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CHAPTER THREE

3.  TWO-DIMENSIONAL BOUNDARY LAYER RESULTS

The two-dimensional boundary layers discussed in this chapter mainly serve as a baseline

upon which to compare the more complex three-dimensional boundary layers discussed in

subsequent chapters.  They are of comparable Reynolds number to the wing-body junction flows

discussed in chapter 4.  An understanding of p beneath a two-dimensional boundary layer is

necessary in order to appreciate the features of p beneath three-dimensional boundary layers. 

Relevant boundary layer flow parameters are given in table 3.  The velocity field measurements of

the lower Re  (= 7300) 2-D boundary layer are reported by Ölçmen and Simpson (1996).  The
2

velocity field measurements of the higher Re  (= 23400) 2-D boundary layer are reported by
2

Ölçmen et al. (1998). The U  (figure 28) profiles exhibit law-of-the-wall similarity, +

(47)

where 6 and C are constants.  Ölçmen and Simpson (1996) calculated u  in the lower Reynolds
J

number flow by fitting the U data to equation 47 using Coles’ (1956) constants, 6 = 0.41 and

C = 5.  Ölçmen et al. (1998) calculated u  in the higher Reynolds number flow by averaging the u
J J

determined by fitting the U data to equation 47 using Coles’ (1956) constants with the u
J

determined by fitting the U data to a near-wall approximation of Spalding’s (1961) law-of-the-

wall,

(48)

where 6 and C are Coles’ constants.  The Reynolds normal stresses are shown in figure 29.

3.1.  Spectral Scaling of Surface Pressure Fluctuations

There is not a universal scaling that collapses the p spectra of different Reynolds number

flows at all frequencies.  However, scaling characteristics of the power density spectrum of p

show which turbulent structures are dominant for a given frequency range.  The high frequency

end (T  > 0.15) of the p spectra collapse to within measurement uncertainties when normalized+
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using J  as the pressure scale and < /u² as the time scale and agree with the previousW J

investigations (figure 30). The collapse of the p spectra when normalized on inner boundary layers

indicates that the high frequency p is due to inner layer turbulent motions near the wall. 

Additionally, at T  > 0.8, the p spectra decay as T  which is in agreement with the analytical+  -5

analysis of Blake (1986).  It should be noted that no spatial resolution correction

(i.e. Corcos (1963) correction) has been applied to the p spectra presented here.  The favorable

comparison with other data (figure 30), particularly the low d  data of Schewe (1983) and +

Gravante et al. (1998), indicate that a correction is not required.  The discrepancy between the

inner-scaled spectra for T  > 0.5 can be attributed to transducer resolution limitations.  For+

T  > 0.5 the lower spectral values are reported by Blake (1970; d  > 43) and the higher spectral+ +

values are the present data at Re  = 23400 (d  = 31) and the data of Schewe (1983) (d  = 19).  A
2

+ +

lower value of d  indicates better transducer resolution of small-scale, high-frequency+

fluctuations.  Contributions to p from sources that are smaller than the transducer sensing area are

spatially integrated, and thereby attenuated (§2.3.2).

The spectra presented here are single-sided.  The p spectra of McGrath and

Simpson (1987), Farabee and Casarella (1991), and Blake (1970) shown here were multiplied by

2 in order to make them consistent with the definition of M used here.  Some relevant boundary

layer parameters for the comparison p spectra are given in table 3.  The data of McGrath and

Simpson (1987) presented here is an unpublished re-reduction of the original data by Shinpaugh

and Simpson that corrected for the low frequency response (< 100 Hz) of their transducer.

There is general agreement in the literature on the proper pressure and time scales for the

p spectrum at high frequencies.  The same is not true for the p spectrum in the low and middle

frequency ranges.  Many researchers such as Blake (1970) and Keith et al. (1992) have shown the

p spectrum to collapse at low frequencies using an outer boundary layer variable scaling of Q  ase

the pressure scale and * /U  as the time scale in addition to a mixed inner-outer variable scaling*
e

which uses J  as the pressure scale and * /U  as the time scale.  Farabee and Casarella (1991)W e
*

reported that the former (outer variable) scaling only collapse p spectra at very low frequencies,

T* /U  # 0.03.  Farabee and Casarella (1991) and Gravante et al. (1998) used J  as the pressure*
e W

scale and */u  as the time scale to collapse p spectra at middle frequencies.
J
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In the present study, the p spectra for various investigations which cover a wide range of

Reynolds number (1400 < Re  < 23400) were normalized using the time scales * /U ,* /u ,
2 e J 

* * 

* /u , and * /U , and pressure scales J  and Q  (figures 31 - 38).  None of the eight possible
J e W e

scaling combinations successfully collapsed the p spectra at the lowest frequencies presented here,

which do not extend into the very low frequency range of Farabee and Casarella (1991).  In a

middle frequency range the p spectra collapse when normalized using J  as the pressure scaleW

independent of the time scale used.  The p spectra collapse at 0.7 < T  < 2.5 with * /U  as theO1 e
* 

time scale (figure 31), at 20 < T  < 70 with * /u  as the time scale (figure 33), atO3 J

* 

100 < T  < 500 with * /u  as the time scale (figure 35), and at 4 < T  < 20 with * /U  as the timeO5 J O7 e

scale (figure 37).  Since the recent studies of Farabee and Casarella (1991) and

Gravante et al. (1998) favor * /u  as the time scale, the following discussion will illustrate the
J

relationship between inner layer and outer layer scaling using figure 35.

It has been postulated (Bradshaw, 1967; Panton and Linebarger, 1974; Blake, 1986),

using arguments relating the existence of an inner scaling and an outer scaling, that an overlap

region exists in the p spectrum beneath 2-D boundary layers at high Reynolds number.  Both inner

and outer boundary layer scaling collapse the power spectrum in this overlap region.  Using

dimensional analysis, Bradshaw (1967)  argued that the p spectrum in this region decreases as T
 -1

and is due to “universal” turbulent motions within the log layer where the convection velocity

approaches the local mean velocity.  The size/existence of this region increases as Re  increases
*

and is related to Kolmogorov’s hypothesis (Batchelor, 1953) of an energy cascade.

The p spectrum for the higher Re  flows (Re  > 18800) exhibit an overlap region.  For the
2 2

present data at Re  = 23400 the frequency range 0.03 < T  < 0.06 corresponds to
2

+

250 < T  < 500.  Examination of figures 30 and 35 reveals that both scalings collapse the pO3

spectra and follow a power law decay within this range.  An T  decay is included in -1

figures 30 - 38 since an T  decay has a theoretical basis.  However, the observed spectral decay -1

is closer to T .  Blake (1970) observed an T  decay and McGrath and Simpson (1987) -0.8  -0.75

observed an T  decay within the overlap region.  It should be noted that exact slopes are -0.7

difficult to measure.  The size of the middle frequency range in which the p spectra exhibit an T -0.8

decay increases with Reynolds number.  The low Re  (= 1400) p data of Schewe (1983) only
2
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tangentially approach a power law decay while the high Re  (=23400) p data of the present study
2

decay as T  for 30 < T  < 2000 (figure 35). -0.8
O3

3.2.  Root Mean Square of Surface Pressure Fluctuations

Each of the p spectra were integrated to obtain p'²' values.  Figure 39 shows p’ /J  as aw

function of Re .  Although there is scatter in p’ /J  values due to transducer resolution limitations
* w

and accumulated experimental errors in individual frequency-spectral values, there is a general

trend of increasing p’/J  with Re , albeit with a moderate correlation coefficient (= 0.66).  Aw * 

trend of increasing p’with Re  is in agreement with previous investigations (Bradshaw, 1967;
*

Panton and Linebarger, 1974; Farabee and Casarella, 1991; Bull, 1996).  The source of the

increasing trend in p’ with Reynolds number is the overlap region of the p spectrum.  The

logarithmically spaced ordinate in figures 30 - 38 makes it difficult to judge what features of the p

spectrum significantly affect the p'²' integral.  However, since

(49)

figure 40 shows TM/J ²  so that contributions to the p'²'/J ² integral are evenly spaced along theW W

logarithmically spaced T  axis.  The Reynolds number trend is clearly visible at high frequencies. O3

As Reynolds number increases so does the area under the TM/J ² curve due to increased highW

frequency p content.  The increased high frequency p content follows directly from the overlap

region extending to higher frequencies as Reynolds number increases.

Bradshaw (1967) and Panton and Linebarger (1974) analytically show that the energy

within the overlap range of the p spectrum is proportional to ln(Re ). Farabee and
* 

Cassarella (1991) propose an equation for p'²'/J ² (solid line in figure 39), W

(50)

by numerically integrating their measured spectra over the range T  < 100, integrating theO3

equation proposed by Bull (1979)

(51)



Bull (1979) proposed that T  = 0.375.¶¶
V
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over the range T  > T  = 0.3 , and assuming that M  decays as T  in the range + ¶¶ +  -1
V

100 # T  # 0.3Re .  Note that T  = Re T .  Therefore, T  = 0.3Re  is equivalent to T  = 0.3. O3 * O3 * O3 * 
 +  +

The trend shown in figure 39 is consistent with a logarithmic increase in p’ /J  with Reynoldsw

number, however, the level proposed by Farabee and Casarella (1991) is lower than most of the

data shown in figure 39.  Note the use of Re  to characterize the overlap region.  Panton (1990)
*

calls Re  the “preferred” Reynolds number in his general discussion of turbulent boundary layer
*

scaling since Re  is the ratio of the outer length scale to inner length scale.
*


