

High Quality Transition and Small

Delay Fault ATPG

Puneet Gupta

Thesis submitted to the Faculty of

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical Engineering

Dr. Michael S. Hsiao : Chair

Dr. Dong S. Ha : Member

Dr. Sandeep K. Shukla : Member

February 13, 2004

Bradley Department of Electrical and Computer Engineering,

Blacksburg, Virginia.

Keywords: Path Delay Tests, Non-Robust Tests, Robust Tests, Transition faults, Delay Test, ATPG

HIGH QUALITY TRANSITION AND SMALL DELAY FAULT ATPG

PUNEET GUPTA

ABSTRACT

Path selection and generating tests for small delay faults is an important issue in the delay fault area. A

novel technique for generating effective vectors for delay defects is the first issue that we have presented

in the thesis. The test set achieves high path delay fault coverage to capture small-distributed delay defects

and high transition fault coverage to capture gross delay defects. Furthermore, non-robust paths for

ATPG are filtered (selected) carefully so that there is a minimum overlap with the already tested robust

paths. A relationship between path delay fault model and transition fault model has been observed which

helps us reduce the number of non-robust paths considered for test generation. To generate tests for

robust and non-robust paths, a deterministic ATPG engine is developed. To deal with small delay faults,

we have proposed a new transition fault model called As late As Possible Transition Fault (ALAPTF)

Model. The model aims at detecting smaller delays, which will be missed by both the traditional transition

fault model and the path delay model. The model makes sure that each transition is launched as late as

possible at the fault site, accumulating the small delay defects along its way. Because some transition

faults may require multiple paths to be launched, simple path-delay model will miss such faults. The

algorithm proposed also detects robust and non-robust paths along with the transition faults and the

execution time is linear to the circuit size. Results on ISCAS’85 and ISCAS’89 benchmark circuits shows

that for all the cases, the new model is capable of detecting smaller gate delays and produces better

results in case of process variations. Results also show that the filtered non-robust path set can be reduced

to 40% smaller than the conventional path set without losing delay defect coverage.

 iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Michael Hsiao for his direction, support and motivation throughout

this work. I would also like to thank Dr. Dong S. Ha and Dr. Shukla for graciously serving on my thesis

committee. Last, but not the least by any means, I would like to thank my friends who have made my stay

at graduate school enjoyable and the people in my research group who have made every aspect of research

exciting and interesting for me.

 iv

CONTENTS

CHAPTER 1...1

INTRODUCTION ...1

1.1 PREVIOUS WORK ..2

1.2 THESIS OUTLINE ...4

CHAPTER 2...5

PRELIMINARIES...5

2.1 DELAY FAULT MODEL ..5

2.1.1 STUCK-AT FAULTS ...5
2.1.2 TRANSITION FAULTS...6
2.1.3 PATH DELAY FAULTS ...7

2.2 METHODS TO TEST DELAY FAULTS ...9

2.2.1 ENHANCED SCAN ...9
2.2.2 BROADSIDE OR LAUNCH-FROM-CAPTURE...9
2.2.3 SKEW LOAD OR LAUNCH-FROM-SHIFT..10

2.3 GENETIC ALGORITHMS (GA’S)...12

2.4 DELAY TEST SET SIZE ...14

CHAPTER 3...15

HIGH QUALITY DELAY TESTS USING PATH FILTERING..15

3.1 DELAY TEST METHOD...17

3.1.1 ROBUST TEST GENERATION PHASE ...18
3.1.2 NON-ROBUST TEST GENERATION PHASE...19
3.1.3 TRANSITION FAULT ATPG ...20

 v

3.2 CLUSTERING OF PATHS TO REDUCE TEST SET SIZE..22

3.3 RESULTS...24

CHAPTER 4...31

ALAPTF: A NEW TRANSITION FAULT MODEL AND THE ATPG ALGORITHM ...31

4.1 ALAPTF: THE NEW FAULT MODEL ...32

4.2 ATPG FOR ALAPTF MODEL..36

4.2.1 PRE-PROCESSING ..36
4.2.2 ALAPTF ATPG ..37

4.3 EXPERIMENTAL RESULTS ...39

CHAPTER 5...44

CONCLUSION AND FUTURE WORK ...44

REFERENCE...46

 vi

LIST OF FIGURES

FIGURE 1 EXAMPLE CIRCUIT FOR TRANSITION FAULTS... 7

FIGURE 2 ROBUST AND NON-ROBUST PDFS... 9

FIGURE 3 ILA REPRESENTATION FOR BROADSIDE CAPTURE.. 10

FIGURE 4 WAVEFORM FOR SCAN-ENABLE AND CLOCK FOR THE BROAD SIDE METHOD .. 10

FIGURE 5 ILA REPRESENTATION FOR SKEW LOAD ... 11

FIGURE 6 WAVEFORM FOR SCAN-ENABLE AND CLOCK FOR THE SKEW LOAD METHOD .. 11

FIGURE 7 UNIFORM CROSSOVER... 12

FIGURE 8 FLOWCHART FOR A BASIC GA BASED STUCK-AT FAULT ATPG.. 13

FIGURE 9 A CIRCUIT MODEL WITH 2 PATHS... 16

FIGURE 10 RELATIONSHIP BETWEEN ROBUST AND NON-ROBUST PATHS .. 16

FIGURE 11 ALGORITHM FOR ROBUST ATPG .. 19

FIGURE 12 A SAMPLE CIRCUIT FOR CLUSTERING ... 22

FIGURE 13 CLUSTERING HELPS IN NR PATH FILTERING.. 23

FIGURE 14 PERCENT REDUCTION IN # OF VECTORS USING CLUSTERING... 25

FIGURE 15 PERCENTAGE REDUCTION IN THE # OF PATHS USING FILTERING... 29

FIGURE 16 IDEAL PLOT FOR GATE COVERAGE WITH VARYING VALUES OF DELAY ... 32

FIGURE 17 A TRANSITION FAULT NEED NOT PROPAGATE THROUGH A ROBUST/NR PATH ... 33

FIGURE 18 ALAPTF MODEL... 34

FIGURE 19 SPECIAL CASE FOR ALAPTF... 35

FIGURE 20 PRE-PROCESSING STEP FOR ALAPTF ATPG... 36

FIGURE 21 FLOWCHART FOR FINDING V2 FOR ALL PATHS STARTING FROM A GIVEN PI .. 38

FIGURE 22 PERCENTAGE OF GATES FOR WHICH TRANSITION REACHES LATER BY USING TNEW COMPARED WITH

TOLD ... 41

FIGURE 23 PERCENTAGE OF GATES FOR WHICH TRANSITION REACHES LATER BY USING TNEW COMPARED WITH

TPATH ... 42

FIGURE 24 PERCENT GATE COVERAGE WITH VARYING AMOUNTS OF DELAYS ... 43

 vii

LIST OF TABLES

TABLE 1 UNTESTABLE ROBUST AND NON-ROBUST PATHS... 24

TABLE 2 ATPG RESULTS FOR ROBUST PATHS... 26

TABLE 3A. ATPG RESULTS FOR NR PATHS WITH AND WITHOUT FILTERING OF NR PATHS.. 27

TABLE 3B. ATPG RESULTS FOR NR PATHS WITH AND WITHOUT FILTERING OF NR PATHS 27

TABLE 3C. ATPG RESULTS FOR NR PATHS WITH AND WITHOUT FILTERING OF NR PATHS 28

TABLE 3D. ATPG RESULTS FOR NR PATHS WITH AND WITHOUT FILTERING OF NR PATHS 28

TABLE 4 TFC AND THE TOTAL TEST SET SIZE.. 30

TABLE 5 RESULTS OF THE PROPOSED ATPG ALGORITHM.. 40

TABLE 6 NUMBER OF FAULTS DETECTED BY VARYING AMOUNTS OF ADDED DELAY... 42

1

CHAPTER 1

INTRODUCTION

 Increasing performance requirements motivated testing for the correct temporal behavior, commonly

known as delay testing [1]. Delay faults can be modeled in a number of different ways, among which the

most common are the Path Delay Fault (PDF) model [2] and the transition fault model [3-4]. Test patterns

for transition faults and PDFs consist of a pair of vectors {V1, V2} where V1 is required to initialize the

target node and V2 is required to launch the appropriate transition at the target node and propagate it to an

observation point, such as a primary output (PO). In PDF, cumulative effect of gate delays along the path

is considered whereas in the transition fault, every transition (both 1→0 and 0→1) can be modeled as 2

stuck-at faults. A transition fault models excessive delay on a single node in the circuit. The test that

delivers a rising (falling) transition to a node and sensitizes a path from that node to an observation point

will detect a slow-to-rise (slow-to-fall) transition fault at that node. That same test may detect a path delay

fault associated with the particular route into and out of the node in question. Conversely, a PDF test may

also detect some transition faults. Nevertheless, a complete transition test set may not detect all critical

paths; likewise, a test set that exercises longest paths may not detect all transition faults. In general, the

transition fault model is for capturing gross defects whereas PDF model is for detecting small defects.

Thus to achieve high delay defect coverage we require both high path and transition fault coverage.

In the thesis, both the aspects of delay tests, i.e. PDF’s and Transition faults has been studied and new

algorithms have been proposed for increasing the quality of tests. We know that typically a circuit can

have exponential number of paths. Obtaining high PDF coverage may require testing of a large number of

paths, many of which overlap with one another. To improve the delay test sets, we make an attempt to

generate tests such that they not only have high robust path coverage for the critical paths, but the test set

is also capable of detecting other delay fault models (such as transition faults) that were missed by the

2

critical path analysis. Since the number of paths can be very large for practical circuits, we try to generate

tests for a filtered path set. The idea behind the work is to reduce the number of Non-Roust (NR) paths to

be considered for test generation without losing PDF coverage. Hence, instead of selecting NR paths based

on their lengths, we discard all NR paths that significantly overlap with previously tested robust paths

The second aspect of delay test relates to transition faults. We have proposed a new transition fault model

called As Late As Possible (ALAP) Transition Fault Model. We know that the traditional transition fault

model detects gross delays on the circuit nodes. If robust tests are possible for all the paths in the circuit,

we will not need any additional delay tests. However, since very few paths are robustly testable, there are

some delays, which cannot be captured by both transition and path delay fault models. Consider the

condition when there are some small delay defects distributed inside a circuit. If the nodes lie on a robustly

untestable path or a less critical path, then the path delay model may miss on those faults. The segment

delay fault model might also miss the fault because there might not be a path along which the effect may

be propagated. Furthermore, launching of a transition may not be either robust or non-robust. Hence, we

want a model that can accumulate the effect of these small delays on a particular node, which can then be

tested by the traditional transition fault model. This accumulation of small delays can be modeled by

launching each transition fault as late as possible at the fault site. The notion of ALAP can be implemented

by making sure that a transition fault is launched via one of the longest robust segment ending at the fault

site.

1.1 PREVIOUS WORK

A large amount of work has been done in the past relating to the detection of both the Transition Faults

and the Path Delay Faults (PDFs). Due to the potential large number of paths in a circuit, selection of

paths and the ways to test them has always been important. A large amount of work has also been done in

the area of classification of different path delay tests. PDFs were broadly classified in two ways [5]:

Robust PDF and Non-Robust (NR) PDF. A more detailed classification was presented in RESIST [6]

where the paths were classified in five basic categories, i.e. GRT (General Robust Tests), GNRT (General

Non-Robust Tests), HFRT (Hazard Free Robust Tests), RRT (Restricted Robust tests) and RNRT

(Restricted Non-Robust Tests). The disadvantage of using such a detailed classification is that we need to

have a very elaborate value system. The complexity of the ATPG engine also increases with this

3

classification. Both DYNAMITE [7] and RESIST are deterministic based ATPG engines. DYNAMITE

applies improved redundancy identification techniques. All the paths are stored in a path tree. A stepwise

path sensitization procedure identifies sets of redundant path delay faults without enumerating them. The

limitation of the method is that the path tree is impractical for large circuits. To improve upon this

limitation, the authors in RESIST proposed a recursive method to identify redundant paths and for the test

generation. No path tree is required. Although the method is effective in detecting a large number of paths,

no path selection has been used. Hence circuits with large number of paths become difficult to test.

Another famous ATPG engine is called FSIMGEO [8]. It is a simulation based ATPG engine for PDFs,

but this misses the delay faults on the less critical paths. To overcome this, segment delay faults were

considered and studied in [9]. In this the authors study the technique of covering delay defects on

untestable critical paths by robustly testing their longest possible segments that are not covered by any of

the testable critical path. The disadvantage of this scheme is that there are a large number of untestable

critical paths and generating NR tests for all can be futile.

A different approach for the selection of critical paths has been presented in [10-11]. In [11] the authors

try to generate a longest path passing through each gate. To achieve this they have presented a graph

traversal algorithm that takes a weighted Directed Acyclic Graph (DAG) G, a graph vertex v and a path

length l as input and traverses all those paths in G that pass through v and have a length l. There are some

search pruning methods also involved in the algorithm. Some of the difficulties in using the method are as

follows:

1) The method is not useful of the circuits having a large number of long untestable paths. Since the

algorithm checks of all the possible long paths passing through each gate, the techniques becomes

expensive for circuits like c6288.

2) The sets LRF (LRB) contain a number w which represents that there is segment of length w

starting from the node (some input) and ending at some output (the node). But since these numbers

are purely based on structural length or delay information, the longest path length found by these

sets for each gate can be impractical. In other words, those long paths may not be testable and the

algorithm wastes a large amount of time for theses paths.

3) Since the longest path passing through a gate may actually be one of the shortest paths in the whole

circuit, this technique does not guarantee a proper coverage of the critical paths if only these paths

are considered.

4

Another way to select specific paths to be tested is presented in [12-13]. This is a statistical based

approach where critical paths are selected based on the statistical properties of the already detected paths.

The problem with this method is that since the path selection is based on the statistics of the process

variation, we need to have a different path set for each individual chip which is impractical.

1.2 THESIS OUTLINE

An Outline of the rest of the thesis is as follows:

• Chapter 2 outlines the basic definitions and terminology used. It gives the details about the

different types of delay tests, the different ways to apply delay tests and the basics of

simulation based ATPG algorithms. Some vector storage method schemes have also been

defined in Section 2.4.

• Chapter 3 describes the generation of high quality delay tests using the appropriate selection

of paths. A new incremental based algorithm for transition faults has also been presented.

Results are presented in Section 3.3.

• Chapter 4 presents the idea of As Late As Possible transition fault model to detect small

delay defects using transition fault model. This method is a marriage of path delay faults and

transition faults. The method is effective in testing small delays. The results for this are

presented in Section 4.3.

• Chapter 5 concludes the work with an overview and presents some recommendations for

future work.

5

CHAPTER 2

PRELIMINARIES

This Chapter presents the basics of delay faults. The differences between the Robust and Non-Robust

Path Delay faults as well as Transition faults have been described. Different approaches used for the

application of tests for Transition Faults have been presented. Essentials of genetic algorithm along with

different types of fitness functions are presented in Section 2.3.

2.1 DELAY FAULT MODEL

Physical failures and fabrication defects cannot be easily modeled mathematically. As a result, these

failures and defects are modeled as logical faults. All the different types of delay fault models can be

modeled in terms of stuck-at faults. Hence let us just look into the basic definition of single stuck-at faults.

2.1.1 STUCK-AT FAULTS

It has been shown that stuck-at fault tests are effective in capturing a wide range of defects on

manufactured chips. This model represents faults caused by opens, shorts with power or ground, and

internal faults in the components driving signals that keep them stuck-at a logic value (1/0). To test for

stuck-at faults, two steps are involved. The first step is to generate a test vector that excites the fault and

the next step is to propagate the faulty effect to a primary output or a scan flip-flop. Automatic test pattern

generation (ATPG) tools are typically used to generate the test vectors. It is relatively easy to generate

patterns for stuck-at faults and pattern volume is also comparatively low.

Now let us consider basic types of delay fault models. As described previously, delay faults can be broadly

classified into Transition and Path Delay Faults.

6

2.1.2 TRANSITION FAULTS

The Transition Fault model is similar to the stuck-at fault model in many respects. The effect of a

transition fault at any point P in a circuit is that a rising or a falling transition at P will not reach an

observable output such as a scan flip-flop or a primary output within the desired time. Because of the

nature of these faults, a node can have a slow-to-rise or slow-to-fall transition fault. A slow-to-rise fault at

a node means that any transition from 0 to 1 on the node does not produce the correct result when the

device is operating at its maximum operating frequency. Similarly, a slow-to-fall fault means that a

transition from 1 to 0 on a node does not produce the correct result at the desired frequency.

In any circuit, slack of a path can be defined as the difference between the clock period when the circuit

outputs are latched and the propagation delay of the path under consideration. For a gate level delay fault

to cause an incorrect value to be latched at a circuit output, the size of the delay fault must be such that it

exceeds the slack of at least one path from the site of the fault to the site of an output pin or scan flip-flop.

If the propagation delays of all paths passing through the fault site exceed the clock period, such a fault is

referred to as a gross delay fault [4].

Any test pattern that successfully detects a transition fault comprises of a pair of vectors {V1, V2}, where

V1 is the initial vector that sets a target node to the initial value, and V2 is the subsequent vector that not

only launches the transition at the corresponding node, but also propagates the effect of the transition to a

primary output or a scan flip-flop [14]. Let us consider an example circuit to understand the exact

definition of a transition fault. Consider a small circuit shown in Figure 1. It has 2 NAND gates and one

Primary Input and 2 Observation points. By the application of the shown vector pair, we can see that there

is a rising transition at nodes x and y. These transitions are propagated to the PO’s and they manifest

themselves as 2 falling transitions detecting a total of 4 transition faults viz. rising TR faults at x and y and

falling TR faults at w and z.

7

Figure 1 Example circuit for transition faults

2.1.3 PATH DELAY FAULTS

A physical path P is an interconnection of gates from an input (PI or a scan flop) to observation point (PO

or a scan flop). A rising (falling) path Pr (Pf) is defined as the path corresponding to a rising (falling)

transition starting at the PI. The polarity of the transition for each gate on the path depends on the

inversion parity along that path. Path Length is defined, as the number of gates in a given path P. Segment

S is a contiguous section of P. A segment can start and end at any point in the given path P.

Paths delay fault model is used to detect small distributed delays along a path. Faults in a circuit due to

process variations can manifest themselves as small delays which individually do not make the circuit

faulty. Since the extra delay at each gate is small, transition fault model is incapable of detecting such

faults. As evident from the name, PDFs are used to detect error on the specified paths. Since number of

paths is usually large, selection of paths is critical in generation of PDF tests. PDFs are more complex to

model than transition faults but they can be used to test the defects in the critical paths.

There are a large amount of variations of the path delay fault model. They can be broadly classified into

two categories:

A) Non-Robust (NR) Path Delay Fault:

This class of paths is statically sensitizable [5]. A path P is said to be statically sensitizable if there exist at

least one input vector which stabilizes all side inputs of P at non-controlling value (NVC). However, NR

tests cannot guarantee the detection of the fault in the presence of other faults. Without making any

8

assumption on the component delay values, guaranteed tests exist for only a subset of these non-robustly

testable PDFs, and are called validatable non-robust tests [5]. A more formal definition of NR tests is as

follows: A vector pair {V1, V2} is said to detect a path P non-robustly, iff:

i) If the vector pair launches a transition (rising/falling) at the beginning of the path AND

ii) All the off-paths inputs along the paths have a NCV for V2.

NR tests are easy to generate as compared to other forms of PDFs. Vector V1 only launches the transition

at the start of the path which can always be controlled since it is either a PI or a scan flop. The only

disadvantage of NR tests is that they can be invalidated in the presence of other faults.

B) Robust Path Delay Faults:

These types of paths can be tested independently of side path delays. Hence if all the paths in a circuit are

robustly testable then we will not require any other kind of delay tests. They are a more constraint form of

NR delay tests and cannot be invalidated by other delays. Numerous classifications of robust path delay

faults exits [6] e.g., hazard free robust tests, single/multiple input changing tests, and single/multiple path

propagating tests. The essential requirements of a path P to be robustly testable are:

i) The vector pair {V1, V2} should be a NR test for P AND

ii) Whenever the on-path input of a gate G along the path transitions from a NCV to a controlling

value (CV), then all the off-path inputs of G should be held at a steady NCV.

Robust tests are difficult to generate and a large number of paths in a circuit are usually robustly untestable

(Chapter 3).

Let us consider an example to understand the definitions of NR and Robust test. Consider the circuit in

Figure 2. The rising path P1
r= PI-1-2-3-4-5-PO has a path length LP1 = 7. P1 is robustly and non-robustly

testable as shown in the figure. Now consider another path P2
r = PI-1-2-3-6-5-PO which also has LP2 = 7.

To robustly test P2, the off-path input of gate 6 must be a steady one, which is not possible in this case.

Hence P2 is robustly untestable but it is non-robustly testable.

9

Figure 2 Robust and Non-Robust PDFs

2.2 METHODS TO TEST DELAY FAULTS

As mentioned before, delay tests require a vector pair to detect a fault. Since the patterns must be applied

at the rated speed, at-speed testing is needed. For full scan circuits, both the vectors in the scan flip-flops

must be ready for consecutive time frames to ensure at-speed testing. Several different methods are used to

apply the vectors at-speed. The three most common ones are as follows:

2.2.1 ENHANCED SCAN

This the type of method in which both the vectors are shifted in during the shift process to the scan flops.

Special scan flops are required for this method so that they cab store 2 values at a time. After both the

vectors are shifted in, scan-enables go low and the clock is pulsed two times. The response is then shifted

out. The advantage of this method is that we can achieve higher coverage since both the vectors are

controllable, but the technique has a high overhead of special scan flops called hold-scan flops [15].

2.2.2 BROADSIDE OR LAUNCH-FROM-CAPTURE

Broadside [3] is the most common form of delay fault application method. The method requires only one

vector to be shifted in during the shift cycle. Vector V2 is the circuit response obtained by the application

of V1. Since the second vector is the functional response of the first vector, this method is also known as

functional justification method.

10

Figure 3 ILA representation for Broadside Capture

Figure 3 shows an ILA representation of a circuit C. During the broadside operation, we shift-in the first

vector, and then the system clock is pulsed twice to make a launch and a capture which is then shifted out

during the shift-out operation. The waveforms for the whole operation can be plotted as shown in Figure 4.

Figure 4 Waveform for scan-enable and Clock for the Broad side method

2.2.3 SKEW LOAD OR LAUNCH-FROM-SHIFT

As the name specifies, this methods uses a shifted version of the first vector as its second vector. Hence

the second vector is no more the functional response of the circuit. Instead after shifting in the first vector,

we pulse the system clock and make the scan-enable go low. After the first clock, scan-enable is again

made to go to high and then comes the capture clock.

System Clock

Scan-enable

Shift Frequency

At-speed Capture

Sc
an

 F
lo

ps
. S

hi
ft

V
1

C

R
es

po
ns

e
of

 C
 b

y
V

1

C

Capture

Shift Out

11

Figure 5 ILA representation for Skew Load

Hence the second vector is the one bit sifted version of the first. The advantage of this method is that it

produces better coverage as compared to broadside since the second vector is partially controllable. But

the disadvantage is that the scan-enable to switch state exactly between the 2 at-speed system clocks. This

is practically difficult because of the clock skew problem; it’s difficult to make a switch right in between

of two system clocks. The ILA representation and the weave forms for the clock and the scan-enable are

shown in Figure 5 and Figure 6 respectively.

Figure 6 Waveform for scan-enable and Clock for the Skew Load method

Shift Frequency

At-speed shift and
Capture

System Clock

Scan-enable

Sc
an

 F
lo

ps
. S

hi
ft

V
1

C

Sh
ift

ed
 v

er
si

on
 o

f
V

1

C

Capture

Shift In Shift Out

12

2.3 GENETIC ALGORITHMS (GA’S)

GA’s [16-18] revolve round the same framework as nature has supplied us. There is very strong

parallelism between the genetic evolution in nature and that in this algorithm. Here there is an initial

population and three basic operators i.e. selection, crossover, and mutation. Each individual is a vector and

the best one is evolved over generations from selection and crossover. The initial population is selected

randomly and then the selection and crossover is done in order to improve the performance of an

individual. The law of the “survival of the fittest” applies here also. Weak vectors are dropped and not

used for crossover. The selection of a fitness function is very critical in this algorithm. A bad fitness

function can lead to an individual, which does not give good fault coverage whereas a good fitness

function can avoid this. To find an individual with the desired properties sometimes become difficult and

there can be several generations evolved before an individual is obtained. The three basic string operations

do not require a lot of execution time but the calculation of the fitness of an individual is very time

consuming.

Several, selection methods can be applied to select an individual. In the GA always two parents give rise

to two children and hence the size of the population is maintained constant. In tournament selection, two

individuals from the population are selected in random and there fitness function is compared. The best

among the two becomes parent one (P1) and similar process is applied to find the parent two (P2). The two

are then crossed over to get two children (C1 and C2). In Uniform cross over, a mask is taken which is

chosen randomly and depending on the mask, crossover is done. For e.g. as shown in Figure 7 the bits of

two parents are swapped if the mask has a one, otherwise it its left as it i

P1 = 11111111

P2 = 00000000

C1 = 01110100

C2 = 10001011

Figure 7 Uniform Crossover

A basic GA based stuck-at ATPG flowchart is shown in Figure 8. It’s a two phase algorithm and hence it

has two different fitness functions and the program switches its fitness function after a threshold is

reached. We have used GA’s to develop a Transition Fault ATPG engine. A simulation method was also

used to generate PDFs which is discussed in Chapter 3.

10001011
Crossing mask

13

Figure 8 Flowchart for a basic GA based stuck-at fault ATPG

Phase 1 Phase 2

Fitness = number of
faults detected by
STAFAN

Max no. of
generations
reached?

Fitness
improved

?

GA-evolve
(Selection &
crossover)

Fitness
improved

?

GA-evolve
(Selection &
crossover)

Fitness = number of
faults propagated to
next level

Select most fit
individual and add
to the vector set.
Fautlsim to drop
other faults.

Threshold
reached?

Phase
?

Initialize population

Select most fit
individual and add
that to the vector set.
Fautlsim to drop
other faults.

Threshold
reached?

Y

N

Y

Y

Y

Y

N

N

N

N

N

Y

Phase = 1 Begin

Max no. of
generations
reached?

Select most fit
individual from
previous set and
add the vector set.
Fautlsim to drop
other faults.

Select most fit
individual from
previous set and
add the vector set.
Fautlsim to drop
other faults.

Calculate FC

END

Phase=
2

Calculate FC

14

2.4 DELAY TEST SET SIZE

As mentioned earlier, a scan based delay test needs two vectors for testing a given transition. Hence, any

given test set v having n test patterns can be represented as:

V={(v11,v12),(v21,v22),……(vi1,vi2),……(vn1,vn2)}.

Vector Reusable Test Set (VRTS) [19] is a special form of vector storage in which a test set T having m

elements can be represented as:

T={(v11,v12),(v12,v22),……(v(i-1)2,vi2), …… (v(m-1)2,0vm2)}

where m<n. Thus, instead of storing 2n vectors for test set v, we only need to store m vectors. Since this

method reuses the vector space, it is called VRTS.

15

CHAPTER 3

HIGH QUALITY DELAY TESTS USING PATH FILTERING

Since the number of paths can be very large for practical circuits, only some selected paths are

considered for test generation. The general criterion for the selection of paths is based on there lengths

(structural or delay based). This way some of the critical paths can be tested and hence selection of paths is

very important for the process of test generation. The idea behind this work [20-21] is to reduce the

number of Non-Robust (NR) paths to be considered for test generation without losing Path Delay Fault

(PDF) coverage. Hence, instead of selecting NR paths based on their lengths, we discard all NR paths that

significantly overlap with previously tested robust paths. This concept can be understood by considering

Figure 9. It shows a circuit model with two paths originating from two PIs and ending at two different

POs. Let path P1 (PI1-PO1) be longer than P2 (PI2-PO2) and let us assume that P1 is robustly testable

whereas P2 is robustly untestable. The overlap of P1 and P2 is Lover. We know that since we can test P1

robustly, the region of overlap is also tested robustly. If Lover is greater than some preset threshold, then the

delay due to the non-overlapping portion of P2 alone will not likely make P2 faulty (if the defects on the

non-overlapping segment are small distributed delay defects). Hence, the likely fault that can make P2

faulty is a large delay present in the non-overlapping section. By making sure that the test set covers the

transition faults associated with these gates, we can discard many paths like P2, reducing the total number

of paths needed to be considered for test generation. Due to this observation, a high-quality delay test set

also should achieve a high Transition Fault Coverage (TFC).

16

Figure 9 A circuit model with 2 paths

Figure 10 Relationship between robust and non-robust paths

A general relationship between paths can be deduced from the Venn diagram of Figure 10. Out of the

total possible P paths in the circuit, region R1 (right rectangle) represents robust paths in the circuit, while

Region R5 (left rectangle) represents the robustly untestable paths. R6 represents the untestable NR paths.

R6 is a subset of R5 because untestable NR paths are also robustly untestable. Region R4 represents the M

longest paths considered for ATPG. Note that this set contains some robust and some non-robust paths.

Nevertheless, not all paths from R4 need to be tested, since many of them overlap with already tested

robust paths, as explained earlier. Using our proposed filtering technique, we choose paths more

intelligently. Let us suppose that the region R2 contains the set of NR paths that do not overlap with the

tested robust paths. Then, the region R3 (overlapping between R2 and R4) contain paths which are both

long and do not overlap with an already tested robust path. Thus, while selecting NR paths for test

generation, we want to select paths from R3, rather than all of NR paths in R4. If the test set can

R5: Untestable

 RP

R6:

Untestable
NRP

 P: Total Paths

R4: M longest
NR Paths

 R3: R2 ∩ R4

R2: Filtered NR
 Paths R1: Robust Paths

17

accommodate more patterns, we can choose additional paths from R2. Results show that there has been a

reduction in the NR path set by as much as 40% for some circuits.

 We have also proposed clustering of paths to reduce the test set size by considering multiple

compatible paths together for test generation. Results showed that clustering of paths reduces test set data

by about 40%. Untestable paths are dropped in the initialization phase and reusable vector storage schemes

[19] have been used to further reduce the test set size.

3.1 DELAY TEST METHOD

 We want to select a small number of paths for ATPG and still want to have high quality test set. A

robustly tested path detects small-distributed delays along the path, and hence NR path that overlap

significantly with this path may become futile to test. By considering the transition fault model along with

the PDF model, we can compute a measure for selecting NR paths for ATPG. The two fault models can be

related to each other by the following observation.

Observation 1: By making sure that a test set has high transition fault coverage, many of the NR paths

that overlap largely with already tested robust paths need not be tested.

We will explain the observation with the following example: Using Figure 9, consider the case when a

large portion of a NR path (e.g. P2) overlaps significantly with an already robustly tested path (e.g. P1).

One of the following two scenarios can occur:

1) The non-overlapping portion of P2 has a small delay (according to distributed delay model): Since

LP1≥LP2, and P1 is already tested robustly, this small delay alone is not likely to make P2 faulty. In other

words, since a large portion of P2 overlaps with P1, this added delay is most likely to be detected via the

test of path P1. Hence we don’t need to consider P2 separately for ATPG, similar to those less critical or

shorter paths that we do not consider (region P-R1-R2-R4-R6 of Figure 10).

2) The non-overlapping portion of P2 has a large (lumped) delay: This large delay can always be tested by

using the transition fault model at the nodes of the non-overlapping portion of P2.

18

 Thus, in order to have high quality delay test, we need to have high robust path coverage, high NR

path coverage and high transition fault coverage. To achieve this efficiently, we have designed a 3-phase

ATPG. All 3 phases are described in the following sub-sections.

3.1.1 ROBUST TEST GENERATION PHASE

 The first step towards the test generation for robust paths is to enumerate the robustly testable paths

for which tests are to be generated. We use an implication base technique much similar to [22] for the

removal of all the untestable robust paths. This implication-based technique can be best understood by a

simple example. Consider the circuit of Figure 2 which is again shown here for convenience. To robustly

test the path Pr = PI-1-2-3-6-5-PO, there is a transition from a non-controlling (NCV) to a controlling

value (CV) at the input of gate 6. Hence, the off-path inputs of gate 6 should have a steady NCV for both

V1 and V2, which imply a constant ‘0’ at the output of gate 2. This is a conflict and hence Pr is robustly

untestable. This implication-based analysis identifies a large number of untestable robust paths for most of

the circuits.

Figure 2 Robust and Non-Robust PDFs (Redrawn from Chapter 2)

After removing paths that are robustly untestable, we want to generate tests for the N longest paths. The

algorithm used for doing this is shown in Figure 11. The function essential_values analyzes a given path P

and finds the values needed by V1 and V2 on all the gates of P and stores them in vectors val0 and val1,

respectively. It also finds the essential off-path values under V2. For example, in Fig. 1 for path Pr = PI-1-

2-3-4-5-PO values in val0 = gate1=1, gate2=1, gate3=1, gate4=1, gate5=1, and val1 = gate1=0, gate2=0,

gate3=0, gate4=0, gate5=0. val1 also contains nodes corresponding to side input of gate2 to be logic 1 and

the side input of gate4 to be logic 1 as well. Since the function needs to satisfy the values in val0 and val1,

only 3-valued logic simulation is needed. A vector pair is produced for P if Vi and Vi+1 satisfy all the

values in val0 and val1 corresponding to P respectively. All other paths detected by <Vi-1,Vi> and

<Vi,Vi+1> are then dropped. The final test set produced after considering all N paths is called TR.

19

Figure 11 Algorithm for Robust ATPG

3.1.2 NON-ROBUST TEST GENERATION PHASE

An implication-based approach similar to that used to enumerate robust paths is used to first drop all the

paths that cannot be tested non-robustly. However, this implication based technique poses restrictions on

the values required by V2 only. After dropping the identified untestable NR paths, we further remove

additional NR paths that satisfy the following two conditions according to observation 1:

1) The NR path PNR overlaps with an already detected robust path PR with an amount greater than a

preset threshold ∆NR. The overlapping section should be contiguous.

2) L(PR) ≥ L(PNR).

After dropping paths based on above criteria, we can drop a large number of NR paths. But the number of

paths dropped depends on the number of robust paths detected. Higher robust path coverage generally

translates to more NR paths dropped. We also drop additional paths that are incidentally detected by the

robust test set TR generated in Section 3.1.1

Once we have the set of filtered NR paths, we generate test for the longest M paths (if the number of paths

is still large). The algorithm for NR path ATPG is similar to that of robust path ATPG used in Section

3.1.1, except that NR condition is enforced. Hence for V1, the ATPG needs to satisfy only the conditions

at the PI. The final test set produced after the end of this function is called TR+NR.

robust_ATPG(){

 For all paths P not detected {

 essential_values(P,val0,val1);

 Generate vector Vi (values in val0 need to be satisfied) //only need to do logic simulation

 If Vi generated {

 Generate vector Vi+1 (values in val1 needs to be satisfied) //only need to do logic simulation

 If Vi+1 generated {

 Add Vi and Vi+1 to the test set T

 Drop all path detected by vector pairs <Vi-1,Vi> and <Vi,Vi+1> }

 }}

20

3.1.3 TRANSITION FAULT ATPG

The test set produced so far may not have high transition fault coverage (TFC) since we did not target

some NR paths (by observation 1) that overlap with an already detected robust path. The dropped NR

paths can still cause a delay fault if a large delay defect is present on the nodes of the path that can be

captured by using the transition fault model.

Genetic Algorithm (GA) is used for the transition fault ATPG. The advantages of GA over conventional

deterministic approach are:

(1) Multiple transition faults can be easily targeted simultaneously, and

(2) A good quality vector set without backtracking can be produced in a reasonably shorter time.

GA has been used before for stuck-at faults [16-18]. Calculation of fitness function through multiple fault

simulation is a bottleneck in the efficiency of GA’s. We developed an ATPG called Incremental

Propagation Based ATPG, which circumvents the problem of fault simulation required for the calculation

of fitness function. The algorithm is divided into three phases. Instead of generating tests that will

guarantee the detection of some faults, we generate tests incrementally.

All the transition faults detected by the test set TR+NR are dropped initially and the TFC achieved by TR+NR

is defined as TFCphase 0.The three phases are described as follows.

Phase I: In this phase of the ATPG, we generate test patterns that will only launch the targeted transitions.

We try to maximize the launch coverage L1 in this phase and add all the vectors produced to the test set.

Hence at the end of the first phase we have a set T0={v1, v2, v3……vN }, where vectors v1 to vN are stored

in the VRTS fashion. Now a Transition Fault Simulation is performed using this vector set and all the

detected faults are dropped. Therefore now we have N vectors, which have launch coverage of L1 and

transition fault coverage of TFCphase I. For most of the circuits L1 is near to 100%. For every transition

fault f that is launched, we keep track of the vector number in a vec_num database, which launched f. This

information is later used in phase III. The importance of phase I come from the fact that a large number of

transition faults are easy to detect and we want to drop all the easy faults as soon as possible so as to save

21

execution time. Moreover the database vec_num produced in this phase helps reduce the time to regenerate

V1 for faults that are hard to detect in the later phases.

Phase II: In the second phase, we generate VRTS such that the first vector excites as many undetected

faults f as possible and the corresponding next vector excites as many opposite of f as possible and also

propagates them to k levels ahead from the fault site; where k is the iteration number within phase II. Note

here that the second vector need not propagate the fault to a primary output. Hence after the end of first

iteration within phase II, we have another test set T1={vN+1, vN+2, vN+3…vN+m}. Transition fault simulation

is again performed on T1 and the detected faults are dropped.

After the end of k iterations (k in worst case can be equal to maximum number of levels in the circuit) we

have k test sets. These can be appended together to get the test set T = {(T1, T2, T3,…, …, Tk)}.Thus the

TFC of phase II is :

TFCphase II = ∑(TFC(Ti)) + Φ

And Φ = TFC(VT1
α1, VT2

1) + TFC(VT2
α2 , VT3

1) + + TFC (VT(k-1)
α(k-1) , VTk

1)

Where αi is the number of vector in test set Ti and the VTi
x represents vector number X of test set Ti.

The term Φ accounts for the TFC for the vectors that are at the boundary of the two VRTS, Ti and Ti+1.

Phase III: This phase targets the remaining hard-to-detect transition faults and is a fault dependent phase.

Unlike the other two phases it adds a vector pair for each detected fault. In this phase every undetected

transition fault is considered separately and test is generated for it. Fitness of an individual is defined as

the number of fault events produced. Once a vector pair {V1, V2} is generated for a transition fault f , we

drop all the other undetected faults that might be detected by {V1, V2}. From the vec_num database

generated in phase I, it is easy to find the vectors that launch the transition. We don’t have to waste effort

in regenerating vector V1. Hence, if a transition fault f has a database entry in vec_num, then we only need

to generate V2. The TFC at the end of this phase is given by TFCphase III.

Hence, after the end of all the three phases the final TFC is:

22

TFC = TFCphase 0 + TFCphase I + TFCphase II + TFCphase III.

And the final test set is called TR+NR+TF.

3.2 CLUSTERING OF PATHS TO REDUCE TEST SET SIZE

It follows from Section 3.1 that tests are generated for each path separately and two vectors are added for

each path detected. Although additional paths detected by an added vector pair are dropped, using an

optimization called clustering; we can further reduce the vector space. All the paths are clustered based on

their compatibility with each other. Then, instead of considering one path at a time, we consider a whole

cluster at a time. Two paths are clustered if none of the values in val0 and val1 of both the paths contradict

each other. It is to be noted that two paths need not overlap each other for being compatible. In order to

limit the compatible path space, we only combine a path Pi with Pj such that j ≤ i, where the initial

ordering of paths can be arbitrary. In our case the initial ordering of paths was the same as the order in

which paths are generated. Moreover, cluster size was limited to 50 for each path due to memory

limitations.

Once clustering is done based on path compatibility, we generate test for a whole group. The algorithm

targets the first path in the cluster. Once it is detected, we try to fill the remaining don’t care values of the

produced vector such that another paths in the cluster also gets detected. It is a form of compaction with

the exception that vectors are modified dynamically based on the clustered paths. The concept of

clustering can be best understood by the following example.

Figure 12 A Sample Circuit for clustering

23

Consider the circuit of Figure 12. Let paths P1, P2, P3 and P4 be defined as:

P1
r = 1-7-9-14

P2
f
 = 4-6-11-13-17-19

P3
f
 = 2-8-9-12-15-16-18

P4
f = 2-8-10-12-15-16-18

Without clustering, we will require 8 vectors to detect all the 4 paths. But with clustering the compatibility

relations (С) are as follows:

P1С (P1, P3); P2 С (P2, P3, P4); P3 С (P1, P2, P3); P4 С (P2, P4).

Hence the cluster of paths will be as follows:

Group 1: P1, P3; Group 2: P2, P3; Group 3: P3; Group 4: P4;

Note that group 2 does not contain P4 since P3 is not compatible with P4. Suppose a test {V1, V2} is

generated for group 1, which detected both path P1 and P3. Hence the final test set will be reduced to only

6 vectors. Thus clustering can help reduce number of vectors.

Figure 13 Clustering helps in NR path filtering

Since each vector pair using clustering detects more paths, the filtered path set may be further reduced.

Consider a vector pair detecting two robust paths P1 and P2 that share at-least a small common segment

and a NR path overlaps them as shown in Figure 13. Let segment SL1 of length L1 be the overlap of NR

path with P1 and segment SL2 with length L2 be the overlap of NR path with P2. Further assume that L1

and L2 are both less than ∆NR but L1+L2 > ∆NR. If the segments SL1 and SL2 are contiguous, we can drop

24

the NR path and further enhance the definition of observation 1 made in Section 3.1. Thus clustering not

only reduced the test set volume, but can also improve the process of filtering NR paths.

3.3 RESULTS

This section presents the results for combinational and full scan sequential ISCAS’85 and ISCAS’89

benchmark circuits. The programs were written using C++ and were simulated on a 1.7GHz, Pentium 4,

running the Linux operating system. For the calculation of static implications, an implication engine

presented in [23] was used. Table 1 presents the analysis on robust and NR paths. The second column

shows the total number of paths present in each circuit. The paths include both rising and falling paths.

Since the implication engine is not complete, we cannot say anything about the paths that were not

detected as untestable. Column 3 gives the untestable NR paths (PUNR) and column 4 reports the number of

untestable robust paths (PUR). Since untestable NR paths ⊆ untestable robust paths, the number of robust

paths (NR) needed to be considered for test generation is P-PUR and number of paths considered for NR

path ATPG is PUR–PUNR. The results of Table 1 suggest that there are a large number of paths that cannot

be tested robustly or non-robustly.

Table 1 Untestable Robust and Non-robust paths

Circuit # of paths P
Untestable

NRP(PUNR)

Untestable

RP(PUR)

C880 17284 163 326

C2670 1359920 1190899 1322192

C5315 2682610 2026131 2205279

S641 3488 1079 1280

S1196 6196 1289 1976

S1238 7118 2725 2793

S1423 89452 41102 52923

S1488 1924 0 0

S5378 27084 3645 3645

S9234 489708 419108 446665

S38584 2161446 1646624 1926898

S35932 394282 334713 355494

S38417 2783158 1469251 1795854

25

After filtering out untestable paths, we generate tests for longest N robust paths. Table 2 reports the results

for robust ATPG. Column 2 of Table 2 gives N for various circuits using the deterministic algorithm. The

upper limit on N was chosen to be 5000. Fewer robust paths are chosen if there were not 5000 robust paths

in the circuit (e.g. S1196). Next, we report the results of the ATPG without and with clustering,

respectively. The effect of clustering can be seen by comparing the number of detected paths and the

number of vectors generated. For all cases, the number of vectors generated using clustering is less than

the number of vectors generated without clustering, without any loss in the path coverage. This is because

a group of paths are considered together for ATPG rather than targeting individual paths. Figure 14 shows

the percentage decrease in the number of vectors because of clustering. It compares the results with the

percentage reduction in the number of vectors using deterministic and Genetic Algorithm (GA) based

approach. For most of the cases the former performs better than the GA based approach. But for some

circuits like s35932, GA produces a large reduction in the number of vectors. This is because GA

performs better for circuits which are not random pattern resistant. The average reduction of vector size is

about 40%. Execution times for big circuits are about 4-5 times more with clustering but are still under

limits. The test set produced after robust path ATPG is called VRD.

Figure 14 Percent reduction in # of vectors using clustering

Table 3a and 3b presents the ATPG result for NR paths. First, we filter out the NR paths that overlap with

the tested robust paths. Then, we select all paths that are at least 85% longer than the longest path in the

filtered set. ∆NR (overlap threshold required to drop the path) was kept to be a path dependent quantity.

26

Table 2 ATPG results for robust paths

Without Clustering Clustering

Circuit

Paths

(N)
#Det #Vec TC(s) #Det #Vec TS(s)

C880 5000 4728* 5756 5.83 4728* 3190 29.27

C1355 5000 337 674 101.1 337 674 785.1

C2670 5000 3742 3744 73.99 3742 3484 242.81

C5315 5000 14* 24 10.85 14* 14 77.37

C7552 5000 34* 68 15.67 34* 68 166.67

S641 2208 2096* 1328 1.09 2096* 818 5.67

S1196 4220 3710* 2404 2.02 3710* 1766 11.26

S1423 5000 4822* 3934 10.64 4822* 3136 57.01

S1238 4325 3665* 2392 2.33 3665* 1832 10.1

S5378 5000 4048* 4186 11.24 4048* 2560 54.44

S9234 5000 3085 4458 337.36 3085 2394 5416.7

S35932 5000 4851* 2512 39.6 4851* 1914 130.44

S38417 5000 3638 5266 20895.23 3638 4536 66685.32

 * Rest all of the paths were proven to be untestable by the ATPG.

Clustering was again used for this ATPG. Table 3 (a-d) shows results for the NR paths with and without

filtering with varying values of ∆NR. Specifically, we report results for ∆NR of 100%, 90%, 80%, and 70%.

The second column under NR path ATPG gives the number of NR paths detected/number of NR paths

considered of ATPG (MNR). Note here that ∆NR = 100% means that no filtering has been done.

Paths in the set MNR are covered under region 4 with reference to Figure 10 and also MNR ⊆ PNR. In our

experiments we choose PNR (# NR Paths) such that PNR ∩ NR = Ф. For most of the circuits the coverage is

high at the cost of the addition of few extra vectors (VNR) to the already present vector set VRD.

The column PNRF under ‘NR filtered path ATPG’ represents the paths after filtering with varying values of

∆NR. As ∆NR decreases from 90% to 70%, the number of paths (MNRF) goes on decreasing for almost all

the circuits. This also results in the reduction of the number of vectors. Hence we can infer that filtering at

a correct threshold not only decreases the number of vectors but also increases the delay quality vector set.

27

Table 3a. ATPG results for NR paths with and without filtering of NR paths

Overlap=100% (No Filtering)

Circuit #NR paths

(PNR)
#Det/MNR

Vec

(VNR)
TNR(s)

C880 163 129/129 100 0.85

C1355 5504 2752/4672 1896 23.3

C2670 131293 44760/63448 3452 12675.1

C5315 179148 15101/39447 4500 846.95

C7552 90442 3983/11030 3644 187.9

S641 201 11/11 0 0.09

S1196 147 6/12 0 0.14

S1423 11821 939/939 512 9.22

S9234 27557 590/6736 22 6909.16

S5378 0 0 0 0.0

S35932 20781 11888/12320 0 43.32

Table 3b. ATPG results for NR paths with and without filtering of NR paths

Overlap=90%

Circuit # NR Fil.

Paths (PNRF)
#Det/MNRF

Vec

(VNRF)
TNRF(s)

C880 34 34/34 28 0.28

C1355 5504 2752/4672 1896 23.3

C2670 131293 44760/63448 3452 12675.1

C5315 179148 15101/39447 4500 846.95

C7552 90442 3983/11030 3644 187.9

S641 176 6/6 0 0.08

S1196 146 6/12 0 0.14

S1423 9386 392/392 114 4.06

S9234 27557 590/6736 22 6909.16

S5378 0 0 0 0.0

S35932 20781 11888/12320 0 43.31

28

Table 3c. ATPG results for NR paths with and without filtering of NR paths

Overlap=90%

Circuit # NR Fil.

Paths (PNRF)
#Det/MNRF

Vec

VNRF
TNRF (s)

C880 34 34/34 28 0.28

C1355 5504 2752/4672 1896 23.3

C2670 131247 44760/63448 3452 12675.1

C5315 179140 15095/39439 4500 962.11

C7552 90442 3983/11030 3644 187.9

S641 18 1 / 2 0 0.07

S1196 130 3/9 0 0.14

S1423 8544 286/286 90 3.01

S9234 27501 534/6680 22 6445.80

S5378 0 0 0 0.0

S35932 17693 8944/9232 0 33.82

Table 3d. ATPG results for NR paths with and without filtering of NR paths

Overlap=90%

Circuit # NR Fil.

Paths (PNRF)
#Det/MNRF

Vec

VNRF
TNRF (s)

C880 34 34/34 28 0.28

C1355 5504 2752/4672 1896 23.3

C2670 126740 40792/59468 3426 11635.1

C5315 178986 15033/39285 4482 839.72

C7552 90379 3956/10967 3684 185.86

S641 0 0 0 0.0

S1196 92 0/1 0 0.14

S1423 7107 1175/1445 750 22.75

S9234 27286 350/6496 22 6869.85

S5378 0 0 0 0.0

S35932 14763 6158/6302 0 28.88

29

Using a filtered set of paths enables us to detect a better path set, which is small and hence easy to detect.

We can see that for some big circuits the reduction in path size (PNR-PNRF) is about 40%. Set MNRF ⊆ PNRF

and is essentially region 3 of Figure 10.

The increase in the number of paths when the threshold is reduced to 70% in circuit S1423 and C7552 can

be explained by the definition of MNRF. Since after filtering, the longest path remaining had a small length,

set MNRF for ∆NR = 70% is greater than set MNRF for ∆NR = 80%.

The percentage decrease in the number of filtered paths produced with (∆NR=90%, 80%, 70% and 60%)

and without filtering (∆NR=100%) is plotted in Figure 15 for various circuits. For almost all the circuits

there has been a reduction in the number of paths required for testing to achieve high delay coverage. As

the overlap threshold is increased, the reduction becomes lower since now there are more constraints on

the filtering process. For example, number of paths reduce to about 75% with ∆NR = 60% and about 20%

with ∆NR = 90%. We can also see that the number of vectors required are more with ∆NR=100% (no

filtering) than ∆NR=70% in almost all the cases and the execution times are always less with the help of

filtering. This proves that the concept of filtering helps us reduce number of vectors with an increase in

delay coverage.

Figure 15 Percentage reduction in the # of paths using filtering

 30

Table 4 presents the results for the transition fault coverage achieved. The second column presents

the TFC for the vector set generated so far (VRD+VNRF=70%). We still need to perform transition

fault ATPG for some circuits to account for the faults that VRD+VNRF=70% did not detect. For

most of the circuits, the additional number of vectors (VTF) added to the previous test set

(VRD+VNRF) are very few since a lot of transition faults are detected while generating tests for the

robust paths. For cases such as s35932, we don’t need to add any additional vector. The

incremental propagation based ATPG produces a high TFC for almost all the circuits in a

reasonable amount of time. The last column presents the total number of vectors and total time

taken to generate the whole vector set. The time is the sum of TD + TNRF + TTF and the total

vectors produced is the sum of VRD+ VNRF + VTF. These final test sets achieve high robust

coverage for the 5000 longest robust paths, high non-robust coverage for the filtered NR paths that

do not significantly overlap with tested robust paths, and high transition coverage.

Table 4 TFC and the Total Test Set Size

Transition Fault ATPG Final Test set

Circuit

TFC (%)

VRD

+VNRF
TFC (%)

#Vec

(VTF)
TTF(s)

#Vec

(V‡)
T (s) †

C880 98.69 100.0 22 4.16 3240 33.71

C1355 97.14 99.76 1 160 22.88 2730 831.28

C2670 82.9 87.83 296 317.0 7206 12194.91

C5315 99.1 99.54 22 45.79 4518 962.88

C7552 93.08 96.14 1069 1200.0 4821 1552.53

S641 100.0 100.0 0 0.0 818 5.67

S1196 99.84 100.0 9 1.64 1775 13.04

S1238 96.77 97.26 95 15.48 3231 72.49

S1423 98.2 99.2 122 29.1 2704 61.95

S9234 71.14 90.89 2705 3978.8 5122 10085.3

S5378 93.4 98.23 434 196.1 2994 250.54

S35932 90.5 90.5 0 0.0 1914 159.32
 T(s) † = TRD + TNRF + TTF; V‡ = VRD + VNRF + VTF.

 31

CHAPTER 4

ALAPTF: A NEW TRANSITION FAULT MODEL AND THE
ATPG ALGORITHM

As Late As Possible Transition fault model is helpful in detecting small delay faults that cab be

missed by the traditional Path delay fault model and the Transition fault model. The new ALAPTF

model differentiates itself from the traditional transition fault model in the way that the new model

is capable of detecting delays of much smaller sizes. At the same time, it can also outperform the

PDF tests because not all paths have robust tests. For non-robust tests, only the transition at the

start of the path is sure, while transitions along the path are not guaranteed. Moreover, the new

model launches a transition such that the robust launching segment is the longest possible. Hence,

the percentage of gates for which the transition reaches later by using the new ALAPTF model is

much higher as compared to either the PDF or the traditional transition fault model. Since we

propagate small delays to accumulate at gate nodes, the ALAPTF model is capable of detecting

very small delays due to process variations along the circuit nodes.

An ideal plot for this measure will look something like Figure 16. In this figure, the X-axis

denotes the size of the delay defect, and the Y-axis represents the percentage of gates within the

circuit under test (CUT). Two curves are shown in the figure: the old (traditional) transition fault

model and the new ALAPTF model. Because the traditional model aims at capturing gross delay

defects, larger defect sizes will naturally translate to a higher coverage. However, with our new

model, we expect the coverage to be much higher for smaller delay sizes than the coverage by the

traditional transition fault model, if not also higher than PDF models. A side benefit for the

proposed approach is that the longest robust and non-robust path delay faults through each gate

 32

will also be simultaneously detected. Results reported in Section 4.4 show that with the new

model, much smaller delay defects could be captured when compared with PDF tests or traditional

transition tests. The computation effort is only of the order of circuit size.

Figure 16 Ideal plot for gate coverage with varying values of delay

4.1 ALAPTF: THE NEW FAULT MODEL

Lemma 1: A transition fault can be launched robustly, non-robustly, or neither through the

segment PI-fault site.

Proof: Consider a slow-to-rise transition fault at the output of a simple two-input OR gate G. This

transition can be launched by having rising transitions at both inputs of G. Hence, none of the 2

paths are robustly/non-robustly tested. It can also be launched by having a transition on one input,

while the other input is at a steady 0, forming a robust test for one of the paths. A non-robust test

can be constructed in a similar manner for a slow-to-fall transition on gate G.

Lemma 2: A detected transition fault might not be detected by a robust/non-robust segment

starting from the fault site f to a PO.

 33

Proof: Consider the circuit shown in Figure 17. A slow-to-fall transition fault at G1 is propagated

to the PO and hence detected, but both the paths are blocked (robustly or non-robustly) due to off-

path inputs at gate G2.

Figure 17 A transition fault need not propagate through a Robust/NR path

We know that the PDF model is used to capture small-distributed delay defects whereas the

transition fault model is used to capture gross delay defects. From Lemma 1 and Lemma 2,

because transition fault detection may be neither robust nor non-robust, we can formulate a

methodology to combine the small delay defects present before a fault site and propagate them as

one transition fault. Please note that even the segment delay model may fail, because the overall

path may be non-robustly untestable.

To implement this methodology, we have proposed a new model for transition faults in this

Chapter. Consider the case shown in Figure 18. It shows a structural path P of length Lp (with

solid lines). Let us assume that this path is robustly untestable and there are some small delay

defects present at node D1 through D4, such that D1+ D2+ D3+ D4 > Tclock. The robust path delay

model cannot capture this delay fault because P is robustly untestable. Moreover the traditional

transition fault model may not capture this fault since each Di (i=1,2,3,4) < Tclock and in general each

transition is launched via a short path from the PIs and its effect is propagated through the shortest

propagatable paths to a PO. Hence, we need a fault model, which can group the effect of the

entire Di’s and present them as a lumped delay at node Di+1. The traditional transition fault model

can then test this lumped delay defect.

 34

Figure 18 ALAPTF Model

The new transition fault model, which considers the above-mentioned problem, is called As Late

As Possible Transition Fault (ALAPTF) Model. A fault f under this model is detected if:

1) The fault f is launched at the fault site as late as possible. This means that the fault should

be launched by one of the longest robust segment ending at the fault site. Note that the

segment needs not start from a PI. Hence, from Figure 18, we want the fault at gate D5 to

be propagated robustly along the segment S=D1-D4 if this is the longest testable segment

present for D5. This will ensure that the small delay defects of all the nodes in the robust

segment S, gets accumulated at the final node which can then be tested traditionally.

2) The fault is propagated to a PO from one of the longest paths starting from the fault site.

This will make sure that we cover long paths of propagation and hence can detect the fault

more efficiently.

3) The traditional transition fault model detects f via this ALAPTF path.

Some of the advantages of using ALAPTF are as follows:

1) Since the transition is launched through one of the longest robust segment, all the small

delay defects before the fault site along with the gross delay defects on the fault site

will be detected.

 35

2) The new test set will be able to capture defects of much smaller size than traditional

transition fault model.

3) The complexity is linear to the circuit size, which is much smaller than PDF or

segment delay models, which could be exponential to the circuit size.

4) The algorithm will simultaneously detect longest robust and non-robust PDFs (if they

exist) through each gate. Note that if the PDFs are not testable, we are still able to

launch the transition as late as possible neither robustly nor non-robustly as explained

in Lemmas 1 and 2.

A special case of ALAPTF model is the condition when the robust segment does not start from a

PI. This condition arises when all the robustly testable segments SPI-FS (from PI to transition Fault

Site) are smaller than a robustly testable segment not starting from a PI. This condition can only

occur when there are re-convergent fanouts and the inversion parity at the re-converging gate is

same. This condition is explained in Figure 19.

Figure 19 Special Case for ALAPTF

We can see that both the branches of gate G1 re-converge with the same inversion parity at T.

Both of the paths are robustly and non-robustly untestable. Hence, under the condition L(ST-FS) >

L(∀ SPI-FS), the latest transition that can arrive at the Fault Site can come from a non-PI segment,

i.e. ST-FS. Note that the two paths are each non-sensitizable, but are co-sensitizable. The difference

between our technique and the segment delay model is also evident from Figure 19. Since the

 36

segment delay model requires the entire path to be at least non-robustly testable, the transition

fault model does not require the segment SFS-PO to be tested non-robustly.

4.2 ATPG FOR ALAPTF MODEL

The test generation focuses on finding a test for each fault such that the fault is launched as late as

possible and is propagated to a PO through a long path. To implement ALAPTF we use a two-step

procedure. The first step is a pre-processing step based on simulation, whereas the second is the

deterministic ATPG process.

4.2.1 PRE-PROCESSING

The first step towards ATPG is to estimate the latest time at which a fault can be launched at each

fault location. This information will be used in the second stage of the ATPG. A simple

topological model can also be used (LRB set in [10]) but since a large amount of long paths are

robustly untestable, this approach can be very expensive if every topological path needs to be

verified for robust sensitizability. To overcome this problem and to estimate a better solution of

the problem, we used a Genetic Algorithm (GA) based technique. We consider a unit gate delay

model (every gate has a delay of one unit) for the pre-processing step. However, other more

elaborate delay models can be used also. The pseudo algorithm is shown in Figure 20.

Figure 20 Pre-processing step for ALAPTF ATPG

Void pre_processing() {

 For each gate g {

 Late_1[g] = GA (g,1) //a ‘one’ should reach g ALAP

 //fitness = time at which ‘one’ reaches the gate

 Late_0[g] = GA (g,0) //a ‘zero’ should reach g ALAP

 //fitness = time at which ‘zero’ reaches the gate

 }

}

 37

The method finds a time that a logic 1 and logic 0 can reach each gate. Since it is a unit gate delay

model, the latest time will directly correspond to the structural length of the segment. For

example, if we find out that for a gate g, a ‘1’ will reach latest at time unit 10, then there is

definitely a segment S of length 10 ending at g such that we can propagate a robust rising

transition at g along S. The primary difference between finding the LRB set [10] for each gate and

this approach is that the length produced for each gate is simply not the topological maximum.

Moreover, the lengths produced are indicative of the segment lengths that may or may not start

from a PI. Since we are using a GA based approach, the lengths produced are not guaranteed to be

the maximum. But, the length L produced here for a gate G guarantees that there exists a segment

of length L ending at G, such that, we can propagate a robust transition along it.

4.2.2 ALAPTF ATPG

The second step towards finding the vector set is the following deterministic ATPG algorithm. To

produce a test for all the transition faults so that ALAPTF criterion is satisfied, we use a reverse

approach, i.e. first generate a test for a given path and then drop all the faults detected via the

produced test vector. We use an approach similar to that of RESIST [6] to generate test for all the

paths starting from a given PI. Since we want the transition to launch and propagate from a long

path, we generate test for all the paths and drop the faults once a vector pair is generated. The

following steps explain the algorithm.

1) Since the vector V2 is same for both robust and non-robust test for a given path, we

generate V2 first via a recursive search.

2) Many paths starting from the same PI are structurally similar; hence we use a RESIST-

based approach to produce a test for a path, by reducing re-computation of side-inputs for

the common segments along the paths. In our algorithm, we restrict ourselves to finding V2

only. Our approach for generating V2’s for a given PI and transition, for all paths starting

from PI, can be understood by the flowchart of Figure 21.

3) After generating V2, compute the values required by the gates on P by V1 so that P

becomes robustly testable and store them in Set_V1.

 38

Figure 21 Flowchart for finding V2 for all paths starting from a given PI

4) Since we want to launch every transition ALAP, we want to satisfy as many contiguous

values as possible in the set Set_V1.

node = 2*Gate + transition; value_needed[iteration]=node

If Gate=PO

Make Image
Save the values of iteration, value_needed, backtrack #, Gate,V2

achieved till now.

Apply PODEM to solve for all value of value_needed array.

If success

START
Itteration=1;Gate=PI

Gate= fanout of Gate which is not
yet considered.

Transition=transition at the output of
Gate

Iteration=0 PI done

Load Image (iteration)

Iteration- -; Load the values of value_needed, backtrack #, Gate and V2.

YN

Y

N

Y

N

V2 generated.
Proceed further to produce V1

and drop faults. **

 **

 39

5) If all the values of Set_V1 are satisfied, then the test becomes a robust test for P. If the first

value is satisfied (which is simply an assignment to PI), then it is a non-robust test for P.

6) Drop all the transition faults detected by the vector pair <V1, V2>, if the faults satisfy all

the conditions required by the ALAPTF model, i.e.

a. The fault should be detected in the traditional sense.

b. The fault should be launched by at least a segment of length ≥ the length found in

pre-processing step.

c. The fault should be propagated through one of the longest paths through the fault

site.

7) If no test is found for a fault f such that it satisfies all 3 criterions then we add a vector that

at least detects the fault traditionally.

8) For circuits like c6288 where there are about 217 potentially testable paths, we abort on a

PI as soon as we have tested at least 5000 paths starting from it.

At the end of the process we have a test set that has a maximum robust and non-robust coverage

(if no paths are aborted) along with high transition fault coverage (TFC). If we want to have high

TFC alone, we can simply keep the vectors that detect at least one fault in step 7.

4.3 EXPERIMENTAL RESULTS

This section presents the results for combinational and full scan sequential ISCAS’85 and

ISCAS’89 benchmark circuits. The programs were written using C++ and were simulated on a

1.8GHz, Pentium 4, 512MB RAM machine, running the Linux operating system.

 40

Table 5 presents the results obtained by our approach for ISCAS’85 and full-scan ISCAS’89

benchmark circuits. Second column reports the transition fault coverage for the corresponding

circuits. It should be noted that not all faults were detected by the ALAPTF criterion. Some of

them were detected by relaxing the detection criterion since those faults do not satisfy the first two

ALAPTF detection criteria. We can see that for all the circuits, the TFC reached is the maximum

TFC that can be achieved. The third and the fourth column give the robust and the NR coverage.

Since the ATPG is a deterministic algorithm, the path coverage is maximum for most of the cases.

For c6288, we aborted on each PI node after every 5000 paths. The last column gives the

execution time in seconds. The time is under limits even in the case of circuits such as c1355 and

c5315, which have a large number of paths. This is because of the recursive nature of the

algorithm due to which we need not generate test for each path from the start every time. Hence,

one of the advantages of using this algorithm is that in only one pass, we can find tests for all three

models of delay tests.

Table 5 Results of the proposed ATPG Algorithm

Circuit TFC(%)

of Robust

Paths

Detected*

of NR Paths

Detected*
Time(s)

C880 100.0 16489 16652 19.4

C1355 99.7 200462 841613 4533.2

C2670 85.06 33156 130638 4287.0

C5315 99.54 186635 341634 10564.2

C6288† 99.18 45853 305894 2223.1

C7552 95.74 192021 274920 3531.2

S641 99.05 2092 2266 8.41

S713 94.2 2066 4922 31.4

S1196 100.00 3710 3759 9.73

S1423 99.17 33981 45182 210.7

S5378 97.87 19398 21919 306.2

S9234 89.78 38593 59830 6615.9

S35932 90.5 38372 58657 4891.7

 * If all the vectors are considered. † Only 5000 paths per PI are considered.

 41

To prove that the new test set Tnew launches the transitions as late as possible, we compared Tnew

with the test set (Told) produced by the traditional transition fault ATPG. Figure 22 plots the result

for various circuits. The y-axis represents the percentage of gates on which a transition reaches

later by Tnew as compared to Told. This shows that Tnew is indeed better in performance that Told.

There are on average 30% gates for which transition reaches later by Tnew. The test set was then

simulated for the same parameter against a path delay fault test set Tpath. This set was produced by

the method presented in [10]. Figure 23 shows the corresponding result. Here we can see that for

roughly 20% of the gates, the transitions were launched later. Moreover, the technique presented

in [10] was not able to generate tests for circuits having a large number of long untestable paths

(e.g. c6288), but the technique presented here is able to generate test for these circuits as well.

Figure 22 Percentage of gates for which transition reaches later by using Tnew compared with Told

 42

Figure 23 Percentage of gates for which transition reaches later by using Tnew compared with Tpath

In order to show that the Tnew can detect small delays as compared to Told, we inserted random

delays on each gate. We then simulate the good and the faulty circuit by Tnew and Told to see if the

defects could be captured by either of the test sets. The sizes of the defects were varied for this

experiment. We considered a delay model in which the nominal delay of each gate g was kept

equal to Dg = 5+ # of fanin(g)+ # of fanout(g). This model can be changed and we can also use

real values of delay of each gate. A Gaussian distribution with standard deviation (SD) of 10.0

was used to generate random delay sizes. Wichman-Hill transform [24] was used to generate a

uniform random variable, which was then converted to a Gaussian random variable by using the

Box-Muller [24] method. Table 6 reports the results for some of the benchmark circuits. Let the

nominal delay of the critical path in the circuit be Ld. Then, for the second column (1%) of Table

6, we shift the Gaussian probably distribution curve by an amount equal to 1% of Ld. This means

that the amount of delay added on each gate is about 1% of Ld and can vary up to ± 10 units

(because of SD). We can see that as the size of the delay increases, the number of gates for which

we get a faulty response increases with both Tnew and Told. But Tnew is capable of detecting delay

faults on more number of gates even for smaller values of delays. As the delay approaches infinity,

both the test sets will detect the same number of gates, since both have the same TFC.

Table 6 Number of faults detected by varying amounts of added delay

1% 5% 10% 50% 80%
Ckt

TO TN TO TN TO TN TO TN TO TN

C880 0 1 0 68 54 80 249 258 350 350

S641 0 0 0 0 0 86 155 243 338 344

S713 0 0 0 0 0 0 123 231 347 356

S1196 0 23 29 71 57 86 322 323 533 534

S1423 0 60 0 82 0 100 67 345 403 496

The results of Table 6 are also plotted in a 3-D diagram under Figure 24. We can see that the

curves of Told and Tnew are apart at the beginning and become closer as the delay size reaches a

 43

large value. The curves should be compared with the predicted curves of Figure 16. It is evident

that the plot of Figure 24 closely resembles to Figure 16.

Figure 24 Percent gate coverage with varying amounts of delays

 44

CHAPTER 5

CONCLUSION AND FUTURE WORK

Although a large amount of work has been done in the past relating to path delay faults and

transition faults, delay tests still remain one of the greatest challenges in the fielding of testing.

Due to the new 90nm and 65nm technologies, delay testing is becoming more and more important.

New methods are required to test small delay faults along with the standard transition faults. We

have tried to come up with some alternate techniques for path selection and testing of small delay

faults which might overcome some of the problems faced by the previous work done in this area.

In the thesis we have addressed the following issues:

• A high quality Delay Fault ATPG based on proper path selection was presented. Robust

paths, non-robust paths and transition faults were considered for ATPG. Since the number of

paths in circuits can be huge, measures are taken to select specific paths for ATPG. Selecting

non-robust paths based on their lengths can be non-optimal and hence we drop non-robust

paths that significantly overlap with an already-tested robust path, and the results show that

the final test set is rich in all three aspect of delay testing. In other words, the obtained test

sets capture both gross and distributed delay defects in the circuits. For transition fault

ATPG, a special incremental propagation algorithm is proposed to reduce the vector space

and generate a high Transition Fault Coverage test vector. Results for ISCAS’85 and full-

scan ISCAS’89 benchmark circuits show that the filtered non-robust path set can be reduced

to 40% smaller than the conventional path set without losing delay defect coverage.

Clustering of paths has been shown to improve the fault coverage and also reduce the

number of vectors by 40%.

 45

• A new transition fault model called As Late As Possible Transition Fault (ALAPTF) is

presented. The model is useful in detecting small delay defect which can be missed by both

the transition and path delay fault model. The algorithm uses both Genetic Algorithms and

Deterministic Algorithms for the test generation. A recursive method for the ATPG ensures a

high PDF coverage along with the transition fault coverage. Even circuits like c6288 can be

processed using this method with some constraints. The new model has been shown to

perform better than the existing transition fault model and the path delay fault model. At the

same TFC as produced by the older model, the ALAPTF model, finds a test set which

launches the transitions on each gate as late as possible. For about 30% times the transition

reaches later by using the new fault model which means that the transition are detected via

long paths. It is also capable of detecting much smaller delays (delays much smaller than the

critical path delays). The algorithm proposed also detects robust and non-robust paths along

with the transition faults and the execution time is linear to the circuit size.

 46

REFERENCE

1) A. K. Majhi and V.D. Agrawal, “Delay Fault Model and Coverage”, Proceedings of the

VLSI Design Conference, 1998.

2) G. L. Smith “Model for delay faults based upon paths,” International Test Conference,

1985.

3) J. Savir and S. Patil, “On Broad Side Delay Test”, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Volume: 2, Issue: 3, Sept. 1994, Pages: 368 – 372.

4) J.Savir and S. Patil, “Scan-Based Transition Test,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Volume: 12 , Issue: 8 , Aug. 1993 Pages: 1232

– 1241.

5) K. T. Cheng, and H. C. Chen, “Classification and identification of non-robust untestable

path delay faults”, IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, Volume: 15 , Issue: 8 , Aug. 1996, Pages: 845 – 853.

6) K. Fuchs, M. Pabst and T. Rossel, “RESIST: A recursive test pattern generation algorithm

for path delay faults considering various test classes”, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, Volume: 13, Issue: 12, Dec. 1994

Pages: 1550 – 1562.

7) K. Fuchs, F. Fink and M. Schulz, “DYNAMITE: An efficient automatic test pattern

generation system for path delay faults “, IEEE Transactions on CAD Computer-Aided

Design of Integrated Circuits and Systems, Volume: 10, Issue: 10, Oct. 1991

Pages: 1323 – 1335.

 47

8) S. Yihe and W. Qifa, “FSIMGEO: A Test Generation Method for Path Delay Fault Test

Using Fault Simulation and Genetic Optimization”, ASIC/SOC Conference, 2001.

Proceedings. 14th Annual IEEE International, 12-15 Sept. 2001, Pages: 225 – 229.

9) M.Sharma and J.H. Patel, “Testing of Critical Paths for Delay Faults”, International Test

Conference, 2001. Proceedings. 30 Oct.-1 Nov. 2001, Pages: 634 – 641.

10) M. Sharma, J.H. Patel, “Finding a small set of longest testable paths that cover every gate”,

International Test Conference, 2002. Proceedings. 7-10 Oct. 2002 Pages: 974 - 982

11) W. Qiu and D. M. H. Walker, “An Efficient Algorithm for Finding the K Longest Testable

Paths Through Each Gate in a Combinational Circuit”, International Test Conference,

2003.

12) J.J. Liou, L.C. Wang, K.T. Cheng, “On theoretical and practical considerations of path

selection for delay fault testing”, International Conference on Computer Aided Design,

2002. ICCAD 2002. IEEE/ACM, 10-14 Nov. 2002, Pages: 94 - 100.

13) J.J. Liou, A. Krstic, L.C. Wang, K.T. Cheng “False-path-aware statistical timing analysis

and efficient path selection for delay testing and timing validation”, Design Automation

Conference, 2002. Proceedings. 39th , 10-14 June 2002, Pages: 566 – 569

14) M. L.Bushnell and V. D. Agrawal, “Essentials of Electronic Testing for Digital, Memory,

and Mixed-Signal VLSI Circuits”, Kluwer Academic Publishers, Boston, 2000.

15) I. Dervisoglu and G.Stong, “Design for Testability: Using Scan-path Techniques for Path-

delay Test and Measurement”, Test Conference, 1991, Proceedings., International , 26-30

Oct 1991, Pages:365

 48

16) E. M. Rudnick, J. H. Patel, G.S. Greenstein and T. M. Niermann, “A Genetic Algorithm

Framework for Test Generation,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Volume: 16 , Issue: 9 , Sept. 1997, Pages:1034 – 1044.

17) D.G. Saab, Y.G. Saab and J.A. Abraham, “CRIS: A test cultivation program for sequential

VLSI circuits”, International Conference on Computer-Aided Design, 1992. ICCAD-92.

Digest of Technical Papers. 1992 IEEE/ACM, 8-12 Nov. 1992, Pages:216 - 219.

18) M. S. Hsiao, E. M. Rudnick, and J. H. Patel, “Application of genetically-engineered finite-

state-machine sequences to sequential circuit ATPG”, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, Volume: 17 , Issue: 3 , March 1998,

Pages: 239 – 254.

19) X. liu, M. S. Hsiao, S. Charravarty, P. J. Thadikaran, “Novel ATPG Algorithms for

Transition Faults”, The Seventh IEEE European Test Workshop, 2002. Proceedings., 26-

29 May 2002, Pages: 47 – 52.

20) P. Gupta and M. S. Hsiao, “High Quality ATPG for Delay Defects”, International Test

Conference, 2003. September, 2003, Page: 584-591.

21) P. Gupta and M. S. Hsiao, “High Quality Delay Testing”, Proceedings of the IEEE

Concurrent and Defect-Based Testing Workshop, April 2003.

22) K. Heragu, J.H. Patel, V.D. Agrawal, “Fast Identification of Untestable Delay Faults using

Implications”, International Conference on Computer-Aided Design, 1997. Digest of

Technical Papers. 1997 IEEE/ACM, 9-13 Nov. 1997, Pages: 642 – 647.

23) M. S. Hsiao, "Maximizing impossibilities for Untestable fault identification”, Design,

Automation and Test in Europe Conference and Exhibition, 2002. Proceedings, 4-8 March

2002, Pages: 949 - 953.

 49

24) W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C:

The Art of Scientific Computing, (Cambridge University Press, Cambridge, 1988.

 50

VITA

Puneet Gupta was born in Udaipur, a town in Rajasthan, India. He did his schooling from Udaipur,

India. He joined Regional College of Engineering, Warangal under the Kakatiya University in

1997, to obtain technical education in the area of electronics and communications. After

graduating with a bachelor’s degree in May 2001, he joined Virginia Polytechnic Institute and

State University in August 2001 for a Masters degree in the Bradley Department of Electrical and

Computer Engineering. He joined Dr. Michael Hsiao and his research group in January 2002 and

has since then been involved in research related to hardware testing. He currently got a job in

Cadence Design Systems as a Senior Member Technical Staff in there Test Design Automation

Group in Endicott, NY. He is working currently on delay test ATPG methodologies for the

Cadence Encounter Test Platform. His technical interests include VLSI testing, verification and

VLSI design. His long term goals are to contribute to the scientific community in the areas of

hardware testing and verification.

