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ABSTRACT 

Profile monitoring is a well-known approach used in statistical process control where 

the quality of the product or process is characterized by a profile or a relationship between a 

response variable and one or more explanatory variables. Profile monitoring is conducted over 

two phases, labeled as Phase I and Phase II. In Phase I profile monitoring, regression methods 

are used to model each profile and to detect the possible presence of out-of-control profiles in 

the historical data set (HDS). The out-of-control profiles can be detected by using the 2T statis-

tic. However, previous methods of calculating the 2T statistic are based on using all the data in 

the HDS including the data from the out-of-control process. Consequently, the ability of using 

this method can be distorted if the HDS contains data from the out-of-control process. This 

work provides a new profile monitoring methodology for Phase I analysis. The proposed 

method, referred to as the cluster-based profile monitoring method, incorporates a cluster 

analysis phase before calculating the 2T statistic.  

 

 Before introducing our proposed cluster-based method in profile monitoring, this 

cluster-based method is demonstrated to work efficiently in robust regression, referred to as 

cluster-based bounded influence regression or CBI. It will be demonstrated that the CBI 

method provides a robust, efficient and high breakdown regression parameter estimator. The 

CBI method first represents the data space via a special set of points, referred to as anchor 

points. Then a collection of single-point-added ordinary least squares regression estimators 

forms the basis of a metric used in defining the similarity between any two observations. 

Cluster analysis then yields a main cluster containing at least half the observations, with the 

remaining observations comprising one or more minor clusters. An initial regression estimator 

arises from the main cluster, with a group-additive DFFITS argument used to carefully activate 

the minor clusters through a bounded influence regression frame work. CBI achieves a 50% 

breakdown point, is regression equivariant, scale and affine equivariant and distributionally is 

asymptotically normal. Case studies and Monte Carlo results demonstrate the performance 

advantage of CBI over other popular robust regression procedures regarding coefficient stabil-

ity, scale estimation and standard errors.  
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 The cluster-based method in Phase I profile monitoring first replaces the data from each 

sampled unit with an estimated profile, using some appropriate regression method. The 

estimated parameters for the parametric profiles are obtained from parametric models while the 

estimated parameters for the nonparametric profiles are obtained from the p-spline model. The 

cluster phase clusters the profiles based on their estimated parameters and this yields an initial 

main cluster which contains at least half the profiles. The initial estimated parameters for the 

population average (PA) profile are obtained by fitting a mixed model (parametric or 

nonparametric) to those profiles in the main cluster. Profiles that are not contained in the initial 

main cluster are iteratively added to the main cluster provided their 2T  statistics are “small” 

and the mixed model (parametric or nonparametric) is used to update the estimated parameters 

for the PA profile. Those profiles contained in the final main cluster are considered as resulting 

from the in-control process while those not included are considered as resulting from an out-of-

control process. This cluster-based method has been applied to monitor both parametric and 

nonparametric profiles. A simulated example, a Monte Carlo study and an application to a real 

data set demonstrates the detail of the algorithm and the performance advantage of this 

proposed method over a non-cluster-based method is demonstrated with respect to more 

accurate estimates of the PA parameters and improved classification performance criteria.  

 

 When the profiles can be represented by m 1p vectors, the profile monitoring process 

is equivalent to the detection of multivariate outliers. For this reason, we also compared our 

proposed method to a popular method used to identify outliers when dealing with a multivariate 

response. Our study demonstrated that when the out-of-control process corresponds to a 

sustained shift, the cluster-based method using the successive difference estimator is clearly the 

superior method, among those methods we considered, based on all performance criteria. In 

addition, the influence of accurate Phase I estimates on the performance of Phase II control 

charts is presented to show the further advantage of the proposed method. A simple example 

and Monte Carlo results show that more accurate estimates from Phase I would provide more 

efficient Phase II control charts.  
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Chapter 1. Introduction and Motivation  

 

n statistical analysis, the observed data often does not fully conform to 

statistical model assumptions. For example, as stated in Hampel et al. (1986) 

“routine data are thought to contain 1% to 10% gross errors”. Because of these errors, 

robust estimation plays an important role in statistical analysis. For example, in a 

regression study, the abnormal data points can severely distort the estimates and the true 

relationship between the covariates and the response. Consequently, the model’s 

prediction ability is similarly distorted. In other applications, such as in statistical 

process control (SPC), robust statistics are also provided so that the control limits based 

on these statistics are not distorted by the abnormal measurements in the historical data 

set (HDS).  

1.1 Robust Estimation in Regression  

 It is known that the regular ordinary least squares (OLS) estimator lacks 

resistance to as little as one unusual observation. The corresponding coefficients and 

their standard errors, predictions, diagnostics, hypothesis tests, and other numerical 

measures can all become very misleading due to a single anomalous observation. Robust 

procedures are designed to capture the general trend of the data in the presence of 

unusual data.  

 

 Most of the robust regression methodologies were provided by the early 1980’s. 

For example, M regression (Huber (1981)), and bounded influence (BI) (Huber (1981)) 

regression work well in the presence of low leverage outliers and at least one high 

influence point, respectively. However, they are unable to combat a small percentage of 

outliers. Repeated sampling based methods, such as Least median squares (LMS) 

(Rousseeuw (1984)) regression and least trimmed squares (LTS) (Ruppert and Carroll 

(1980)) regression, on the other hand, are examples of high breakdown estimators as 

they possess the ability to provide reasonable parameter estimates with as much as 50% 

 I
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of the data being contaminated. Poor efficiency and numerical/computational sensitivity 

with large datasets has typically led to their primary use as an initial estimator feeding 

into other robust procedures such as M or BI estimators. Examples include Mallows 1-

step (M1S) regression (Simpson et al. (1992)) and Schweppe’s 1-step (S1S) regression 

(Coakley and Hettmansperger (1993)), which are one-step adjustments of LTS that 

increase efficiency versus the LTS estimator. However, two virtually identical LTS 

estimates may yield dramatically different M1S (or S1S) estimators (Lawrence (2003)), 

thereby illustrating a potential negative issue with repeated sampling based methods. 

Another high breakdown one-step estimation method is due to Gervini and Yohai 

(2002). Their robust and efficient weighted least square estimate (REWLS) procedure 

attains full asymptotic efficiency with the assumption of normally distributed random 

errors. However, the REWLS, on the average, fails to correctly identify the good and 

bad high leverage points when the error term is not ideally normally distributed 

(Lawrence (2003)). A robust, efficient, high breakdown robust regression methodology 

was proposed by Lawrence (2003), called the cluster-based bounded influence 

regression (CBI) method, which combined a suitable clustering method with the 

bounded influence regression method. In this research, a revised version of this method 

is presented and evaluated in Chapter 2. 

1.2 Robust estimation in SPC 

 As previously mentioned, statistical data sets frequently contains errors. Not 

surprisingly, such data anomalies can occur in the statistical process control setting. 

Robust estimation methods have also been proposed in SPC to avoid the misleading 

results from these errors. 

1.2.1 Phase I and Phase II in SPC 

 The SPC involves two phases, Phase I and Phase II. In Phase I, a HDS is 

analyzed to determine which data points are from an in-control process and which ones, 

in any, are from an out-of-control process. Data points determined to be from an out-of-

control process are usually removed and the remaining data points from the in-control 
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process are used to calculate the statistics needed for computing control limits used in 

Phase II analysis. In Phase II, future observations are monitored by using the control 

limits calculated from Phase I estimates to determine if the process continues to be in-

control. The control limits in Phase I will directly affect the performance of Phase II 

analysis. Accurate control limits in Phase I are desirable for the Phase II analysis. This 

research also focuses on the estimation in Phase I and how these estimates affect 

performance in Phase II. 

1.2.2 Robust estimation in Phase I 

 Recall that the purpose of the Phase I analysis is to examine the HDS and obtain 

the control limits that are sufficiently accurate for Phase II monitoring. However, like the 

estimates of regression analysis, the statistics used for control limits obtained from the 

HDS can be “pulled” in the direction of the multivariate outliers if the HDS contains 

data from an out-of-control process. Robust estimation techniques are used to obtain the 

control limits that are not unduly influenced by unusual data points. Consequently, the 

control limits will be more accurate and effective in Phase II analysis.  

 

 In most previous studies, products and processes were characterized by either 

univariate quality control data or multivariate quality control data. Robust estimation 

methods for univariate quality control data  (such as those based on a median or trimmed 

mean) are straightforward and have received attention in past research (Rocke (1989); 

Tatum (1997); de Mast and Roes (2004); Cali Manning and Adams (2005)). Robust 

methods for multivariate quality control data are not as straightforward, nor as easily 

implemented. 

 

 When dealing with multivariate quality control data, it is assumed that the HDS 

consists of m time ordered vectors that are independent of each other. Frequently the 

Hotelling’s 2T  statistics is used to determine if a multivariate data point results from an 

out-of-control process. In particular, if each vector is of dimension p and if ˆ iμ  denotes  
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a vector containing p  elements for the thi time period, then the Hotelling's 2T  statistic 

for the thi time period is defined as  

 

   2 1ˆˆ ˆ , 1, 2,..., .
T

iT i m    i iμ μ V μ μ                               (1.1) 

where 1

ˆ
m

i
i

m

 μ

μ and V̂  is an estimator of the variance-covariance matrix V of ˆ i μ (see 

section 3 for more details). The Hotelling’s 2T  is an example of a statistic that in not 

robust to outlying observations.  

 

 One commonly used robust 2T statistic for multivariate data results by replacing 

the moment-based estimator of V , the one typically used, by an estimator based on the 

minimum volume ellipsoid (MVE) estimator (Vargas (2003)). The MVE estimator, first 

proposed by Rousseeuw (1984), has been frequently used for the detection of the 

multivariate outliers. The MVE estimator seeks to find the ellipsoid of minimum volume 

that covers a subset of at least half of the total data points. One well known algorithm for 

MVE estimator is provided by Rousseeuw and Leroy (1987) is an approximate method 

using a sub-sampling procedure. However, the problem of this sub-sampling algorithm is 

that it lacks repeatability and results in estimates with poor efficiency. An exact method 

to calculate the MVE estimator was later proposed by Cook et al. (1993) to avoid the 

repeatability problem. However, this exact method is only computationally feasible for 

small datasets (Cook et al. (1993)). Other computationally feasible methods to find an 

approximate MVE have been proposed. For example, Hawkins (1994) proposed a 

feasible solution algorithm (FSA). Also, methods to find the MVE based on a heuristic 

search algorithms were proposed by Woodruff and Rocke (1993). The 2T statistic for the 

thi time period based on MVE is denoted by 2
,MVE iT (Vargas (2003)) 

 

   2 1
,

ˆˆ ˆ ˆ ˆ ,
MVE

T

MVE i MVE i MVET   iμ μ V μ μ                             (1.2) 
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where ˆ MVEμ is the  MVE estimator of multivariate mean and ˆ
MVEV  is the MVE estimator 

of multivariate variance-covariance matrix.  

 

 Another frequently used robust 2T statistic for multivariate data is based on the 

minimum covariate determinant (MCD) estimator which was also proposed by 

Rousseeuw (1984). The MCD estimator is obtained by finding the half set of the data 

points that gives the minimum value of the determinant of the variance-covariance 

matrix. Similar to the MVE estimator, there are both approximate methods and exact 

methods to obtain the MCD estimates. For example, MCD estimates can be computed 

via the exact method provided by Cook et al. (1993). The sub-sampling approach of 

Rousseeuw and Leroy (1987) can be used to get an approximate MCD estimate which 

would have the same repeatability issue. The feasible solution algorithm of Hawkins 

(1993) can be implemented for the MCD, as shown by Hawkins (1994). An improved 

version of the feasible solution algorithm for the MCD was proposed by Hawkins and 

Olive (1999). The 2T statistic for the thi time period based on MCD is denoted by 2
,MCD iT

(Vargas (2003)) 

 

   2
,

ˆˆ ˆ ˆ ˆ ,
T

MCD i MCD MCD i MCDT   iμ μ V μ μ                             (1.3) 

 

where ˆ MCDμ is the he MCD estimator of multivariate mean and ˆ
MCDV  is the MCD 

estimator of multivariate covariance matrix. Estimators based on the MVE and MCD are 

powerful in detecting a reasonable number of outliers as demonstrated by Jensen et al. 

(2007) and Yanez et al. (2010)). Other robust estimators have been proposed for the 

multivariate SPC setting. Yanez et al. (2010) proposed a 2T statistic using S estimators 

based on the biweight function for the location and dispersion parameters when 

monitoring multivariate individual observations. They showed that this method 

outperforms the MVE estimators for a small number of observations. Other robust 

estimators defined using trimming, proposed  by Alfaro and Ortega (2008) and Chenouri 

et al. (2009) and referred to as reweighted minimum covariance determinant (RMCD) 
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estimators, have been shown to provided highly robust and efficient estimators of the 

mean vector and covariance matrix. 

1.3 Profile Monitoring in SPC 

 Another more recent approach to SPC occurs when the product or process can be 

characterized by a profile or a relationship between a response variable and one or more 

explanatory variables instead of univariate or multivariate vectors. The profile 

monitoring process in Phase I is first to represent the profiles in the HDS by some proper 

modeling technique, and use some appropriate method to identify those profiles from the 

in-control process, and those, if any, from the out-of-control process. As a final step, 

these in-control profiles are used to obtain the control limits for future profile monitoring 

in real-time during Phase II.  

 

 Further details concerning the profile monitoring literature will be given in 

Chapter 3. This dissertation will focus on monitoring the profiles using the mixed model 

where the mixed model is first fit to the profiles in the HDS using the mixed model 

technique to estimate the population average (PA) profile and the proper variance-

covariance matrix. See chapter 3 for more details concerning the mixed model applied to 

profile monitoring. 

1.4 Motivation 

 When using the mixed model technique for the profile monitoring, the first step 

is to estimate the PA profile and use this estimate in calculating the Hotelling’s 2T for 

each profile to determine whether this profile results from the in-control process.  

However, in the typical mixed model analysis, the estimated PA profile is based on all 

profiles in the HDS including the profiles from the out-of-control process. For example, 

if there is large amount of profiles that from the out-of-control process or small amount 

which are far away from the in-control process, the estimated PA profile based on the 

HDS would likely be “pulled” in the direction of the out-of-control process. 

Additionally, the corresponding variance-covariance matrix, needed in computing the 
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2T statistic for each profile, will be similarly distorted. Consequently, the 2T statistics 

will be misleading and the in-control limits used in Phase I will be unable to properly 

separate those profiles belonging to the in-control process from those belonging to the 

out-of-control process. 

 

 In this research, a new profile monitoring methodology in Phase I which 

incorporates a cluster method will be utilized to obtain the estimated PA profile. This 

new cluster-based method will be demonstrated to be more robust to the profiles from 

the out-of-control process than the existing non-cluster-based method (see (Jensen et al. 

(2008)) for a thorough discussion of the non-cluster-based method).   

 

 Further, it is known that the performance of the Phase I analysis can be measured 

in terms of correctly identifying the unstable process or, equivalently, the presence of 

profiles from the out-of-control process in the HDS. An important criterion used to 

measure the success of a Phase I method at detecting an unstable process is the 

probability of signal (POS), the probability of detecting at least one profile from the out-

of-control process in the HDS. However, the POS only measures the ability of detecting 

the presence of the profile from the out-of-control process in the HDS and does not give 

any information about whether the classification of profiles into the two categories of in-

control and out-of-control is correctly specified. 

 

 A simple example is presented to illustrate that the POS is not sufficient to 

measure the performance of Phase I analysis. In this example, it assumed that there are 

total m=12 profiles in the HDS of which nine are from the in-control process while the 

other three are from the out-of-control process. The in-control profiles were generated 

from the linear mixed model  

 

2
0 0 1 1 2 2 1( ) ( ) ( ) , 1,2,..., , 1,2,..., ,ij i i ij i ij ijy b b x b x i m j n             

      
(1.4) 

 

and the out-control profiles were generated as  
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2
0 0 1 1 2 2( ) ( ) ( ) ,ij i i ij i ij ijy b b x b x                               (1.5) 

1 1,..., , 1,2,..., ,i m m j n     

  

where the random effects are defined as 

 

2
0 0

2
1 1
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        

0

 

 2~ 0, ,MN ε I
 

 

(here MN represents the multivariate normal distribution) and with fixed effects

 12.5, 7, 2T  β  for the profiles from the in-control process and 

 21.875, 14.5, 3.5T  β for the profiles from the out-of-control process. 

Additionally, 1 9, 12, 8,m m n  

 

2 2 2
0 1 2 0.5      and 2 4. Thus, profiles 1 

through 9 represent profiles from the in-control process and profiles 10, 11, and 12 

represent profiles from the out-of-control process.  

 

 The 12 true profiles, based on the actual parameter values and random effects, 

are plotted in Figure 1.1 where the blue curves represent the profiles from the in-control 

process while the red curves represent the profiles from the out-of-control process. It is 

difficult to distinguish the profiles from the in-control and out-of-control process by 

looking only at the plot.  
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Figure 1.1: The plot of 12 true profiles 

 

 Using the 2T  statistic, both the existing non-cluster-based method and the 

proposed cluster-based method signaled, indicating that both methods detected a change 

in the process. However, the non-cluster-based method signaled due to misclassifying 

the 6th profile as the out-of-control process. The cluster-based method, on the other hand, 

correctly classified the 10th, 11th and 12th profiles as from the out-of-control process and 

classified the other nine profiles as from the in-control process. The estimates of the PA 

parameters from the non-cluster-based method (Jensen et al. (2008)) are 

 ˆ 16.261, 9.709, 2.178T  β
 
while the estimates of the PA parameters from the 

proposed method are  ˆ 14.486, -7.764, 2.027 .T β Compared to the true PA 

parameters,  12.5, 7, 2 ,T  β
 
the estimates of the non-cluster-based method 

(Jensen et al. (2008)) are severely distorted while the proposed method provided PA 

estimates much closer to the true values, as expected.   
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Chapter 2. Cluster-Based Bounded Influence 

Regression 

 

ecall that robust regression estimation plays an important role in statistical 

analysis. In this chapter, a new robust and efficient regression method, 

called the cluster-based bounded influence (CBI) regression (Lawrence (2003)) will be 

reviewed. Additionally, the CBI regression algorithm will be updated by using the 

modern R package and compared to other existing robust regression methods.  

2.1 Review of Robust Regressions 

 The detection of observations not conforming to a given statistical model is a 

common goal of the data analyst. Many methods have been proposed to aid in the 

detection of such nonconforming observations or “outliers”. For example, in a recent 

paper by Fan et al. (2012a), a hierarchical clustering method was employed that greatly 

improves the ability of certain multivariate control chart techniques at detecting the 

presence of multivariate outliers. Detecting unusual observations in the multiple 

regression setting is a far more complicated process however and many techniques have 

been introduced (see section 2) for this purpose. As in the Fan et al. (2012a) paper, the 

use of clustering methodology can improve the ability of a technique to identify unusual 

data points in the multiple regression setting. The use of clustering to improve the 

properties of the bounded-influence regression method is demonstrated in this chapter.  

 

 In building a linear regression model, a single unusual observation can 

dramatically influence ordinary least squares (OLS) estimation. With OLS, a single low 

leverage outlier can have a dramatic effect on the estimation of the general trend, 

especially concerning the intercept. However, a single high influence point, or hip, can 

have a dramatic effect on any or all parameter estimates. The joint influence of several 

hips can have an even greater deleterious impact on parameter estimates. These 

 R
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coefficients and their standard errors, along with predictions, diagnostics, hypothesis 

tests, and other numerical measures can each become very misleading without a 

thorough exploratory data analysis accompanying it.  

 

 This chapter focuses on the study of robust, high breakdown linear regression 

modeling. As this discipline is extremely computationally intensive, much of the 

published work in this area has occurred since the early 1980’s. Of course, some ideas 

were proposed much earlier, but generally limited in actual application. Methods such as 

M regression (Huber and Ronchetti (2009)), and bounded influence (BI) (Huber and 

Ronchetti (2009)) regression work well in the presence of low leverage outliers and at 

most one hip respectively. However, they are unable to combat a small percentage of 

outliers. Least median of squares (LMS) (Rousseeuw (1984)) regression and least 

trimmed squares (LTS) (Ruppert and Carroll (1980)) regression, on the other hand, are 

examples of high breakdown estimators as they possess the ability to provide parameter 

estimates with as much as 50% of the data being contaminated. Poor efficiency and 

numerical/computational sensitivity with large datasets has typically led to their primary 

use as an initial estimator feeding into other robust procedures such as M or BI 

estimators. Examples include Mallows 1-step (M1S) regression (Simpson et al. (1992)) 

and Schweppe’s 1-step (S1S) regression (Coakley and Hettmansperger (1993)), which 

are one-step adjustments of LTS that increase efficiency versus the LTS estimator. 

However, two virtually identical LTS estimates may yield dramatically different M1S 

(or S1S) estimators (Lawrence (2003)), thereby illustrating a potential negative issue 

with repeated sampling based methods. Another high breakdown one-step estimation 

method is due to Gervini and Yohai (2002). Their robust and efficient weighted least 

square estimate (REWLS) procedure attains full asymptotic efficiency with the 

assumption of normally distributed random errors. However, according to the Monte 

Carlo study in section 2.5, the REWLS, on the average, fails to correctly identify the 

good and bad high leverage points when the error term is not ideally normally 

distributed. 

 



 

 

     

 

12

 The CBI method was introduced by (Lawrence et al. (2013)) as a new regression 

methodology that obtains competitive, robust, efficient, high breakdown regression 

parameter estimates. Additionally, this method provides an informative summary 

regarding possible multiple outlier structure. 

 

 A simple example below gives the comparison of the CBI regression method to 

several existing robust procedures when the data has more than one high leverage point. 

The data set has 11 observations with observations 1-8 generated from the linear model 

௜ݕ  ൌ 100 െ ௜ݔ4 ൅  ௜ߝ
 

where ߝ௜~ܰሺߤ ൌ 0, ଶߪ ൌ 25ሻ , and with the regressor variable generated via ݔ௜~ܷሾ10,20ሿ.  Observations 9-11 were arbitrary added to reflect a mild influence point 

and two hips, respectively.  

 

Figure 2.1: The fitted line of the different robust methods  

 

 The data are plotted in Figure 1.1 where the outlier (9) and the two hips (10, 11) 

are clearly seen. Regarding the collection of fits also displayed in Figure 1.1, only the 
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proposed method (CBI) detects the correct trend of the uncontaminated data. Each of the 

other estimators was dramatically misled by the joint influence of these three arbitrary 

points, resulting in a positive slope estimate when the true underlying slope is negative. 

2.2 Review of Selected Robust Regression Methods 

 As the basis for linear regression analysis, the statistical model is restricted to be 

of the form 

௜ݕ  ൌ ଴ߚ ൅ ଵ௜ݔଵߚ ൅ ଶ௜ݔଶߚ ൅ ڮ ൅ ௞௜ݔ௞ߚ ൅  ,௜ߝ
 

with the response variable, ݕ௜, being explained as a linear function of the ݇ regressor 

variables, ݔ௝௜ , ݆ ൌ 1,2 … ݇,  plus a random error component, ߝ௜ , for each of the ݊ 

observations, ݅ ൌ 1,2 … ݊. 

 

 Given the computational nature of the proposed method, clarity in notation 

becomes quite important and, therefore, this paper offers sufficient detail. The linear 

model also can be written matrix form as 

࢟  ൌ ࢼࢄ ൅ ,ሺ૙ܰ~ࢿ where ,   ࢿ  ,ሻࡵଶߪ

or element wise as 

቎ݕଵݕଶݕڭ௡቏ ൌ ൦111ڭ
௡ଵݔڭଶଵݔଵଵݔ

௡ଶݔڭଶଶݔଵଶݔ
…ڰ……

௡௞൪ݔڭଶ௞ݔଵ௞ݔ ൦ߚ଴ߚଶߚڭ௞൪ ൅ ቎ߝଵߝଶߝڭ௡቏. 

 

There are ݌ ൌ ݇ ൅ 1 unknown parameters that form the ݌ ൈ 1 parameter vector ࢼ, which 

is to be estimated by the ݌ ൈ 1 vector  ࢼ෡. This subsequently yields the estimated fits as  ࢟ෝ ൌ  .෡ࢼࢄ

 

 Further, the ݊ ൈ 1 vector of residuals is computed as ࢘ ൌ ࢟ െ ෝ࢟ , with  ݎ௜ 
representing the residual for the  ݅௧௛ observation. Also, define ࢆ  as the ݊ ൈ ݇  matrix 
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containing only the ݇regressor variables, with ࢆ௬ representing the ݊ ൈ  matrix formed ݌

by augmenting the vector ࢟  to ࢆ. To accommodate reference to individual observations, 

let the ݅௧௛ row of  ࢄ  be denoted by the 1 ൈ ௜்࢞ row vector ݌  and the 1 ൈ ݇ row vector ࢠ௜்  

denote the ݅௧௛ row of  ࢆ. When the response variable is included, the notation for  ݅௧௛ 

row of ࢆ௬ is ࢠ௬,௜் . Consider the objective function 

 min࢈׊ ෍ ௜ଶ௡ݎ
௜ୀଵ , 

 

for the OLS estimator, which may be written as  

 min࢈׊ ෍ ௜ሻ௡ݎሺߩ
௜ୀଵ , 

 

with ሻݐሺߩ   ൌ .ଶݐ  In robust regression, the function  ߩ  can be selected to either down 

weight or bound any argument rising from unusual observations. This becomes the basis 

for M regression (Huber and Ronchetti (2009)) which has the objective function 

 min࢈׊ ෍ ߩ ቆݕ௜ െ ௜்࢞ ොߪ࢈ ቇ௡
௜ୀଵ  , 

 

where the ߩ-function is chosen to be bounded and odd-symmetric,  ࢈  represents an 

arbitrary point in the p-dimension estimation space, and where ߪො is some appropriately 

chosen estimate of  ߪ . The choice for ߪො is generally limited to robust measures of scale. 

One such estimator that is frequently used is the median absolute deviation (MAD), 

where 

ܦܣܯ  ൌ 1.4826 med׊௜ ቚݎ௜ െ med׊௜  .௜ቚݎ
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Taking derivatives with respect to  ࢈ leads to solving  ݌ “altered normal equations”, 

 ෍ ߰ ቆݕ௜ െ ௜்࢞ ොߪ࢈ ቇ ௜࢞ ൌ 0௡
௜ୀଵ , 

 

where  ߰ሺݐሻ ൌ ௗఘሺ௧ሻௗ௧   and  ࢼ෡ெ is the solution for ࢈. These altered normal equations form 

a system of nonlinear equations that may be solved by a number of popular numerical 

methods including (1) Newton-Raphson and (2) iteratively reweighted least squares 

(IRLS), the later used in this paper. At convergence, IRLS produces the M regression 

parameter estimator 

෡ெࢼ  ൌ ሺࢄࢃ்ࢄሻିଵ࢟ࢃ்ࢄ, 

 

where ࢃ is the ݊ ൈ ݊ diagonal “weight matrix”, with diagonal elements denoted as ݓ௜. 
Each weight, ௜ݓ  , determines how much emphasis the regression will place on a 

particular observation. A large weight (near 1) should indicate a good observation. An 

outlier or a hip, on the other hand, should get a reduced weight or perhaps even a zero 

weight. In M regression the ݅௧௛ weight is calculated as ݓ௜ ൌ టሺ௥೔ ఙෝ⁄ ሻ௥೔ ఙෝ⁄ , a function of the ݅௧௛ 

residual. Typically, the larger is the residual, the smaller is the weight. 

 

 A single hip will “pull” the fitted M regression line toward it to make the 

corresponding residual small, thus that weight will be large. This means that M 

regression can be dominated by a single hip. One solution to this problem is to use 

bounded influence (BI) regression. Here, the name refers to “bounding” the influence 

that the point ࢞௜்  has in the regressor-space. One altered normal equation form, called the 

Schweppe form (Staudte (1990)), is written as 

 ∑ ௜ሻ߰࢞ሺݑ ൬௬೔ି࢞೔೅ࢼ෡ఙෝ௨ሺ࢞೔ሻ ൰ ௜࢞ ൌ 0௡௜ୀଵ . 
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Here,  ݑሺ࢞௜ሻ is chosen so that the effect of a large ࢞௜்  is reduced if ሺݕ௜, ௜்࢞ ሻ is a hip. One 

choice is to have ݑሺ࢞௜ሻ ൌ ௜ߨ ൌ ଵି௛೔೔ඥ௛೔೔ , where ݄௜௜  is the ݅௧௛  diagonal element of the so-

called hat matrix, ࡴ , with ࡴ ൌ ௜ߨ The .ࢄሻିଵࢄ்ࢄሺ்ࢄ  value is referred to as the BI 

weight. The BI regression estimator can be obtained in exactly the same manner as the 

M-estimator via IRLS, as 

෡஻ூࢼ  ൌ ሺࢄࢃ்ࢄሻିଵ࢟ࢃ்ࢄ.
 

 

However, the   ݅௧௛  weight now has the form ௜ݓ  ൌ ߰ ቀ௥೔כగ೔ቁ ௥೔כగ೔ൗ , where ݎ௜כ  is the scaled 

residual ݎ௜ ⁄ෝ ߪ . Specifically, the BI weight depends on both the residual and the location 

of  ࢞௜்  in the regressor-space.  

 

While M and BI estimators provide an improvement over OLS if the data has an 

outlier or hip, respectively, they cannot provide protection against data with even modest 

amounts of contamination. Ruppert and Carroll (1980) introduced LTS to combat this 

situation, defining the objective function as 

 

min࢈׊ ෍ ሾ௜ሿଶ௛ݎ
௜ୀଵ , 

 

representing the sum of the ݄ smallest squared residuals where ݄ is generally taken to be ሾሺ݊ ൅ ݌ ൅ 1ሻ 2⁄ ሿ, with [.] denoting the greatest integer function. Since this objective 

function is not differentiable, no closed-form expression exists for the LTS estimator. 

However, algorithms are available that give the exact LTS estimator for the location 

model, the exact LTS estimator for the regression model based on small data sets, and a 

relatively accurate LTS estimator for large data sets. The algorithmic details may be 

found in Rousseeuw and Van Driessen (2006).   Historically, methods like LTS (and its 
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predecessor LMS) had involved repeated sampling computational methods incorporating 

probabilistic arguments. 

 

 One problem with high breakdown estimators such as LTS is poor efficiency due 

to large variability associated with estimated coefficients. The remedy for this poor 

efficiency is to use the LTS estimator, or another high breakdown estimator, as an initial 

estimator ࢼ෡଴, with the generalized M estimator form to obtain a one-step generalized M 

estimator. The S1S estimator is one such estimator and results from solving the “altered” 

normal equations 

 ∑ ௜߰ݓ ቀ௥೔ሺࢼ෡బሻఙෝబ ቁ ௜࢞ ൌ 0௡௜ୀଵ . 

 

A Gauss-Newton approximation using a first-order Taylor series expansion about the 

initial estimate ࢼ෡଴ yields a one-step improvement of the form  

෡ௌଵௌࢼ  ൌ ෡଴ࢼ ൅ ሺࢄ࡮ࢀࢄሻି૚߰ࢃࢀࢄ൫࢘൯ߪො଴. 
 

 None of the above estimators achieve full efficiency at the normal distribution 

while simultaneously maintaining a breakdown bound close to 50%. Gervini and Yohai 

(2002) proposed an adaptive one-step estimation method that attains full asymptotic 

efficiency at the normal error distribution while at the same time has a high breakdown 

bound and small maximum bias. Their method, referred to as the REWLS estimator, is a 

weighted LS estimator computed from an initial high breakdown estimate ࢼ෡଴ , and a 

robust scale estimate ߪො଴ such as MAD. However, rather than deleting those observations 

whose absolute scaled residuals are greater than a given value, the procedure will keep a 

number ܰ of observations, corresponding to the smallest values of the absolute scaled 

residual ݏݎ௜ ൌ ห௥೔൫ࢼ෡బ൯หఙ ෝ బ , ݅ ൌ 1, … ݊ . The ܰ  has the property that in large samples under 

normality it will have ܰ ݊ൗ ՜ 1 , which means a vanishing fraction of observations will 
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be deleted and full efficiency will be attained (Maronna et al. (2006)). The REWLS 

estimator can be obtained as  

෡ோாௐ௅ௌࢼ  ൌ ቊࢼ෡଴ ൅ ሺࢄࢃ்ࢄሻିଵߪ ݂݅     ࢟ࢃࢀࢄො଴ ൐ ො଴ߪ ݂݅                                          ෡଴ࢼ0 ൌ 0 , 

 

where ܹ is the diagonal matrix with 

௜ݓ  ൌ ቄ1 ௜ݏݎ ݂݅ ൑ ே0ݏݎ ݁ݏ݅ݓݎ݄݁ݐ݋       . 

 

2.3 Cluster-Based Bounded Influence Regression 

 The CBI regression methodology offers a new philosophical approach to the 

robust regression arena and consists of two primary phases, the cluster phase and the 

regression phase. First, an initial high-breakdown regression estimator is produced via a 

sophisticated clustering algorithm. Second, refinement of this initial regression estimator 

is investigated and possibly implemented under a carefully structured use of BI 

regression. The rationale behind this second phase is to allow for a possible 

improvement in efficiency, especially when the level of data contamination does not 

come close to approaching 50%. The CBI regression method has been named cluster-

based bounded influence regression, or CBI for short, to reflect the nature of its two 

phases computation process.  

 

 The cluster phase begins with high-breakdown location and scale estimation of 

the ݌ dimensional regressor-response space. A special set of points, referred to as the set 

of anchor points, is computed that together represent the general trend of the data. Each 

observation is then characterized by the OLS regression fit that would occur if this 

individual observation is augmented to the anchor points. High breakdown location and 

scale estimation of this set of n OLS coefficients provides the foundation for the 

construction of the similarity matrix (technically, a distance matrix). The desire for a 
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tight, compact sphere of similar coefficients exhibiting a common trend description is 

the basis for the selection of complete linkage hierarchical clustering (Lawrence (2003)) 

as the default method and clustering is performed until an initial main cluster of at least ሾሺ݊ ൅ ݌ ൅ 1ሻ 2⁄ ሿ observations are formed. Two aspects worth mentioning are that (1) the 

OLS sensitivity to a single point is being exploited to our advantage in evaluating the 

data, and (2) the anchor points serve to alleviate repeated sampling (as required by other 

50% breakdown point estimators such as LTS) and the use of minimal sized elemental 

subsets that must be in general position (i.e. no singularity issues). 

 

 A simple OLS fit to this main cluster is used as the basis for the possible 

adjustment of the anchor set metric to more directly relate to the general trend. A revised 

similarity matrix is constructed, with a second cluster analysis yielding a revised, final 

main cluster and ݃  minor clusters. The determination of this cluster classification 

structure completes the cluster phase. 

 

 To begin the regression phase, the initial CBI estimator is simply the OLS 

estimate of the main cluster observations. A high breakdown scale estimate is then 

computed. High breakdown BI leverage weights are computed from the regressor-space 

only. Using only the main cluster, a BI regression updates the initial CBI estimator. To 

this point, the minor clusters have not been utilized in the computation of the CBI 

regression estimator and their observations are said to be inactive. The activation process 

for these remaining observations has two primary stages. First, a ܵܶܫܨܨܦାூଶ  statistic is 

computed for each of the minor clusters, where ܫ ൌ 1,2, … , ݃. A candidate minor cluster 

is one such that  ܵܶܫܨܨܦାூଶ ൏ ߜ  for the cutoff value ߜ . Then, a single ܵܶܫܨܨܦା௃ଶ  

statistic, denoted by  ܬ, is computed for the union of all candidate minor clusters. If  ܵܶܫܨܨܦା௃ଶ  is “small enough”, then the final CBI estimator is determined from this 

activation process (provided at least one minor cluster observation obtained a nonzero 

weight). Otherwise, the minor clusters do not play an active role (i.e. all observations 

possess a zero weight) and there is no further update to the current CBI regression 
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estimator. A final CBI scale estimate is computed once the final CBI regression 

estimator has been determined. 

 

 The detailed algorithm consisting of ten interrelated steps for the CBI estimator 

is presented below. Steps 1 through 3 represent the cluster phase and steps 4 through 10 

represent the regression phase. Notation is introduced as needed.  

 

Step1 

Perform minimum volume ellipsoid, MVE, estimation (see Rousseeuw and Leroy 

(2003)) of  ࢟ࢆ; determine the ሺ2݌ ൅ 1ሻ ൈ ࢟ࢆ ௬ሻ, the MVE location vector forࢆଵሺࡱࢂࡹ anchor point matrix, Ω. These points include ݌ , and the end points of the ellipsoid of 

constant distance ߯଴.ଽ଻ହ,௣ଶ  from  ࡱࢂࡹଵሺࢆ௬ሻ based on the ࡱࢂࡹଶሺࢆ௬ሻ metric, the MVE 

scale matrix estimator for ࢟ࢆ , the pair of end points is determinate by the expression ࡱࢂࡹଵሺࢆ௬ሻ േ ටߣ௜߯଴.ଽ଻ହ,௣ଶ ௜ࢋ   , where ߣ௜  and ࢋ௜  is the ݅௧௛  eigenvalue and eigenvector of ࡱࢂࡹଶሺࢆ௬ሻ, respectively. 

 

Step 2 

Determine the  ݊ ൈ  denoted by ,࡮ The  ݅௧௛ row of .࡮ base regression estimator matrix ݌

the 1 ൈ ௜࢈ vector ݌ , is defined as the estimator that results from an OLS regression 

analysis of the set of anchor points supplemented by the addition of the ݅௧௛ observation 

in the dataset. Perform an MVE estimation of  ࡮ , treating each row of ࡮  as an 

observation in  ݌ dimensions. 

 

Step 3 

Using ࡱࢂࡹଶሺ࡮ሻ  as the distance metric, compute a ݊ ൈ ݊  similarity matrix ࡿ  whose 

elements are defined to be 

௜௝ݏ  ൌ ൫࢈௜ െ ௜࢈ሻሻିଵ൫࡮ଶሺࡱࢂࡹ௝൯்ሺ࢈ െ  .௝൯࢈
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Perform a cluster analysis on the dataset given the similarity matrix ܵ and using 

complete linkage to obtain the tightest cluster of  ࢈௜ vectors. The initial main cluster, ܥ଴, 

is defined at the first instance of which a single cluster consists of at least ݄ ൌሾሺ݊ ൅ ݌ ൅ 1ሻ 2⁄ ሿ  observations. The remaining observations fall into one of ݃  minor 

clusters that are labeled as  ܥଵ, ,ଶܥ  … ,  .௚ܥ

 

Step 4 

Compute the OLS estimate ࢼ෡଴ using the data points in ܥ଴. A preliminary estimate of 

scale, ߪො଴, is defined to be the MAD of all ݊ residuals ࢘൫ࢼ෡଴൯ where 

෡଴൯ࢼ௜൫ݎ  ൌ ௜ݕ െ  .෡૙ࢼ௜்࢞
 

Determine the set of observations, ܪ, such that  

ܪ  ൌ ൛݅: หݎ௜൫ࢼ෡଴൯ห ൑ ො଴4.685ߪ ඥ2݊݌ ሺ݊ െ ሻൗ݌2 ൟ. 

 

Step 5 

Using the data points in ܪ, compute the ݌ ൈ 1 mean vector ࢓ுሺࢆሻ, of the regressor data 

in ܪ,and ݌ ൈ ݌  covariance matrix ࢂுሺࢆሻ, using standard moments estimators, of the 

regressor data in ܪ, define the ݌ ൈ 1 robust regressor distance vector ࢊ containing the ݌ elements 

 ݀௜ ൌ ሺࢠ௜ െ ௜ࢠሻሻିଵሺࢆுሺࢂሻሻ்ሺࢆுሺ࢓ െ  .ሻሻࢆுሺ࢓

 

Step 6 

Mimic step 1 to step 3 by replacing the MVE statistics with the weighted mean and 

covariance estimates for the data to get the new initial main cluster, ܥ଴, and ݃ minor 

clusters ܥଵ, ܥଶ ..ܥ௚.The weight for the  ݅௧௛ data point is define as 
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௜ݓ ൌ ቄ1, ݅ א ,0ܪ ݅ ב  , ܪ
 

Compute the initial CBI estimator, ࢼ෡ଵ, using WLS and subsequently updated the scale 

estimate ߪොଵ as MAD of all ݊ new residuals.  

 

Step 7 

Determine the ݄ ൈ 1 BI leverage weight vector, ࣊, whose elements are defined as 

 

௜ߨ ൌ ቐ 1, ݅ א ,଴min ሺ1ܥ ߯଴.ଽ଻ହ,௣ିଵଶ ݀௜ ሻ, ݅ ב  ଴ܥ

 

Perform BI regression using only the main cluster, ܥ଴ , to obtain, at convergence of 

IRLS, the estimate ࢼ෡ଶ.  

 

Step 8 

Let ܫ represent any minor cluster and ݉ூ  be the size of ܫ, and let ࣊ሺ஼బ,஼಺ሻ be the sub-

vector set of ࣊ that corresponds only to the ଴ܥ  and ூܥ   observations. Perform the BI 

regression with these new data points and leverage weight vector ࣊ሺ஼బ,஼಺ሻto obtain the 

estimate ࢼ෡ାூ at convergence. A ܵܶܫܨܨܦାூଶ  statistic is then computed via 

ାூଶܵܶܫܨܨܦ  ൌ ∑ ቀ௬ො೔,శ಺൫ࢼ෡శ಺൯ି௬ො೔൫ࢼ෡మ൯ቁమ೙೔సభ ௠಺ఙෝభమ , 

 

where ݕො௜,ାூሺࢼ෡ାூሻ represent fits when using both ܥ଴  and ܥூ  observations and ݕො௜൫ࢼ෡ଶ൯ 

represents fits when using just ܥ଴ observations. This statistic is computed for each of the ݃ minor clusters. 
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Step 9 

Define the scalar ߜ to represent the maximum allowable ܵܶܫܨܨܦାூଶ   statistic. Then, let  ܬ 

represent the union of all activation candidate minor sets, i.e. 

ܬ  ൌ ራ ூ׊ூܥ |ሺܵܶܫܨܨܦାூଶ ൑ δ and ׌୧אI|w୧ ൐ 0ሻ. 
 

Provided that  ܬ ് ׎ , then with  ࢼ෡ଶ ොଵଶߪ  ,  and  ࣊ሺ஼బ,஼಻ሻ  as inputs to obtain the BI 

regression estimate ࢼ෡ା௃ and  ܵܶܫܨܨܦା௃ଶ .  The default value of  ߜ is 4. 

 

Step 10 

෡஼஻ூࢼ  ൌ ቊࢼ෡ା௃, ݂݅൫ܵܶܫܨܨܦା௃ଶ ൑ δ and ׌୨אJหw୨ ൐ 0൯|ܬ ് ,෡ଶࢼ׎ ݁ݏ݅ݓݎ݄݁ݐ݋  

 

The CBI scalar estimator is then updated as the MAD of new residuals. The final CBI 

weights for the individual observations are simply the observations weights at 

convergence of BI regression used to compute  ࢼ෡஼஻ூ. 
 

 Three scale estimators are provided by the CBI procedure, specifically  ߪොଶ஼஻ூ, ݒොଶ஼஻ூ and ݒො௪ଶ஼஻ூ. ߪො஼஻ூ is the MAD of the CBI residuals. Given the CBI scale estimate ߪො஼஻ூ, the BI leverage weight vector ࣊, and ࢼ෡஼஻ூ, a robust mean square error that mimics 

the robust ANOVA scale estimate introduced  by Birch (1992) is found via 

 

ොଶ஼஻ூݒ ൌ ௡మ௡ି௣ ොଶ஼஻ூߪ ∑ ߰ଶ ቀ௥೔൫઺෡CBI൯గ೔ఙෝ಴ಳ಺ ቁ௡௜ୀଵ∑ ߰, ቀ௥೔൫઺෡CBI൯గ೔ఙෝ಴ಳ಺ ቁ௡௜ୀଵ . 
 

Using the effective sample size, ݊௪ ൌ ∑ ௜௡௜ୀଵݓ  (Birch (2010)), a modified version of the 

robust analysis of variance scale estimate then becomes  ݒො௪ଶ 
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ො௪ଶ஼஻ூݒ ൌ ௡ೢమ௡ೢି௣ ොଶ஼஻ூߪ ∑ ߰ଶ ቀ௥೔൫઺෡CBI൯గ೔ఙෝ಴ಳ಺ ቁ௡௜ୀଵ∑ ߰, ቀ௥೔൫઺෡CBI൯గ೔ఙෝ಴ಳ಺ ቁ௡௜ୀଵ . 
 

Once the CBI estimate is obtained, the BI based analysis of variance methods of Birch 

(1992) and Birch and Agard (1993) can be used to perform inference on any single 

parameter or any subset of parameters.  

 

 Many theoretical properties of the CBI estimator have been studied and proved 

by Lawrence (2003). For example, it has been demonstrated that the CBI regression 

estimator belongs to the family of high breakdown regression estimators; with a 

breakdown point approaching 50% as ݊ ՜ ∞ . It was further showed that the CBI 

estimator is asymptotically normally distributed. That is, 

 √݊൫ሺࢼ෡஼஻ூ െ ൯ࢼ ௅௔௪ሱۛሮ ܰሾ૙,  ,ଵሿିࡹࡽଵିࡹ
where the ࡹ and ࡽ is defined as ࡹ ൌ ிܧ ൤൬ݓ ൅ ݀߱ሺ࢞, ݎሻ݀ݎ ൰ݎ ࡽ , ൨்࢞࢞ ൌ ,࢞ிሾ߱ଶሺܧ ሿ , w்࢞࢞ଶݎሻݎ ൌ ߱ሺ࢞,   .ሻݎ
 

 The function  ߱ሺ࢞, ሻݎ , the weight function is nonnegative, bounded and 

measurable in ሺ࢞,  ሻ. The CBI regression estimator has also been shown to achieveݎ

regression equivariance, scale equivariance and affine equivariance properties (see 

Rousseeuw and Leroy (2003) for definitions of these equivariance properties). These 

equivariance properties also impact the following Monte Carlo simulation study by the 

fact that the values defined for the regression coefficients and scale will not impact the 

final Monte Carlo results; i.e., these values are themselves arbitrary and meaningless. 

Overall, the theoretical foundation for the CBI methodology strongly supports its 

inclusion in the class of high breakdown regression estimators. 
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 Reflection on the development of the CBI algorithm yields an interesting and 

diverse discussion onto itself. Motivation initially stemmed from an interest in how 

iteration breaks down M and BI estimators and a curiosity about joint influence 

diagnostics in general. The joint influence aspect itself led to the inclusion of some sort 

of clustering mechanism to identify these various subgroups of problematic 

observations. Many forms of the initial similarity matrix construct were considered, 

including one based on the altered hat matrix. Further, initial strategies were more 

spatially oriented and were utilizing single-linkage clustering to take advantage of the 

chaining property that is often considered a detrimental property of the method but could 

track a regression trend under this alternative use. In fact, such a CBI version was 

proposed early in its development (Lawrence (2003)). 

 

 A major breakthrough in the development of the CBI algorithm occurred with the 

introduction of the anchor set. Ironically, this thought arose during development of a 

closed-form computation method for a multivariate PC  statistic in a completely different 

research area. However, it was clear that this anchor set could alleviate the random 

subsampling with elemental sets issues (faced with the leading high-breakdown 

estimators) as it was large enough to fit the regression model without any singularity 

issues. Further, it had a direct implementation into the clustering framework. The 

exploitation of the OLS breakdown property would form the basis of this new paradigm. 

Common regression estimates would indicate common trends (either general trend or 

common deviant trend that would reflect joint influence) and, very importantly, there is 

no spatial requirement directly involved. Joint influence can involve observations 

scattered across the response-regressor space. As a direct consequence, clustering moved 

from single-linkage to complete-linkage to more appropriately capture what are 

effectively similar regression estimates. 

 

 Iteration has both beneficial and detrimental aspects, so the CBI algorithm had to 

be robust to such negative effects. Earlier versions of CBI allowed for minor clusters to 

be added sequentially. From the research, it was deemed more prudent to assess them 
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individually, then together, to avoid estimator drift due to iteration as well as to further 

bolster the robustness versus joint influence of several minor clusters. 

 

 Overall, while the technical and computational details of the CBI algorithm have 

evolved during the development process, the general philosophy and intent have 

remained steadfast. The goal was to take an efficient low-breakdown point method, BI 

regression, and improve the breakdown point while not making a huge sacrifice 

regarding efficiency. A more thorough discussion of the motivation of each step of the 

CBI algorithm may be found in Chapter 5 of Lawrence (2003).  

2.4 Case Studies and Comparison 

 Two well-known datasets are used to illustrate and compare the CBI method to 

several other robust techniques, (1) the Pendleton and Hocking (1981) (PH) data, and (2) 

the Hawkins et al. (1984) (HKB) data. 

 

 The PH dataset has three regressors ࢞ଵ, , ଶ࢞ ଷ࢞  and ݊ ൌ 26  observations. The 

parameters to be estimated are ்ࢼ ൌ ሺ20  3 െ 2  0ሻ. Three low-leverage outliers were 

artificially created and inserted as observations 11, 17 and 18.  One hip was inserted as 

observation 24.  

 

 The CBI cluster phase of the PH data resulted in a main cluster of 19 

observations (four more than h =15) and five minor clusters. A summary of the entire 

CBI regression analysis is provided as Table 2.1 and Figure 2.2. The final CBI fitted 

equation is 

ො௜ݕ  ൌ 25.615 ൅ ଵ௜ݔ2.719 െ ଶ௜ݔ  2.136 െ  .ଷ௜ݔ0.194
 

It is clear (p-value = 0.331) that ࢞ଷ is not significant in the presence of  ࢞ଵ and ࢞ଶ, a 

correct decision for this case study. The intercept, ࢞ଵ  and ࢞ଶ  are each statistically 

significant (p-values of 0.038, 0.000and 0.000, respectively) terms, as they should be. 
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According to the CBI weight plot in Figure 2.2, four observations received zero weight, 

these being the three outliers and the one hip. 

 

Table 2.1: Summary of the CBI regression analysis of the PH dataset 

Cluster History  
Step  Clusters  n=26 

Initial  ܥ଴ ൌ ሼ2 ,5 ,7 ,8 ,9 ,12 ׷ 16 ,19 ׷ 23ሽ h=15 
Final  ܥ଴ ൌ ሼ1: : 5 , 7 , 8, 10, 12: 16, 19,21: 23, 25 ,26ሽ ܥଵ ൌ ሼ6 , 9 ,20ሽܥଶ ൌ ሼ11ሽ    ܥଷ ൌ ሼ17ሽܥସ ൌ ሼ18ሽ ܥହ ൌ ሼ24ሽ 

Initial OLS : 
intercept 26.987     ଵܺ 2.601 ܺଶ -2.108 ܺଷ -0.173 

Minor Sets DFFITSାூଶ Activate ܥଵ 1.9153 YES ܥଶ 0 NO ܥଷ 0 NO ܥସ 0 NO ܥହ 0 NO 
Candidate J DFFITSା௃ଶ Activate ܥଵ 1.9153 YES 

Parameter Estimate  
Parameter  Estimate Sd.Error t P -value 
intercept 25.615 13.677 1.873 0.038 ଵܺ 2.719 0.695 3.909 0.000 ܺଶ െ2.136 0.321 -6.638 0.000 ܺଷ െ0.194 0.441 -0.440 0.331 

Scale  ߪො஼஻ூ ൌ 0.516 ොݒ ൌ 0.306 ො௪ݒ ൌ 0.254 
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Figure 2.2: Cluster dendrogram and final observation weights of PH dataset 

 

Other competing regression methods are applied to the PH dataset and the corresponding 

estimates are given by Table 2.2. 

 

Table 2.2: Robust analysis of parameter estimate summary of PH dataset 

Parameter OLS LTS S1S REWLS BI CBI OLS without 
outliers 

Intercept ଵܺ ܺଶ ܺଷ 

8.205 
3.560 
-1.640 
0.334 

10.961 
3.384 
-1.712 
0.483 

40.96 
1.974 
-2.538 
-0.781 

8.931 
3.523 
-1.697 
0.4337 

17.954 
3.120 
-1.971 
0.052 

25.615 
2.719 
-2.136 
-0.196 

24.270 
2.791 
-2.112 
-0.156 

 The estimated coefficients resulting from the different estimation methods 

described in Section 1 for the PH data reveal some interesting results, especially as they 
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relate to the CBI algorithm. First, it is seen that the BI estimator has coefficient estimates 

very close to the true parameter vector. The CBI estimator began with estimates based 

on the final main cluster and then improved upon them through the minor cluster 

activation process. It is interesting to note that the estimated coefficients using the OLS 

method for the 22 good observations is nearly identical to those obtained by the CBI 

method. Thus, the CBI estimator is actually closer to the observed trend of the data than 

is the BI estimator.  

 

 We note that the PH data had no troublesome jointly influential observations. 

Consider next the HBK data which has a cluster of ten hips (as observations 1 through 

10) and another cluster of four good high leverage points (observations 11 through 14). 

Since the true parameters were not reported by Hawkins et al. (1984), the goal in 

analyzing this dataset was to ascertain the ability of the robust methods to distinguish 

between the outliers and the non-outliers occurring at the high leverage points. 

 

 The CBI method applied to the HBK data resulted in a weight for each 

observation (Figure 2.3). Figure 2.3 shows that the first ten observations received zero 

weight, the ideal case. The four good leverage observations, on the other hand, all have 

weights greater than zero, as they should be; especially the observations 11, 12 and 14 

received very high weights each close to 1.  
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Figure 2.3: The final CBI regression observation weights of HBK dataset 

 

The final CBI fitted equation is 

ො௜ݕ  ൌ െ0.224 ൅ ଵ௜ݔ  0.097 ൅ ଶ௜ݔ0.045 െ  .ଷ௜ݔ0.064
 

A summary of the CBI regression analysis is provided as Table 2.3. 

 

Table 2.3: CBI analysis of parameter estimate summary of HBK dataset 

Parameter Estimate  

Parameter Estimate Sd. Error t P -value 

intercept െ0.224 0.169 െ1.326 0.190 ଵܺ 0.097 0.107 0.901 0.371 ܺଶ 0.045 0.061 0.736 0.464 ܺଷ െ0.064 0.055 െ1.165 0.249 

Scale  ߪො஼஻ூ ൌ 0.867 ොݒ ൌ 0.890 ො௪ݒ ൌ 0.646 

 

 A comparison of the CBI results to other competing regression methods is given 

in Table 2.3. It is seen that the REWLS estimate provide the same result as the OLS 

estimate without hips, this result is not surprising because the REWLS method took 

advantage of the fact that the hips in this case have larger residuals as determined by its 

initial LTS estimate. The CBI estimates, while not identical, are very close to the OLS 

estimates based on the good data points.  

 

Table 2.4: Robust analysis of parameter estimate summary of HBK dataset 

Parameter OLS LTS S1S REWLS BI CBI OLS 

without 

hips 
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Intercept Xଵ Xଶ Xଷ 

-0.388 

0.239 

-0.335 

0.383 

-0.612 

0.255 

0.048 

 -0.106 

-0.004 

0.041 

0.021 

-0.082 

-0.180 

0.081 

0.039 

-0.051 

-0.934 

0.144 

0.192 

0.184 

-0.224  

0.097 

0.045 

-0.064 

-0.180 

0.081 

0.039 

-0.051 

 

 The CBI estimates are close to the trend of the data for both case studies and the 

weight plots also show that it can correctly identify the outliers and hips for the case 

studies considered here. Results from a small Monte Carlo study are presented in the 

next section to further evaluate the ability if the competing regression methods to detect 

multiple outliers, especially those occurring at high leverage points.  

2.5 Monte Carlo Study  

 In this Monte Carlo study, the simulated dataset utilized the original regressor 

values of the HBK dataset, but generated a new response vector while maintaining 

observations 1  through 10  as a high influence cluster. Specifically, the ݊ ൌ 75 

observations were generated by the linear model 

௜ݕ  ൌ ൜ߝ௜,                                                   ݅ א ሺ1: 10ሻ0.2 െ ଵ௜ݔ0.15 ൅ ଷ௜ݔ0.1 ൅ ݅   ,௜ߝ ב ሺ1: 10ሻ. 

 

With the random errors generated from the following distributions 

~௜ߝ  ൜ ܰሺߤ ൌ 10, ଶߪ ൌ 0.385ଶሻ, ݅ א ሺ1: 10ሻ  ܰሺߤ ൌ 0, ଶߪ ൌ 0.5ଶሻ,          ݅ ב ሺ1: 10ሻ. 

 

The results of this Monte Carlo study are provided in Table 2.5. Here, the parameters to 

be estimated are ்ࢼ ൌ ሺ0.2 െ 0.15  0.1ሻ and ߪఌଶ ൌ 0.25. The number of Monte Carlo 

repetitions was 2000.  

 

 According to the characteristics of the estimators in Table 2.5, it is seen that CBI 

estimator had overall better performance. For example, consider ܧ෠ൣࢼ෡൧, the simulated 
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expected coefficient vector for each estimation method. We see that S1S and CBI were 

similar, with little exhibited bias. LTS and REWLS, on the other hand, were very close 

to each other, demonstrated a moderate bias. OLS and BI were severely biased as 

expected. All simulated scale estimates, ܧ෠ሾߪොଶሿ, overestimated, on the average, the true 

scale parameter of 0.25. On the other hand, the simulated robust scale estimate, ܧ෠ሾݒොଶሿ 
for the BI procedure severely underestimated the scale parameter. This led to the 

smallest expected standard errors of the BI coefficients, results based on the average of 

the simulated coefficient standard errors using the average square root of the diagonal 

value of  ݒොଶ כ ሺࢄࢃ்ࢄሻିଵ matrix. Among the scale estimates, the robust scale estimate 

based on the effective sample size, ݒො௪ଶ, for the CBI procedure had the smallest bias, on 

the average. 

 

 Between CBI and S1S, the CBI coefficients had the smaller standard error and 

were more stable, both in terms of the observed range as well as with respect to the IQR. 

The REWLS improved the stability of LTS and had smaller standard error for its 

coefficients. Both OLS and BI exhibited very tight distributions for each of the four 

coefficients was of little consequence given the extreme bias that was exhibited. 

 

Table 2.5: Simulation results for Monte Carlo study 

 (The crossed cells are not applicable) 

 OLS LTS S1S REWLS BI CBI 
 E෡ൣ઺෡൧ 0.029 െ0.104 0.209 െ0.105 െ0.424 0.218െ0.019 െ0.122 െ0.156 െ0.125 െ0.090 െ0.147െ0.307 0.069 െ0.005 0.063 0.119 െ0.0060.456 0.188 0.105 0.189 ොଶሿ 3.478 0.363ߪ෠ሾܧ0.093 0.295  0.312 0.358 0.329 ොଶሿ     0.016 0.469ݒ෠ሾܧ ො௪ଶ൧ݒ෠ൣܧ 0.276
 E෡ൣseሾ઺෡ሿ൧ 0.345  0.211 0.114 0.024 0.177 0.1410.217  0.075 0.069 0.015 0.095 0.0760.128  0.073 0.053 0.013 0.073 0.0570.107  0.074 0.042 0.009 0.065 0.051
 
 
 
 

0.689  
       െ0.310 
           0.379 0.127  

2.333             െ1.168            1.1650.665 
2.316         െ0.570 1.746 0.298 

1.848െ1.077
           0.7 0.630 

0.619 െ0.735 
   െ0.115 0.080 

1.903          െ0.759
         1.144  0.189 
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 ઺෡ 
Range 
      Min 
      Max  
IQR 

0.401             െ0.223          0.179  0.078 
0.977            െ0.597          0.3290.192 

1.066െ0.693
           0.373 0.094

0.660െ0.372
           0.373 0.111

0.354     െ0.251 
       0.102  0.080 

0.642     െ0.466
      0.176 0.0900.235         െ0.423       െ0.188       0.046 

0.901              െ0.400            0.501 0.183 

0.869     െ0.473 
          0.396  0.102 

0.556െ0.137
           0.419 0.125 

0.264                       0.141 
          0.405  0.048 

0.637     െ0.307
          0.329  0.083 

0.202                  0.364          0.566  0.039 

1.019               െ0.313          0.706 0.193 
0.945              െ0.549 
           0.396 0.113 

0.504െ0.029
           0.475 0.193 

0.265             െ0.405 
          0.140 0.005 

0.543    െ0.198
          0.345 0.073 

 

  

  

 

 

 

 

 

 The average observation weights are denoted as ࢝ഥ , and the standardized average 

weight ݏݓതതതത௜ is defined as  

തതതത௜ݏݓ  ൌ ഥ௜ݓ െ ഥ࢝ሺ݊݅ܯ ሻݔܽܯሺ࢝ഥ ሻ െ ഥ࢝ሺ݊݅ܯ ሻ . 
 

Table 2.6: Standardized average weight for observations 1-14 

Observation REWLS BI CBI Observation REWLS BI CBI 

1 0.014 0.971 0.002 8 0.096 0.981 0.000 

2 0.144 0.991 0.002 9 0.131 0.985 0.004 

3 0.159 0.991 0.005 10 0.186 0.992 0.006 

4 0.000 0.964 0.001 11 0.243 0.000 0.614 
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5 0.107 0.987 0.005 12 0.243 0.000 0.533 

6 0.132 0.986 0.002 13 0.248 0.000 0.677 

7 0.152 0.990 0.003 14 0.231 0.000 0.646 

 

 Considering the result in Table 2.6, the CBI, on average, was more likely to 

identify the hips. For example, it gave almost 0 weights on the average to all the hips and 

weights greater than 0.5 to all the good leverage points. The REWLS, ended with the 

low weights to all the bad and good leverage points. The BI, on the other hand, 

mistakenly attributed the weights, provided very high weight for the first ten bad 

leverage points and 0 weights for the four good leverage points. 

 

 

 

 

 

 

2.6 Chapter Summary  

 In this chapter, a robust and efficient regression methodology, called the cluster-

based bounded influence regression is reviewed and updated by using the modern 

software package R. Both the case studies and the Monte Carlo study show that this 

regression methodology is competitive with methods such as LTS (Ruppert and Carroll 

(1980)), S1S (Coakley and Hettmansperger (1993)) and REWLS (Gervini and Yohai 

(2002)) when the data is highly contaminated but also be able to compete with the 

efficient M and BI regression methods (Huber and Ronchetti (2009)) when the data has 

few or no problematic observations. Specifically, the first case study shows that the CBI 

outperformed the other high breakdown procedures under the low contamination 

situation. The Monte Carlo study, on the other hand, shows that the CBI is one of the 

two procedures (S1S and CBI) that provide unbiased regression coefficients. Between 
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the unbiased procedures, the CBI has the smaller standard errors of the regression 

coefficients and has more stable of the coefficient estimates.  
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Chapter 3. Profile Monitoring Literature 

 

rofile monitoring is a well-known approach in SPC that is widely used 

when the quality of the product or process is characterized by a profile or 

the relationship between a response variable and one or more explanatory variables. 

There are two initial steps in the profile monitoring procedure during Phase I analysis 

(see section 3.1). The first step is to represent each profile using model building theory 

and the second one is to detect the presence of profiles from the out-of-control process, 

those profiles caused by special variability, using quality control methodology. 

3.1 Phase I and Phase II 

Profile monitoring and statistical process control in general, is conducted over 

two phases, labeled as Phase I and Phase II. In Phase I, a HDS is analyzed to determine 

which profiles among the data represent the process when in-control and those profiles 

that represent the process when not in-control. The profiles representing the in-control 

process are then used to establish the control limits for monitoring new profiles as they 

become available in real time, the Phase II component of profile monitoring. However, 

the control limits established in Phase I may undermine the resulting performance in 

Phase II if the HDS contains anomalies such as trends, step changes and other types of 

instability. Thus, it is important to calculate the control limits using the stable process 

data contained in the HDS in Phase I. The goal in Phase I analysis is to separate the 

stable process data from the unstable process data in the HDS, remove the data from the 

out-of-control process and then use the data from the in-control-process to estimate the 

control limits. The performance of the Phase I analysis can be measured in terms of 

correctly identifying the unstable process in the HDS, which is usually represented as the 

POS, the probability of detecting at least one profile from the out-of-control process in 

the HDS.  
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Phase II consists of monitoring future profiles with the control limits obtained 

from Phase I analysis to determine the on-going stability of the process. Performance of 

Phase II is often measured by the average length run, which is the average number of 

samples taken until the first out-of-control signal. More details for the difference of 

analyses between Phase I and Phase II can be obtained by referring to Sullivan (2002), 

Mahmoud and Woodall (2004), and Montgomery (2009). In this chapter, the focus is on 

Phase I, detecting the unstable process data and using the stable process data to establish 

the control limits for Phase II. The impact of proper estimates for successful Phase II 

control charts is discussed in Chapter 5. 

3.2 Profile Monitoring Literature Review 

 In past SPC applications, univariate or multivariate quality characteristics were 

typically used to represent the quality of a process or product. Recently however, it is 

becoming more common to use a profile, a response variable and one or more 

explanatory variables, to characterize the quality of a process or product. Monitoring 

these estimated profiles using quality control techniques is referred to as profile 

monitoring. Woodall et al. (2004) ,Woodall (2007) and Noorossana et al. (2012) 

presented an introduction and literature reviews on this subject. 

 

 In Phase I, one needs to fit each profile first using some appropriate modeling 

technique. In some applications, the profile can be represented adequately by a linear 

regression function. Croarkin (1982), Stover and Brill (1998), Kang and Albin (2000), 

Kim et al. (2003), Mahmoud and Woodall (2004), Wang and Tsung (2005), Gupta et al. 

(2006) and Zhang et al. (2009) all considered of the use of linear profiles. In many other 

cases, profiles may not be well-modeled by a linear regression function. Nonlinear 

profile applications were studied by Jin and Shi (2001), Lada et al. (2002), Walker and 

Wright (2002), Ding et al. (2006), Gupta et al. (2006), Williams et al. (2007a) and 

Williams et al. (2007b).  
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 However, neither linear nor nonlinear profile monitoring methods discussed 

above incorporate the situation when the data within the profile are correlated rather than 

independent. For example, in the repeated measures situations, the subjects are 

repeatedly measured and the responses within the same subject are very likely to be 

correlated. Thus, in longitudinal studies, it may be incorrect to assume that the data from 

the same subject are independent. The mixed model is preferred for cases such as 

repeated measures situations or longitudinal studies when the data are grouped or 

clustered. Jensen et al. (2008) and Jensen and Birch (2009) proposed the use of the linear 

and nonlinear mixed model to monitor linear and nonlinear profiles in order to account 

for the correlation structure within a profile.  

 

 One of the basic assumptions for using parametric fixed and/or mixed models is 

that the response variable can be adequately modeled by a well-defined parametric 

function of both fixed effects and random effects. That is, the underlying relationship 

between response and explanatory variables is parametric. However, this assumption is 

not always satisfied in practical applications. For example, Härdle (1992), Fan and 

Gijbels (1996), Green and Silverman (1994),  and Ramsay and Silverman (2002) among 

others, provide data examples where it is not possible to be adequately describe the 

profile with any parametric model. In these cases, nonparametric regression modeling 

techniques are proposed to monitor profiles based on a nonparametric regression 

method. Qiu (2010) also used nonparametric regression profile monitoring when the data 

within each profile are correlated. Other nonparametric regression profile monitoring 

methods are presented by Reis and Saraiva (2006), Jeong (2006) and Chicken et al. 

(2009). There are many existing smoothers that can be used to fit the nonparametric 

regression model. Different smoothers have different strengths in one aspect or another. 

For example, smoothing splines may be good for handling sparse data, while local 

polynomial smoothers may be computationally advantageous for handling dense designs 

(Wu and Zhang (2006)). The four most popular smoothers include local polynomial 

smoothers (Fan and Gijbels (1996), Doruska (1998)), regression splines (Eubank (1988) 

and Eubank (1999)), smoothing splines (Wahba (1990), Green and Silverman (1994), 

Wang (2011)), and penalized splines (Ruppert et al. (2003)).  
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 A combination of parametric and nonparametric methods to represent the profiles 

was introduced by Abdel-salam (2009). In this work, monitoring profiles via a procedure 

referred to as model robust profile monitoring (MRPM), a semiparametric procedure,  

which combines the  parametric fit to the profiles with the nonparametric profile fits via 

an appropriate linear combination was considered. The resulting MRPM fit can be 

“better” than either the parametric or nonparametric fits, especially when the parametric 

model has been misspecified.  

 

 After correct representation of the profiles has been achieved in Phase I, the 

second step is to detect the data from the out-of-control process and obtain the in-control 

limits necessary for Phase II. One current method for Phase I monitoring based on mixed 

models (Jensen, et al. (2008) and Jensen and Birch (2009)) for detecting the profiles 

from the out-of-control process is to compare each estimated profile specific (PS) curve 

to the estimated PA curve using the 2T statistic (to be discussed in detail in the next 

section). Some authors, for example, Kang and Albin (2000), Kim et al. (2003), and 

Mahmoud and Woodall (2004), under the assumption that the parametric model was 

correctly specified, utilized the 2T statistic to determine profiles from the out-of-control 

process based on the estimated parameters. Jensen, et al. (2008) proposed the use of the 

2T statistic approach to determine profiles from the out-of-control process in the 

parametric mixed model and extended it by using the 2T statistic based on the estimated 

best linear predictors (eblups) on the eblups of each profile. 

3.3 Multivariate 2T  Statistics  

 In order to develop the 2T statistic to monitor profiles, first consider the general 

framework of the multivariate 2T statistic. Given a sample of m independent observation 

vectors to be monitored, ˆ , 1, 2,...i i mμ , each of dimension p  the general form of the 2T

statistic in Phase I for observation i  is  

 

   2 1ˆˆ ˆ , 1, 2,..., .
T

iT i m    i iμ μ V μ μ
                                 

(3.1)  
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here 1

ˆ
m

i
i

m

 μ

μ and ˆV  is an estimator of the variance-covariance matrix V of ˆ iμ . The 

observation is considered abnormal if the 2
iT  value exceeds the upper control limit.  

  

 There are several candidates for the variance-covariance matrix estimator. In the 

profile monitoring literature two estimators are commonly used. The first one is the 

pooled sample variance-covariance matrix, ˆ
pV , computed as  

 

  
1

1ˆ ˆ ˆ
1

m T

p im 
  

  i iV μ μ μ μ                                                 (3.2) 

 

The 2T statistic based on the sample mean vector and pooled sample variance-

covariance is widely used, but it is ineffective in cases containing single moderately 

abnormal observations (Vagas (2003)). The 2T statistics are approximately chi-square 

distributed for large sample sizes while it is proportional to beta distribution for small 

sample sizes (Mason and Young (2002)). 

 

 The second variance-covariance estimator,
 

ˆ
DV , is known as the successive 

difference estimator, which was first introduced by Hawkins and Merriam (1974) and 

used by Holmes and Mergen (1993). To obtain ˆ
DV , let  

 

1
ˆ ˆ ˆ , 1,2,..., 1.i i i i m    d μ μ                                                      (3.3) 

 

Then stack the transpose of these 1m  successive difference vectors into the ( 1)m p   

matrix ˆ ,D  that is  
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1

2

1

ˆ

ˆ
ˆ

ˆ

T

T

T
m

 
 
   
 
  

d

d
D

d


                                                                 (3.4) 

 
The formula of the successive difference estimator is given as  
 
 

 
ˆ ˆ

ˆ
2 1

T

D m



D D

V                                                              (3.5) 

 

Sullivan and Woodall (1996) showed that ˆ
DV  is effective in detecting sustained step 

changes in the production process that occurs in Phase I data. The asymptotic 

distribution of the 2T statistic based on successive difference is a chi-square distribution 

with appropriate degrees of freedom. Small sample properties of the 2T statistic based on 

ˆ
DV  can be found in Williams et al. (2006) . 

3.4 Profile Monitoring for Mixed Model 

 The mixed model is a model that contains both fixed effect terms and at least two 

random effect terms including the error term. In the literature on the mixed model, a 

collection of data on each experimental unit forms a “profile” or a “cluster” or a 

“subject”, depending on the particular application. The term “profile” will be used here. 

The mixed model is flexible and capable of fitting a large variety of datasets. There are 

several advantages of the mixed model over the fixed model including allowing the 

modeling of the correlation structure within profiles and the interpretation of profiles as 

a random sample from a population distribution.  

 

 The general form of the mixed model is introduced here for the case where the 

profiles can be expressed by only one regressor and with balanced data for each profile. 

The model can be easily extended to deal with more than one regressor and the 

unbalanced data case. The general mixed model can be written as (Abdel-Salam (2009)) 
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    , 1, 2,..., , 1, 2,..., .ij ij i ij ijy f x x i m j n                                     (3.6)  

 

where  ijf x
 
represents the mean response function for all profiles, the PA,  i ijx

represents the random effects for the thi  profile, where  i ijx follows some appropriate 

distribution. For example,  i ijx can be expressed as  

 

  0 1 ,i ij i i ijx b b x                                   (3.7) 

  

a random simple linear regression model. The random variables 0ib and 1ib , the random 

intercept and random slope, respectively, can be assumed to be jointly normally 

distributed as 0

1

~ ( , )i

i

b
MN

b

 
 
 

0 G , a multivariate normal distribution with G  as the 2 2

variance-covariance matrix of 0ib  and 1ib . In (3.6), ij is the error term, distributed as 

 ~ ,MNε 0 R , where R  is the n n variance-covariance matrix for the n error terms.  

 

 The two components in (3.6), f and i , may be both parametric. If so, (3.6) is 

referred to as a parametric mixed model. If both components are nonparametric then 

(3.6) is referred to as a nonparametric mixed model. Or, if one component is parametric 

and the other is nonparametric, then (3.6) is referred to as a semiparametric mixed 

model. 

3.4.1 Linear Mixed Models and its Parametric Estimation 

 A linear mixed model (LMM) is a mixed model of form (3.6) where both  ijf x

and  i ijx can be expressed as linear functions of the parameters. The LMM is also an 

extension of the linear fixed model in which the LMM incorporates at least one 

additional random effect term other than the error term. An introduction to the LMM can 
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be found in Verbeke and Lesaffre (1996), Verbeke and Molenberghs (2000), Pinheiro 

and Bates (2000), Schabenberger and Pierce (2002), and Demidenko (2004). 

  

 Suppose the true mixed model (the so-called “true model”) for the thi  profile can 

be written as (3.6) for arbitrary functions f and i .The model in  (3.6) can be 

approximated by a linear mixed  model, referred to as the Laird-Ware  (L-W) model, for 

the thi  profile as  

 

, 1,2,..., 1,2,...,i i i i i ii m j n      y X β Z b ε ,        (3.8) 

 
where iy is the 1in  response vector for the thi  profile, iX and iZ are in p and in q , 

respectively, matrices of explanatory variables, ib  is a  ݍ ൈ 1 vector of random effects 

for the thi  profile with ~ ( , )i MNb 0 G and G is a q q covariance matrix. iε is the random 

error term for the thi  profile with  ~ ,i iMN Rε 0 . The interpretation of (3.8) is that the 

term iX β represents the PA curve at the regressor values in iX  while the i iZ b term 

represent the random departures from the PA that are specific to the thi  profile. Together, 

the term i i i X β Z b represents the profile curve specific to the thi  profile, denote by iPS . 

 

 As described above, the L-W model is extremely flexible in that it allows random 

errors to be independent or correlated. If correlated, iR is often assumed to be a simple 

form such as the autoregressive form or the compound symmetry form to reduce the 

number of unknown covariance parameters that require estimation. Similar structure can 

be used for  G , but usually G  is restricted to a diagonal matrix resulting in independent 

random effects. Also, it is assumed that  ,i iCov ε b O
 
where O is the in q matrix of 

zeros.  

 

The conditional distribution for the  thi  profile, based on a fixed value of ib , is  
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| ~ ( , ) 1, 2,..., .i i i i i iMN i m  y b X β Z b R               (3.9) 

 
The marginal expected value of iy is given as  

 

 i iE y X β ,      (3.10) 

 
With marginal variance of iy  

 

  .T
i i i i iV   y Z GZ R V                            (3.11) 

 
From the above assumptions, the marginal distribution of iy is  

 

 ~ ,i i iMNy X β V .      (3.12) 

 

The convenient way to derive an estimator of β is to stack the responses and the model 

matrix for the m individual profiles. Let
1

m

 
   
  



y

y

y

, 
1

m

 
   
  



X

X

X

, 
1

m

 
   
  



b

b

b

,
1

m

i
i

n n


  , and  

Z is the n mq block diagonal matrix with ܼ௜ along each diagonal 
1

m

O

O

 
   
  



  



Z

Ζ

Z

. 

Model (3.8) can be written as  

 
.  y Xβ Zb ε  

 

With the stack equation above, the corresponding distributions for b and ε  can be written 

as  

 

~ ( , ),MNb 0 G  

 ~ , ,MNε 0 R  
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where  diag iR R , and the conditional and marginal distribution for y are      

 

 | ~ ,MN y b Xβ ZB R , 

 ~ ,MNy Xβ V , 

 var T  V y ZGZ R . 

 

Denote ˆ
LMMβ as the estimator for the PA parameter vector for the fixed effects and 

denote îb  as eblups of the random effects for the thi profile. Then it can be shown that 

(Ruppert et al. 2003) 

 

 

  11 1ˆ ,T T
LMM

 β X V X X V y                                         (3.13) 

 

 1ˆ ˆ .T
i i i i

 b GZ V y X β                                                (3.14) 

 

Note, V  here is usually unknown and needs to be estimated first. The most commonly 

used estimators for V  include the maximum likelihood estimator (MLE) and the 

restricted maximum likelihood estimator (REMLE). Ruppert et al. (2003) mentioned that 

for small sample size REMLE is usually more accurate than MLE, but for large samples 

there is little difference between the two approaches. By substituting the estimates V̂ and 

Ĝ  into (3.13) and (3.14), the parameter estimates and eblups can be obtained. 

Subsequently, the estimated parameter vector and eblups for the thi  profile are 

 

 
*ˆ ˆ ˆ

i

p
LMM i  β β b                      (3.15) 
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where “p” represents the estimated coefficients using the parametric approach, ˆ
LMMβ = 

  1
1 1ˆ ˆT T


 X V X X V y

 
and *

î b is a 1p   vector containing îb  for the columns of iZ that 

are equal to the columns of iX and zero otherwise. Consequently, *ˆ ˆ
i ib b  if i iX Z . The 

estimated fits for iPS curve and for the PA curve are expressed as  

 

,
ˆ ˆˆ ,P P

PS i i i i LMM i i  y X β X β Z b     (3.16) 

and  

ˆˆ .P
PA i LMMy X β                                                          (3.17) 

 

3.4.2 Nonparametric Mixed Regression and P-spline Estimation 

 In many applications, the profiles cannot be parametrically modeled by either 

linear or nonlinear functions. In these cases, a nonparametric regression may provide a 

better fit to the data than either linear or nonlinear functions. The nonparametric 

regression method has several advantages over parametric regression in that 

nonparametric regression is more flexible and offers an exploratory approach to evaluate 

the data.  More details for nonparametric regression can be obtained from Ruppert et al. 

(2003), and Wegener and Kauermann (2008). In fact, the mixed effects nonparametric 

method will be used extensively in this dissertation. 

 

 Before introducing the mixed effects nonparametric regression method, the fixed 

effect nonparametric regression method is presented in its general form (only one 

regressor x is used for simplicity) as 

 

  1 ,i i i iy f x i n                                                (3.18) 
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where f is some unspecified smooth function with   0iE   ,   2cov Iε and 

   | .E y x f x There are several methods available to nonparametrically fit the 

model in (3.18). For example, one can use spline-based smoothers, moving average 

smoothers or kernel smoothers. The method we focus is the penalized spline (p-spline), a 

spline-based smoother, which has the attractiveness of being a relative straightforward 

extension of linear regression modeling (see O'Sullivan et al. (1986); Gray (1994); Eilers 

and Marx (1996) and Berk (2008).).The main idea of p-spline regression is to fit the 

function  if x parametrically with a sufficiently flexible spline bases. Instead of simply 

using parametric estimation, a penalty is imposed to the spline coefficients to achieve a 

smooth fit. One technical benefit of this approach is that it links this nonparametric 

method to the L-W model, which can be useful in many applications, see Wand (2003) 

and Ruppert  et al. (2003) for details. 

 

 There are many spline bases available in p-spline regression including, for 

example, truncated polynomial bases, radial bases, and natural cubic bases. The bases 

used here are the truncated polynomial bases. With the truncated polynomial bases,

 if x
 
can be approximated by  

 

   0 1 1
,

p K pl
i l i pk i kl k

f x x x   
 

                        (3.19) 

 

where p is the order of the polynomial and 1 2, ,..., K    are the knots, K, is the total 

number of knots and ሺݔ௜ െ ௞ሻା௣ߢ  is defined as 0 for ݔ௜ ൑ ௜ݔ௞ and ሺߢ െ  .௞ሻ௣ otherwiseߢ

For example, one common application of p-spline regression is the case where 1p   

which gives  

 

   0 1 11
,

K

i i k i kk
f x x x   


                                (3.20) 
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where      1 2, ,...,i i i Kx x x  
  

    are the linear spline bases. Claeskens et al. 

(2009) suggested choosing K according to  min 40, / 40K n . Also, one may use one 

of several knot selection rules suggested in Ruppert et al.(2003). To keep the approach 

simple, K will be determined using the above rule of thumb for both the PA profile curve 

and the m PS profile curves in our presentation. Once K is chosen, the knots k , 

1, 2,...k K can be selected to cover the range of x values using quartiles (Wand (2003)). 

 

  The ordinary least square fit for the model in (3.20) can be written as  

 

 
2

min



β

y Xβ                                                   (3.21) 

 

   

   

1 1 1 1

1

1

1

K

n n n K

x x x

x x x

 

 

 

 

  
   
   



    



X  and  0 1 11 1, , ,T
K    β ,  

 

where 1k is the spline coefficient for the thk  knot. As addressed previously, the p-spline 

regression imposes a constraint on the spline coefficients. Possible constraints on the

11 1,..., K  can be one of the following 

 

௣௞หߚหݔܽ݉ (1) ൏  ܥ

     (2)  ∑หߚ௣௞ห ൏  ܥ

     (3)  ∑ ௣௞ଶߚ ൏  ܥ

 

The third constrain is more commonly used for easy implementation. Using the third 

constrain, our minimization problem can be written as  

 

2
min



β

y Xβ  

subject to         (3.22) 
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T Cβ Dβ  

 

2 2 2

2

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

K

K K KI
 

 

 
 
   
    
   
 
  

0 0
D

0







     



 

 

Using a Lagrange multiplier argument, (3.22) is equivalent to choosing β  to minimize  

 

2 2 T y Xβ β Dβ ,      (3.23) 

 

for some ߣ ൒ 0. This gives then estimates of mean response at X  as 

 

  12ˆ T T


 f X X X D X y ,                             (3.24) 

 

Usually, ߣ is chosen based on criteria such as minimizing either the cross validation error 

or the generalized cross validation error. Another approach uses the relationship of the p-

spline model and the LMM to obtain the ߣ automatically. To see this relationship, for a 

simple example, model (3.20) can be rewritten as 

 

   0 1
1

K

i i k i k i
k

f x b b x x  




    
 
 

Let  

0

1

b

b

 
  
 

b , 
1

K





 
   
  

μ , 
1

1

1

1 n

x

x

 
   
  

 C  and 

   

   

1 1 1

1

1

K

n n K

x x

x x

 

 

 

 

  
   
   



  



C  

 

The penalized fitting criteria in (3.23), when divided by 2
 , can be written as  
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ఌଶߪ1  ԡ࢟ െ ࢈ଵܥ െ ԡଶ࢛ଶܥ ൅ ఌଶߪଶߣ ԡ࢛ԡଶ 

 

Ruppert et al. (2003) showed that this is also the objective function to obtain the ebulps 

for μ as a set of random coefficients with 2cov( )   μ G I  , where
2

2
2






  .The n 

estimates of mean response can be obtained by  

 

  12ˆ T T


 f C C C D C y ,                                             (3.25) 

 

where  1 2, C C C X  , 2 2 2 K

K K K KI
 

 

 
  
 

0 0
D

0
 and

2
2

2







 . 

 

 The representation of the knot coefficients in p-spline regression as the eblups in 

the L-W model is useful because it allows smoothing to be done using LMM 

methodology and software. For example, instead of choosing the smoothing parameter ߣ 
by cross validation criteria for the p-spline model, LMM can be used to estimate 2

 and 

2
  by MLE or REMLE. Then ߣመெ௅ ൌ ටߪොఌଶெ௅ ⁄ො௨ଶெ௅ߪ      or    ߣመோாெ௅ ൌ ටߪොఌଶோாெ௅ ⁄ො௨ଶோாெ௅ߪ .   

 

Recall the mixed model in (3.6) (Abdel-Salam(2009)) as   

௜௝ݕ  ൌ ݂൫ݔ௜௝൯ ൅ ௜௝൯ݔ௜൫ߦ ൅ ߳௜௝݅ ൌ 1,2, … , ݉  ݆ ൌ 1,2, … , ݊. 

 

Instead of parametric functions,
  ijf x and  i ijx can be nonparametric functions. Both

 ijf x  and  i ijx can be approximated by p-spline regression. For example, the 

truncated polynomial bases of order p can be used to approximate  ijf x  and  i ijx

(though other bases can be utilized as well) such as 



 

 

     

 

51

      1

0 1 1

pp Kl
ij l ij pk ij kl k

f x x u x  
  

                                         (3.26) 

   2

0 1 1
1,2,3,..., 1,2,3,...,

pp Kl
i ij i il ij ik ij kl k

x b b x t x i m j n 
  

                                   

(3.27) 

 

With the relationship between the p-spline regression approximation and the LMM, the 

approximation for the thi profile can be described succinctly in the LMM framework as  

௉ௌ,௜࢟  ൌ ܺ௜ࢼ ൅ ܼ௜࢛ ൅ ܺ௜࢈௜ ൅ ௜࢚௜ܧ ൅ ࣕ௜݅ ൌ 1,2, … , ݉, ݆ ൌ 1,2, … , ݊, 

 

where                       (3.28)

  

ܺ௜ ൌ ൦1 ௜ଵݔ … ڭ௜ଵ௣1ݔ ௜ଶݔ ڭ… ڰ 1ڭ௜ଶ௣ݔ ௜௡ݔ … ௜௡௣൪ ,    ܼ௜ݔ ൌ ൦ሺݔ௜ଵ െ ଵሻା௣ߢ … ൫ݔ௜ଵ െ ڭ௄భ൯ା௣ߢ ڰ ௜௡ݔሺڭ െ ଵሻା௣ߢ … ൫ݔ௜ െ ௄భ൯ା௣ߢ݊ ൪, 

 

௜ܧ ൌ ൦ሺݔ௜ଵ െ ଵሻା௣ߢ … ൫ݔ௜ଵ െ ڭ௄మ൯ା௣ߢ ڰ ௜௡ݔሺڭ െ ଵሻା௣ߢ … ൫ݔ௜௡ െ ௄మ൯ା௣ߢ ൪, 

 

0 1,, ...,T
p     β , 0 1,, ...,T

p     μ , 0 1,, ...,i

T
i i ipb b b   b , 0 1,, ...,i

T
i i ipt t t   t and  ࣕ௜ is 

the error term with ࣕ௜~ܰܯሺ૙, ܴ௜ሻ. 1K and 2K  represent the number of knots chosen for 

 ijf x and  i ijx  respectively.  It is not necessary for 1K and 2K to be equal.  

 

 The model in (3.28) can also be written in a stacked matrix notation as follows  

࢟  ൌ ࢼܺ ൅ ܤܼ ൅ ࣕ,                                                (3.29) 

 

where               
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ܺ ൌ ൥ ܺଵܺڭ௠൩,  ܼ ൌ ൦ ܼଵ ܺଵ 0 ڮ 0 ଵܧ 0 … 0ܼଵڭ ڭ0 ܺଶڭ ڰ… ڭ0 ڭ0 ڭଶܧ ڰ… ௠ܼڭ0 0 0 ڮ ܺ௠   0   0 ڮ ܤ ,௠൪ܧ ൌ ቈ࢚࢈࢛ ቉, 

 

with  

࢛ ൌ ቎ ࢈ ,௄భ቏ݑڭଶݑଵݑ ൌ ൦ ࢚ ,௠൪࢈ڭଶ࢈ଵ࢈ ൌ ቎ ࢟,௠቏࢚ڭଶ࢚ଵ࢚ ൌ ቎  ,௠቏࢟ڭଶ࢟ଵ࢟

and   

ሻܤሺݒ݋ܥ ൌ ܩ ൌ ቎ߪ௨ଶܫ ܱ ܱܱ ௕ߑଵஸ௜ஸ௠݃ܽ݅݀݇ܿ݋݈ܾ ܱܱ ܱ  ,቏ܫ௧ଶߪ

௕ߑ  ൌ  .௜ሻ࢈ሺݎݎ݋ܥ௕ଶߪ

 

Here, 2
  controls the amount of smoothing to estimate  ijf x , 2

t  measures the between 

profile variation and 2
b controls the amount of smoothing required to properly estimate

 i ijx . β and B  can be estimated by 

෡௣ି௦ࢼ  ൌ ሺିࢂ்ࢄଵࢄሻି૚ିࢂ்ࢄଵ(3.30)                                             ,࢟ 

 

where the “p-s’ represents the estimated coefficients using the p-spline approach.  

෡࡮    ൌ ൥࢛ෝ࢈෡࢚ො ൩ ൌ ࢟ଵሺିࢂࢀࢆࡳ െ  ෡ሻ,   (3.31)ࢼࢄ

 

where  var  TV y ZGZ + R and  diag iR R . The estimated PA curve using p-

spline (denoted by “p-s” in the formulas below) regression is given by  
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ෝ௉஺௣ି௦࢟ ൌ ෡௣ି௦ࢼ௜ࢄ ൅  ෝ,     (3.32)࢛௜ࢆ

 

and the estimated PS curve for the thi profile is  

ෝ௉ௌ,௜௣ି௦࢟  ൌ ܺ௜ࢼ෡௣ି௦ ൅ ܼ௜࢛ෝ ൅ ܺ௜࢈෡௜ ൅  ො௜.                 (3.33)࢚௜ܧ

 

3.5 Detecting the Out-of-control Process 

 One objective in Phase I is to correctly distinguish between profiles belonging to 

the in-control process from those profiles belonging to an out-of-control process in order 

to obtain a properly estimated PA profile curve. In Phase I, correctly identifying the 

profiles belonging to the in-control and out-of-control processes is equivalent to 

correctly separating the profiles from the in-control and out-of-control process within the 

HDS. 

3.5.1 Detecting the Out-of-control Process Using LMM 

 Recall (3.15) in the LMM, The estimated parameters and eblups for the thi profile

iPS are contained in ˆ
i

Pβ as 

 

*ˆ ˆ ˆ
i

P
LMM i β β b , 

    

and the estimated parameter vector  for the PA is ˆ
LMMβ . Jensen et al. (2008) proposed a 

parametric approach to determine the unusual profiles based on the distance of the 

estimated parameter vector from the center of the group of estimated parameter vectors. 

They introduced a formula for the 2T statistic based on comparing ˆ
i

Pβ to the sample 

mean of ˆ
i

Pβ , ˆ
LMMβ using the estimated variance covariance matrix, V̂ , based on the 

successive difference estimator of V . The 2T statistic for the thi estimated PS curve is 

then defined as  
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   2 1
1,

ˆ ˆ ˆ ˆˆ
i i

P T P
P i LMM LMMT    β β V β β , 

where           (3.34) 

    1

1 11

1 ˆ ˆ ˆ ˆˆ
2 1 i i

Tm P P P P
i iim



 
    

 V β β β β . 

 

Also, they showed that the distribution of 2
1,P iT follows asymptotically a chi-squared 

distribution with p degrees of freedom for large samples, where “ p ” the degree of 

freedom for the chi-squared distribution, is the number of estimated parameters. Since

1

ˆ 0
m

i
i

b , it follows that (Jensen et al. (2008)) (3.34) can be written equivalently as  

 

2 1
1,

ˆ ˆˆT
P i i iT  b V b  

and 

     1

1 11

1 ˆ ˆ ˆ ˆˆ
2 1

Tm

i i i iim



 
    

 V b b b b .            (3.35) 

 

 As another approach, Abdel-salam (2009) introduced the 2T statistic based on the 

fitted values for the thi  estimated PS curve and estimated PA profile, ,ˆ P
PS iy  and ˆ

PAy

respectively, where the fits for both curves are obtained at the same n values of the 

regressors across all m profiles, as 

 

   2 1
2, , ,

ˆˆ ˆ ˆ ˆ
TP P

P i PS i PA PS i PAT   y y V y y ,    (3.36) 

    1

, 1 , , 1 ,1

1ˆ ˆ ˆ ˆ ˆ
2 1

Tm P P P P
PS i PS i PS i PS iim



 
    

 V y y y y . 
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3.5.2 Detecting Out-of-control Process Using the P-spline Mixed Model 

 When using the p-spline regression approach for the nonparametric mixed model, 

there are two formulas of 2T statistics to determine the profiles from the out-of-control 

process. The one 2T statistic based on the fitted PS curve for the thi  profile and the fitted 

PA curve, denoted as 2
2,NP iT

 

 

   2 1
2, , ,

ˆˆ ˆ ˆ ˆ 1,2, , .
Tp s p s p s p s

NP i PS i PA PS i PAT i m        y y V y y                  (3.37) 

 

where “NP2” denotes the second 2T statistic based on nonparametric regression and

,ˆ p s
PS i
 y is the fitted PS curve using p-spline regression (denoted by “p-s”) for the thi profile 

and ˆ p s
PA
 y  is the fitted value for the PA profile. V̂ is an n n   estimated variance-

covariance matrix for ,ˆ p s
PS i
 y based on successive difference estimator.  

 

 The other 2T statistic is based on the eblups, ෡ࣘ ௜,  for the random effects, where  

 ෡ࣘ ௜ ൌ ቈ࢈෡௜࢚ො௜ ቉    ݅ ൌ 1,2, … , ݉,    (3.38)  

 

with ෡௜࢈ ൌ ൣ ෠ܾ௜଴, ෠ܾ௜ଵ൧்
,(using the first order polynomial with ,with p=1) and ࢚ො௜ ൌൣ̂ݐ௜ଵ, ,௜ଶݐ̂ … , ௜௄మ൧்ݐ̂

 . Define 2
1,NP iT for the thi profile as 

 ܶଶே௉ଵ,௜ ൌ ൫෡ࣘ ௜ െ ഥࣘሻ் ෠ܸ ିଵ ෡ࣘ ௜ െ ഥࣘ൯, 

 ഥࣘ ൌ ∑ థ෡೔೘೔సభ௠ ,                      (3.39) 
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෡ࢂ ൌ 12ሺ݉ െ 1ሻ ෍ ൫෡ࣘ ௜ାଵ െ ෡ࣘ ௜൯௠ିଵ
௜ୀଵ ൫෡ࣘ ௜ାଵ െ ෡ࣘ ௜൯்

 

 

Unusual profiles can be determined by comparing 2
1,NP iT and 2

2,NP iT with a value from chi-

squared distribution. The thi estimated PS curve will be marked as outlying if

2 2
, ( , )NP i dfT  χ for 1, 2,...i m , where  represents the significant level and df represents 

the degrees of freedom which is equal to  ,
PS
PS itr H where ,

PS
PS iH is the smoother matrix 

for p-spline regression. 

3.6 Chapter Summary 

 Profile monitoring based on the mixed model in Phase I is presented in this 

chapter. First, the L-W version of the LMM is used to represent the profiles 

parametrically. Second, the L-W model is used to represent the profiles 

nonparametrically using p-spline regression. To detect the presence of profiles from the 

out-of-control process, 2T statistics based on the estimated parameters or eblups are 

calculated for the L-W model for both the parametric and nonparametric models. 

Finally, the profiles from the out-of-control process can be identified by using the 

control limits based on the approximate chi-squared distribution the 2T statistics. 
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Chapter 4. Cluster-Based Profile Monitoring in 

Phase I 

 

new profile monitoring methodology will be introduced for Phase I analysis 

in this chapter. The proposed method, referred to as the cluster-based profile 

monitoring method, incorporates a cluster analysis phase to cluster the profiles which 

have the similar behavior before calculating the 2T statistic. The proposed method will 

be showed to be robust to the large amount of profiles in HDS from the out-of-control 

process and the details of the algorithm will be presented in this chapter.   

 

4.1 Motivation 

Recall that the goal of the Phase I profile monitoring process is to distinguish 

between the in-control process and the presence of an out-of-control process by analysis 

of the HDS. The in-control limits for process monitoring in Phase II analysis then can be 

estimated based on the in-control profiles. The existing profile monitoring method of 

Jensen et al. (2008) and Abdel-Salam et al. (2013) estimate the PA profile and PS 

profiles based on the HDS. The 2T statistic can be obtained by using the PS fits and the 

PA fit. For example, in the previous section, it was noted that the 2T statistic for the thi  

profile can be calculated as 

 

   2 1
, ,

ˆˆ ˆ ˆ ˆ 1,2,... .    y y V y y
T

i PS i PA PS i PAT i m
 

 

Usually, the profiles can be represented by either a parametric function or by a 

nonparametric function or the combination of the parametric and nonparametric 

functions. If the profiles are represented by a parametric function, the above 2T statistic 

A
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can be modified by using the estimated parameters for each profile. For example, in the 

LMM, the 2T statistic can be obtained from  ሺ3.34ሻ  in Section 3 as 

 

   2 1
1,

ˆ ˆ ˆ ˆˆ ,
T

P i i LMM i LMMT   β β V β β
 

 

If the profiles are not well-represented by a parametric function, a p-spline regression, a 

nonparametric method, can be used to represent the profiles with a nonparametric 

function, as illustrated in the previous section. For example, in section 3, it was shown 

that the 2T statistic for a nonparametric profile fit using p-spline regression can be 

obtained based on the eblups. 

 

 However, one problem with the method discussed above is that the estimated PA 

profile is based on averaging the fits of all the profiles, including any profiles from out-

of control process. Thus, the estimated PA profile will be “pulled” in the direction of the 

out-of-control process resulting in a biased estimate of the true PA profile. Additionally, 

the corresponding variance-covariance matrix will be similarly distorted. Consequently, 

the 2T statistics will be misleading and the in-control limits will be unable to properly 

separate those profiles belonging to the in-control process from those belonging to the 

out-of-control process. 

 

 Our goal in this chapter is to propose a new profile monitoring method which is 

robust to the profiles from the out-of-control process. Recall that in the CBI regression 

analysis, robust and efficient coefficient estimators are obtained by combining the 

cluster phase and the bounded influence regression phase. The cluster phase basically 

obtains a main cluster that contains at least half of the data set and represents the general 

trend of the data. A starting value for the bounded influence regression is calculated by 

using the data in the main cluster and iteratively adds data to the main cluster provided 

that this data is “close” to the data in the main cluster. Data not added is considered as 

outlying data. The final CBI estimator is obtained using only the final data in the main 

cluster, the inlying data. The proposed method for profile monitoring also starts with the 
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cluster phase, but instead of clustering the data points as in CBI regression, the profiles 

are clustered. The general introduction of the proposed method is given in the following 

section where details of the algorithm will also be addressed.  

  

4.2 Proposed Cluster-based Profile Monitoring Method 

 The proposed cluster-based profile monitoring method is designed to provide a 

robust procedure for the Phase I profile monitoring process. The main idea is to first 

cluster the profiles to obtain a set of initial main cluster profiles with similar behavior. A 

cluster-based method has been used previously in the robust regression context to cluster 

n  independent 1p vectors by Lawrence (2003). Jobe and Pokojovy (2009) and Fan et 

al (2012) also proposed using a cluster-based method for use with multivariate control 

charts. However, clustering in the profile monitoring context is more complex than 

clustering data points in that the goal now is to cluster estimated curves involving intra-

profile correlated data. The first step is to fit a curve, by some appropriate method, to 

each of m  independent 1in   profiles (vectors) where the data within each profile is 

likely to be correlated. The proposed method thus allows each estimated profile to be 

represented by a vector of estimated model parameters (and/or by eblups). After each 

profile is represented with a parameter vector, the estimated variance-covariance matrix 

estimator, ˆ ,V  can be calculated by using the estimated parameter vectors. The second 

step is to calculate the similarity matrix S  based on the estimated parameter vectors and 

V̂ . Then use an appropriate cluster method to cluster each profile based on S .  

 

 To obtain a tight, compact sphere of similar parameter estimates, hierarchical 

clustering with a proper linkage is performed until an initial main cluster containing at 

least half the profiles is formed. After obtaining an initial main cluster set, denoted by

,mainC  the profiles in mainC  can be used to obtain an initial estimate of the parameters 

for the PA profile. These estimated parameters can be used with the previously estimated 

variance-covariance matrix, ˆ ,V  to calculate the 2T  statistics for the profiles not 
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contained in .mainC  The profiles which have in-control 2T  statistics (that is, 2T  is less 

than the control limit of the 2T  chart) are then added to mainC  to obtain a new set of 

profiles, denoted as .newC  The mixed model approach is then used to update the 

estimated parameters for the  PA profile from the profiles in .newC  One repeats the above 

procedure of updating newC  by adding the profiles not contained in newC  until either the 

smallest 2T  statistic for the remaining profiles outside of newC  is beyond the control 

limit or all the profiles in the HSD have been added to .newC  Upon completion of the 

algorithm, those profiles contained in newC  are labeled as profiles from the “in-control 

process” and those not included in newC  are labeled as profiles from an “out-of-control 

process”. A similar iterative procedure to detect in-control and out-of-control data was 

also used in a multivariate control chart setting by Shiau and Sun (2009). The proposed 

algorithm is now outlined in detail. 

Step 1: Represent each estimated profile curve by an estimated parameter vector 

(obtained using some appropriate method) and determine the m p  parameter matrix 

ˆ .B  The thi row of ˆ ,B  denoted by the 1 p vector ˆ ,T
iβ is defined as the estimated 

parameter vector for the thi profile. Obtain a robust estimate of the variance-covariance 

matrix for B̂ using an appropriate robust estimator. As an example, the successive 

difference estimator, ˆ ,DV  is use throughout this paper, where  

     1

1 11

1 ˆ ˆ ˆ ˆˆ
2 1

Tm

D i i i iim



 
  

 V β β β β
 

Step 2: Using ˆ ,DV  obtained in step 1, compute a m m  similarity matrix S , where the

,i j entry is defined as 

   1ˆ ˆ ˆ ˆˆ ,
T

ij i j D i js   β β V β β  

where ˆ
iβ   and ˆ

jβ are thi and thj rows of ˆ ,B respectively.  

Step 3: Perform a hierarchical cluster analysis using an appropriate linkage function on 

the given similarity matrix to obtain the main clusters of ˆ
iβ  for 1, 2,...,i m . The initial 
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main cluster is defined as the first cluster that contains at least half the profiles. Denote 

the set of indices for the profiles in the main cluster as .mainC  Stop the cluster process as 

soon as at least  2 1m 
 
profiles are contained in the main cluster. Since new profiles 

may be added to mainC  during the iteration process, we denote by C  the main cluster at 

each iteration step. Thus at the end of step 3, .mainC C  

Step 4: Use the mixed model approach to estimate the parameters for the PA profile 

using the profiles in ,C denoted as ˆ .PAβ  For all profiles not contained in ,C compute 

   2 1ˆ ˆ ˆ ˆˆ ,
T

i i PA D i PAT   β β V β β  

where “ i ” denotes the thi  profile not contained in C  and add the profiles which have 

 
2 2

1 ,i m df pT     to C and obtain a new index set .newC  Here,
  

2
1 ,m df p    is the [1- α/m] 

quantile of a chi-squared distribution with p degrees of freedom , α is the level of the test 

and [α/m] is the Bonferroni adjustment for multiple comparisons.  

Step 5: If the profiles in newC  are different from the profiles in C  set newC C  and go 

back to step 4, otherwise denote the set of final profiles in newC  as .finalC  

Step 6: Use the mixed model approach to estimate the PA parameters from the profiles 

in finalC , to obtain the eblups, and to recompute ˆ .DV  Denote the estimated PA parameter 

as  ˆ .CPAβ  the eblups for the thi  PS curve by ,
ˆ
C ib   and variance-covariance matrix D̂V  by 

ˆ .CDV  Here, the “C ” in the subscript indicates that the estimates result from the cluster-

based method. 

 

 Nearly identical results were obtained in all examples and simulations using 

either “ward” or “complete” linkage. Other linkage functions may work equally as well. 

Complete linkage was used in all results presented in subsequent sections. Additionally, 

the successive difference variance-covariance estimator is used to obtain V̂  because it 

has been shown by Sullivan and Woodall (1996) to work well in the presence of  a 

sustained shift. If the user suspects the presence of out-of-control profiles from other 

than a sustained-shift change in the process, alternative robust estimators of the variance-
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covariance matrix can be used instead of D̂V . Then this estimator can be used to replace 

D̂V  in steps 1 and 4 of the clustering algorithm. Some possible robust alternative vari-

ance-covariance estimators are presented below in the remainder of this section.  

 

 In a more general context, once the estimated profiles are obtained via some 

appropriate regression method, the collection of profiles can be represented by m  

appropriate 1p vectors. In this case, the process of determining the possible presence 

of profiles from the out-of-control process is equivalent to detecting multivariate outliers 

among these 1p  vectors. A field rich in research history is available for this topic (see, 

for example, Rousseeuw and Leroy (2005)). Consequently, our proposed cluster-based 

profile monitoring method should also be compared with selected robust multivariate 

outlier detection methods. 

 

 The classical multivariate outlier detection method is the squared Mahalanobis 

distance computed as in (3.34) but with T(x) and C(x) replacing ˆ
LMMβ  and V̂ ,  

respectively. Here T(x) is the arithmetic mean vector of the m  vectors and C(x) is the 

classical moment covariance estimator. In this case, the squared Mahalanobis distance is 

equal to our 2T statistic. However, since both T(x) and C(x) are notoriously non-robust to 

multivariate outliers other more robust estimators of center and covariance are 

recommended. The most commonly recommended choices are based on the MVE and 

minimum covariance determinant (MCD) estimators of center and covariance (see 

Rousseeuw and Leroy (2005) for a full description of these methods.), due to their high 

resistance to multiple multivariate outliers. Jensen et al. (2007) studied the performance 

of using robust versions of (3.34) based on both the MVE and MCD estimators to detect 

multivariate outliers in the presence of a sustained shift. They gave conditions in terms 

of m , in , shift size, and the proportion of multivariate outliers for when the MVE should 

be used instead of the MCD. Both Jensen et al. (2007) and Fan et al. (2013) also 

comment on the computational difficulties associated with the MVE and MCD 

procedures. Another robust method for multivariate control chart can be found in 
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Chenouri et al. (2009) with a robust covariance estimator called reweighted minimum 

covariance determinant (RMCD) estimator. 

  

 Within the profile monitoring context, several authors, including Vargas (2003) 

and Williams et al. (2007b), suggested using (3.34) with ˆ
LMMβ and V̂ replaced by the 

MVE estimators to robustify the profile monitoring process. It seems appropriate then 

that our cluster-based method be compared not only to the non-cluster based method of 

Jensen et al. (2008) but to a robust version of the (3.34) based on the MVE estimator. 

Following the guidelines of Jensen et al. (2007), the MVE is more appropriate than the 

MCD estimator for our selected values of m , in , shift size and the proportion profiles 

from the out-of-control process. We will also consider as a fourth estimator a robust 

version of our cluster-based methods computed replacing DV with the MVE covariance 

estimator.  

4.3 Detailed Simple Example 

 To aid in understanding the proposed algorithm, consider monitoring quadratic 

trend profiles whose in-control profiles were randomly generated from the model  

 

2
0 0 2 1 3 2 1( ) ( ) ( ) , 1, 2, ..., , 1, 2, ...,ij i i ij i ij ijy b b x b x i m j n                              

(4.1) 

 

and out-of-control profiles were generated as 

 

2
0 0 1 1 2 2

1

( ) ( ) ( ) ,

1,..., , 1,2,...,

ij i i ij i ij ijy b b x b x

i m m j n

            

                           
(4.2) 

 

where 

2
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1 1
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2~ 0,N I                                                              (4.3) 

0

1

2





 
   
 
 

β .
 

 

Here, chose,    0 1 2, , 12.5, 7, 2T     β  for the in-control profiles and 

   0 1 2, , 21.875, 14.5,3.5T        β  for the out-of-control profiles; 1 9, 12m m 

and 2 2 2
0 1 2 0.5     and 2 4  . 2 4.  Thus, profiles 1 through 9 represent profiles 

from the in-control process and profiles 10, 11, and 12 represent profiles from the out-

of-control process. To simplify the illustration we assume that the covariates for these 

profiles are the same and equally spaced with  

, 1,2,..., , 1,2,...,ijx j i m j n                               (4.4) 

Table 4.1: Dataset for the example  

y/x 1 2 3 4 5 6 7 8
y1 9.889 5.472 0.249 -2.385 -2.734 3.439 6.59 11.622
y2 8.516 8.17 9.546 18.988 32.265 49.488 67.813 94.112
y3 9.675 7.392 10.86 24.331 37.663 59.059 85.993 117.184
y4 8.052 4.346 12.24 21.874 33.12 52.536 76.48 97.855
y5 11.507 7.141 4.607 12.356 14.189 24.539 41.019 59.639
y6 9.539 16.168 20.864 35.604 50.185 75.128 109.144 141.969
y7 8.388 7.373 9.634 22.176 39.292 56.104 79.946 106.386
y8 5.789 4.167 -2.028 -3.533 -2.625 -0.032 1.299 4.46
y9 7.138 11.551 4.26 20.074 31.81 51.178 73.111 101.308
y10 9.495 9.448 8.46 18.739 37.269 58.864 89.642 127.796
y11 10.843 -0.678 -1.964 -0.057 6.97 16.974 31.161 51.937
y12 7.832 3.833 1.719 7.512 16.532 34.221 53.323 82.262
  

The exploratory analysis is done by plotting the 12 observed profiles in Figure 4.1 where 

the blue curves represent the profiles from the in-control process while the red curves 

represent the profiles from the out-of-control process.  
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Figure 4.1: Plot of 12 observed profiles 

Step 1 

The Figure 4.1 shows the quadratic trend of the 12 profiles. It seems that profile 6 have 

larger observed values than other profiles but it is not trivial to conclude that profiles 10, 

11 and 12 are “different” from the other nine profiles in the plot. The parameters for 

each profile are estimated individually using the fixed effects quadratic model in one 

regressor 

 

 

 

using the method of least squares. The estimated parameters for each profile are listed in 

Table 4.2.   
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Table 4.2:12 3 B̂ matrix; the parameter estimates for 12  profiles 

Index of profiles ߚመଵ௜ መଶ௜ߚ መଷ௜ߚ
1 18.393 -9.171 1.055 
2 13.14 -7.072 2.149 
3 15.41 -9.214 2.748 
4 9.743 -5.554 2.1 
5 20.558 -10.704 1.941 
6 15.127 -6.44 2.791 
7 11.069 -6.338 2.299 
8 12.029 -6.316 0.68 
9 14.907 -9.068 2.488 

10 21.645 -14.318 3.441 
11 21.892 -14.832 2.324 
12 20.081 -14.214 2.737 

 

Recall that the plot in Figure 4.1 does not show that profiles 10, 11, and 12 are 

apparently “different” from the other profiles, however, Table 4.2 shows that profiles 10, 

11, 12 have a very “different” estimated parameter vectors. For example, all the 

estimated intercepts for profiles 10, 11, 12 have larger estimates compare to the other 

nine profiles. The corresponding successive difference estimate for the covariance 

matrix is calculated as 

. 

 

 

 

Step 2 

Using V̂  in step 1 as the estimated variance-covariance matrix, obtain the similarity 

matrix S , presented in table 4.3.  

 

 

 

12.987 7.291 0.181
ˆ 7.291 4.677 0.280

0.181 0.279  0.508
D

 
    
  

V
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Index of profiles  

Table 4.3: Similarity matrix using    1ˆ ˆ ˆ ˆˆ
T

ij i j D i js   β β V β β
 

ijs
 

Index of profiles i=1,2,…,12
1 2 3 4 5 6 7 8 9 10 11 12

 1 0 5.19 9 9.77 1.81 11.55 8.96 4.57 8.7 23.65 24.4 29.37
2 5.19 0 1.89 1.18 4.77 8.45 0.65 4.55 1.97 16.43 21.26 22.32
3 9 1.89 0 3.26 5.86 13.32 1.92 9.12 0.24 7.43 12.71 12.79
4 9.77 1.18 3.26 0 10.46 13.61 0.2 4.57 2.74 18.99 22.79 22.54
5 1.81 4.77 5.86 10.46 0 8.52 8.61 9.41 6.56 16.28 20.7 24.76
6 11.55 8.45 13.32 13.61 8.52 0 12.07 19.73 15.85 34.96 48.23 50.63
7 8.96 0.65 1.92 0.2 8.61 12.07 0 5.34 1.7 16.07 20.68 20.51
8 4.57 4.55 9.12 4.57 9.41 19.73 5.34 0 7.33 26.19 23.5 26.41
9 8.7 1.97 0.24 2.74 6.56 15.85 1.7 7.33 0 7.56 11.08 11.24

10 23.65 16.43 7.43 18.99 16.28 34.96 16.07 26.19 7.56 0 3.62 3.08
11 24.4 21.26 12.71 22.79 20.7 48.23 20.68 23.5 11.08 3.62 0 0.75
12 29.37 22.32 12.79 22.54 24.76 50.63 20.51 26.41 11.24 3.08 0.75 0

 

Step3 

The cluster history for a complete-linkage clustering of S is displayed in Table 4.4, with 

Figure 4.2 providing a dendrogram representation of the clustering process. The main 

cluster requires at least more than half of the profiles which are at least 7 profiles in this 

example. 

Table 4.4: Cluster history for example data 

Step  1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12
2 1 2 3 4 5 6 4 7 8 9 10 11
3 1 2 3 4 5 6 4 7 3 8 9 10
4 1 2 3 4 5 6 4 7 3 8 9 9
5 1 2 3 2 4 5 2 6 3 7 8 8
6 1 2 3 2 1 4 2 5 3 6 7 7
7 1 2 2 2 1 3 2 4 2 5 6 6
8 1 2 2 2 1 3 2 4 2 5 5 5
9 1 2 2 2 1 3 2 2 2 4 4 4

10 1 1 1 1 1 2 1 1 1 3 3 3
11 1 1 1 1 1 1 1 1 1 2 2 2
12 1 1 1 1 1 1 1 1 1 1 1 1
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Figure 4.2: Dendrogram for clustering of example dataset. 

 
After a total of ten steps, the initial main cluster contains profiles 1-4, and 7-9. Using the 

profile index to represent each profile, the initial main cluster is defined as 

 1, 2, 3, 4 ,5 ,8 ,9mainC  and  1, 2, 3, 4 ,5 ,8 ,9mainC C   . It is noted that there are 

six profiles are contained in the main cluster in cluster step 9 and that one more profile is 

added to this cluster in cluster step 10, resulting in seven profiles in the main cluster.  

Since this is the first cluster step in which at least more than half of the profiles are 

contained in the main cluster, the algorithm proceeds to step 4.  

Step 4 

The LMM is used to obtain the PA parameter estimate ˆ
PAβ  based on the profiles in C  

as  

 ˆ 14.406, -7.930, 1.932 ,T
PA β  

and the 2
iT  statistics for those profiles not contained in C  are displayed below 

Index of profiles not 
contained in C 

6 10 11 12 

2
iT

 
10.695 14.381 17.446 19.049 
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The cutoff value of 2
iT  is 

2

1 , 3
13.229

m df
cutoff    

 
 

Since the 6th profile has the 2T  statistics less than the cutoff, this profile is added to C   

to obtain  1:9 .newC    

 

Step 5 

Since ,newC C   set  1:9newC C   and repeat step 4 using the LMM. The updated ˆ
PAβ  

and the 2T  statistics are obtained as  

 ˆ 14.486, -7.764, 2.027T
PA β

 

Index of profiles not 
contained in C 

10 11 12 

2
iT

 
15.611 19.811 21.502 

 

Since the 2T  statistics above show that no profile can be added, the algorithm stops here 

with  1:9 .finalC   

 

Step 6 

All profiles in the final set finalC
 
are used with the LMM model to estimate the PA 

parameter vector ˆ ,CPAβ eblups ,î Cb
 
and variance-covariance matrix ĈV  as  

 

 ˆ 14.486, -7.764, 2.027 .T
PA β  

 

The successive difference estimate ,
ˆ

DCV  based on the ebulps is  
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Table 4.5: Eblups for the profiles in finalC  

Index of profiles 
contained in finalC    

0ib


 1ib


 2ib


 

1 2.045 -0.735 -1.028
2 -0.524 0.271 0.164 
3 -0.299 -0.354 0.586 
4 -1.502 0.686 0.222 
5 1.927 -0.933 -0.287
6 -1.27 0.499 0.358 
7 0.474 -0.072 -1.19 
8 -0.205 -0.44 0.347 
9 -0.645 1.078 0.829 

  

 The example shows that the algorithm correctly identifies the three profiles from 

the out-of-control process. In the cluster phase, the algorithm gives the initial main 

cluster of profiles as  1:5,7 :9 ,mainC  and two corresponding minor clusters 1C and 2,C

with 1 {6}C  and 2 {10,11,12}.C   In the profile clustering process, the profile in the 

minor cluster 1C  is added to the initial main cluster while the  profiles in 2C  are not 

added. This, of course, is the desired result. After correctly identifying the profiles from 

the out-of-control process, the final PA profile and variance-covariance matrix were 

estimated by using the in-control profiles in .finalC The cluster phase shows that the 6th, 

10th, 11th and 12th profiles in the two minor clusters do not behavior as similarly as other 

eight profiles in the initial main cluster.  

 

 The cluster-based method, using the 2T  statistics in terms of the estimated PA 

profile from all eight profiles that form the in-control process, correctly identified the 6th 

profile as a normal profile. The non-cluster-based method, on the other hand, using the 

2T  statistics in terms of the estimated PA profile from all profiles in the HDS, 

,

2.110 -0.969 -0.643
ˆ -0.969 0.619 0.209   .

-0.643 0.209 0.462
D

 
   
  

CV
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misclassified the 6th profile as from the out-of-control process profile and the 10th, 11th, 

12th profiles as from the in-control process.  

 

 The MVE estimator was applied in this simulated example, replacing the 

successive difference estimator, for both the cluster-based method and the non-cluster 

based method, Using MVE estimator; the non-cluster based method classified the 6th, 

11th and 12th profiles as from the out-of-control process. The cluster based method using 

the MVE in step 1 of the algorithm, on the other hand, misclassified the 6th profile as 

from the out-of-control process. Neither method, when using the MVE in place of the 

successive difference estimator, correctly identified the in-control and out-of-control 

profiles. The performance of the MVE as a replacement for the successive difference 

estimator is further evaluated in the following automobile engine application in Section 

4.4 and Monte Carlo study in Section 4.5.    

4.4 Automobile Engine Application  

In the automobile engine example there are 20 engines in the HDS and it is desired to 

study the relationship between engine speed (measured in revolutions per minute 

(RPM)) and engine torque. For each engine, the speed values are set equal to 1500, 

2000, 2500, 2660, 2800, 2940, 3500, 4000, 4500, 5000, 5225, 5500, 5775, and 6000 

RPM and the engine’s corresponding torque values were measured. The profile for each 

engine is the relationship between torque produced by the engine and engine’s speed in 

RPM. An engine with mechanical issues or other issues will yield a profile that is 

different from the other good engines. The raw data set (see Table 4.6), were individual 

data points for each engine are connected by straight-line segments, is shown in Figure 

4.3. This data set has been analyzed using profile monitoring methods by Amiri et al. 

(2010) and Abdel-Salam et al. (2013). 
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Table 4.6: The Automotive Industry Data, Torque (T) vs. RPM 

RPM T_E1 T_E2 T_E3 T_E4 T_E5 T_E6 T_E7 T_E8 T_E9 T_E10
1500 98.53 

102.65 
113.82 
115.26 
116.24 
117.06 
109.89 
109.65 
105.72 
99.74 
95.97 
89.47 
81.96 
74.9 

96.35 
100.74 
110.67 
113.06 
114.58 
114.98 
108.55 
107.41 
103.9 
97.99 
94.27 
88.45 
81.44 

75 

96.7
100.05
111.17
111.51
112.01
111.23
105.64
106.02
103.11

97.4 
93.88 
88.17 
81.18 
75.03 

96.75
100.87
110.14
110.48
110.94
111.17
105.78
103.37
102.23
96.06 
92.39 
86.54 
79.31 
73.13 

97.61
102.46
112.18
112.99
114.54

115 
108.99
107.95
103.65
96.94 
92.78 
86.41 
78.6 

71.97 

100.06
103.6 

112.74
113.56
112.85
114.49
108.95
108.24
105.56
98.92 
95.41 
89.19 
81.85 
75.09 

94.55 
103.22 
112.99 
114.18 
116.48 
115.33 
109.59 
108.47 
105.27 

97.9 
94.67 
88.23 
80.86 
73.93 

96.48 
100.87 
110.81 
113.2 

114.73 
115.13 
108.69 
107.55 
104.03 
98.12 
94.39 
88.56 
81.54 
75.09 

96.83
103.78
114.3 

114.62
117.19
116.61
110.43
109.61
106.32
99.44 
95.62 
89.46 

82 
75.83 

100.07
103.91
112.52
113.25
114.1 
114.1 

109.21
108.34
104.87
98.35 
94.76 
88.93 
82.19 
75.8 
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RPM T_E11 T_E12 T_E13 T_E14 T_E15 T_E16 T_E17 T_E18 T_E19 T_E20
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104.98 
114.9 
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116.65 
116.18 
109.65 
109.06 
105.01 
97.43 
94.04 
87.51 
79.36 
72.34 

97.29 
105.86 
115.25 
117.83 
117.97 
117.77 
111.31 
110.97 
107.37 
100.53 
97.17 
90.47 
83.51 
76.34 

93.13
101.02
111.25
111.83
113.27
113.04
105.6 

106.15
104.12
97.45 
94.68 
88.59 
81.08 
75.77 

93.11
103.43
112.02
113.2 
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98.26 
94.26 
89.09 
81.06 
74.14 

95.38
101.25
111.53
112.11
112.6 

111.76
108.12
106.62
102.92
96.35 
93.14 
86.75 
80.27 
73.47 

98.28
101.29
112.2 

112.57
113.06
112.37
107.03
106.37
104.1 
98.01 
94.21 
87.53 
80.08 
73.9 

96.79 
103.64 
112.73 
113.92 
113.35 
112.78 
108.2 

107.06 
105.27 
98.47 
95.67 
89.41 
82.57 
76.31 

96.45 
104.52 
113.78 
114.59 
115.4 

115.86 
110.78 
110.21 
106.75 
99.94 
96.94 
90.24 
82.65 
76.76 

91.53
100.72
110.71
111.72
112.29
111.61
105.21
106.22
101.73
96.59 
93.78 
87.29 
78.97 
72.8 

98.37
102.4 
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82.74 
75.82 
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 Figure 4.3 shows that it’s reasonable to assume the quadratic relationship 

between the RPM and torque for each engine. The quadratic mixed model is applied in 

the cluster-based algorithm.  For the quadratic mixed model, we assume that for the  thi  

engine, the torque produced by the thj  RPM is 

 
      2

0 0 1 1 2 2
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Here the PA parameter vector is  , ,PA   β    and the PS estimate for thi  engine 

is  0 1 2
ˆ ˆ ˆˆ ˆ ˆ ˆ, ,i i i ib b b      β    . The first step of the proposed method is to 

represent each profile by using its estimated parameters.  In our example the fixed 

quadratic model is used to obtain the estimated parameters for each profile and their 

estimates are listed in Table 4.7. 

 

Table 4.7: The parameter estimates for 20 engines  

Index of Engines 
0i


 1i


 2i


 

1 59.35763 0.034016 -5.22E-06 
2 58.42011 0.033058 -5.04E-06 
3 62.73607 0.029578 -4.56E-06 
4 64.27488 0.028636 -4.50E-06 
5 59.11457 0.033636 -5.24E-06 
6 65.22353 0.029948 -4.68E-06 
7 54.68075 0.036109 -5.48E-06 
8 58.49737 0.033101 -5.05E-06 
9 57.80251 0.034873 -5.32E-06 
10 66.45989 0.029254 -4.60E-06 
11 60.04213 0.034305 -5.36E-06 
12 58.36206 0.035396 -5.39E-06 
13 57.00076 0.032874 -4.96E-06 
14 54.81515 0.035156 -5.31E-06 
15 58.9371 0.032373 -4.98E-06 
16 63.04532 0.030415 -4.74E-06 
17 62.93319 0.030579 -4.71E-06 
18 57.70932 0.034596 -5.23E-06 
19 53.82698 0.034500 -5.21E-06 
20 60.25040 0.032634 -4.97E-06 

 

The corresponding successive difference estimate for the covariance matrix is calculated 

as 

3 7

3 6 10
D

7 10 13

1.225 7.319e 9.834e
ˆ 7.319e 5.361e 7.398e

9.834e 7.398e 1.035e

 

  
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 Using the fixed estimates in Table 4.7 and their corresponding covariance 

estimate, we obtain the similarity matrix which is then used to cluster the engines.. The 

cluster history is listed in Table 4.8.  One can see that the initial main cluster set contains  

6 profiles in step 17 and  that 5 more profiles are added to this initial main cluster set in 

cluster step 18, resulting in 11 profiles in the main cluster. Since this is the first step that 

the main cluster set contains greater than half of the profiles, the cluster step of the 

algorithm stops here. The cluster history (Table 4.8) shows that the proposed algorithm 

ended up with 11 engines in the initial main cluster set, consisting of engines 1,2,7, 8, 9, 

12, 13, 14, 18, 19, and 20. The corresponding estimated PA parameter PAβ̂ , which is 

obtained by fitting the quadratic mixed model to the data of these 11 engines, is  

 06
PA

ˆ 57.338, 0.0342, 5.199e β  

Using this estimated PAβ̂ , the 2T  statistics for the engines not included in the initial 

main cluster set are calculated and listed below.  

 

Index of Engine 3 4 5 6 10 11 15 16 17

2
iT  

2.4499 6.7032 7.1097 3.5364 5.2611 12.2062 1.3232 2.3276 1.2903

 

The cutoff value for the 2T  statistic here is 2
1 ,

11.93
m q χ , where 0.05  , m=20 and, q, 

the degree of freedom, equals 2 because the eblups for the quadratic terms are equivalent 

to 0 in this example. According to the observed 2T  statistics and the cutoff value, all 

engines in the minor set will be added to the initial main cluster except the 11th engine 

and the updated estimated PA parameter vector is  

 06
PA

ˆ 59.655, 0.0327, 5.010e β  

The  2T  statistic for the 11th engine was updated by using this updated estimated PA 

parameters but it is still greater than the cutoff value so we fail to add the 11th engine to 

the main cluster set and conclude that this engine probably has some mechanical issues 

or other issues. This agrees with the results found using a nonparametric mixed model 

profile method used by Abdel-Salam et al. (2013).    
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Table 4.8: Cluster history for 20 engines 

Step  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
2 1 2 3 4 5 6 7 2 8 9 10 11 12 13 14 15 16 17 18 19 
3 1 2 3 4 5 6 7 2 8 6 9 10 11 12 13 14 15 16 17 18 
4 1 2 3 4 5 6 7 2 1 6 8 9 10 11 12 13 14 15 16 17 
5 1 2 3 4 5 6 7 2 1 6 8 9 10 11 12 13 14 15 16 15 
6 1 2 3 4 5 6 7 2 1 6 8 9 10 2 11 12 13 14 15 14 
7 1 2 3 4 5 6 7 2 1 6 8 1 9 2 10 11 12 13 14 13 
8 1 2 3 4 5 6 7 2 1 6 8 1 9 2 10 11 3 12 13 12 
9 1 2 3 4 5 6 7 2 1 6 8 1 9 2 10 4 3 11 12 11 
10 1 2 3 4 5 6 7 2 1 6 5 1 8 2 9 4 3 10 11 10 
11 1 2 3 4 5 6 2 2 1 6 5 1 7 2 8 4 3 9 10 9 
12 1 2 3 4 5 6 2 2 1 6 5 1 7 2 8 4 3 9 7 9 
13 1 2 3 4 5 6 2 2 1 6 5 1 7 2 8 4 3 1 7 1 
14 1 2 3 4 5 6 2 2 1 6 5 1 7 2 4 4 3 1 7 1 
15 1 2 3 4 5 6 2 2 1 6 5 1 2 2 4 4 3 1 2 1 
16 1 2 3 4 5 3 2 2 1 3 5 1 2 2 4 4 3 1 2 1 
17 1 2 3 3 4 3 2 2 1 3 4 1 2 2 3 3 3 1 2 1 
18 1 1 2 2 3 2 1 1 1 2 3 1 1 1 2 2 2 1 1 1 
19 1 1 2 2 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1 
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
 

 

  

Figure 4.3: The raw data set for 20 automobile engines 

The cluster dendrogram in Figure 4.4 shows that engine 5 and engine 11 are clustered in 

the same minor set. After the sequentially addition of the remaining engines to the initial 

main cluster set, the cluster-based method identified engine 11 as from the out-of-control 
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process and engine 5 as from the in-control process. The non-cluster-based method did 

not detect any engine from an out-of-control process. . 

 

 

 

Figure 4.4: Dendrogram for clustering of 20 engines 

 

4.5 A Monte Carlo Study 

 In the previous chapter, we introduced the non-cluster-based method proposed by 

Jensen, et al. (2008) for Phase I profile monitoring in LMM. A Monte-Carlo study is 

performed in order to understand and compare the cluster-based method proposed in this 

chapter to the non-cluster-based method. 

 

 Recall that the main purpose of Phase I profile monitoring is to correctly separate 

the in-control profiles from the out-of-control profiles. Both the cluster-based method 

and the non-cluster-based method identify those profiles in-control and those profiles 

that are not in-control. Various statistics can be computed to compare these methods. 
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One performance characteristic of Phase I analysis is the probability of signal (POS). 

The POS only represents the ability of the method to determine the presence of the 

profiles from the out-of-control process in the HDS. The POS does not give any 

information about whether the classification of profiles into the two categories of in-

control and out-of-control is correctly specified. Each method’s ability to make both 

correct classifications and incorrect classifications can be evaluated by computing the 

following performance characteristics: fraction correctly classified (FCC), sensitivity, 

specificity, false positive rate (FPR) and false negative rate (FNR). Fraker et al. (2008) 

pointed out that similar metrics are used in biosurveillance for applications in which 

outbreak time periods are to be distinguished from non-outbreak time periods. The 

definitions of these terms will be given below.  

 

 In each HDS, there are two sets of profiles. One set is from the in-control 

process, and the other is from the out-of-control process. After completing the Phase I 

analysis, the following classification table (Table 4.9) can be constructed. 

 

Table 4.9: Classification table for Phase I analysis 

Classified set 

 Actual set 

In-control process Out-of-control process 

In-control process  A B 

Out-of-control process C D 

 

 In Table 4.9, “A” represents the number of profiles from the in-control process 

that are correctly identified as from the in-control process and “D” represents the number 

of profiles from the out-of-control process that are correctly identified as from the out-

of-control process, respectively, after the Phase I analysis. “B” represents the number of 

profiles which are from the in-control process but mistakenly classified as from the out-

of-control process while “C” represents the number of profiles which are from the out-

of-control process but classified as from the in-control process. With this table, the FCC 

can be defined as  
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A D
FCC

A B C D




  
                                                            (4.5) 

 

The sensitivity measures the ability of the classification method to identify those profiles 

from the in-control process correctly as profiles from the in-control process and it can be 

calculated as  

 

A
Sensitivity

A B




                                                         (4.6) 

 

The specificity, on the other hand, represents the ability to identify those profiles from 

the out-of-control process correctly as profiles from the out-of-control process and it can 

be obtained as  

 

D
Specificity

C D



                                                         (4.7) 

 

FPR is the fraction of those profiles classified as from the in-control process that are 

actually from the out-of-control process.  FNR is the fraction of those profiles classified 

as from the out-of-control process that are actually from the in-control process. FPR and 

FNR are computed as 

 

C
FPR

A C



                                                                (4.8) 

and 

 

B
FNR

B D



                                                             (4.9)
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It is easy to show that all these metrics are bounded by 0 and 1, and that a method will 

perform well in Phase I analysis by achieving large values for FCC, sensitivity and 

specificity and small values for FPR and FNR.  

 

 A Monte-Carlo study is used to compare the non-cluster-based method and the 

cluster-based method using the performance measures of POS, FCC, sensitivity and 

specificity, FPR, and FNR discussed above. This Monte-Carlo study assumes the in-

control profiles are randomly generated from the model 

 
2

0 1 2 1, 1, 2, ..., , 1, 2, ..., .ij i i ij i ij ijy x x i m j n                                            (4.10) 

 

where 

2
0 2 0i ix b   , 

1 1 2 12i ix b     , 

2 2 2i ib   . 

 

Here,  T
1 2 3  β represents the fixed parameters and  1 2 3

T
i i i ib b b b represents the 

random effects. Note, the corresponding PA parameter vector can be written as

 2
2 1 2 2, 2 ,T

PA x x     β , where 1 and 2  are fixed parameters and

1 1

m n

ij
i j

x

x
mn

  


 . Consequently, the PA profile can be written as  

 
2 2

, 2 1 2 2( 2 ) 1, 2, ..., .PA j j jy x x x x j n                       (4.11) 

 

It is easy to show that (4.11) can be simplified as  

 

 2

, 1 2 , 1,2,..., .PA j j jy x x x j n                                 (4.12) 
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The out-of-control profiles are also generated from equation (4.10), but with  

 

  2
0 2 0i ishift x b   

, 

 1 1 2 12i ishift x b     
, 

 2 2 2i ishift b   
, 

 

and its corresponding PA profile  is  

 

     2 2
, 2 1 2 22 ,PA j j jy shift x shift x x shift x             

1,2,...,j n                                                              (4.13) 

Also, (4.13) can be simplified as  

 

  2

, 1 2 , 1, 2, ..., .PA j j jy x shift x x j n                                        (4.14) 

 

Note, with the simplification forms of PA profiles (4.12) and (4.14), the difference 

between the in-control PA profile and the out-of-control PA profile is based on the value 

of the shift. For example, when the shift =0, (4.12) and (4.14) are equivalent, which 

means all profiles are from the stable process. When the shift does not equal 0, the PA 

profiles from (4.12) and (4.14) are different and imply that the stable process has 

changed so not all the profiles are from the stable process. The performance of the two 

methods is evaluated based on the different values of the shift. In above equations, it is 

assumed that 
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2~ ,N I   0
, 

                                                                                                                                            

and                                                                                                                              ( 4.15) 

, 1,2,..., , 1, 2,..., .ijx j i m j n    
 

Here, 2 2 2
0 1 2 0.5,     2 1  and 1 23, 2   .It is also assumed that

1 20, 30m m   and 10n  . Thus, there are 20 profiles from the in-control process and 

10 from the out-of-control process. The PA parameter vector for the in-control process is 

set at T
PAβ =  2

2 1 2 2, 2 ,x x    =  60.5, 19, 2 . 

 

 Before comparing the POS of the non-cluster-based method and the cluster-based 

method, both methods need to be calibrated to insure they have the same the same 

nominal POS, 0 , when the shift=0. To achieve this, the empirical nominal POS value,

0 , is calculated  for the cluster-based method by setting shift=0 and repeating the 

cluster-based method using  (4.3)  MC times, where MC represents the number of Monte 

Carlo repetitions. Here, MC=10,000. The total number Monte Carlo replications with at 

least one declared profile from the out-of-control process (that is, at least one “signal”) is 

determined and denoted by totals . The empirical nominal value 0 is then calculated as 

 

0
totals

MC
 

                                                                    
(4.16) 

 

 The next step in the calibration is to find the critical value for the non-cluster-

based method so that the non-cluster-based method will have the same 0  as the cluster-

based method when the shift=0. To do this, the maximum 2
iT  statistic is calculated 

among the m 2
iT for each Monte Carlo replication. That is, compute 

 

2_ max( ), 1, 2,...,k iT Stat T k MC                                            (4.17) 
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with shift=0 and obtain the empirical critical value for the non-cluster-based method as 

the  01
th  quantile of _ , 1,2,...,kT Stat k MC  .  

 

 In this Monte Carlo study, the cluster-based method has empirical 0 0.0454 

and the corresponding critical value for the non-cluster-based method is 15.2497. Note 

that the empirical critical value for the non-cluster-based method is consistent with 

m=30, 0.0454

2
1 , 3

15.3880
m df

     suggested for use by the non-cluster-based method. With 

both methods properly calibrated, the Monte Carlo study continues with MC=5,000 and 

with shift = (0.05, 0.075, 0.1, 0.125, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3). For each value 

of the shift factor, the performance measures FCC, sensitivity, specificity, FNR, FPR 

and POS are averaged over the MC replications. The results are presented in Table 4.10. 

 

Table 4.10: Average of performances based on a Monte Carlo study  

(Within each cell the metrics are listed in the following order: cluster and non-cluster 

results with successive difference estimator and cluster and non-cluster results with the 

MVE estimator.  The bold cells represent the better value) 

 

Shift  FCC Sensitivity Specificity FPR FNR POS
0.05 0.6674 0.9981 0.0059 0.3324 0.3922 0.0864

0.6670 0.9978 0.0055 0.3326 0.4429 0.0904
0.6663 0.9982 0.0024 0.9976 0.0018 0.0480
0.6663 0.9979 0.003 0.997 0.0021 0.0476

0.075 0.6704 0.9978 0.0156 0.3303 0.2173 0.1578
0.6693 0.9974 0.0132 0.3310 0.2814 0.1594
0.6663 0.9983 0.0023 0.9977 0.0017 0.0468
0.6662 0.9979 0.0029 0.9971 0.0021 0.0454

0.1 0.6782 0.9978 0.0391 0.3250 0.1016 0.2876
0.6731 0.9955 0.0282 0.3280 0.2409 0.2812
0.6663 0.998 0.0028 0.9972 0.0020 0.0422
0.6661 0.9976 0.0032 0.9968 0.0024 0.0486

0.125 0.6948 0.9983 0.0879 0.3136 0.0381 0.4478
0.6805 0.9944 0.0528 0.3226 0.1749 0.4314
0.6667 0.9983 0.0035 0.9965 0.0017 0.0497
0.6665 0.998 0.0036 0.9964 0.002 0.0492

0.15 0.7268 0.9986 0.1832 0.2903 0.0154 0.6396
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0.6913 0.9920 0.0899 0.3145 0.1518 0.5854
0.6669 0.9983 0.0042 0.9958 0.0017 0.0498
0.6667 0.998 0.004 0.996 0.0020 0.0498

0.175 0.7697 0.9992 0.3106 0.2565 0.0050 0.7812
0.7060 0.9902 0.1378 0.3033 0.1249 0.7236
0.6680 0.9985 0.0071 0.9929 0.0015 0.0508
0.6673 0.9980 0.0061 0.9939 0.0020 0.0586

0.2 0.8234 0.9993 0.4716 0.2091 0.0030 0.8790
0.7227 0.9871 0.1940 0.2899 0.1176 0.8230
0.6702 0.9987 0.0132 0.9868 0.0013 0.0756
0.6686 0.9981 0.0096 0.9904 0.0019 0.0752

0.225 0.8766 0.9995 0.6309 0.1559 0.0016 0.9438
0.7432 0.9854 0.2588 0.2733 0.1012 0.8968
0.6760 0.9988 0.0304 0.9696 0.0012 0.1026
0.6711 0.998 0.0172 0.9828 0.0020 0.1106

0.25 0.9219 0.9994 0.7670 0.1044 0.0016 0.9750
0.7627 0.9821 0.3241 0.2560 0.0996 0.9336
0.6873 0.999 0.064 0.936 0.001 0.1688
0.6761 0.998 0.0322 0.9678 0.002 0.1612

0.275 0.9548 0.9996 0.8654 0.0631 0.0010 0.9896
0.7855 0.9806 0.3953 0.2357 0.0896 0.9698
0.7068 0.9991 0.1222 0.8778 0.0009 0.2640
0.6844 0.9979 0.0574 0.9426 0.0021 0.2606

0.3 0.9749 0.9995 0.9256 0.0359 0.0011 0.9956
0.8052 0.9775 0.4604 0.2163 0.0890 0.9806
0.7342 0.999 0.2045 0.7955 0.0010 0.3560
0.6955 0.9974 0.0918 0.9082 0.0026 0.3550

 

 Table 4.10 shows that when the shift is very small (shift less than or equal to 

0.075), the non-cluster-based method has a slightly larger POS than the cluster-based 

method, but the cluster-based method has superior performance based on the other 

criteria. For example, when the shift is 0.05, the cluster-based method has FNR=0.3922 

while the non-cluster-based method has FNR= 0.4429. Also, the cluster-based method 

has larger values for FCC, specificity and sensitivity with smaller FPR when the shift is 

0.05. When the shift is greater than 0.075, the cluster-based method gives uniformly 

superior results compared to the non-cluster-based method based on all performance 

criteria. For example, when the shift is equal to 0.2, the cluster-based method has the 

FCC and FNR equal 0.8234 and 0.0030, respectively, while the non-cluster-based 

method has the FCC and FNR are equal to 0.7277 and 0.1176, respectively. Also, the 
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POS of the cluster-based method is 0.8790 while the POS for the non-cluster-based 

method is 0.8230. Clearly the cluster-based method is superior to the non-cluster-based 

method when one third of the profiles from the out-of-control process are due to a 

relatively large shift in the process. 

 

 When the MVE is used the cluster-based method is still superior to the non-

cluster-based method although the advantage is not nearly as great as when the 

successive difference estimator is used.  It is clearly seen that the results for the cluster-

based method using the successive difference estimator are superior to those for this 

method when using the MVE.  In fact, it is also illustrated that the results when using the 

MVE are generally very poor, disappointedly so, when compared to those using the 

successive difference estimator.  

 

 The average estimated PA parameters are also calculated for each shift factor. 

Table 4.11 lists the result for both cluster-based method and non-cluster-based method. 

Table 4.11 shows that both estimators have bias in parameter estimation compared to the 

true in-control PA parameters  60.5, 19, 2T
PA  β

 
when one third of the profiles are 

from the out-of-control process. However, the estimated PA parameters from the cluster-

based method have smaller bias than those from the non-cluster-based method. When the 

shift is small, both methods provide estimators with small bias. However, for the non-

cluster-based method, the bias increases monotonically as the shift increases. For exam-

ple, when the shift is 0.05, the non-cluster-based method has estimated PA parameters of 

 ˆ 61.0026, 19.1802, 2.0190 ,T
PA  β while when the shift equals 0.3, the non-cluster-

based method has estimated PA parameters of   ˆ 63.5235, 20.0981, 2.1023 .T
PA  β  

The bias of the estimate from the cluster-based method, on the other hand, is increasing 

as the shift increases and then decreases when the shift is larger than 0.15. For example, 

in Table 6, the cluster-based method provides the estimate with the smallest bias when 

the shift equals 0.3 and the second smallest bias when the shift is equal to 0.05. Table 

4.11 also shows that the parameter estimates resulting from the cluster-based method 
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have smaller standard errors than the parameter estimated based on the non-cluster-based 

method.  

 

         The results in Table 4.10 illustrate the value of a procedure that can correctly 

distinguish those profiles from the in-control-process from those from the out-of-control 

process. Table 4.11 illustrates that when profiles from the out-of-control process are 

eliminated from the HDS, improved estimates of the PA coefficients can be obtained.  

 

Table 4.11: Average of PA parameter estimates based on a Monte Carlo study  

(Within each cell the metrics are listed in the following order: cluster and non-cluster 

results with successive difference estimator and cluster and non-cluster results with the 

MVE estimator. The bold cells represent estimates closer to the true parameter values of 

 60.5, 19, 2T
PA  β and smaller standard error)   

Shift  
0̂  1̂ 2̂  0

ˆse   1̂se 
 

 2
ˆse 

0.05 60.9942 -19.1802 2.0149 0.0088 0.0090 0.0094
61.0026 -19.1814 2.0190 0.0098 0.0097 0.0100
61.0059 -19.1858 2.0167 0.0093 0.0090 0.0094
61.0068 -19.1860 2.0167 0.0109 0.0098 0.0100

0.075 61.2410 -19.2674 2.0227 0.0103 0.0093 0.0096
61.2574 -19.2736 2.0234 0.0117 0.0099 0.0100
61.2581 -19.2777 2.0249 0.0114 0.0092 0.0092
61.2589 -19.2777 2.0250 0.0145 0.0103 0.0100

0.1 61.4596 -19.3482 2.0308 0.0018 0.0096 0.0011
61.5068 -19.3648 2.0357 0.0136 0.0102 0.0100
61.5095 -19.3691 2.0333 0.0137 0.0096 0.0011
61.511 -19.3694 2.0333 0.019 0.0112 0.01

0.125 61.6299 -19.4085 2.036 0.0129 0.0099 0.0097
61.7615 -19.4569 2.0401 0.0154 0.0106 0.0100
61.7604 -19.4602 2.0413 0.0159 0.01 0.0092
61.7631 -19.461 2.0417 0.0239 0.0124 0.0100

0.15 61.6991 -19.4370 2.0384 0.0139 0.0101 0.0098
62.0110 -19.5481 2.0523 0.0117 0.0099 0.0100
62.0107 -19.5511 2.0497 0.0180 0.0104 0.0098
62.0152 -19.5527 2.0500 0.0290 0.0137 0.0100

0.175 61.6867 -19.4296 2.0372 0.0145 0.0102 0.0097
62.2657 -19.6402 2.0568 0.0182 0.0112 0.0100
62.2562 -19.6403 2.0576 0.0197 0.0109 0.0093
62.2673 -19.6444 2.0583 0.0342 0.0152 0.0101
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0.2 61.0702 -19.2083 2.0176 0.0142 0.0102 0.0098
63.0193 -19.9148 2.0857 0.0218 0.0120 0.0100
62.4933 -19.7266 2.0655 0.0211 0.0113 0.0099
62.5193 -19.736 2.0667 0.0394 0.0168 0.0101

0.225 61.3216 -19.2955 2.0262 0.0147 0.0103 0.0097
62.7699 -19.8236 2.0734 0.0206 0.0117 0.0100
62.7021 -19.8024 2.0726 0.0223 0.0117 0.0095
62.7714 -19.8277 2.0750 0.0447 0.0185 0.0101

0.25 61.0702 -19.2083 2.0176 0.0142 0.0102 0.0098
63.0193 -19.9148 2.0857 0.0218 0.0120 0.0100
62.8608 -19.8598 2.078248 0.023015 0.011915 0.0098
63.0235 -19.9194 2.0833 0.0499 0.0201 0.0101

0.275 60.8742 -19.1325 2.0108 0.0133 0.0100 0.0098
63.2740 -20.0069 2.0901 0.0229 0.0123 0.0100
62.9347 -19.8868 2.0805 0.0235 0.0121 0.0096
63.2756 -20.011 2.0917 0.0551 0.0219 0.0102

0.3 60.7290 -19.0814 2.0081 0.0122 0.0099 0.0098
63.5235 -20.0981 2.1023 0.0240 0.0125 0.0100
62.9074 -19.8762 2.0790 0.0236 0.0122 0.0098
63.5277 -20.1027 2.1000 0.0603 0.0236 0.0102

 

The above Monte Carlo study compares the cluster-based method and non-cluster-

based method when 1/3 of profiles are from the out-of-control process, other ratios of 

out-of-control profiles have been tried as well and the conclusions obtained are very 

similar to those for the 1/3 ratio. For example, when the proportion of profiles from the 

out-of-control process is 1/10, the FPR values for the cluster-based method are 0.1283, 

0.0137 and 0.0072 with shift values 0.1, 0.2 and 0.3 respectively. The corresponding 

FPR values for the non-cluster-based method are 0.1489, 0.2466 and 0.1191. When 4/10 

of profiles are from the out-of-control process and for shift values equal 0.1, 0.2 and 0.3, 

the FCC values for the cluster-based method are 0.6081, 0.7560 and 0.9623, 

respectively. The corresponding FCC values for the non-cluster-based method are 

0.6041, 0.6365 and 0.6956. Our simulation results show that the cluster-based method 

gives superior results when compared to the non-cluster-based method as long as the 

shift size is moderate or large for ratio values up to 1/2. At the ratio value of 1/2 both 

methods are equally distorted. 
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4.6 Further Analysis based on the Monte Carlo Study 

 The Monte Carlo study showed  that when the shift is very small, the non-cluster-

based method works as well  as the cluster-based method. However, when shift is not 

very small, the cluster-based method works uniformly better than the non-cluster-based 

method. To gain insight into those situations where the cluster-based method 

outperforms the non-clusted based method, both methods are compared using three 

simulated data sets based on (4.13) under the condition of either a small, moderate or 

large shift. The three corresoponding shift values  are chosen as shift=0.05, 0.175 and 

0.3.  

 

The first Monte Carlo simulation is given when the shift=0.05. The corresponding plots 

for 30 true PS curves and estimated PS curves are given in Figure 4.5 . The PS curves in 

blue are from the in-control process and those in red are from the not-in-control process.  

 

 

Figure 4.5: Plot of true profiles with shift=0.05 

(Red curves represent the profiles from the out-of-control process). 

 In Figure 4.5, it seems that the 29th profile has an apparently “different” trend 

compare to other profiles.  Also, the 26th and the 28th profiles also show a “different” 

2 4 6 8 10

-5
0

0
5

0
1

00
15

0
2

0
0

2
5

0

plot of the nature's profiles(shift=0.05)

x

y

1

2

3

4

5

67

8

9

10

11
12

13

14

15

16

17

1819

20

21

22

23

24

25

26

27

28

29

30

2 4 6 8 10

-5
0

0
5

0
1

00
15

0
2

0
0

2
50

plot of the estimated profiles(shift=0.05)

x

y

1

2

3

4

5

67

8

9

10

11
12

13

14

15

16

17

1819

20

21

22

23

24

25

26

27

28

29

30



 

 

     

 

88

trend compare to other profiles. Both methods determined the 29th profile as from the 

out-of-control process and classified the other 29 profiles as from the in-control process. 

Thus, nine profiles which from the out-of-control process were misclassified as from the 

in-control process. The corresponding classification tables are given below. 

 

Table 4.12: Classification table for non-cluster-based method (shift=0.05) 

Classified set 
 
 Actual set 

In-control process Out-of-control process 

In-control process  20 0 

Out-of-control process 9 1 

 

 

Table 4.13: Classification table for cluster-based method (shift=0.05) 

Classified set 
 
 Actual set 

In-control process Out-of-control process 

In-control process 20 0 

Out-of-control process 9 1 

 

 With these two classification tables, it is easy to show that both methods give the 

same FCC, Sensitivity, Specificity, FNR and FPR. This one simulation result is 

consistent with the result obtained in the Monte Carlo study above that the two methods 

are nearly equivalent when the shift is very small.  

 

 Another Monte Carlo simulation is given when shift=0.175 and the 

corresponding plot for the 30 true and estimated profiles are shown in Figure 4.6.  As in 

the first example, the PS curves in blue are from the in-control process and those in red 

are from the not-in-control process. 
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Figure 4.6: Plot of true profiles with shift=0.175 

(Red curves represent the profiles from the out-of-control process). 

 In Figure 4.6, it is not easy to conclude that  the profiles from the out-of-control 

process have a “different” trend from  the other  profiles. One  may only conclude that 

the 20th and the 27th profiles look “different” compare to other profiles. The non-cluster-

based method specified the 12th, 19th, 22th, 23th, 25th, 26th, and 30th profiles (which are all 

located in the middle of the profiles in Figure 4.6) as from the out-of-control process. 

Thus, this method correctly identified five out of ten profiles that are from the out-of-

control process and misclassified two profiles that are from the in-control process as 

from the out-of-control process. The corresponding classification table is given in Table 

4.14.  

 

Table 4.14: Classification table for cluster-based method (shift=0.175) 

Classified set 
 
 Actual set 

In-control process Out-of-control process 

In-control process 18 2 

Out-of-control process 5 5 
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 The cluster-based method, on the other hand, correctly identified eight of ten 

profiles from the out-of-control process, misclassifying   the 24th and 28th profiles. Recall 

in Figure 4.6, one may conclude that both 20th and 27th profiles are from the out-of-

control process based on the plot. However, the cluster-based method correctly identified 

the 27th profile as from the out-of-control process and specified the 20th profile as from 

the in-control process. Table 4.15 is the classification table for the cluster-based method.  

 

Table 4.15: Classification table for cluster-based method (shift=0.175) 

Classified set 

 Actual set 

In-control process Out-of-control process 

In-control process 20 0 

Out-of-control process 2 8 

 

 Once again, this example gives tabled results very similar to those seen in Table 

4.10. It can be showed that when the shift=0.175, both methods cannot correctly identify 

all the profiles from the out-of-control process. However, the profiles specified from the 

out-of-control process by the cluster-based method are actually from the out-of-control 

process, while the profiles specified from the out-of-control process by the non-cluster-

based method are not. For example, in this one simulation case, the 12th and 19th profiles 

are actual from the in-control process but are specified as the out-of-control process by 

the non-cluster method.  

 

 To further see the difference of the two methods, one more simulation is repeated 

with shift=0.3. The plots of the 30 true and estimated PS curves are given in Figure 4.7. 

Also, the PS curves in blue are from the in-control process and those in red are from the 

not-in-control process. 
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Figure 4.7: Plot of true profiles with shift=0.3 

(Red curves represent the profiles from the out-of-control process). 

   

Table 4.16: The parameter estimates for 30 profiles (shift=0.3)  

Index of profiles ߚመଵ௜ መଶ௜ߚ መଷ௜ߚ
1 61.342 -19.616 2.463 
2 59.091 -18.201 2.274 
3 58.584 -16.469 1.848 
4 58.582 -17.767 1.355 
5 62.525 -21.027 2.653 
6 61.763 -18.778 2.581 
7 61.186 -19.656 3.285 
8 61.697 -18.082 1.363 
9 58.344 -18.911 1.564 

10 60.553 -19.953 1.433 
11 60.501 -19.356 1.848 
12 60.83 -20.423 1.781 
13 60.511 -18.417 2.7 
14 58.83 -17.031 2.428 
15 62.278 -19.889 2.23 
16 59.15 -18.364 1.7 
17 61.943 -18.442 2.451 
18 59.833 -19.308 1.329 
19 59.612 -18.444 3.077 
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20 60.879 -21.045 1.607 
21 68.363 -20.227 2.688 

22 69.019 -21.484 2.767 

23 67.704 -21.689 2.259 

24 68.502 -21.214 3.026 

25 68.072 -22.996 2.101 

26 69.203 -21.206 1.573 

27 69.394 -22.368 3.536 

28 70.453 -22.654 1.131 

29 68.889 -22.747 2.065 

30 70.411 -23.264 2.069 

 

Similar to the previous plots, Figure 4.7 does not reveal the profiles from the out-of-

control process as “different” from those profiles from the in-control process except the 

28th profile seems to have the obvious “different” trend. However, the estimated 

coefficients for each profile based on the fixed effects model, listed in Table 4.16,  show 

that the profiles from the out-of-control process do have the “different” estimated 

coefficients compare to the other profiles. For example, the profiles from the out-of-

control process have larger estimates  for the intercept term and smaller estimates for the 

linear term.   

 

 When shift=0.3, the non-cluster-based method correctly specified 5 out of the 10 

profiles that from the out-of-control process, which are from the 26th to 30th profiles and 

it misclassified the 3rd profile as from the out-of-control process. The cluster-based 

method, on the other hand, correctly separated all the profiles from the in-control and 

out-of-control process. The classification tables for the non-cluster-based method and 

cluster-based method are Tables 4.17 and 4.18 respectively.  

Table 4.17: Classification table for cluster-based method (shift=0.3) 

Classified set 
 
 Actual set 

In-control process Out-of-control process 

In-control process 19 1 

Out-of-control process 5 5 
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Table 4.18: Classification table for cluster-based method (shift=0.3) 

Classified set 
 
 Actual set 

In-control process Out-of-control process 

In-control process 20 0 

Out-of-control process 0 10 

 

 One might be curious that why the cluster-based method can correclty identify all 

profiles that from the out-out-control process while the non-cluster-based method can 

only correctly identify some of them. To gain insight into the reason, the detailed 

explantation with two 3D plots are listed below.  

 

 Recall that both cluster-based method and non-cluster-based method can use the 

parametric approach to obtain the 2T  statistic. In equation (3.34), one can compute  the 

2T  statistic for each PS curve by using the standardized distance of its estimated 

parameter vector to the estimated PA parameter vector. With this property , one can treat 

each 1p  parameter vector as a data point in the p dimensional space and the 2T  

statisic for the thi  PS cruve then can be explained as the standardized distance between 

the thi  data point to the data point that represents the PA parameter vector in this p 

dimensional space. In the above example, each profile can be represented as a quadratic 

function and thus p=3. Figures 4.8 and 4.9 give the the 3D plots for the 30 estimated PS 

parameter vectors and PA parameter vector for     both  methods, when the shift =0.3.  
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Figure 4.8: 3D Plot of estimated PA and PS parameter vectors when the shift=0.3 

(Blue dots and red dots represent the estimated parameter vectors for profiles from in-

control and out-of-control process respectively; the green dot represents the PA 

parameter vector) 

 

 Recall that the cluster-based method  uses the profiles in the final set finalC  to 

estimate the PA parameter vector. In this particular example, the final set finalC  includes 

all 20 profiles from the in-control process and no profiles from the out-of-control process. 

Then, the PA parameter vector is estiamted  by using all 20 profiles that from the in-

control process, which is represented by the green dot in Figure 4.8.  In Figure 4.8,  the 

green dot is in the middle of the blue dots (which  represent the estimated PS parameter 

vectors for the profiles from the in-control process). It is seen that all red dots (which 

represent the estimated PS parameter vectors for the profiles from the out-of-control 

process) have larger distances to the green dot than that of the blue dots. Thus , it is 

resonable that no outlying  profile can be added  to the main cluster by using the cluster-

based method. Additionally,Figure 4.8 also shows that the the blue dots are clustered 

together and the red dots are clustered together, provided a true representation of the fact 

that all profiles from the in-control process are from one population and all profiless 

3D Scatterplot for estiamted PA and PS parameters
(cluster based method) 
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from out-of-control process are from another population. The non-cluster-based method, 

on the other hand, estimates the PA profile first by using all 30 profiles and its estimated 

PA and PS parameters are plotted in Figure 4.9. 

 

 

Figure 4.9: 3D Plot of estimated PA and PS parameters 

(Blue dots and red dots represent the profiles from in-control and out-of-control process 

respectively; the green dot represents the PA parameters)  

 

 Unlike Figure 4.8, Figure 4.9 shows that the green dot (which represents the 

estimated PA parameter vector) is “pulled” to the direction of the red dots (which 

represent the estimated outlying parameter vectors). It can be noted that some of the red 

dots have smaller standardized distances to the green dot than some blue dots (which  

represent the estimated PS parameter vector for the profiles from the in-control process ). 

As a result, the non-cluster-based method misclassifies some of the profiles from the 

out-of-control process as from the in-control process and some of the profiles from the 

in-control process as from the out-of-control process. Using the above classification 

tables, the performance of each simulation with three different shifts is listed in Table 

4.18.   

 

3D Scatterplot for estiamted PA and PS parameters
(non-cluster based method) 
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Table 4.19: Performance of one simulation study with different shift  

(The above cells represent the result from the cluster-based method and the bolded cells 

represent the optimal) 

Shift  FCC Sensitivity  Specificity  FPR FNR 
0.05 0.700 1.00 0.100 0.310 0.000

0.700 1.00 0.100 0.310 0.000
0.175 0.933 1.00 0.800 0.091 0.000

0.767 0.783 0.500 0.217 0.286
0.3 1.000 1.00 1.000 0.000 0.000

0.800 0.95 0.500 0.208 0.167
 

 The numbers in Table 4.19 do not match exactly the corresponding numbers in 

Table 4.5. After all, the numbers in Table 4.10 are the average of 5,000 repetitions, each 

repetition of the form of the three examples illustrated here. However, the results are 

consistent with the conclusion that the cluster-based method works better than non-

cluster-based method when we have a moderate or large shift. Further, the simulation 

examples in this section give a more intuitive explanation that the cluster-based method 

is superior to the non-cluster-based method even when they have similar POS. For 

example, in the  shift=0.175 example,  both methods  resulted in a  signal but the non-

cluster-based method signaled due to correctly detecting five profiles from the out-of-

control process and incorrectly detecting two profiles from the in-control process as 

from the out-of-control process. On the other hand, the cluster-based method signaled 

due to correctly detecting eight profiles as from the out-of-control process. Similarly, 

when shift=0.3, both methods signaled but the non-cluster-based method only detected 5 

of 10 profiles that from the out-of-control process and misclassified one profile from the 

in-control process as from the out-of-control process while the cluster-based method 

detect all 10 profiles that from the out-of-control process and did not misclassify any 

profiles. 

 

 The Monte Carlo study with these three particular simulations illustrates that the 

cluster-based method provides improved ability to classify the profiles into the proper 

categories of in-control and out-of-control than the non-cluster-based method for the 
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parametric case. The Monte Carlo study gives the average performance of the two 

methods, while these three particular simulations provide a more detailed illustration and 

some intuitive justification for the superiority of the cluster-based method.  

 

4.7 Chapter Summary  

 In this chapter, an innovative profile monitoring methodology, which is referred 

to as the cluster-based profile monitoring method, is introduced for Phase I analysis. The 

proposed method incorporates a cluster analysis phase to aid in determining if 

nonconforming profiles are present in the HDS. To cluster the profiles, the proposed 

method first replaces the data for each profile with an estimated profile curve, using 

some appropriate regression method, and clusters the profiles based on their estimated 

parameter vectors. This cluster phase then yields a main cluster which contains more 

than half of the profiles. The initial estimated PA parameters are obtained by fitting a 

linear mixed model to those profiles in the main cluster. In-control profiles, determined 

using the Hotelling’s 2T  statistic, that are not contained in the initial main cluster are 

iteratively added to the main cluster and the mixed model is used to update the estimated 

PA parameters. A simulated example, a Monte Carlo study and an application to a real 

data set demonstrate the performance advantage of this proposed method over a current 

non-cluster-based method with respect to more accurate estimates of the PA parameters 

and better classification performance in determining those profiles from an in-control 

process from those from an out-of-control process.  

 

 Also, in this chapter, it showed that when the profiles can be represented by m  

appropriate 1p vectors, the profile monitoring process is equivalent to the detection of 

multivariate outliers. For this reason, we also compare our proposed method to a popular 

method used to identify outliers when dealing with a multivariate response. More 

specifically, the successive difference and the MVE methods for estimating the variance-

covariance matrix for the estimated profile model parameters are also used in computing 

both the cluster-based and non-cluster-based procedures. The successive difference 
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estimator has been recommended for use when the out-of–control process is due to a 

sustained shift in the profile parameters. The MVE method is commonly suggested for 

use in detecting multivariate outliers. Our study demonstrates that when the out-of-

control process due to a sustained shift, the cluster-based method using the successive 

difference estimator is clearly the superior method, among those methods we considered, 

based on all performance criteria. 
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Chapter 5. Phase II Control Charts based on 

Phase I Analysis  

 

ne use of the estimates from Phase I is to obtain the proper control limits 

for the Phase II control chart. However, if the HDS in Phase I contains the 

profiles from the out-of-control process, the estimates from Phase I will be biased, as a 

result, the control limits obtained in Phase II will be distorted and the corresponding 

control chart cannot detect the shift quickly. This chapter will show how the Phase I 

estimates affect the performance in Phase II analysis.  

5.1 Profile Monitoring in Phase II 

In Phase II analysis, the performance of a control chart is measured using the 

average run length (ARL). The ARL is the average number of samples that are obtained 

before a chart signals. This signal can be either a true signal of a change (or shift) in the 

process or a false alarm. The false alarm means the chart signaled when, in fact, there 

was no shift. Two corresponding ARLs are utilized during the Phase II process the out-

of-control ARL, denote as ARL1, and the in-control ARL, denote as ARL0. The out-of-

control ARL1 represents the expected number of samples to signal when a true shift has 

occurred. While the in-control ARL, ARL0, denotes the expected number of samples to 

signal when the process remains in control. In this case, no shift has occurred thus 

resulting in a false alarm. The goal of Phase II analysis is to detect the small shifts 

quickly which is equivalent to minimizing the out-of-control ARL1 over a range of 

process shifts while requiring a prespecified value of the in-control ARL0.  

 

Two control charts are comparable if they have the same in-control ARL0. To 

compare the performance of two comparable control charts one compares the out-of-

control ARL1 over a range of process shifts. For example, if two control charts have the 

same in-control ARL0 and one has smaller out-of-control ARL1 for all shifts than the 

 O
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other, that is, one chart signals more quickly than the other control chart, then we can 

conclude that the control chart with smaller out-of-control ARL1 works better than the 

other one.  

 

 During the profile monitoring process, the 2T control chart is commonly used to 

detect a change in the process. For example, Williams et al. (2007a) and Jensen et al. 

(2007), used the 2T control chart to detect the presence of profiles from the out-of-

control process during Phase I analysis. For the Phase II analysis, the 2T  control chart is 

based on the estimates that result from the Phase I analysis. For example, in the previous 

chapter, the estimated PA parameter ˆ
PAβ and its variance-covariance matrix V̂  are 

obtained. These estimates would then be used to set the control limit and to compute the 

2T  statistic used during the Phase II analysis.  

 

 One proposed method to obtain the 2T  control chart in Phase II profile 

monitoring is to calculate the 2T  statistics for the thi  new profile as  

 

   2 1ˆ ˆ ˆ ˆˆ ,
T

i i PA i PAT   β β V β β
 
                         (5.1) 

 

where ˆ
PAβ  and V̂ are the estimates for the PA parameter and variance-covariance matrix 

from Phase I HDS and ˆ
iβ  is the least square estimates for the thi   new profile in Phase II. 

The control limit for the Phase II 2T  control chart is established using ˆ
PAβ  and V̂ so that 

the prespecified value for ARL0 is achieved. For example, if ARL0=200, the control 

limit is set so that when the shift=0, it takes, on average, 200 samples to signal. One only 

needs to find the upper control limit (UCL), so that, on average, it takes 200 samples for 

the observed 2T  statistic to exceed the UCL. The UCL is obtained by educated trial and 

error so that based on 10,000 simulations, the observed ARL0≈200. 
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Four estimated PA parameters are provided in Chapter 4, two obtained by the non-

cluster-based method (Jensen et. al (2007)) (one based on the successive difference 

estimator of the covariance matrix and the other based on the MVE covariance 

estimator) and the other two obtained by the proposed cluster-based method (one based 

on the successive difference estimator of the covariance matrix and the other based on 

the MVE covariance estimator). In this chapter, two control charts are defined based on 

the estimated PA parameters determined in Chapter 4. One is the non-cluster-based 2T  

control chart. That is, the ˆ
PAβ  and V̂  , using the successive difference estimator, in 

equation (5.1) are obtained by the non-cluster-based method provided by Jensen et al. 

(2007). The other is the cluster-based 2T  control chart where the ˆ
PAβ  and V̂ , again 

using the successive difference estimator, in equation (5.1) are obtained by the proposed 

cluster-based method.  Since the results in Chapter 4 demonstrated a poor performance 

when using the MVE estimator, it will not be considered in this chapter. The evaluation 

of the cluster-based 2T  control chart and the non-cluster-based 2T  control chart are 

presented below.  

5.2 Detailed Simple Example 

 Recall the example in Chapter 4 in which we generated first nine profiles from 

the in-control process as 

 

2
0 0 2 1 3 2 1( ) ( ) ( ) , 1, 2, ..., , 1, 2, ...,ij i i ij i ij ijy b b x b x i m j n                             

(4.1) 

 

and generated the last three profiles as 

 

2
0 0 1 1 2 2 1( ) ( ) ( ) , 1,..., , 1, 2,...,ij i i ij i ij ijy b b x b x i m m j n                

            
(4.2) 
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where  0 1 2, ,T   β =  12.5, 7, 2  for the in-control process and  '
0 1 2, ,T     β =

 21.875, 14.5,3.5 for the out-of-control process with n=10, 1 9, 12, m m

2 2 2
0 1 2 0.5,     and 2 4  .  

 

 The non-cluster-based method detected the 6th profile as from the out-of-control 

process, and then calculated the estimates for the PA parameter using 

 

 ˆ 16.2608, 9.7092, 2.1782
PA

T  β  

 

and the estimated variance-covariance matrix to  

 

3.660 2.470 0.405
ˆ 2.470 2.035 0.132 .

0.405 0.132 0.493

  
    
   

V  

 

 

 The cluster-based method, on the other hand, correctly detected the 10th, 11th and 

12th profiles as from the out-of-control process and obtained the estimates for the PA 

parameter and variance-covariance matrix to be 

 

 ˆ 12.5493, -7.2394, 1.7764 ,T
PA β  

 

and 

0.203     0.120  0.270
ˆ 0.120    0.236  0.090

0.270    0.090  0.389

 
   
  

V  

 

respectively.  
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The control limits are obtained by simulating the in-control process with the Phase I 

estimates and ARL0 =200. After calibrating the control limits with ARL0=200 for the 

non-cluster-based 2T control chart and the cluster-based 2T control chart, the 

performance of each chart can be evaluated by comparing the ARLs for different shifts. 

Recall that the PA profile in this example is 

 

2
0 1 2 ,PA     y x x                                            (5.2) 

 

where  12.5, 7, 2T  β . Equation (5.2) can be rewritten as  

 

 2

1 2 2.5 ,PA C C   y x x
                         (5.3) 

 

 where    1 2, 3,2T
C C C β   . Assuming that the out-of-control process has the PA 

profile  

 

  2

1 2 2.5PA C C shift   y x x 
                                  (5.4) 

 

with shift=(0, 0.25, 0.5, 0.75, 1, 1.25, 1.5), the ARL0 and ARL1 based on the cluster-

based 2T control chart and non-cluster-based 2T  control chart are given to compare the 

performance of these two control charts.  

 

 When the shift equals 0, the ARL0 from the cluster-based 2T control chart and the 

non-cluster-based 2T control chart are 66.8264 and 15.6412, respectively. Compared to 

the ARL0 =200 from the simulated process, one can see that both control charts have 

many more false alarms than expected. This is reasonable because our estimates from 

both methods are not very close to the true parameters when the HDS only contains 9 of 

profiles from the in-control process. However, the cluster-based 2T control chart works 
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much better than the non-cluster 2T control chart, which is consistent to our results in 

Chapter 4 that the cluster-based method obtained estimates closer to the true parameters.  

 

The ARL1 for two control charts are also obtained according to different shift 

values. Table 5.1 compares ARL1 from these two control charts. In Table 5.1, the 

ARL_CB represents the ARL for the cluster-based method and ARL_NCB represents 

the ARL for the non-cluster-based method.  

 

Table 5.1: ARL_CB and ARL_NCB with ARL0≈200 

 (Bolded cells represent the better values) 

Phase II 
Shift 

ARL_CB ARL_NCB  Phase II 
Shift 

ARL_CB ARL_NCB 

0.25 97.8645 105.0901 1 6.3235 29.5877 
0.5 31.1519 932.751 1.25 2.1247 5.7479 
0.75 26.9371 277.8033 1.5 1.0271 2.0891 

 

 Table 5.1 shows that when the shift is greater than 0 the ARL based on the 

cluster-based 2T  control chart is uniformly smaller than the ARL based on the non-

cluster-based 2T  control chart, especially when the Phase II shift is small. For example, 

when shift equals 0.5, the ARL based on the non-cluster-based 2T  control chart is 

932.751 while the ARL based on the cluster-based 2T  control chart is 36.1519. When 

the Phase II shift equals 1, the cluster-based 2T  control chart gives ARL=6.3235, which 

means it can detect the change of process quickly. The non-cluster-based 2T  control 

chart, on the other hand, on average, takes about 30 samples to detect the change of 

process. 

 

In addition, Table 5.1 shows that the ARL based on the non-cluster-based 2T  

control chart are greater than 200 when the shift is less than 1.This result indicates that 

the non-cluster-based 2T control chart takes much longer than expected to detect the 

change of process at this point. This seemingly illogical event occurs because the non-

cluster-based method in Phase I misclassified the profiles from in-control and out-of-
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control process, and its estimates are severely biased. Recall that the profiles from the 

out-of-control process in HDS were generated with PA profile  

 

221.875 14.5 3.5PA   y x x , 

 

which can be written as  

 

 2
3 (2 1.5) 2.5 .PA    y x x                                     (5.5) 

 

Note, (5.5) is equivalent to (5.4) with a shift=1.5. The non-cluster-based estimator 

involves 3 profiles from the out-of-control process with shift=1.5 and as a result, its 

estimated PA profile is pulled to the direction of the PA profile with shift=1.5. The 

corresponding Phase II control chart is also distorted, resulting in many more runs, on 

the average, than expected to detect the change of process when the shift is less than 0.1.  

5.3 ARL based on Monte Carlo Study   

 In the previous chapter, a Monte Carlo study was performed and the average 

estimated PA parameters and the corresponding estimated variance-covariance matrix 

were obtained. The Monte Carlo study concluded that the estimated PA parameters from 

the cluster-based method have smaller bias than the bias from the non-cluster-based 

method. In this section, a further study is performed to evaluate the performance of two 

Phase II 2T  control charts based on these estimates in Phase I. 

  

 Recall that in the Monte Carlo study in Chapter 4, the comparison of the cluster-

based estimates and non-cluster-based estimates are obtained according to different 

shifts in the process. The Phase II 2T control charts in this section are also obtained 

according to same shifts used in Chapter 4. For each value of the Phase I shift, the ARL 

was obtained to achieve ARL0=200 based on the both the cluster-based process and the 

non-cluster-based process. Also, the true PA parameters and the shift values were the 
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same as those used in the above example. The number of profiles, m, is 30, the number 

of profiles from the out-of-control process, m-m1, is 10, the number of observations for 

each profiles, n, is 10, values taken uniformly on the interval from 0 to 10 for each 

profile. The number of Monte Carlo repetitions is 10,000.  

 

 Table 5.2 lists the average ARLs of the Phase II 2T control charts, listed for 

appropriate values of the shift in Phase II, obtained by using the estimates from both 

methods when the out-of-control process has a shift=0.05 in Phase I. When the Phase I 

shift=0.05, the simulation results from Chapter 4 showed that the average estimated PA 

parameter based on the cluster-based method was  ˆ 61.002, 19.182, 2.016T  β and the 

estimated variance-covariance matrix was  

 

0.387 0.007 -0.003
ˆ 0.007 0.407 0.002 .

-0.003 0.002 0.441

 
   
  

V

 

 

With ARL0=200, the UCL for the cluster-based 2T control chart is 50.8. The average 

estimated PA parameter based on the non-cluster-based method from chapter 4 was 

 ˆ 61.005, 19.183, 2.016T  β and corresponding estimated variance-covariance matrix 

was  

 

0.476 -0.001 -0.002
ˆ -0.001 0.467 0.003 .

-0.002 0.003 0.501

 
   
  

V

 

 

With ARL0=200, the UCL for the non-cluster-based 2T  control chart is 41.4.The ARLs 

for different Phase II shifts are presented in Table 5.2.  
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Table 5.2: ARL_CB and ARL_NCB with Phase I shift=0.05, ARL0 ≈200  

(Bolded cells represent the better values) 

Phase II 
Shift 

ARL_CB ARL_NCB Phase II 
Shift 

ARL_CB ARL_NCB 

0 186.1936 186.0836 0.175 1.4145 1.4175 
0.05 77.6124 78.2726 0.2 1.1624 1.1636 

0.075 22.0527 22.3944 0.225 1.0568 1.0573 
0.1 8.1647 8.2065 0.25 1.0144 1.0152 

0.125 3.6739 3.7025 0.275 1.0044 1.0045 
0.15 2.0643 2.0747 0.3 1.0004 1.0004 

 

 In Table 5.2, it is easy to see that when the Phase II shift equals 0, both methods 

have ARL0 less than 200, that indicates both methods have slightly more false alarms 

than desired. Also, the ARL0 from the cluster-based method is slightly largerthan that 

from the non-cluster-based method which implies that the cluster-based method has 

fewer false alarms than the non-cluster-based method.  

  

 While the Phase II shift is greater than 0 the ARL1 is less than 200, which shows 

both control charts can fairly quickly detect a change in the process. Also, all the smaller 

ARL1 values are all from the cluster-based 2T  control chart. However, the difference 

between the ARL1 values from the cluster-based 2T  control chart and the ones from the 

non-cluster-based 2T  control chart are very small. For example, when the Phase II 

shift=0.15, the ARL_CB=2.0643 while the ARL_NCB is a little larger at 

ARL_NCB=2.0747. The result in Table 5.2 is consistent to the conclusion in the 

previous chapter that the cluster-based method and non-cluster-based method have 

similar performance when the process experiences a very small Phase I shift.  

 

 Table 5.3 gives the ARL from the cluster-based 2T  control chart and the non-

cluster-based 2T control chart with the process has a Phase I shift=0.075. When Phase I 

shift=0.075, the simulation results from Chapter 4 showed that the average estimated PA 

parameter based on the cluster-based method was  ˆ 61.240, 19.269, 2.024T  β and the 

estimated variance-covariance matrix was  
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0.533 -0.038 0.001
ˆ -0.038 0.433 0.001 .

0.001 0.001 0.457

 
   
  

V

 

 

With ARL0=200, the UCL for the cluster-based 2T control chart is 40.20. The average 

estimated PA parameter based on the non-cluster-based method from Chapter 4 was

 ˆ 61.257, 19.257, 2.024T  β and the corresponding estimated variance-covariance 

matrix was  

 

0.679 -0.073 0.004
ˆ -0.073 0.491 0.001

0.004 0.001 0.502

 
   
  

V

 

 

With ARL0=200, the UCL for the non-cluster-based 2T  control chart is 33.20. The 

ARLs for different Phase II shifts are presented in Table 5.3.  

 

Table 5.3: ARL_CB and ARL_NCB with Phase I shift=0.075, ARL0  ≈200 

(Bolded cells represent the better values) 

 Phase II 
Shift 

ARL_CB ARL_NCB Phase II 
Shift 

ARL_CB ARL_NCB 

0 124.7831 122.6432 0.175 1.5882 1.5981 

0.05 124.5165 128.8425 0.2 1.2248 1.2342 

0.075 30.7486 32.3163 0.225 1.0801 1.0823 

0.1 11.5982 12.0644 0.25 1.0235 1.0241 

0.125 4.64440 4.8667 0.275 1.0056 1.0073 

0.15 2.51520 2.5607 0.3 1.0011 1.0014 

 

 Similar to the results in Table 5.3, Table 5.4, representing a Phase I shift of 0.1, 

indicates that both control charts have more false alarms than expected when the Phase 

II shift is 0. With a Phase II shift greater than 0, the ARL values from Table 5.3 are all 

less than 200. However, the non-cluster-based 2T control chart has a ARL greater than 
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200 in Table 5.4. That is, when Phase II shift equals 0.05, the ARL from the non-cluster-

based method is 283.445. This result indicates that the non-cluster-based 2T control chart 

takes much longer than expected to detect the change of process at this point. This 

seemingly illogical event occurs because the non-cluster-based method in Phase I 

misclassified the profiles from the in-control and out-of-control process, and its 

estimates are severely biased.  

 

Table 5.4: ARL_CB and ARL_NCB with Phase I shift=0.1, ARL0 ≈200  

(Bolded cells represent the better values) 

Phase II 
Shift 

ARL_CB ARL_NCB Phase II 
Shift 

ARL_CB ARL_NCB 

0 112.556 105.0964 0.175 1.7074 2.0191 
0.05 197.2859 283.445 0.2 1.2909 1.4103 

0.075 52.1539 69.882 0.225 1.1283 1.1553 
0.1 18.8977 19.6289 0.25 1.0442 1.056 

0.125 6.1996 7.2638 0.275 1.0123 1.0145 
0.15 2.9147 3.4116 0.3 1.0029 1.004 

 

 When Phase I shift=0.125, the simulation results from chapter 4 showed that the 

average estimated PA parameter based on the cluster-based method was 

 ˆ 61.627, 19.410, 2.037T  β and the estimated variance-covariance matrix was  

 

0.837 -0.144 0.012
ˆ -0.144 0.488 0.003 .

0.013 0.003 0.472

 
   
  

V

 

 

With ARL0=200, the UCL for the cluster-based 2T control chart is 30.3. The average 

estimated PA parameter based on the non-cluster-based method from Chapter 4 was

 ˆ 61.509, 19.367, 2.032T  β and corresponding estimated variance-covariance matrix 

was  
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0.924 -0.163 0.012
ˆ -0.163 0.524 0.001

0.012 0.001 0.502

 
   
  

V

 

 

With ARL0=200, the UCL for the non-cluster-based 2T  control chart is 20.3. The ARLs 

for different Phase II shifts are presented in Table 5.5.  

 

Table 5.5: ARL_CB and ARL_NCB with Phase I shift=0.125, ARL0  ≈200  

(Bolded cells represent the better values) 

Phase II 
Shift 

ARL_CB ARL_NCB Phase II 
Shift 

ARL_CB ARL_NCB 

0 107.9900 99.4453 0.175 2.3053 2.8679 
0.05 445.0099 634.667 0.2 1.5371 1.7763 

0.075 105.7215 173.0917 0.225 1.2057 1.3101 
0.1 27.6380 43.489 0.25 1.0575 1.1138 

0.125 9.4015 21.5579 0.275 1.0219 1.0403 
0.15 4.1336 7.8762 0.3 1.0053 1.0090 

 

 As the Phase I shift increases to 0.125, the non-cluster-based 2T control chart 

requires more runs to signal than the cluster-based chart even when the Phase II shift is 

relatively small. For example, Table 5.5 shows that the non-cluster-based 2T control 

chart requires 42% to 60% more runs to signal than the cluster-based chart for Phase II 

shifts less than or equal to 0.1.  

 

 When the Phase I shift=0.15, the simulation results from Chapter 4 showed that 

the average estimated PA parameter based on the cluster-based method was 

 ˆ 61.711, 19.441, 2.039T  β and the estimated variance-covariance matrix was  

  

0.966 -0.190 0.014
ˆ -0.190 0.507 0.004 .

0.014 0.004 0.476

 
   
  

V
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With ARL0=200, the UCL for the cluster-based 2T control chart is 27.39. The average 

estimated PA parameter based on the non-cluster-based method from Chapter 4 was

 ˆ 62.014, 19.550, 2.049T  β and corresponding estimated variance-covariance matrix 

was  

1.425 -0.347 0.029
ˆ -0.347 0.591 0.008

0.029 0.008 0.503

 
   
  

V

 

 

With ARL0=200, the UCL for the non-cluster-based 2T  control chart is 21.58. The 

ARLs for different Phase II shifts are presented in Table 5.6.  

 

Table 5.6: ARL_C and ARL_NCB with Phase I shift=0.15, ARL0  ≈200  

(Bolded cells represent the better values) 

Phase II 
Shift 

ARL_CB ARL_NCB Phase II 
Shift 

ARL_CB ARL_NCB 

0 104.4567 97.5154 0.175 2.6131 4.3159 
0.05 590.4931 927.2438 0.2 1.6734 2.3991 

0.075 146.7290 392.7659 0.225 1.2665 1.5832 
0.1 36.5752 98.9797 0.25 1.0961 1.3512 

0.125 11.8519 27.6586 0.275 1.0315 1.0824 
0.15 4.95580 9.7622 0.3 1.0067 1.0257 

 

 Table 5.6, when the Phase I shift is 0.15, shows that the non-cluster-based 2T  

control chart requires 57% up to 97% more runs to signal that the cluster-based chart for 

Phase II shifts less than or equal to 0.15. As can be seen, the highly biased and more 

variable non-cluster-based estimates from Phase I have caused the Phase II 2T control 

chart for the non-cluster method to be very inefficient at detecting small shifts in the 

process.   

 

 Note, from Table 5.2 to Table 5.6, representing Phase I shifts from 0.05 to 0.15, 

the ARL from both the cluster-based and the non-cluster-based 2T  control charts are 

increasing when Phase II shift is greater than 0 and decreasing when Phase II shift equals 

0. For example, in Table 5.2 with the Phase I shift=0.05, the ARL_CB=186.1956 when 
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the Phase II shift=0, while in Table 5.3 with Phase I shift=0.075, ARL_CB=124.7831 

when the Phase II shift =0. Table 5.4 and Table 5.5, with Phase I shift=0.1 and 0.125, 

give ARL_CB=112.5560 and ARL_CB=107.9900 for Phase II shifts of 0, respectively. 

Table 5.6 with Phase I shift=0.15, on the other hand, gives ARL_C=104.4567 when the 

Phase II shift=0.  While the Phase II shift equals 0.1, the ARL from the cluster-based 

method increases from 8.1647 to 36.5752 and the ARL from the non-cluster-based 

method increases from 8.2065 to 98.9797. This pattern changes with Table 5.7.  

 

 When the Phase I shift=0.175, the simulation results from Chapter 4 showed that 

the average estimated PA parameter based on the cluster-based method was 

 ˆ 61.6867, 19.4296, 2.0372T  β and the estimated variance-covariance matrix as  

 

1.047 -0.222 0.020
ˆ -0.222 0.519 0.005 .

0.020 0.005 0.474

 
   
  

V

 

 

With ARL0=200, the UCL for the cluster-based 2T control chart is 25.09. The average

 ˆ 62.2657, 19.6402, 2.0568T  β and the corresponding estimated variance-covariance 

matrix was  

 

1.662 -0.434 0.037
ˆ -0.434 0.623 0.010 .

0.037 0.010 0.503

 
   
  

V

 

 

With ARL0=200, the UCL for the non-cluster-based 2T  control chart is 20.69. The 

ARLs for different Phase II shifts are presented in Table 5.7.  

 

Table 5.7: ARL_CB and ARL_NCB with Phase I shift=0.175, ARL0  ≈200 

(Bolded cells represent the better values) 

Phase II ARL_C ARL_NCB Phase II ARL_C ARL_NCB 
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Shift Shift 
0 106.6622 89.1635 0.175 2.4277 7.1194 

0.05 420.5775 955.2781 0.2 1.5893 3.4238 
0.075 112.1817 746.6541 0.225 1.2299 2.0361 
0.1 29.6726 218.4644 0.25 1.0830 1.428 

0.125 10.1933 58.7566 0.275 1.0257 1.1647 
0.15 4.4187 18.3763 0.3 1.0063 1.0596 

 

 Comparing Table 5.7 with Phase I shift =0.175,  to Table 5.6, one can see that, 

when Phase II shift equals 0, the ARL  from the cluster-based 2T  control chart is 

increasing while the ARL from the non-cluster-based 2T  control chart continues 

decreasing. That means the expected number of false alarms from the cluster-based 2T  

control chart are decreasing while the expected number of false alarms from the non-

cluster-based 2T  control chart continues increasing. When the Phase II shift is greater 

than 0, the ARL from the cluster-based 2T  control chart is decreasing while the ARL1 

from the non-cluster-based 2T  control chart continues increasing. This pattern holds for 

all Phase II shifts greater than or equal to 0.05 and for all Phase I shift greater than or 

equal to 0.175. On the other hand, the ARL0 values for the non-cluster-based method 

continue to decrease, and the ARL1 values continue to increase for most values of the 

Phase II shifts across the Phase I shifts from 0.175 to 0.3. 

 

 When Phase I shift =0.2, the simulation results from Chapter 4 showed that the 

average estimated PA parameter based on the cluster-based method was 

 ˆ 61.5422, 19.3761, 2.0338T  β and the estimated variance-covariance matrix was  

 

1.097 -0.243 0.022
ˆ -0.243 0.527 0.006 .

0.022 0.006 0.474

 
   
  

V

 

 

With ARL0=200, the UCL for the cluster-based 2T control chart is 23.00. The average 

estimated PA parameter based on the non-cluster-based method from Chapter 4 was
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 ˆ 62.5151, 19.7314, 2.0690T  β and the corresponding estimated variance-covariance 

matrix was  

 

1.895 -0.520 0.044
ˆ -0.520 0.654 0.013 .

0.044 0.013 0.503

 
   
  

V

 

 

With ARL0=200, the UCL for the non-cluster-based 2T  control chart is 20.19. The 

ARLs for different Phase II shifts are presented in Table 5.8.  

 

Table 5.8: ARL_CB and ARL_NCB with Phase I shift=0.2, ARL0  ≈200 

(Bolded cells represent the better values) 

Phase II 
Shift 

ARL_CB ARL_NCB Phase II 
Shift 

ARL_CB ARL_NCB 

0 131.6531 78.8067 0.175 2.3022 12.4719 
0.05 373.5815 815.1500 0.2 1.5347 5.3136 

0.075 94.7297 1000.0640 0.225 1.2069 2.7970 
0.1 26.0579 426.6021 0.25 1.0754 1.7611 

0.125 9.1649 17.3800 0.275 1.0223 1.3601 
0.15 4.0700 35.6289 0.3 1.0052 1.1121 

 

 When Phase I shift =0.225, the simulation results from Chapter 4 showed that the 

average estimated PA parameter based on the cluster-based method was 

 ˆ 61.3216, 19.2955, 2.0262T  β and the estimated variance-covariance matrix was  

 

1.079 -0.235 0.019
ˆ -0.235 0.526 0.005 .

0.019 0.005 0.474

 
   
  

V

 

 

With ARL0=200, the UCL for the cluster-based 2T control chart is 21.53. The average 

estimated PA parameter based on the non-cluster-based method from chapter 4 was
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 ˆ 62.7699, 19.8236, 2.0734T  β and the corresponding estimated variance-covariance 

matrix was  

 

2.129 -0.605 0.052
ˆ -0.605 0.685 0.016 .

0.052 0.016 0.504

 
   
  

V

 

 

With ARL0=200, the UCL for the non-cluster-based 2T  control chart is 19.80. The 

ARLs for different Phase II shifts are presented in Table 5.9.  

 

Table 5.9: ARL_CB and ARL_NCB with Phase I shift=0.225, ARL0  ≈200 

(Bolded cells represent the better values) 

Phase II 
Shift 

ARL_C ARL_NCB Phase II 
Shift 

ARL_C ARL_NCB 

0 147.4249 69.558 0.175 1.8311 22.6995 
0.05 180.6139 659.9176 0.2 1.3322 8.6265 

0.075 46.9285 1031.412 0.225 1.1226 3.9904 
0.1 18.3672 2464.647 0.25 1.0499 2.3064 

0.125 6.9726 777.4915 0.275 1.0108 1.5469 
0.15 3.3172 202.6 0.3 1.0029 1.2152 

 

 In Table 5.8 and Table 5.9, one can see the cluster-based 2T  control chart can 

detect the Phase II shifts in the range from 0.05 to 0.2 with far fewer runs on average 

than the non-cluster-based method. For example, when the Phase I shift is 0.225 and the 

Phase II shift is 0.1, the non-cluster-based method requires 134 times more runs than the 

cluster-based method.  

 

 More comparisons of the ARL based on the cluster-based 2T control chart and 

the non-cluster-based 2T control chart are given in Table 5.10, Table 5.11 and Table 5.12 

with Phase I shift=0.25, 0.275, and 0.3 respectively.  

 



 

 

     

 

116

 When Phase I shift =0.25, the simulation results from Chapter 4 showed that the 

average estimated PA parameter based on the cluster-based method was 

 ˆ 61.0702, 19.2083, 2.0176T  β and the estimated variance-covariance matrix as  

 

1.009 -0.205 0.015
ˆ -0.205 0.518 0.005 .

0.015 0.005 0.477

 
   
  

V

 

 

With ARL0=200, the UCL for the cluster-based 2T control chart is 21.00. The average 

estimated PA parameter based on the non-cluster-based method from Chapter 4 was

 ˆ 63.0193, 19.9148, 2.0857T  β and the corresponding estimated variance-covariance 

matrix was  

 

2.368 -0.693 0.060
ˆ -0.693 0.717 0.019 .

0.060 0.019 0.504

 
   
  

V

 

 

With ARL0=200, the UCL for the non-cluster-based 2T  control chart is 19.60. The 

ARLs for different Phase II shifts are presented in Table 5.10.  

 

 

 

 

 

 

Table 5.10: ARL_CB and ARL_NCB with Phase I shift=0.25, ARL0  ≈200 

(Bolded cells represent the better values) 

Phase II 
Shift 

ARL_CB ARL_NCB Phase II 
Shift 

ARL_CB ARL_NCB 

0 141.1499 62.3618 0.175 1.4785 43.2735 
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0.05 77.9210 543.7347 0.2 1.1837 15.1529 
0.075 22.6256 946.8634 0.225 1.0669 6.2917 
0.1 8.1912 849.1215 0.25 1.0192 3.18 

0.125 3.7372 402.229 0.275 1.0045 1.9456 
0.15 2.1641 135.1522 0.3 1.0007 1.3942 

 

 When the Phase I shift =0.275, the simulation results from Chapter 4 showed that 

the average estimated PA parameter based on the cluster-based method was 

 ˆ 60.8742, 19.1315, 2.0108T  β  and the estimated variance-covariance matrix as 

 

0.886 -0.158 0.011
ˆ -0.158 0.504 0.003 .

0.011 0.003 0.479

 
   
  

V

 

 

With ARL0=200, the UCL for the cluster-based 2T control chart is 21.95. The average 

estimated PA parameter based on the non-cluster-based method from chapter 4 was

 ˆ 63.2740, 20.0069, 2.0901T  β and corresponding estimated variance-covariance 

matrix was  

 

2.615 -0.783 0.068
ˆ -0.783 0.750 0.022 .

0.068 0.022 0.504

 
   
  

V

 

 

With the ARL0=200, the UCL for the non-cluster-based 2T  control chart is 19.45. The 

ARLs for different Phase II shifts are presented in Table 5.11.  

 

 

Table 5.11: ARL_CB and ARL_NCB with Phase I shift=0.275, ARL0  ≈200  

(Bolded cells represent the better values) 

Phase II 
Shift 

ARL_CB ARL_NCB Phase II 
Shift 

ARL_C ARL_NCB 

0 150.7668 54.5125 0.175 1.3088 79.1809 
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0.05 41.7068 435.2054 0.2 1.1170 26.8399 
0.075 14.1886 802.5751 0.225 1.0378 10.2806 
0.1 5.7258 881.0241 0.25 1.0088 4.6416 

0.125 2.8796 571.9755 0.275 1.0026 2.5887 
0.15 1.7900 231.1461 0.3 1.0003 1.6871 

 

 When Phase I shift =0.3, the simulation results from chapter 4 showed that the 

average estimated PA parameter based on the cluster-based method was 

 ˆ 61.7290, 19.0814, 2.0081T  β and the estimated variance-covariance matrix as  

 

0.748 -0.108 0.006
ˆ -0.108 0.489 0.002

0.006 0.002 0.481

 
   
  

V

 

 

With ARL0=200, the UCL for the cluster-based 2T control chart is 24.55. The average 

estimated PA parameter based on the non-cluster-based method from Chapter 4 was

 ˆ 63.5235, 20.0981, 2.1032T  β and corresponding estimated variance-covariance 

matrix was  

 

2.874 -0.878 0.076
ˆ -0.878 0.785 0.025 .

0.076 0.025 0.504

 
   
  

V  

 

With ARL0=200, the UCL for the non-cluster-based 2T  control chart is 19.27. The 

ARLs for different Phase II shifts are presented in Table 5.12.  

 

Table 5.12: ARL_CB and ARL_NCB with Phase I shift=0.3, ARL0 ≈200  

(Bolded cells represent the better values) 

Phase II 
Shift 

ARL_CB ARL_NCB Phase II 
Shift 

ARL_CB ARL_NCB 

0 189.3782 50.3346 0.175 1.2450 146.0853 
0.05 33.8738 371.4248 0.2 1.0871 51.5057 
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0.075 11.1115 706.0651 0.225 1.0272 18.4944 
0.1 4.7847 891.7677 0.25 1.0063 7.5449 

0.125 2.5182 718.3847 0.275 1.0014 3.6936 
0.15 1.6267 375.3079 0.3 1.0003 2.1833 

 

 All three tables show that the cluster-based 2T  control chart can now detect a  

change in the  process at all different Phase II shifts with far fewer than the default ARL0 

of 200. The non-cluster-based 2T control chart continues to require a very large number 

of runs to detect a process shift, especially for Phase II shifts in the 0.05 to 0.2 range. 

These three tables show that the cluster-based 2T control chart can detect the change of 

process very quickly even the shift value is very small. For example, Table 5.12 shows 

that, on average, it only takes less than 34 samples to signal on the average when the 

shift=0.05, and it signals almost immediately when shift is greater than or equal to 0.15. 

Also, these three tables show that the non-cluster-based 2T  control chart has many more 

false alarms than that for the cluster-based 2T  control chart when the Phase II shift 

equals 0.  

 

 The eleven tables in this chapter show how the Phase I shift in HDS affects the 

Phase II ARL for both the cluster-based 2T control chart and the non-cluster-based 2T  

control chart. One can conclude that the cluster-based 2T  control chart works uniformly 

better than the non-cluster-based 2T  control chart when the Phase I shift is small or 

moderate.  When the Phase I shift is large, say 0.175 or greater, the performance of the 

cluster-based 2T  chart is clearly much better than the performance of the non-cluster-

based chart especially so for small Phase II shift values. For example, the great 

improvement in the cluster-based 2T  control chart begins to be seen for a Phase I shift of 

0.175 and greater as seen in Tables 5.6 -5.12. The reason is that the cluster-based method 

in Phase I, by clustering the profiles before estimating the PA parameters, is more likely 

to cluster the  profiles from out-of-control process (one third of profiles are from the out-

of-control process in the example) in the HDS as a minor cluster when Phase I shift is 

large. Thus, the PA parameters, estimated by only using the in-control profiles in the 

main cluster, are more accurate and precise. On the other hand, the estimated PA 



 

 

     

 

120

parameters from the non-cluster-based method, using all profiles in HDS, will be 

severely biased when the shift is moderate or large. Consequently, the better the Phase I 

estimates are, the better the Phase II results will be as indicated by smaller ARL1 values 

for smaller Phase II shifts. The poorer the Phase I estimates are, the poorer the Phase II 

results will be as indicated by very large ARL1 values will be, even for moderate Phase 

II shifts.   

 

5.4 Chapter Summary 

 In this chapter, the ARLs obtained by using the cluster-based 2T  control chart 

were compared to those obtained by using the non-cluster-based 2T control chart in 

Phase II analysis. Both the simple example and the Monte Carlo study showed that the 

estimates from the Phase I analysis can dramatically affect the performance in Phase II 

analysis. The cluster-based 2T  control chart can be far more efficient in detecting Phase 

II shifts than the non-cluster-based 2T  control chart. 
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Chapter 6. Cluster-Based Nonparametric Profile 

Monitoring 

 

he proposed cluster-based profile monitoring method in previous chapters 

is based on the estimated  parametric profiles fit to data in the HDS. 

However, in many cases, the profiles cannot be well represented by a parametric 

function. This chapter will present the cluster-based method for nonparametric profile 

monitoring in Phase I analysis.  

 

6.1 Cluster-Based Nonparametric Profile Monitoring  

In Chapter 4, the cluster-based profile monitoring for parametric profiles has been 

presented. In parametric profile monitoring, the profiles are represented by m  

appropriate 1p  estimated parameter vectors.  The cluster-based method clusters the 

profiles based on their estimated parameter vectors. After the clustering phase, an initial 

main cluster set with at least half of the profiles in the HDS is obtained and an initial 

estimated PA parameter vector is calculated. The profiles in the minor sets may be 

sequentially updated to the initial main cluster set to form a final main cluster set. 

Finally, the PA parameter vector is estimated based on the profiles in the final main 

cluster set and the control limits for Phase II can be set by using the estimated PA 

parameters.  

 

In Chapter 4, the cluster-based method was demonstrated to more correctly 

identify those parametric profiles from the in-control process and out-of-control process 

than a non-cluster-based method. However, in some situations, the quality of the product 

or process is best represented by a nonparametric relationship between a response 

variable and some explanatory variables. In this case, the profiles can be represented by 

equation (3.6) in Chapter 3 

T
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    1, 2,3,... 1,2,3,... .ij ij i ij ijy f x x i m j n         

Here  ijf x  and  i ijx  are some nonparametric functions. Complete details describing 

the monitoring of nonparametric profiles via a non-cluster-based method can be found in 

Chapter 3. The goal of this chapter is to apply the cluster-based method to monitor the 

nonparametric profiles.  

 

Recall that the first step when using the cluster-based method for the parametric 

profile monitoring is to represent each profile by a 1p estimated parameter vector and 

then cluster the profiles based on these estimated parameter vectors. Nonparametric 

profile monitoring proceeds in exactly the same way as parametric profile monitoring. 

That is, each nonparametric profile is represented by a 1p  estimated parameter vector 

obtained by some appropriate nonparametric regression method. P-spline is the method 

used in this dissertation but other methods could also be considered. The cluster-based 

method is then applied to cluster the profiles based on these m  estimated vectors.  

 

In Chapter 3, it was shown that the nonparametric model in equation (3.6), can be 

written as  

  1,2,3,... 1, 2,3,... .ij i ij ijy f x i m j n       

where      i ij ij i ijf x f x x  is some nonparametric function. A first-order p-spline 

regression model using the truncated power basis of degree one can be used to represent 

 i ijf x  as  

   0 1
1

1, 2,3,... , 1,2,3,... .
K

i i i ki
k

ij ij kf i m j nx x   




       , (6.1) 

where 1, 2,3,...,k K , with K as the number of knots. Define the 2) 1K  （ vector i  as 

 0 1 1 ...i i i i Ki      and then the estimated fitted curve for the thi  profile can 

be represented by  0 1 1
ˆ ˆ ˆ ˆ ˆ...i i i i Ki     . 
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After obtaining the 1p  vector î  for each profile with 2p K  , the next step is 

to use these  î  to cluster the profiles in order to obtain an initial main cluster set. Using 

the initial main cluster set, an initial estimated PA profile, based on the nonparametric 

mixed model, will be used to calculate the 2T statistics for the profiles in the minor sets. 

The profiles with in-control 2T statistics will be added to the initial main cluster set to 

form a new main cluster set and the estimated PA will be updated based on this new 

main cluster set. The above procedure is repeating by updating the profiles in the minor 

sets until either the smallest 2T statistic is beyond the control limits or all profiles have 

been added to the main cluster set. Here the in-control profiles are the profiles with the 

2T statistic less than or equal to 2
( ,1 )mdf χ , where  represents the significant level, m  is 

the number of profiles in the HDS and df represents the degrees of freedom, which is 

equal to 1K  . 

 

The 2T statistics for the profiles in the minor set will be calculated as  

   2 1ˆˆ ˆ
i

T

i iT V                                                              (6.1) 

where                             
    

1

1 1
1

1 ˆ ˆ ˆ ˆˆ
2 1

Tm

i i i i
i

V
m

   


 


  
       

and   is based on the estimated PA profile in the main cluster set, and it will be updated 

each time after new profiles added to the main cluster. Complete details of the algorithm 

are illustrated in the automobile engine application example in Section 6.2.  

 

6.2 An Automobile Engine Application  

Recall that in the automobile engine example in Chapter 4, the quality of the en-

gine is represented by the relationship between the torque produced by the engine and 

the engine’s speed in RPM. In Chapter 4, a parametric model is used to represent the 

relationship between torque and speed in RPM for each engine. However, Abdel-Salam 

et al. (2013) showed that the relationship can be better represented by a nonparametric 
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model. In this section, we will apply the cluster-based method when it is assumed, that 

the relationship between the torques and speed in RPM is nonparametric. 

 

The first step of the proposed algorithm is to use p-spline regression to fit to the 

data for each engine data with the model   

   0 1
1

, 1, 2,3,....20. 1,2,3,...,14.
K

i i i ki ij
k

ij ij kf ix x j   




             

Define  0 1 1 ...i i i i Ki     and the corresponding î  for the thi engine can be 

represented as  0 1 1
ˆ ˆ ˆ ˆ ˆ...i i i i Ki     . In this case, since there are 14 observations 

for each engine, choosing K=4 equally spaced knots seems reasonable. Table 6.1 lists 

ˆ ,i   ˆ ,i for each engine.  

 

Using the ˆ , 1, 2,...,14i i   , in Table 6.1 and their corresponding estimated 

covariance matrix, we obtain the similarity matrix which is then used to cluster the 

engines. The cluster history is listed in Table 6.2. One can see that the initial main 

cluster set contains 9 profiles at  step 17 and  that 6 more profiles are added to this initial 

main cluster set in cluster step 18, resulting in 15 profiles in the main cluster. Since this 

is the first step that the main cluster set contains greater than half of the profiles, the 

cluster step of the algorithm stops here. The cluster history (Table 6.2) shows that the 

proposed algorithm ended up with 15 engines in the initial main cluster set, consisting of 

engines 1-10, and 13-17. The corresponding estimated PA profile is then obtained by 

fitting the p-spline mixed model to the data for the 15 engines in the main cluster. The 

estimated PA profile is  

 
4

, 0 1
1

ˆ ˆ ˆ( )
K

PA j j k k
k

jxy f x   





      

Define  0 1 1 2 3 4
ˆ ˆ ˆ ˆ ˆ ˆ       ,and the  based on 15 engines is  

 71.831 0.0160 0.0176 0.0040 0.0071 0.0151      . 
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Using  and î  in equation (6.1), the 2T  statistics for the engines not included in the 

initial main cluster set are calculated and listed below.  

 

Index of Engines 11 12 18 19 20

2
iT  18.450 14.564 8.762 17.544 20.387

   

The cutoff value for the 2T  statistic here is 2
1 ,

18.38
m df χ , where 0.05  and

5df K p   . According to the observed 2T  statistics and the cutoff value, all engines 

in the minor sets will be added to the initial main cluster set except the 11th engine and 

20th engine. A new main cluster set with engines 1-10, and engines 12-19 is obtained 

after added the in-control engines, and the estimated PA profile is then updated by fitting 

p-spline mixed model  using this new main cluster set. The updated   for the updated 

estimated PA profile is 

 70.999 0.0165 0.0185 0.0035 0.0072 0.0153       

The 2T  statistics for the 11th and 20th engines were then updated by using this updated 

in equation (6.1) and the updated 2T  statistics is listed in the following table. 

  

Index of Engines 11 20

2
iT  19.644 18.559

 

 

The updated 2T  statistics for 11th and 20th engines are still greater than the cutoff 

value 18.33, so we fail to add them to the main cluster set and conclude that these two 

engines probably have some mechanical issues or other issues. This agrees with the 

results found using a nonparametric and semiparametric mixed model profile methods 

used by Abdel-Salam et al. (2013).    

 

Table 6.1: Estimated  ˆ , 1, 2..14i i    for each engine  
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Index of 
Engines 0

ˆ
i  1̂i

 1ˆ i
 2ˆ i

 3ˆ i
 4ˆ i

 

1 73.3139 0.016 -0.0141 -0.0085 -0.0065 -0.0157 
2 71.7374 0.0157 -0.0119 -0.0107 -0.0056 -0.0139 
3 73.6999 0.0146 -0.0173 -0.0019 -0.0074 -0.0139 
4 75.8218 0.0134 -0.0153 -0.0037 -0.0063 -0.0152 
5 74.4416 0.0149 -0.0127 -0.009 -0.0078 -0.0143 
6 79.9753 0.0128 -0.0133 -0.0044 -0.0084 -0.0147 
7 66.3589 0.0187 -0.0193 -0.0057 -0.0074 -0.0147 
8 71.8467 0.0157 -0.0119 -0.0107 -0.0056 -0.0139 
9 70.2356 0.0174 -0.0169 -0.0069 -0.0075 -0.0136 

10 80.1105 0.0128 -0.0126 -0.0057 -0.0079 -0.0125 
11 71.6214 0.0172 -0.0207 -0.0031 -0.008 -0.0154 
12 68.9162 0.0188 -0.0214 -0.0034 -0.0075 -0.0150 
13 66.0206 0.0179 -0.0211 -0.002 -0.0068 -0.0143 
14 65.7138 0.0185 -0.0203 -0.0042 -0.0063 -0.0166 
15 70.4448 0.0162 -0.0184 -0.0031 -0.0083 -0.0132 
16 75.8862 0.0141 -0.0166 -0.0023 -0.0081 -0.0151 
17 71.938 0.0163 -0.0227 0.0024 -0.0084 -0.0143 
18 70.6005 0.0172 -0.018 -0.0043 -0.0085 -0.0143 
19 62.7847 0.0191 -0.0243 -0.0001 -0.0062 -0.0181 
20 74.8780 0.0149 -0.0154 -0.004 -0.0088 -0.015 

 

The cluster dendrogram in Figure 6.1 shows that engine 11 and 12, engine 18, 19 

and 20 are clustered in the same minor sets respectively. After the sequentially addition 

of the remaining engines to the initial main cluster set, the cluster-based method 

identified engine 11 and engine 20 as from the out-of-control process and engine 12, 18 

and engine 19 as from the in-control process 
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Figure 6.1: Dendrogram for clustering of 20 engines by nonparametric approach  

Table 6.2: Cluster history based on eblups for 20 engines 

Step  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
2 1 2 3 4 5 6 7 2 8 9 10 11 12 13 14 15 16 17 18 19 
3 1 2 3 4 5 6 7 2 8 9 10 11 12 13 14 6 15 16 17 18 
4 1 2 3 4 5 6 7 2 7 8 9 10 11 12 13 6 14 15 16 17 
5 1 2 3 4 5 6 7 2 7 8 9 10 11 12 3 6 13 14 15 16 
6 1 2 3 4 5 6 7 2 7 8 9 10 11 11 3 6 12 13 14 15 
7 1 2 3 4 5 6 7 2 7 8 9 10 11 11 3 6 12 13 14 13 
8 1 1 2 3 4 5 6 1 6 7 8 9 10 10 2 5 11 12 13 12 
9 1 1 2 3 4 5 6 1 6 3 7 8 9 9 2 5 10 11 12 11 
10 1 1 2 3 4 4 5 1 5 3 6 7 8 8 2 4 9 10 11 10 
11 1 1 2 3 4 4 1 1 1 3 5 6 7 7 2 4 8 9 10 9 
12 1 1 2 3 4 4 1 1 1 3 5 6 7 7 2 4 2 8 9 8 
13 1 1 2 3 4 4 1 1 1 3 5 5 6 6 2 4 2 7 8 7 
14 1 1 2 3 4 4 1 1 1 3 5 5 6 6 2 4 2 7 7 7 
15 1 1 2 3 4 4 1 1 1 3 5 5 2 2 2 4 2 6 6 6 
16 1 1 2 1 3 3 1 1 1 1 4 4 2 2 2 3 2 5 5 5 
17 1 1 2 1 1 1 1 1 1 1 3 3 2 2 2 1 2 4 4 4 
18 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 3 3 3 
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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6.3 A Monte Carlo Study  

In Chapters 4 and 5, a Monte Carlo study clearly illustrated the advantages of the 

cluster-based method over a non-cluster-based method in Phase I and Phase II applica-

tions when the profiles were correctly represented by a parametric model. A Monte 

Carlo study is used in this chapter to evaluate the average performance of the cluster-

based method in monitoring profiles fit not with a parametric model but a nonparametric 

model using some appropriate nonparametric method.  In this Monte Carlo study, the in-

control PA profile is a combination of the parametric PA profile in Chapter 4 and an 

additive component 
( 1)

10
2.25

jx
Sin



    
       

. Thus the in-control profiles are generated 

from the model 

2
0 1 2 1

( 1)
10 , 1, 2, ..., , 1, 2, ..., ,

2.25
j

ij i i ij i ij ij

x
y x x Sin i m j n


    

    
             

 

(6.2) 

where
 

2
0 2 0i ix b   , 

1 1 2 12i ix b     , 

2 2 2i ib   . 

And the out-of-control profiles are also generated from equation (6.2) but with  

  2
0 2 0i ishift x b   

, 

 1 1 2 12i ishift x b     
, 

 2 2 2 .i ishift b   
 

One can show that the PA profile for the in-control process and out-of-control process 

are  

 2

, 1 2

( 1)
+ 10 1, 2, ..., ,

2.25
j

PA j j j

x
y x x x Sin j n


  

    
           

，                      (6.3) 

and 
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  2

, 1 2

( 1)
10 , 1, 2,..., ,

2.25
j

PA j j j

x
y x shift x x Sin j n


  

    
             

      (6.4) 

respectively. The parameter   in above equations is called the misspecification 

parameter and varies from 0 to 4.  When   is 0, the PA curve is exactly the quadratic 

function and when   is 4, the PA curve departs considerably from the quadratic model.  

Values of    between 0 and 4 represent a continuous departure from the quadratic 

model. A plot of the PA profiles using different values for 0  , 1  , 2  , 3  and 

4   is given in Figure 6.2.  

 

Figure 6.2: Plot of PA profile with different  values. 

 

All other parameters are similar to the Monte Carlo study in Chapter 4, where  
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Here, 2 2 2
0 1 2 0.5,     2 1  and 1 23, 2   . It is also assumed that we have 

1 20m   in-control profiles, 30m   profiles in the HDS and 20n  . 

 

It is assumed throughout this Monte Carlo study that the user, not knowing the true 

model given by (6.2), observes a quadratic trend in each profile and assumes that the 

proper model is a quadratic (model (6.2) with 0  ) for each profile. Of course, as   

increases from 0 to 4, the user’s model becomes more and more misspecified. This 

misspecification will greatly hinder proper Phase I analysis, with increasingly poor 

performance as gamma increases toward 4. On the other hand, a proper nonparametric 

method due to its ability to adapt to the data should provide a better analysis in Phase I 

that should remain relatively constant across increasing values of  . Comparing the 

Phase I results for the misspecified parametric model to the nonparametric methods 

should illustrated the difficulty in making proper Phase I decisions with a misspecified 

model and the advantages of using a nonparametric procedure when the true profile 

model is not known to the user. The nonparametric method used here is the p-spline.  

While this information is valuable, these results will completely support similar results 

appearing in Abdel-Salam et al. (2013). Rather, our emphasis will be on comparing the 

cluster-based method to the non-cluster-based method used by Abdel-Salam et al. (2013) 

to demonstrate the advantages provided by the clustering technique.  

 

Consequently, in this Monte Carlo study, a parametric model and a nonparametric 

model with the cluster-based and non-cluster-based methods will be used to fit the data. 

Thus, there are four scenarios, a parametric model to fit the data with the cluster-based 

and non-cluster-based method as well as a nonparametric model with the cluster-based 

and non-cluster-based method. The shift values in this Monte Carlo study are set to 0.05, 

0.1, 0.15, 0.2, 0.25 and 0.3, and the misspecification parameter,   is set to 0, 2 and 4. 

The average performance of the four methods for different shift values with different   

is compared by using performance metrics provided in Chapter 4. 
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Figure 6.3 to Figure 6.5 display the plots of the FCC based on the four methods for 

different shift values based on the four methods with 0  , 2   and 4   respectively. 

Recall that the FCC measures the proportion of correctly identified in-control and out-

of-control profiles and larger values of the FCC are better than smaller values. As 

expected, all plots show that FCC is increasing as shift value increases. 

 

Figure 6.3: FCC for different shift values with =0  

 

Figure 6.3 displays the plots of the FCC based on the four methods for different 

shift values with =0 . The plots show that when   equals 0, the FCC based on the 

parametric methods are superior to the nonparametric methods. From equation (6.2), one 

can see that when   equals 0, the true model is a parametric model and as expected, the 

parametric model will fit the data better than the nonparametric model.  As a result, the 

FCC based on the parametric methods is larger than the FCC based on the nonparametric 
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methods. Also, Figure 6.3 tells us that the cluster-based method works better than the 

non-cluster-based method regardless of using which model is used to fit the data.  

 

 

Figure 6.4: FCC for different shift values with =2  

Figure 6.4 lists the plots of the FCC based on the four methods for different shift 

values when   equals 2. In this case, the FCC from the nonparametric model is 

uniformly larger than the FCC from the parametric model for both cluster-based and 

non-cluster-based methods. The reason for this result is that when   equals 2, the user’s 

parametric model is slightly misspecified and is unable to provide as good a fit to each 

profile as in the 0   case. The nonparametric model, on the other hand, is robust to the 

model misspecification and thus has a better performance. Also, the plots imply that the 

cluster-based method works uniformly better than the non-cluster-based method as the 

results from Figure 6.3. For example, when shift value equals 0.3, the nonparametric 

cluster-based method has FCC= 0.9418 while the nonparametric non-cluster-based 

method has FCC=0.7503. Also, the parametric cluster-based method has FCC=0.8795, 
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while the parametric non-cluster-based method has FCC= 0.7357. (See Appendix, Table 

E-H for details).   

 

Figure 6.5: FCC for different shift values with =4  

When   equals 4, the results for the FCC are similar to the results when   equals 

2. The cluster-based methods are superior to the non-cluster-based methods and the 

nonparametric models work better than the parametric models. However, the FCC from 

the fours methods is smaller. For example, when 2   and shift=0.3,  the FCC for the 

four methods (parametric cluster-based and non-cluster-based methods; nonparametric 

cluster-based and non-cluster-based methods) are 0.8795, 0.7357, 0.9418 and 0.7503 

respectively, while   equals 4 with shift equals 0.3, the FCC values for the four methods 

are 0.7661, 0.7031, 0.8566 and 0.7242, respectively. The reason for these results is that 

as   increases, the proportion of the nonparametric part increases in the model, but the 

shift values only affect the parametric part so that the relative shift value in this case is 

smaller.    
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Other performance metrics are also obtained in this Monte Carlo study, for 

example, Figure 6.6 to Figure 6.8 display the plots FPR for the four methods with 

different shift and   values.  

 

 

Figure 6.6: FPR for different shift values with =0  

 

Figure 6.6 contains the plots of the FPR for different shift values with =0 . Not 

surprisingly, the plots indicate that the FPR is decreasing as shift value increases. Also, 

similar to the conclusion in Figure 6.3, when the true model is a parametric model, using 

the parametric model has uniformly better performance (smaller FPR) compare to the 

nonparametric model. Also, as mentioned in the previous plots, the cluster-based method 

performs uniformly better than the non-cluster-based method regardless of using the 

parametric or nonparametric model to fit the data.  
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Figure 6.7: FPR for different shift values with =2  

 

Figure 6.7 is the plots of the FPR for different shift values when =2 . As expected, 

the parametric models have an inferior performance when compared to the 

nonparametric models. Also the cluster-based methods have superior performance than 

the non-cluster-based methods. Further, the plots in Figure 6.6 imply that the difference 

of the cluster-based and non-cluster-based methods is much bigger than the difference of 

the nonparametric and parametric methods. For instance, when shift value equals 0.3, the 

FPR from the four methods (parametric model with cluster-based and non-cluster-based 

methods; nonparametric model with cluster-based and non-cluster-based methods) are 

0.0796, 0.2792, 0.0034 and 0.2691 respectively. One can see that the difference between 

the parametric and nonparametric approach is trivial, which is 0.0796 versus 0.0034. 

However, there is a significant difference between the cluster-based methods and the 

non-cluster-based methods; the cluster-based methods have the FPR close to 0 while the 

non-cluster-based methods have the FPR greater than 0.2. 
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Figure 6.8: FPR for different shift values with =4  

 

Figure 6.8 shows the plots of FPR with different values when =4 . The conclusion 

is consistent with the conclusion in Figure 6.4 that as   increases, the relative shift 

values are decreasing thus the FPR is increasing. The misspecified parametric models 

have an inferior performance when compared to the nonparametric models. Also the 

cluster-based methods have superior performance than the non-cluster-based methods. 

 

The other performance metrics are also obtained by this Monte Carlo study and all 

the performance metrics are listed in Appendix (Table A to Table L).  

 

6.4 Conclusion  

In this Chapter, we applied the cluster-based method to the nonparametric profile 

monitoring in Phase I analysis. By clustering the profiles, we first fit each profiles based 

on the p-spline regression model and then cluster the profiles based on the estimated 

parameters. After clustering the profiles, we updated profiles to the main cluster set by 
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using the similar manner as the cluster-based method in monitoring the parametric 

profiles.  

 

The automobile engine example showed the details of the algorithm and the Monte 

Carlo study provided the average performance of using cluster-based method in 

nonparametric profile monitoring. The results of the Monte Carlo study indicate that the 

cluster-based method works uniformly better than the non-cluster-based method. Also, 

two models are used to fit the profiles in the Monte Carlo study, a parametric model and 

nonparametric model.  The results show that when the true model is the parametric 

model (that is, when 0  ), the parametric method to fit the data is superior to the 

nonparametric method. However, when the user’s parametric model is misspecified, the 

nonparametric method has superior performance, which agrees with the conclusions 

from Abdel-Salam (2013). In summary, the greatest gains in Phase I performance are 

obtained using the cluster-based method as opposed to the non-cluster-based method. 

And, clearly, if the user’s model cannot be correctly specified, a nonparametric model 

should be considered and an appropriate nonparametric method (such as p-splines) used 

over a possible misspecified parametric model and incorrect parameter estimates.  
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Chapter 7. Conclusions and Outlook for Future 

Work 

 

his chapter summaries the cluster-based method used in robust regression 

and in monitoring the parametric and nonparametric profiles. Also, an 

outlook for future study is proposed.  

 

7.1 Conclusions  

Profile monitoring is a very popular approach in SPC which assumes that the qual-

ity of a product or of a process can be represented by a relationship between a response 

variable and one or more explanatory variables. In this work, an innovative cluster-based 

profile monitoring method is proposed in monitoring either parametric or nonparametric 

profiles. 

 

 Before introducing the cluster-based method in profile monitoring, the advantage 

of using cluster-based methods in robust regression, referred to as cluster-based bounded 

influence regression or CBI, was introduced. It is known that the majority of the previ-

ous regression methods either can be easily affect by high influence points (such as 

OLS) or can be very inefficient (such as LTS). CBI, by using the hierarchical cluster 

method to cluster the observations, has been demonstrated to be a high breakdown and 

efficient estimator. CBI regression represents a data space via a special set of anchor 

points and then obtains  a  similarity measure of the observations by using a collection of 

single-point-added ordinary least squares regression estimators. A hierarchical cluster 

method then yields a main cluster set containing at least half of the total observations 

and one or more minor sets. An initial regression estimator arises from the main cluster, 

with a group-additive DFFITS argument used to carefully activate the minor clusters 

through a bounded influence regression framework. CBI achieves a 50% breakdown 

T
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point, is regression equivariant, scale and affine equivariant and asymptotically normally 

distributed. Both the case studies (PH data and HKB data) and the Monte Carlo study 

show that this regression methodology is competitive with methods such as LTS 

(Ruppert and Carroll (1980)), S1S (Coakley and Hettmansperger (1993)) and REWLS 

(Gervini and Yohai (2002)) when the data is highly contaminated but also be able to 

compete with the efficient M and BI regression methods (Huber and Ronchetti (2009)) 

when the data has few or no problematic observations. Specifically, the first case study 

(PH data) shows that the CBI outperformed the other high breakdown procedures under 

the low contamination situation. The Monte Carlo study, on the other hand, shows that 

the CBI is one of the two procedures (S1S and CBI) that provide unbiased regression 

coefficients. Between the unbiased procedures, the CBI has the smaller standard errors 

of the regression coefficients and has more stable of the coefficient estimates.  

 

The cluster-based profile monitoring in Phase I incorporated a cluster analysis 

phase to determine if out-of-control profiles are present in the HDS. The proposed 

method first replaces the data for each profile with an estimated parameter vector, using 

some appropriate regression method, and then clusters the profiles based on these 

estimated parameter vectors. This cluster phase then yields a main cluster which contains 

at least half of the profiles. The initial estimated PA parameters are obtained by fitting a 

linear mixed model to those profiles in the main cluster. The in-control profiles, 

determined using the Hotelling’s 2T  statistic, that are not contained in the initial main 

cluster are iteratively added to the main cluster and the mixed model is used to update 

the estimated PA parameters. A simulated example, a Monte Carlo study, and the 

application to the automobile engine data set demonstrates the performance advantage of 

this proposed method over a current non-cluster-based method with respect to more 

accurate estimates of the PA parameters and better classification performance in 

determining those profiles from an in-control process from those from an out-of-control 

process for both parametric and nonparametric methods for estimating the profiles.  
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Also, this work showed that when the profiles can be represented by m  

appropriate 1p vectors, the profile monitoring process is equivalent to the detection of 

multivariate outliers. For this reason, we also compare our proposed method for the 

parametric modelling of profiles to a popular method used to identify outliers when 

dealing with a multivariate response. More specifically, the successive difference and the 

MVE methods for estimating the variance-covariance matrix for the estimated profile 

model parameters are also used in computing both the cluster-based and non-cluster-

based procedures. The successive difference estimator has been recommended for use 

when the out-of–control process is due to a sustained shift in the profile parameters. The 

MVE method is commonly suggested for use in detecting multivariate outliers. Our 

study demonstrated that when the out-of-control process is due to a sustained shift, the 

cluster-based method using the successive difference estimator is clearly the superior 

method, among those methods we considered, based on all performance criteria. 

 

Besides, the Phase II ARLs obtained by using the cluster-based 2T  control chart to 

those obtained by using the non-cluster-based 2T control chart in Phase II analysis. Both 

the simple example and the Monte Carlo study showed that the estimates from the Phase 

I analysis can dramatically affect the performance in Phase II analysis. The cluster-based 

2T  control chart can be far more efficient in detecting Phase II shifts than the non-

cluster-based 2T  control chart. 

 

In Summary, the cluster-based method has been demonstrated to be superior to the 

current non-cluster-based method in monitoring parametric or nonparametric profiles. 

The cluster-based method is more likely to correctly identify the in-control and out-of-

control profiles thus will give us more accurate estimates and more efficient Phase II 

control charts.  
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7.2 Outlook for Future Work 

Our research assumed that the response variable is continuous and from the normal 

distribution. However, these assumptions will not always be true. For example, the 

response variable could be counts, a binary variable or a continuous variable from a 

distribution other than the normal. In these cases, the profile or relationship between the 

response variable and explanatory variables can be represent by using the generalized 

linear model, such as a Poisson, logistic or any other appropriate model. For future work, 

the cluster-based methods could be applied in those situations where the response 

variable comes from the exponential family and the relationship between the response 

variable and explanatory variables can be represented by using the generalized linear 

model.  
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Appendix 
 

Table A:  Average performance metrics based on parametric cluster-based method with 

0   

Shift  FCC FPR FNR Sensitivity Specificity POS
0.05 0.6674 0.3324 0.3922 0.9981 0.0059 0.0864
0.1 0.6782 0.325 0.1016 0.9978 0.0391 0.2876
0.15 0.7268 0.2903 0.0154 0.9986 0.1832 0.6396
0.2 0.8234 0.2091 0.003 0.9993 0.4716 0.8790
0.25 0.9219 0.1044 0.0016 0.9994 0.7670 0.9750
0.3 0.9749 0.0359 0.0011 0.9995 0.9256 0.9956
 
Table B:  Average performance metrics based on parametric non-cluster-based method 
with 0   
Shift  FCC FPR FNR Sensitivity Specificity POS
0.05 0.6670 0.3326 0.4429 0.9978 0.0055 0.0904
0.1 0.6731 0.328 0.2409 0.9955 0.0282 0.2812
0.15 0.6913 0.3145 0.1518 0.992 0.0899 0.5854
0.2 0.7227 0.2899 0.1176 0.9871 0.1940 0.8230
0.25 0.7627 0.256 0.0996 0.9821 0.3241 0.9336
0.3 0.8052 0.2163 0.089 0.9775 0.4604 0.9806
 

Table C:  Average performance metrics based on nonparametric cluster-based method 

with 0   

Shift  FCC FPR FNR Sensitivity Specificity POS
0.05 0.6673 0.3326 0.3731 0.9985 0.0049 0.0722

0.1 0.6749 0.3274 0.1168 0.9981 0.0284 0.1876
0.15 0.7061 0.3056 0.0258 0.9984 0.1214 0.4258

0.2 0.7712 0.2548 0.0115 0.9982 0.3173 0.6506
0.25 0.8440 0.1891 0.004 0.9989 0.5342 0.8202

0.3 0.9048 0.1242 0.0036 0.9987 0.7169 0.9164
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Table D:  Average performance metrics based on nonparametric non-cluster-based 

method with 0   

Shift  FCC FPR FNR Sensitivity Specificity POS
0.05 0.6673 0.3327 0.3787 0.9988 0.0043 0.0693
0.1 0.6719 0.3292 0.2087 0.9972 0.0212 0.192
0.15 0.6848 0.3199 0.1306 0.9952 0.0644 0.4052
0.2 0.7066 0.3039 0.0885 0.9936 0.1326 0.6368
0.25 0.7327 0.2834 0.0759 0.9911 0.2159 0.7846
0.3 0.7589 0.2619 0.0672 0.9893 0.2981 0.8856
 

Table E:  Average performance metrics based on parametric cluster-based method with 

2   

Shift  FCC FPR FNR Sensitivity Specificity POS
0.05 0.6668 0.333 0.4743 0.9987 0.0029 0.0712
0.1 0.6703 0.3305 0.1933 0.9983 0.0144 0.1622
0.15 0.6861 0.3198 0.0439 0.9986 0.061 0.3460
0.2 0.7275 0.2899 0.008 0.9993 0.1841 0.6180
0.25 0.801 0.2298 0.0017 0.9997 0.4036 0.8296
0.3 0.8795 0.0796 0.0015 0.9995 0.6396 0.9348
 

Table F:  Average performance metrics based on parametric non-cluster-based method 

with 2   

Shift  FCC FPR FNR Sensitivity Specificity POS
0.05 0.6667 0.3328 0.5383 0.998 0.0035 0.0765
0.1 0.6697 0.3307 0.2642 0.9975 0.0142 0.1469
0.15 0.6782 0.3244 0.1792 0.9952 0.0442 0.3360
0.2 0.6925 0.3136 0.1466 0.992 0.0935 0.5522
0.25 0.7092 0.3004 0.1303 0.9889 0.1482 0.7071
0.3 0.7357 0.2792 0.1123 0.985 0.2371 0.8213
 

Table G:  Average performance metrics based on nonparametric cluster-based method 

with 2   

Shift  FCC FPR FNR Sensitivity Specificity POS
0.05 0.6675 0.3324 0.3531 0.9985 0.0057 0.0653
0.1 0.6759 0.3268 0.0733 0.9988 0.0303 0.1745
0.15 0.7077 0.3045 0.0188 0.9988 0.1256 0.4030
0.2 0.7743 0.2525 0.0072 0.9988 0.3252 0.6571
0.25 0.8612 0.1527 0.0038 0.9989 0.5859 0.8375
0.3 0.9418 0.0034 0.0024 0.999 0.8273 0.9454
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Table H:  Average performance metrics based on nonparametric non-cluster-based 

method with 2   

Shift  FCC FPR FNR Sensitivity Specificity POS
0.05 0.6671 0.3327 0.3939 0.9987 0.0040 0.0774
0.1 0.6714 0.3296 0.1853 0.9979 0.0186 0.1672
0.15 0.6818 0.3221 0.1318 0.9959 0.0536 0.3882
0.2 0.7017 0.3075 0.0957 0.9938 0.1175 0.5840
0.25 0.7259 0.2889 0.0784 0.9917 0.1943 0.7446
0.3 0.7503 0.2691 0.0685 0.9900 0.2710 0.835

 

Table I:  Average performance metrics based on parametric cluster-based method with 

4   

Shift  FCC FPR FNR Sensitivity Specificity POS
0.05 0.6666 0.3332 0.5195 0.9988 0.0022 0.0642
0.1 0.6680 0.332 0.3150 0.9985 0.0067 0.1076
0.15 0.673 0.3287 0.1269 0.9984 0.0223 0.2266
0.2 0.6875 0.3189 0.0388 0.9987 0.065 0.3916
0.25 0.7166 0.298 0.0135 0.999 0.1519 0.6008
0.3 0.7661 0.2595 0.0043 0.9994 0.2996 0.7560
 

Table J:  Average performance metrics based on parametric non-cluster-based method 

with 4   

Shift  FCC FPR FNR Sensitivity Specificity POS
0.05 0.6666 0.3331 0.5517 0.9987 0.0021 0.0678
0.1 0.6675 0.3321 0.4194 0.9975 0.0071 0.1161
0.15 0.6716 0.3294 0.2096 0.9973 0.0201 0.1858
0.2 0.6789 0.324 0.1579 0.9958 0.0453 0.3603
0.25 0.6895 0.3162 0.1349 0.9937 0.0812 0.5343
0.3 0.7031 0.3057 0.1214 0.9912 0.127 0.6255
 

Table K:  Average performance metrics based on nonparametric cluster-based method 

with 4   

Shift  FCC FPR FNR Sensitivity Specificity POS
0.05 0.6673 0.3326 0.3668 0.9987 0.0044 0.0628
0.1 0.6723 0.3291 0.1625 0.998 0.0209 0.1571
0.15 0.6864 0.3194 0.0614 0.9979 0.0633 0.3538
0.2 0.725 0.2915 0.0181 0.9984 0.1784 0.5692
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0.25 0.7855 0.243 0.0061 0.9989 0.3586 0.7441
0.3 0.8566 0.1763 0.0044 0.9987 0.5724 0.9156
 

Table L:  Average performance metrics based on nonparametric non-cluster-based 

method with 4   

Shift  FCC FPR FNR Sensitivity Specificity POS
0.05 0.6671 0.3329 0.4187 0.9988 0.0034 0.0828
0.1 0.6686 0.3314 0.2938 0.998 0.0098 0.1424
0.15 0.6751 0.3269 0.1736 0.9967 0.0319 0.3442
0.2 0.6874 0.3181 0.1137 0.9954 0.0713 0.5324
0.25 0.7061 0.3041 0.0938 0.9932 0.1318 0.7212
0.3 0.7242 0.2902 0.0786 0.9919 0.1889 0.7888
 


