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ABSTRACT 
 
 

Path selection and generating tests for small delay faults is an important issue in the delay fault area. A 

novel technique for generating effective vectors for delay defects is the first issue that we have presented 

in the thesis. The test set achieves high path delay fault coverage to capture small-distributed delay defects 

and high transition fault coverage to capture gross delay defects. Furthermore, non-robust paths for 

ATPG are filtered (selected) carefully so that there is a minimum overlap with the already tested robust 

paths. A relationship between path delay fault model and transition fault model has been observed which 

helps us reduce the number of non-robust paths considered for test generation. To generate tests for 

robust and non-robust paths, a deterministic ATPG engine is developed. To deal with small delay faults, 

we have proposed a new transition fault model called As late As Possible Transition Fault (ALAPTF) 

Model. The model aims at detecting smaller delays, which will be missed by both the traditional transition 

fault model and the path delay model. The model makes sure that each transition is launched as late as 

possible at the fault site, accumulating the small delay defects along its way. Because some transition 

faults may require multiple paths to be launched, simple path-delay model will miss such faults. The 

algorithm proposed also detects robust and non-robust paths along with the transition faults and the 

execution time is linear to the circuit size. Results on ISCAS’85 and ISCAS’89 benchmark circuits shows 

that for all the cases, the new model is capable of detecting smaller gate delays and produces better 

results in case of process variations. Results also show that the filtered non-robust path set can be reduced 

to 40% smaller than the conventional path set without losing delay defect coverage.  
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CHAPTER 1 

INTRODUCTION 
 

 

 

 Increasing performance requirements motivated testing for the correct temporal behavior, commonly 

known as delay testing [1]. Delay faults can be modeled in a number of different ways, among which the 

most common are the Path Delay Fault (PDF) model [2] and the transition fault model [3-4]. Test patterns 

for transition faults and PDFs consist of a pair of vectors {V1, V2} where V1 is required to initialize the 

target node and V2 is required to launch the appropriate transition at the target node and propagate it to an 

observation point, such as a primary output (PO). In PDF, cumulative effect of gate delays along the path 

is considered whereas in the transition fault, every transition (both 1→0 and 0→1) can be modeled as 2 

stuck-at faults. A transition fault models excessive delay on a single node in the circuit. The test that 

delivers a rising (falling) transition to a node and sensitizes a path from that node to an observation point 

will detect a slow-to-rise (slow-to-fall) transition fault at that node. That same test may detect a path delay 

fault associated with the particular route into and out of the node in question.  Conversely, a PDF test may 

also detect some transition faults.  Nevertheless, a complete transition test set may not detect all critical 

paths; likewise, a test set that exercises longest paths may not detect all transition faults.  In general, the 

transition fault model is for capturing gross defects whereas PDF model is for detecting small defects. 

Thus to achieve high delay defect coverage we require both high path and transition fault coverage. 

 

In the thesis, both the aspects of delay tests, i.e. PDF’s and Transition faults has been studied and new 

algorithms have been proposed for increasing the quality of tests. We know that typically a circuit can 

have exponential number of paths. Obtaining high PDF coverage may require testing of a large number of 

paths, many of which overlap with one another. To improve the delay test sets, we make an attempt to 

generate tests such that they not only have high robust path coverage for the critical paths, but the test set 

is also capable of detecting other delay fault models (such as transition faults) that were missed by the 
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critical path analysis. Since the number of paths can be very large for practical circuits, we try to generate 

tests for a filtered path set. The idea behind the work is to reduce the number of Non-Roust (NR) paths to 

be considered for test generation without losing PDF coverage. Hence, instead of selecting NR paths based 

on their lengths, we discard all NR paths that significantly overlap with previously tested robust paths 

 

The second aspect of delay test relates to transition faults. We have proposed a new transition fault model 

called As Late As Possible (ALAP) Transition Fault Model. We know that the traditional transition fault 

model detects gross delays on the circuit nodes. If robust tests are possible for all the paths in the circuit, 

we will not need any additional delay tests. However, since very few paths are robustly testable, there are 

some delays, which cannot be captured by both transition and path delay fault models. Consider the 

condition when there are some small delay defects distributed inside a circuit. If the nodes lie on a robustly 

untestable path or a less critical path, then the path delay model may miss on those faults. The segment 

delay fault model might also miss the fault because there might not be a path along which the effect may 

be propagated. Furthermore, launching of a transition may not be either robust or non-robust. Hence, we 

want a model that can accumulate the effect of these small delays on a particular node, which can then be 

tested by the traditional transition fault model. This accumulation of small delays can be modeled by 

launching each transition fault as late as possible at the fault site. The notion of ALAP can be implemented 

by making sure that a transition fault is launched via one of the longest robust segment ending at the fault 

site. 

 

1.1      PREVIOUS WORK 
  

A large amount of work has been done in the past relating to the detection of both the Transition Faults 

and the Path Delay Faults (PDFs). Due to the potential large number of paths in a circuit, selection of 

paths and the ways to test them has always been important. A large amount of work has also been done in 

the area of classification of different path delay tests. PDFs were broadly classified in two ways [5]:  

Robust PDF and Non-Robust (NR) PDF. A more detailed classification was presented in RESIST [6] 

where the paths were classified in five basic categories, i.e. GRT (General Robust Tests), GNRT (General 

Non-Robust Tests), HFRT (Hazard Free Robust Tests), RRT (Restricted Robust tests) and RNRT 

(Restricted Non-Robust Tests). The disadvantage of using such a detailed classification is that we need to 

have a very elaborate value system. The complexity of the ATPG engine also increases with this 
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classification. Both DYNAMITE [7] and RESIST are deterministic based ATPG engines. DYNAMITE 

applies improved redundancy identification techniques. All the paths are stored in a path tree. A stepwise 

path sensitization procedure identifies sets of redundant path delay faults without enumerating them. The 

limitation of the method is that the path tree is impractical for large circuits. To improve upon this 

limitation, the authors in RESIST proposed a recursive method to identify redundant paths and for the test 

generation. No path tree is required. Although the method is effective in detecting a large number of paths, 

no path selection has been used. Hence circuits with large number of paths become difficult to test.  

 

Another famous ATPG engine is called FSIMGEO [8]. It is a simulation based ATPG engine for PDFs, 

but this misses the delay faults on the less critical paths. To overcome this, segment delay faults were 

considered and studied in [9]. In this the authors study the technique of covering delay defects on 

untestable critical paths by robustly testing their longest possible segments that are not covered by any of 

the testable critical path.  The disadvantage of this scheme is that there are a large number of untestable 

critical paths and generating NR tests for all can be futile.  

 

A different approach for the selection of critical paths has been presented in [10-11]. In [11] the authors 

try to generate a longest path passing through each gate. To achieve this they have presented a graph 

traversal algorithm that takes a weighted Directed Acyclic Graph (DAG) G, a graph vertex v and a path 

length l as input and traverses all those paths in G that pass through v and have a length l. There are some 

search pruning methods also involved in the algorithm. Some of the difficulties in using the method are as 

follows: 

1) The method is not useful of the circuits having a large number of long untestable paths. Since the 

algorithm checks of all the possible long paths passing through each gate, the techniques becomes 

expensive for circuits like c6288. 

2) The sets LRF (LRB) contain a number w which represents that there is segment of length w 

starting from the node (some input) and ending at some output (the node).  But since these numbers 

are purely based on structural length or delay information, the longest path length found by these 

sets for each gate can be impractical. In other words, those long paths may not be testable and the 

algorithm wastes a large amount of time for theses paths.  

3) Since the longest path passing through a gate may actually be one of the shortest paths in the whole 

circuit, this technique does not guarantee a proper coverage of the critical paths if only these paths 

are considered. 
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Another way to select specific paths to be tested is presented in [12-13]. This is a statistical based 

approach where critical paths are selected based on the statistical properties of the already detected paths. 

The problem with this method is that since the path selection is based on the statistics of the process 

variation, we need to have a different path set for each individual chip which is impractical.  

 

1.2      THESIS OUTLINE 
 

An Outline of the rest of the thesis is as follows: 

• Chapter 2 outlines the basic definitions and terminology used. It gives the details about the 

different types of delay tests, the different ways to apply delay tests and the basics of 

simulation based ATPG algorithms. Some vector storage method schemes have also been 

defined in Section 2.4. 

• Chapter 3 describes the generation of high quality delay tests using the appropriate selection 

of paths. A new incremental based algorithm for transition faults has also been presented. 

Results are presented in Section 3.3. 

• Chapter 4 presents the idea of As Late As Possible transition fault model to detect small 

delay defects using transition fault model. This method is a marriage of path delay faults and 

transition faults.  The method is effective in testing small delays. The results for this are 

presented in Section 4.3. 

• Chapter 5 concludes the work with an overview and presents some recommendations for 

future work.  
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CHAPTER 2 

PRELIMINARIES 
 

 

 

This Chapter presents the basics of delay faults. The differences between the Robust and Non-Robust 

Path Delay faults as well as Transition faults have been described. Different approaches used for the 

application of tests for Transition Faults have been presented. Essentials of genetic algorithm along with 

different types of fitness functions are presented in Section 2.3. 

2.1      DELAY FAULT MODEL 
 

Physical failures and fabrication defects cannot be easily modeled mathematically. As a result, these 

failures and defects are modeled as logical faults. All the different types of delay fault models can be 

modeled in terms of stuck-at faults. Hence let us just look into the basic definition of single stuck-at faults.   

2.1.1      STUCK-AT FAULTS 
 

It has been shown that stuck-at fault tests are effective in capturing a wide range of defects on 

manufactured chips. This model represents faults caused by opens, shorts with power or ground, and 

internal faults in the components driving signals that keep them stuck-at a logic value (1/0). To test for 

stuck-at faults, two steps are involved. The first step is to generate a test vector that excites the fault and 

the next step is to propagate the faulty effect to a primary output or a scan flip-flop. Automatic test pattern 

generation (ATPG) tools are typically used to generate the test vectors.  It is relatively easy to generate 

patterns for stuck-at faults and pattern volume is also comparatively low. 

 

Now let us consider basic types of delay fault models. As described previously, delay faults can be broadly 

classified into Transition and Path Delay Faults.  
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2.1.2      TRANSITION FAULTS 
 

The Transition Fault model is similar to the stuck-at fault model in many respects. The effect of a 

transition fault at any point P in a circuit is that a rising or a falling transition at P will not reach an 

observable output such as a scan flip-flop or a primary output within the desired time. Because of the 

nature of these faults, a node can have a slow-to-rise or slow-to-fall transition fault. A slow-to-rise fault at 

a node means that any transition from 0 to 1 on the node does not produce the correct result when the 

device is operating at its maximum operating frequency. Similarly, a slow-to-fall fault means that a 

transition from 1 to 0 on a node does not produce the correct result at the desired frequency.  

 

In any circuit, slack of a path can be defined as the difference between the clock period when the circuit 

outputs are latched and the propagation delay of the path under consideration. For a gate level delay fault 

to cause an incorrect value to be latched at a circuit output, the size of the delay fault must be such that it 

exceeds the slack of at least one path from the site of the fault to the site of an output pin or scan flip-flop. 

If the propagation delays of all paths passing through the fault site exceed the clock period, such a fault is 

referred to as a gross delay fault [4].  

 

Any test pattern that successfully detects a transition fault comprises of a pair of vectors {V1, V2}, where 

V1 is the initial vector that sets a target node to the initial value, and V2 is the subsequent vector that not 

only launches the transition at the corresponding node, but also propagates the effect of the transition to a 

primary output or a scan flip-flop [14]. Let us consider an example circuit to understand the exact 

definition of a transition fault. Consider a small circuit shown in Figure 1.  It has 2 NAND gates and one 

Primary Input and 2 Observation points. By the application of the shown vector pair, we can see that there 

is a rising transition at nodes x and y. These transitions are propagated to the PO’s and they manifest 

themselves as 2 falling transitions detecting a total of 4 transition faults viz. rising TR faults at x and y and 

falling TR faults at w and z. 
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Figure 1 Example circuit for transition faults 

 

2.1.3      PATH DELAY FAULTS 
 

A physical path P is an interconnection of gates from an input (PI or a scan flop) to observation point (PO 

or a scan flop). A rising (falling) path Pr (Pf) is defined as the path corresponding to a rising (falling) 

transition starting at the PI. The polarity of the transition for each gate on the path depends on the 

inversion parity along that path. Path Length is defined, as the number of gates in a given path P. Segment 

S is a contiguous section of P. A segment can start and end at any point in the given path P. 

 

Paths delay fault model is used to detect small distributed delays along a path. Faults in a circuit due to 

process variations can manifest themselves as small delays which individually do not make the circuit 

faulty. Since the extra delay at each gate is small, transition fault model is incapable of detecting such 

faults. As evident from the name, PDFs are used to detect error on the specified paths. Since number of 

paths is usually large, selection of paths is critical in generation of PDF tests. PDFs are more complex to 

model than transition faults but they can be used to test the defects in the critical paths.  

 

There are a large amount of variations of the path delay fault model. They can be broadly classified into 

two categories: 

 

A) Non-Robust (NR) Path Delay Fault: 

This class of paths is statically sensitizable [5].  A path P is said to be statically sensitizable if there exist at 

least one input vector which stabilizes all side inputs of P at non-controlling value (NVC). However, NR 

tests cannot guarantee the detection of the fault in the presence of other faults. Without making any 
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assumption on the component delay values, guaranteed tests exist for only a subset of these non-robustly 

testable PDFs, and are called validatable non-robust tests [5]. A more formal definition of NR tests is as 

follows: A vector pair {V1, V2} is said to detect a path P non-robustly, iff: 

 

i) If the vector pair launches a transition (rising/falling) at the beginning of the path AND 

ii) All the off-paths inputs along the paths have a NCV for V2. 

 

NR tests are easy to generate as compared to other forms of PDFs. Vector V1 only launches the transition 

at the start of the path which can always be controlled since it is either a PI or a scan flop. The only 

disadvantage of NR tests is that they can be invalidated in the presence of other faults. 

 

B) Robust Path Delay Faults:  

These types of paths can be tested independently of side path delays. Hence if all the paths in a circuit are 

robustly testable then we will not require any other kind of delay tests. They are a more constraint form of 

NR delay tests and cannot be invalidated by other delays. Numerous classifications of robust path delay 

faults exits [6] e.g., hazard free robust tests, single/multiple input changing tests, and single/multiple path 

propagating tests. The essential requirements of a path P to be robustly testable are: 

 

i) The vector pair {V1, V2} should be a NR test for P AND 

ii) Whenever the on-path input of a gate G along the path transitions from a NCV to a controlling 

value (CV), then all the off-path inputs of G should be held at a steady NCV. 

 

Robust tests are difficult to generate and a large number of paths in a circuit are usually robustly untestable 

(Chapter 3).  

Let us consider an example to understand the definitions of NR and Robust test. Consider the circuit in 

Figure 2. The rising path P1
r= PI-1-2-3-4-5-PO has a path length LP1 = 7. P1 is robustly and non-robustly 

testable as shown in the figure. Now consider another path P2
r = PI-1-2-3-6-5-PO which also has LP2 = 7. 

To robustly test P2, the off-path input of gate 6 must be a steady one, which is not possible in this case. 

Hence P2 is robustly untestable but it is non-robustly testable.   
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Figure 2 Robust and Non-Robust PDFs 

 

2.2      METHODS TO TEST DELAY FAULTS 
 

As mentioned before, delay tests require a vector pair to detect a fault. Since the patterns must be applied 

at the rated speed, at-speed testing is needed. For full scan circuits, both the vectors in the scan flip-flops 

must be ready for consecutive time frames to ensure at-speed testing. Several different methods are used to 

apply the vectors at-speed. The three most common ones are as follows: 

2.2.1 ENHANCED SCAN 
 
This the type of method in which both the vectors are shifted in during the shift process to the scan flops. 

Special scan flops are required for this method so that they cab store 2 values at a time. After both the 

vectors are shifted in, scan-enables go low and the clock is pulsed two times. The response is then shifted 

out. The advantage of this method is that we can achieve higher coverage since both the vectors are 

controllable, but the technique has a high overhead of special scan flops called hold-scan flops [15]. 

2.2.2 BROADSIDE OR LAUNCH-FROM-CAPTURE 
 

Broadside [3] is the most common form of delay fault application method. The method requires only one 

vector to be shifted in during the shift cycle. Vector V2 is the circuit response obtained by the application 

of V1. Since the second vector is the functional response of the first vector, this method is also known as 

functional justification method.   
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Figure 3 ILA representation for Broadside Capture 

 

Figure 3 shows an ILA representation of a circuit C. During the broadside operation, we shift-in the first 

vector, and then the system clock is pulsed twice to make a launch and a capture which is then shifted out 

during the shift-out operation. The waveforms for the whole operation can be plotted as shown in Figure 4. 

 

Figure 4 Waveform for scan-enable and Clock for the Broad side method 

 

2.2.3 SKEW LOAD OR LAUNCH-FROM-SHIFT 
 

As the name specifies, this methods uses a shifted version of the first vector as its second vector. Hence 

the second vector is no more the functional response of the circuit. Instead after shifting in the first vector, 

we pulse the system clock and make the scan-enable go low. After the first clock, scan-enable is again 

made to go to high and then comes the capture clock.  
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Figure 5 ILA representation for Skew Load 

 

Hence the second vector is the one bit sifted version of the first. The advantage of this method is that it 

produces better coverage as compared to broadside since the second vector is partially controllable. But 

the disadvantage is that the scan-enable to switch state exactly between the 2 at-speed system clocks. This 

is practically difficult because of the clock skew problem; it’s difficult to make a switch right in between 

of two system clocks. The ILA representation and the weave forms for the clock and the scan-enable are 

shown in Figure 5 and Figure 6 respectively.  

 

 

Figure 6 Waveform for scan-enable and Clock for the Skew Load method 
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2.3      GENETIC ALGORITHMS (GA’S) 
 

GA’s [16-18] revolve round the same framework as nature has supplied us. There is very strong 

parallelism between the genetic evolution in nature and that in this algorithm. Here there is an initial 

population and three basic operators i.e. selection, crossover, and mutation. Each individual is a vector and 

the best one is evolved over generations from selection and crossover. The initial population is selected 

randomly and then the selection and crossover is done in order to improve the performance of an 

individual. The law of the “survival of the fittest” applies here also. Weak vectors are dropped and not 

used for crossover. The selection of a fitness function is very critical in this algorithm. A bad fitness 

function can lead to an individual, which does not give good fault coverage whereas a good fitness 

function can avoid this. To find an individual with the desired properties sometimes become difficult and 

there can be several generations evolved before an individual is obtained. The three basic string operations 

do not require a lot of execution time but the calculation of the fitness of an individual is very time 

consuming.  

 

Several, selection methods can be applied to select an individual. In the GA always two parents give rise 

to two children and hence the size of the population is maintained constant. In tournament selection, two 

individuals from the population are selected in random and there fitness function is compared. The best 

among the two becomes parent one (P1) and similar process is applied to find the parent two (P2). The two 

are then crossed over to get two children (C1 and C2). In Uniform cross over, a mask is taken which is 

chosen randomly and depending on the mask, crossover is done. For e.g. as shown in Figure 7 the bits of 

two parents are swapped if the mask has a one, otherwise it its left as it i 

 

P1 = 11111111 

P2 = 00000000 

C1 = 01110100 

C2 = 10001011 

 

Figure 7 Uniform Crossover 

 

A basic GA based stuck-at ATPG flowchart is shown in Figure 8. It’s a two phase algorithm and hence it 

has two different fitness functions and the program switches its fitness function after a threshold is 

reached. We have used GA’s to develop a Transition Fault ATPG engine. A simulation method was also 

used to generate PDFs which is discussed in Chapter 3. 

10001011 
Crossing mask 
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Figure 8 Flowchart for a basic GA based stuck-at fault ATPG 
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Initialize population 
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individual and add 
that to the vector set. 
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other faults. 
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Y

N

Y 

Y 

Y

Y 

N 

N 

N

N

N 

Y 

Phase = 1 Begin 

Max no. of 
generations 
reached?

Select most fit 
individual from 
previous set and 
add the vector set. 
Fautlsim to drop 
other faults. 

Select most fit 
individual from 
previous set and 
add the vector set. 
Fautlsim to drop 
other faults. 

Calculate FC 

END

Phase= 
2 

Calculate FC 



 

14 

2.4      DELAY TEST SET SIZE 
 

As mentioned earlier, a scan based delay test needs two vectors for testing a given transition. Hence, any 

given test set v having n test patterns can be represented as:  

 

V={(v11,v12),(v21,v22),……(vi1,vi2),……(vn1,vn2)}. 

 

Vector Reusable Test Set (VRTS) [19] is a special form of vector storage in which a test set T having m 

elements can be represented as: 

 

T={(v11,v12),(v12,v22),……(v(i-1)2,vi2), …… (v(m-1)2,0vm2)}   

 

where m<n. Thus, instead of storing 2n vectors for test set v, we only need to store m vectors. Since this 

method reuses the vector space, it is called VRTS.  
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CHAPTER 3 

 

HIGH QUALITY DELAY TESTS USING PATH FILTERING 
 

 

Since the number of paths can be very large for practical circuits, only some selected paths are 

considered for test generation.  The general criterion for the selection of paths is based on there lengths 

(structural or delay based). This way some of the critical paths can be tested and hence selection of paths is 

very important for the process of test generation. The idea behind this work [20-21] is to reduce the 

number of Non-Robust (NR) paths to be considered for test generation without losing Path Delay Fault 

(PDF) coverage. Hence, instead of selecting NR paths based on their lengths, we discard all NR paths that 

significantly overlap with previously tested robust paths. This concept can be understood by considering 

Figure 9. It shows a circuit model with two paths originating from two PIs and ending at two different 

POs. Let path P1 (PI1-PO1) be longer than P2 (PI2-PO2) and let us assume that P1 is robustly testable 

whereas P2 is robustly untestable. The overlap of P1 and P2 is Lover. We know that since we can test P1 

robustly, the region of overlap is also tested robustly. If Lover is greater than some preset threshold, then the 

delay due to the non-overlapping portion of P2 alone will not likely make P2 faulty (if the defects on the 

non-overlapping segment are small distributed delay defects). Hence, the likely fault that can make P2 

faulty is a large delay present in the non-overlapping section. By making sure that the test set covers the 

transition faults associated with these gates, we can discard many paths like P2, reducing the total number 

of paths needed to be considered for test generation.  Due to this observation, a high-quality delay test set 

also should achieve a high Transition Fault Coverage (TFC). 
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Figure 9 A circuit model with 2 paths 
   

 

Figure 10 Relationship between robust and non-robust paths 

A general relationship between paths can be deduced from the Venn diagram of Figure 10. Out of the 

total possible P paths in the circuit, region R1 (right rectangle) represents robust paths in the circuit, while 

Region R5 (left rectangle) represents the robustly untestable paths. R6 represents the untestable NR paths.  

R6 is a subset of R5 because untestable NR paths are also robustly untestable. Region R4 represents the M 

longest paths considered for ATPG. Note that this set contains some robust and some non-robust paths. 

Nevertheless, not all paths from R4 need to be tested, since many of them overlap with already tested 

robust paths, as explained earlier. Using our proposed filtering technique, we choose paths more 

intelligently.  Let us suppose that the region R2 contains the set of NR paths that do not overlap with the 

tested robust paths. Then, the region R3 (overlapping between R2 and R4) contain paths which are both 

long and do not overlap with an already tested robust path. Thus, while selecting NR paths for test 

generation, we want to select paths from R3, rather than all of NR paths in R4.  If the test set can 

 
R5: Untestable 

 RP 

 
R6: 

Untestable 
NRP 

 
 

 
      P: Total Paths 

R4: M longest  
NR Paths 

 
 R3: R2 ∩ R4 

R2: Filtered NR 
 Paths R1: Robust Paths 
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accommodate more patterns, we can choose additional paths from R2. Results show that there has been a 

reduction in the NR path set by as much as 40% for some circuits. 

 

 We have also proposed clustering of paths to reduce the test set size by considering multiple 

compatible paths together for test generation. Results showed that clustering of paths reduces test set data 

by about 40%. Untestable paths are dropped in the initialization phase and reusable vector storage schemes 

[19] have been used to further reduce the test set size. 
 

3.1      DELAY TEST METHOD 
 

  We want to select a small number of paths for ATPG and still want to have high quality test set. A 

robustly tested path detects small-distributed delays along the path, and hence NR path that overlap 

significantly with this path may become futile to test. By considering the transition fault model along with 

the PDF model, we can compute a measure for selecting NR paths for ATPG. The two fault models can be 

related to each other by the following observation. 

 

Observation 1: By making sure that a test set has high transition fault coverage, many of the NR paths 

that overlap largely with already tested robust paths need not be tested. 

 

We will explain the observation with the following example: Using Figure 9, consider the case when a 

large portion of a NR path (e.g. P2) overlaps significantly with an already robustly tested path (e.g. P1). 

One of the following two scenarios can occur: 

 

1) The non-overlapping portion of P2 has a small delay (according to distributed delay model): Since 

LP1≥LP2, and P1 is already tested robustly, this small delay alone is not likely to make P2 faulty. In other 

words, since a large portion of P2 overlaps with P1, this added delay is most likely to be detected via the 

test of path P1. Hence we don’t need to consider P2 separately for ATPG, similar to those less critical or 

shorter paths that we do not consider (region P-R1-R2-R4-R6 of Figure 10). 

 

2) The non-overlapping portion of P2 has a large (lumped) delay: This large delay can always be tested by 

using the transition fault model at the nodes of the non-overlapping portion of P2. 
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  Thus, in order to have high quality delay test, we need to have high robust path coverage, high NR 

path coverage and high transition fault coverage. To achieve this efficiently, we have designed a 3-phase 

ATPG. All 3 phases are described in the following sub-sections. 

3.1.1     ROBUST TEST GENERATION PHASE 
 

  The first step towards the test generation for robust paths is to enumerate the robustly testable paths 

for which tests are to be generated. We use an implication base technique much similar to [22] for the 

removal of all the untestable robust paths. This implication-based technique can be best understood by a 

simple example. Consider the circuit of Figure 2 which is again shown here for convenience. To robustly 

test the path Pr = PI-1-2-3-6-5-PO, there is a transition from a non-controlling (NCV) to a controlling 

value (CV) at the input of gate 6. Hence, the off-path inputs of gate 6 should have a steady NCV for both 

V1 and V2, which imply a constant ‘0’ at the output of gate 2. This is a conflict and hence Pr is robustly 

untestable. This implication-based analysis identifies a large number of untestable robust paths for most of 

the circuits. 

 

Figure 2 Robust and Non-Robust PDFs (Redrawn from Chapter 2) 

 
After removing paths that are robustly untestable, we want to generate tests for the N longest paths. The 

algorithm used for doing this is shown in Figure 11. The function essential_values analyzes a given path P 

and finds the values needed by V1 and V2 on all the gates of P and stores them in vectors val0 and val1, 

respectively. It also finds the essential off-path values under V2. For example, in Fig. 1 for path Pr = PI-1-

2-3-4-5-PO values in val0 = gate1=1, gate2=1, gate3=1, gate4=1, gate5=1, and val1 = gate1=0, gate2=0, 

gate3=0, gate4=0, gate5=0. val1 also contains nodes corresponding to side input of gate2 to be logic 1 and 

the side input of gate4 to be logic 1 as well. Since the function needs to satisfy the values in val0 and val1, 

only 3-valued logic simulation is needed. A vector pair is produced for P if Vi and Vi+1 satisfy all the 

values in val0 and val1 corresponding to P respectively. All other paths detected by <Vi-1,Vi> and 

<Vi,Vi+1> are then dropped. The final test set produced after considering all N paths is called TR. 
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Figure 11 Algorithm for Robust ATPG 

 

3.1.2 NON-ROBUST TEST GENERATION PHASE 
 
An implication-based approach similar to that used to enumerate robust paths is used to first drop all the 

paths that cannot be tested non-robustly. However, this implication based technique poses restrictions on 

the values required by V2 only. After dropping the identified untestable NR paths, we further remove 

additional NR paths that satisfy the following two conditions according to observation 1:  

 

1) The NR path PNR overlaps with an already detected robust path PR with an amount greater than a 

preset threshold ∆NR. The overlapping section should be contiguous. 

 

2) L(PR) ≥ L(PNR). 

 

After dropping paths based on above criteria, we can drop a large number of NR paths. But the number of 

paths dropped depends on the number of robust paths detected. Higher robust path coverage generally 

translates to more NR paths dropped.  We also drop additional paths that are incidentally detected by the 

robust test set TR generated in Section 3.1.1 

 

Once we have the set of filtered NR paths, we generate test for the longest M paths (if the number of paths 

is still large). The algorithm for NR path ATPG is similar to that of robust path ATPG used in Section 

3.1.1, except that NR condition is enforced. Hence for V1, the ATPG needs to satisfy only the conditions 

at the PI. The final test set produced after the end of this function is called TR+NR. 

robust_ATPG(){ 

  For all paths P not detected { 

    essential_values(P,val0,val1);  

    Generate vector Vi (values in val0 need to be satisfied)  //only need to do logic simulation

   If Vi generated { 

    Generate vector Vi+1 (values in val1 needs to be satisfied)  //only need to do logic simulation

      If Vi+1 generated { 

       Add Vi and Vi+1 to the test set T 

      Drop all path detected by vector pairs <Vi-1,Vi> and  <Vi,Vi+1> } 

  }} 
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3.1.3 TRANSITION FAULT ATPG 
 
The test set produced so far may not have high transition fault coverage (TFC) since we did not target 

some NR paths (by observation 1) that overlap with an already detected robust path. The dropped NR 

paths can still cause a delay fault if a large delay defect is present on the nodes of the path that can be 

captured by using the transition fault model.  

 

Genetic Algorithm (GA) is used for the transition fault ATPG. The advantages of GA over conventional 

deterministic approach are:  

 

(1) Multiple transition faults can be easily targeted simultaneously, and  

(2) A good quality vector set without backtracking can be produced in a reasonably shorter time.  

 

GA has been used before for stuck-at faults [16-18]. Calculation of fitness function through multiple fault 

simulation is a bottleneck in the efficiency of GA’s. We developed an ATPG called Incremental 

Propagation Based ATPG, which circumvents the problem of fault simulation required for the calculation 

of fitness function. The algorithm is divided into three phases. Instead of generating tests that will 

guarantee the detection of some faults, we generate tests incrementally.  

 

All the transition faults detected by the test set TR+NR are dropped initially and the TFC achieved by TR+NR 

is defined as TFCphase 0.The three phases are described as follows. 

 

Phase I: In this phase of the ATPG, we generate test patterns that will only launch the targeted transitions. 

We try to maximize the launch coverage L1 in this phase and add all the vectors produced to the test set. 

Hence at the end of the first phase we have a set T0={v1, v2, v3……vN }, where vectors v1 to vN are stored 

in the VRTS fashion. Now a Transition Fault Simulation is performed using this vector set and all the 

detected faults are dropped. Therefore now we have N vectors, which have launch coverage of L1 and 

transition fault coverage of TFCphase I. For most of the circuits L1 is near to 100%. For every transition 

fault f that is launched, we keep track of the vector number in a vec_num database, which launched f. This 

information is later used in phase III. The importance of phase I come from the fact that a large number of 

transition faults are easy to detect and we want to drop all the easy faults as soon as possible so as to save 
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execution time. Moreover the database vec_num produced in this phase helps reduce the time to regenerate 

V1 for faults that are hard to detect in the later phases. 

 

Phase II: In the second phase, we generate VRTS such that the first vector excites as many undetected 

faults f as possible and the corresponding next vector excites as many opposite of f as possible and also 

propagates them to k levels ahead from the fault site; where k is the iteration number within phase II. Note 

here that the second vector need not propagate the fault to a primary output. Hence after the end of first 

iteration within phase II, we have another test set T1={vN+1, vN+2, vN+3…vN+m}. Transition fault simulation 

is again performed on T1 and the detected faults are dropped. 

 

After the end of k iterations (k in worst case can be equal to maximum number of levels in the circuit) we 

have k test sets. These can be appended together to get the test set T = {(T1, T2, T3,…, …, Tk)}.Thus the 

TFC of  phase II is : 

 

TFCphase II = ∑( TFC(Ti)) + Φ 

 

And Φ = TFC(VT1
α1, VT2

1 ) + TFC(VT2
α2 , VT3

1 ) + ..... + TFC (VT(k-1)
α(k-1) , VTk

1 )  

 

Where αi is the number of vector in test set Ti and the VTi
x represents vector number X of test set Ti. 

The term Φ accounts for the TFC for the vectors that are at the boundary of the two VRTS, Ti and Ti+1.  

 

Phase III: This phase targets the remaining hard-to-detect transition faults and is a fault dependent phase. 

Unlike the other two phases it adds a vector pair for each detected fault. In this phase every undetected 

transition fault is considered separately and test is generated for it. Fitness of an individual is defined as 

the number of fault events produced. Once a vector pair {V1, V2} is generated for a transition fault f , we 

drop all the other undetected faults that might be detected by {V1, V2}. From the vec_num database 

generated in phase I, it is easy to find the vectors that launch the transition. We don’t have to waste effort 

in regenerating vector V1. Hence, if a transition fault f has a database entry in vec_num, then we only need 

to generate V2. The TFC at the end of this phase is given by TFCphase III. 

 

Hence, after the end of all the three phases the final TFC is: 
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TFC = TFCphase 0 + TFCphase I  + TFCphase II  + TFCphase III. 

 

And the final test set is called TR+NR+TF. 

3.2      CLUSTERING OF PATHS TO REDUCE TEST SET SIZE 
 
It follows from Section 3.1 that tests are generated for each path separately and two vectors are added for 

each path detected. Although additional paths detected by an added vector pair are dropped, using an 

optimization called clustering; we can further reduce the vector space. All the paths are clustered based on 

their compatibility with each other. Then, instead of considering one path at a time, we consider a whole 

cluster at a time. Two paths are clustered if none of the values in val0 and val1 of both the paths contradict 

each other.  It is to be noted that two paths need not overlap each other for being compatible. In order to 

limit the compatible path space, we only combine a path Pi with Pj such that j ≤ i, where the initial 

ordering of paths can be arbitrary. In our case the initial ordering of paths was the same as the order in 

which paths are generated. Moreover, cluster size was limited to 50 for each path due to memory 

limitations. 

 

Once clustering is done based on path compatibility, we generate test for a whole group. The algorithm 

targets the first path in the cluster. Once it is detected, we try to fill the remaining don’t care values of the 

produced vector such that another paths in the cluster also gets detected. It is a form of compaction with 

the exception that vectors are modified dynamically based on the clustered paths. The concept of 

clustering can be best understood by the following example. 

 

 

Figure 12 A Sample Circuit for clustering 
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Consider the circuit of Figure 12. Let paths P1, P2, P3 and P4 be defined as:  

 

P1
r = 1-7-9-14 

P2
f
 = 4-6-11-13-17-19 

P3
f
 = 2-8-9-12-15-16-18 

P4
f = 2-8-10-12-15-16-18 

 

Without clustering, we will require 8 vectors to detect all the 4 paths. But with clustering the compatibility 

relations (С) are as follows: 

 

P1С (P1, P3); P2 С (P2, P3, P4); P3 С (P1, P2, P3); P4 С (P2, P4). 

Hence the cluster of paths will be as follows: 

Group 1: P1, P3; Group 2: P2, P3; Group 3: P3; Group 4: P4; 

 

Note that group 2 does not contain P4 since P3 is not compatible with P4. Suppose a test {V1, V2} is 

generated for group 1, which detected both path P1 and P3. Hence the final test set will be reduced to only 

6 vectors. Thus clustering can help reduce number of vectors. 

 

 

Figure 13 Clustering helps in NR path filtering 

 
Since each vector pair using clustering detects more paths, the filtered path set may be further reduced. 

Consider a vector pair detecting two robust paths P1 and P2 that share at-least a small common segment 

and a NR path overlaps them as shown in Figure 13. Let segment SL1 of length L1 be the overlap of NR 

path with P1 and segment SL2 with length L2 be the overlap of NR path with P2. Further assume that L1 

and L2 are both less than ∆NR but L1+L2 > ∆NR.  If the segments SL1 and SL2 are contiguous, we can drop 
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the NR path and further enhance the definition of observation 1 made in Section 3.1. Thus clustering not 

only reduced the test set volume, but can also improve the process of filtering NR paths.  

3.3      RESULTS 
  

This section presents the results for combinational and full scan sequential ISCAS’85 and ISCAS’89 

benchmark circuits. The programs were written using C++ and were simulated on a 1.7GHz, Pentium 4, 

running the Linux operating system. For the calculation of static implications, an implication engine 

presented in [23] was used. Table 1 presents the analysis on robust and NR paths. The second column 

shows the total number of paths present in each circuit. The paths include both rising and falling paths. 

Since the implication engine is not complete, we cannot say anything about the paths that were not 

detected as untestable. Column 3 gives the untestable NR paths (PUNR) and column 4 reports the number of 

untestable robust paths (PUR).  Since untestable NR paths ⊆ untestable robust paths, the number of robust 

paths (NR) needed to be considered for test generation is P-PUR and number of paths considered for NR 

path ATPG is PUR–PUNR. The results of Table 1 suggest that there are a large number of paths that cannot 

be tested robustly or non-robustly.  

Table 1 Untestable Robust and Non-robust paths 

Circuit # of paths P 
Untestable 

NRP(PUNR) 

Untestable 

RP(PUR) 

C880 17284 163 326 

C2670 1359920 1190899 1322192 

C5315 2682610 2026131 2205279 

S641 3488 1079 1280 

S1196 6196 1289 1976 

S1238 7118 2725 2793 

S1423 89452 41102 52923 

S1488 1924 0 0 

S5378 27084 3645 3645 

S9234 489708 419108 446665 

S38584 2161446 1646624 1926898 

S35932 394282 334713 355494 

S38417 2783158 1469251 1795854 
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After filtering out untestable paths, we generate tests for longest N robust paths. Table 2 reports the results 

for robust ATPG. Column 2 of Table 2 gives N for various circuits using the deterministic algorithm. The 

upper limit on N was chosen to be 5000. Fewer robust paths are chosen if there were not 5000 robust paths 

in the circuit (e.g. S1196). Next, we report the results of the ATPG without and with clustering, 

respectively.  The effect of clustering can be seen by comparing the number of detected paths and the 

number of vectors generated. For all cases, the number of vectors generated using clustering is less than 

the number of vectors generated without clustering, without any loss in the path coverage. This is because 

a group of paths are considered together for ATPG rather than targeting individual paths. Figure 14 shows 

the percentage decrease in the number of vectors because of clustering. It compares the results with the 

percentage reduction in the number of vectors using deterministic and Genetic Algorithm (GA) based 

approach. For most of the cases the former performs better than the GA based approach. But for some 

circuits like s35932, GA produces a large reduction in the number of vectors.  This is because GA 

performs better for circuits which are not random pattern resistant. The average reduction of vector size is 

about 40%. Execution times for big circuits are about 4-5 times more with clustering but are still under 

limits.  The test set produced after robust path ATPG is called VRD. 

 

Figure 14 Percent reduction in # of vectors using clustering 

 

Table 3a and 3b presents the ATPG result for NR paths. First, we filter out the NR paths that overlap with 

the tested robust paths.  Then, we select all paths that are at least 85% longer than the longest path in the 

filtered set. ∆NR (overlap threshold required to drop the path) was kept to be a path dependent quantity.  
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Table 2 ATPG results for robust paths 

Without Clustering Clustering 

Circuit 

# 

Paths 

(N) 
#Det #Vec TC(s) #Det #Vec TS(s) 

C880 5000 4728* 5756 5.83 4728* 3190 29.27 

C1355 5000 337 674 101.1 337 674 785.1 

C2670 5000 3742 3744 73.99 3742 3484 242.81 

C5315 5000 14* 24 10.85 14* 14 77.37 

C7552 5000 34* 68 15.67 34* 68 166.67 

S641 2208 2096* 1328 1.09 2096* 818 5.67 

S1196 4220 3710* 2404 2.02 3710* 1766 11.26 

S1423 5000 4822* 3934 10.64 4822* 3136 57.01 

S1238 4325 3665* 2392 2.33 3665* 1832 10.1 

S5378 5000 4048* 4186 11.24 4048* 2560 54.44 

S9234 5000 3085 4458 337.36 3085 2394 5416.7 

S35932 5000 4851* 2512 39.6 4851* 1914 130.44 

S38417 5000 3638 5266 20895.23 3638 4536 66685.32

                    * Rest all of the paths were proven to be untestable by the ATPG. 

 

Clustering was again used for this ATPG. Table 3 (a-d) shows results for the NR paths with and without 

filtering with varying values of ∆NR.  Specifically, we report results for ∆NR of 100%, 90%, 80%, and 70%. 

The second column under NR path ATPG gives the number of NR paths detected/number of NR paths 

considered of ATPG (MNR). Note here that ∆NR = 100% means that no filtering has been done. 

 

Paths in the set MNR are covered under region 4 with reference to Figure 10 and also MNR ⊆ PNR. In our 

experiments we choose PNR (# NR Paths) such that PNR ∩ NR = Ф. For most of the circuits the coverage is 

high at the cost of the addition of few extra vectors (VNR) to the already present vector set VRD. 

  

The column PNRF under ‘NR filtered path ATPG’ represents the paths after filtering with varying values of 

∆NR. As ∆NR decreases from 90% to 70%, the number of paths (MNRF) goes on decreasing for almost all 

the circuits. This also results in the reduction of the number of vectors. Hence we can infer that filtering at 

a correct threshold not only decreases the number of vectors but also increases the delay quality vector set. 
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Table 3a. ATPG results for NR paths with and without filtering of NR paths 

Overlap=100% (No Filtering) 

Circuit #NR paths 

(PNR) 
#Det/MNR 

# Vec 

(VNR) 
TNR(s) 

C880 163 129/129 100 0.85 

C1355 5504 2752/4672 1896 23.3 

C2670 131293 44760/63448 3452 12675.1 

C5315 179148 15101/39447 4500 846.95 

C7552 90442 3983/11030 3644 187.9 

S641 201 11/11 0 0.09 

S1196 147 6/12 0 0.14 

S1423 11821 939/939 512 9.22 

S9234 27557 590/6736 22 6909.16 

S5378 0 0 0 0.0 

S35932 20781 11888/12320 0 43.32 

 

Table 3b. ATPG results for NR paths with and without filtering of NR paths 

Overlap=90% 

Circuit # NR Fil. 

Paths (PNRF) 
#Det/MNRF 

# Vec 

(VNRF) 
TNRF(s) 

C880 34 34/34 28 0.28 

C1355 5504 2752/4672 1896 23.3 

C2670 131293 44760/63448 3452 12675.1 

C5315 179148 15101/39447 4500 846.95 

C7552 90442 3983/11030 3644 187.9 

S641 176 6/6 0 0.08 

S1196 146 6/12 0 0.14 

S1423 9386 392/392 114 4.06 

S9234 27557 590/6736 22 6909.16 

S5378 0 0 0 0.0 

S35932 20781 11888/12320 0 43.31 
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Table 3c. ATPG results for NR paths with and without filtering of NR paths 

Overlap=90% 

Circuit # NR Fil. 

Paths (PNRF) 
#Det/MNRF 

# Vec 

VNRF 
TNRF (s) 

C880 34 34/34 28 0.28 

C1355 5504 2752/4672 1896 23.3 

C2670 131247 44760/63448 3452 12675.1 

C5315 179140 15095/39439 4500 962.11 

C7552 90442 3983/11030 3644 187.9 

S641 18 1 / 2 0 0.07 

S1196 130 3/9 0 0.14 

S1423 8544 286/286 90 3.01 

S9234 27501 534/6680 22 6445.80 

S5378 0 0 0 0.0 

S35932 17693 8944/9232 0 33.82 

 

Table 3d. ATPG results for NR paths with and without filtering of NR paths 

Overlap=90% 

Circuit # NR Fil. 

Paths (PNRF) 
#Det/MNRF 

# Vec 

VNRF 
TNRF (s) 

C880 34 34/34 28 0.28 

C1355 5504 2752/4672 1896 23.3 

C2670 126740 40792/59468 3426 11635.1 

C5315 178986 15033/39285 4482 839.72 

C7552 90379 3956/10967 3684 185.86 

S641 0 0 0 0.0 

S1196 92 0/1 0 0.14 

S1423 7107 1175/1445 750 22.75 

S9234 27286 350/6496 22 6869.85 

S5378 0 0 0 0.0 

S35932 14763 6158/6302 0 28.88 
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Using a filtered set of paths enables us to detect a better path set, which is small and hence easy to detect. 

We can see that for some big circuits the reduction in path size (PNR-PNRF) is about 40%. Set MNRF ⊆ PNRF 

and is essentially region 3 of Figure 10. 

 

The increase in the number of paths when the threshold is reduced to 70% in circuit S1423 and C7552 can 

be explained by the definition of MNRF. Since after filtering, the longest path remaining had a small length, 

set MNRF for ∆NR = 70% is greater than set MNRF for ∆NR = 80%. 

 

The percentage decrease in the number of filtered paths produced with (∆NR=90%, 80%, 70% and 60%) 

and without filtering (∆NR=100%) is plotted in Figure 15 for various circuits. For almost all the circuits 

there has been a reduction in the number of paths required for testing to achieve high delay coverage. As 

the overlap threshold is increased, the reduction becomes lower since now there are more constraints on 

the filtering process. For example, number of paths reduce to about 75% with ∆NR = 60% and about 20% 

with ∆NR = 90%. We can also see that the number of vectors required are more with ∆NR=100% (no 

filtering) than ∆NR=70% in almost all the cases and the execution times are always less with the help of 

filtering.  This proves that the concept of filtering helps us reduce number of vectors with an increase in 

delay coverage. 

 

 

Figure 15 Percentage reduction in the # of paths using filtering 
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Table 4 presents the results for the transition fault coverage achieved. The second column presents 

the TFC for the vector set generated so far (VRD+VNRF=70%).  We still need to perform transition 

fault ATPG for some circuits to account for the faults that VRD+VNRF=70% did not detect. For 

most of the circuits, the additional number of vectors (VTF) added to the previous test set 

(VRD+VNRF) are very few since a lot of transition faults are detected while generating tests for the 

robust paths. For cases such as s35932, we don’t need to add any additional vector. The 

incremental propagation based ATPG produces a high TFC for almost all the circuits in a 

reasonable amount of time. The last column presents the total number of vectors and total time 

taken to generate the whole vector set. The time is the sum of TD + TNRF + TTF and the total 

vectors produced is the sum of VRD+ VNRF + VTF.  These final test sets achieve high robust 

coverage for the 5000 longest robust paths, high non-robust coverage for the filtered NR paths that 

do not significantly overlap with tested robust paths, and high transition coverage. 

 

Table 4 TFC and the Total Test Set Size 

Transition Fault ATPG Final Test set 

Circuit 

TFC (%)  

VRD 

+VNRF 
TFC (%)

#Vec 

(VTF) 
TTF(s) 

#Vec 

(V‡) 
T (s) † 

C880 98.69 100.0 22 4.16 3240 33.71 

C1355 97.14 99.76 1 160 22.88 2730 831.28 

C2670 82.9 87.83 296 317.0 7206 12194.91 

C5315 99.1 99.54 22 45.79 4518 962.88 

C7552 93.08 96.14 1069 1200.0 4821 1552.53 

S641 100.0 100.0 0 0.0 818 5.67 

S1196 99.84 100.0 9 1.64 1775 13.04 

S1238 96.77 97.26 95 15.48 3231 72.49 

S1423 98.2 99.2 122 29.1 2704 61.95 

S9234 71.14 90.89 2705 3978.8 5122 10085.3 

S5378 93.4 98.23 434 196.1 2994 250.54 

S35932 90.5 90.5 0 0.0 1914 159.32 
            T(s) † = TRD + TNRF + TTF; V‡ = VRD + VNRF + VTF. 
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CHAPTER 4 

 

ALAPTF: A NEW TRANSITION FAULT MODEL AND THE 
ATPG ALGORITHM 

 

 

As Late As Possible Transition fault model is helpful in detecting small delay faults that cab be 

missed by the traditional Path delay fault model and the Transition fault model. The new ALAPTF 

model differentiates itself from the traditional transition fault model in the way that the new model 

is capable of detecting delays of much smaller sizes. At the same time, it can also outperform the 

PDF tests because not all paths have robust tests.  For non-robust tests, only the transition at the 

start of the path is sure, while transitions along the path are not guaranteed. Moreover, the new 

model launches a transition such that the robust launching segment is the longest possible. Hence, 

the percentage of gates for which the transition reaches later by using the new ALAPTF model is 

much higher as compared to either the PDF or the traditional transition fault model. Since we 

propagate small delays to accumulate at gate nodes, the ALAPTF model is capable of detecting 

very small delays due to process variations along the circuit nodes.  

 

An ideal plot for this measure will look something like Figure 16. In this figure, the X-axis 

denotes the size of the delay defect, and the Y-axis represents the percentage of gates within the 

circuit under test (CUT). Two curves are shown in the figure: the old (traditional) transition fault 

model and the new ALAPTF model.  Because the traditional model aims at capturing gross delay 

defects, larger defect sizes will naturally translate to a higher coverage.  However, with our new 

model, we expect the coverage to be much higher for smaller delay sizes than the coverage by the 

traditional transition fault model, if not also higher than PDF models. A side benefit for the 

proposed approach is that the longest robust and non-robust path delay faults through each gate 
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will also be simultaneously detected. Results reported in Section 4.4 show that with the new 

model, much smaller delay defects could be captured when compared with PDF tests or traditional 

transition tests.  The computation effort is only of the order of circuit size. 

 

Figure 16 Ideal plot for gate coverage with varying values of delay 

 

4.1      ALAPTF: THE NEW FAULT MODEL 
 
Lemma 1: A transition fault can be launched robustly, non-robustly, or neither through the 

segment PI-fault site. 

 

Proof: Consider a slow-to-rise transition fault at the output of a simple two-input OR gate G. This 

transition can be launched by having rising transitions at both inputs of G. Hence, none of the 2 

paths are robustly/non-robustly tested.  It can also be launched by having a transition on one input, 

while the other input is at a steady 0, forming a robust test for one of the paths.  A non-robust test 

can be constructed in a similar manner for a slow-to-fall transition on gate G. 

  

Lemma 2: A detected transition fault might not be detected by a robust/non-robust segment 

starting from the fault site f to a PO. 
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Proof: Consider the circuit shown in Figure 17. A slow-to-fall transition fault at G1 is propagated 

to the PO and hence detected, but both the paths are blocked (robustly or non-robustly) due to off-

path inputs at gate G2. 

 

 

Figure 17 A transition fault need not propagate through a Robust/NR path 

 

We know that the PDF model is used to capture small-distributed delay defects whereas the 

transition fault model is used to capture gross delay defects.  From Lemma 1 and Lemma 2, 

because transition fault detection may be neither robust nor non-robust, we can formulate a 

methodology to combine the small delay defects present before a fault site and propagate them as 

one transition fault. Please note that even the segment delay model may fail, because the overall 

path may be non-robustly untestable. 

 

To implement this methodology, we have proposed a new model for transition faults in this 

Chapter. Consider the case shown in Figure 18. It shows a structural path P of length Lp (with 

solid lines). Let us assume that this path is robustly untestable and there are some small delay 

defects present at node D1 through D4, such that D1+ D2+ D3+ D4 > Tclock. The robust path delay 

model cannot capture this delay fault because P is robustly untestable. Moreover the traditional 

transition fault model may not capture this fault since each Di (i=1,2,3,4) < Tclock and in general each 

transition is launched via a short path from the PIs and its effect is propagated through the shortest 

propagatable paths to a PO.  Hence, we need a fault model, which can group the effect of the 

entire Di’s and present them as a lumped delay at node Di+1. The traditional transition fault model 

can then test this lumped delay defect. 
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Figure 18 ALAPTF Model 

 
The new transition fault model, which considers the above-mentioned problem, is called As Late 

As Possible Transition Fault (ALAPTF) Model.  A fault f under this model is detected if: 

 

1) The fault f is launched at the fault site as late as possible. This means that the fault should 

be launched by one of the longest robust segment ending at the fault site. Note that the 

segment needs not start from a PI.  Hence, from Figure 18, we want the fault at gate D5 to 

be propagated robustly along the segment S=D1-D4 if this is the longest testable segment 

present for D5. This will ensure that the small delay defects of all the nodes in the robust 

segment S, gets accumulated at the final node which can then be tested traditionally. 

 

2) The fault is propagated to a PO from one of the longest paths starting from the fault site. 

This will make sure that we cover long paths of propagation and hence can detect the fault 

more efficiently. 

 

3) The traditional transition fault model detects f via this ALAPTF path. 

 

Some of the advantages of using ALAPTF are as follows: 

 

1) Since the transition is launched through one of the longest robust segment, all the small 

delay defects before the fault site along with the gross delay defects on the fault site 

will be detected. 
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2) The new test set will be able to capture defects of much smaller size than traditional 

transition fault model. 

 

3) The complexity is linear to the circuit size, which is much smaller than PDF or 

segment delay models, which could be exponential to the circuit size. 

 

4) The algorithm will simultaneously detect longest robust and non-robust PDFs (if they 

exist) through each gate. Note that if the PDFs are not testable, we are still able to 

launch the transition as late as possible neither robustly nor non-robustly as explained 

in Lemmas 1 and 2. 

 

A special case of ALAPTF model is the condition when the robust segment does not start from a 

PI. This condition arises when all the robustly testable segments SPI-FS (from PI to transition Fault 

Site) are smaller than a robustly testable segment not starting from a PI. This condition can only 

occur when there are re-convergent fanouts and the inversion parity at the re-converging gate is 

same. This condition is explained in Figure 19.  

 

Figure 19 Special Case for ALAPTF 

 

We can see that both the branches of gate G1 re-converge with the same inversion parity at T. 

Both of the paths are robustly and non-robustly untestable. Hence, under the condition L(ST-FS) > 

L(∀ SPI-FS), the latest transition that can arrive at the Fault Site can come from a non-PI segment, 

i.e. ST-FS. Note that the two paths are each non-sensitizable, but are co-sensitizable. The difference 

between our technique and the segment delay model is also evident from Figure 19. Since the 
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segment delay model requires the entire path to be at least non-robustly testable, the transition 

fault model does not require the segment SFS-PO to be tested non-robustly. 

 

4.2      ATPG FOR ALAPTF MODEL 
 
The test generation focuses on finding a test for each fault such that the fault is launched as late as 

possible and is propagated to a PO through a long path. To implement ALAPTF we use a two-step 

procedure. The first step is a pre-processing step based on simulation, whereas the second is the 

deterministic ATPG process.  

4.2.1 PRE-PROCESSING 
 

The first step towards ATPG is to estimate the latest time at which a fault can be launched at each 

fault location. This information will be used in the second stage of the ATPG. A simple 

topological model can also be used (LRB set in [10]) but since a large amount of long paths are 

robustly untestable, this approach can be very expensive if every topological path needs to be 

verified for robust sensitizability. To overcome this problem and to estimate a better solution of 

the problem, we used a Genetic Algorithm (GA) based technique. We consider a unit gate delay 

model (every gate has a delay of one unit) for the pre-processing step.  However, other more 

elaborate delay models can be used also. The pseudo algorithm is shown in Figure 20. 

 

 

Figure 20 Pre-processing step for ALAPTF ATPG 

 

Void pre_processing() { 

  For each gate g { 

    Late_1[g] = GA (g,1) //a ‘one’ should reach g ALAP 

    //fitness = time at which ‘one’ reaches the gate 

    Late_0[g] = GA (g,0) //a ‘zero’ should reach g ALAP 

    //fitness = time at which ‘zero’ reaches the gate 

    } 

} 
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The method finds a time that a logic 1 and logic 0 can reach each gate. Since it is a unit gate delay 

model, the latest time will directly correspond to the structural length of the segment. For 

example, if we find out that for a gate g, a ‘1’ will reach latest at time unit 10, then there is 

definitely a segment S of length 10 ending at g such that we can propagate a robust rising 

transition at g along S. The primary difference between finding the LRB set [10] for each gate and 

this approach is that the length produced for each gate is simply not the topological maximum. 

Moreover, the lengths produced are indicative of the segment lengths that may or may not start 

from a PI. Since we are using a GA based approach, the lengths produced are not guaranteed to be 

the maximum. But, the length L produced here for a gate G guarantees that there exists a segment 

of length L ending at G, such that, we can propagate a robust transition along it. 

4.2.2 ALAPTF ATPG 
 

The second step towards finding the vector set is the following deterministic ATPG algorithm. To 

produce a test for all the transition faults so that ALAPTF criterion is satisfied, we use a reverse 

approach, i.e. first generate a test for a given path and then drop all the faults detected via the 

produced test vector. We use an approach similar to that of RESIST [6] to generate test for all the 

paths starting from a given PI. Since we want the transition to launch and propagate from a long 

path, we generate test for all the paths and drop the faults once a vector pair is generated.  The 

following steps explain the algorithm. 

 

1) Since the vector V2 is same for both robust and non-robust test for a given path, we 

generate V2 first via a recursive search. 

 

2) Many paths starting from the same PI are structurally similar; hence we use a RESIST-

based approach to produce a test for a path, by reducing re-computation of side-inputs for 

the common segments along the paths. In our algorithm, we restrict ourselves to finding V2 

only. Our approach for generating V2’s for a given PI and transition, for all paths starting 

from PI, can be understood by the flowchart of Figure 21. 

 

3) After generating V2, compute the values required by the gates on P by V1 so that P 

becomes robustly testable and store them in Set_V1. 
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Figure 21 Flowchart for finding V2 for all paths starting from a given PI 

 

4) Since we want to launch every transition ALAP, we want to satisfy as many contiguous 

values as possible in the set Set_V1. 

 

 
node = 2*Gate + transition; value_needed[iteration]=node 

If Gate=PO 

Make Image 
Save the values of iteration, value_needed, backtrack #, Gate,V2 

achieved till now. 

Apply PODEM to solve for all value of value_needed array.  

If success 

START 
Itteration=1;Gate=PI 

 
 
Gate= fanout of Gate which is not 
yet considered. 
 
Transition=transition at the output of 
Gate

Iteration=0 PI done 

Load Image (iteration) 
 

Iteration- -; Load the values of value_needed, backtrack #, Gate and V2. 

YN 

Y

N 

Y

N 

V2 generated.  
Proceed further to produce V1 

and drop faults.     ** 

    ** 
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5) If all the values of Set_V1 are satisfied, then the test becomes a robust test for P. If the first 

value is satisfied (which is simply an assignment to PI), then it is a non-robust test for P. 

 

6) Drop all the transition faults detected by the vector pair <V1, V2>, if the faults satisfy all 

the conditions required by the ALAPTF model, i.e. 

 

a. The fault should be detected in the traditional sense. 

b. The fault should be launched by at least a segment of length ≥ the length found in 

pre-processing step. 

c. The fault should be propagated through one of the longest paths through the fault 

site. 

 

7) If no test is found for a fault f such that it satisfies all 3 criterions then we add a vector that 

at least detects the fault traditionally. 

 

8) For circuits like c6288 where there are about 217 potentially testable paths, we abort on a 

PI as soon as we have tested at least 5000 paths starting from it. 

 

At the end of the process we have a test set that has a maximum robust and non-robust coverage 

(if no paths are aborted) along with high transition fault coverage (TFC). If we want to have high 

TFC alone, we can simply keep the vectors that detect at least one fault in step 7. 

 

4.3      EXPERIMENTAL RESULTS 
 

This section presents the results for combinational and full scan sequential ISCAS’85 and 

ISCAS’89 benchmark circuits. The programs were written using C++ and were simulated on a 

1.8GHz, Pentium 4, 512MB RAM machine, running the Linux operating system.  
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Table 5 presents the results obtained by our approach for ISCAS’85 and full-scan ISCAS’89 

benchmark circuits. Second column reports the transition fault coverage for the corresponding 

circuits. It should be noted that not all faults were detected by the ALAPTF criterion. Some of 

them were detected by relaxing the detection criterion since those faults do not satisfy the first two 

ALAPTF detection criteria. We can see that for all the circuits, the TFC reached is the maximum 

TFC that can be achieved. The third and the fourth column give the robust and the NR coverage. 

Since the ATPG is a deterministic algorithm, the path coverage is maximum for most of the cases. 

For c6288, we aborted on each PI node after every 5000 paths. The last column gives the 

execution time in seconds. The time is under limits even in the case of circuits such as c1355 and 

c5315, which have a large number of paths. This is because of the recursive nature of the 

algorithm due to which we need not generate test for each path from the start every time. Hence, 

one of the advantages of using this algorithm is that in only one pass, we can find tests for all three 

models of delay tests.  

Table 5 Results of the proposed ATPG Algorithm 

Circuit TFC(%) 

# of Robust 

Paths 

Detected* 

# of NR Paths 

Detected* 
Time(s) 

C880 100.0 16489 16652 19.4 

C1355 99.7 200462 841613 4533.2 

C2670 85.06 33156 130638 4287.0 

C5315 99.54 186635 341634 10564.2 

C6288† 99.18 45853 305894 2223.1 

C7552 95.74 192021 274920 3531.2 

S641 99.05 2092 2266 8.41 

S713 94.2 2066 4922 31.4 

S1196 100.00 3710 3759 9.73 

S1423 99.17 33981 45182 210.7 

S5378 97.87 19398 21919 306.2 

S9234 89.78 38593 59830 6615.9 

S35932 90.5 38372 58657 4891.7 

                                * If all the vectors are considered. † Only 5000 paths per PI are considered. 
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To prove that the new test set Tnew launches the transitions as late as possible, we compared Tnew 

with the test set (Told) produced by the traditional transition fault ATPG. Figure 22 plots the result 

for various circuits. The y-axis represents the percentage of gates on which a transition reaches 

later by Tnew as compared to Told. This shows that Tnew is indeed better in performance that Told. 

There are on average 30% gates for which transition reaches later by Tnew. The test set was then 

simulated for the same parameter against a path delay fault test set Tpath. This set was produced by 

the method presented in [10]. Figure 23 shows the corresponding result. Here we can see that for 

roughly 20% of the gates, the transitions were launched later. Moreover, the technique presented 

in [10] was not able to generate tests for circuits having a large number of long untestable paths 

(e.g. c6288), but the technique presented here is able to generate test for these circuits as well. 
 

 

Figure 22 Percentage of gates for which transition reaches later by using Tnew compared with Told 
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Figure 23 Percentage of gates for which transition reaches later by using Tnew compared with Tpath 

 

In order to show that the Tnew can detect small delays as compared to Told, we inserted random 

delays on each gate. We then simulate the good and the faulty circuit by Tnew and Told to see if the 

defects could be captured by either of the test sets. The sizes of the defects were varied for this 

experiment. We considered a delay model in which the nominal delay of each gate g was kept 

equal to Dg = 5+ # of fanin(g)+ # of fanout(g). This model can be changed and we can also use 

real values of delay of each gate. A Gaussian distribution with standard deviation (SD) of 10.0 

was used to generate random delay sizes. Wichman-Hill transform [24] was used to generate a 

uniform random variable, which was then converted to a Gaussian random variable by using the 

Box-Muller [24] method. Table 6 reports the results for some of the benchmark circuits. Let the 

nominal delay of the critical path in the circuit be Ld. Then, for the second column (1%) of Table 

6, we shift the Gaussian probably distribution curve by an amount equal to 1% of Ld. This means 

that the amount of delay added on each gate is about 1% of Ld and can vary up to ± 10 units 

(because of SD). We can see that as the size of the delay increases, the number of gates for which 

we get a faulty response increases with both Tnew and Told. But Tnew is capable of detecting delay 

faults on more number of gates even for smaller values of delays. As the delay approaches infinity, 

both the test sets will detect the same number of gates, since both have the same TFC. 

 

Table 6 Number of faults detected by varying amounts of added delay 

1% 5% 10% 50% 80% 
Ckt 

TO TN TO TN TO TN TO TN TO TN 

C880 0 1 0 68 54 80 249 258 350 350 

S641 0 0 0 0 0 86 155 243 338 344 

S713 0 0 0 0 0 0 123 231 347 356 

S1196 0 23 29 71 57 86 322 323 533 534 

S1423 0 60 0 82 0 100 67 345 403 496 

 

The results of Table 6 are also plotted in a 3-D diagram under Figure 24. We can see that the 

curves of Told and Tnew are apart at the beginning and become closer as the delay size reaches a 
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large value. The curves should be compared with the predicted curves of Figure 16. It is evident 

that the plot of Figure 24 closely resembles to Figure 16. 

 

 

Figure 24 Percent gate coverage with varying amounts of delays 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 
 

Although a large amount of work has been done in the past relating to path delay faults and 

transition faults, delay tests still remain one of the greatest challenges in the fielding of testing. 

Due to the new 90nm and 65nm technologies, delay testing is becoming more and more important. 

New methods are required to test small delay faults along with the standard transition faults. We 

have tried to come up with some alternate techniques for path selection and testing of small delay 

faults which might overcome some of the problems faced by the previous work done in this area. 

In the thesis we have addressed the following issues:  

 

• A high quality Delay Fault ATPG based on proper path selection was presented. Robust 

paths, non-robust paths and transition faults were considered for ATPG. Since the number of 

paths in circuits can be huge, measures are taken to select specific paths for ATPG. Selecting 

non-robust paths based on their lengths can be non-optimal and hence we drop non-robust 

paths that significantly overlap with an already-tested robust path, and the results show that 

the final test set is rich in all three aspect of delay testing. In other words, the obtained test 

sets capture both gross and distributed delay defects in the circuits. For transition fault 

ATPG, a special incremental propagation algorithm is proposed to reduce the vector space 

and generate a high Transition Fault Coverage test vector. Results for ISCAS’85 and full-

scan ISCAS’89 benchmark circuits show that the filtered non-robust path set can be reduced 

to 40% smaller than the conventional path set without losing delay defect coverage. 

Clustering of paths has been shown to improve the fault coverage and also reduce the 

number of vectors by 40%. 
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• A new transition fault model called As Late As Possible Transition Fault (ALAPTF) is 

presented. The model is useful in detecting small delay defect which can be missed by both 

the transition and path delay fault model. The algorithm uses both Genetic Algorithms and 

Deterministic Algorithms for the test generation. A recursive method for the ATPG ensures a 

high PDF coverage along with the transition fault coverage. Even circuits like c6288 can be 

processed using this method with some constraints. The new model has been shown to 

perform better than the existing transition fault model and the path delay fault model. At the 

same TFC as produced by the older model, the ALAPTF model, finds a test set which 

launches the transitions on each gate as late as possible. For about 30% times the transition 

reaches later by using the new fault model which means that the transition are detected via 

long paths. It is also capable of detecting much smaller delays (delays much smaller than the 

critical path delays). The algorithm proposed also detects robust and non-robust paths along 

with the transition faults and the execution time is linear to the circuit size. 
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