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(ABSTRACT) 

An experimental program is developed to investigate the three 
dimensional nature of the stress field surrounding the border of 
semi-elliptical surface flaws, particularly the singularity exponent. 

Stress freezing photoelasticity is employed to generate experimental 
data from nearly incompressible, elastic material. The technique of 

optical fringe multiplication is utilized to collect data from thin, 
closely spaced photoelastic slices. 

A new quasi-linear algorithm for data analysis is developed and 
verified. The algorithm is implemented using the interactive and 

graphics capabilities of a microcomputer and digitizing tablet, saving 
time and reducing errors in photoelastic data analysis. By utilizing 
CRT graphics, the measurement zone producing the most consistent 
results is delineated. 

Results obtained from a series of tests on both surface flaws and 
straight-front cracks bracket analytical values of the singularity 
exponent at the flaw border-free surface intersection. Suggestions to 
decrease variance in the results and possibly cause the results for 
all tests to coalesce to the analytical value(s) at the free surface 
are presented. 

An algebraic formula is developed to account for the singularity 

exponent variation (3-D effect) by adjusting the magnitude of the 
classical LEFM mode I stress intensity factor, K1• A discussion of the 

need to recognize and account for these effects in high-tech materials 

is also included. 
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INTRODUCTION 

1.1 Historical Perspective 

The foundations of modern fracture mechanics were formed by C. E. 

Inglis [l] and A. A. Griffith (2] in the early part of this century. 

Subsequent work by, among others, H. M. Westergaard [3], 

M. L. Williams (4], and G. R. Irwin [SJ served to advance the 

knowledge of stress fields local to crack tips and the associated 

analytical methods used to determine the stress intensity factor 

(SIF). It is important to note that this early work was all performed 

in the two-dimensional regime of plane elasticity. From about 1950 to 

the late 1960's, the majority of work centered around the solution of 

plane problems of increasingly complicated geometry, however, Green 

and Sneddon [6] did work on the three-dimensional problem of the 

embedded elliptical crack. Work also proceeded in applying the results 

of these solutions to the problem of fatigue related failure. 

In the late 1960's, G. Sih and others [7] began to investigate 

three-dimensional cracked body problems. It was Sih who first 

suggested that the classical inverse square root stress singularity 

may be lost where the crack plane intersects a traction-free surface. 

He also noted the highly three-dimensional nature of the stress field 

in the vicinity of the crack front-free surface intersection, although 

his analysis was not valid in that region. Following Sih's initial 

work, analysts began to take a closer look at the crack front-free 

surface intersection (also called the •corner point• in the 

1 
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literature) stress and displa=ement fields. Among the first to present 

analytical results were E. s. Folias [8) and J. P. Benthem [9]. Folias 

and Benthem performed their analyses independently. While b0th men 

agreed that the singularity exponent (or singularity order) was 

dependent upon a material's Poisson's ratio, there w~s, and still is 

disagreement [10] as to what the dependence is. 

Following Folias' and Benthem's initial reports, several other 

researchers [11, 12) have attempted to solve the problem using varioJs 

~umerical techniques, such as finite difference and finite element 

methods and numerical integration schemes. Although reaso~~ble 

agreement in numerical values of the singularity exponent has been 

achieved by several analysts independently [9, 11, 12), it is 

important to note that in all of the analytical formulations 

presented, some possible error is introduced through the use of 

numerical methods or by truncation of infinite series equations. 

Due to the mathematical intractability of this three-dimensional 

problem, C. W. Smith [13) and his colleagues initiated a program to 

experimentally investigate the corner point problem in 1981. Besides 

establishing values for the singularity order at the free surface, it 

was hoped that a proposed transition zone (or boundary layer) where 

the singularity order varied continuously from its free surface value 

to the classical inverse square root value could be delineated. 
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Preliminary results of the experimental investigation were presented 

in 1983 (14). Surface values of the singularity order agreed well with 

Benthem's analytical value, and an unexpectedly large transition zone 

was also reported. 

During the time that Smith has been working on the problem 

experimentally, analysts have continued to seek a mathematically 

complete solution to the problem. Several different approaches to 

solving the problem have been followed, however no solutions have been 

proven to be mathematically complete. 

1.2 Motivation for Current Research 

There is general agreement among analysts [8, 9, 11, 12, 15] that 

the singularity order at the corner point depends on Poisson's ratio, 

and that as Poisson's ratio increases from zero, the singularity order 

continuously deviates from the classical linear elastic fracture 

mechanics (LEFM) value of 0.5. In particular, the work of Benthem 

[9, 15] indicates that a slow change in the singularity order occurs 

until Poisson's ratio exceeds about 0.4, when it begins to change more 

rapidly. When Poisson's ratio approaches 0.5, Benthem's results show 

the singularity order to be about one-third. This reduction of the 

singularity order results in considerable alteration of the stres3 and 

jisplacement fields near crack front-free surface intersections in 

nearly incompressible materials. 
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Consider now the following facts. The aerospace and defense 

industries are using increasing amounts of fiber reinforced composite 

materials in new designs. The matrix material in some epoxy based 

composites is nearly incompressible and may constitute over 50% of the 

volume of the material. The failure mechanism in these inhomogeneous, 

anisotropic materials is not yet well understood. The use of adhesives 

(typically having high Poisson's ratios), in place of conventional 

fasteners, is increasing. Most design codes concerned with failure due 

to brittle fracture and fatigue are based on LEFM principles. These 

principles are based entirely on two-dimensional theory, with most 

codes using a worst case assumption of the existence of generalized 

plane strain in the vicinity of the crack front (crack border). 

Current test procedures for determining the fracture toughness of 

materials rely on •thickness averaged" material behavior. The data 

obtained from many of the previously mentioned tests are in the form 

of surface measurements of displacement or strain. 

If all of this information is combined, it indicates that the 

possibility exists for large errors to be made in the characterization 

of certain materials to be used in critical components of a structure. 

Inspection interval or life expectancy calculations could be affected 

through underestimation of effective stress intensity levels in a 

flawed component, which could lead to a catastrophic failure. The 
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probability of such failures could be reduced significantly if a more 

thorough understanding of the three-dimensional effects associated 

with the crack front-free surface intersection could be obtained. It 

is the prospect of increasing the understanding of this problem, and 

hence reducing the probability of future catastrophic failures, that 

motivates the current research efforts. 

1.3 Problem Definition 

The current experimental research is directed toward achieving two 

basic goals associated with three-dimensional effects in cracked high 

Poisson's ratio materials. The first goal is to determine stress 

singularity order distributions for naturally occurring surface cracks 

in elastic bodies having finite dimensions. In order to achieve this 

goal, several problems need to be solved, including the following. A 

suitable experimental method must be chosen or developed. A model 

geometry must be developed which will meet certain analytical criteria 

2s well as be feasible to construct. A testing procedure must be 

developed. A method of collecting experimental data from the tests 

must be developed. Finally, a suitable algorithm must be developed to 

extract the desired parameters from the experimental data. It must be 

remembered that the entire experimental program should be developed so 

that consistent and repeatable results can be obtained. 
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The second goal is to overcome the following problem. The model 

equation for the stress field contains the singularity order as a 

variable. This presents no problem in itself. However, it is desirable 

that the results obtained from the use of this equation be 

incorporated into current design codes, which were developed for use 

with the LEFM-based stress intensity factor, KI. The problem this 

presents concerns dimensional consistency. The coefficient of the 

singular term in the model equation, which has variable singularity 

order, does not have the same dimensional units as KI when the 

singularity order is not equal to 0.5, e.g., at the free surface. A 

suitable formula or algorithm must be developed to convert this 

singular term coefficient (also referred to as •stress eigenfactor", 

D, or K~ [14] in the literature) to a dimensionally correct 

•corresponding• SIF, K (this is the notation used by Smith and cor 

Epstein for the mentioned quantity). 

A program to study these problems was initiated in 1984, following 

the conclusion of initial work on straight front cracks by Epstein. 

Since then, considerable progress towards achieving the goals 

mentioned previously has been made. In addition to this progress, a 

large amount of well documented and accurate photoelastic data from 

surface flaw tests has been accumulated. This data base, in 

conjunction with this report, should serve as a good foundation for 
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future research on the three dimensional characteristics of surface 

flaws. In particular~ work associated with the singularity order 

variation should benefit, since little other work of this nature is 

documented. 



REVIEW OF LITERATURE 

2.1 Introduction to Literature Review 

The concept of the variable stress singularity order and 

associated three-dimensional effects has received relatively little 

attention compared to other topics in fracture mechanics. The work 

that has been published has been almost entirely analytically and/or 

numerically based. The analytical works are presented first in 

approximate chronological order. The only works publis~ed which have 

experimental foundations are those of Smith and his associates (see, 

for example [16]), and Ruiz and Epstein [17]. A review of this 

experimental work is also presented. Limtragool's Ph.D. dissertation 

[18] investigated the singularity order using holographic 

interferometry, however, a copy could not be obtained for review. The 

current research is an extension and refinement of the original 

experimental research performed by Epstein [14]. 

2.2 The Initial Work of Hartranft and Sih 

In 1969, Hartranft and Sih [7) investigated the three dimensio~al 

stress field for a semi-infinite plane crack in an infinite solid (see 

figure 2.1). The problem was cast in circular cylindrical coordinates, 

with the axial coordinate, z, coincident with the crack border. They 

utilized the Williams stress eigenfunction in their solution. They 

proceeded to solve the three dimensional problem by first satisfying 

equilibrium conditions with the displacements, and subsequently 

8 
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converted the displacements into the three dimensional stresses. 

Two important ideas are presented in this paper. It is the first 

time, according to the authors, that the three dimensional nature of 

the stress singularity is presented, i.e., the z component of stress 

(parallel to the crack border) exhibits singular behavio:. Secondly, 

althou3h the problem which is solved is infinite in three dimensions, 

the authors point out that the solution should be valid in the middle 

half of thick plates. Within the same comment, they also indicate a 

possibility of the singularity order differing from J.5 as the sucfa:e 

of the plate is approached. 

2.3 The Work of Bazant 

In 1974, Bazant [19] presented a general method for the s·)lutio~ 

of three dimensional problems involving singularity rays (a crack 

front border in the present case). For his approach, he ~ast the 

p:o~lem in spherical coordinates (see figure 2.2). He then utilized a 

separation of variables approach, by which the singJlarity in the 

~:oblem ~~; eliminated. This resulted in a non-sin31lar, non-symmetric 

eigenvalue problem in two dimensions, 8 and ~, which could be solved 

using standard numerical proceducea. 

In 1978, Bazant and Estenssoro [11] presented solutions to the 

crack-free surface intersection problem. He ~tilized ~is p:evious 
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method with some minor variations, which made his method of solution 

more suitable to the elasticity problem. In solving the p:o~lem, the 

boundary conditions were satisfied on s~rfa:es traced out by radial 

lines, however no attempt was made to satisfy boundary co~ditio~s as r 

approached infinity in the problem domain. The results of his analysis 

yielded a value of the stress singularity order of 0.323 fo: a 

Poisso~'s ratio of 0.25, for a statio~ary crack. Through energy 

~onsiderations, however, Bazant rationalizes that for a propagating 

·:rack in a linear, elastic, homogeneous material, the singularity 

order must return to 0.5. 

2.4 The Work of Folias 

In Folias' treatment of the three dimensional cra:kej ~ody 

problem, as reported in 1975 [8), he uses a different approach than 

that of Bazant. His geometry is a thick, infinite plate containing a 

central throug~ crack (see figure 2.3). His initial problem 

formulation is in terms of recta,g~lar cartesian :o~:dinates. His 

method of solutio~ inv~lves =o~version of three coupled partial 

differential equations in three independent variables to a syste~ of 

three ordinary differential equations in a single indepe~jent 

variable. He then writes the cartesian displacements in terms of 

semi-infinite integrals =ontaining infinite series within the 
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integrands. The final solution of the problem requires solutio~ of an 

infinite system of equations with an infinite nurn~er of unknowns. 

Folias postulates that the singular part of the solution depenjs only 

on the leading coefficie~t in each equation. Subsequently, he 

truncates the system to a finite number of terms, which allows 

numerical determination of the lea1ing ~oefficients. 

After determining the approximate solution in cartesian 

coordinates for displacements and stresses, he states that the stress 

singularity order is Poisson's ratio dependent, and has the form 

( 2. 4.1) 

where l> is the material's Poisson's ratio. This result is n:>~ in 

3greement with Bazant and Estensso:o [11] or Benthem [9, 15]. Folias 

also makes certain assumptions in terms of a spherical refere~:e frame 

indicating thit the stress singularity must va,is~ at the wcorner 

pointw due to the singularity occurring in the equation for the stress 

~o:mal to the free surface. He also rationalizes, that becaJse of 

unnatural behavior of his solution for certain values of Poisson's 

ratio, that linear elasticity theo:y is an insufficient basis fo: 

solution of the three dimensional problems. The results a,d 
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rationalizations of Folias prompted considerable disagreement among 

analysts doing related work [10]. 

In 1980, Folias published another paper [20] which attempts to 

clarify and/or justify some of his earlier statements. This paper also 

presents an overview of most work on the ftcorner point• problem that 

occurred in the period 1972-1979. The important points presented 

relating to his previous work include the following. He states that 

due to the mathematical intractability of solving certain integral 

equations, an unknown function exists in the singular term of the 

equation for the stress normal to the free surface. He states that it 

is possible for this function to vanish at the free surface, thereby 

allowing the singularity to exist at the free surface. He also states 

that his value of the stress singularity, equation (2.4.1) should be 

interpreted as a minimum value, and that the actual value may be 

closer to -0.5 than equation (2.4.1) suggests. 

2.5 The Work of Benthem 

In 1975, Benthem [9] reported the results of his investigation of 

the stress distribution around the vertex of a quarter-infinite crack 

in a half-space (see figure 2.2). His problem was cast in a spherical 

coordinate system, however, he used the cartesian components of 

stress. He began his investigation by seeking solutions to the coupled 
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system of three partial differential equations in three unknowns, the 

Navier-Cauchy equations. Seven solutions to this system were created 

by Boussinesq in the late 1800's. Four of the seven solutions are 

today known as the Papkovich-Neuber stress functions, due to the 

apparent independent discovery of the four solutions by Papkovich in 

1932 and Neuber in 1934. 

Using a combination of the known solutions, Legendre functions, 

and the technique of separation of variables in the spherical 

coordinate system, Benthem sought to satisfy the stress free boundary 

conditions on the plane e = 1T./2, and on the crack surfaces (, = 0+ 

and ¢ = 2n - 0). After considerable effort, both analytically and 

with numerical computations, the theoretical singularity order at the 

corner point was obtained. Benthem's result of 0.3318 for 

incompressible materials prompted the initial experimental 

investigation by Epstein (14] which formed the foundation for the 

current work. 

It is interesting to note that Benthem's analysis indicated that 

the normal stresses, ()' and Cf (for the case of an incompressible xx yy 

material), in the plane of the surface z = 0 along the line of crack 

extension under symmetric loading, should be identically zero. He then 

postulated that this could be easily verified by direct inspection of 

a photoelastic coating on a large rubber block, and hence validate his 
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numerical results. One photograph in his work does indicate a zero 

order fringe in the specified zone, however, the stresses C1 and xx 
Cf yy need only to be equal (assuming geometric symmetry and therefore 

zero shear stress, 1:' ) for this to occur. Indeed, Benthem's results xy 
for other Poisson's ratios indicate a different singularity order, but 

they also indicate equal non-zero stresses in the previously mentioned 

zone. This stress state would also lead to a zero order isochromatic, 

which leaves his experimental verification in question. 

In a subsequent work, published in 1980 (15], Benthem approached 

the same general problem using a finite difference formulation. His 

results obtained from this work were in good agreement with his 

previous work and also with the work of Bazant and Estenssoro (11]. 

2.6 The Work of Swedlow and Associates 

In 1978, Swedlow published an article [12] outlining a finite 

element formulation which could be adapted to the solution of the 

three dimensional variable singularity problem at a crack-free surface 

intersection (see figure 2.2). This work was based on Williams' [4] 

application of the Airy stress function with a variable singularity 

order to the plane sector problem. The finite element formulation 

involved the development and implementation of a special 

multi-sectored element which surrounds the singularity. 
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Burton and his associates, including Swedlow, published another 

work in 1984 [21] which implemented Swedlow's previous work, where the 

singularity order in the crack-free surface problem is investigated. 

Their numerical results are qualitatively similar to the results of 

Benthem and Bazant, however for Poisson's ratios in the range 0.0 to 

0.4, their results indicate a weaker singularity than that of either 

Benthem or Bazant. The finite element results did coalesce with the 

results of the others for a Poisson's ratio of 0.0 (singularity order 

of 0.5). 

2.7 The Recent Work of Takakuda 

Takakuda [22] has recently investigated the crack border-free 

surface intersection using an integral equation method. His work 

includes evaluation of the singularity order for both wedge shaped 

cracks and surface cracks (see figure 2.4). Of particular relevance is 

his result for the surface crack where the crack border-free surface 

intersection angle is 90 degrees and the Poisson's ratio is 0.5. For 

this case, the singularity order reported is 0.3316, very close to the 

results obtained by Benthem and Bazant. It is interesting to note, 

however, that Takakuda's results indicate that the intersection angle 

strongly influences the singularity order, much more so than the 

material's Poisson's ratio. 
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2.8 Summary of the Analytical and Numerical Work 

This analytical/numerical work which has been performed in the 

last ten or fifteen years shows general agreement in two areas. First, 

the work indicates that the singularity order in three dimensional 

cracked bodies tends to vary from the classical two dimensional value 

of 0.5 as the crack border intersects a free surface. Secondly, this 

variation is at least dependent on the material's Poisson's ratio. 

There are several other considerations which have not been mentioned 

that are pertinent to practical engineering applications. 

It is understood that the mathematical aspects concerning the 

general solution to three dimensional cracked body problems are 

extremely complicated. However, as yet there are no solutions, 

analytical or numerical, which approach the problem of the singularity 

order transition from the accepted •interior• value of 0.5 to some 

different surface value. Also, the analysts have presented only 

minimal empirical verification of their results. These two facts 

prompted the original experimental work of Epstein [14) and Smith 

[23), whose work forms the foundation of this work. 
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2.9 Experimental Work of Epstein and Smith 

In 1983, Epstein completed his doctoral dissertation [14] which 

was centered around an experimental program to verify the existence of 

a singularity order transition zone. His work also served to 

experimentally verify the analytical results of Bazant and Benthem, 

although Epstein's test geometry (figure 2.5) had finite dimensions 

that only approximated the semi-infinite geometry used in the 

analytical investigations. 

Epstein's program consisted of testing several modified compact 

bending models, designed to simulate an ASTM E-399 3-point bend 

specimen. His work utilized the methods of stress freezing 

photoelasticity to measure three dimensional stress distributions, and 

moire interferometry to measure three dimensional displacement fields. 

By using the two methods independently to measure a parameter, A, 
common to both, he was able to verify his own results. 

While the work of Epstein was certainly an important contribution 

to the understanding of the three dimensional crack problem, a few 

questionable assumptions were noted in his formulation of an algorithm 

to extract the stress singularity order from experimental data. One of 

the purposes of the current work is to improve the methods of data 

analysis which Epstein developed. 
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Subsequent to the completion of Epstein's dissertation, the 

current experimental program was initiated by C. W. Smith in parallel 

with a post-doctoral investigation by Ruiz and Epstein [17). The 

achievements of the current program relating to the previous work of 

Epstein are presented elsewhere in this work. 



TESTING PROGRAM 

3.1 Introduction to Test Program Development 

Several things needed to be considered in developing a test program 

for the study of surface flaws. These included material sel~ction, 

model geometry, time required and cost of each test, and actual test 

procedure. A brief review of each of these follows. 

In view of the success reported by Kirby [24] in performing three-

dimensional photoelastic tests to determine the SIF distributions in 

surface flaws, it was decided to use a similar material. The stress 

freezing material to be used is PSM-9, a special epoxy material 

available in cast plate form from Photolastic Division of Measurements 

Group, Incorporated located in Raleigh, North Carolina. A description 

of the material properties can be found in appendix I. 

3.2 Design of Model Geometry and Model Construction 

The development of a satisfactory test geometry for testing natural 

surface flaws was time consuming. A model geometry which would 

minimize wasted material as well as be easy to manufacture was 

desired. It would also be required that the model geometry meet size 

requirements with respect to crack length to plate width and height 

ratios so as to simulate infinite boundaries. After consulting Sih's 

manual on stress intensity factors [25], it was found that a plate 

width to crack width ratio of 5 was sufficient to meet the 

requirements. No explicit information was found concerning plate 

24 
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height. After reviewing the work of Kirby (24], it was found that a 

plate height of about 15 times the cracK width produced a uniform 

uniaxial stress field between the crack plane and the points of load 

application. For the crack geometries to be considered (maximum width 

of 1 inch), the distance between loading points was chosen to be 

greater than 15 inches. 

Kirby had originally used a large •dog bone" model geometry. In 

order to save material, a rectangular geometry was tested first. Due 

to stress concentrations around the loading pin holes, the first model 

cracked between these holes before the "starter crack• in the plate 

center began to propagate. The next shape tested was also rectangular, 

however fiberglass cloth was bonded to the model's surface around the 

load application area using PC-10 epoxy. The idea behind this approach 

was to reinforce the model to eliminate the cracking. However, due to 

the large mismatch between the thermal expansion coefficients of the 

fiberglass cloth and the epoxy model, severe cracking of the model 

occurred at the edge of the reinforcing layer during the initial 

heating cycle. Due to the test program schedule, further development 

of an improved model geometry was not pursued. The remainder of the 

test models were the •dog bone" type (figure 3.1), as used by Kirby. 
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The •dog bone• models are cut from a precast sheet of the PSM-9 

epoxy. The sheets are 24x24 inches (nominal dimensions) when 

purchased. This initial size is large enough to allow two complete 

models, including calibration specimens, to be fabricated from one 

sheet. The model and calibration specimen outlines are traced on the 

epoxy sheet using a felt tip pen. The models are cut from the sheet on 

a bandsaw using a 0.035 inch thick, high alloy, 13 tooth per inch 

bandsaw blade operated at low speed to avoid excessive heat. The 

models are cut out of the sheet by hand, using light cutting pressure. 

The model edges are then smoothed with sanding paper, starting with 80-

grit and ending with 220-grit, always sanding parallel to the loading 

axis of the model. This smoothing is done to prevent crack initiation 

and propagation from the saw marks. See figures 3.1 and 3.2 for the 

shape and dimensions of the finished model and calibration specimens. 

Due to the very high coefficient of thermal expansion of the epoxy 

material, and the required heating cycle, it is necessary to apply the 

loads through pins. The holes in the model which receive the 0.375 

inch diameter steel pins are produced in the following manner. A 

slightly undersize hole is drilled in the epoxy plate using a •c• 

drill in a drill press at about 220 r.p.m. Next, a 90 degree 

countersink is used to lightly bevel the hole edges to remove any 
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roughness or chip marks caused by the drilling operation. The holes 

are then finished to size using a 0.376 chucking reamer in the drill 

press at the slowest rotary speed. This allows a 0.001 inch clearance 

fit at room temperature. 

The natural cracks are produced in the test models in the following 

manner. The model is placed on a rigid, flat surface. A special tool 

(see figure 3.3) is held normal to the plate surface and is struck 

with a 16 ounce dead-blow mallet. A starter crack will propagate a 

short distance ahead of the cutting edge of the tool and arrest. This 

procedure was performed many times on waste material to develop the 

striking technique which produced a suitable starter crack. Most 

starter cracks produced in this manner were nearly semi-circular in 

shape, regardless of the curvature of the cutting tool edge, and 

propagated about one quarter of the way through the depth of the 

plate. Once the starter crack is produced, the model is ready to be 

placed in the stress freezing oven. 

The two types of calibration models used in the tests are produced 

using similar procedures as those used to fabricate the cracked model. 

The small •dog bone• specimen is used to measure the elastic modulus 

and Poisson's ratio of the stress freezing epoxy. The bending specimen 

is used to evaluate the material's photoelastic fringe constant (see 

figure 3.2). The only major difference in the construction of these 
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models is in the edge finishing. Instead of using sanding paper, the 

edges of the calibration models are smoothed using a high speed 

shaping router (available from Photolastic Division, Measurements 

Group, Inc.) with a 0.25 inch diameter, two flute end mill. This 

finishing procedure produces the final model dimensions accurately 

while maintaining a suitable surface finish. Dimensional control is 

accomplished by securing the roughed out model to a guide plate with 

thin, double-sided tape. The guide plate, which rides against a guide 

pin on the base of the router, has the correct finish dimer.sion for 

the model. Models finished using this procedure showed dimensional 

variations of less than 0.2 percent. 

3.3 Stress Freezing Test Procedure 

Once the models are fabricated, they are placed in their respective 

loading fixtures (see figure 3.4) in the stress freezing oven (see 

appendix I). Particular care is taken to make sure the load is evenly 

distributed between the loading pins on the cracked model to prevent 

in-plane bending. Only a small load of about 5 pounds is applied to 

the cracked model prior to heating. This keeps a small amount of 

tension on the loading cables so that they remain in proper position. 

The load pins for the bend model are cleaned to insure minimum 

friction between the pins, the model, and the links (see figure 3.4). 
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A load of 1 pound, producing a 1 inch-pound moment in the bend model, 

is applied as shown in the figure. This loading produces about 15 

fringes per inch in the model, allowing accurate and repeatable 

determination of the material fringe constant (this procedure is 

covered in chapter 4). A 5 pound load is placed on the "dog bone• 

calibration model. This produces enough deformation for material 

property determination without inducing inelastic behavior. 

The temperature control cam on the oven is set such that the servo 

control arm is adjacent to the "start• mark on the cam. The timer is 

adjusted for a 72 hour cycle time, and the oven is turned on. The 

control cam profile is designed to allow a 0.5 inch thick model to 

attain a uniform temperature of 105 degrees Centigrade in about six 

hours. A temperature-time profile for the entire test may be found in 

the appendix I, figure Al.l. Once the models reach uniform 

temperature, the cracked model is loaded to grow the crack. 

The load is first increased to 50 pounds by adding iron weights to 

the loading fixture (see figure 3.4). This is done gradually while at 

the same time observing the starter crack to insure crack growth is 

not yet occurring. Once this is done, small increments of load are 

applied by adding small lead shot to a container affixed to the 

loading fixture. The load is increased very slowly in this manner 

while the starter crack is observed for the onset of crack extension. 
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Once crack extension begins, no additional load is added. Using this 

procedure, crack velocity is maintained at between 0.01 and 0.1 inch 

per minute. When the crack reaches the desired size, the load is 

reduced to one half the load required to maintain crack extension. 

This typically resulted in remote stresses of about 15 to 20 p.s.i. 

Only one of eight models loaded this way failed due to crack 

propagation after the load was reduced to this level. 

Once this procedure is completed, the cooling portion of the stress 

freezing cycle is initiated. The temperature control cam reduces the 

oven temperature at a rate of 2 degrees Centigrade per hour until the 

temperature is reduced to 70 degrees Centigrade. The cooling rate is 

then increased to 5 degrees Centigrade per hour until the temperature 

reaches 45 degrees Centigrade. This temperature is then maintained to 

inhibit moisture absorption by the epoxy material until the models are 

ready to be analyzed (again, see figure Al.l in appendix I). Moisture 

absorption can cause the formation of •time-edge• fringes. This 

phenomenon and its effect on the results of the tests are discussed 

briefly in Appendix I. 



COLLECTION OF EXPERIMENTAL TEST DATA 

4.1 Obtaining Material Properties 

As mentioned in chapter three, two types of calibration models are 

run with each surface flaw model. A wdog bonew model is used to 

evaluate the material's elastic properties, and a four point bend 

model is used to evaluate the material's fringe constant (the constant 

coefficient in the stress-optic law). Each calibration model is 

removed from the stock plate material in a location adjacent to the 

central portion of the surface flaw model (see figure 4.1), since some 

variation in the material's properties may occur within a single 

plate. The calibration models undergo the same thermal cycle as the 

cracked model, although differences in the cycle should not have any 

effect on the measured properties. All measurements are made after the 

thermal cycle is completed with the models at room temperature. 

Prior to beginning each test, the elastic constant test specimen 

is scribed with gauge marks so that post-test extensions can be 

measured (see figure 3.2). The distance between the marks is measured 

before and after the test using a Nikon profile projector. The 

projector has a magnification factor of ten, and is equipped with a 

micrometer stage graduated in 0.0001 inch increments. Very accurate 

and repeatable measurements can be made on these transparent models. 

Measurements can routinely be repeated to within 0.05 percent. 

The longitudinal strain is calculated from the length measurements 

on the four sides of the small •aog bonew model. An average of these 
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four values is taken, which eliminates any effect a small amount of 

bending would have on the strain measurement. Measurements in a plane 

normal to the loading direction are also made and an average 

transverse strain is calculated. The longitudinal strain is 

substituted into the uniaxial Hooke's law, along with the effective 

load and cross sectional area at the midpoint between the longitudinal 

gauge marks, to obtain the elastic modulus of the material above its 

•critical• temperature (see appendix I). Typical values measured this 

way are about 2600 p.s.i. The longitudinal and transverse strains are 

also used to calculate the material's Poisson's ratio. Typical values 

varied from 0.47 to 0.49 at temperatures above the •critical" 

temperature. 

Careful measurements are also made of the dimensions on the fringe 

constant calibration model. The measurements are also verified using 

micrometers or vernier calipers. The accuracy of these measurements is 

important if consistency in the experimental results is expected. Once 

the external dimensions are measured, the fringe spacing is measured 

in a direction normal to the beam's longitudinal axis using the 

Photolastic 051 polariscope. A plot of the fringe order, N, versus 

the distance from the neutral axis, y, is made (see figure 4.2). 
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The slope, Ay/AN, of the linear regression line through the points is 

substituted into 

(4.1.1) f 

to obtain the material fringe constant, f. In (4.1.1), Mis the 

applied bending moment at the measurement plane, and h is the total 

beam depth. The values of f which were determined for the six tests 

(T2 - T7 inclusive) ranged from 1.83 to 2.00 #/in./fringe. 

4.2 Sectioning the Three Dimensional Models 

The algorithms which have been developed to determine the stress 

singularity exponent require maximum shear stress distributions in the 

n-z plane, in the z direction (see figure 4.3). This is accomplished 

by sawing the cracked section (see figure 4.4) from the test model 

using a standard band saw at a slow speed with a 14 tooth per inch 

blade. Care is taken not to overheat the model. After removing the 

cracked section with the large saw, the cracked section is gently 

clamped in the pivot arm of a Beuhler Isomet saw (see [26) for 

description), and the slice at maximum crack depth is removed. Each of 

the remaining two parts are, in turn, bonded to a special fixture (see 

figure 4.5) with Duca cement. The special fixture allows for the part 
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to be rotated about the z-axis direction, simplifying the realignment 

procedure for cutting each slice. This fixture is mounted to the pivot 

arm of a Beuhler Isomet low speed saw. The saw is equipped with a 

0.012 inch thick, 4.0 inch diameter blade, which is operated at a 

speed setting of 5 or 6. Previous work by Epstein [26] indicates that 

this cutting system does not induce residual stress in the epoxy 

material. 

Using this system, thin slices approximately 0.020 inch thick are 

removed from the cracked section. Figure 4.6 illustrates the slicing 

planes and the usual order of slice removal. The individual slices are 

marked with an identification code using a Staedtler Lumocolor 

Superfine waterproof pen. A common identification code is utilized for 

all of the the tests. The code has the form 

T n - xx $ 

where T stands for test, n is the test number, xx is the slice 

location in degrees (see figure 4.6), and $ is either R or L to 

specify whether the slice is from the right or left side of the 

crack's maximum depth. By using this common code, raw experimental 

data collected from each slice is easily organized, and it is not 

necessary to collect the data from each slice immediately after it is 

removed from the cracked model section. 
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The thickness of each slice is measured with a 0 to 1 inch 

micrometer having 0.0001 inch increments. This thickness is measured 

over the crack tip area, and is then marked on the slice with the 

Lumocolor pen. All of the slice information is also copied on a data 

summary sheet, which contains all of the information from all of the 

slices in each test. Once all of the slices have been removed and 

marked, data from the isochromatic fringe patterns are collected. 

4.3 Photoelastic Fringe Multiplication 

Since the purpose of the experimental program is to measure an 

effect associated with the free surface-crack border intersection, it 

is necessary to collect as much information near this intersection 

point as possible. To accomplish this, very thin slices must be 

removed from the model (about 0.020 inch thick). Since the 

isochromatic fringe order is directly proportional to the slice 

thickness by 

(4.3.1) N 
2 'tmax 

f • t 

and the maximum shear stresses in the models are small, only one 

fringe is usually visible when the slices are viewed through an 

ordinary circular polariscope. The use of the Tardy method [27] to 
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obtain fractional fringe orders was investigated, however, only five 

to eight data points could be collected this way. Also, due to the 

width of the single visible fringe, accurate location of the fringe 

center was not possible. 

An alternative method of data collection yielding more data points 

with increased accuracy is the method of isochromatic fringe 

multiplication developed by Post [28, 29], and subsequently used by 

Epstein [14]. The fringe multiplication unit used by Epstein was a 

prototype developed by Epstein for use with three dimensional 

photoelastic slices in his investigation of the singularity order 

variation in a compact bending specimen. A modified version of the 

same unit used by Epstein is used in the present investigation of the 

surface flaw models. 

The operating principle of a fringe multiplication unit is quite 

simple, while the design of a system to incorporate the principle can 

be tedious. The basic principle is this: Pass a light beam through a 

photoelastic model more than once, and the effective model thickness 

is increased the number of times the light passes through the model. 

An operating system which makes use of this principle must include: 

(1) an accurately collimated light source, (2) a circular polariscope, 

(3) a partial mirror system for multiple reflections, (4) an index 

matching oil bath contained within the partial mirror system, (5) a 
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device for selecting the desired beam multiple, (6) a method to focus 

the image, and (7) a method of viewing the image which allows 

measurements to be made on it. These are just the minimum design 

requirements. It is not difficult to see how much time is involved in 

the design and fabrication of such a system from the initial 

conception of the idea. To save time, the following approach was 

taken. 

Several modifications were made to Epstein's unit which improved 

the image quality and allowed better repeatability of fringe location 

measurements (see figure 4.7). Where Epstein had used two pieces of 

cardstock to form a slit aperture to select the desired fringe 

multiple, a circular metallic aperture (0.040 inch diameter) was 

inserted. A 5 mW He-Ne laser was mounted directly to the unit, instead 

of using mirrors and a remote laser source, to minimize the amount of 

adjustments necessary to the system each time it was used. A more 

stable mounting base for the partial mirror unit was fabricated. This 

reduced the probability that the partial mirror unit would shift 

relative to the micrometer stage, causing errors in the direct 

measurement of the fringe locations. The original partial mirrors, 

which had a reflection ratio suitable for multiplication factors of 

greater than 15, were replaced with 50/50 reflection/transmission 

ratio mirrors which are better suited for multiplication factors of 3 
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to 7. The old mirrors had also been scratched because of contact with 

the slices and frequent cleaning. Finally, one of the image directing 

mirrors was relocated to allow an unobstructed field of view on the 

ground glass viewing screen. Due to time constraints, an improved 

focusing and viewing mechanism was not installed. These are all of the 

modifications which were made to Epstein's prototype unit. 

Figure 4.7 shows a schematic diagram of the entire fringe 

multiplication system after all modifications have been performed. The 

figure shows all optical components, most structural components, and 

various auxiliary devices which aided in the operation of the unit. 

Most components are shown in their approximate relative orientation in 

the figure. 

4.4 Manual Collection of Raw Data 

All of the slices from the tests are analyzed using the 

multiplication unit. Multiplication factors of 5, 7, or 9 are commonly 

used, however multiplications as high as 21 have been successfully 

photographed. Several slices were analyzed using different 

multiplication factors in conjunction with varying increments of Tardy 

compensation to evaluate possible systematic errors associated with 

the optical system. The multiple data sets from each slice were 

plotted on a common plot to determine if any systematic error existed. 
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The largest variation in the data seemed to be associated with the 

human error incurred in locating the fringe centers. This variation 

became so small after analyzing several slices, that two data sets 

collected at different multiplications could not be directly 

distinguished from each other when plotted on the same graph of fringe 

order, N, versus radial distance, r. 

The manual collection method works in the following way. The slice 

being analyzed is contained in the partial mirror unit which in turn 

is mounted to a micrometer stage. The stage has a central opening 

allowing the collimated, polarized light beam to pass through. An 

image of the light beam at the slice location is focused on a ground 

glass screen containing an aiming crosshair. By rotating the 

micrometers attached to the x-y stage, the mirror unit containing the 

slice is moved relative to the light beam, which remains stationary. 

This causes the image of the slice and its isochromatic pattern to 

move across the viewing screen. By aligning the crack tip with the 

crosshair and taking a reference reading, radial measurements to any 

location on the slice can be made. The image magnification for the 

current system set-up is measured to be 8.34x. The exact magnification 

factor is not required because measurements are taken from micrometers 

which are moving the slice directly. 
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Even though very accurate data is obtained using this method, 

collecting data with the manual method has proven to be both tedious 

and time consuming. It would not be uncommon for it to take over two 

hours to set up the system and collect data from one slice (see 

Appendix I for discussion of time-edge effects on measured values). If 

only one or two slices were to be analyzed this would present no 

problem, however, some of the test models were sectioned into twelve 

or fifteen slices. Although all of the initial data for this current 

series of tests has been collected using this method, another method 

which will save considerable time is suggested. 

4.5 Semi-Automated Data Collection 

This method still uses the fringe multiplication unit, however no 

measurements are made by directly moving the photoelastic slices. 

Instead, one or several photographs are taken of the isochromatic 

patterns, and data is collected from the photographs using an Altek 

AC 90 digitizing tablet. The tablet is connected to an IBM Personal 

Computer. An interactive computer program called DIGIFRNG.BAS (see 

appendix II ) was written and thoroughly tested. The program allows 

data to be selectively collected, displayed, printed, and/or stored on 

a disk file for future use. 
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Data from several slices were collected using this system, and the 

total procedure, including the set-up of the multiplication unit, took 

less than 45 minutes, considerably faster than with the manual method. 

Accuracy of the data collected by the semi-automated system was 

comparable to that obtained using the manual method (section 4.4). 

This method of collecting and storing optical data has been adopted by 

several other experimental mechanics researchers. Joh [30] has 

reported greatly reduced data collection time and improved accuracy in 

the collection of displacement data from interferometric fringe 

patterns. 



DEVELOPMENT OF A MATHEMATICAL MODEL 

5.1 Development of Stress Field Equations 

In 1952, Williams [4] formulated a stress function Which could be 

applied to the two dimensional problem of an infinite sector with a 

variable vertex angle. The stress function has the form 

(5.1.1) X(r,el 

By satisfying the biharmonic equation, along with specifying finite 

strain energy around the crack tip, the functional form of g ( e ) is 

found (34]. Further, by imposing conditions of symmetry in the 

vicinity of the crack tip, there results an infinite number of 

possible solutions. The resultant stresses are in the form of infinite 

series, where the exponents of r were found to be functions of the 

sector vertex angle for a sharp notch in an infinite plate. In 1957, 

Williams used this stress function to solve the problem of an infinite 

plate containing a crack, i.e. a sector of angle 2'7t (also called a 

branch cut in mathematical references). For this problem, he found the 

exponent of r in the leading term of the stress series to be -0.5, 

corresponding to the classical LEFM stress singularity value of -0.5. 

Since more recent work suggests a variation of the singularity 

order, and the Williams stress function allows this variation in two 

dimensions, the problem formulation using this stress function, 

employed by Epstein [14] and subsequently corrected by Olaosebikan 

53 



54 

[31] will be employed in the present work. By eliminating all terms in 

the series containing powers of r greater than or equal to 0.5, this 

formulation yields stresses close to the crack tip in a local 

rectangular cartesian reference system (see figure 4.3) in the form 

(5.1.2) 

where the 

-'A a .. =Dr F .. (A,0) 
l] l) 

c:J •• represent components of the symmetric stress tensor, 
l) 

and a constant term is commonly added to CJ to account for biaxial xx 
load effects. 

From the theory of photoelasticity (32] it is known that the 

isochromatic fringes represent lines of constant principal stress 

difference (or maximum shear stress) in the plane normal to the 

direction of light propagation. The governing relation is 

(5.1.3) 

where 
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the principal stresses, 

the maximum shear stress, 

the fringe order, 

the material fringe constant, 

the model thickness. 
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A derivation of this equation may be found in Experimental Stress 

Analysis by Dally and Riley, pp. 409-411. 

By placing equations (5.1.2) into the equation for the maximum 

in-plane shear stress 

(5.1.4) 4 't' 2 
max 

an equation which may be applicable to modeling photoelastic data 

obtained from the singular stress field surrounding the crack tip is 

obtained: 

(5.1.5) "t' 2 
max 

2 2 00 = H + H 0'0 s in ( ( ~ + 1 ) 9 ) + 4 
H = Di\ sin(9) 

r'-

It is obvious that this equation is non-linear and cannot be solved in 

a direct manner. However, by observing that CJ0 is always less than H, 

dividing through (5.1.5) by H2 , and ignoring the quadratic term, the 

binomial expansion may be used to take the square root of the right 

hand side, leading to the approximate form 

(5.1.6) 1.' max = 

This is the approximation made by Smith [35] in his Two-Parameter 
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Method, which is widely used in photoelastic analysis. This 

approximation is re~3onable as a first order correction 

from a state of biaxial tension. The error introduced by the 

approximation leading to equation (5.1.6) yields conservative 

(increased) values of the stress eigenfactor, D (KI when ~=0.5). In 

view of this •safe• error, and the computational simplification which 

the approximation allows, (5.1.6) is adopted as the basic model 

equation for the present experimental investigation. 

5.2 Significance of Model Equation Parameters 

There are three parameters, D, Ai and ! 0 , in the model equation 

(5.1.6) which must be determined from analysis of the experimental 

photoelastic data, N. and r .. In order to develop a suitable algorithw. 
1 1 

for determination of the parameters, their physical significance with 

respect to the stress field and their influence on the data 

distribution, i.e. isochromatic fringe pattern, are exa~ined. 

The parameter D, the stress •eigenfactor•, is assumed to be a 

linear function of the remote load applied normal to the crack plane 

and a smooth, unknown function of geometry. Thg stress singularity 

order (or eigenvalue), ~. is assumed to be independent of in-pl~ne 

geometry, coordinate system, and loading. However, it is assumed to 

vary smoothly in a direction normal to the n-z plane (the •t• 
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direction). The parameter 1'0 represents the deviation of the remote 

stress field from a state of biaxial tension. It should be noted that 

as the value of the non-singular term, 1: 0 , goes to zero, that the 

error associated with using approximate equation (5.1.6) vanishes. 

In order to gain further physical insight into the mathematical 

problem, the effect of variation of each of the three parameters upon 

the isochromatic patterns, or •fringe signatures" [33], is 

investigated. In order to accomplish this, an interactive graphics 

program called "LOOPS.BAS" (see appendix II) is developed. The program 

allows comparison of up to four isochromatic patterns generated by the 

model equation (5.1.5) with variations in the parameters. After 

entering the desired parameters for one set of fringe loops, the 

program calculates the coordinates of the lines which represent the 

center of the isochromatic fringes. These •theoretical fringes• are 

then displayed on the CRT monitor. A copy of the CRT display of 

theoretical fringes, generated using equation (5.1.5), is shown in 

figure 5.1. It is then possible to alter one or more of the parameters 

by an arbitrary amount, and overlay the pattern associated with the 

altered parameters onto the original pattern, allowing relative 

changes in maximum shear stress distribution to be visualized. It is 

noted in passing that only the mode I stress field was modeled, since 

this is the only type of loading currently being 
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considered, however, the code could easily be modified to model 

Mode II or Mode III loading. 

This visual interpretation of the maximum shear stress 

distribution revealed the following. Changes in the non-singular 

stress component in (5.1.6) causes a tilting of the fringe loops, with 

an associated enlargement or reduction in the average radial distance 

to points on a loop (an example is shown in figure 5.2). This behavior 

is documented by Liebowitz, Lee, and Eftis [34]. 

The dominant variation of the fringe pattern caused by changing 

the stress eigenfactor, D, is an increase or decrease in the radial 

distance to the farthest point on the loop from the crack tip. This 

variation is identical to the change in maximum shear stress caused by 

varying the LEFM KI value. The most interesting aspect of this study 

is the fringe pattern change caused by a variation of the singularity 

order, A • 
An isochromatic associated with a singular point (crack tip) has 

three well defined stationary points existing on a continuous curve, 

one with respect to angular variation, a't' /~8 = O, and two with max 

respect to linear variation, a 1' I a y = o Csee figure s. 3 l. max 

Referring to this figure, the ratio of length L to length T is defined 

to be the fringe loop aspect ratio. As the magnitude of the 

singularity order decreases, this aspect ratio increases. 
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Reasonable correlation was found between experimental fringe patterns 

and theoretical fringe loops generated by the computer, with respect 

to this aspect ratio. This physical phenomenon looked to provide a 

promising approach to developing a data analysis algorithm, however no 

algorithm based on this phenomenon has been developed at this time. 



SOLUTION OF THE NON-LINEAR PROBLEM 

6.1 Extracting the Singularity Order from Experimental Data 

There are two fundamental problems which must be solved in order 

to obtain an empirical solution to equation (5.1.5) or (5.1.6). The 

first problem involves the mathematical treatment of an 

overdetermined, non-linear system. It will be covered in this section. 

The second problem involves selection of the appropriate zone 

surrounding the crack tip from which experimental data should be 

collected. This problem is discussed in section 6.2. There is also a 

third problem to be solved before the results obtained from (5.1.5) or 

(5.1.6) can be applied to practical problems. It is related to the 

variable dimensions of the stress eigenfactor, D, and a solution is 

proposed in section 6.3. Section 6.4 explains the application of the 

method developed in this chapter to analyze experimental data. 

For the following discussions, the experimentally determined 

values of isochromatic fringe order, N. (equivalently maximum shear 
l 

stress, ('! l., by equation (5.1.3)), and corresponding polar max i 

coordinates, r. and 8., will be referred to as the problem data. The 
l l 

variable parameters of the model equation (5.1.6), D, A , and i:o, 
will be referred to as stress field parameters. 

It is easily recognized that equation (5.1.6) can not be directly 

linearized. This is equivalent to saying that all three parameters are 

not mathematically independent. Any one of the three parameters can be 

solved for directly, but the remaining two parameters will be 

63 
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dependent on each other. Epstein (14] overcame this difficulty by 

assuming the non-singular term, which he called 0 0 , to be vanishingly 

small which reduced equation (5.1.6) to a linearizable form. He also 

collected data only along the radial line e = ~/2, Which further 

simplified (5.1.6) to 

( 6.1.1) r max 

or after linearization 

(6.1.2) ln(t ) max 

= 

ln(D/.) -Aln(r) 

While this approximation was initially thought to be valid, subsequent 

testing (TlD) and analysis indicate that the non-singular stresses 

must be accounted for. 

In an effort to avoid the complexity and time involved in the 

formulation and testing of an iterative non-linear least squares 

algorithm to solve equation (5.1.5) or (5.1.6), the following approach 

is taken. It is assumed that for any geometry meeting fracture 

toughness testing requirements (ASTM E-399), a condition of plane 

strain will exist at the point on the crack border farthest from the 

free surface. This assumption is based on the analytical work of Sih 
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[7] which indicates the LEFM singularity order of -0.5 is recovered in 

the middle half of thick plates with through cracks. By setting the 

singularity order ~ to -0.5 in equation (5.1.6), which makes the 

-0.5 equation linear in r , the data collected at maximum crack depth 

can be analyzed using Smith's TWO-Parameter Method [35], a linear 

least squares procedure. The non-singular stress parameter t' 0 which 

gives the theoretical singularity order of -0.5 at maximum crack depth 

is thus recovered. 

Once the value for 1:'0 is recovered, it can be substituted into 

the rearranged form of equation (5.1.6) 

(6.1.3) ln ((;' - t 0 ) = ln (DA ) - A ln ( r ) max 

as a known quantity, which makes (6.1.3) linear in the unknown 

parameters D and ~ • In order for this linearization to be valid, the 

value of the non-singular shear stress, T0 , must be independent of r 

along e = 1'C/2 (the •z• direction). 

6.2 Determination of the Data Collection and Analysis Zone 

The experimental data, which exists as an infinite number of sets 

(N, r, 8 )., i=l,2,3, ..• for each photoelastic slice, must be reduced 
1 

to a finite number of sets in order for a numerical analysis scheme to 
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be employed to satisfy the model equation. In fact, only two sets are 

required to calculate the unknown parameters D and~. However, due to 

the unknown random error associated with each data set (or data point, 

since each data set represents a geometric point and a scalar quantity 

associated with that point), it is appropriate to choose the method of 

least squares (a description of this method can be found in most books 

on statistics, probability, or numerical methods), which allows an 

arbitrary number of data sets to be used to obtain a solution. 

Briefly, this method allows unknown parameters of a model equation to 

be calculated such that the square of the difference between the 

experimental dependent variable and the value of this variable 

predicted by the model equation is minimized. For the two parameter 

model under investigation, equation (6.1.3), this method is the so 

called "best straight line fit • through the data points. 

An investigation of the literature concerning photoelastic 

determination of stress intensity factors reveals a study by Doyle 

[36) suggesting that for the case of mode I loading, data collection 

should be restricted to the zone near e = 1t/2 (see figure 6.1) to 

minimize errors. The frequently used Two Parameter Method of Smith 

[35) restricts data collection to the same zone. In view of this 

previous work, data is collected along 8 =7!./2. This minimizes not 

only errors, but also simplifies the model equation and reduces 
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complications in the experimental data collection procedure (data need 

only be collected along a straight line, and not over a two 

dimensional field. There are some who believe this is a waste of 

information (37], however, accuracy and repeatability of results must 

dictate the methods to be used in experimental work. 

After having eliminated the angular variation in the data, it is 

now necessary to consider the radial variation. The primary concern 

here is to establish inner and outer radial limits on the data 

(figure 6.2), such that the data in the interval or •measurement zone• 

behaves in a manner which the model equation predicts. There are two 

factors which influence the location of these •end points•. First, the 

model equation is an approximation, initially based on a crack in an 

infinite domain. Without adding additional terms to the model 

equation, the outer limit (or end point) must be restricted to avoid 

the influence of the finite boundaries. Secondly, optical 

non-linearities occur in the high stress region surrounding the crack 

tip. The inner limit must be sufficiently removed from the crack tip 

to avoid this region, since the model equation is not developed to 

account for the non-linear behavior. 

Earlier work in LEFM applications of photoelasticity by Smith and 

associates indicates an inner limit for the •1inear zone• to be 

located about six percent of the crack length from the crack tip 
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(r . =0.06a). Epstein [14] reports a similar figure. In order to min 

verify the previously determined values, data is collected as close to 

the crack tip as possible. No definitive work on the location of the 

outer limit of the nlinear zone• (LZ or MZ [14]) could be located. 

Data is collected either to the edge of the photoelastic slice or to 

the maximum distance permitted by the size of the viewing area in the 

fringe multiplication unit in order to establish the existence of an 

outer radial limit for the measurement zone. 

The procedure used for determining the limits on the measurement 

zone is simple and effective. The experimental data is plotted in a 

manner so as to be consistent with the model equations (which are 

linear). The data points, so plotted, which form a reasonable straight 

line and also yield parameters which are within the expected range 

(determined from prior experimental or analytical work), delineate the 

measurement zone. This procedure is performed for each slice from each 

test using both equation (S.1.6) and equation (6.1.3) as models. The 

end points of the measurement zones determined in this manner are then 

averaged. Figure 6.3 shows the extent of the measurement zone and 

corresponding statistical values for each end point after values from 

all six tests are averaged. The values obtained from the SIF graphs 

(Smith's Two Parameter Method) show good correlation with the values 

obtained from the log-log graphs (equation (6.1.3)) for singularity 
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order determination, the values from the log-log graphs being about 3% 

smaller. No correlation was noted between measurement zone limits and 

position along the crack border. 

Intuition indicates that the outer limit would be strongly 

dependent on the finite geometry of the photoelastic model. However, 

the present results do not lead to this conclusion due to the 

independence of the outer limit of the measurement zone from the crack 

border location of the slices collected from the surface flaw models. 

6.3 Accounting for a Variable Singularity Order With a Corresponding 

Stress Intensity Factor 

The development of the non-linear model equation (5.1.6) allows 

for the analysis of experimental photoelastic data to determine the 

stress singularity order, A. The analysis also yields a stress 

•eigenfactor•, D, which functions much like the stress intensity 

factor, KI, in LEFM. However, the value D has units of pressure 

multiplying a variable fractional power of length, where the variable 

power is the stress singularity exponent. Mathematically, this is not 

a problem. However, it is desirable to allow incorporation of the 

experimentally determined parameters into design codes based on the 

LEFM stress intensity factor, KI. In order to accomplish this, the 
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dimensional variation in the stress eigenfactor, D, must be corrected 

to constant dimensions of the stress intensity factor, pressure 

multiplying square root of length. Toward this end the following 

mathematical formulation is developed. For 8 = f'f./2, define a 

corresponding •apparent• stress eigenfactor, D , where ap 

(6.3.1) D ap 

""' r '). \.max =----

" 
D + 

"tog ( fi) " r 

Dimensionally map D to a corresponding (K ) by ap cor ap 

(6.3.2) D ap 
(!- " ) r i 

1/2 
1' r.iax r (K ) cor ap = :\ ! 

(21'!')2 

This leads to the following relation between (K )ap and the cor 
experimental data 

(6.3.3) (K ) = cor ap 

l 

,.,., (21Cr) 2 
vmax = K cor 

From Smith's Two-Parameter LEFM formulation, the relation 

(6.3.4) (KI) ap 

! 
'Y (21tr) 2 
l. max 

! 
J 

* ! = K + a r~ 
I 

is known. By comparing (6.3.3) with (6.3.4), the equivalent relation 
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where 

is obtained. From (6.3.5), it is apparent that K will coalesce with cor 

K when the singularity order goes to 0.5. Equation (6.3.5) will also 
I 

yield conservative estimates of a stress intensity according to the 

experimental results obtained to date. It is further noted that 

Epstein [14] proposed a similar type of argument, however his method 

required an additional two data plots for each photoelastic slice to 

determine K , the reason being that he did not perform the cor 
equivalence leading from equation (6.3.3) to (6.3.5). Besides being an 

inconvenience, it did not permit the direct conversion of known LEFM 

values of KI to K by only knowing the singularity order cor 
distribution and the LEFM stress intensity distribution. By this 

reasoning, the pres~nt method is argued to be valid as well as faster 

to apply. 

6.4 Application of the Data Analysis Algorithm 

The method of data analysis proposed in sections 6.1 through 6.3 

has been used to analyze photoelastic slices from seven new tests. It 

has also been used to re-analyze data collected by former peers in an 

effort to validate the method. An overview of the basic procedure used 

to analyze the data for a single test is presented in this section. 
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The method, as presented here, requires considerable hand calculation 

to implement. After initial analyses were performed which showed 

promising results, an interactive computer code employing the 

computational and graphical capabilities of the IBM Personal Computer 

was developed. The program •TAU-PLOT.BAS• performs all of the data 

reduction, produces all of the graphs, and carries out all 

calculations necessary to do the complete analysis. The program user 

has considerable control over program branching at several points, and 

has control of a graphics cursor, allowing the user to delineate the 

•1inear zone• on which the least squares analysis is carried out. The 

ability to manually delineate the measurement zone was included 

because of the problem covered in section 6.2. It was desirable to 

examine a variety of measurement zones to see if a common zone existed 

which gave self-consistent results, since such a zone was not known 

a priori. A copy of •TAU-PLOT.BAS• appears in Appendix II. 

For the purpose of this overview, it is assumed that photoelastic 

data points, (N,r)., have been collected along B =?t./2 for several 
i 

photoelastic slices obtained from a common stress frozen test model 

(see figure 6.4), using the methods described in chapter 2. The first 

step in the analysis is to take the data from each slice and average 

the r values corresponding to the same fringe orders on either side of 

the crack plane (see figure 6.S)(This step was found to significantly 



r 

76 

I 
I 
I 
I 
I 
I 
I 
I 

crack 

crack plane 

+ r 

Data is collected 
+ along r and r . 

Direction of Data Collection 

Figure 6.4 



77 

N = constant 

crack 

-r = 2. 

+ Averaging Process for r and r Values 

Figure 6.5 



78 

reduce the apparent scatter in the final results of the analysis). 

Once this has been done, Smith's Two Parameter Method [35] is applied 

to all data. This yields two important results. First, it gives the KI 

distribution along the crack border. Secondly, and more importantly, 

* the distribution of the non-singular stresses, tY , are recovered. 

The distribution (in a point to point sense) of the non-singular 

stresses is then examined. Typically, a considerable amount of 

variance exists in the distribution (see figure 6.6). In order to 

obtain the desired value to be used in equation (6.1.3), a numerical 

average of several values near the maximum crack depth is calculated. 

This average value is renamed '1:0 , to differentiate it from the 

variable cr*. A plot of ln(t -10 l versus -ln(r) for each slice is max 
then made. The slope of the linear portion of the curve, calculated 

using the least squares linear regression formulae, is the stress 

singularity order. Figure 6.7 shows a hard copy of the computer 

display of the log-log distribution for a particular slice, along with 

the parameters of equation (6.1.3). The vertical lines on the graph 

delineate the measurement zone from which the values of the parameters 

are determined. This step is repeated for the data from each slice. 

The result is a distribution of points indicating the approximate 

variation of the singularity order along the crack border. Figure 6.8 

shows representative distributions for both a naturally grown surface 
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flaw loaded in tension and a machined •v•-shaped edge notch loaded by 

bending (both Mode I). 

There will be random scatter in the experimentally determined 

values. As such, model geometries should be selected which are 

symmetrical with respect to the point of maximum crack depth if 

possible. This allows some of the error to be "averaged out• by 

plotting all values from a single test on a graph where distance is 

measured with respect to the geometric center of the model. A smooth 

curve can then be drawn through the points which will represent an 

improved singularity order distribution. Points are then selected from 

this curve to convert the KI distribution obtained in the first step 

to the equivalent K distribution by using equation (6.3.5) in a car 
point by point manner. Figure 6.9 shows the KI and associated K cor 
distributions from test T3 obtained in this manner. 

In applying this method of analysis, to has been assumed constant 

-along the entire crack border, while a varies according to the result 

shown in figure 6.6 where A is held constant at 0.5. It is necessary 

to hold 'Lo constant to maintain the linearity of equation (6.3.1). 

The results of Epstein's work on straight front cracks, where the 

quantity called d 0 in this work was set to O, suggests that 'to may 

tend to 0 as the free surface is approached. By setting La to 0 and 

reanalyzing some surface slices for both surface flaws and straight 
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front cracks, values of ~ approached 0.32 for both geometries. This 

is very close to the generally accepted analytical value of 0.33 

Since it is very likely that "to does tend to vary as the surface 

is approached, another method must be incorporated to determine '),, in 

this region. Epstein's application of moire interferometry [14] in his 

study of the problem is a likely choice. If the displacement equation 

for U obtained from the stress function which generates equation z 
(5.1.5) is examined, the first term is found to contain r(l- ~) and 

subsequent terms to contain higher powers of r. If data is collected 

close to the crack tip, all terms except the leading term will make 

insignificant contributions to the displacement. This eliminates the 

non-linearity associated with the stress equation (5.1.6) thus 

allowing solution by linear methods. It would still remain necessary 

to develop experimental techniques yielding sufficiently accurate data 

for the analysis to work. 



TEST PESULTS ASD DISCUSSIO~ 

7.1 Stress Singularity Order Dis:ributions for Surface Flaws 

Seven surface flaw tests were performed. The results from the 

first test (Tl) are somewhat erratic. Ttis is attributed to a lack of 

practical experience, required to perfe=: testing and data collection 

procedures. Of the remaining six tests, two have aspect ratios, a/c, 

greater than 1.0 (T2, 1.03 ar.d T5, l.ll)(see figure 4.6). This causes 

the SIF (K 1 ) distribution to be somewhat different than what is 

normally expected for semi-elliptical flaws with the major axis 

parallel to the free surface (aspect ratio less than 1.0), however, as 

shown subsequently, the singularity order distribution is independent 

of the aspect ratio a/c. The remaining four surface flaw tests, T3, 

T4, T6, and T7, have aspect ratios fro~ 0.83 to 0.89. ~hese tests have 

experimentally determined SIF distributions similar in shape to the 

distributions predicted by the equations of Newman and Raju [38] (see 

figure 7.1). The Newman and Raju equation is developed for Poisson's 

ratio of 0.3 while the model mat~rial used in the testing has a 

Poisson's ratio of 0.48. The higher Poisson's ratio is the reason for 

the increase in the average value of stress intensity calc~lated from 

the experiments. 

The singularity order distributions for the surface flaw tests are 

presented in figure 7.2. The abcissa in the graph represents a 

non-dinensional parametric angle, which is described in the inset, 

where zero represents the free surface location, and 1.0 represents 

85 
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the maximum crack depth location. There are several points to be 

discussed concerning this distribution. It can be seen in figure 7.2 

that there is a small but consistent decrease of the apparent 

singularity order in the vicinity of maximum crack depth. This raises 

the question, Is the singularity order maximum at some point other 

than the maximum crack depth? On first inspection, the answer may be 

yes. However, if the algorithm for determining the distribution is 

examined, it is found to contain a parameter which is a measure of the 

in-plane, non-singular component of maximum shear stress. This 

parameter, 1:'0 , is assumed constant around the entire crack border for 

the present method of analysis. Intuitively, this is not a good 

assumption, due to the widely varying distance to the free boundary 

ahead of the crack tip in the plane of analysis of each individual 

slice. However, due to the complexity of determining even an 

approximate solution for the three dimensional stress field, the 

present method is retained for its simplicity. 

There is an argument in favor of continued use of the present 

algorithm. For all of the values of the singularity order shown in 

figure 7.2, the non-singular stress component, t'0 , is precisely 18% of 

the remote applied normal stress. This ratio, T0 /(j is a constant, 

regardless of the elliptical aspect ratio and the crack length (see 

figure 6.6). This independence from the physical geometry of the 



89 

problem does present a great advantage in experimental work. If the 

non-singular stress ~omponent can be shown to be insensitive to 

moderate changes in geometry, the process of data analysis is further 

simplified, resulting in savings of time and money. 

The next point concerns the value of the singularity order at the 

free surface. In view of the finite thickness of the •surfacew 

photoelastic slice, a true surface value is not obtainable by 

photoelastic investigation. Even though techniques have been developed 

which allow photoelastic analysis of slices as thin as 0.01 inch, some 

type of extrapolation must be performed to obtain •true• surface 

values. To date, this has been achieved by graphically extrapolating a 

curve from the experimentally determined points near the surface to 

the surface. This method is adopted because: (1) no radical changes in 

the first or second derivative of the line through the interior values 

have been observed, (2) a reasonable estimate of the •scatter band• 

(see figure 7.2) has been established, (3) the distribution is not 

understood well enough to formulate a mathematical 

interpolating/extrapolating function, and (4) thickness averaged 

experimental values are obtained within 0.01 inch of the free surface. 

By using the graphical extrapolation method of the previous 

paragraph, •surface• values of the singularity order which average 

0.37 for the surface flaws are obtained. Obviously this differs from 
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the values obtained analytically for the semi-infinite straight front 

crack. This fact, combined with the uncertainty associated with the 

interior distribution, prompts the following question. If the present 

method is used for further analysis, is the quantity 't'o chosen such 

that: (l)the maximum singularity order is 0.5, or (2) the singularity 

order is 0.5 at maximum crack depth, (3) the value 1:'0 is allowed to 

vary such that both (1) and (2) are retained, or (4) the analytical 

value is achieved at the free surface? This is an interesting 

philosophical question. However, for the present analytical methods it 

may be redundant. The present methods utilized to determine the 

singularity order only yield results accurate to within about 10%. 

Since the experimental error is a significant portion of the overall 

variation of ~. it would seem logical to investigate a method to 

reduce the overall error first, since this may involve formulation of 

a new algorithm. 

It is suggested that a linear or quadratic variation in the 

non-singular component inside the boundary layer be investigated. By 

utilizing the present algorithm from maximum depth out to a point 

where the boundary layer is detected (singularity order begins to 

change), and then letting the non-singular component vary to 0 as the 

surface is approached, an improved distribution of the singularity 

order may be recovered. 
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A second alternative would be to employ the process of wannealingw 

moire (as used by Epstein [14)) in the boundary layer region. The 

model equation for the displacement in the wzw direction may be 

truncated to a linear form and used with confidence so long as it is 

applied only close to the crack tip (small values of r). Although the 

displacement measuring technique is more time consuming than the 

photoelastic method, it eliminates the problems associated with the 

non-singular component of stress without the need for developing a 

non-linear data analysis algorithm. 

7.2 Comparison of Results for Surface Flaws and Straight-Front Cracks 

The algorithm which is used to analyze the surface flaw 

singularity order distributions is also applied to data which has been 

collected by Epstein from the single edge notch (simulated crack) bend 

specimen (see figure 7.3). An additional model, identical to the model 

tested by Epstein, has been tested (test TlD) in order to verify the 

validity of Epstein's data. Application of the present algorithm to 

both the recently generated data and Epstein's data produce similar 

results. These results from test TlD are presented in figure 7.4. 

Four differences are apparent when comparing the results of the 

tests on surface flaws and straight-front cracks. When the previously 

described method (section 6.4) of selecting the non-singular stress 
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term for the algorithm is applied, there is a difference in the 

singularity order near the surface for the two different geometries 

(0.37 for the surface flaw, 0.25 for the SEN geometry). The decrease 

in A which is apparent at maximum crack depth in the surface flaw 

models (previous section) is not apparent in the straight-front crack 

models. The ratio of the non-singular stress term to the remote normal 

stress (M*c/I)for the single edge notch (SEN) specimen is -0.48, 

compared to +0.18 for the surface flaws c't'0•A/P). Finally, the extent 

of the singularity order •boundary layer• is found to be smaller for 

the surface flaws than for the straight front crack. 

Concerning the difference in surface values of the singularity 

order, the values obtained experimentally for the two geometries 

bracket the (approximate) analytically determined values of Benthem, 

Bazant, Takakuda, and Burton. One possible explanation concerns the 

algorithm used to analyze the experimental data. The present method 

assumes a constant value for the non-singular stress component along 

the entire crack border. Comparison of the actual fringe patterns 

obtained from surface slices with computer generated theoretical 

fringe patterns suggests a possible variation in the non-singular 

component of stress as the surface is approached. While there is no 

analytical or empirical foundation on which this variation can be 

based, a more detailed investigation of the phenomenon may be in 
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order. It is noted here that Ruiz and Epstein (17] reported surface 

values of the singul&rity for both the SEN geometry and the surface 

flaw geometry near 0.33, however their method of analysis was less 

refined than the method used in the present work. They also showed a 

completely different interior distribution for the surface flaw. The 

results presented herein are from six independent tests and show very 

good correlation. It is postulated that the results given by Ruiz and 

Epstein may have been distorted by random experimental error, which 

went undetected due to lack of repeat tests to form a statistical 

base. 

The slight decrease in the apparent singularity order at maximum 

crack depth is most likely attributable to a moderate variation in the 

non-singular stress component which is not accounted for in the 

algorithm presented in chapter six. The variation which may cause the 

decrease would likely be small enough that only a more mathematically 

rigorous non-linear equation solution algorithm would be able to 

detect the variation. 

The large difference in the non-singular stress component is not 

surprising. Large differences in the non-singular stress field 

surrounding the zone dominated by the singularity exist, and these 
~ 

differences cause the variation in the non-singular term, a . There 

is a possible relation, however, between the variation in the 
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singularity order at the free surface and the difference in the 

non-singular stress for the two different geometries tested. Referring 

to figure 6.8, it can be seen that the singularity order for the two 

geometries diverge as the surface is approached. By examining equation 

6.1. , however, it is obvious that by allowing the non-singular stress 

component to go to zero as the free surface is approached, the 

singularity order distributions for the two geometries tend to 

coalesce. This approach was utilized on several surface slices for 

both geometries, and resulted in the singularity order coalescing to 

an average value of 0.32, much closer to the analytical results. 

The extent of the boundary layer (figure 6.8) may also be related 

to the non-singular stress component, 1:'0 • The values of singularity 

order obtained using the present algorithm (section 6.4) are directly 

related to the choice of t'0 • If, as mentioned previously, Lo tends 

to zero as the free surface is approached, the extent of the boundary 

layer may be more nearly the same for both geometries. Whether or not 

this is the case, a more rigorous algorithm which determines 't0 and 

). independently would certainly be beneficial. 
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7.3 wcorrespondingw Stress Intensity Distributions 

The method for converting LEFM stress intensity distributions to a 

corresponding K presented in chapter five is dependent directly on cor 
the singularity order distribution. As mentioned in section 7.1, there 

is some question concerning the accuracy of the singularity order 

distribution in the boundary layer. The results and discussion 

presented here are based on the algorithm presented in chapter 6, 

keeping in mind that the corresponding SIF may be slightly larger 

(surface flaw) or smaller (straight front) due to changes in the 

singularity order near the free surface. 

The distribution of K for the straight front crack is cor 
approximately constant (within the limits of experimental error), 

while the LEFM K1 distribution shows a decrease as the free surface is 

approached (figure 7.5). This amounts to an effective increase in the 

SIF of over 50% at the surface. Consider the new methods being 

developed for the performance of highly accurate surface measurements. 

The advantage of the accuracy is effectively nullified if outdated and 

inaccurate methods of analysis are used to analyze the data. As such, 

consideration of the three dimensional effects, manifested in the 

elevation of K near the surface, must be included in future cor 

experimental investigations, particularly ones involving nearly 

incompressible materials. 
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The increase of K over KI for the surface flaw is not as cor 

dramatic due to the Qigher values of ~ as the surface is approached 

(see figure fi.9). However, due to equation (6.3.5) and the assumptions 

presented in chapter ~ix, K will always be larger than or equal to cor 

KI, with their values coalescing as the singularity order approaches 

0.5. As such, the corresponding stress intensity, K , is a cor 

conservative (larger) value of stress intensity which accounts for the 

three dimensional ef:ects observed in high Poisson's ratio materials, 

and it is applicable to existing design codes and life prediction 

methods. 



CLOSURE 

The goals set forth in the introduction, namely: (1) determining 

the distribution of the singularity order for surface flaws, and (2) 

developing a method to account for three dimensional effects using 

LEFM (two dimensional) concepts and design codes, have been achieved. 

In the course of achieving these goals, several important methods, 

techniques, and data analysis algorithms have been developed. The 

quasi-linear algorithm (section 6.4 and equations (5.1.6) and (6.1.3)) 

was a major accomplishment in that it allowed reasonably consistent 

results to be obtained from two dissimilar cracked body geometries. 

The development of a simple formul~ which allows LEFM stress intensity 

factors to be adjusted to a correso.onding stress intensitv, K , • cor 
accounting for the singularity order boundary layer is an important 

accomplishment. Until the three dimensional problem is more fully 

understood, this formula allows for a conservative adjustment to be 

made to KI, where KI has been calculated from surface values of 

displacement or stress. This in turn, may prevent unexpected failures 

from occurring, where surface KI values grossly underestinate the 

actual interior values of stress intensity. 

In order to apply the K correction, the singularity order cor 
distribution must be known a priori. Until a more powerful analytical 

method is developed, this distribution must be determined 

experimentally. Testing hundreds of different models is obviously an 

100 
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extremely time consu~ing task. Part of this difficulty may be 

alleviated by considcri~g the preliminary results presented in chapter 

seven. By looking at the results obtained from a variety of test 

georeetries, it beccmes apparent that the singularity order 

distribution is relatively insensitive to moderate changes in crack 

shapes or remote boundaries. If this is verified in future tests on 

different geometries, a significant reduction in the nunber of tests 

required to establish an empirical base for the engine~ring co~rr.unity 

would result. 

The remaining question left to answer concerning experiffiental 

determination of the singularity order distribution concerns the 

assumptions and approximations incorporated into the development of 

the data analysis algorithm. It is obvious from the experimental 

results obtained so far that the algorithm represents a fairly good 

model of the actual behavior everywhere except possibly at the free 

surface. ~his judgement is made on the basis that the analytica~ 

results for surface values are appropriate for the finite geo~etry of 

the experimental nodel. The fact that the experimental results, 

obtained from two different geometries but using the same anal7sis 

Qethod, bracket the analytical values tend to strengthen this 

judge~ent. 
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In order to obtain a more accurate singularity order distribution 

from the experiraental photoelastic data, it ~ill be necessary, at 

minimum, to develop and implement a non-linear algorithm for data 

analysis. This current model equation (5.1.6) could be utilized for 

the preliminary study. It is possible, however, that a new model 

equation will be needed which will allow more variation of the local 

stress field, if preliminary results prove to be erratic. 

Finally, it is hoped that the methods, techniques, and results 

presented in this report will serve as a foundation on which future 

work on the three dimensional nature of the stress field 3round 

surface flaws can be built. Past work of others was very helpful and 

enlightening during the work which culminated in this report. 

Hopefully, this work will serve the same purpose for others in the 

future. 
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APPENDIX I 

PHOTOELASTIC STRESS FREEZING 

Photoelastic stress freezing is a method by Which the internal 

stress distribution for arbitrary model geometries can be obtained. 

The method requires the use of materials which are both double 

refracting and di-phasic. By utilizing both properties, in conjunction 

with techniques to be explained, internal stress distributions can be 

obtained quite accurately. 

Double refraction or birefringence as it is sometimes called, is 

an optical phenomenon observed in many transparent, non-crystalline 

naterials. W~en polarized light is pnssed through the stressed 

material, it is divided into two orthogonal components, aligned with 

the directions of principal stresses in the plane normal to the 

direction of light propagation. The refractive index is different in 

the two directions, and as a result, one of the components undergoes a 

relative retardation with respect to the other, giving rise to the 

well known isochromatic fringes. A complete mathematical derivation 

and explanation may be found in Dally and Riley's Experinental Stress 

Analysis. 

The term di-phasic refers to materials exhibiting two different 

sets of properties at different temperatures. For the polymeric 

material used in the present investigation, the transition takes place 

in the neighborhood of 100 degrees Centigrade. At room temperature the 

107 



108 

material is rather brittle, has a Poisson's ratio of about 0.40 [14] 

und has an elastic modulus of about 300 ksi. The optical fringe 

constant is about 25 pounds/inch/fringe. Above the material's 

transition or wcriticaln temperature, the properties change 

drastically. It becomes nearly incompressible, rubbery, and the 

elastic modulus drops to about 2500 psi. The optical fringe constant 

also decreases to about 2.0 pounds/inch/fringe. Physically, the 

process consists of the breaking of secondary molecular bonds, while 

primary bonds remain intact, retaining the model's shape. 

This transition can be utilized to examine three di~ensional 

stress distributions in the following manner. The model is machined or 

cast from the di-phasic material at or near room temperature. The 

model is then placed in a programmable, servo-controlled oven (Blue M 

Manufacturing Co.}. A control cam, which produces the time-temperature 

profile shown in figure Al.l, is used to slowly increase the models 

temperature above the transition temperature. At this point, live 

loads (stationary) are applied to the model, which create stress and 

deformation in the model. The temperature is then slowly decreased 

through the transition temperature so that residual thermal stresses 

are not wfrozenw in the model with the stresses resulting from the 

live loads (the coefficient of thermal expansion also increases by an 

order of magnitude above the material's critical tereperature). 
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Once the temperatu~e is reduced below the transition temperature, 

the loads may be removed. Due to the iarge change in elastic modulus, 

only an insignificant change in defornation occurs when the loads are 

removed. An even smaller change occurs in the isochromatic 

distribution. The model may now be sectioned using appropriate cutting 

tools and the deformations and associated isochromatic patterns will 

be retained, allowing analysis of the internal stress distribution in 

the model (in the plane of the sections removed from the ~odel. 

There is one problem which must be accounted for in this 

procedure. When the temperature of the model is elev~ted, in~ernal 

moisture is driven from the model. vmen the temperature is then 

lowered, moisture inf~ses back into the model until equilibriu~ is 

established. However, at room temperature, it may take from hours to 

months for equilibrium to be re-established. During the period while 

equilibrium is being established, residual stresses and deformation 

due to the spatial variation of moisture content occur in the slices 

or sections. These are normally manifested in isochromatics appearing 

parallel to the slice borders (or erratic displacement contours in the 

case of •annealing" moire). To date, no problem has been encountered 

"ith respect to this time-edge effect in analyzing the thin slices. 

This is attributable to the rapid return to equilibrium of the 
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ffioisture content in the slices due to the short distance moisture must 

infuse (or diffuse). Care should be taken when analyzing thicker 

slices, however. 



APPENDIX II 

INTERACTIVE CO~PUTER PROGRAMS 

All three of the programs contained in this section were 

originally written in a version of Microsoft Advanced Basic (BASICA), 

which runs on the 8088 family of microprocessors. Subsequently, the 

program •orGIFRNG.BAs• was modified to be compiled with the MS 

QuickBasic Compiler. All of the programs have been utilized 

extensively in the reduction and analysis of photoelastic data, 

resulting in less time spent crunching numbers, and more time spent 

doing productive research, not to nention the reduced eye strain from 

not having to stare at dim fringe pJtterns continuo~sly for two hours. 

The program •orGIFRNG.BAs• allows photoelastic data to be recorded 

digitally, directly from a photoghraph of a fringe pattern. This 

program is also applicable to recording displacement fringe patterns, 

particularly ones having very high fringe density. 

The program •TAU-PLOT.BAS• is the main data reduction and analysis 

program used in connection with this research project. The program 

allows direct user control of the display and program branching, and 

is simple to use. Prompts appear on the screen requesting input where 

it is required. Because the program is constructed in a modular 

fashion, it would be no problem to incorporate new algoritms (linear) 

into the program. This has already been done, and basically involves 

inserting model equations in the program at three different places. 

The program •LOOPS.BAS• is basically an equation plotting program. 
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For the ver~ion contained in this appendix, the progra~ plots a 

rearrar.ged form of equation (5.1.5) which has been solved for the 

variable r. 

It was anticipated that all three of these programs would be 

merged into one master analysis program, however, time ran out and the 

task could not be accomplished prior to completion of this report. It 

is probable that this compilation will occur in the future, and 

possibly even i~corporate a digital video camera and interface to 

record information directly from the polariscope. This would allow 

i~mediate results to be obtained, as well as allow the possibility of 

analyzing quasi-dynamic two dimensional models. 
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REM - THIS IS THE PROGRAM TO DIGITIZE PHOTOELASTIC FRIN~ES AND PERFORM 
RE!'1 - STORAGE AND PLOTTING. THIS IS SGUi\'CE CODE FOR THE MS-BASIC COMF'ILER. 

OPT ION EIA5E 
COMMON SHARED PI#,X0 1 YO,MAG,CST#,SNT# 1 RTOD#,DTOR#,ITOMM,KO 
DIM Nf".:T<l00 1 3l 
PI#•3.141~9:bS4# :RTOD#=lBO•IPI# :DTOR#=l#/RTOD# :ITOMM•.0=54 

3 CALL TABLET 
M=l 

4 CALL INITIAL CNNEXT,FINC> 
J•O :KO•O 

s CALL RDPNT <X,Y,F•> 
CALL CITLAG CFS,FOl 
IF F0•2 THEN CALL CHG INC <FINC, NNEXTl 
IF FOa3 THEN CALL CHGN <NNEXT> :GOTO ~ 
IF F0•4 THEN GOTO DATASAVE: 
CALL CONVERT <X,Y,XI,YI,RI,TI> 
CALL STORE (NNEXT,FINC,RI,TI,NRTCl,Jl 
CALL UPDATE <X,Y 1 RI,TI 1 NNEXT 1 FINC 1 Jl 
GOTO S 

OATASAVE: CALL SETPRNT <NRT<l,J,IDS,DO> 
IF 00=1 THEN 4 
CALL SETPLOT <NRTCl,J,M,IDSI 
M,.M+l 

CALL SETFILE CNRT<>,J,IDSl 
CALL RST <DO> 
ON De) GOTO 4, 3 

END 

sGOTO ~ 

REM •••••***'***'*********'******************************************* 
SUB RDPNT <X,Y,FSl STATIC ••************************'******'*****' 
REM - THIS ROUTINE READS A CX,Yl COORDINATE FROM INF·UT BUFFER •2 t 
0SmINPUTSC15,4t2) 
FS=LEFTS ms. 1) 

X=VALCMIDSCDS 1 3,5>l 
Y=VALCMIOSCDS,9,5>> 
END SUB 
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FD1 ****''*****''****************'*****************************'*'**** 
sur-: cc;;'"'ERi <X,Y,XI,VI,F.I,TI> STATIC •••••••••••••••••••••••••••• 
REM - THIS ROUTINE CONVERTS TABLET CX,V) TO IMAGE COORDINATES ***' 
Xi=<X-XO>sMAG :VT•CV-VO>aMAG 
XIzCT#tXT-ST#SVT :Vl=ST#aXT+CT#tVT 
RI=SQRCXI~:+VIA2l :TI•ATNCVI/XI> 
CALL CONANG <TI,XI,VI> 
END SUB 

REM aattttat•tttaaatstttttttaatttatttatttattatttaatttttttttattaaaattat 
sue TABLET STATIC •••••••••••••••••••••••••••••••••••••••••••••••• 
REM - SETS UP TABLET-IMAGE COORDINATE TRANSFORM PARMAMETERS tattta 

REM - THESE PARAMETERS ARE COMMON TO THE WHOLE PROGRAM ****'*****' 
SCREEN 0 :COLOR 2 1CLS 
OFEN "COM2:9600,0,7,l,R5,DS" AS #2 
PRINT "AFFIX IMAGE TD TABLET. MAl'.E SURE CONTROLLER IS TURNED ON." 
PF.INT :f'RINT "PLACE CURSOR AT IM~GE <C.,O> AND PRESS ANY BUTTON." 
CALL RDPNI cxo,vo,F•> •xo,vo ARE THE ORIGIN OFFSET COORDINATES 
F·RINT 
INPUT "ENTER <X,V> OF KNOWN POINT ON IMAGE FROM KYBD1",X2,Y2 
PRINT 1PRill:T "PLACE CURSOR AT <"1X21","1Y21"> AND PRESS A BUTTON." 
CALL RDPNT CX1,Y1,F•> 
Xl:Xl-XO :Yl•Yl-YO 
R2•SDR<x2~2+v2-2> :Rl•SORCX1-2+v1A2> 1MAG•R2/Rl 'LINEAR MAG. 
T1•ATNCV1/X1> :T2,.ATN<Y2/X2) 
CALL CONANGCT1,X1,Vl> 
CALL CONANGCT:Z,X2,V2l 
F'HI..-T2-Tl 
CST#•CDSCPHII 15NT#=SINCPHil 

'CONVERT ANGLE TO 0 < ANGLE < 2aPI 

PRINT :PRINT "AXIS ROTATION ANGLE1 ";PHURTDD#;" DEGREES" 
PRINT :PRINT "LINEAR 1'1AGNIFICATION1 "ll'IAGtlOOO 
CALL NEXTSCR C24,ll 
EN:> SUB 

REM atsatttattatatatattatttttta••eaattttttttttattttattaat•ttatatatttta 
SUB CONANG<T,X,Y> STATIC 'ttaattttataaatataaaetttattttlatttttatatt 
REM - CONVERTS ANGLE TO RANGE C0,2aPI> GIVEN <X,Yl COORD. atttaaaa 
IF X<O AND Y>O THEN T•T+PI* 



IF X 0 A~n Y'O TH~N T=T+Pit 
IF X -~AND v·0 THEN T=T+:.'ttPI• 
END SUO 
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RCM ***'***'*''**'*'''''''***''****************'******lttttttt•tttt•at 
SUD NfXTSCR <RO~,COL) STATIC 'lt•fttlttltll&&ttttttttfttt•tlttltte 
IF ROW~·:.'4 THEN R0Wc24 
IF COL>40 THEN COL•40 
LO:::ATE ROW,COL 
FRINT "PRESS ANY k.EY TO CONTINUE 

10 ZS=INl'.EYS 
IF LEN<Zsl~O THEN 10 

COLOR 2 1CLS 
END SUB 

". . . . . . ' 

REM •tltttttltttfttttttt1•1a••••••••t••ttt•ttttttttttttt•ttttltttttt•t 

SUB INITIAL <NNEXT,FINC> STATIC 'ttltltt•*******************'***** 
REM - SET SCREEN FOR DATA COLLECTION t•ttttttaattftfttftt•ttt•••tt 
COLOR 2 :CLS 
FRINT "LAST 'N' VALUE:" 
LOCATE 1 1 40 1 PRINT "LAST <R, 1> COORDINATE:" 
LOCATE ::S, 1 :PRINT "CURRENT 'N' VALUE1" 
LOCATE ::S,40 1PRINT "LAST DIGITIZER COORDINATES1" 
LOCATE :5,1 :PRINT "CURRENT 'N' INCREMENT1" 
LOCATE 5 1 40 1F"RINT "NO. DATA POINTS COLLECTED:" 
LOCATE 7,1 :PRINT "STATUS:" 
LOCATE 7,9 :PRINT "INITIALIZE VALUES" 
LO:ATE 9 1 1 :INPUT "ENTER FIRST FRINGE ORDER TO READ1 ",NNEXT 
LOCATE 3,:.'0 1PRINT USING "+##t"sNNEXT 
LOCATE 9 1 1 :PRINT 
LOCATE 9,1 :INPUT "ENTER FRINGE INCREMENT1 ",FINC 
LOCATE ~,24 :PRINT USING "+ltt•"sFINC 
LOCATE 9,1 rPRINT 
LOCATE 7,9 :PRINT 1LOCATE 7 1 9 :PRINT "READ" 
LOCATE 20,1 :PRINT "INSTRUCTIONS1" 
LOCATE :;:1 1 1 :PRINT "PRESS ANY NUMERIC BUTTON ON CURSOR TO READ," 
LO':ATE 2:;:,1 :PRINT "PRESS 'C' TO CHANGE CURRENT 'N' VALUE." 
LOCATE :0::,1 :PRINT "PRESS 'A' TO CHANGE THE INCREMENT." 
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LOCATE :'4,1 :PR:NT "Ph:E55 'F' TO TERMINATE DATA COLLECTION." 
Erm S!Jfl 

~EM t•••teaaattet•t•tttt&tttltttttttttttttlttttttatttttttttatttttttttt 

SUB Cl~FLAG CFS,FO> STATIC •ttt•ttttetttttt•tttt******************* 
Fl'.>•1 

IF FS="A" Tl-iEN FOs2 
IF FS="C" THEN F0=3 
IF FS="F" THEN F0•4 
END SUB 

REM tetttetetttttttttttttttttttttttttttttttttttttttttttttttttttttltttt 
SUB CHGN <NNEXT> STATIC 'ttttttttttttttttttttttttttttttttttttttttt 
LOCATE 7, 9 1 PRINT "CHArJGE CURRE:lllT • N'" 
LOSATE 9,1 1INF'UT "CHANGE CUF\RENT 'N' TO WHAT: ",NNEXT 
LOCATE 9,1 :PRINT 
LOCATE 3, :?O 1 PRINT USING " "I" " 
LOCATE 3,20 :PRINT USING "+etlUt"1NNEXT 
LOCATE 7,9 :PRINT :LOCATE 7 1 9 1F'RINT "READ" 
END SUEI 

REM tltlttttatttttttttlt•tttttttttttttt•tttttttttttttttatttttttttttttt 
sue CHGINC CFINC,NNEXT> STATIC ••••••••••••••••••••••••••••••••••• 
LOCATE 7 1 9 1PRINT "CHANGE 'N' INCREMENT." 
LOCATE 9 1 1 1INPUT "CHANGE INCREMENT TO WHAT1 ",IO 
LOCATE 9,1 :PRINT 
NNEXT .. NNEXT-FINC+IO 
FINCaII) 
LOCATE ::;,20 1PRINT USING "+4tltll";NNEXT 
LOCATE :i,24 1PRINT USING "+ltttll";FINC 
LOCATE 7 0 9 1PRINT 1LOCATE 7 0 9 1PRINT "READ" 
E!IO::> SUB 

REM ttttttttalttattttttttttttttttttttttttttttttttttttttttttttttttttttt 
SU9 STORE <NNEXT 1 FINC 1 RI,TI 1 NRT<2>,J> STATIC •tttttttttttttttttttt 
REM - STORES N,R,i IN ARRAY FOR LATER USE tttttttttttttttttttttttt 
J=J+l 
NRTCJ,l>=NNEXT 
NRT <J, ~> =f"I 
NRTCJ,3>•TitRTODtt 'SAVES ANGLE IN DEGREES 



NN~XT=NNEXT+FINC 

END SUB 
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'INCREMENT FRINGC C~~ER FOR NEXT DATA FOINT 

REM *****'*************'''************'****''**''********************* 
SU~ UPDATE <X,Y,RI,TI,NNEXT,FINC,J> STATIC '********************** 
R~M - UPDATES DATA COLLECTION DISFLAY SCREEN ********************* 
LOCATE 1,65 :PRINT USING ............ •tttt,tt";RI;TltRTODtt 
LOCATE 3,6q :PRINT USING ••tttt## •tttt#tt";X;Y 
LOCATE 1,17 1PRINT USING "+ti##"; (NNEXT-FINC> 
LOCATE 3,20 :PRINT USING "+tt#tt";NNEXT 
LOCATE 5,68 1PRINT USING "41Cltt" I J 
IF J<99 THEN EXIT SUB 
IF J•99 THCN BEEP 1LOCATE 16,1 1COLOR 20,0,0 : _ 

PRINT "NEXT POINT IS LAST READ~BLE POINT <100>" :COLOR 2,0,0 
IF JclOO THEN BEEP 1LOCATE 16.1 :PRINT "MAX POINTS INPUT. PRINT" 

CALL NCXTSCR <17,1) :KO=l 1EXIT SUB 
END SUB 

REM ltttlttltt•tttttlltt•ttseett••tttlt**************'********'******* 

SUB SETPRNT <NRT(2) 1 J,IDS,DO> STATIC '*********************'********* 
REM - DISPLAY DATA ARRAY ON SCREEN. LPRINT OPTIONAL. lttlllltttlll 

CLS :PRINT "DATA ARRAY - <N, R, i> - JUST COLLECTED:" 
R"'2 : C=l 
FOR 1=1 TD J 

IF 1=20 OR I•40 OR I=60 OR Ic80 THEN R .. ~ :CALL NEXTSCR <24,1> 
LOCATE R,C 
PRINT USING "+tttt# .......... .......... .......... ........... ; 

NRT<I,l>;NRT<I,2>;NRT<I,~>;LOGCNRT<I,1>>;LOG<NRT<I,2>> 

R=R+l 
NEXT l 
LOCATE 24,1 1PRINT "If" DATA IS O.K. 1 PRESS Y, IF NOT, PRESS N"; 

1 ZS=INKEYS 
IF ZS•"Y" OR ZS•"N" THEN 2 ELSE 1 

2 IF Z••"N" THEN D0•1 :EXIT sue ELSE DO•O 
CLS :PRINT "ENTER AN I.D. STRING <MAX.78 CHAR.I FOR DATA SET" 
INP'UT "",IDS 
PRINT "MAIE SURE PRINTER IS CONNECTED ANO ON-LINE" 
PRINT :PRINT "PRESS ANY KEY WHEN READY•••••" 
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:'5 Z$=INl'.EY!l· 
IF LENCZ$l•O T~EN 2: 
LPRINT CHF\~ <:7> +"A"+CHRS C 16) +CHRS <=7> +"t~"+CHr.f. C6) 
LPRINT 10$ :LPRINT 
LF'RINT " N R THETA LNCN> LNlRl" 
LPP.INT 
FOR I.,1 TO J 

LPRINT USING " •••• •••••• •••••• +•.••• ····••"; 
NRTCI,1>;NRTCI,2l;NRTCI,3J;LDGCNRTCI,t>>;LDGCNRTCI,:>> 

NEXT I 
BCEP :CLS &PRINT "PRINTING DONE. PRESS ANY KEY TO CONTINUE." 

30 ZS•lNKEYS 
IF LENCZS> .. O THEN 3(1 
CLS 
END SLm 

REM - *****************'*'*****************************'**************'' 
EUB SETPLOT CNRTC~>,J,M,IDS> STATIC ••********************'****** 
REM - THIS PLOTS THE DATA SET IN LOG-LOG FORM **********'********* 
REM - USE STANDARDIZED PLOT SCALE FOR CONSISTENCY UaUUUtUUU 

STATIC PC3> ,Y.<1> 
DIM P<too.~.4l,KC4) 
IF M=~ THEN CLS 1PRlNT "ONLY FOUR SETS CAN BE PLOTTED TOGETHER" _ 

:PRINT "SET COUNTER IS RESET TO l" aM•l 
t< CM)..:J 
FOR 1'"'1 TO !-:. CM> 

PCI,1,M>=LOGCNRTCI,t>> 
P<I,2,M>•-LOSCNRT<I,2>> 
Nl!XT I 

CLS 1CALL SCRNSET <M> 
REM - THIS SECTION PLOTS THE DATA POINTS 

OUERYSET: LOCATE 1,18 :INPUT "PLOT WHICH SET CO TO PRINT>s",S 
IF s:·o OR s:·M THEN LOCATE 1,18 &PRINT 1GOTO QUERYSET: 
IF S '. >C> THEN GOTO PLOT1 
REM - USE PRTSC TO DUMP GRAPHICS TO PRINTER 
LPRINT CHRS. c:7> +"A"+CHRS <B> 

40 ZS=INl'.EYS 
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Jr Z••"C" THEtJ 50 ELSE GOTO 40 
::;(, Lf'RliH CHJ":t;(Z7> + "A"+CHR.C 101 

SCREEN (l : COLOR :? : CLS : EX IT SU[t 
PLOT: FOR 1•1 TO Y.<S> 

F'SET CF'<I,2,Sl ,P<I, 1,S> > 
NEKT I 

6r) LOCATE 1,20 zINF'UT "ENTEF"< SET ID <22 CHAR. MAX.lz",SS 
LOCATE 1,20 :PRINT 
IF LEN CSf. > ~·22 THEN 60 
LOCATE 1,S+16 1PRINT USING "&."1Sf. 
GOTO QUERVSETz 
ENO SUB 

REM **'*'****************************************'******************** 
SUD SCRNSET <M> STATIC '****************************************** 
REM - THIS SETS UP THE GRAPHICS SCREEN FOR PLOTTING LN<Nl-LN<R> tt 

SCREEN 2 :CLS 
PRINT "DATE: "+DATE• 
LOCATE 3, 1 : PRINT "TIME: "+TIMEl· 
VIEW (200,8>-<6~9,199> 

WINDOW <-.05,-1.18>-<S.5,3.51 
LINE <0,0>-<5.5,0) :LINE co,01-co,3.Sl 'DRAW AXES 
FDR I•O TD 5.5 STEP .S 
LINE <I,O>-<I,-.05> 
NEXT I 
FOR JcO TO 3.5 STEP .5 
LINE CO,J>-<-.OS,JI 
NEXT J 
LINE co,-.58>-<5.5,-.58) 
FOR I•O TD 5.5 STEP .5 
LINE <I,-.58>-<I,-.631 
NEXT I 
LOCATE 20,26 :PRINT "0" 
LOCATE 20,3~ :PRINT "-1" 

LOCATE 20,45 :PRINT "-2" 

LOCATE 20,49 :PRINT "LN <Rl" 
LOCATE ~o.~~ :PRINT "-3" 
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LOCATE :'C.1, 65 :PRINT ''-4" 

LOCATE ~0,7~ : PRirn "-~II 

LOCATE :?:: ' ~6 :PRINT "1. 0" 

LOCATE 23,35 :PRINT ... 37" 
LOCATE 23,45 sPRINT " • 14 11 

LOCATE 23,~S sPRINT ".0~" 
LOCATE ~:i,6~ :PRINT ".O~" 
LOCATE 23,7~ :PRINT 11 .007" 

LOCATE :S,24 :PRINT u3t• 

LOCATE B,24 :f'RINT "2" 
LOCATE 11, 21 :PRINT "LN<N>" 
LOCATE 13,:'4 sFRINT "1" 
LOCATE 19,24 :FRINT "0'' 

LOCATE 23,19 :PRINT "R UNJ" 
Et.ID SUD 

REM *~*********•**'***********'*************************************** 
SUB SETFILE rr~RT<2>,J, IDS> STATIC 'ttttttt•••tttttttttttt••ttttsa• 
REM - SAVES DATA SET ON DISI'. FILE 
SCREEN 0 :COLOR 2 1CLS 
INPUT "ENTER FILENAME FOR DATA STOl'AGEs",FILE$ 
IF LEN<FILES>•O THEN EXIT SUB 
OPEN °0·,•1,FILES 
PR·INTU, USING "&"s IDS 
PRINT•l," N R CINJ 
FOR 1"'1 TO J 

PRINT•t, USING "+•#• 

THETA" 

••••••• 
NRT<I,1>1NRT<I,2>1NRT<I,:S> 

NEXT I 

CLOSE tll 

END SUB 

•••·••"s -

REM ttttttttttttlttttttt•t•tattttttttttttttttttttttttttttttttttttttttt 

SUB RST <DO> STATIC '********************************************* 
REM - RESETS VARIABES TO START NEW DATA COLLECTION SEQUENCE 

80 SCREEN 0 sCOLOR 2:CLS 
FR!NT "COLLECT ANOTHER SET - ENTER 1" 
PRINT ''START ON NEW IMAGE - ENTER 2" 
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PRINT "TERMINATE PROGRAM - ENTER 3" 
Pf'·INT : INrlJT "ENTER Of'TION NUME<ER: ",DO 

IF DO< 1 THC:tll Be) 

IF DO<::~ THEN EX IT SUD 

IF D0(3 THCN EXIT SU& 

IF D0>3 THEN BO 
CLS 
ENO SUB 
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10 • •n '****** PROGRAM "TAU-PLOT. DAS" •••n••U•Un••UU•U••••u•••••••• 
:w OPT ION BASE 1 
30 DIM NC40l,R1C40l,R2C40>,LGC40,2>,~DC40,2l,P<40,2l,CURSOR<30>,DLTl40l 
:::~ Dll'I XO <40, 2> 
40 GOSUB :510 
SO GOSUB 1690 
60 JO=O 
70 GOSUB lB:iO 
BO GOSUB 350 
90 SCREEN 2 :CLS cKEY OFF 

•ACCESS TEST DATA ENTRY/STORAGE ROUTINE 

"ACCESS SLICE D~TA ENTRY/STOR~GE ROUTINE 
•CALCULATE VALUES FOR PLOTS 

101:1 LOCATE 1, 1 rPRINT "ENTER EITHER Plct, D.ata, er End" 
110 LOCATE 3 1 1 :PRINT "ENTER •p• TO GO TO THE F'LOTTINl3 ROUTINES" 
120 LOCATE 4,1 :PRINT 
130 LOCATE :5, l cPRINT 
140 LOCATE 1,40 rINPUT 
150 IF Dt•"E" TH:=:N CLS 
160 IF DS•"P" THEN 240 
170 IF Dt<>"D" THEN 90 

"ENTER 
"ENTER 
Dt 
1STOP 

• D' 
•E• 

TO GO TO THE DATA ENTRY/STORAGE ROUTINES" 
TO HALT PROGRAM EXECUTION" 

. 
180 CLS :LOCATE 1,1 1PRINT "ENTER EITHER •T• OR •s• 11 

190 LOCATE 3,1 rPRINT "ENTER "T' FOR TEST DATA ACCESS FOR A DIFFERENT TEST" 
201) LOCATE :5, 1 1 PR I NT "ENTER • S • FOR SLICE DATA ACCESS FOR THE CU~RENT TEST" 
210 LOCATE l,30 :INPUT DTAS 
Z:?O IF DTAS="T" THEN :50 
2::0 IF DTAS•"S" THEN 70 EL.SE 100 
~4f) CLS 1LOCATE 1, 1 1PRINT "ENTER EITHER 
250 LOCATE 3,1 
260 LOCATE :5. 1 
~6:5 LOCATE 7,1 
270 LOCATE 1,34 
:::eo GOSUB 4'30 
290 GOSUB :560 
300 GOSU~ 1230 
310 LBmO 

1PRINT "ENTER . ". TO PLOT 
cPRINT "ENTER •L• TO PLOT 
1PRINT "ENTER • x• TO PLOT 

:INF'UT PLOTS 

• K• OR •L• OR • x·" 
l~ap vs. SQRCr/al" 
Ln<taul vs. -LnCr>" 
Klambd• vs. R"'lambda" 



'.'::.'(• C:D5l 1D 740 
3:;0 GOSU[: 130(1 
340 GOTO 9<) 
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~~(I "CALCULATE VALUES '*********'*******'************************************* 
360 CO•£DRC2!>tF•FHil<TS•SIGtMr> 
362 INPUT "ENTER A VALUE FOR LAMBDA 1"1LAMBDA 
3b4 It.!PUT "ENTER A VALUE FOR TAU-ZERO Ce> 1'1AX CRACK DEPTH> 1 "I TAU 
~70 FOR 1•1 TO M 
380 LG<I,l>•LOOCCNCI>IFIC2!•MF•TSll-TAU> 
390 LG<I,2>•-LOOCA8SIR1<I>-R2CI>>l2!> 
400 ~D<I,2>•SORCABS<R1CI>-R2<I>>l<2!*A>> 
410 VD<I,ll•COtN<I>•KD<I,2> 
412 XDCI,2>•EXP<-LAMDDAtLGCI,2ll 
413 XDCI,l>•N<I>tFtXD<I,2>1<2!1MFITSl 
420 NEXT I 

430 "TRANSFER VALUES TO PLOTTING ARRAV P< , > ******************************** 
440 IF PLOT6•"K" THEN 480 
445 IF PLOTS .. "X" THEN 501 
430 FOR 1•1 TO M 
4b0 P<I,2>•LG<I,1> aPCl,l>•LOCI,2> 
470 NEXT I 1RETURN 
480 FOR I=1 TO M 

490 PCI,2>•KDCI,1> 1P<I,1>•KD<I,2> 
500 NEXT I 1RETURN 
501 FOR I•1 TO M 
502 P<I,2>•XD<I,1> 1PCI,l>•XDCI,2> 
503 NEXT I :RETURN 
510 "CURSOR SET-UP **************'*****''**********************'**'''********* 
520 SCREEN 2 1VIEW 1CLS 
530 LINE <S,5>-<5,101> 
540 GET CS,5>-CS,101>,CURSOR 
551) CLS 1 RETURN 
5b0 "SCREEN SET-UP FOR PLOTTING *'******************************************** 
570 SCREEN 2 :VIEW :CLS cKEV OFF 



580 VIEW <200, 1>-<~'30, 120> 
s~o IF F·LOTS.="K" THEN 670 
595 IF PLOTS=-"X" THEN 731 
600 WINDOW (1!,1.S>-<6!,4.5> 
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610 X0..,1.05 1X1•S.5 1V•4! :Xc::S.::S 1DX=.04 
620 LINE (1!,4!>-<1!,l.5> :LINE -<S.5,1.5) 
631) LOCATE 3,22 :PRINT "4.0" :LOCATE 9,18 1PRINT "Ln<Z>" 
640 LOCATE 15,:?2 :PRINT "1.5" 
650 LOCATE 17,25 :PRINT •1.0" :LOCATE 17,46 1FRINT "-Ln<R>" 
6b0 LOCATE 17,73 :PRINT "5.5" 1LOCATE 1,1 1RETURN 
670 WINDOW CO!,l!>-<.9,3.2> 
680 XOm.03 1x1-.es 1V=2.BS 1X•.4 :DX•.01 
6q0 LINE <O!,::S!>-<0!,1!) 1LINE -<.85,l!) 
700 LOCATE 3,:2 :PRINT •::s.O" :LOCATE 9,22 1PRINT "~ap" 

710 LOCATE 15,22 :PRINT "1.0" 
720 LOCATE 17,:S :PRINT "O.O" :LOCATE 17,45 1PRINT •tR/Al".5" 
7JO LOCATE 17,73 :PRINT "0.85" :LOCATE 1,1 1RETURN 
731 WI~DOW 10 1 ,3!>-<.65,11!> 
732 X0=.04 1X1•.6 1Vc10.5 .x ... 3 1DX•B.000001E-03 
7:33 LINE C0!,10.S>-<0!,3!> 1LINE -<.6,::S!J :LOCATE 2,21 1PRINT "'10.5" 
734 LOCATE 9, 18 1PRINT "CK' >ep" a LOCATE 15,22 :PRINT "3.0" 1LOCATE 17,25 
7::SS PRINT "0.0" :LOCATE 17,46 1PRINT "R"lambda" 1LOCATE 17,73 
7J6 PRINT "0.6" 1LOCATE 1,1 1RETURN 

740 'LOCATE LINEAR ZONE AND BAD DATA ••••••••••••••••••••••••••**'***'***'**'' 
750 ON KEY C 1 l GOSUEI 890 1 t~EV < 1 > ON 
760 ON t·EYCZ> GOSUB 930 1KEY<2> ON 
770 ON l~CV<::S> GOSUB 970 1KEY <:-<:> ON 
780 ON KEY<4> GOSUB 1030 1KEV 
790 ON KEY<9> GOSUB 1070 1KEV 
8•)0 ON YEY<10l GOSUB 1090 1t<EY 
810 ON l'EY<l:Z) GO SUB 1110 1V-EY 
e:o ON ~~EY<l::Sl GOSUB 1150 11-".EV 
e:o DIR= SGN<P<M,1>-P<l,1)) 

<4> ON 
<9> ON 
(10) ON 
< 12> ON 
(13> ON 

840 IF DIR< 0 THEN Il•M 1I2•1 ELSE Il•1 sI2cM 

"LEFT ENDPOINT 
'RIGHT ENDPOINT 
'DELETE BAD POINT 
'EXIT SUBROUTINE 
'SLOW CURSOR 
'SPEED CURSOR 
'CURSOR MOVE LEFT 
'CURSOR MOVE RIGHT 



85:) L6=-(• : f'UT ( X, V) , CURSOR 
860 WHILE LB=-0 
E70 WEN::> 
691) RCTURN 
890 'READ LEFT END 
900 XLT•X 1LOCATE 1,1 aPRINT " 
910 LOCATE 1,1 1PRINT USING"\ 
r;-;:o RETURN 
930 'READ RIGHT END 
940 XRT=X sLOC:ATE :::;,1 sPRINT" 
950 LOCATE 2,1 :PRINT USING"\ 
960 RETURN 
970 'DCLETE BAD POINTS 
980 L6~L6+1 16EEP 
990 FOR I•Il TO I2 STEP DIR 
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\ et • •et It" I "LEFT 1 " I X 

\ et.et•l"a•RtGHT:"aX 

1000 IF P<I,2> > X THEN DLT<Lc>•I :GOTO 10::0 
1010 NC:XT I 

1020 RETURN 
1030 'EXIT SUBROUTINE 
1040 LB•l aY.EV<l> OFF 1KEV<2> OFF aKEV<3> OFF"aKEVC4> OFF aKEY(9) OFF 
10!50 t.:EY<10) OFF aKEV<1~> OFF al<EV<13l OFF aPUT<X,Yl,CURSOR 
1060 RETURN 
1070 'SLOW CURSOR 
1080 DX•DXt2'/3! 1RETURN 
1090 'SPEED CURSOR 
1100 DX•DX•3!/2! aRETURN 
1110 'MOVE TO LEFT 
1120 PUT<X,Yl,CURSOR 1X•X-DX 1GOSUB 1190 
11~0 IF L7•1 THEN X•X+DX aBEEP 
1140 PUT<X,Yl,CURSOR 1RETURN 
11~0 'MOVE TD RIGHT 
1160 PUT<X,Y>,CURSDR sX•X+DX sGOSUB 1190 
1170 IF L7•1 THEN X•X-DX 1BEEP 
1180 PUT<X,Y>,CURSOR 1RETURN 



1:ic:. 1F ()(::'l(l)i on (ltj=Xll THEN L7=1 
: ::::•:1 r;r r:wN 
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!~~~ ·~LQi DATA POTNTS tlt•tt•t•t•ttt••t•lttttttttttttlttt•tftttttttttttttt•ttt 

i:~-l<"• LOCATE ~1,6<.• 1F"RINT DATE"S 
1 :~z· roR 1 .. 1 To 11 

1210 r1ET<r<I,1>,P<I,:>> 
1'.:7fl NEXT I 

:~Cl) LOCATE '.:1,30 :F'RINT USING "\ 
1 :''in RCTURN 

\ \ \" S TEST .. ; SLICES 

1 ::•)(l 'f·CRFQl:!'1 PCGf;ESSION AtJALYSIS ON GOIJD DAH\ JN LINEAR ZLi~E UUUUtUUUU 

132~ FOR 1:11 TO 12 STEP DIR 
1330 Ir <F' <I, 1) <•XL T> OR (F"( 1, 1> >=XRT> THEN 14011 
1-:40 ~OR J=l TO L6 
1~~0 Jr I•DLT<J> THEN 1400 
1 :;6(• NEXT J 

1 :.7<:• Nf•=NO+ 1 
13eo sxpsx+P<I,1> 1sx2=sz::+r<I,1>~2 :sxv-=sxv•P<I,1>•r1I,::> 
1-:.91_) ~\'-=SY+P < 1, ~> : sv: .. sv2+P <I,:> A:: 
14< 11) tJ:OXT I 
1410 'MBSX/NO :YM•SY/NO 
l'l'.:(l SLOF'E=<SXY-NOUl1SYl1ll<SX:-NOOMA2) 
1430 INCPT•YM-SLOPEtXN 
1440 VARYX•!SY2-2'tYMtSY+NOtYM~2-SLOPE·2t<SX2-2!tXMtSX+NOtXM~2))/(N0-2> 
14~0 VARY•<SY2-2'tYMtSY+NOtYM~2>1<N0-1> 

1461) F:HO•SDR < 1 1 - <N0-2'> tVARYX/ < <N0-1 l tVARYl) 
147<..l SDVXmSQrt<VAf<YXl/YM 'NORMALt2ED CONDITIONAL STD. DEV. 
142•) 'F'LOT REGRESSION ENDPOINTS AND PF'tNT STATISTICAL VALUES *'***'*******''**' 
1490 PUT <YLl,Y>,CU~~OP 

15~~ PUT <XRT,\>,CURSOR 
: -::; 1 (l Lor:.nc 4' 1 : Pf\ I NT UC nm .. \ 
1:;;:(1 LOCATE 6, 1 1F'RINT USING "\ 

\ 4t. 4tll 4t4t"; "EiLOFE : "; SLOF'E 
\ 4t.4t#4t4t"J"FNYtn>1";INCPT 
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1530 LOCATE 8,1 :PRINT USING .. , \ +#.4UUUICI"; "RHO : ";RHO 
1540 LOCATE 10,1 : F·RINT "NORMALIZED COND." 
l~SO LOCATE 11, 1 : PRINT "STD. DEVIATION : " 
1560 LOCATE l 2 I 1 :PRINT USING " •·•••#Cl";SDYX 
1570 IF PLOTS=-"1(" OR PLOTSa:"X" THEN 16'.;;:I) 
1580 PI•3.141593 :Sl'.;;:•tSIN<PI•SLOPE/2!>>~2 t522•!SLOPE•SINC!SLOPE+11•PI/2'1)A2 
1~90 Cl2•tCOS!PI•SLOPE/2'>>~2 tC22•<CDS!!SLOPE•l'>•PI/2!))A2 
1620 LOCATE 24,1 tPRINT "FOR HARD COPY, PRESS ·o·, THEN Shift-PrtSc, AND/OR ·c· 
TO CONTINUE"; 
16'.:2 ZSslNVEVS 
16:;:4 IF ZS="Q" OR ZS•"q" OR ZS="C" OR ZS•"c" THEN 1625 ELSE 1622 
1625 IF ZS="C" OR ZS•"c" THEN 1675 
1626 LOCATE 24,1 :PRINT" 

"I 
1630 LOCATE 16,1 :LPRINT CHRS!27l+"A"+CHRS!81 :BEEP 
1640 ZSslNl(EYS 
1650 IF LEN<ZS)cO THEN 1640 
1660 LPRlNT CHRS.t27)+"2"+CHRS<12> 
1675 VIEW :CLS 
1680 RETURN 
1690 'ACCESS TEST DATA FOR ENTRY, STORAGE, RETRIEVAL, OR MODIFICATION ********* 
1700 SCREEN 2 :CLS :PRINT "CURRENTLY, .ONLY KEYBOARD ENTRY OF DATA IS AVAILABLE" 
1710 CHOIR "\TESTS" :LOCATE 16, 1 tFILES "*•*" 
1720 LOCATE 3,1 a INPUT "ENTER TEST I.D. <B CHARACTERS MAX.I a",TESTS 
1730 CHOIR TESTS 
1740 LOCATE 5,1 :INPUT "ENTER MATERIAL FRINGE CONSTANT <•tIN/FRINGEI a",F 
1750 LOCATE 7,1 a INPUT "ENTER REMOTE NORMAL STRESS <•ICINIA2) 1",SIB 
1760 LOCATE 9,1 :INPUT "ENTER CRACK SIZE ( INI I H. A 
1770 LOCATE 11, 1 1 INPUT "ENTER ELLIPTIC INTEGRAL VALUE 
1780 LOCATE 13,1 :INPUT "ARE VALUES 
1790 IF BS•"N" THEN 1720 ELSE INPUT 
1800 IF BS•"N" THEN 1840 
1810 OPEN "O",Cll,"TESTDATA" 
1820 PRINT ll 1 F 1 SIG 1 A,PHI 

CORRECT CY or N> 
"STORE DATA !Y or 

CPHI > I ",PHI 
"tBS 
Nl "1BS 



1830 CLD;;JE ttl 
1841) CLS :RETURN 
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185(1 'ACCESS SLICE DATA FOR ENTRY, STORAGE, RETRIEVAL, OR MODIFICATION aaaaaaat 
186fl SCREEN Z :CLS :INPUT "ENTER DATA FROM KVBD OR FILE <Kor F>:",F• 
1670 IF FS•"F" THEN 21~0 
1880 IF JO•l THEN 1900 
1890 CHOIR "SLICES" 1JO•l 
1900 LOCATE :S,1 a INPUT "ENTER SLICE I.D, CB CHARACTERS l'IAX.) 1",SLICES 
1910 LOCATE :i, 1 1 INPUT "ENTER SL.ICE THICV.NESS <IN> 1 ",TS 
19:0 LOCATE 7,1 slNPUT "ENTER FRINGE "UL.TIPL.ICATION FACTOR c1,:s.~ •••• > 1",l'IF 
1930 LOCATE 9,1 1INPUT "ENTER NUMBER OF DATA SETS, <N,R1,R2} < <40 > 1" 1 1'1 

1940 LOCATE 11,1 a INPUT "ARE THESE VALUES CORRECT CV or N> "JBS 
1950 IF BS="N" THEN 1900 ELSE CLS 
1960 LOCATE 11 1 sPRINT "ENTER DATA SETS WHEN PROMPTED <Ni 1 Rli 1 R2i) •••• " 
1970 FDR Iel TD l'1 

1900 Ir I>22 THEN J•I-22 st~c40 ELSE JeJ sK•l 
1990 LOCATE J+1 1 K :PRINT USING "\ \ ••"1"SET"1I sLDCATE J+1 1 K+9 
2000 INPUT "",NCIJ,R1Cl>,R2CI> 
2010 NEXT I 
2020 LOCATE 24,1 a INPUT "ARE ALL VALUES CDRRE:CT CV or N>"1BS 
2?30 IF 8S•"N" THEN CLS 1GOTO 1960 
2040 IF BS="N" THC:N CLS 1GOTD 1960 
2050 LOCATE 24,1 1PRINT " 
2060 LOCATE 24,1 a INPUT "STORE SL.ICE DATA CY or N>"1BS 
2070 IF BS•"N" THEN 2140 
2080 OPEN "O",ttl,SL.ICES 
2090 PRINT •1,TS,l'IF1 1'1 

2100 FOR 1•1 TO l'I 
2110 PRINT •1,NCIJ 1 R1CI>,R2CI> 
2120 NEXT I 
2130 CLOSE tl1 
2140 CLS sRETURN 

21~0 "ENTER SLICE DATA FROM FILE *'******************************************** 
2160 IF JO•l THEN 2180 



:t70 CHOIR "SLICES" :JO=l 
2180 CLS :LOCATE 15,1 :FILES 

13t 

:19(• LCCATE 1,1 :INPUT "ENTER SLICE I.D. FROM FILE LIST 1",SLICES 
==oo OPEN "I",ttl,SLICE• 
2:10 INPUT •t,TS,MF,M 1CLS 1PRINT TESTS,SLICES 
2220 LOCATE 2,1 :f'RINT TS,MF,l'I 
2230 FOR I•l TO M 

2240 IF I>20 THEN ~·40 1J•I-17 ELSE K•l :J•I+3 
22~0 INPUT ttl,N<I>,R1CI>,R2<I> 
2260 LOCATE J,~ :PRINT NCI>,R1CI>,R2CI> 
2=70 NEXT I 
2230 CLOSE •1 1GJTO 2020 
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~ 'ata•taataaaaaaaaaa•••• PROGRAM "LOOPS.BAS" aasassasaatsatstttlttlsttts 
10 !:CREEN 2 
::o LFRINT C:HRSC27)+"A"+C:HRS<B> 
:SO C:LS 
40 WINDOW <-.3Y1,-.05)-(.3ql,.5) 
5•) r·I=3.1415q3 
60 DEF FND<A,L,R>m2 1 •L/C2'1AtLtSIN<R>> 
70 DEF FNT<L,R>•SIN<<L+1!>tR> 
BO DEF rNZ2<B,D,T,X,L>•l!/(4!tDA2•X-<2'•L>>-BtT/(2!•D•x-L>+B•2 
qo DEF FNX(B,D,T,Z,L>•EXP<<-1'/L)t(LOG<D>+LOG<B•T+SOR1(BST>·2-<2!•B>•2+<2!tz>·21 
>)) 

100 INPUT MENTER A, 8, LAMBDA, & m 1",A,B,L,M 
110 Z20=FNZ2<B,FND<A,L,PI/2'>,FNT<L,PI/2!>,.4,L> 
120 Z2M•FNZ2<B,FND<A,L,PI/2!>,FNTCL 1 PI/2!) 1 .04 1 L) 
130 D~=<SDR<Z2M>-SORCZ20>>t<M-1) 
140 CLS 
150 Hc~HFFFF :LINE <-.251 0>-(0 1 0) 
160 LIME <-. 25,, 4 >- C. 25,. 4 > 11 , S.HFFOO 
170 LINE <-.25,.0~>-<.25,.05>,,,~HFFOO 

180 F•O 
1qo ZO•SOR<Z20) 1ZMcSQR!Z2M) 
200 LOCATE 5,68 1PRINT USING "•tt.•tt"1ZO 
210 LOCATE 21,68 :PRINT USING "•tt.•tt"JZM 
220 GS•"\ \ •tt.tt•tt" 
230 LOCATE 18,1 
240 PRINT USING GS1"A=",A 
250 PRINT USINB GS;"B•",B 
260 PRINT USING GS1"L•",L 
270 F~F+l :N=M+l 
280 FOR Z•ZO TO ZM+DZ/8 1 STEP DZ 
:'90 N•N-1 
300 PSET <O, 0) 
310 DIVMa100't<1!-1!/CN+l 1 )) 

320 DR-=PI/DIVM 



330 FOR R,.DR TO PI-DR/:?~ STEP DR 
340 D=FNX<B,FND<A,L,R>,FNT<L,R>,Z,L> 
;!.50 X=O•COS <R> 
::60 Y:.O•SIN<R> 
~70 LINE -<X,Yl, 11 H 
380 NEXT R 
390 NEXT Z 
400 LOCATE l,l 

410 INPUT "OVERLAY ";BS 
J;20 CSs"\ , .. 
430 LOCATE 1 1 1 1PRINT USING CSJ" " 
440 IF BS•"N" THEN S10 
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450 LOCATE 1 1 1 1INPUT "A,B,LAMBDA1 ",A,B,L 
460 LOCATE 1,1 
470 PRINT USING cs," " 
490 IF F=1 THEN H•S.HFOOO 
490 IF F•2 THEN H""l<HlOOO 
500 GOTO 270 
S10 DS=INl<EYS 
~~o IF DS<>"C" THEN SlO 
S30 LPRINT CHRS<27l+"2" 
S40 END 
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