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Abstract. We employ an elastic line model to investigate the steady-state properties and non-equilibrium
relaxation kinetics of magnetic vortex lines in disordered type-II superconductors using Langevin molecular
dynamics (LMD). We extract the dependence of the mean vortex line velocity and gyration radius as well
as the mean-square displacement in the steady state on the driving current, and measure the vortex density
and height autocorrelations in the aging regime. We study samples with either randomly distributed point-
like or columnar attractive pinning centers, which allows us to distinguish the complex relaxation features of
interacting flux lines subject to extended vs. uncorrelated disorder. Additionally, we find that our new LMD
findings match earlier Monte Carlo (MC) simulation data well, verifying that these two microscopically
quite distinct simulation methods lead to macroscopically very similar results for non-equilibrium vortex

maftter.

1 Introduction

Technical applications of type-II superconductors, espe-
cially in high-field configurations, require effective pin-
ning mechanisms to prevent flux creep and flow and to
thereby avoid dissipative losses. A disordered system of
vortex lines at a finite temperature, subject to pinning
from randomly distributed point-like or correlated pin-
ning sites, forms a remarkably complex system displaying
a wealth of features. Naturally occurring weak point-like
disorder already destroys the low-temperature Abrikosov
lattice present in a clean system in favor of a new Bragg
glass phase with quasi long-range positional order. The
first-order melting transition [II23] is then replaced by a
continuous transition into a vortex glass phase [45617], in
which translational order is completely lost. Hence, vortex
matter with weak, randomly placed, point-like disorder al-
ready shows a very rich phase diagram [8/9]. The introduc-
tion of correlated disorder, such as columnar pinning sites,
results in a strongly pinned Bose glass phase with local-
ized vortex lines and a diverging tilt modulus [TO/TIIT2],
which is accessible to analytical treatment via a mapping
to the propagation of bosons in imaginary time [13/14].
Since Struik’s original investigation on physical aging
in various materials [I5], many glassy systems have been
found to show physical aging [16]. More recent studies con-
firm that many other systems show the characteristics of
glass-like relaxation and aging [I7/I8/T9]. Experimentally,
Du et al. detected evidence of physical aging in disordered
vortex matter by demonstrating that the voltage response
of a 2H-NbSe; sample to a current pulse depends on the
pulse duration [20]. Thin-film Monte Carlo relaxation and

aging studies of a coarse-grained two-dimensional model
were performed by Nicodemi and Jensen [21122[23[24].
Bustingorry, Cugliandolo and Dominguez investigated the
relaxation of vortex matter employing Langevin molecular
dynamics (LMD) for a three-dimensional line model, find-
ing clear indications of physical aging in two-time quanti-
ties such as the density-density autocorrelation function,
the linear susceptibility and the mean-square displace-
ment [2526].

In this paper, we report the results of a study com-
paring the non-equilibrium relaxation kinetics of vortex
lines in the presence of randomly distributed point-like
disorder and correlated columnar disorder. The origin of
point-like pinning sites can be either naturally occurring,
or artificially introduced crystal defects. Similarly, corre-
lated columnar disorder appears either as line dislocations
or in the form of material damage tracks stemming from
high-energy ion irradiation. It is well-established experi-
mentally that columnar disorder yields considerably en-
hanced pinning efficiency over uncorrelated point-like dis-
order [27]. Since linear pinning centers are extended along
one spatial dimension, one also expects profound differ-
ences in the out-of-equilibrium relaxation of magnetic flux
lines as compared to samples with randomly distributed
point pins. Naturally, these differences can only be ad-
dressed in a fully three-dimensional model and numerical
study.

We perform extensive Langevin molecular dynamics
simulations on a coarse-grained elastic line model of vor-
tex matter. For non-equilibrium systems, it is important
to compare and thus validate different microscopic real-
izations and simulation methods, in order to ascertain
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that the resulting macroscopic features stem from phys-
ical properties of the system and not from artifacts of
the specific algorithm. We first present our LMD data on
the steady-state vortex velocity and radius of gyration for
driven flux lines subject to point-like or columnar disor-
der. To validate our simulation code, we compare these
results for attractive point pins with earlier findings from
Monte Carlo (MC) simulations. We proceed to systemat-
ically investigate the complex non-equilibrium relaxation
behavior of a system of initially randomly distributed and
perfectly straight vortex lines via various two-time observ-
ables. For point-like disorder, we again compare our novel
LMD results with previously published MC data [28]. The
main focus of this work is the distinct relaxation behav-
ior of flux lines in the presence of randomly distributed
columnar and point pinning centers.

Our paper is organized as follows: In the next Section
we define and explain the elastic line model as well as our
LMD algorithm and discuss the values of the different sys-
tem parameters. We then introduce the quantities that we
are using in order to understand the non-equilibrium prop-
erties of interacting vortex lines in the presence of different
types of attractive defects. Section [ is devoted to a dis-
cussion of the steady-state properties. We use this regime
in order to validate the different algorithms used for the
study of our system. Section Ml presents our numerical re-
sults. In a systematic study we disentangle the different
effects due to the line tension, the vortex-vortex interac-
tion, the pinning to defect sites, and the finiteness of the
system. We discuss our main finding on how the different
types of pinning centers, point-like and extended colum-
nar defects, affect the non-equilibrium relaxation process.
Finally, we summarize our results in Section

2 Model and Simulation Protocol
2.1 Effective Model Hamiltonian

We consider in the following a system of N vortex lines
in the London limit, where the penetration depth is much
larger than the coherence length. In order to model the dy-
namics of the system we employ a fully three-dimensional
elastic line description [12/29]. The Hamiltonian of this
system is written as a functional of the vortex line trajec-
tories 7;(z) = (2;(2),yi(2)), where z denotes the direction
of the applied external magnetic field, and consists of three
competing terms: the elastic line energy, the attractive ex-
ternal potential due to disordered pinning sites, and the
repulsive vortex-vortex interactions:

N L ~
Hri(2)] = Z/O dz [%1

1 N
+5 2 V(i) =)D |-

J#i

dri(2)]?
z

+Up(ri(z),2)

The elastic line stiffness or local tilt modulus is given
by €1 ~ I'2¢gIn(Aap/Eap), where '™t = My, /M, rep-
resents the effective mass ratio or anisotropy parameter,

whereas A\, and &, respectively denote the London pen-
etration depth and coherence length in the ab crystal-
lographic plane. The in-plane vortex-vortex interaction
is given by V(r) = 2e0Ko(r/Aap), with the zeroth-order
modified Bessel function K (essentially a logarithmic re-
pulsion that is exponentially screened at the scale \). In
our simulations, the interaction is cut off at 5\, in or-
der to avoid artifacts due to the periodic boundary con-
ditions. The Np pinning sites are modeled by randomly
distributed smooth potential wells of the form

No bo |’l"—’l"a|—b0
Up(r,z)=— 3p5(zza)[1tanh (5177)} ,
a=1 0

where p > 0 is the pinning potential strength, and r, and
Zo indicate the in-plane and z position of pinning site a.
Lengths are measured in units of the pinning potential
width bg. Energies are measured in units of egby with eg =
(¢0/4mAap)?, and the magnetic flux quantum ¢g = he/2e.

2.2 Langevin Molecular Dynamics

We employ a LMD algorithm to simulate the vortex line
dynamics. To this end, we discretize the system into lay-
ers along the z axis. The layer spacing corresponds to
the crystal unit cell size c¢g along the crystallographic c-
direction [29J30]. Forces acting on the vortex line vertices
can then be derived from the properly discretized version
of the Hamiltonian (J). We proceed to numerically solve
the (overdamped) Langevin equation

ori(t, z) 0H|[ri(t, z)]

ot ori(t,2)

+fi(taz)' (2)

with the Bardeen-Stephen viscous drag parameter 7.
The fast, microscopic degrees of freedom of the sur-
rounding medium are captured by thermal stochas-
tic forcing, modeled as uncorrelated Gaussian white
noise fulfilling (f;(t,z)) = 0 and the Einstein relation
(fi(t,2)f;(s,2")) = 2nkgTd;;6(t—s)d(z—2"), which guar-
antees that the system relaxes to thermal equilibrium
with a canonical probability distribution oc e=H#/*¥8T The
time integration is performed via simple discretization of

Eq. @) [31I.

2.3 Monte Carlo Algorithm

In section B we will compare steady-state results of sys-
tems of driven vortex lines generated by our LMD algo-
rithm to data stemming from MC simulations. The MC
data was obtained by applying the standard Metropolis
update rule to the Hamiltonian ({): A line element is
picked at random and made to jump in a random direc-
tion and (but truncatecﬂ) distance. The ensuing change
in the system’s energy AFE is then evaluated and the

1 A step size cut-off is necessary in order not to skip over
pinning potential wells. See Refs. [30133] for more information.
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Metropolis rule then accepts the jump with a probabil-
ity P(AE) = min{1,exp(—AE/kpT)}. One MC step is
completed when exactly NL line elements have been se-
lected.

2.4 Material Parameters

We chose our simulation parameters to closely match the
material parameters of the ceramic high-T¢ type-II super-
conducting compound YBazCu3zO7 (YBCO). The mate-
rial is highly anisotropic with an effective mass anisotropy
ratio of I'"! = 1/5. We set the pinning center radius
to by = 35A and measure simulation distances in terms
of this length. The in-plane London penetration depth
and coherence length are A\,, = 34by =~ 1200A and
€ = 0.3by ~ 10.5A respectively. The vortex line en-
ergy per unit length is ¢g ~ 1.92 - 10~ %erg / cm, hence
the line tension energy scale becomes €; ~ 0.189¢y. The
depth of the pinning center potential is set to p = 0.05¢,
except when noted differently. To fix the intrinsic sim-
ulation time scale, we set the Bardeen-Stephen viscous
drag coefficient n = ¢3/2mp,c?€2, ~ 107 erg s/ cm? to
one (for the normal-state resistivity of YBCO near T,
pn & 500ps2cm, see table 1 in Ref. [32]), resulting in a
basic time unit of tg = nbg/€p = 18 ps.

2.5 Relaxation Simulation Protocol

Throughout our study, the investigated systems contained
N = 16 vortex lines with L = 640 number of layers (ex-
cept where noted differently). In the scenarios that in-
clude disorder, the number of pinning sites per layer is
Np/L = 1116 which corresponds to a mean in-plane dis-
tance of 9by between pinning sites. In the case of ran-
domly arranged point defects, the pinning site positions
are chosen anew for each layer, whereas for columnar dis-
order, each layer repeats the pattern of the first layer’s
randomly chosen positions. The system size is set to
(16/v/3)Aap X 8Aap, with the aspect ratio chosen such that
a clean system with interacting vortex lines reproducibly
forms a hexagonal Abrikosov lattice configuration after
equilibration. We employ periodic boundary conditions in
the x and y directions, and free boundary conditions along
the z axis.

Our initial out-of-equilibrium condition consists of a
system of perfectly straight vortex lines, placed at random
locations throughout the computational domain. Since the
vortex line elements do not yet fluctuate (i.e. their dis-
tance from the vortex line mean in-plane position is zero),
the internal vortex line configuration effectively is at zero
temperature, hence, the start of the simulation at ¢t = 0 is
similar to an up-quench to a finite temperature 7' = 10 K.
This is in contrast to their random spatial distribution,
which is equivalent to an infinite temperature. We then
let the system relax towards equilibrium until the waiting
time ¢t = s (typically in the range of 2 to 4096) is reached,
when we take a snapshot of the system. We proceed to cal-
culate various two-time quantities (see section below)

at logarithmically-spaced time intervals with a simulation
end time that is ten times larger than the waiting time.

2.6 Measured Quantities

In the steady state of our driven flux line system, we mea-
sure the mean vortex velocity v by extracting the velocities
of each line element in the direction of the driving force
Fy from the time stepping algorithm in LMD and aver-
age over all line elements in the system. In MC, we take
the average displacement in the direction of the driving
force Fy over 30 MC steps and calculate the mean ve-
locity. Using Faraday’s law, we can relate the vortex line
mean velocity to an induced electric field E = B x v/c,
which translates to a voltage drop across the sample. Sim-
ilarly, the driving force is related to an applied external
current via the Lorentz force Fy = |j X ¢oB/B|. Hence,
a driving force vs. mean vortex velocity graph is equiv-
alent to experimentally determined current-voltage (I-V)
characteristics.

To quantify thermal spatial fluctuations along the vor-
tex lines, we compute the vortex line radius of gyration
rg = \/{(ri> —T;)?), i.e. the root mean-square displace-
ment from the lines’ mean lateral positions. The angular
brackets again indicate an average over line elements as
well as noise and disorder realizations. This quantity is
expected to show a maximum at driving forces just below
the depinning transition.

To further accurately capture the relaxation and aging
dynamics of out-of-equilibrium disordered vortex line sys-
tems, we measure two-time correlation quantities. Since
we wish to compare the relaxation behavior in LMD with
previously measured MC data, we utilize the same two-
time observables as in Ref. [28]: the height-height autocor-
relation function of the vortex lines, the two-time mean-
square displacement and the density-density autocorrela-
tion function. All these quantities depend on two times,
labeled in the following as s and ¢, with s < ¢.

The roughness or height-height autocorrelation func-
tion of the vortex lines is defined by:

Clts) = ((riz(t) =Ti(t) (ri=(s) =Ti(s))),  (3)

where 7; . (t) are the in-plane coordinates of line 7 at layer
z at time ¢, 7,;(¢) is the mean position of line %, and the av-
erages are taken over all line elements as well as noise and
disorder realizations. This quantity contains information
about local thermal fluctuations of vortex line elements
around the flux line’s mean lateral position. In the case
of free, non-interacting vortices, it can be mapped to the
height correlation of growing one-dimensional interfaces

(see Sec. A.T]).

The two-time mean square displacement, defined as

B(t,s) = ((riz(t) = 7i:()%) (4)

measures the average square distance between a vortex
line element’s position at time s and a subsequent time t.
This quantity provides data on the time evolution of the
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global structure of the vortex line configuration, in addi-
tion to the same local information contained in C(t, ).

Finally, the two-time density-density autocorrelation
function C, (¢, s) is an observable that is measured by sav-
ing a snapshot of the positions of all vortex line elements
in the system at time s, calculating the radial distance
ri(t, s) each vortex line element traveled between times s
and ¢ and determining the number n. of vortex line ele-
ments for which this distance is smaller than a prescribed
cutoff distance r;(¢,s) < r.. The density autocorrelation
is then Cy(t,s) = (n./NL). Throughout our study, the
cutoff distance is r. = 0.05by. The density autocorrela-
tion also contains information on the formation or decay
of global structures; thus we expect it to generally follow
the behavior of B(t, s).

2.7 Comparison of Microscopic Algorithms

In order to simulate the dynamics of elastic lines in a dis-
ordered medium, an appropriate microscopic algorithm
has to be chosen. A considerable amount of work has
been done using Metropolis MC implementations of the
model described above and variations thereof [29/30033].
Gotcheva et al. investigated the differences between a
Metropolis and a continuous-time MC algorithm for a sys-
tem of flux lines on a discrete lattice and subject to varying
temperature and driving force [34I35]. The continuous-
time update rule preserved positional order, while the
Metropolis rule led to a disordered moving state, question-
ing the validity of the Metropolis algorithm for studies of
driven vortex matter in lattice simulations. More recent
studies demonstrated that positional order was preserved
in off-lattice Metropolis MC of driven vortex matter [30].

It is crucial to investigate and compare different micro-
scopic implementations of algorithms such as Metropolis
MC and LMD simulations in a non-equilibrium setting.
The choice of algorithm might introduce spurious effects
that cannot be predicted a priori. In order to separate ac-
tual physical effects of the studied elastic line model from
these artifacts, we performed a careful numerical compar-
ison of LMD with earlier MC studies. Fast microscopic
degrees of freedom are modeled by the thermal force term
in LMD, see Eq. [@)). In equilibrium the noise strength is
set by the Einstein relation (fluctuation-dissipation theo-
rem, FDT). In out-of-equilibrium situations, there exists
in general no FDT-equivalent that would uniquely deter-
mine the form and strength of the noise correlations. Since
the large-scale and long-time characteristics of Langevin
stochastic differential equations can be drastically influ-
enced by the noise correlator properties, it is necessary to
validate results by comparing to other numerical meth-
ods [30]. In the first part of this article, we therefore com-
pare results from a MC study for both steady-state and
relaxation properties of the vortex line model to data gen-
erated by the LMD algorithm. It should be noted that a
direct comparison of time scales is difficult since the length
of a MC time step is a dynamically generated quantity,
whereas in LMD the time step duration is a function of
the material parameters.

0.000 0.004 0.008 0.012 0.12 0.18
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Fig. 1. (Color online) Steady-state (a) velocity and (b)
gyration radius of N = 16 vortex lines with a length of
L = 20 elements as a function of the driving force Fy in
the presence of point pins with varying disorder potential
strength p. The red circles show data from MC simulations
with p = 0.05¢g, while the other graphs display LMD sim-
ulation data with p ranging from 0.03¢p to 0.05¢¢ in steps
of 0.005¢p. In (c) and (d), the force axis is rescaled with
the disorder potential strength. The velocity curves in (c)
cross at Fy/p =~ 0.19 while the gyration radius maxima in
(d) align around Fy/p = 0.12, with a slight bias towards
higher Fy/p for higher values of p.

0.24 0.3

3 Steady-state properties

We first employ LMD simulations for interacting flux lines
in the presence of point-like disorder with disorder poten-
tial strength p, subject to a driving force Fy stemming, via
the Lorentz force, from an external current. Results for the
steady-state velocity and gyration radius are gathered in
Fig. [ The red dots in Fig.Mlindicate MC-generated data,
while the solid lines were produced using LMD with dif-
ferent values of p. It is quite clear from Fig. [[(a) that a
pinning potential strength p = 0.05¢g in MC corresponds
to p &= 0.04¢p in LMD. In MC, vortex line elements test a
region with a radius of 0.25by around their current position
for possible jump targets. It is conceivable that the pin en-
ergy barrier appears a bit smoother in MC since its width
falls into the same length scale, which leads to the ob-
served renormalization of the pinning potential strength.
The slightly higher maximum of the MC gyration radius
data for p = 0.05¢g over the corresponding LMD curve
with p = 0.04¢g in Fig.[Ii(b) supports this argument, since
vortex line elements are most likely trapped at a pinning
site until they escape via a single jump. It is much less
probable for any line element to escape the pin via mul-
tiple successive jumps. In LMD on the other hand, the
thermal force is only an added component on top of the
(in this case stronger) driving and elastic tension forces.
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Fig. 2. (Color online) Steady-state (a) velocity and (b)
gyration radius of NV = 16 vortex lines with L = 20 as a
function of the driving force Fy in the presence of colum-
nar disorder, with a disorder potential strength varying
between p = 0.03¢g and p = 0.05¢q in steps of 0.005¢p. As
expected, the radius of gyration displays quite different
behavior for columnar pins as compared to point pinning
sites, compare Fig. [[Ib). In (c) and (d), the force axis is
rescaled with the disorder potential strength. The veloc-
ity curves in (c) cross at Fy/p =~ 1.9, while the gyration
radius maxima in (d) align around Fy/p ~ 2.

Hence, LMD yields smooth escape trajectories out of a
point pin’s binding potential, and the vortex line is con-
sequently less rough, resulting in a smaller radius of gyra-
tion.

Figures [Mi(c) and (d) show that the depinning force
scales roughly linear with the pinning potential strength
p, as expected [12]. The vortex velocity curves cross at
F;/p =~ 0.19, while the gyration radii have their maxima
around Fy/p ~ 0.12, with a slight systematic shift to lower
F;/p for smaller pinning strength values p. It should be
noted that a true continuous non-equilibrium depinning
phase transition occurs only at 7' = 0 (and in the ther-
modynamic limit). The scaling behavior of the velocity
of driven vortex lines near the critical depinning force in
the presence of point-like disorder has been explored by
Luo and Hu [36]. The gyration radius maximum in the
vicinity of the critical depinning force may consequently
be understood as the thermally rounded remnant of this
zero-temperature phase transition [37].

Figures Pl(a) and (b) display the mean velocity v and
the radius of gyration 7, as a function of the driving force
Fy of vortices subject to randomly distributed columnar
pinning sites. Correlated disorder is much more effective
at pinning flux lines than point disorder [27]. This is re-
flected in a critical depinning force that is about an order
of magnitude higher for columnar defects than for uncor-
related point pins of the same strength p (per layer; results

shown in Fig. [dl). In Figs.2c) and (d) the driving force is
again scaled with the pin strength p. The vortex velocity
curves cross at Fy/p ~ 1.9, which is indeed a factor of 10
larger compared to point pins. In the presence of columnar
defects, a single flux line may be in one of the following
four configurations: [12] (i) unpinned, located away from
any pinning sites; (ii) trapped at a single columnar pin
for its entire length; (iii) forming a vortex half-loop where
the elastic line is trapped at a single columnar defect, with
the exception of an unpinned section that extends away
from the defect line: Depending on the relative strengths
of the driving force, thermal noise, and the pinning poten-
tial, the unpinned part may either expand or retract. This
state represents a short-lived saddle-point configuration;
(iv) forming single or double kinks by being simultane-
ously trapped at two adjacent pinning columns. This state
is rather long-lived but will ultimately decay into either
the unpinned or completely trapped state.

The gyration radius indicates which configurations are
typically assumed by the vortex lines. For Fy = 0, most
vortex lines are fully trapped. The radius of gyration of
a trapped line is restricted by the pinning potential ex-
tension by, hence we observe a marked reduction in the
value of ry with columnar pins over free, unbound lines.
With increasing but below-critical Fy, r4 decreases since
the mean position of trapped vortex lines shifts from the
center of the pinning site, which further constrains fluc-
tuations. In the vicinity of the critical depinning force,
in the flux creep regime, r, rises sharply due to the for-
mation of half-loops, single-, and double-kinks. Near the
transition to free-flowing flux lines, r, develops a maxi-
mum and gradually decreases for even higher Fy. In this
state, vortex motion is slightly restricted by pinning cen-
ters, but the flux lines move essentially unimpeded, and
the radius of gyration approaches its unbound value.

4 Relaxation processes

In order to study the relaxation dynamics and possible ag-
ing scaling of a system of vortex lines in various scenarios,
we follow the procedures outlined in Ref. [28]. As a test
case for our simulation code, we first investigate a system
of non-interacting lines without disorder, which can be
mapped to the one-dimensional Edwards-Wilkinson (EW)
interface growth model. We then proceed to non-interact-
ing lines in the presence of point-like disorder with two
different pin potential strengths, where the short-time be-
havior is similar to the clean system while the long-time
relaxation is modified by the attractive defects. To dis-
entangle the effects of the mutual vortex repulsion from
the disorder influence, we next study a system of interact-
ing vortex lines without pinning sites. Subsequently, we
present data on the full system of interacting vortex lines
in the presence of point pinning centers. We then point out
the differences in the relaxation kinetics in systems with
point and correlated extended pins by investigating both
non-interacting and interacting flux lines in the presence
of columnar defects. Finally, we discuss finite-size effects
due to short vortex lengths for both types of pinning sites.
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In each of the scenarios presented below, we first look
at the relaxation of the single-time mean-square displace-
ment B(t,0), the time-dependent squared radius of gyra-
tion, rg(t), and the associated effective exponents Sp(t) =
dInB(t,0)/dInt and S, (t) = dInr2(t)/dInt. The mean-
square displacement predominantly probes changes in the
average positions of single vortices. Hence we use the av-
erage of Bp over an appropriate time interval as the aging
exponent that we utilize to achieve (approximate) data
collapse of the two-time global mean-square displacement
B(t, s) and density autocorrelation function C,(t, s). The
time-dependent radius of gyration describes internal ther-
mal vortex line fluctuations and enables us to compute an
averaged scaling exponent 3, that can be used for obtain-
ing data collapse of the two-time height autocorrelation
function C(t, s).

4.1 Free Non-interacting Vortex Lines

The thermal fluctuations of the segment locations of free
(non-interacting and not subject to disorder) directed elas-
tic lines around their mean in-plane position can be map-
ped to the problem of a one-dimensional interface grow-
ing via random deposition. The continuous version of this
growth model is described by the stochastic Edwards-
Wilkinson (EW) equation [38]. The temporal evolution of
the interface height relative to its mean height is governed
by a diffusive term as well as a random noise term. Hence,
it may be described mesoscopically by a linear Langevin
equation,

0%h(z,t)

Oh(z,t)
at =V 822 +77(th> ) (5)

where v is the diffusive strength and 7(z,t) represents
thermal white noise with zero mean and second moment
((z,t)n(2', 8)) = 2kpTvdé(z—2")6(t—s) that satisfies Ein-
stein’s relation. The temperature 7' enters through the
noise strength.

The linear nature of Eq. (B) makes it possible to ar-
rive at analytical expressions for various two-time quanti-
ties [39126J4004T]. In particular, the solution for the two-
time height-height autocorrelation function in the corre-
lated growth regime reads [39],

C(t,s) = Cos'/? <E + 1} v E - 1] 1/2> . (6)

Comparing with the general scaling form C(t,s) =
s7Pfc(t/s) (with scaling function fco), this predicts
the universal aging exponent b = 1/2 in the EW
regime [28/39]. The mean square displacement follows
a similar scaling form B(t,s) = s ’fg(t/s), while the
density autocorrelation empirically scales as C,(t,s) =
s fe, (t/s).

The relaxation of the observables B(t,0), r2(t) and the
three two-time correlation functions B(t,s), C(t,s), and
Cy(t,s) in this scenario as observed in our LMD simu-
lations is presented in Figs. Bl and Ml respectively. For a
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Fig. 3. (Color online) Relaxation behavior of (a) the vor-
tex line mean-square displacement B(t,0), (¢) the squared
gyration radius 7 (t), and (b,d) the associated effective ex-
ponents Sp and [j, over time for free non-interacting flux
lines with length L = 10 (e marker), L = 640 (x marker)
and L = 2560 (» marker) averaged over at least 1000

realizations.

very thin system with L = 10, we immediately see from
the time evolution of the effective exponent Sp(t) [solid
line with black circles in Fig. B(b)] that the system starts
to cross over into equilibrium where B(¢,0) ~ t, g — 1
for early times ¢ > 2°, and it is truly equilibrated af-
ter t > 219, This is also visible in the unscaled two-time
quantities B(t,s) and C,(t,s) displayed in Figs. H(a,c):
For s > 24, the data of B(t,s) for different waiting times
s fall onto a single master curve, which indicates the re-
covery of time translation invariance. In contrast, the data
for Cy(t, s) collapse for all waiting times s. The difference
in the onset of data collapse in these two quantities is
caused by local thermal fluctuations contributing to the
mean-square displacement, whereas short-scale variations
are effectively averaged out due to the finite cutoff radius
in the density autocorrelatiorfl. The effective gyration ra-
dius exponent £y, (t), displayed in Fig.Bl(d), decreases from
the start and eventually reaches zero around ¢ ~ 27. For

2 See the description of the algorithm for calculating C, (¢, s)
in Sec. and Ref. [28] for more information.
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Fig. 4. (Color online) Relaxation of two-time quantities
in a system of non-interacting flux lines without disorder
for a line length of (a-c) L = 10 and (d-f) L = 2560,
averaged over 800 different noise realizations. The sub-
figures show (a,d) the mean-square displacement B(t, s),
(b,e) the height autocorrelation function C(t, s), and (c,f)
the density autocorrelation function C,(t, s) as a function
of (a-c) t—s and (d-f) ¢/s. Waiting times range from s = 2
to 212 = 4096. For L = 10, the system rapidly reaches
equilibrium. The height autocorrelation function in (b)
displays a short time window (s < 64) where it explicitly
depends on s and time translation invariance is broken.
For L = 2560 and s > 16, all quantities show aging and
dynamical scaling with the EW exponent b = 0.5.

such a short flux line length, the crossover from the EW
regime to the saturated (equilibrated) regime happens at
very early timedd. The two-time height-height autocorre-
lation function C(t,s), plotted in Fig. Hlb), shows data
collapse for waiting times s > 27, which reflects the time
evolution of 8y, (t).

The extended, bulk-like system with L = 2560 exhibits
much slower relaxation and hence enables us to study
the dynamical aging scaling regime. The effective expo-
nents Sp(t) and By (t) [solid lines with black triangles in
Figs. Bl(b,d)] show the remnants of a crossover for short
times, while staying at a value of approximately 0.5 for
t > 2% Figures @(d-f) depict B(t,s), C(t,s) and C,(t, s)
respectively as functions of ¢/s and scaled with appropri-

3 See Ref. [44] for a discussion of different EW regimes and
the length dependence of the crossovers.

ately chosen exponents of the waiting time. The data for
all three quantities show data collapse for s > 2* with
exponent b = 0.5, indicating dynamical scaling and hence
full aging in this time regime. The aging exponent of the
two-time height-height autocorrelation function coincides
with the predicted EW value from Eq. (@).

Except for the early-time crossover between the EW
and saturation regimes, which is not visible in Fig. 3 in
Ref. [28], our findings produced via LMD simulations are
in complete agreement with the MC data for both thin
and extended “bulk” systems.

4.2 Non-interacting Vortices with Point Disorder

We now proceed to add point-like disorder with pinning
potential strengths p = 0.01¢p and p = 0.05¢p to a system
of non-interacting vortex lines, see Fig. The equilib-
rium configuration at low temperatures constitutes an ex-
tremely dilute vortex glass. For the smaller defect strength
of p = 0.01¢p there exists an intermediate time regime
23 < t < 27 during which both effective exponents Bp(t)
and Sy (t) are fairly constant before developing a maxi-
mum around ¢ = 2'0 with a subsequent crossover into a
frozen state with 8p, 8, — 0 where the vortex lines are
firmly bound to the point defects [solid lines with black
circles in Fig. B(b,c)]. The slight downward slope at early
times is a remnant of the crossover from the random-noise
into the EW regime of free flux lines. In fact, the exponent
values at times ¢ < 27 approximately equal those of the
disorder-free system, indicating that the time evolution of
the mean lateral vortex position is essentially the same as
for free lines prior to the disorder effects becoming notice-
able. At later times, vortex movement starts to become
affected by the attractive pinning sites, which temporar-
ily accelerates the relaxation kinetics as the vortices are
drawn into potential wells, before flux line motion becomes
at last frozen at the defects.

Figures[fla-c) show the resulting relaxation of the two-
time mean square displacement B(t, s), the height-height
autocorrelation function C(t,s) and the density-density
autocorrelation function C, (¢, s) for the system with pin-
ning strength p = 0.0leg. The global quantities B and
C, are scaled using the aging exponent b = 0.527 taken
from the average effective exponent Sp over the short- to
intermediate-time region 23 < t < 2%, where 8p is roughly
constant. These two-time autocorrelation functions yield
approximate dynamical scaling for waiting times in this
time regime, which further supports the interpretation
that pinning sites are essentially irrelevant for the mo-
tion of the vortex line mean lateral positions during the
early stages of the relaxation process.

In the short-time regime t < 2°, the squared gyration
radius r2(t) in Fig.Bl(c,d) is also described by a power law
with an approximate effective exponent /35, ~ 0.523. Using
this value as the aging exponent for the scaled two-time
height-height autocorrelation function C(¢,s) in Fig. [B(b)
reveals approximate dynamical scaling in this time win-
dow. However, stronger deviations from the free-line be-
havior are observed for C(¢,s) than for the other quan-
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Fig. 5. (Color online) Relaxation behavior of (a) the flux
line mean-square displacement B(t,0), (c) the squared gy-
ration radius 77 (t), and (b, d) the associated effective ex-
ponents Sp and [; over time for non-interacting vortices
subject to point pins with potential strength p = 0.01¢g
(e marker) and p = 0.05¢p (»), averaged over 1000 re-
alizations. For p = 0.01l¢g, the dashed lines (below the
curves) indicate the power laws with mean effective expo-
nents g ~ 0.527 4 0.003 in (a) and B, ~ 0.523 & 0.002 in
(c) over the range 23 < t < 25. Similarly for p = 0.05¢j,
the dashed lines (above the curves) show the power laws
with mean effective exponents Sz ~ 0.725 + 0.041 and
B ~ 0.716 4 0.037 over the range 23 < t < 28,

tities. For larger times ¢t > 26 correlations become in-
creasingly longer-lived, since vortex line elements become
trapped at pinning sites. Hence, the influence of weak
point defects is observed mainly in the fluctuations of flux
line elements, whereas the movements of their mean lat-
eral positions are hardly modified.

For a larger pin strength p = 0.05¢g, the effective
exponent maxima in Figs. Blb,d) develop earlier, near
t = 27, and there appears no region with approximately
constant exponents. For t > 2!! the system crosses over
into a regime where the vortex line configuration appears
to become frozen at the pins. This is reflected also in

4 The supplementary movie “NonInteractWeakLargePin-
sNearby.mp4” shows an example realization for this behavior.

Fig. 6. (Color online) Relaxation of (a,d) the mean-square
displacement, (b,e) the height autocorrelation function,
and (c,f) the density autocorrelation in a system of non-
interacting vortex lines of length L = 640, subject to ran-
domly distributed point pins with a potential depth of
(a-c) p = 0.01¢p and (d-f) p = 0.05¢p; data averaged over
1000 realizations. Time translation invariance is broken
throughout the simulation time window. For both pinning
strengths, dynamical scaling for the mean-square displace-
ment and the density autocorrelation approximately holds
in an intermediate range of waiting times s, with the mean
effective exponents inferred from Fig.

the two-time quantities, where we only see approximate
data collapse for B and C,(t, s) for waiting times s < 26
[Figs. [6(d,f)]. The two-time height autocorrelation func-
tion C(t,s) in Fig. Ble) yields interesting non-monotonic
behavior for s > 23, where correlations actually increase
again after developing a minimum. We interpret this ef-
fect as a rather complicated cross-over effect caused by
competition of repulsive, pinning, and elastic forces. Ini-
tially, the vortex lines locate nearby pinning sites and are
drawn into their attractive potential wells. This yields ac-
celerated super-diffusive motion as indicated by the expo-
nent maximum in Fig. B(d), until the elastic interaction
restricts further exploration of the configuration space and
leads to the subsequent decrease of the effective exponent.
This behavior is not apparent in the case of p = 0.01 owing
to our choice of waiting times. The exponent maximum in
this situation would occur at a much later time and hence
the highest waiting time s = 2!2 does not yet display any
non-monotonic features.
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Elastic manifolds subject to disorder can be charac-
terized by means of the roughness exponent x which is
defined via the height-height correlation function along
the manifold dimensions [45] (here, the contour length of
the directed lines)

Clz=2") = ([r(z) —r()) ~ [z =X (7)
In the case of a dilute flux line system, for which mutual in-
teractions may be neglected, and free of disorder, thermal
fluctuations lead to the EW roughness exponent x = 0.5,
in agreement with our numerical observations. In the di-
lute vortex glass phase with point-like disorder, renormal-
ization group analysis of manifolds subject to Gaussian
disorder [46/45] predicts a roughness exponent x = 5/8.
Our LMD simulations yield a distance-dependent effective
roughness exponent in the range of 0.5 < x.fr < 0.8 for
a system of non-interacting vortex lines with point-like
pinning sites. It should be emphasized, though, that in
our model the pinning sites are exclusively attractive. It
turns out that the out-of-equilibrium relaxation behavior
is considerably different for directed lines subject to a mix-
ture of attractive and repulsive pins: One then actually
observes simple aging, albeit with non-universal scaling
exponents that depend on temperature as well as pinning
strength [47128].

4.3 Interacting Vortex Lines without Disorder

To disentangle the effects of mutual flux line repulsion
from the influence of disordered point pinning sites, we
next study the non-equilibrium relaxation of a clean sys-
tem of interacting vortex lines. Fig. [0 shows the relax-
ation of the mean-square displacement, the radius of gy-
ration, and the associated effective exponents in this sce-
nario, whereas Fig. [§ displays the behavior of the three
two-time autocorrelations. One may immediately identify
striking differences between non-interacting and mutually
repelling vortex lines in the relaxation of B(¢,s) and its
associated effective exponent Sp(t); compare Figs. Ba,b)
and Figs.[[(a,b). The initially large value of 8p in Fig.[l(b)
can be traced to the rapid formation of long-range order
due to repulsive vortex interactions. This effect stems from
our choice of initial conditions, where the vortex lines are
randomly distributed throughout the system. Owing to
the initially non-ideal spacing, mutual repulsion leads to
fast vortex motion and thus to a large value of Sg. As soon
as an optimal arrangement (in this case the Abrikosov
lattice) is reached, flux lines perform confined random
walks due to the efficient caging from neighboring vor-
tices, which eventually leads to a low effective exponent
Bp =~ 0.2 for t > 2'2. The data collapse in Fig.[B(b) shows
that an averaged B ~ 1.6 may serve as the effective ag-
ing exponent for the two-time mean square displacement
B(t, s) for short waiting times s < 26.

The difference between interacting and non-interacting
systems does not appear as drastic for the squared radius
of gyration rz(t) as for B(t,0), compare Figs. Blc,d) and
Figs. [M(c,d). After ¢t > 210 the Abrikosov lattice starts to

22 23 24 25 26 27 28 29 210 211 212 213 214 215

Fig. 7. Relaxation behavior of (a) the flux line mean-
square displacement B(t,0), (¢) the squared gyration ra-
dius r2(t), and (b, d) the associated effective exponents
Bp and [y over time for interacting vortices in a system
without pinning centers, averaged over 5000 realizations.
The dashed lines indicate power laws with the mean ef-
fective exponents (b) Sz ~ 1.57+0.08 (averaged over the
time range 22 < t < 2%) and (d) B, ~ 0.50 & 0.02 (aver-
aged over 22 < t < 27). The inset in (c) shows the ratio
of the x and y components of the radius of gyration for
t > 212,

form, and the repulsive forces due to neighboring vortex
lines increasingly suppress transverse flux line wandering.
For ¢t > 2'2, the gyration radius components along the x
and y directions assume slightly different values owing to
the anisotropic hexagonal vortex line arrangement, which
in our rectangular system is always oriented along the x
direction; see the inset in Fig.[7(¢). For small waiting times
s < 26, the height autocorrelation data can be collapsed
with the EW aging scaling exponent b = 0.5.

4.4 Interacting Vortex Lines with Point Disorder

We are now in a position to investigate the system of inter-
acting vortex lines subject to attractive point-like disor-
der. As expected, the global time evolution, see Fig.[@(a,b),
which is dictated by the mutual vortex repulsion, is hardly
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Fig. 8. (Color online) Relaxation of (a,d) the mean-square
displacement, (b,e) the height autocorrelation function,
and (c,f) the density autocorrelation in a system of in-
teracting flux lines without disorder and L = 640; data
averaged over 800 realizations. The left-hand panels show
the unscaled log-log data, whereas data on the right-hand
side are scaled by the waiting time s using the mean ex-
ponents from Fig. [7

modified by the defects. The effective exponent Sp(t) dis-
plays essentially the same behavior as in the absence of
pinning centers; compare Figs. [Q(b) and [[(b). Similarly,
the aging exponents and the overall shapes of the mean-
square displacement and the density-density autocorrela-
tion in Fig. [0a,c) almost match the simulation results
without disorder. For short times ¢ < 26, the effective gy-
ration radius exponent £y, (t) in Fig. B(d) is quite similar
to Bn(t) in the non-interacting case with point pins, see
Fig.[El(d). For longer times, repulsive forces alter the relax-
ation of 77 (t), which tends towards higher values, Fig.[(c).
Hence, the global observables B(t,s) and C,(t, s) are in-
fluenced mainly through the presence or absence of vortex-
vortex repulsion through the ensuing mutual caging. The
local quantity C(¢,s), on the other hand, better probes
information on the disorder present in the sample.

In MC simulations [2§], an interesting, non-monotonic
behavior was revealed in the height-height autocorrelation
function for a system of interacting vortex lines subject to
point-like disorder: The height autocorrelations displayed
a pronounced maximum for small waiting times s and
In(t — s) = 5. Yet this feature is absent when the corre-
sponding system is investigated with our LMD algorithm;

Relaxation dynamics in type-1I superconductors with point-like and correlated disorder
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Fig. 9. Relaxation behavior of (a) the flux line mean-
square displacement B(t,0), (¢) the squared gyration ra-
dius 72(t), and (b, d) the associated effective exponents 35
and (, over time for interacting vortices in a system with
point-like disorder of strength p = 0.05¢p, averaged over
1000 realizations. The dashed line in (a) indicates a power
law with the mean effective exponent Sz ~ 1.54 + 0.08
(averaged over the time interval 22 < ¢ < 27).

see Fig. MO(b). In the present study, we have taken the
vortex mass per unit length to be small and neglected the
inertial term in the Langevin equation; see Sec. The
algorithm used in Ref. [28] assumes a finite displacement
per MC step which generates an effective mass. This in
turn gives rise to oscillatory behavior at short times. This
interpretation is indeed confirmed by LMD simulations
that allow for a mass term in the Langevin equation, as
depicted in Fig. [[1l With increasing vortex mass, C(t, s)
shows damped oscillations on top of the monotonic time
dependence of the overdamped, zero-mass case.

We observe two-step relaxation behavior, typical e.g.
for structural glasses, in the normalized two-time height-
height autocorrelation C(¢,s) when plotted as a function
of the time difference ¢t — s, shown in Fig. [[0(b). This be-
havior was also reported in the previous MC study [2§]: A
B-relaxation regime where C(t, s) is hardly changing and
displays time translation invariance precedes the ultimate
very slow decay. We attempted to fit a stretched expo-
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Fig. 10. (Color online) Relaxation of (a) the mean-square
displacement, (b) the normalized height autocorrelation
function, and (c) the density autocorrelation in a system
of interacting vortex lines with point pinning centers of
strength p = 0.05¢p and L = 640; data averaged over 800
realizations.

nential function to our long-time results, but could not
achieve satisfactory agreement with our data.

4.5 Non-interacting Vortices with Columnar Defects

To compare the effects of uncorrelated point pins with
those of extended, correlated defects on the flux line re-
laxation kinetics, we now investigate a system of non-
interacting vortex lines in the presence of columnar pin-
ning centers with a pinning potential strength p = 0.05¢p.
We start by first considering the case of non-interacting
flux lines relaxing in the presence of columnar defects.
Figure shows the relaxation curves for B(¢,0) and
r2(t) with their associated effective exponents Sp(t) and
Br(t). The time evolution of the mean-square displace-
ment B(t,0) is slightly accelerated compared to the disor-
der-free case for times up to t = 2?; see Fig. Bl This indi-
cates that the initial trapping of vortices at linear pinning
sites happens during this time regime. At later times, the
effective exponent approaches the value of free flux lines
Bp = 0.5, due to unbound vortex line wandering. In fact,
only ~ 4 to 5% of the vortices are pinned at the end of
our simulation time window.

As mentioned above, the average number of pinning
sites per layer in our simulations is the same for point-

In(t—s)

Fig. 11. (Color online) The normalized two-time height
autocorrelation function C(t,s) for different values of the
vortex mass m in a system of interacting flux lines subject
to randomly distributed point pins of strength p = 0.05¢,
at waiting time s = 8, and averaged over 1000 simulation
runs. The data for m > 0, for which C(t, s) displays non-
monotonic and even oscillatory behavior, was generated
using the Briinger-Brooks-Karplus integrator [42/43].

like and columnar defects. Hence the combined lateral
cross section along the z axis of all pinning sites is much
larger for point than it is for columnar pins. Consequently,
the probability for a vortex line to encounter a randomly
placed columnar pin during what is essentially a ran-
dom walk is much lower than in samples with randomly
placed point defects. A flux line is therefore most likely to
be initially captured by a single columnar defect (rather
than multiple pinning sites, which would lead to vortex
kink configurations) along a short length span, and subse-
quently becomes completely trapped at that pinning cen-
ter; this yields rather small values for the final gyration
radius, see Figs. [2(c) and (b). This is in stark contrast
with samples containing uncorrelated point defects, where
a single vortex line becomes captured by many pinning
sites, which leads to a larger terminal radius of gyration
because the line is stretched in random directions between
multiple pins; see Sec. Thus, point-like pinning centers
typically generate rough flux line configurations, whereas
columnar defects straighten bound vortices. This fact can
be expressed as an effective upward renormalization of the
elastic line stiffness, reflected macroscopically as a diverg-
ing tilt modulus for the entire vortex system in the pinned
Bose glass phase [12/14].

Comparing with the disorder-free system, the time evo-
lution of the effective exponent of the radius of gyration
Br(t) in the columnar defect case is also different: The ex-
ponent initially assumes a value 0.5 consistent with EW
scaling. It begins to deviate from the EW value at t ~ 29,
while in the non-disordered case this decrease does not
occur until ¢ &~ 212 see Fig. [2(d) and Sec. EEIl This is
due to the fact that thermal line fluctuations inside a sin-
gle columnar defect are confined to the pinning poten-
tial well, which causes early saturation of the equivalent
EW growth process. An appreciable number of kinks and
double-kinks due to vortices trapped at multiple colum-
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Fig. 12. Relaxation behavior of (a) the flux line mean-
square displacement B(t,0), (c) the squared gyration ra-
dius r2(t), and (b, d) the associated effective exponents
Bp and By over time for non-interacting vortices sub-
ject to columnar pinning centers with p = 0.05¢p; data
averaged over 10000 realizations. The dashed lines indi-
cate the power laws with the mean effective exponents
Bp ~ 0.672 =+ 0.037 and 5 ~ 0.510 + 0.006 over the time
range 23 <t <97,

nar pinning sites would presumably alter this relaxation
behavior, but the occurrence probability of kinks is rather
small in our system, as explained above. At low tempera-
tures, our non-interacting flux line system in the presence
of correlated disorder forms a very dilute Bose glass, where
the number of vortex lines is much less than the number
of pinning sites.

Figure [[3] shows the relaxation of the three two-time
autocorrelation functions for different waiting times s as a
function of the ratio t/s. We obtain data collapse for the
height autocorrelation function C(¢, s) when scaling with
the appropriately averaged effective aging exponent for
early waiting times s < 2% and /s < 2, which is consistent
with the EW regime. The more global mean-square dis-
placement B(t, s) and the density autocorrelation C, (¢, s)
cannot similarly be scaled to obtain data collapse, because
the effective exponent Sp(t) is never even approximately
constant througout the entire observed time interval, as is
evident in Fig. T2(b).

l
2? 2°

Fig. 13. (Color online) Relaxation of (a) the mean-
square displacement, (b) the height autocorrelation func-
tion, and (c) the density autocorrelation in a system of
non-interacting flux lines of length L = 640 subject to ran-
domly distributed columnar pins of strength p = 0.05¢¢;
data averaged over 1000 realizations. Scaling attempts
with the averaged effective exponents taken from Fig.
do not yield data collapse for B(t,s) and C,(t,s). One
achieves better data collapse at early waiting times s for
the height autocorrelations C(t, s).

4.6 Interacting Vortex Lines with Columnar Defects

Next, we again turn on the repulsive vortex-vortex interac-
tions. Similar to the disorder-free system and the samples
with point pinning centers, see Secs. and[£4] caging ef-
fects accelerate vortex motion, and the shape of the single-
time mean-square displacement B(¢,0) and its associated
effective exponent are hardly modified by the disorder;
compare Fig. [d{(a,b). At very large times t > 2!2, B(t,0)
becomes flatter and approaches a plateau owing to the
confinement of vortex lines by attractive defects. This ef-
fect is rather more pronounced for columnar pins than for
uncorrelated point defects. In fact, the maximal values of
B(t,0) and r2(t) are both smaller in the case of correlated
disorder, which indicates tighter binding to the pinning
sites.

The radius of gyration also shows similar time evolu-
tion trends as compared to samples with point-like dis-
order; see Figs. [[4(c) and @c). The effects of attractive
columnar pinning sites set in later than for point-like pins,
owing to the aforementioned differences in the encounter
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Fig. 14. Non-equilibrium relaxation of (a) the flux line
mean-square displacement B(¢,0), (c) the squared gyra-
tion radius rZ(t), and (b, d) the associated effective ex-
ponents Bp and [ over time for interacting vortices in
a system with columnar defects of strength p = 0.05¢,
averaged over 1000 realizations. The dashed line in (a)
shows a power law with the mean effective exponent g ~
1.53 + 0.11, averaged over the time interval 22 < ¢ < 27,

probability for flux lines and pinning centers. The acceler-
ated growth of the gyration radius for ¢ > 2° is due to the
pinning at multiple sites and the subsequent formation
of kinks, here facilitated by the strong repulsive forces.
The non-monotonic behavior of r2(t) at times ¢t > 23 is
caused by the decay of previously formed kinks. The den-
sity autocorrelation C, (¢, s) in Fig. [[Bl(c) becomes flat for
waiting times s > 28, which supports the interpretation
that the vortex lines are essentially trapped by this time
and the only remaining relaxation process is the decay of
metastable kink configurations.

Figure [[5(b) depicts the normalized height-height au-
tocorrelation function of this system for different waiting
times s. This function shows non-monotonic behavior, but
in this situation it cannot stem from an effective mass, as
we checked. The appearance of the maximum indicates a
fundamental change in the lateral fluctuations. Although
we do not yet fully understand this phenomenon, we ten-
tatively relate this observation once again to the decay of
kinks in the long-time limit.

23

Fig. 15. (Color online) Relaxation of (a) the mean-square
displacement, (b) the normalized height autocorrelation
function, and (c) the density autocorrelation in a system
of interacting vortices of length L = 640 with columnar
defects of strength p = 0.05¢g; data averaged over 800
realizations.

4.7 Finite-Size Effects

Effects due to the finite flux line length are best analyzed
in terms of the second crossover between the EW and sat-
uration regimes for non-interacting vortices in the absence
of pinning sites; see Sec. LIl (The first crossover between
the random thermal noise and the EW regimes only de-
pends on the EW diffusion constant, which here corre-
sponds to the vortex line tension.) The time at which this
second crossover occurs depends on the square of the line
length, tc = (L/24bg)?27 /€ (in the limit of large L) [44].
Our choice of L = 640 for most of the simulation scenarios
in this paper thus provides a sufficiently long time window
tc ~ 22 to observe the competing effects of vortex inter-
actions and pinning.

Of particular interest is the value of L at which the
relaxational difference between point-like and columnar
pinning sites becomes apparent. Figure [I6] shows a com-
parison plot of B(t,0) and r2(t) for both columnar and
point-like disorder for very short vortex lines with L = 2
and L = 10. In a purely two-dimensional system with
L =1, where the flux lines are reduced to point particles,
there is obviously no difference between the two types of
pinning sites. But already for L = 2 we observe differences
in the long-time evolution of B(t,0). The curve for colum-
nar defects can be almost exactly reproduced by using
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Fig. 16. (Color online) Non-equilibrium relaxation of
the flux line mean-square displacement B(t,0) and the
squared gyration radius 72(t) over time for non-interacting
vortices in systems with point-like and columnar defects
with identical pinning strengths p = 0.05¢¢ for (a,b) L = 2
and (c,d) L = 10, averaged over 10000 realizations.

point pins and halving the number of pinning sites. Hence
the difference at L = 2 is largely due to the lower effec-
tive density of columnar disorder, as discussed in Sec.
Yet this equivalence does not extend to the time evolu-
tion of the gyration radius rg(t), which displays small but
significant qualitative differences for the two defect types
throughout the simulation time window.

For L = 10, the long-time difference in B(t¢,0) be-
tween columnar and point-like pinning sites can also be
explained by the lower effective density of columnar pin-
ning sites. But the deviations appearing at much shorter
times reflect genuine physical distinctions in the pinning
behavior and ensuing relaxation kinetics.

5 Conclusion

In this paper, we have investigated the differences in the
non-equilibrium relaxation features between systems of
magnetic flux lines in the presence of point-like and colum-
nar disorder. Proceeding in a systematic way, and consid-
ering different limiting cases, allowed us to disentangle the

distinct contributions originating from the attractive pin-
ning centers, the repulsive mutual vortex interactions, and
the line tension.

We validated both our Langevin Molecular Dynam-
ics simulation code and the Monte Carlo algorithm used
in previous studies in a genuine out-of-equilibrium set-
ting by comparing the steady-state vortex velocity and
radius of gyration as a function of an external driving force
to results from Monte Carlo simulations. As discussed in
Sec. 27 both these simulation methods need to be tested
and validated when applied to non-equilibrium situations.
We found that the pinning potential strength in MC is
slightly renormalized as compared to LMD due to the (in-
evitable) choice of a maximal MC step size.

The introduction of columnar instead of point-like pin-
ning sites dramatically changes the steady-state proper-
ties. As expected, the critical depinning force is enhanced
by approximately an order of magnitude. The radius of gy-
ration is suppressed via vortex line confinement in colum-
nar pinning sites for a driving force well below the critical
depinning force. At the transition, partial depinning leads
to the formation of half-loops and kinks in the vortex lines
and thus to a sharp increase in the radius of gyration. At
even higher driving forces, flux line motion is not influ-
enced by pinning.

We carefully studied the relaxation towards equilib-
rium of a system of initially perfectly straight and ran-
domly-placed vortex lines under various conditions by ob-
serving single- and two-time quantities to again compare
the effects of uncorrelated point pins and correlated ex-
tended defects, and to further validate our LMD code
against previously published MC results. We investigated
the possibility of data collapse and, hence, a simple aging
scenario, by appropriately scaling our two-time quanti-
ties. We started with free, non-interacting vortex lines and
showed that our results completely agreed with the MC
data and the predictions from the Edwards-Wilkinson in-
terface growth model. We then systematically introduced
attractive pinning centers and mutual repulsive vortex
interactions. Caging effects due to vortex-vortex interac-
tions lead to a considerable acceleration in the relaxation
of global quantities, such as the single-time mean-square
vortex displacement. A recent study revealed that the MC
two-time height-height autocorrelation function for a sys-
tem with interactions and point-like disorder displayed
non-monotonic behavior (shown in Ref. [28]). Comparing
with data obtained with an additional inertial term in our
LMD algorithm, we argued that these oscillations stem
from an effective mass generated by the introduction of a
maximal MC step length.

We demonstrated that the relaxation behavior of vor-
tex lines depends crucially on the type of disorder. The
vortex and Bose glass phases display complex non-univer-
sal relaxation features that are highly dependent on the
material parameters. Once a deeper understanding of the
transient behavior has been established, detailed informa-
tion contained in such time-dependent quantities could
be used to characterize material properties and specific
samples. Point-like disorder binds vortices to many pin-
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ning sites at once, while columnar defects capture entire
flux lines. When comparing these two defect types, one
needs to take into account the difference in the effective
pin density and thus the distinct probability of vortex
line elements to become trapped. One may characterize
the vortex glass phase through the roughness exponent x
of the spatial height-height correlation function along the
strongly fluctuating flux line trajectory. In contrast, cor-
related linear defects effectively enhance the elastic line
stiffness and hence straighten the trapped vortices in the
Bose glass phase.

We plan to expand our study to the transient proper-
ties of driven vortex lines. The resulting relaxation then
is towards a genuine non-equilibrium state in contrast to
the relaxation towards equilibrium, which we presented in
this paper. Other avenues for further investigations are
the study of different and more realistic initial conditions,
such as magnetic field or temperature quenches.
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