021e-04 | 2.9568 | 1.0586e-03 | 3.7665 | 2.2537e-05 | 3.9838 | 0.9630 0.9962 | 0.9920
2058 | 1.7745e-04 | 2.9638 | 5.8915e-04 | 3.8019 | 1.2188e-05 | 3.9876 | 0.9698 0.9969 | 0.9936
3072 | 1.1937e-04 | 2.9689 | 3.5337e-04 | 3.8280 | 7.1541e-06 | 3.9901 | 0.9747 | 0.9974 | 0.9946
4374 | 8.4108e-05 | 2.9727 | 2.2459e-04 | 3.8480 | 4.4705e-06 | 3.9919 | 0.9782 0.9978 | 0.9954
6000 | 6.1472e-05 | 2.9757 | 1.4948e-04 | 3.8638 | 2.9352e-06 | 3.9931 | 0.9810 0.9980 | 0.9960
7986 | 4.6281e-05 | 2.9781 | 1.0331le-04 | 3.8767 | 2.0059e-06 | 3.9941 | 0.9831 0.9983 | 0.9965
p=3

6 1.0330e-02 - 2.2676e-03 - 8.2930e-02 - 0.8113 1.0009 | 0.9682
48 7.8372e-04 | 3.7204 | 4.6920e-03 | 4.1436 | 8.0152e-05 | 4.8223 | 0.9108 1.0129 | 0.9904
162 1.6275e-04 | 3.8766 | 7.5859e-04 | 4.4940 | 1.0811e-05 | 4.9409 | 0.9423 1.0113 | 0.9947
384 5.2635e-05 | 3.9239 | 1.9974e-04 | 4.6385 | 2.5877e-06 | 4.9701 | 0.9575 1.0095 | 0.9964
750 2.1822e-05 | 3.9458 | 6.9698e-05 | 4.7183 | 8.5137e-07 | 4.9818 | 0.9664 1.0080 | 0.9973
1296 | 1.0604e-05 | 3.9582 | 2.9214e-05 | 4.7692 | 3.4291e-07 | 4.9877 | 0.9722 1.0070 | 0.9978
2058 | 5.7539e-06 | 3.9661 | 1.3930e-05 | 4.8043 | 1.5887e-07 | 4.9911 | 0.9764 1.0061 | 0.9982
3072 | 3.3857e-06 | 3.9715 | 7.3087e-06 | 4.8303 | 8.1561e-08 | 4.9932 | 0.9794 1.0055 | 0.9984
4374 | 2.1198e-06 | 3.9755 | 4.1282e-06 | 4.8498 | 4.5289e-08 | 4.9947 | 0.9818 1.0049 | 0.9986
6000 | 1.3939e-06 | 3.9785 | 2.4723e-06 | 4.8661 | 2.6755e-08 | 4.9955 | 0.9836 1.0045 | 0.9988

6 1.7291e-03 - 3.0548e-04 - 7.2794e-03 - 0.8908 | 0.9833 | 0.9673
48 6.4882e-05 | 4.7361 | 2.1363e-04 | 5.0906 | 5.8286e-06 | 5.7118 | 0.9530 | 0.9942 | 0.9881
162 | 8.9309e-06 | 4.8908 | 2.3302e-05 | 5.4646 | 5.3211e-07 | 5.9035 | 0.9712 | 0.9967 | 0.9931
384 | 2.1595e-06 | 4.9347 | 4.6310e-06 | 5.6165 | 9.6075e-08 | 5.9501 | 0.9795 | 0.9977 | 0.9953
750 | 7.1488e-07 | 4.9544 | 1.2976e-06 | 5.7017 | 2.5376e-08 | 5.9662 | 0.9839 | 0.9984 | 0.9964
1296 | 2.8912e-07 | 4.9653 | 4.5364e-07 | 5.7643 | 8.5465e-09 | 5.9690 | 0.9864 | 0.9989 | 0.9971
2058 | 1.3436e-07 | 4.9711 | 1.8439e-07 | 5.8401 | 4.1520e-09 | 4.6833 | 0.9808 | 0.9994 | 0.9972
3072 | 6.9134e-08 | 4.9763 | 8.5564e-08 | 5.7498 | 2.1395e-09 | 4.9653 | 0.9790 1.0007 | 0.9979

4374 | 3.8469e-08 | 4.9769 | 4.3803e-08 | 5.6847 | 1.5483e-09 | 2.7456 | 0.9409 1.0030 | 0.9978

Table 4.12: L? errors and effectivity indices for problem (4.6.1) using the modified DG
method on uniform meshes having N = 6n® elements for the spaces U, p = 2, 3, 4.
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p=2
N # elements A11 | Ocor; | Ocovavy | Ocovovy | Oco,vavy

48 48 2.8930 3.1488 3.1734 3.1755
162 162 3.3459 3.4917 3.5062 3.5064
384 384 3.5329 3.6355 3.6458 3.6457
750 750 3.6362 3.7154 3.7235 3.7233
1296 1296 3.7019 3.7665 3.7731 3.7728
2058 2058 3.7474 3.8019 3.8075 3.8073
3072 3072 3.7809 3.8280 3.8329 3.8326
4374 4374 3.8065 3.8480 3.8523 3.8521
6000 6000 3.8267 3.8638 3.8677 3.8675
7986 7986 3.8431 3.8767 3.8802 3.8800

p=3
48 48 3.9122 4.1436 4.1903 4.1639
162 162 4.3608 4.4940 4.5197 4.5054
384 384 4.5446 4.6385 4.6564 4.6465
750 750 4.6457 4.7183 4.7321 4.7245
1296 1296 4.7098 4.7692 4.7803 4.7742
2058 2058 4.7543 4.8043 4.8137 4.8086
3072 3072 4.7867 4.8303 4.8384 4.8340
4374 4374 4.8125 4.8498 4.8569 4.8531
6000 6000 4.8307 4.8661 4.8723 4.8689

p=4
48 48 4.9279 5.0282 5.1077 5.0906
162 162 5.3699 5.4295 5.4737 5.4646
384 384 5.5534 5.5908 5.6213 5.6165
750 750 5.6505 5.6804 5.7087 5.7017
1296 1296 5.6910 5.7588 5.7626 5.7643
2058 2058 5.6801 5.8259 5.8356 5.8401
3072 3072 6.0729 5.7381 5.7099 5.7498
4374 4374 5.2478 5.5077 5.6834 5.6847

Table 4.13: Orders of convergence for the errors on I'y, vovs, vavy, and vivy, for problem
(4.6.1) using the modified DG method on uniform meshes having N = 6n® elements for the
spaces Uy, p = 2, 3,4.
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U, for p = 2,3,4. We present L> error ||e||e = on the set I'* of all superconvergence points,
the L? errors ||e|| and |le.|| = ||lu — U — E||, their orders of convergence, maximum and
minimum element effectivity indices, and global effectivity indices in Table 4.14. Moreover
we present the order of convergence of the maximum errors on I'y, vovs, vovy, v3vy in Tables
4.15, 4.16, 4.17, 4.18, 4.19, 4.20, respectively, for elements meshes of Type 1, 2, 3, and Class
I, I, I11.

We observe that the effectivity indices for the modified DG method converge to unity under
mesh refinement, and the DG solution is O(h?*?) convergent to the true solution for elements
of Type 1 on the edges vovs, vovy, vavy, for all meshes and polynomial degrees. Similarly,
we observe O(hP™?) superconvergence for elements of Type 2 on edge vyvs, and on edges
VaV3, Vovy for elements of Type 3.

Next, we solve (4.6.2) using the modified DG method on unstructured tetrahedral meshes
having N = 24,476,2121,5846 elements using the spaces U, for p = 2,3,4. The L error
||e||cor+, the L? errors ||e|| and ||e.||, their orders of convergence, maximum and minimum
element effectivity indices, and global effectivity indices presented in Table 4.21 show that
the method DG method exhibits optimal convergence rates and the L error on the set of all
superconvergence points is O(hP*2) convergent to the true solution. Moreover, the effectivity
indices converge to unity under mesh refinement.

We also solve problem (4.6.2) using the modified DG method and the approximated weak
formulation for the error (4.5.7) on uniform meshes having N = 5n? elements for the enriched
finite element spaces U, with p = 2,3. We present the L™ error ||e||o =, the L? errors ||e||
and ||e.||, their orders of convergence, maximum and minimum element effectivity indices,
and global effectivity indices in Table 4.22. We again observe that the error estimates are
accurate and asymptotically exact under mesh refinement.

Example 4.6.3.

Let us consider the following linear hyperbolic problem

—xr —2y+ 3z
Vita?+y?+ 22

(z,y,2) € R =1[0,1]", (4.6.3a)

—Up — 2Uy + 3u, =

subject to the boundary conditions on the inflow boundary I'~ such that the exact solution

is given by
1

IRV TR
We solve (4.6.3) with the exact inflow boundary condition, U~ = wu, the modified DG

u(z,y,2) (4.6.3b)

methods on uniform meshes having N = 6n, n = 1,2,...,10 tetrahedral elements for
p=2,3,4. We present L™ error ||e||o r+ on the set ['* of all superconvergence points, the L?
errors |le|| and ||e.|| = ||u — U — E||, their orders of convergence, maximum and minimum

element effectivity indices, and global effectivity indices in Table 4.23. Moreover we present
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p=2

N ||e||2,(2 order ”e”oo,l"* order ”eCHQ,Q order BA,min OA,max 0

6 4.3725e-02 - 2.8642e-02 - 4.3741e-01 - 0.3751 0.8870 | 0.7433
48 5.8355e-03 | 2.9055 | 5.1102e-02 | 3.0975 | 2.1251e-03 | 3.7525 | 0.5268 1.0574 | 0.9043
162 1.7927e-03 | 2.9108 | 1.2296e-02 | 3.5134 | 4.3979e-04 | 3.8852 | 0.6929 1.0550 0.9443
384 7.7238e-04 | 2.9269 | 4.3299e-03 | 3.6280 | 1.4203e-04 | 3.9288 | 0.7796 1.0442 0.9615
750 4.0042e-04 | 2.9441 | 1.8896e-03 | 3.7157 | 5.8804e-05 | 3.9520 | 0.8332 1.0355 | 0.9713
1296 | 2.3367e-04 | 2.9541 | 9.5099e-04 | 3.7661 | 2.8560e-05 | 3.9611 | 0.8678 1.0296 | 0.9773
2058 | 1.4806e-04 | 2.9601 | 5.2928e-04 | 3.8014 | 1.5500e-05 | 3.9646 | 0.8915 1.0254 | 0.9810
3072 | 9.9659e-05 | 2.9646 | 3.1747e-04 | 3.8277 | 9.1244e-06 | 3.9685 | 0.9086 1.0222 | 0.9837
4374 | 7.0250e-05 | 2.9689 | 2.0178e-04 | 3.8477 | 5.7119e-06 | 3.9767 | 0.9213 1.0197 | 0.9858
6000 | 5.1361e-05 | 2.9725 | 1.3431e-04 | 3.8636 | 3.7553e-06 | 3.9805 | 0.9311 1.0177 | 0.9875
7986 | 3.8681e-05 | 2.9749 | 9.2821e-05 | 3.8764 | 2.5697e-06 | 3.9807 | 0.9389 1.0161 | 0.9887
p=3

6 7.3060e-03 - 3.2978e-03 - 7.1616e-02 - 0.5682 1.0821 0.9471
48 5.5455e-04 | 3.7197 | 3.9308e-03 | 4.1874 | 1.2706e-04 | 4.6980 | 0.7868 1.1703 0.9941
162 1.1593e-04 | 3.8601 | 6.3825e-04 | 4.4834 | 1.7393e-05 | 4.9045 | 0.8717 1.1053 1.0000
384 3.7672e-05 | 3.9075 | 1.6731le-04 | 4.6540 | 4.2177e-06 | 4.9248 | 0.9120 1.0758 1.0018
750 1.5665e-05 | 3.9324 | 5.8336e-05 | 4.7218 | 1.3914e-06 | 4.9696 | 0.9345 1.0591 1.0022
1296 | 7.6286e-06 | 3.9464 | 2.4424e-05 | 4.7754 | 5.6292e-07 | 4.9635 | 0.9484 1.0484 1.0023
2058 | 4.1460e-06 | 3.9556 | 1.1889e-05 | 4.6705 | 2.6111e-07 | 4.9835 | 0.9577 1.0410 1.0021
3072 | 2.4426e-06 | 3.9621 | 6.4144e-06 | 4.6210 | 1.3437e-07 | 4.9753 | 0.9644 1.0356 1.0020
4374 | 1.5308e-06 | 3.9672 | 3.7034e-06 | 4.6635 | 7.4662e-08 | 4.9888 | 0.9693 1.0314 1.0019

6 1.2089e-03 - 4.1217e-04 - 8.0347e-03 - 0.7311 0.9935 | 0.9338
48 4.4790e-05 | 4.7544 | 2.1003e-04 | 5.2576 | 8.4628e-06 | 5.6060 | 0.8560 1.0809 | 0.9849
162 | 6.1527e-06 | 4.8958 | 2.3005e-05 | 5.4542 | 7.8401e-07 | 5.8674 | 0.9178 1.0550 | 0.9949
384 1.4872e-06 | 4.9359 | 4.5090e-06 | 5.6648 | 1.4269e-07 | 5.9224 | 0.9446 1.0410 | 0.9986
750 | 4.9239e-07 | 4.9538 | 1.2564e-06 | 5.7264 | 3.7892e-08 | 5.9420 | 0.9590 1.0326 | 1.0001
1296 | 1.9919e-07 | 4.9640 | 4.3894e-07 | 5.7681 | 1.2820e-08 | 5.9441 | 0.9676 1.0271 | 1.0009
2058 | 9.2576e-08 | 4.9705 | 1.7919e-07 | 5.8121 | 5.1115e-09 | 5.9650 | 0.9731 1.0245 | 1.0011
3072 | 4.7644e-08 | 4.9746 | 8.2426e-08 | 5.8153 | 2.3384e-09 | 5.8566 | 0.9767 | 1.0231 | 1.0012

Table 4.14: L?* errors and effectivity indices for problem (4.6.2) using the modified DG
method on uniform meshes having N = 6n® elements for the spaces U,, p = 2,3, 4.
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p=2
N # elements Type 1 Oco,ry Ooo,vavs Ooo,vavy Ooo,vyva
48 8 2.8038 3.1786 2.8480 3.1387
162 27 2.7686 3.5281 3.2898 3.5064
384 64 2.7311 3.6569 3.5156 3.6413
750 125 2.5240 3.7322 3.6143 3.7208
1296 216 2.6151 3.7799 3.6851 3.7707
2058 343 2.6767 3.8132 3.7322 3.8055
3072 512 2.7212 3.8377 3.7673 3.8311
4374 729 2.7549 3.8566 3.7943 3.8508
6000 1000 2.7813 3.8715 3.8156 3.8663
7986 1331 2.8026 3.8835 3.8329 3.8789

p=3
48 8 3.2622 4.1515 3.6292 4.1341
162 27 3.5747 4.4979 4.3120 4.4831
384 64 3.6536 4.6451 4.4985 4.6355
750 125 3.6587 4.7225 4.6082 4.7146
1296 216 3.7212 4.7732 4.6780 4.7668
2058 343 3.7642 4.8078 4.7268 4.8023
3072 512 3.7957 4.8334 4.7626 4.8285
4374 729 3.8197 4.8522 4.7899 4.8489

p=4
48 8 4.2546 5.1705 5.0286 5.0473
162 27 4.5999 5.4989 5.2932 5.2648
384 64 4.5428 5.6466 5.5156 5.5605
750 125 4.5756 5.7198 5.3741 5.5960
1296 216 4.6433 5.8292 5.7317 5.5686
2058 343 4.7259 5.7325 5.3861 6.0339
3072 512 4.7514 5.5983 5.2591 5.5711

Table 4.15: Orders of convergence for the errors on I'y, vovs, vavy, and vivy, for problem
(4.6.2) using the modified DG method on uniform meshes having N = 6n® elements for the
spaces Uy, p = 2,3, 4, on elements of Type 1.
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p=2
N # elements Type 2 | O 1y Ooo,vavs Ooo,vavy Ooo,vyva
48 32 1.7344 2.8676 2.9837 2.8932
162 108 2.1228 3.1570 2.5026 3.0829
384 256 2.3491 3.4564 2.5135 2.4875
750 500 2.4993 3.5681 2.6226 2.5860
1296 864 2.5891 3.6439 2.6908 2.6621
2058 1372 2.6518 3.6979 2.7383 2.7144
3072 2048 2.6978 3.7373 2.7731 2.7527
4374 2916 2.7331 3.7676 2.7997 2.7818
6000 4000 2.7609 3.7917 2.8208 2.8048
7986 5324 2.7835 3.8112 2.8378 2.8235
p=3
48 32 2.9155 3.4827 3.2554 3.4953
162 108 3.3157 4.1872 3.3617 3.4136
384 256 3.5173 4.4331 3.5483 3.5829
750 500 3.6221 4.5547 3.6489 3.6436
1296 864 3.6904 4.6333 3.7130 3.7078
2058 1372 3.7374 4.6895 3.7572 3.7530
3072 2048 3.7721 4.7303 3.7896 3.7860
4374 2916 3.7987 4.7615 3.8143 3.8112
p=4
48 32 3.9234 4.6502 3.9048 4.0522
162 108 4.3828 5.1121 4.3838 4.4029
384 256 4.5607 5.3602 4.5583 4.5751
750 500 4.6596 5.5441 4.6581 4.6701
1296 864 4.7209 5.5713 4.7207 4.7283
2058 1372 4.7649 5.7484 4.7640 4.7731
3072 2048 4.7974 5.8304 4.7962 4.8017

Table 4.16: Orders of convergence for the errors on I'y, vovs, vavy, and vivy, for problem
(4.6.2) using the modified DG method on uniform meshes having N = 6n® elements for the
spaces Uy, p = 2,3, 4, and elements of Type 2.

108



p=2
N # elements Type 3 | O 1y Ooo,vavs Ooo,vavy Ooo,vyva
48 8 1.6071 0.5911 3.0047 3.0975
162 27 2.0373 2.9660 2.9971 3.5134
384 64 2.2840 3.3913 2.4811 3.6280
750 125 2.4512 3.4886 2.5983 3.7157
1296 216 2.5509 3.5897 2.6724 3.7661
2058 343 2.6200 3.6518 2.7173 3.8014
3072 512 2.6707 3.6978 2.7537 3.8277
4374 729 2.7094 3.7332 2.7827 3.8477
6000 1000 2.7399 3.7612 2.8056 3.8636
7986 1331 2.7647 3.7838 2.8241 3.8764
p=3
48 8 2.9578 09111 3.5044 4.1874
162 27 3.3802 4.1691 3.3688 4.4834
384 64 3.5660 4.3269 3.5492 4.6540
750 125 3.6340 4.5120 3.6512 4.7218
1296 216 3.6821 4.5891 3.7153 4.7754
2058 343 3.7304 4.6563 3.7596 4.6705
3072 512 3.7660 4.7006 3.7919 4.6210
4374 729 3.7933 4.7369 3.8165 4.6635
p=4
48 8 4.0845 1.2256 3.9979 5.2576
162 27 4.4537 5.2896 4.3934 5.4542
384 64 4.6133 5.2910 4.5660 5.6648
750 125 4.6977 5.5072 4.6640 5.7264
1296 216 4.6327 5.6259 4.7249 5.7681
2058 343 4.6776 5.5535 4.7665 5.8121
3072 512 4.7240 5.5632 4.7965 5.8153

Table 4.17: Orders of convergence for the errors on I'y, vovs, vavy, and vivy, for problem
(4.6.2) using the modified DG method on uniform meshes having N = 6n® elements for the
spaces Uy, p = 2,3, 4, and elements of Type 3.
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p=2
N # elements Class I | O 1y Oco,vavs Ooo,vavy Oco,vsva
48 8 1.6071 0.5911 3.0047 3.0975
162 27 2.0373 2.9660 2.9971 3.5134
384 64 2.2840 3.3913 2.4811 3.6280
750 125 2.4512 3.4886 2.5983 3.7157
1296 216 2.5509 3.5897 2.6724 3.7661
2058 343 2.6200 3.6518 2.7173 3.8014
3072 512 2.6707 3.6978 2.7537 3.8277
4374 729 2.7094 3.7332 2.7827 3.8477
6000 1000 2.7399 3.7612 2.8056 3.8636
7986 1331 2.7647 3.7838 2.8241 3.8764
p=3
48 8 2.9578 0.9111 3.5044 4.1874
162 27 3.3802 4.1691 3.3688 4.4834
384 64 3.5660 4.3269 3.5492 4.6540
750 125 3.6340 4.5120 3.6512 4.7218
1296 216 3.6821 4.5891 3.7153 4.7754
2058 343 3.7304 4.6563 3.7596 4.6705
3072 512 3.7660 4.7006 3.7919 4.6210
4374 729 3.7933 4.7369 3.8165 4.6635
p=4
48 8 4.0845 1.2256 3.9979 5.2576
162 27 4.4537 5.2896 4.3934 5.4542
384 64 4.6133 5.2910 4.5660 5.6648
750 125 4.6977 5.5072 4.6640 5.7264
1296 216 4.6327 5.6259 4.7249 5.7681
2058 343 4.6776 5.5535 4.7665 5.8121
3072 512 4.7240 5.5632 4.7965 5.8153

Table 4.18: Orders of convergence for the errors on I'y, vovs, vavy, and vivy, for problem
(4.6.2) using the modified DG method on uniform meshes having N = 6n® elements for the
spaces Uy, p = 2,3, 4, and elements of Class 1.
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p=2
N # elements Class II | O 1y Oco,vavs Ooo,vovy Oco,vsvy
48 32 1.7344 2.8676 2.9837 2.8932
162 108 2.1228 3.1570 2.5026 3.0829
384 256 2.3491 3.4564 2.5135 2.4875
750 500 2.4993 3.5681 2.6226 2.5860
1296 864 2.5891 3.6439 2.6908 2.6621
2058 1372 2.6518 3.6979 2.7383 2.7144
3072 2048 2.6978 3.7373 2.7731 2.7527
4374 2916 2.7331 3.7676 2.7997 2.7818
6000 4000 2.7609 3.7917 2.8208 2.8048
7986 5324 2.7835 3.8112 2.8378 2.8235
p=3
48 32 2.9155 3.4827 3.2554 3.4953
162 108 3.3157 4.1872 3.3617 3.4136
384 256 3.5173 4.4331 3.5483 3.5829
750 500 3.6221 4.5547 3.6489 3.6436
1296 864 3.6904 4.6333 3.7130 3.7078
2058 1372 3.7374 4.6895 3.7572 3.7530
3072 2048 3.7721 4.7303 3.7896 3.7860
4374 2916 3.7987 4.7615 3.8143 3.8112
p=4
48 32 3.9234 4.6502 3.9048 4.0522
162 108 4.3828 5.1121 4.3838 4.4029
384 256 4.5607 5.3602 4.5583 4.5751
750 500 4.6596 5.5441 4.6581 4.6701
1296 864 4.7209 5.5713 4.7207 4.7283
2058 1372 4.7649 5.7484 4.7640 4.7731
3072 2048 4.7974 5.8304 4.7962 4.8017

Table 4.19: Orders of convergence for the errors on I'y, vovs, vavy, and vivy, for problem
(4.6.2) using the modified DG method on uniform meshes having N = 6n® elements for the
spaces Uy, p = 2,3, 4, and elements of Class I1.
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p=2
N # elements Class III | Ooor; | Ooco,vovy | Ooo,vavs | Ooco,vava
48 8 2.8038 3.1786 2.8480 3.1387
162 27 2.7686 3.5281 3.2898 3.5064
384 64 2.7311 3.6569 3.5156 3.6413
750 125 2.5240 3.7322 3.6143 3.7208
1296 216 2.6151 3.7799 3.6851 3.7707
2058 343 2.6767 3.8132 3.7322 3.8055
3072 512 2.7212 3.8377 3.7673 3.8311
4374 729 2.7549 3.8566 3.7943 3.8508
6000 1000 2.7813 3.8715 3.8156 3.8663
7986 1331 2.8026 3.8835 3.8329 3.8789
p=3
48 8 3.2622 4.1515 3.6292 4.1341
162 27 3.5747 4.4979 4.3120 4.4831
384 64 3.6536 4.6451 4.4985 4.6355
750 125 3.6587 4.7225 4.6082 4.7146
1296 216 3.7212 4.7732 4.6780 4.7668
2058 343 3.7642 4.8078 4.7268 4.8023
3072 512 3.7957 4.8334 4.7626 4.8285
4374 729 3.8197 4.8522 4.7899 4.8489
p=4
48 8 4.2546 5.1705 5.0286 5.0473
162 27 4.5999 5.4989 5.2932 5.2648
384 64 4.5428 5.6466 5.5156 5.5605
750 125 4.5756 5.7198 5.3741 5.5960
1296 216 4.6433 5.8292 5.7317 5.5686
2058 343 4.7259 5.7325 5.3861 6.0339
3072 512 4.7514 5.5983 5.2591 5.5711

Table 4.20: Orders of convergence for the errors on I'y, vovs, vavy, and vivy, for problem
(4.6.2) using the modified DG method on uniform meshes having N = 6n® elements for the
spaces Uy, p = 2,3, 4, and elements of Class I11.

p=2

N llell2.0 order llell oo 1 order lleclls.0 order | OA min | 9A max 0

24 4.1814e-03 - 1.0273e-03 - 1.5152e-02 - 0.0023 1.0344 1.0056
476 2.0470e-04 | 4.3524 | 1.2220e-03 | 3.6322 | 4.3198e-05 | 4.5718 | 0.0009 1.0972 | 0.9690
2121 | 4.5968e-05 | 3.6837 | 2.1566e-04 | 4.2778 | 5.3303e-06 | 5.1605 | 0.0000 1.1582 0.9919
5846 | 1.8354e-05 | 3.1914 | 6.2261e-05 | 4.3186 | 1.5819e-06 | 4.2227 | 0.0007 1.2630 0.9956
p=3

24 2.7200e-04 - 4.5241e-05 - 8.2571e-04 - 0.0030 1.0163 1.0032
476 6.7252e-06 | 5.3379 | 4.1565e-05 | 4.3122 | 1.0089e-06 | 5.4868 | 0.0023 1.1442 | 0.9925
2121 | 8.8561e-07 | 5.0000 | 4.0882e-06 | 5.7197 | 8.1894e-08 | 6.1934 | 0.0002 1.1976 | 0.9995
5846 | 2.6704e-07 | 4.1673 | 8.9224e-07 | 5.2910 | 1.8262e-08 | 5.2161 | 0.0035 1.2248 | 0.9994

Table 4.21: L? errors and effectivity indices for problem (4.6.2) using the modified DG
method on unstructured meshes having N elements for the spaces U,, p = 2, 3.
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p=2

N HeH27Q order ”e”oo,l"* order HeCHZQ order 9A,min 0A,max 0

5 2.0498e-002 - 1.6645e-002 - 3.9521e-001 - 0.0000 0.7618 | 0.3468
40 4.3270e-003 | 2.2441 | 2.4822e-002 | 3.9930 | 9.2981e-004 | 4.1620 | 0.0000 1.0282 | 0.9954
135 1.2824e-003 | 2.9994 | 9.6183e-003 | 2.3382 | 2.1373e-004 | 3.6261 0.0000 1.0280 0.9957
320 5.8326e-004 | 2.7385 | 2.5880e-003 | 4.5634 | 7.1796e-005 | 3.7920 | 0.0000 1.0249 1.0004
625 3.0035e-004 | 2.9743 | 1.4353e-003 | 2.6417 | 3.1431e-005 | 3.7019 | 0.0000 1.0218 1.0001
1080 | 1.7787e-004 | 2.8736 | 6.0712e-004 | 4.7193 | 1.5947e-005 | 3.7216 | 0.0000 1.0192 1.0005
1715 | 1.1247e-004 | 2.9731 | 3.9712e-004 | 2.7537 | 9.0136e-006 | 3.7011 | 0.0000 1.0170 | 1.0002
2560 | 7.6148e-005 | 2.9210 | 2.0940e-004 | 4.7929 | 5.5100e-006 | 3.6858 | 0.0000 1.0167 | 1.0001
3645 | 5.3635e-005 | 2.9756 | 1.5035e-004 | 2.8123 | 3.5747e-006 | 3.6735 | 0.0000 1.0167 | 0.9999
5000 | 3.9332e-005 | 2.9438 | 9.0330e-005 | 4.8359 | 2.4353e-006 | 3.6429 | 0.0000 1.0164 | 0.9998
p=3

5 2.6776e-003 - 1.8089e-003 - 5.3071e-002 - 0.0098 0.6553 | 0.4775
40 2.8585e-004 | 3.2276 | 1.6517e-003 | 5.0059 | 4.8552e-005 | 5.2195 | 0.0001 1.0604 | 0.9994
135 5.6892e-005 | 3.9814 | 4.2358e-004 | 3.3561 | 7.4270e-006 | 4.6305 | 0.0000 1.0504 0.9976
320 1.9447e-005 | 3.7315 | 8.5459e-005 | 5.5641 | 1.8304e-006 | 4.8684 | 0.0000 1.0412 1.0013
625 8.0233e-006 | 3.9675 | 3.7755e-005 | 3.6610 | 6.3632e-007 | 4.7351 | 0.0000 1.0427 | 1.0007
1080 | 3.9628e-006 | 3.8689 | 1.3328e-005 | 5.7112 | 2.6536e-007 | 4.7972 | 0.0000 1.0376 1.0009
1715 | 2.1493e-006 | 3.9691 | 7.4459e-006 | 3.7766 | 1.2736e-007 | 4.7620 | 0.0000 1.0360 | 1.0005
2560 | 1.2738e-006 | 3.9176 | 3.4423e-006 | 5.7779 | 6.7236e-008 | 4.7839 | 0.0000 1.0326 1.0005
3645 | 7.9778e-007 | 3.9728 | 2.1901e-006 | 3.8391 | 3.8339e-008 | 4.7693 | 0.0000 1.0303 1.0003

Table 4.22: L? errors and effectivity indices for problem (4.6.2) using the modified DG
method and the approximated weak formulation for the error (4.5.7) on uniform meshes
having N = 5n® elements for the spaces U,, p = 2,3.

the order of convergence of the maximum errors on I'y, vovs, vovy, v3vy in Table 4.24, 4.25,
4.26, 4.27, 4.28, 4.29, respectively, for elements meshes of Type 1, 2, 3, and Class I, II, II1.

We again observe that the error estimates are accurate and asymptotically exact under mesh
refinement. The DG solution is O(hP™2) superconvergent, respectively, on the face T’y and
on the edges vovs, vovy, vavy, with respect to each type of elements.

Conclusion

We investigated higher-order discontinuous Galerkin methods for three-dimensional scalar
first-order hyperbolic problems on tetrahedral meshes. We construct simple, efficient and
asymptotically correct a posterior: error estimates for discontinuous finite element solutions
where we explicitly write the basis functions for the error spaces corresponding to the enriched
finite element spaces £,, U, and M,,. We showed that the discretization error on tetrahedral
elements having one inflow and one outflow faces, is O(hP*?) superconvergent on the outflow
face and on the three edges of the inflow face. On tetrahedral elements with one inflow face,
the discretization error is O(hP*?) superconvergent on the three edges of the inflow face.
Furthermore, we show that, on tetrahedral elements with two inflow faces, the DG solution
is O(hP™2) superconvergent on the edge shared by two of the inflow faces. On elements
with two inflow and one outflow faces and on elements with three inflow faces, the DG
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l p=2 l
N HGH2,Q Ol"deI‘ ”6”00,1"* OI‘dGI‘ ”66”2 Q OI‘deI‘ GA,min 9A,max ‘9
6 2.4735e-03 - 1.5738e-03 - 1.3768e-02 - 0.2194 1.0386 | 0.8477
48 2.7216e-04 | 3.1840 | 1.1629e-03 | 3.5655 8.3903e-05 4.2294 | 0.1256 1.1875 | 0.9564
162 7.4772e-05 | 3.1863 | 3.0457e-04 | 3.3044 1.8777e-05 3.6922 | 0.0125 1.2010 | 0.9711
384 3.0502e-05 | 3.1169 | 1.6570e-04 | 2.1160 6.1565e-06 3.8762 | 0.0063 1.1721 | 0.9822
750 1.5329e-05 | 3.0834 | 8.3577e-05 | 3.0670 2.5563e-06 3.9390 | 0.0023 1.1615 | 0.9886
1296 | 8.7671e-06 | 3.0645 | 4.4234e-05 | 3.4899 1.2434e-06 3.9529 | 0.0074 1.1641 | 0.9925
2058 | 5.4769e-06 | 3.0520 | 2.5029e-05 | 3.6940 6.7503e-07 | 3.9626 | 0.0001 1.1417 | 0.9948
3072 | 3.6480e-06 | 3.0432 | 1.5293e-05 | 3.6895 3.9720e-07 | 3.9715 | 0.0069 1.1533 | 0.9964
4374 | 2.5509e-06 | 3.0370 | 9.9825e-06 | 3.6214 2.4870e-07 3.9751 | 0.0083 1.1380 0.9975
4374 | 2.5509e-06 | 3.0370 | 9.9825e-06 | 3.6214 2.4870e-07 3.9751 | 0.0083 1.1380 0.9975
6000 | 1.8533e-06 | 3.0322 | 6.7659e-06 | 3.6916 1.6353e-07 3.9794 | 0.0043 1.1446 | 0.9982
7986 | 1.3887e-06 | 3.0284 | 4.7351le-06 | 3.7444 1.1187e-07 3.9830 | 0.0015 1.1344 | 0.9988
p=3
6 6.2358e-04 - 1.4087e-04 - 1.3506e-03 - 0.7993 0.9595 | 0.9195
48 2.9621e-05 | 4.3959 | 4.4939e-04 | 1.5875 1.4040e-05 3.3267 | 0.3408 1.2056 | 0.8767
162 5.8470e-06 | 4.0018 | 1.0197e-04 | 3.6581 1.9929e-06 4.8150 | 0.2043 1.1569 | 0.9420
384 1.8183e-06 | 4.0602 | 2.6299e-05 | 4.7105 4.8401e-07 | 4.9195 | 0.3089 1.1362 | 0.9658
750 7.3480e-07 | 4.0603 | 8.3676e-06 | 5.1320 1.6135e-07 | 4.9229 | 0.2655 1.2249 | 0.9774
1296 | 3.5100e-07 | 4.0523 | 3.7414e-06 | 4.4148 6.5636e-08 4.9334 | 0.2900 1.2195 | 0.9841
2058 | 1.8816e-07 | 4.0446 | 1.8192e-06 | 4.6776 3.0630e-08 4.9441 | 0.3491 1.2301 0.9881
3072 | 1.0973e-07 | 4.0384 | 1.0288e-06 | 4.2688 1.5811e-08 4.9524 | 0.3510 1.2708 0.9908
4374 | 6.8234e-08 | 4.0337 | 5.9625e-07 | 4.6311 8.8164e-09 4.9589 | 0.3279 1.2136 | 0.9927
4374 | 6.8234e-08 | 4.0337 | 5.9625e-07 | 4.6311 8.8164e-09 4.9589 | 0.3279 1.2136 | 0.9927
6000 | 4.4628e-08 | 4.0298 | 3.5625e-07 | 4.8883 5.2257e-09 4.9641 | 0.3554 1.3424 | 0.9940
p=4
[§ 5.3701e-05 - 5.6911e-05 - 7.9804e-04 - 0.4708 2.8159 | 1.0038
48 5.8464e-06 | 3.1993 | 7.9629e-05 | 3.3251 2.5218e-06 4.4962 | 0.2592 1.0893 | 0.9275
162 7.3096e-07 | 5.1280 | 7.3985e-06 | 5.8602 2.0676e-07 6.1686 | 0.2593 1.1472 | 0.9627
384 1.6816e-07 | 5.1079 | 1.7894e-06 | 4.9339 3.9132e-08 5.7864 | 0.1469 1.1369 | 0.9722
750 5.4166e-08 | 5.0768 | 5.0553e-07 | 5.6645 1.0521e-08 5.8864 | 0.3816 1.1303 0.9791
1296 | 2.1529e-08 | 5.0606 | 1.7402e-07 | 5.8493 3.5660e-09 5.9344 | 0.3759 1.1208 0.9838
2058 | 9.8844e-09 | 5.0499 | 7.5324e-08 | 5.4321 1.4250e-09 5.9506 | 0.2787 1.1061 | 0.9869
3072 | 5.0415e-09 | 5.0419 | 4.0444e-08 | 4.6572 | 6.4787e-010 | 5.9030 | 0.2786 1.0961 | 0.9889
3072 | 5.0415e-09 | 5.0419 | 4.0444e-08 | 4.6572 | 6.4787e-010 | 5.9030 | 0.2786 1.0961 | 0.9889
4374 | 2.7858e-09 | 5.0361 | 2.2601e-08 | 4.9404 | 3.2364e-010 | 5.8927 | 0.2985 1.0924 | 0.9906

Table 4.23: L? errors and effectivity indices for problem (4.6.3) using the modified DG
method on uniform meshes having N = 6n® elements for the spaces U,, p = 2,3, 4.
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p=2
N # elements Type 1 | Oy | Oco,vovs | Ocovovy | Oco,vavy
48 8 3.4430 3.1683 4.0553 3.4137
162 27 2.8944 2.4924 3.0712 3.2065
384 64 2.7682 2.6081 2.6665 2.2831
750 125 3.1165 3.3267 3.0842 2.9691
1296 216 2.8962 3.6390 3.4168 3.3795
2058 343 3.0662 3.7934 3.5912 3.5853
3072 512 2.9374 3.5489 3.6959 3.7029
4374 729 2.9652 3.6107 3.7642 3.7763
6000 1000 2.9394 3.6882 3.8115 3.8253
7986 1331 3.0572 3.7435 3.8458 3.8596
p=3
48 8 3.1053 2.2665 2.5603 1.2503
162 27 4.5408 4.1517 3.8251 3.8397
384 64 3.0953 4.9929 4.0125 4.8957
750 125 4.1133 4.6288 4.4182 4.8621
1296 216 4.2979 4.5334 3.9853 4.6517
2058 343 3.9505 4.9049 4.4351 5.0449
3072 512 3.7233 4.7514 4.7568 4.9668
4374 729 4.0327 4.8269 4.5890 4.8649
6000 1000 4.1534 5.0524 4.7063 5.0935
p=4
48 8 4.4292 3.3993 4.0635 3.6656
162 27 4.5236 6.0145 5.6065 5.6031
384 64 5.1156 5.8164 5.5710 5.7308
750 125 4.6649 5.4384 5.2582 5.5015
1296 216 4.8958 5.5246 5.6540 5.2230
2058 343 5.1161 6.0758 5.4420 4.9686
3072 512 5.0657 5.6314 5.6420 5.2820
4374 729 4.9090 5.7679 5.4660 5.3536

Table 4.24: Orders of convergence for the errors on I'y, vovs, vavy, and vivy, for problem
(4.6.3) using the modified DG method on uniform meshes having N = 6n® elements for the
spaces Uy, p = 2,3,4, and elements of Type 1.

115



p=2
N # elements Type 2 | Ocory | Ocovovs | Ocovava | Ocovivy
48 32 2.6057 3.7098 2.1379 2.0808
162 108 3.1190 3.3943 2.9222 3.1629
384 256 2.5210 2.5768 2.7938 2.7929
750 500 3.0506 3.1927 2.8613 2.9291
1296 864 2.9520 3.4637 3.2294 2.9797
2058 1372 2.8823 3.6136 2.7929 3.0253
3072 2048 2.9869 3.7070 3.0552 2.8965
4374 2916 3.0120 3.7697 3.0168 2.9858
6000 4000 2.9484 3.8141 3.0010 3.0490
7986 5324 2.9213 3.8055 2.9481 2.9298
p=3
48 32 3.8542 1.6037 3.2575 2.9677
162 108 3.3701 4.3875 3.6915 4.1122
384 256 2.7637 4.4651 4.2316 3.6029
750 500 3.2985 4.3451 2.7411 2.9948
1296 864 3.5339 4.8434 3.2061 3.3909
2058 1372 3.6641 4.9210 3.4406 3.5899
3072 2048 3.7452 4.5244 3.5804 3.7051
4374 2916 3.7998 4.8286 3.6722 3.7779
6000 4000 3.8383 4.8602 3.7362 3.8267
p=4
48 32 2.4795 4.3030 2.6719 2.5720
162 108 4.6449 4.5141 3.7830 3.9014
384 256 5.3034 5.9114 4.8477 4.9176
750 500 4.6855 5.0987 5.1547 5.1153
1296 864 4.7800 5.8849 4.5784 4.7337
2058 1372 5.1274 5.5732 4.8942 4.8845
3072 2048 5.0064 5.8405 5.0535 4.9783
4374 2916 4.8428 5.2071 4.8912 4.8810

Table 4.25: Orders of convergence for the errors on I'y, vovs, vavy, and vivy, for problem
(4.6.3) using the modified DG method on uniform meshes having N = 6n® elements for the
spaces Uy, p = 2,3,4, and elements of Type 2.
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p=2
N # elements Type 3 | O 1y | Oco,vavs | Ocovovy | Oco,vavy
48 8 2.6304 2.8259 2.4932 3.5655
162 27 3.0914 2.2084 3.1917 3.3728
384 64 2.5952 2.3846 2.6377 2.0196
750 125 3.0692 3.0315 2.9669 3.0670
1296 216 2.9660 3.3312 3.0695 3.4899
2058 343 2.9292 3.5043 2.9378 3.6940
3072 512 2.8824 3.6169 2.9507 3.6895
4374 729 3.1135 3.6954 2.9488 3.6214
6000 1000 2.8496 3.7523 3.0968 3.6916
7986 1331 3.0070 3.7950 2.8638 3.7444
p=3
48 8 3.7949 -1.0274 2.7253 1.5875
162 27 2.6918 4.0440 3.9633 3.6581
384 64 3.0112 5.2511 4.9571 4.7105
750 125 3.4643 4.7253 2.9786 5.1320
1296 216 3.6691 4.9518 3.3158 4.4148
2058 343 3.7784 4.9654 3.4938 4.6776
3072 512 3.8426 4.9467 3.6058 4.2688
4374 729 3.8830 5.2297 3.6833 4.6311
6000 1000 3.9099 4.6461 3.7397 4.8883
p=4
48 8 2.6617 3.2635 2.7777 3.3251
162 27 4.9018 5.3379 3.9718 5.8602
384 64 5.3616 5.1854 4.9615 4.9339
750 125 4.5536 4.9503 4.9173 5.6645
1296 216 4.8814 6.0312 4.9361 5.8493
2058 343 5.0664 5.4866 4.9411 5.4321
3072 512 4.8772 4.2412 4.8348 4.6572
4374 729 5.0133 4.6284 5.0458 4.9404

Table 4.26: Orders of convergence for the errors on I'y, vovs, vavy, and vivy, for problem
(4.6.3) using the modified DG method on uniform meshes having N = 6n® elements for the
spaces Uy, p = 2,3,4, and elements of Type 3.
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p=2
N # elements Class I | Osor; | Ooco,vovs | Oocovavy | Ooo,vavy
48 8 2.6304 2.8259 2.4932 3.5655
162 27 3.0914 2.2084 3.1917 3.3728
384 64 2.5952 2.3846 2.6377 2.0196
750 125 3.0692 3.0315 2.9669 3.0670
1296 216 2.9660 3.3312 3.0695 3.4899
2058 343 2.9292 3.5043 2.9378 3.6940
3072 512 2.8824 3.6169 2.9507 3.6895
4374 729 3.1135 3.6954 2.9488 3.6214
6000 1000 2.8496 3.7523 3.0968 3.6916
7986 1331 3.0070 3.7950 2.8638 3.7444
p=3
48 8 3.7949 -1.0274 2.7253 1.5875
162 27 2.6918 4.0440 3.9633 3.6581
384 64 3.0112 5.2511 4.9571 4.7105
750 125 3.4643 4.7253 2.9786 5.1320
1296 216 3.6691 4.9518 3.3158 4.4148
2058 343 3.7784 4.9654 3.4938 4.6776
3072 512 3.8426 4.9467 3.6058 4.2688
4374 729 3.8830 5.2297 3.6833 4.6311
6000 1000 3.9099 4.6461 3.7397 4.8883
p=4
48 8 2.6617 3.2635 2.7777 3.3251
162 27 4.9018 5.3379 3.9718 5.8602
384 64 5.3616 5.1854 4.9615 4.9339
750 125 4.5536 4.9503 4.9173 5.6645
1296 216 4.8814 6.0312 4.9361 5.8493
2058 343 5.0664 5.4866 4.9411 5.4321
3072 512 4.8772 4.2412 4.8348 4.6572
4374 729 5.0133 4.6284 5.0458 4.9404

Table 4.27: Orders of convergence for the errors on I'y, vovs, vavy, and vivy, for problem
(4.6.3) using the modified DG method on uniform meshes having N = 6n® elements for the
spaces Uy, p = 2,3, 4, and elements of Class 1.
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p=2
N # elements Class II | Ogor; | Oco,vavs | Ocovavy | Ocovavy
48 32 2.6057 3.7098 2.1379 2.0808
162 108 3.1190 3.3943 2.9222 3.1629
384 256 2.5210 2.5768 2.7938 2.7929
750 500 3.0506 3.1927 2.8613 2.9291
1296 864 2.9520 3.4637 3.2294 2.9797
2058 1372 2.8823 3.6136 2.7929 3.0253
3072 2048 2.9869 3.7070 3.0552 2.8965
4374 2916 3.0120 3.7697 3.0168 2.9858
6000 4000 2.9484 3.8141 3.0010 3.0490
7986 5324 2.9213 3.8055 2.9481 2.9298
p=3
48 32 3.8542 1.6037 3.2575 2.9677
162 108 3.3701 4.3875 3.6915 4.1122
384 256 2.7637 4.4651 4.2316 3.6029
750 500 3.2985 4.3451 2.7411 2.9948
1296 864 3.5339 4.8434 3.2061 3.3909
2058 1372 3.6641 4.9210 3.4406 3.5899
3072 2048 3.7452 4.5244 3.5804 3.7051
4374 2916 3.7998 4.8286 3.6722 3.7779
6000 4000 3.8383 4.8602 3.7362 3.8267
p=4
48 32 2.4795 4.3030 2.6719 2.5720
162 108 4.6449 4.5141 3.7830 3.9014
384 256 5.3034 59114 4.8477 4.9176
750 500 4.6855 5.0987 5.1547 5.1153
1296 864 4.7800 5.8849 4.5784 4.7337
2058 1372 5.1274 5.5732 4.8942 4.8845
3072 2048 5.0064 5.8405 5.0535 4.9783
4374 2916 4.8428 5.2071 4.8912 4.8810

Table 4.28: Orders of convergence for the errors on I'y, vovs, vavy, and vivy, for problem
(4.6.3) using the modified DG method on uniform meshes having N = 6n® elements for the
spaces Uy, p = 2,3, 4, and elements of Class I1.
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p=2
N # elements Class 111 | Oso 1y | Ocovovy | Ocovovy | Oco,vavy
48 8 3.4430 3.1683 4.0553 3.4137
162 27 2.8944 2.4924 3.0712 3.2065
384 64 2.7682 2.6081 2.6665 2.2831
750 125 3.1165 3.3267 3.0842 2.9691
1296 216 2.8962 3.6390 3.4168 3.3795
2058 343 3.0662 3.7934 3.5912 3.5853
3072 512 2.9374 3.5489 3.6959 3.7029
4374 729 2.9652 3.6107 3.7642 3.7763
6000 1000 2.9394 3.6882 3.8115 3.8253
7986 1331 3.0572 3.7435 3.8458 3.8596
p=3
48 8 3.1053 2.2665 2.5603 1.2503
162 27 4.5408 4.1517 3.8251 3.8397
384 64 3.0953 4.9929 4.0125 4.8957
750 125 4.1133 4.6288 4.4182 4.8621
1296 216 4.2979 4.5334 3.9853 4.6517
2058 343 3.9505 4.9049 4.4351 5.0449
3072 512 3.7233 4.7514 4.7568 4.9668
4374 729 4.0327 4.8269 4.5890 4.8649
6000 1000 4.1534 5.0524 4.7063 5.0935
p=4
48 8 4.4292 3.3993 4.0635 3.6656
162 27 4.5236 6.0145 5.6065 5.6031
384 64 5.1156 5.8164 5.5710 5.7308
750 125 4.6649 5.4384 5.2582 5.5015
1296 216 4.8958 5.5246 5.6540 5.2230
2058 343 5.1161 6.0758 5.4420 4.9686
3072 512 5.0657 5.6314 5.6420 5.2820
4374 729 4.9090 5.7679 5.4660 5.3536

Table 4.29: Orders of convergence for the errors on I'y, vovs, vavy, and vivy, for problem
(4.6.3) using the modified DG method on uniform meshes having N = 6n® elements for the
spaces Uy, p = 2,3, 4, and elements of Class I11.
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solution is O(hP*2) superconvergent on two edges of the inflow faces. Moreover, enriched
polynomial spaces lead to a simpler a posteriori error estimation procedure. Finally, the
pointwise superconvergence results for the leading term of the discretization error on each
elements are tested on several linear problems and tetrahedral meshes for smooth solutions.
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Chapter 5

The Discontinuous Galerkin Method
for Nonlinear Problems

The most challenging hyperbolic partial differential equations are nonlinear, because they
develop propagating discontinuities known as shocks. In this chapter we extend our error
analysis to three-dimensional nonlinear hyperbolic scalar problems.

5.1 Nonlinear Hyperbolic Problems

We consider nonlinear scalar hyperbolic problems of the form
V-Fu)=f(z,y,2), (,y,2) € Q, (5.1.1a)
subject to the boundary conditions
u(z,y,z) =ho(z,y,2), (x,y,2) € 00", (5.1.1b)
where F: R — R3 o : R?® — R, f and hg are analytic functions, such that
F' (u) # 0. (5.1.1c)

We further assume that F(u) is such that the boundary 0 can be split into inflow 9Q~,
outflow QT and characteristic 9Q° boundaries using a(u) = F’(u), where, 9Q~, 90" and
Q0 are defined as follows:

00 = {(z,y,2) € 9%LF (u) -n <0}, (5.1.2a)
00" = {(z,y,2) € 0, F (u) -n > 0}, (5.1.2b)
0N = {(x,y,2) € 0Q,F (u) -n =0}, (5.1.2¢)
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with the boundary of 2, 9Q = 9Q~ U 9T U 99° and n is the outward unit normal to d€.

We obtain a weak DG formulation of (5.1.1a) by multiplying (5.1.1a) by a test function v,
integrating over an arbitrary element A, and applying Stokes’ theorem as

//n F (u)vdo + //n F (u) vdo + /// ) - Vodxdydz = // fvdxdydz. (5.1.3)

The discrete DG method consists of finding U € W, on an element A such that for all
V € W, we have

//n F Vda+//n F (U Vda+/// )-VVdrdydz = /A/ FVdzdydz, (5.1.4)

where U is given by (3.1.5b) and W, is either P,, L,, Uy, or M,,.
Subtract (5.1.4) from (5.1.3) with U = u and v = V' to obtain the DG orthogonality condition
for the local error, for all V€ W,

//H“ (F () ))Vdo — / / / (U)) .VVdzdydz = 0. (5.1.5)

We map a physical tetrahedron A having vertices v; = (x4, y;, 2;), 1 < i < 4, into the reference
tetrahedron A with vertices v; = (0,0,0), v4 = (1,0,0), v5 = (0,1,0), v4 = (0,0,1), by
the standard affine mapping (3.1.7) and as illustrated in Figures 3.1 and 3.2. Thus, the DG
orthogonality (5.1.5) becomes

//Hn (30 (F(@)~F (0))) Vae - ///A (30 (F (@)~ F (0))) VVdgdndc = o,

(5.1.6)
forall Ve W,.
In the remainder of this chapter we will omit the "unless needed for clarity. In the following
theorem we derive orthogonality condition for the leading term of the local DG error for
(5.1.1a) having smooth solutions.

Theorem 5.1.1. Let u € C*(Q) and U € W, respectively, be the solutions of (5.1.1a),
(5.1.1b) and (5.1.4), with U|p- = u. Then the local finite element error can be written as

€(&,m,¢,h) Z W*Qx (€,1,0) - (5.1.7)

k=p+1

Furthermore, the leading term satisfies

// d-nQ, Vdo + /// d-VQ, 1 VdédndC =0,V V eW,, (5.1.8)
T+ A

where

d = JoF (u*), (5.1.9)

and u* is the average of the values of u at the centers of inflow faces of A.
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Proof. The proof follows the same line of reasoning as in [15]. O

Thus, the results of chapter 3 stated in Theorems 3.2.1, 3.2.2, 3.2.3, 3.2.4 and their corollaries
for the space P,, and the results of chapter 4 stated in Theorems 4.3.1, 4.3.2, 4.3.3, 4.4.2,
4.3.5,4.3.6,4.3.7,4.4.2, 44.3, 4.4.4, and their corollaries for the spaces L,, U,,, and M,, still
hold for nonlinear scalar problems.

5.2 Error Estimation Procedure

The discrete DG method consists of finding U € P, on an element A such that

F/_/n- <F (U Vda+/// (F' (U) - VU) Vdrdydz

= // fVdzdydz, V'V € W,. (5.2.1)

We estimate the error by finding F of the form (3.3.9a) solution of the linearized weak

problem
//n-F’(U)(E Vda+///F' V(U + E)Vdxdydz

// fVdzdydz — // n-F (U) (U —U)Vdo, YV €E, (5.2.2)

where £ is the finite element space for the error defined in section 3.3 for P, and section 4.5
for U,,. However, in the numerical examples we use the space P,.

Remarks:

1. The inflow solution U is given by (3.1.5b)

2. We first find U using Newton’s iteration by solving the nonlinear problem (5.2.1) and
then solve the linear problem (5.2.2) to find the error estimate E.

3. We follow the steps of the modified DG algorithm for linear problems given in section
3.3 to find the DG solution and error on all elements.

4. We utilize the error basis functions y; for linear problems shown in Tables 3.2, 3.3,
and 3.4 with (o, 8,7)T = JoF/(U*) where U* is the average of the values of U~ at the
centers of inflow faces.
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The accuracy of a posteriori error estimates is measured by the ratio of the error estimate
over the true error. The local and global effectivity indices are given by (3.3.11) and (3.3.12).

5.3 Computational Examples

In the following examples we use the exact boundary conditions at the inflow boundary
and solve several nonlinear hyperbolic problems on uniform tetrahedral meshes, and test our
modified DG method and a posteriori error estimation strategy for smooth and discontinuous
solutions.
We use the space P, on a family of uniform meshes obtained by partitioning the domain
[0,1]® into n® cubes, n = 1,2,...,14 and subdividing each cube into five tetrahedra [40].
The res1\1/l§ing meshes have N = 5n? = 5,40, ...,13720 tetrahedral elements with diameter
2

hmam -

Example 5.3.1.

We consider the two-dimensional inviscid Burgers’ equation
up + uuy + uuy, = f(z,y,t), (x,y,t) € Q=0, 1, (5.3.1a)

and select f and the inflow boundary conditions such that the exact solution is given by
1
u(x,y,t) = 1+§sin(:c+y+t). (5.3.1b)

We solve (5.3.1) with the exact inflow boundary condition, U~ = u, using the space-time
modified DG method on structured tetrahedral meshes having N = 5, 40, 135, 320, 625, 1080,
1715, 2560, 3645, 5000, 6655, 8640, 10985, 13720 elements with the spaces P,, p = 0,1, 2.
The L? errors, orders of convergence and effectivity indices shown in Table 5.1, indicate
that the modified DG method yields optimal convergence rates. Furthermore, the effectivity
indices for the modified DG are close to unity and converge to one under mesh refinement.
We also observe that the error estimate leads to O (hP*2) convergence of the corrected DG
solution.

Example 5.3.2.

Next, we consider the homogeneous inviscid Burgers’ equation
w + uuy +uuy =0, (z,y,t) € Q =10, 1]3, (5.3.2a)

subject to the initial conditions

w(z,y,0) = 1 +%sin (r(z+y+1/2). (5.3.2b)
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p=0

HeHQ’Q order ||ecrH2@ order | OA min | OA max 0
5 7.2747e-02 - 4.0382e-02 - 0.8856 1.1489 1.0714
40 4.8896e-02 | 0.5732 | 1.0560e-02 | 1.9352 | 0.8477 1.1571 1.0016
135 3.3112e-02 | 0.9613 | 5.0110e-03 | 1.8384 | 0.0801 1.1711 1.0097
320 2.5358e-02 | 0.9274 | 2.8915e-03 | 1.9113 | 0.3326 1.8542 1.0080
625 2.0367e-02 | 0.9823 | 1.9130e-03 | 1.8514 | 0.1396 1.5012 1.0075
1080 1.7057e-02 | 0.9728 | 1.3787e¢-03 | 1.7966 | 0.1411 1.4226 1.0066
1715 1.4641e-02 | 0.9906 | 1.0569e-03 | 1.7243 | 0.4408 1.3008 1.0061
2560 1.2836e-02 | 0.9855 | 8.4625e-04 | 1.6644 | 0.3775 1.4842 1.0057
3645 1.1417e-02 | 0.9941 | 7.0141e-04 | 1.5938 | 0.3009 2.4717 1.0053
5000 1.0286e-02 | 0.9909 | 5.9648e-04 1.5381 0.1660 1.6640 1.0050
6655 9.3541e-03 | 0.9959 | 5.1812e-04 1.4775 0.1511 1.4954 1.0048
8640 8.5793e-03 | 0.9937 | 4.5748e-04 | 1.4306 | 0.1445 1.4220 1.0046
10985 | 7.9213e-03 | 0.9970 | 4.0959e-04 | 1.3816 | 0.1408 1.8185 1.0045
13720 | 7.3581e-03 | 0.9953 | 3.7076e-04 | 1.3440 | 0.0873 2.6471 1.0043
p=1
5 4.0691e-02 - 3.5262e-03 - 0.9430 1.1378 0.9579
40 1.0880e-02 | 1.9030 | 1.1422e¢-03 | 1.6263 | 0.9309 1.1055 1.0290
135 4.8542e-03 | 1.9906 | 3.1471e-04 | 3.1792 | 0.8683 1.1129 1.0166
320 2.7331e-03 | 1.9967 | 1.3918e-04 | 2.8361 0.8340 1.1063 1.0113
625 1.7494e-03 | 1.9994 | 7.1652e-05 | 2.9753 | 0.8968 1.0983 1.0081
1080 1.2153e-03 1.9979 | 4.1422e-05 | 3.0058 0.8923 1.0915 1.0061
1715 8.9290e-04 | 1.9998 | 2.5977e-05 | 3.0269 | 0.9163 1.0858 1.0049
2560 6.8373e-04 | 1.9989 | 1.7370e-05 | 3.0139 | 0.9105 1.0812 1.0040
3645 5.4023e-04 | 2.0000 | 1.2181e-05 | 3.0127 | 0.9278 1.0774 1.0034
5000 4.3762e-04 | 1.9993 | 8.8754e-06 | 3.0053 | 0.9236 1.0743 1.0029
6655 3.6166e-04 | 2.0001 | 6.6662e-06 | 3.0032 | 0.9382 1.0716 1.0026
8640 3.0391e-04 | 1.9996 | 5.1355e-06 | 2.9980 | 0.9315 1.0693 1.0023
10985 | 2.5895e-04 | 2.0001 | 4.0404e-06 | 2.9966 | 0.9442 1.0674 1.0021
13720 | 2.2328e-04 | 1.9997 | 3.2369e-06 | 2.9917 | 0.9379 1.0657 1.0019
p=2
5 2.1707e-03 - 7.0465e-04 - 1.0699 1.1125 1.0905
40 4.1651e-04 | 2.3817 | 5.0503e-05 | 3.8025 0.8644 1.0494 1.0110
135 1.2148e-04 | 3.0389 | 1.2557e-05 | 3.4326 | 0.3881 1.0558 1.0102
320 5.2136e-05 | 2.9404 | 4.1295e-06 | 3.8657 | 0.6155 1.1316 1.0077
625 2.6737e-05 | 2.9928 | 1.7372e-06 | 3.8804 | 0.2510 1.1469 1.0062
1080 1.5530e-05 | 2.9796 | 8.5697e-07 | 3.8756 | 0.1122 1.1123 1.0050
1715 9.7873e-06 | 2.9952 | 4.6504e-07 | 3.9655 | 0.7552 1.0650 1.0043
2560 6.5657e-06 | 2.9897 | 2.7463e-07 | 3.9445 | 0.6185 1.1375 1.0037
3645 4.6130e-06 | 2.9970 | 1.7230e-07 | 3.9579 | 0.6679 1.2512 1.0032
5000 3.3650e-06 | 2.9939 | 1.1364e-07 | 3.9503 | 0.6348 1.1534 1.0028
6655 2.5287e-06 | 2.9980 | 7.7956e-08 | 3.9544 0.3966 1.0937 1.0025
8640 1.9484e-06 | 2.9960 | 5.5293e-08 | 3.9477 0.5151 1.0569 1.0023
10985 | 1.5326e-06 | 2.9986 | 4.0296e-08 | 3.9527 | 0.3589 1.1138 1.0021
13720 | 1.2274e-06 | 2.9972 | 3.0083e-08 | 3.9443 | 0.4803 1.1981 1.0019

Table 5.1: L? errors, their orders and effectivity indices for problem (5.3.1) using the modified
DG method on uniform meshes having N = 6n® elements for the spaces P,, p =0, 1,2.
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This is subjected to inflow boundary conditions u(0,y,t) and u(z,0,t) assuming a periodic
true solution.

First we solve (5.3.2) for 0 < ¢ < 0.2 on uniform tetrahedral meshes having N = 5n® =
5,40,135,320,625,. ..,16875 elements with the spaces P,, p = 0,1 and show the L? errors,
orders and effectivity indices in Table 5.2 for P,, p = 0,1. We observe that the effectivity
indices are close to unity under mesh refinement. The modified DG solution exhibits optimal
O(hP*1) convergence rates, however, U + E is not O(h?*?).

p=0
N llello,q order lleerlls.o order | A min | OA max o
5 1.4816e-01 - 7.4264e-02 - 0.6630 1.0469 | 0.7765

40 8.6731e-02 | 0.7726 | 3.8110e-02 | 0.9625 | 0.1503 | 1.5470 | 0.7996
135 5.9875e-02 | 0.9139 | 2.0264e-02 | 1.5577 | 0.4499 1.8889 | 0.8750
320 4.5261e-02 | 0.9727 | 1.2997e-02 | 1.5438 | 0.1675 | 2.5686 | 0.8892
625 3.6105e-02 | 1.0129 | 9.2082e-03 | 1.5445 | 0.4139 | 2.0871 | 0.9071
1080 | 2.9944e-02 | 1.0262 | 6.9381e-03 | 1.5525 | 0.1393 | 2.7602 | 0.9208
1715 | 2.5564e-02 | 1.0258 | 5.4822e-03 | 1.5279 | 0.0247 | 2.1614 | 0.9318
2560 | 2.2310e-02 | 1.0197 | 4.4808e-03 | 1.5105 | 0.0153 | 2.8448 | 0.9403
3645 1.9803e-02 | 1.0120 | 3.7557e-03 | 1.4987 | 0.0406 | 2.2482 | 0.9470
5000 1.7813e-02 | 1.0052 | 3.2098e-03 | 1.4909 | 0.0575 | 2.8859 | 0.9522
6655 1.6193e-02 | 1.0003 | 2.7864e-03 | 1.4842 | 0.0171 2.2957 | 0.9563
8640 1.4847¢-02 | 0.9972 | 2.4510e-03 | 1.4740 | 0.0337 | 2.9087 | 0.9597
10985 | 1.3710e-02 | 0.9959 | 2.1807e-03 | 1.4597 | 0.0505 | 2.3260 0.962
13720 | 1.2735e-02 | 0.9957 | 1.9598e-03 | 1.4415 | 0.0635 | 2.9225 | 0.9647
16875 | 1.1889e-02 | 0.9963 | 1.7769e-03 | 1.4200 | 0.0737 | 2.3464 | 0.9667
p=1
5 7.1928e-02 - 5.2996e-02 - 0.5146 | 0.7117 | 0.5239
40 3.1054e-02 | 1.2118 | 1.4968e-02 | 1.8240 | 0.4417 | 1.8059 | 0.7662
135 1.5454e-02 | 1.7212 | 6.8287e-03 | 1.9356 | 0.3728 | 1.6145 | 0.7816
320 9.0408e-03 | 1.8635 | 3.6777e-03 | 2.1511 | 0.1960 | 1.5647 | 0.8329
625 5.8697e-03 | 1.9357 | 2.1897e-03 | 2.3237 | 0.2270 | 1.6356 | 0.8737
1080 | 4.1301e-03 | 1.9279 | 1.4001e-03 | 2.4530 | 0.3223 | 1.5525 | 0.9062
1715 | 3.0821e-03 | 1.8988 | 9.4211e-04 | 2.5701 | 0.2281 1.4513 | 0.9295
2560 | 2.3996e-03 | 1.8745 | 6.5802e-04 | 2.6877 | 0.3133 1.3648 | 0.9457
3645 1.9248e-03 | 1.8721 | 4.7853e-04 | 2.7042 | 0.3847 | 1.3467 | 0.9559
5000 1.5768e-03 | 1.8929 | 3.6071e-04 | 2.6826 | 0.3576 | 1.3529 | 0.9630
6655 1.3118e-03 | 1.9300 | 2.8113e-04 | 2.6151 | 0.3408 | 1.3300 | 0.9681
8640 1.1052e-03 | 1.9701 | 2.2581e-04 | 2.5184 | 0.2012 1.2993 | 0.9720
10985 | 9.4113e-04 | 2.0073 | 1.8623e-04 | 2.4075 | 0.4688 | 1.2682 | 0.9750
13720 | 8.0950e-04 | 2.0331 | 1.5700e-04 | 2.3039 | 0.4823 | 1.2396 | 0.9774
16875 | 7.0282e-04 | 2.0483 | 1.3465e-04 | 2.2256 | 0.4656 | 1.2258 | 0.9795

Table 5.2: L? errors, their orders and effectivity indices for problem (5.3.2) using the modified
DG method on uniform meshes having N = 5n? elements for the spaces P,, p =0, 1.

Next, we integrate until £ = 1 where the solution develops shock discontinuities with a first
shock forming and leaving the domain and a second shock entering the domain. We use a
uniform mesh having N = 13720 tetrahedral elements with the spaces P,, p = 0,1. We plot
the true solution, L? local true errors and local effectivity indices at t = 0.5,1.0 in Figures
5.1 and 5.2, respectively. These numerical results indicate that, before the shock forms,
the error estimates are accurate and converge to the true errors under mesh refinement.
After the shock forms the effectivity indices are still close to one in regions away from the
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Figure 5.1: True solution (left), L* true local errors (center) and local effectivity indices
(right) for (5.3.2) on a uniform mesh having N=13720 tetrahedra for the space Py at ¢t = 0.5
(top) and t = 1 (bottom).

discontinuity. By comparing the plots of Figure 5.2 to those of Figure 5.3 on a coarse
mesh with N = 5000 elements and P;, we notice an improvement of the effectivity indices
under mesh refinement. Applying a local adaptive mesh refinement algorithm which refines
elements near the discontinuity should further improve the accuracy of both the a posterior:
error estimate and the solution.

5.4 Conclusion

In this chapter we have extended the error analysis for nonlinear hyperbolic problems. The
numerical results indicate that, before the shock forms, the error estimates are accurate and
converge to the true errors under mesh refinement, and the error estimate leads to O (h?*2)
convergence of the corrected DG solution. After the shock forms the effectivity indices are
still close to one in regions away from the discontinuity. Applying a local adaptive mesh
refinement algorithm which refines elements near the discontinuity should further improve
the accuracy of both the a posterior: error estimate and the solution.
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Figure 5.2: True solution (left), L? true local errors (center) and local effectivity indices
(right) for (5.3.2) using a uniform mesh having N=13720 tetrahedra for the space P; at
t =0.5 (top) and t = 1 (bottom).
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Figure 5.3: True solution (left), L? true local errors (center) and local effectivity indices
(right) for (5.3.2) using a uniform mesh having N=5000 tetrahedra for the space P; at
t =0.5 (top) and t =1 (bottom).
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Chapter 6

A Posteriort Error Estimation for
Linear Hyperbolic systems

We present an a posteriori error analysis for the discontinuous Galerkin method applied to
first-order linear symmetric hyperbolic systems of partial differential equations with smooth
solutions. We perform a local error analysis by writing the local error as a series and showing
that its leading term is O (h?T!). This can be used to solve relatively small local problems
to compute efficient and asymptotically exact estimates of the finite element error.

6.1 DG Formulation and Local Error Analysis

In this section we introduce a Runge—Kutta discontinuous Galerkin (RKDG) method ap-
plied to first-order symmetric linear hyperbolic systems in multiple space dimensions. Let
u(t,z,y,2):[0,7] x R® — R™ be the true solution of the linear hyperbolic system

w4+ Au, + Bu, + Cu, = f (t,2,9,2), 0<t < T, (z,y,2) € 2= (0,1)*, (6.1.1a)

Rme

with symmetric real constant coefficient matrices A, B and C in , and subject to the

initial and boundary conditions
u(0,z,y,2) = ug(x,y,2), (6.1.1b)
M u(t,z,y,z) = M ug(t,x,y,2), (r,y,2) €900,0<t<T, (6.1.1c)
where the boundary of € is denoted by 92 and n = (ny, ny,n3)” denotes the unit outward

normal on Jf2, w;, u,, u, and u, respectively, denote the partial derivatives of u with respect
tot, x, y and z.

Let T'; and n; = (n;1,mi2,n:3)", respectively, denote the faces of A and the unit outward
normal to I'; for i = 1,2, 3, 4.
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We define M for i = 1,2, 3,4 by setting

Mz’ = TI,Z'JA + TL@QB + ni’gc
= Pdiag (X}, N, ..., \L,) PT (6.1.2a)
= M+ My,
with
M; = Pdiag (max (\},0),max (\3,0),...,max (\},0)) P",
M; = Pdiag (min (A{,0),min (A5,0),...,min (\},,0))P”, (6.1.2b)

where X, Mo ... N € R.

We select f, the initial condition uy and the boundary condition u; such that the exact
solution u (t,z,y,2) € (C?[0,T] x C>= ()™ .

In order to obtain the weak discontinuous Galerkin formulation, we partition the domain
(2 into a regular mesh having N tetrahedral elements A;, 7 = 1,2,..., N and assume, for
simplicity, that this can be done without error. In the remainder of this chapter we omit the
element index and refer to an arbitrary element by A whenever confusion in unlikely.

Let us multiply (6.1.1a) by a test function v, integrate over an arbitrary element A, and
apply Stokes’ theorem to write

- /// (—VTut +vIAu+ VZ;BLI + vICu) dzdydz
A

4
+Z//r v (M +M; ) udo = ///A v fdrdydz, (6.1.3)
i=1 7/ /T

where we used (6.1.2).

Next we approximate u (t,z,y,z) by a piecewise polynomial function U (¢, z,y, z) whose
restriction to A is in [P,]™ consisting of complete polynomials of degree p defined in (2.3.1).
The discrete DG formulation consists of determining U € {S N ’p}m such that

— / / / (-V'U, + VIAU + V/BU + V! CU) dzdydz
A

4
+Z// Vi (MfU+M; U )do = // VT fdxdydz, ¥V V € [P,]™, (6.1.4)
i=1 /T A
where U™ is defined as
U™ = lim U (t,x+¢n) for x € T.
e—0

For simplicity, we only consider the approximation (6.1.4) on an element A, such that U~ =
ugonly, i=1,2 3 4.
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Next, subtracting (6.1.4) from (6.1.3) with v = V to obtain the DG orthogonality condition
for the local error e =u - U

- / / / (=V'e, + VI Ae+ V] Be + VI Ce) dudydz
A

4
—l—Z//F VM edo =0,V V € [P,|™. (6.1.5)
i=1 /T

We map a physical tetrahedron A having vertices v; = (z;,9;,2i), ¢ = 1,2,3,4 into the
reference tetrahedron having vertices v; = (0,0,0), vo = (1,0,0), v3 = (0,1,0), and v, =
(0,0,1) by the standard affine mapping (3.1.7).

Letting 7 = Tt the DG orthogonality condition for the local error € (7,&,n,(, h) becomes

4
h
y / / VIM; edo— / / / (—TVTQ +VIAe+V]Be+ V] ce) dédnd¢ =0,VV € [P,]™.
i=1 7 /T A
(6.1.6)

If the exact solution is analytic, we can write the local error as a Maclaurin series

e, &M Ch) =Y Qu(.6n,¢)h", (6.1.7)

k=0
where Qi(7,.) € [Pi]™.

In the remainder of this chapter we will omit the ~ unless needed for clarity.
Before stating our main results we need the following preliminary lemma.

Lemma 6.1.1. If Q; € [P]™ for k > 0, satisfies

4
Z/ VTM;Fdea—/// (VEA+VIB+V[C) Qudédnd¢ =0, V'V € [Pi]™, (6.1.8)
i=1 7/ /T A

then )
Qk € P, (6.1.9a)

where

Pe={VEP,: AV, + BV, + CV =0 on A,M;V =0 onT;,1 <i<4}. (6.1.9b)
Proof. Using Stokes’ theorem we write (6.1.8) as

4
30 [ ViMiQuin+ [[[ VT (AQue+ BQu + CQu) dsndc =0,v V e "
i=1 i
(6.1.10)
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Adding (6.1.8) to (6.1.10) and testing against V = Qy, we note that by the symmetry of A,
B and C, the double integrals on A cancel out. Thus, Qy satisfies

4
> (// Qf (M — M) dea) do = 0. (6.1.11)
i=1 L

Since (M;L - M, ) is symmetric positive semi-definite it admits a Cholesky factorization

(M;” —=M;) = LTL;. Thus, (6.1.11) can be written as

4

S (/[ i) ds =0

Thus, L;Qr =0 on I'; for ¢ = 1,2, 3,4 which yields
L/LQi= (M —M;)Q,=0o0nT;, i=1,234. (6.1.12)
Since N (M — M;) =N (M; + M), (6.1.12) leads to

(M +M;)Qr=0o0nTy, i=1,234. (6.1.13)

Thus, one can show that
M¥fQ,=0onT;i=1,234. (6.1.14)

Testing against V = AQy¢+BQyg, +CQy  in (6.1.10) and combining the resulting equation
with (6.1.14) lead to

/ / / 1AQuc +BQuy + CQyc[; dédnd¢ = 0. (6.1.15)
A
which, in turn, yields
AQpe +BQy,; +CQpe =0, on A (6.1.16)
Combining (6.1.13) and (6.1.16) proves the lemma. O

We obtain the following expression for the local DG error.

Theorem 6.1.1. Let u € [C™ (Q)]™ and U € [P,|™, respectively, be the solutions of (6.1.1)
and (6.1.4), with

€(0,&,1,¢,h) = O(n"?),
e (r&n,¢h) = O(W), 0<7<1.

Then the local finite element error can be written as

e}

e(r,&m ¢ h) = > WQu(r.¢n,0), (6.1.17)

k=p+1
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where A
Z/ M Qi 1do = 0. (6.1.18)
i=1 Y /T

Furthermore, the local error satisfies

4
Z/ M/ edo = O (h**?). (6.1.19)
i=1 7 /T

m

Proof. The orthogonality condition (6.1.6) for the local error can be written for all V' € [P,)]
and 0 <7 <1as

% / / | VTerdgdndC = / / /A (VEA + VB +V{C) edtdnd(

— 24: / /F (VIMfe+ VM, €) do. (6.1.20)
=1 7 /T
Following Adjerid and Weinhart [54], we define the orthogonal complement of P, in [L? (A)]™
by
P, = {W e [L*(A)]™: ///A VIWdédnd¢=0, V'V € ﬁp} . (6.1.21)
Since P, is a subspace of [L? (A)]™, we can split € by
e=e+e,ecP, e €P,. (6.1.22)
First, we will show that
e(r,&,n, ¢, h)=0 (W), (&m,Q) e, 0<T <1 (6.1.23)

Since P, is a finite dimensional vector space and € € P,, we have for (£,1,() € A, 0 <7 <1,

E(T+5afa777€a h) - g(TafaTlvga h) e

e (rEnh) = lim X P, (6.1.24)
=1 =1 -
e (remh) = lim U TEERGN ZETmENGh) 5y (6 95
e—0 9

By the definition of P, and the symmetry of A, B, C, M; and M, 1 <i < 4, (6.1.20)
yields

h _
7 ///A VTe dédnd¢ =0,V VeP, 0<7<1. (6.1.26)
Thus € € P,*, which combined with (6.1.22) and (6.1.25) yields

& =€—e P 0<7<1 (6.1.27)
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Combining (6.1.24) and (6.1.27) we infer that
& (1,6,n,(h)=0, 0<7< 1. (6.1.28)
Consequently, we have
e(r.&m, ¢ h) =€(0,6,m,¢,h) =0 ("), 0< 7 < 1. (6.1.29)

In the remainder of the proof, we investigate the asymptotic behavior of €-. We write the
Maclaurin series of ¢ with respect to the mesh parameter h as

p+1
e(m&m G h) = Qu(m.&n )R+ 0 (W), () €A, 0<7 <1, (6.1.30)
k=0
where d’f
Qr (1,€,m,¢) = % . (6.1.31)
h=0

We write the Maclaurin series of e+ with respect to the mesh parameter h as

Qk (T7£7U7C) hk7 Qk € 75sz_7 (57777§> € A? O S T S 1 (6132)

NE

GJ_ (7-7 57 777 C? h) =

>
Il

0

Subtracting (6.1.31) from (6.1.32) and equating all terms having the same power h yields
Q=QuePt0<k<p+1, (6.1.33)

where we used (6.1.22) and (6.1.29).

Substituting (6.1.30) in (6.1.20) yields

p+1
Z hk n VIQy  dédnd¢ — (VEAQ, + VI BQ, + VI CQ,) d&dnd(
T A A
k=0 ,
+Z// VTMijda> = O (h"?), VYV € [P,]", (6.1.34)
i=1 v /L

where we used the fact that the boundary conditions satisfy

e (1,6n,0) =0 ().

Now assume 7" = O (1) and set to zero all terms in (6.1.34) having the same power of h.
The O (1) term Q satisfies the orthogonality condition

4
Z / /F VM Qdo — / / /A (VEAQ, + V]BQ) dédnd¢ =0, V'V € [P,]". (6.1.35)
i=1 i
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By Lemma 6.1.1 Qo € Py which combined with (6.1.33) shows that Qy = 0 on A.
Assume that Q; =0 for 0 < j <k — 1, where k < p. Thus, the O (hk) term is written as

4
3 / /F VM Qudo — / / X (VIAQ, + VIBQ, + VICQ,) dédnd¢ = 0, Y V € [P,|™
=1 i

(6.1.36)
By Lemma 6.1.1 Q; € Py, which combined with (6.1.33) shows that Q; = 0 on A for
0<k<np.
The leading term Q4 satisfies

N // A (VgAQp+1 + V;BQerl + VgCQerl) dédnd¢

4
> // VIM/Q,1do =0,¥Y V € [P,]". (6.1.37)
i=1 7 YL

Let e;, 7 = 1,2,...,m be the canonical vectors in R™ and test against V. = e; , j =

1,2,...,m yields (6.1.18). While (6.1.19) follows from (6.1.17) and (6.1.18). O

6.2 A Posteriort Error Estimation

In this section we present an error estimation procedure by first constructing bases functions
for the leading term of the DG error and stating a weak problem on each element to compute
error estimates. In order to construct efficient and asymptotically exact a posteriori error
estimates for the leading term Q,.; on each element, we assume that the behavior of the
local error holds on all elements, i.e., we write

(11 - U)(t,x,y,z,h) ~ E(T7£7777C7 h) Qp—i—l(T g n, C hp+1 ch (I)k f n, C)

where Qp11(7,.) € [Ppy1]™, ¢k (1) € R™, n = dim (P,41) and

D= (Dy,Py,...,P ) = (oo, ¢17-~7¢p+1)T7

with
le = (908,07 90(1),07 i) @8,[) :

The leading term E satisfies the following orthogonality conditions on the reference element

4
Z/F VTMjEda—//A (VEA+VIB+ VIC)Edédnd¢ =0,V V € [Pp]™. (6.2.1)
i=1 i
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Testing against V,;=e;®;, j =1,2,...,m, [ =1,2,... .7 = dim (P,) yields

4
> / / Pel M Edo — / / / (Preef A + @1l B+ Oy cef C) Ed€dnd( = 0. (6.2.2)
i=1 7 /T A

Next, we define the tensor product

KllA s Kln.A
for K € R™"™ and A e R™*™.
Thus, if ¢ = (cf,cf,. .. ,CZ:)T € R™™ the orthogonality condition (6.2.2) may be written in

a matrix form A = 0 where A € R m)x(n m) 5nq

4
A= [(ZD"@)MZ.*) —(K'® A+K*@B+K*®@ C) |,

=1
D;’kz// ®,P,.do,
r;

K} = / / / Oy DydEdnd,

A
K = /// O DpdEdndc,

A
K3, = / / / By Dydednd.

A

We now define the finite element space

5:{§n:ek<1>k, eeN(A>},

k=1

with

for the error and state the following lemma.

Lemma 6.2.1. The polynomial space € is isomorphic to the null space N (A), and the
leading term Q,41 may be written as

E= Qp+1hp+1 = ZdiXia
i=1
where x; = > Ci®g, i =1,2,...,n —n, with {&¢',¢% ...,&""} being a basis ofN(A)
k=1

Proof. The proof follows the same line of reasoning used in Lemma 3.3.1. O]
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6.3 Solution and Error Estimation Procedure

Integrating (6.1.4) by parts shows that the DG solution U on a physical element A satisfies

+ / / VT (U, + AU, + BU, + CU,) dvdydz
A

4
—l—Z//F viMm; (U — U) do = // AVdexdde’ VVePR™, (63.1)
=1 i

where the numerical flux

= )u, if I'; € 092
U +E-  otherwise

for the modified DG method, subjected to initial boundary condition U(0, z,y, z) = ug(z,y, 2).

Next, we write the DG solution as

U:Zcz(t)q)z(gv"%C)a

thus, the weak formulation (6.3.1) yields the ode system
¢=F(c,Et).

Next, we select a time integration strategy. For example, using explicit Euler scheme we

write

Cn+1 —ch

= F(c", E"t,).
tn+1_tn (07 7 )

Alternatively, we may use TVB Runge-Kutta integration scheme [29].
The initial values c° is obtained by solving the following problem using the DG method
A (uo), +B(uo), +C(w), =g (z,y,2), (v,y,2) €A (6.3.2a)
M u(0,z,y,2) =M ugp(0,z,y,2), (x,y,2) € 09, (6.3.2b)

and then computing the error estimation.

In order to estimate the finite element error e = u — U on A we assume that the leading
term of e exhibits the same asymptotic behavior as the local error on A. Thus, the error e
on A is approximated by

E (t7 x,Y, Z) = Z dz<t)Xz(§(x7 Y, Z>’ 77(957 Y, 2)7 C(l” Y, Z))? (6338‘)

=1
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and satisfies the weak finite element problem
4
> / VIM; (E- —E)do + / / V' (AE, + BE, + CE,) dzdydz
i=1 Y /T A

4
_ // Virdrdydz — Y // VIM; (U" = U)do, YV EE,  (63.3b)
A i=1 7 /T

where r = (f — (U, + AU, + BU, + CU,)) is the interior residual.

6.4 Conclusion

In this chapter we have extended the error analysis to first-order linear symmetric hyperbolic
systems of partial differential equations with smooth solutions. We performed a local error
analysis where we showed that the discretization error is O (h?™!) and its leading term
belongs to a smaller polynomial space.
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Chapter 7

Conclusions and Future Work

7.1 Contributions

Discontinuous Galerkin (DG) methods for solving partial differential equations, became pop-
ular among computational scientists because they provide an attractive approach to address
problems having discontinuities, such as those arising in hyperbolic conservation laws. In
the traditional finite element, the approximated solution is forced to be continuous across
element boundaries. However, the discontinuous Glerkin method allow to the DG solution to
be discontinuous across element boundaries, which leads to a simple communication pattern
between elements sharing a common face that makes them useful for parallel computation,
and simplifies h- and p-refinement techniques. However, for DG methods to be used in an
adaptive framework one needs a posteriori error estimates to guide adaptivity and stop the
refinement process.

In this dissertation we presented a simple and efficient a posteriori error estimation proce-
dure for a discontinuous finite element method applied to first-order hyperbolic problems
on structured and unstructured tetrahedral meshes. First we grouped elements of the mesh
into Class I, II and III, respectively, if it has one, two and three outflow faces. Moreover,
elements are said to be of Type 1, 2 and 3, respectively, the sets of elements having one,
two and three inflow faces. We presented a local error analysis on an arbitrary tetrahedron
by constructing a family of similar tetrahedra with size h and having the same center. This
family of tetrahedra is such that as h — 0 the limit is the common center. Assuming we
compute a p-degree DG approximation of a smooth solution, we expanded the local error as
a power series with respect to h and prove that the leading term of the DG error is a O(h**)
polynomial of degree p+1. We further observed that the leading term of the error satisfies
a DG orthogonality condition which simplifies the form of leading term of the error. For
instance, on a tetrahedron of Class I, the leading term may be written in terms of orthogonal
polynomials of degrees p and p+1 only. We further simplified the leading term and expressed
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it in terms of an optimal set of polynomials which are used to estimate the error. Similarly,
optimal error basis functions are derived on elements of Class II and III. Moreover, on the
outflow face of an arbitrary element of Class I the local error is O(h**2) on average. Nu-
merical computations showed that the implicit a posteriori error estimation procedure yields
accurate estimates for linear and nonlinear problems with smooth solutions. Furthermore,
we showed the performance of our error estimates on problems with discontinuous solutions.

We investigated the pointwise superconvergence properties of the DG method, using enriched
polynomial spaces. We have performed a numerical and theoretical study of the existence of
pointwise superconvergent results for DG methods. We have studied the effect of enriched
finite element spaces on the superconvergence properties of DG solutions on each class and
type of tetrahedral elements. Several superconvergence phenomena have been discovered.

We showed that using the space £, the discretization error on tetrahedral elements of Class
I and Type 1 is O(hP*?) superconvergent on the outflow face. For the enriched space U,
the discretization error on tetrahedral elements of Type 1 is O(h?*?) superconvergent on the
three edges of the inflow face, while on elements of Class I and Type 1 the DG solution
is O(hP*2) superconvergent on the outflow face in addition to the three edges of the inflow
face. Furthermore, we showed that, on tetrahedral elements of Type 2, the DG solution is
O(hP*?) superconvergent on the edge shared by two of the inflow faces. On elements of
Class I and Type 2 and on elements of Type 3, the DG solution is O(h?*?) superconvergent
on two edges of the inflow faces. Moreover, we showed that using the enriched space M,
we obtain a simpler a posteriori error estimation procedure. The superconvergence results
on each elements are tested on several linear problems and tetrahedral meshes for smooth
solutions.

Finally, we extended our error analysis to the discontinuous Galerkin method applied to
linear three-dimensional hyperbolic systems of conservation laws with smooth solutions. We
performed a local error analysis by writing the local error as a series and showing that its
leading term is O (hP*1). We further simplify the leading term and express it in terms of an
optimal set of polynomials which can be used to estimate the error.

7.2 Future Work

In fact, in this work we did not prove the asymptotic exactness of our global a posteriori error
estimates and global pointwise superconvergence for the discretization error. However, the
numerical results suggest that global a posteriori error estimates are asymptotically exact,
and the pointwise superconvergence are globally maintained for smooth solutions. Thus, a
main point of research in the near future will be to establish global superconvergence and a
global error analysis.

Time-dependent problem play an important role in applied mathematics and many other
areas of science. We plan to extend our error analysis to time-dependent problems governed
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by hyperbolic equations and provide numerical study to show the effectiveness of the error
estimate and to validate the theory.

Furthermore, we plan to develop an hp-adaptive framework of the modified DG method ap-
plied to hyperbolic systems and provide numerical computation to test our a posteriori error
estimates on general unstructured tetrahedral meshes for both smooth and discontinuous
solutions. We extend the error analysis to nonlinear hyperbolic systems and study effect of
several numerical fluxes such as LaxFriedrichs, Godunov and Roe fluxes.

We note that our error analysis does not apply near discontinuities and we are not able to
construct asymptotically correct error estimates for discontinuous solutions except in special
cases. We expect to obtain more accurate estimates by investigating the impact of the
strategies of essentially nonoscillatory (ENO) and weighted ENO (WENO) limiters on our
error estimator.
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