
OPTIMAL STRUCTURAL DESIGN FOR MAXIMUM BUCKLING LOAD 

by 

Yung S. Shin 

Dissertation submitted to the Faculty of the 

Virginia Polytechnic Institute and State University 

in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

Raph~ei T. Ha'ftU; C~-ch~an 

Richard M. Barker 

Kamal Rojiani 

lll 

Civil Engineering 

APPROVED: 

Raymond H. Plaut, Co-chairman 

IJ Siegfried M. Holzer y 

0 Layne T. Watson 

August, 1988 

I31acksburg, Virginia 



.J 
) 
) 

OPTIMAL STRUCTURAL DESIGN FOR MAXIMUM BUCKLING LOAD 

by 

Yung S. Shin 

Raphael T. Haftka, Co-chairman 

Raymond H. Plaut, Co-chairman 

Civil Engineering 

(ABSTRACT) 

Structural optimization was performed by either mathematical programming methods or opti-

mality criteria methods. Both type of methods are based on iterative resizing of structures in the 

expectation that it will lead to the satisfaction of optimality conditions. Recent developments in 

methods for solving nonlinear equations gave a way to an alternative approach in which the opti-

mality conditions are treated as a set of nonlinear equations and solved directly. 

Two different formulations are presented; one is a conventional nested approach and the other 

is a simultaneous analysis and design approach. 

Two procedures are explored to solve the nonlinear optimality conditions; a Newton-type iter-

ation method and a homotopy method. Here, the homotopy method is adapted to the optimal 

design so that we can trace a path of optimum solutions. The soluiion path has several branches 

due to changes in the active constraint set and transitions from unimodal to bimodal solutions. 

The Lagrange multipliers and second-order optimality conditions are used to detect branching 

points and to switch to the optimum solution path. 

This study specifically deals with buckling load maximization which requires highly nonlinear 

eigenvalue analysis and the procedure is applied to design of a column or laminated composite plate 

structures. A formulation to obtain mutimodal solutions is given. Also, a special property in a 

laminate bending stiffness is found. That is, for a given stacking sequence of ply orientations, we 

showed an existence of a design with the same bending stiffness matrix and same total thickness 

even when the stacking sequence is changed. 
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Chapter 1 

Introduction 

Structural optimization has gained popularity in recent years as the importance of minimum 

weight design has been recognized in many industries such as the aerospace or the automotive in-

dustries. Conventionally, structural optimization is performed by either mathematical program-

ming methods or optimality criteria methods. Both type of methods are based on iterative resizing 

of structures in the expectation that it will lead to the satisfaction of optimality conditions. The 

optimality conditions can be obtained from variational formulation of the design problem. How-

ever, mathematical programming methods do not pose the optimality conditions, rather, they em-

ploy standard minimization techniques to reach an optimal design. Optimality criteria methods 

pose the optimality conditions, however, they seek indirect methods to solve them. 

An alternative approach is to treat the optimality conditions as a set of nonlinear equations and 

to solve them directly. This approach was not popular in the past because of the shortcoming of 

available procedures for solving nonlinear algebraic equations. However, recent developments in 

methods for solving nonlinear equations [ l] are prompting a reassessment of this alternative. 
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The present study explores two different formulations of direct solution of optimality conditions. 

One is a conventional nested approach where only the structural parameters are unknown. The 

other is a simultaneous analysis and design approach where both response and structural dimen-

sions are design variables. The simultaneous approach was initiated by Schmit and his co-workers 

[2-4] in an attempt to integrate equations for structural analysis and optimum design. Recent pa-

pers by Haftka and Kamat [ 5, 6] report computational advantages for the simultaneous approach 

over the nested approach when applied to nonlinear structural problems. They used a precondi-

tioned conjugate gradient method [7] and the element by element (EBE) formulation of Hughes et 

al. [8]. 

Two procedures are explored to solve the nonlinear optimality conditions. One is a Newton-type 

iteration method and the other is a homotopy method. First, we start with a Newton-type method. 

One of the difficulties with a solution of o'ptimality conditions is that there are many nonoptimal 

solutions due to highly nonlinear nature of optimality equations, so that the correct solution must 

be identified. The use of second-order conditions is explored to validate solutions obtained from 

the first-order optimality conditions. Another difficulty in using a Newton-type method is that the 

method is not guaranteed to converge to the solution, unless the initial estimate is very close to it. 

A tracing technique is developed to eliminate this difficulty. The tracing technique employs a 

homotopy method to trace the optimal solution with guaranteed convergence. 

The basic theory of globally convergent (convergent from an arbitrary starting point) homotopy 

methods was developed in 1976[9, 10]. Since then, the method has been used in a wide range of 

scientific and engineering problems. It has been successfully applied to nonlinear complementarity 

problems [ 11], nonlinear two-point boundary value problems [12], fluid dynamics problems [13, 14] 

and nonlinear elastica problems [ 15, 16]. References [ 17, 18] show the application to optimum 

structural design problems discretized by plane stress finite elements. Reference [ 17] shows that an 

appropriate homotopy method is globally convergent for an optimum design problem. In the 

present study, the original globally convergent homotopy method is adapted to the optimal struc-
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tural design. The study shows how the solution process can start from the minimum amount of 

resources which is required for a feasible solution to the highest value that may be of interest. This 

yields a bonus in that we get an entire family of optima parameterized by the amount of resources. 

This study specifically deals with buckling load maximization which requires highly nonlinear 

eigenvalue analysis and the procedure is applied to design of a column or laminated composite plate 

structures. 

Chapter 2 presents the formulation for the simultaneous analysis and design approach for a 

general eigenvalue constraint. These problems often have bimodal solutions, that is, the optimum 

eigenvalue has two eigenvectors associated with it [ 19]. Thus, a bimodal formulation of the opti-

mization is also given. This approach is applied to two problems: optimum column design with 

a given foundation and optimum design of the foundation for a given column. 

In Chapter 3, the strategy for tracing a path of optimum solutions is given. Equations for the 

optimum path are obtained using Lagrange multipliers, and solved b_y the homotopy method. The 

solution path has several branches due to changes in the active constraint set and transitions from 

unimodal to bimodal solutions. The Lagrange multipliers and second-order optimality conditions 

are used to detect branching points and to switch to the optimum solution path. The procedure 

is applied to the design of a foundation which suppo_rts a column for maximum buckling load. 

Using the total available foundation stiffness as a homotopy parameter, a set of optimum founda-

tion designs is obtained. 

Chapter 4 and Chapter 5 deal with the design of laminated composite plates subject to buckling 

loads. In Chapter 4, it is shown that for any design with a given stacking sequence of ply orien-

tations, there exists a design associated with any other stacking sequence which possesses the same 

bending stiffness matrix and same total thickness. Hence, from the optimum design for a given 
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stacking sequence, one can directly determine the optimum design for any rearrangement of the ply 

orientations, and the optimum buckling load is independent of the stacking sequence. 

In Chapter 5, the buckling load of laminated plates having midplane symmetry is maximized for 

a given total thickness. The thicknesses of the layers are taken as the design variables. The opti-

mality equations are solved by a homotopy method so that we can trace all the optima as a function 

of total volume of the plate.· In Chapter 3, the homotopy optimization method was formulated 

using a simultaneous approach; here, the same method is applied with the· more traditional se-

quential approach in which the buckling analysis is performed repeatedly. Buckling analysis is 

carried out using the finite element method. Two examples are presented; the design of unstiffened 

laminated plates and the design of stiffened laminated plates. 
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Chapter 2 

Simultaneous Analysis and Design Approach 

One objective of this chapter is to formulate the simultaneous analysis and design approach for 

eigenvalue maximization. The formulation leads to a set of non-linear algebraic equations for the 

discretized structure. Both unimodal and bimodal optimum solutions are considered. The second 

objective is to apply the simultaneous formulation to the optimum design of beam-columns with 

elastic foundations. 

There has been a number of studies on the optimum design of structures with given foundations 

and eigenvalue constraints. Vibrating beams with frequency constraints were considered in Refs. 

[20] and [21], and columns with buckling load constraints were considered in Refs. [19] and [22-24]. 

In Ref. [ 19], Kiusalaas presented an example of a simply supported column on a given foundation. 

He showed that the optimal solution could be bimodal, i.e., the lowest buckling load could be a 

repeated eigenvalue. This problem has recently been studied in more detail by Gajewski [23] and 

Plaut, Johnson, and Olhoff [24]. In Ref. [24] it was shown that bimodal solutions appear in certain 

ranges of foundation stiffness for columns with various boundary conditions. 
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The optimum distribution of foundation stiffness for given structures subject to eigenvalue con-

straints was only studied in Ref. [25). The minimum natural frequency of a vibrating beam was 

maximized. Under special conditions, the optimal solution is bimodal. 

2.1 Formulation 

2.1.J Optimization Problem 

The smallest eigenvalue P of a vibration or buckling problem can be expressed by Rayleigh's 

quotient: 

P= mm. 
y 

V(d,y) 
L(d,y) (2 - 1) 

where dis a structural material distribution function, y is the displacement function, V(d,y) is the 

elastic energy functional and L(d,y) is a kinetic energy functional (for the vibration problem) or a 

work functional (for the buckling problem). 

The design problem we consider here is to maximize P for a given amount of resources with some 

subsidiary constraints on d (such as upper or lower limits). This problem is written as 

max. min. 
d y 

V(d,y) 
L(d,y) 

such that H(d) = 0 

g(x,d) ;;:=:: 0 

(2- 2) 

where the functional H(d) represents a resource constraint, xis the coordinate vector, and g(x,d) is 

the subsidiary constraint. 
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The functionals V(d,y) and L(d,y) are homogeneous functionals of the same order, and so, in-

stead of the problem (2-2), it is permissible to require L(d,y) = 1 and form the following 

Lagrangian function: 

P• = V(d,y) - >r{L(d,y) - l} - µH(d) - J A(x) {g(x,d) -T2(x)}dx 
x 

(2- 3) 

where >7 and µ are Lagrange multipliers, A is a Lagrange-multiplier function, and T is a slack 

variable function. 

Next, the unknown functions d, y, A, and Tare discretized in space as 

M 

d = Iai di(x) 
i=l 
N 

Y = 2_)i Yi(x) 
i=l 
p 

A= 2::).i Ai(x) 
i=l 
Q 

T = 2::ti l\(x) 
i=I 

(2- 4) 

Also, a; is replaced by fJr to prevent the material distribution function d from having negative 

values. Substituting from equations (2-4) into equation (2-3), P• becomes a function of the un-

known scalar quantities {J;, bi, 2;, ti, µ, and >7· 
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2.1.2 First-Order Conditions 

The necessary conditions for an optimum are obtained by taking the first derivatives of p+ with 

respect to {Ji, bi, A.i, ti, µ, and rr and setting them to zero. Thus we obtain 

i) Optimality conditions 

aV(d,y) - 8L(d,y) - 8H(d) -J 8g(x,d) -
ap. rr ap. µ ap. A(x) ap. dx - o 

I I I X l 
for i = 1, ... , M (2- 5) 

ii) Stability conditions 

8V(d,y) 8L(d,y) 
ob· - rr ab- = 0 

I I 

for i = l, ... , N (2- 6) 

iii) Local inequality constraints (I) 

f 2 -{g(x,d) - T (x)} Ai(x) dx = 0 
x 

for i = l, ... , P (2- 7) 

iv) Local inequality c_onstraints (2) 

J A(x) T(x) TJx) dx = 0 
x 

for i = l, ... , Q (2 - 8) 

v) Resource constraint 

H(d) = 0 (2 - 9) 
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vi) Normalization constraint 

L(d,y) = 1 (2 - 10) 

Equations (2-5)-(2-10) are non-linear simultaneous equations with unknowns 

/J;, b;, A;, t;, µ., and '7· After these equations are solved numerically, the optimum material dis-

tribution, d, and the displacement field, y, are obtained from equations (2-4). 

2 .1.3 Check for Optimality 

The first derivatives provide only a necessary condition for the optimum design, and there may 

be multiple solutions to these non-linear equations. The true optimum solution must then be de-

termined from these multiple solutions. 

First, we need to check the Kuhn-Tucker conditions: 

for i= l, 2, ... ,P (2 - 11) 

Then, the second-order optimality conditions should be checked. The second-order conditions 

are given in Ref. [26] for a minimization problem. Our optimum design problem is a min-max 

problem in which the objective function, P+, is maximized .with respect to the material distribution 

variables, /J; , and minimized with respect to the displacement field variables, b1• 

The second-order necessary conditions for optimality are 

for every r 1 such that 

for p = l, 2 (2- 12) 

for m = l, 2, ... , P for those constraints with Am > 0 
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where [VpP•J = [ o~~~~i l for i = 1, ... , M and j = 1, ... , M 

h 1 = H(d) 

h1 = L(d,y) - 1 

f 2 -gm= {g(x,d) - T (x)} Am(x) dx 
x 

and 

rI [V~P+J r2 > 0 for every r2 such that 
T 

vb h2 r2 = o 
(2 - 13) . 

for s = l, ... , N and t = l, ... , N 

2.1.4 Bimodal Formulation 

The above formulation only gives unimodal solutions (i.e., solutions which have a single 

eigenvector associated with the eigenvalue). To seek the solutions with double eigenvectors, the 

problem is to be formulated assuming bimodality of solutions, or equality of the two lowest 

eigenvalues, P1 and P2• They are expressed in terms of the Rayleigh quotient: 

for i = 1, 2 (2 - 14) 

where Y; are the corresponding eigenvectors. 

Treating the bimodality condition as an equality constraint, P1 - P2 = 0 , the augmented func· 

tional p+ is formed: 
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2 

p+ = V(d,y1) - y{V(d,y1) - V(d,y2)} - L'li{L(d,yj) - l} - µH(d) - J A(x){g(x,d) - T 2(x)}dx 
~I x 

(2 - 15) 

The eigenvectors y1 and y2 need to be distinct, and this could be accomplished by including an 

orthogonality constraint in equation (2-15). However, in this paper it is accomplished by the 

discretization procedure. Discretization for y in equations (2-4) is replaced by 

N/2 

Y1 = LbiYE(x) 
i=I 
N/2 

Y2 = L CiY2i(x). 
i=I 

The first-order conditions, equatio.ns (2-5) - (2-10), are replaced by 

i) Optimality conditions 

(2 - 16) 

2 
8V(d,y1) 8V(d,y1) 8V(d,y2) ~ 8L(d,y) 8H(d) J 8g(x,d) dx = O 

arr - Y{ ap. - ap. } - L..i'li ap. - µ ~ - A ap. (2 - 17) 
1 1 1 j=I 1 1 x 1 

for i = 1, ... , M 

ii) Stability conditions 

for i= l, ... ,N/2 (2 - 18a) 

for i = l, ... , N /2 (2 - 18b) 
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iii) Local inequality constraints (I) 

I 2 -{g(x,d) - T (x)} Ai(x) dx = 0 
x 

for i = 1, ... , P (2- 19) 

iv) Local inequality constraints (2) 

J A(x) T(x) 1\(x) dx = 0 
x 

for i = 1, ... , Q (2- 20) 

v) Bimodality constraint 

(2- 21) 

vi) Resource constraint 

H(d) = 0 (2- 22) 

vii) Normalization constraints 

for i = 1, 2 (2- 23) 

A new notation ei is introduced as variables which comprise bi and ci, 

for i = 1, ... , N (2- 24) 

Then the second-order conditions (equations (2-12) and (2-13)) are replaced by 
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for every r 1 such that 

for those constraints with ..1.m > 0 

where [VpP+] = [ 0~~~;i ] for i = 1, ... , M and j = 1, ... , M 

h1 = V(d,y1) - V(d,y2) 

and 

h2 = H(d) 

h3 = L(d,y1) - 1 

h4 = L(d,y2) - 1 

f 2 -gm= {g(x,d) - T (x)} Am(x) dx 
x 

rI [Y'~P+] r2 > 0 for every r2 such that 
T Ve hp r2 = 0 for p = 1, 2, J 

where [Y'~P+] = [ a2p+ ] for s = 1, ... , N 
aes aet 

h1 = V(d,y1) - V(d,y2) 

h1 = L(d,y1) - 1 

h 3 = L(d,y2) - 1 

2.1.5 Computer Implementation 

and t = 1, ... , N 

(2 - 25) 

(2 - 26) 

Since the method described above requires the solution of a large system of non-linear equations, 

a systematic solution process was adopted to obviate the need for an exhaustive search through the 

multiple solutions. The overall solution process is as follows: 
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a. Start with small numbers for M, the number of material variables, and N, the number of 

response variables. 

b. Select uniform initial values for material variables and the corresponding first or second 

eigenvector as initial values for the response variables. 

c. Obtain the solution of the first derivative equations. 

d. Check the Kuhn-Tucker conditions and the second-order conditions. If satisfied, double 

the number of variables, M and N. If not, choose new initial values of {J; and b;(or e;), 

and go to step c. 

e. Stop when M is large enough to approximate a smooth material distribution. 

For solving these nonlinear systems of equations (equations (2-5)-(2-10) or (2-17)-(2-23)), an 

IMSL routine, ZSPOW, is used. ZSPOW is based on the l\HNPACK subroutine HYBRDl, 

which uses a modification of M.J.D. Powell's hybrid algorithm [27]. This algorithm is a variation 

of Newton's method which uses a finite-difference approximation to the Jacobian and takes prec-

autions to avoid large step sizes or increasing residuals. 

2.2 Optimal Column on Elastic' Foundation Example 

2 .2. I Unimodal Formulation 

The problem considered in this section is a simply supported elastic column on an elastic foun-

dation (see Fig. 1). A compressive axial force P is applied at the ends of the column, and the 

foundation stiffness K is assumed to be constant (Winkler-type foundation). In this optimization 
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problem, the objective is to maximize the lowest buckling load while the total volume of the col-

umn remains fixed. The lowest buckling load P is expressed in terms of the Rayleigh quotient: 

p =min. 
y 

(2- 27) 

where X is the axial coordinate, L is the column length, and Y(X) is the transverse deflection. 

For computational simplicity, the bending stiffness of the column, EI(X), is assumed to be pro-

portional to the cross-sectional area A(X): 

El(X) = cEA(X), (2- 28) 

where c is a constant. This is the case for a sandwich column or a column with constant depth and 

yarying width[24]. 

Introducing non-dimensional quantities x, y(x), a(x), p, and k by 

x x=-L' 

PL2 
p=E!· 

u 

Y(xL) 
y(x) = L 

k= KL4 
Elu 

A(xL) 
a(x) = A 

u (2 - 29) 

where Au and Elu correspond to a uniform column with the same total volume, the non-

dimensional buckling load p is expressed as 

p=mm. 
y 
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and the constraint of given total volume becomes 

(2- 31) 

Then the augmented functional p* is 

f I f I ·1 I I p+ = a:(y'')2dx + k y2dx - 17{ (y')2dx- l} - µ{J a:dx - l} 
0 0 0 ° 

(2- 32) 

where 17 and µ are Lagrange multipliers. 

The buckling mode is approximated as a series of sine functions that are the buckling modes for 

a column with a uniform cross-section: 

N 

y = :L bi sin(irrx) 
i=I 

where N is the number of modes. 

(2 - 33) 

The cross-sectional area, ex, is assumed to be symmetric about the mid-span. To represent a:, M 

equidistant nodes are selected in the region 0 < x < ~ (the first node is at x = l/(2M) and the M1h 

node is at x= M/(2M + 1)), and a: is assumed to vary linearly between the nodes. Then a: is ex-

pressed as a linear combination of the ai , where ai denotes the cross-sectional area at node i. Also, 

ai is replaced by fit to prevent the cross-sectional area, ix, from having negative values. Then the 

augmented functional, p+, is transformed to a function which is expressed in terms of the variables 

[Ji, bi, µ, and 71. By taking the partial derivatives of p+ with respect to these variables, the first 

derivative conditions (equations (2-5)-(2-10)) and the second derivative conditions (equations (2-12) 

and (2-13)) are obtained. 
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2.2.2 Bimodal Formulation 

The two lowest buckling loads, p1 and p2 , expressed by the Rayleigh quotient are 

for i = 1, 2 (2- 34) 

where Yi are the corresponding buckling modes. The bimodality condition is treated as an equality 

constraint: 

P1 - P2 = 0 (2 - 35) 

Normalizing the buckling modes Yi such that the denominators of the Rayleigh quotient are 

unity, the augmented functional p"' is constructed: 

(2- 36) 

where :» ,,1, ,, 2, and µ are Lagrange multipliers. 

Since the model treated has symmetric boundary conditions, it is expected that the buckling 

modes associated with the lowest buckling loads are symmetric and anti-symmetric. Therefore the 

modes y1 and y2 are discretized as follows: 
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N/2 

y 1 = L bi sin(2i - 1 )rrx 
i=I 
N/2 

y2 = L ci sin(2irrx) 
i=l 

(2 - 37) 

Then the first derivative conditions and the second derivative conditions are obtained from 

equations (2-17)-(2-26). 

2 .2 .3 Results and Discussion 

To show how the second-order conditions work for the min-max problem, a simple example 

with two cross-sectional variables and two buckling mode variables is solved first. Lines #1, #2, 

#3, #4, and #5 in Figure 2 are non-dimensional buckling loads for solutions which satisfy the 

first-order conditions. The second-order conditions are checked for three founciation stiffnesses: 

k = 0, 350, and 800. 

The results of the second-order conditions demonstrate their physical interpretations. For exam-

ple, there are four solutions fork= 0, two each for two types of cross-section. The solution on line 

# 1 gives the minimum value of the first buckling load; the one on line #2 gives the maximum value 

of the first buckling load; the one on line #3 gives the minimum value of the second buckling load; 

and the one on line #4 gives the maximum value of the second buckling load. The second-order 

conditions obtained are in accord with these physical interpretations: equation (2-12) is violated 

on lines #1 and #3, indicating that the structure can be changed to increase the buckling load, and 

equation (2-13) is violated on lines #3 and #4, indicating that there is a lower buckling mode. Only 

one solution, the one on line #2, satisfies the second variation conditions when k = 0, and is the true 

optimum. In general, whenever a solution violates equation (2-12), there exists another material 
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distribution for which the lowest buckling load is higher, and when a solution violates equation 

(2-13) the buckling load is not the lowest one for the given material distribution. 

A computer program was written to implement the method described in the previous sections. 

The program starts with M = 2 and N = 5 and increases them gradually up to M = 16 and N = 40. 

Table 1 shows the dependence of the solution on the number of terms in the discretization when 

k= 1000. As can be seen in Table 1, the unimodal solution has a higher buckling load than that 

of the bimodal solution. This is due to the discretization process which replaces the bimodal sol-

ution with two almost equal buckling loads. However, as shown in Table 1, the ratio of the first 

buckling load and the second buckling load for the unimodal formulation approaches unity and the 

buckling load converges to that of the bimodal formulation as the number of variables is increased. 

Also, the solution of the unimodal formulation failed for the case M = 16 and N = 40. This may 

indicate that a solution-does not exist or that convergence is prevented by the non-linear equation 

solver shuttling back and forth between the two solutions. 

The mode shapes and material distributions are plotted in Figure 3 for the unimodal formulation 

with M = 8, N = 20, k = 0, 500, and 1000, and in Figure 4 for the bimodal formulation with M = 16, 

N = 40, k = 500 and 1000. The results are compared with those obtained by Plaut, Johnson, and 

OlhofT [24] in Table 2, and show good agreement. 

2.3 Optimal Foundation for Uniform Column Example 

2.3.J Unimodal Formulation 

In the previous section we optimized columns which are attached to given foundations. We now 

consider the problem of determining the optimal foundation for a given uniform column. In this 

Simultaneous Analysis and Design Approach 19 



problem, the objective is to maximize the lowest buckling load while the total foundation stiffness 

remains fixed. The lowest buckling load P is given by equation (2-27). Introducing non-

dimensional quantities k(x), p, and kT, besides x and y(x) in equation (2-29), 

K(xL)L4 
k(x) = EI (2 - 38) 

where KT is the total foundation stiffness, the non-dimensional buckling load pis expressed as 

p=min. 
y 

r (y)2dx + J 1 
k y2dx 

0 0 

and the constraint of given total foundation stiffness becomes 

r kdx=kT. 
0 

Additionally we impose the maximum foundation constraint 

Then the augmented functional p + is 

where 17, µ, and A(x) are Lagrange multipliers and T(x) is a slack variable. 

(2- 39) 

(2- 40) 

(2 - 41) 

The buckling mode is approximated as a series of sine functions (equation (2-33)). The foun-

dation distribution, k, Lagrange multiplier, A, and slack variable function, T, are all assumed to be 
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symmetric about mid-span. To represent these functions, M equidistant nodes are selected in the 

region 0 < x < + and k, A, and T are assumed to be constant between the nodes. The foundation 

stiffness in the i-th segment is denoted Pr to prevent negative values. Then ·the augmented func-

tional, p+, is expressed in terms of the variables pi, bi, Ai, Ti,µ, and 17. By taking the partial de-

rivatives of p+ with respect to these variables, the first-order conditions (equations (2-5)-(2-10)) and 

the second-order conditions (equations (2-12) and (2-13)) are obtained. 

2.3.2 Bimodal Formulation 

The two lowest buckling loads, p1 and p2 , expressed by the Rayleigh quotient are 

for i = l, 2 (2- 43) 

where Yi are the corresponding buckling modes. 

With the bimodality constraint (equation (2-35)), the augmented functional p+ is constructed: 

where y, 17 1, 172, µ and A(x) are Lagrange multipliers. 

The buckling modes y1 and y2 are discretized using equations (2-37). Then the first-order con-

ditions and the second-order conditions are obtained from equations (2-17)-(2-26). 
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2.3.3 Results and Discussion 

The program starts with M = 2 and N = 6 and increases them gradually up to M = 16 and N = 48. 

Figure 5 shows foundation distributions for various values of M and N at kT = 1,000 and 

kmax = 2,000. Again it is observed that the bimodal solutions are lower. The total CPU time (IBM 

3084) when k1 = 400 for M = 16 and N = 48 was 39.7 seconds with the unimodal formulation and 

36. 7 seconds with the bimodal formulation. 

For M = 16, N = 48, and several combinations of kT and kmax• the optimal foundation distrib-

utions and corresponding mode shapes are plotted in Figure 6 for the unimodal formulation and 

in Figure 7 for the bimodal formulation. In Figure 6, the optimal solution tends to place founda-

tion stiffness in regions where the buckling mode has its largest deflections. In Figure 7, the mode 

shape with the highest number of maxima and minima seems to govern the placement of the 

foundation stiffness. For instance, if kT = 1000 and kmax = 2000, there is no stiffness in the central 

region where the symmetric mode has its largest deflection, and the stiffness is located about the 

locations of the maximum and minimum of the anti-symmetric mode. 

For a uniform pinned-pinned colurrm attached to a uniform foundation, the buckling load is as 

follows[28]: for the integer n such that 

224 2 24 (n - 1) n rr :::; kT:::; n (n + 1) rr , (2- 45) 

we have 

_22-1.._k_ 
Punif - n rr ' 2 2 

n rr 
(2- 46) 

The buckling loads associated with the optimal foundations are compared with those for uniform 

foundations in Table 3. The increase in buckling load due to an optimization of the foundation 

stiffness distribution can be substantial. 
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Table 1. Nondimensional buckling loads for different numbers of variables (k"" 1000) 

MxN 2x5 4 x IO 8 x 20 16 x 40 

Buckling 
loads 70.400 73.040 73.008 

(bimodal) 

Buckling 
loads 74.999 72.719 73.051 

(unimodal) 

Ratio of the first 
two buckling 0.7352 0.8182 0.9660 

loads( unimodal) 
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Table 2. Nondimensional buckling loads of optimum columns with different foundation stiffnesses 

k 0 500 1000 

Plaut et al.24 12.0 58.6 71.9 

Current study 12.0 59.3 73.0 
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Table 3. Nondimensional buckling loads for optimum and uniform foundations (M = 16, N = 48) 

100 2000 

400 2000 

1000 2000 

4000 20000 

Buckling load p 
(unimodal results) 

29.3 

57.6 

80.8 

154.4 
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-~ 
Pu01r mcrease 

20.0 47 

49.6 16 

64.9 25 

133.9 15 

25 



L 

Tv 

Figure I. Geometry of Column and Foundation 
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Figure 2. Example Using M = 2, N = 2 
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k p Cross-section Buckling mode 
distribution 

0 12.0 ~ ~ 

500 59.4 ~ 
/~-'~,,, 

1000 73.1 /"\_,~ "-.__../ 
~ 

Figure 3. Unimodal Optimum Designs for Beam-Column with Fixed Foundation (M = 8, N = 20) 
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k p Cross-section Buckling mode 
distribution 

500 59.3 ~ ~ 
1000 73.0 ~ <C:~ 

Figure 4. Bimodal Optimum Designs for Beam-Column with Fixed Foundation (M = 16, N = 40) 
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Unimodal results Bimodal results 
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Figure 5. Optimum Foundation Designs for Unimodal and Bimodal Foundations (k.r = 1000, k..,.,. = 
2000) 
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kT p Foundation Buckling mode 
(kmax.} distribution 

100 29.3 ~ ~ ~ (2000) 

400 57.6 ~~ 
(2000) 

r l 
~ 

1000 80.8 I /~-'.. 

(2000) , I '·"~ 
; I 

l I 

4000 154.4 {.~ ....-----.:... 
(20000) I l}Tfl r "J 

Figure 6. Optimum Foundation Designs for Unimodal Formulation (M = 16, N = 48) 
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kr p Foundation Buckling modes 
(km ax) distribution 
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Figure 7. Optimum Foundation Designs for Bimodal Formulation (M = 16, N = 48) 
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Chapter 3 

Tracing Optima 

Optimization problems are typically solved by starting with an initial estimate and proceeding 

iteratively to improve it until the optimum is found. The design points along the path from the 

initial estimate to the optimum are usually of no value. However, this need not be the case. In 

many applications, it is of interest to fmd the family of optima obtained by varying an input pa-

rameter such as the amount of available resources. If one member of the family is known, it may 

be possible to use it as a starting point and to follow an optimization path that goes through the 

other members of the family. 

The optimization procedure proposed in the previous chapter addressed the problem of identi-

fying the optimal solution by first identifying it for a crude mesh and then gradually refming the 

mesh. This did not always work well. The present chapter pursues this idea further by proposing 

that we first fmd the optimum for a simple case and then gradually change the simple case to the 

one we want. If the parameter used for the change is of physical interest we get a bonus of a 

complete path of optima. 
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A first step in tracing a family of optima is the application of sensitivity information to extrapo-

late from one member of the family to another. The present chapter proposes the use of the sen-

sitivity informatio·n to formulate the path of optima as the trajectory of a differential equation, a 

procedure known as a homotopy technique. 

In this chapter, the original globally convergent homotopy method is adapted to the design of 

an elastic foundation for maximizing the buckling load of a column. This problem was solved in 

Chapter 2 for a limited range of resource (i.e., total foundation stiffness). This study shows how 

the solution process can start from the minimum amount of resources which is required for a fea-

sible solution to the highest value that may be of interest. 

3.1. Formulation 

3.1.1 Optimization Problem 

The optimization problem that we consider here is to maximize the lowest buckling load of a 

structure for a given amount of resources. The structure is discretized by finite elements. Ex-

pressing the lowest buckling load with Rayleigh's quotient, the problem is written as 

max 
v 

mm 
u 

such that CTV- 8 = Q 

for i= 1, ... , M 

(3 - 1) 

where v is a vector of design variables with components vi, u is the displacement vector, K and 

KG are the stiffness matrix and the geometric stiffness matrix, respectively, c is a positive cost vector, 
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and e is the amount of available resources, representing total foundation stiffness. The M design 

variables are subject to upper and lower bounds, vi max and vi min , respectively. 

A typical optimization method, applied to solve this problem, starts from a given design and 

continuously searches for better designs until it finds an optimum design. The trial designs along 

the path are of no value. The proposed method instead proceeds along a path of optimal designs 

for increasing amounts of resource e. The resource e is varied between the minimum emin required 

to satisfy the lower bound constraints and a maximum emax when all variables are at their upper 

bounds. 

The path consists of several smooth segments, each segment being characterized by a set IA of 

variables which are at their upper or lower bounds. Along each segment, some inequality con-

straints can be treated as equality constraints, 

for j e IA (3 - 2) 

so that these variables can be eliminated from the optimization problem, while the other variables 

do not have to be constrained. The optimization problem along a segment can, therefore, be 

written as 

max 
vi 

mm 
u 

such that c TV - 8 = 0. 

(3 - 3) 

The solution of the problem consists of three related problems: solving the optimization problem 

along a segment, locating the end of the segment where the set IA changes, and finding the set IA 

for the next segment. 
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3.1.2 Stationary conditions 

It is common practice to normalize the displacement vector u such that the denominator of 

Rayleigh's quotient is unity and to treat this as an equality constraint. Then, using Lagrange 

multipliers IJ andµ, the augmented function P* is formed: 

T T T p+ = u Ku - IJ[u K0 u - l] - µ[c v - 8] (3- 4) 

The following stationary conditions are obtained by taking the first derivative of P* with respect 

to V;, u, 17, andµ, and setting it equal to zero: 

i) Optimality·conditions 

T aK T aKG 
u --U-IJU --u-µc·=O 

avi avi l 
(3 - 5) 

ii) Stability conditions 

(3- 6) 

iii) Normalization constraint 

T 1-u K 0 u = 0 (3 - 7) 

iv) Total resource constraint 

(3 - 8) 

Equations (3-5)-(3-8) form a system of nonlinear equations to be solved for V; , u, IJ, andµ. A 

homotopy method is used to find the solutions of these equations as a function of e. 
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In certain ranges of structural resources, the optimal solution is known to be bimodal, i.e., the 

lowest buckling load is a repeated eigenvalue. The existence of bimodal solutions also introduces 

additional transitions (bimodal to unimodal and vice versa) along the path of optimum solutions. 

The formulation for bimodal solutions follows. 

To seek the solutions with double eigenvectors, the problem is to be formulated assuming 

bimodality of solutions, or equality of the two lowest eigenvalues, P1 and P2• They are expressed 

in terms of the Rayleigh quotient: 

for i = l, 2 

where ui are the corresponding eigenvectors. 

Treating the bimodality condition as an equality constraint, P1 - P2 = 0, the augmented function 

p+ is formed: 

2 

p+ = uTK u1 - y[uTK u1 - uIK u2]- L>7i[u[K0 ui - l] - µ[cTv- 8]. 
i=l 

The stationary conditions are obtained by taking the first derivatives of p+ with respect to 

vi, u, y, ry 1, ry2, and µand setting them to zero. Thus we obtain 

i) Optimality conditions 

ii) Stability conditions 
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(l -y)Ku1 -11 1K0u1 = 0 
yKu2 -112K 0 u2 = 0 

iii) Bimodality constraint 

iv) Normalization constraints 

v) Total resource constraint 

3.2 Homotopy method 

The system of equations with a homotopy parameter e has the form 

F(x, e, d) = 0 (3 - 9) 

where e is a positive real number, F, x, and dare N-dimensional vectors and N is the number of 

degrees of freedom. Note that F is viewed as a function of x(the design vector), e (the resource 

parameter), and d(the parameter vector, usually a random imperfection; see, e.g., reference [ 17]). 

The theoretical basis for globally convergent homotopy algorithms is the following fact from dif-

ferential geometry [9J. 

Theorem: Suppose that the N x (2N + 1) Jacobian matrix of F has full rank on 

F-1(0) = {(x, e, d) I F(x, e, d) = 0, ea< e < eb}· 
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Then for almost all N-vectors d (i.e., except those in a set of Lebesgue measure zero), the N x 

(N + 1) Jacobian matrix of 

-F(x, 8) = F(x; 8, d) 

also has full rank on 

--1 -
F (0)={(x,8)IF(x,8)=0,8a<8<8b}· 

Alternatively, if d were picked at random, it is virtually always true that the Jacobian matrix has full 

rank on the solution set of 

-F(x, 8) = 0. (3 - 10) 

According to the theory in [9], this full rank of the Jacobian matrix implies that the zero set of 

equations (3-10) contains a smooth curve r in (N + 1)-dimensional (x, 8) space, which has no 

bifurcations and is disjoint from other zeros of (3-10). The curve 1 can be parameterized by the 

arc length s as 

x = x(s) 
(3 - 11) 

8 = 8(s). 

Taking the derivative of equations (3-10) with respect to arc length, the nonlinear system of 

equations is transformed to a set of ordinary differential equations, 

- - ds 
[ 

dx 1 [ Fx(x(s), B(s)) F 0(x(s), 8(s)) J ~~ = 0, (3 - 12) 

and 
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(3 - 13) 

- - -
where Fx and F8 denote the partial derivatives of F with respect to x and 8, respectively. With the 

initial conditions at s = 0, 

x(O) = Xa 

8(0) =Ba, 
(3 - 14) 

equations (3-12)-(3-14) can be treated as an initial value problem. We have thus converted the 

system of equations (3-9), parameterized by the vector d, to the initial value problem (3-12)-(3-14) 

whose trajectory gives the path of optimal solutions x. This technique differs significantly from 

standard continuation, imbedding or incremental methods in that the resource parameter, 8, is a 

dependent variable which can both increase and decrease along the path l. Also, no attempt is 

made to invert the Jacobian matrix Fx so that limit points pose no special difficulty. It differs from 

initial value or parameter differentiation methods also, since arc lengths, rather thane, is the con-

trolling parameter. The homotopy method is similar in spirit to the Riks/Wempner[29, 30] and 

Crisfield[31] methods, but the supporting mathematical theory and implementation details are very 

different, and the emphasis is on ordinary differential equation techniques rather than a Newton-

type iteration. 

The homotopy method as described in references [9-18] is intended to solve a sinrue nonlinear 

system of equations, and converge from an arbitrary starting point with probability one. In this 

context 8 E [O, l], and the zero curve .r is bounded and leads to the (single) desired solution at 

e = 1. The d vector, viewed as an artificial perturbation of the problem, plays a crucial role. In the 

version of the method employed here, a E (B., eb), each point along r has physical significance, and 

d is fixed at zero (no perturbation). Because d is not random, the claimed properties for 1 hold 
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only in subintervals (8,, 8b) of [O, co). Detecting and dealing with these subinterval transition points 

is the essence oI the modification of the homotopy method used in the present paper. 

There are several approaches to tracking the curve 1, which along with theoretical background 

can be found in Watson[32]. A software package, HOMPACK, which implements several different 

homotopy algorithms is under development at Sandia National Laboratories, General Motors Re-

search Laboratories, Virginia Polytechnic Institute and State University, and the University of 

Michigan. One of the HO MP ACK subroutines, FIXPNF, is used in the current work. 

3.3 Switching from one Segment to the Next 

There are four types of events which end a segment and start a new one: 

Type 1: A bound constraint becoming active (i.e., being satisfied as an equality), 

Type 2: A bound constraint becoming inactive, 

Type 3: Transition from a unimodal solution to a bimodal solution, 

Type 4: Transition from a bimodal solution to a unimodal solution. 

To switch from one segment to the next, we first need to locate the transition point. At a tran-

sition point there are a number of solution paths which satisfy the stationary equations, and we 

need to choose the optimum path. 

3.3.J Locating the transition points 

Transition points are located by checking the bound constraints and the optimality conditions. 
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The bound constraints 

for 1 = l, ... , M (3 - 15) 

are checked to detect a transition point of type 1. 

Optimality of the solution is checked by the Kuhn-Tucker conditions and the second-order 

conditions discussed below. The solution satisfies the Kuhn-Tucker conditions when all Lagrange 

multipliers are nonnegative. So a transition of type 2 is detected by checking the positivity of the 

Lagrange multipliers associated with the bound constraints. These multipliers are obtained by 

adding the bound constraints to the formulation (3-3) and replacing the augmented function p+ by 

p+ = uTKu -17[u TKGu - l] - µ[cTv- B] - I A.1i[vi min -viJ - I A.2i[vi -vimaxl (3 - 16) 
ie IA ie IA 

Taking the first derivative of p+ with respect to v; gives 

for i e IA. (3 - 17) 

Since ).Ii is 0 for v * V; min and ),2i is 0 for V; * V; max for the above equations, ).Ii and A2; are given 

by 

(3 - 18) 

A type 2 transition is detected by a Lagrange multiplier becoming nonpositive. Similar equations 

for the bimodal case are obtained by adding the bound constraints to the augmented function p+ 

and taking the first derivatives of p+ with respect to V; . They are given by 
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for vi = vi min 

The bimodal formulation replaces t/ by >Ti and t/i which are the Lagrange multipliers for the 

normalization constraints on the two buckling modes. When one of them becomes negative, the 

corresponding mode should be removed for the optimum design, so that we have a transition of 

type 4 from bimodal to unimodal design. 

For a transition of type 3, we need to check if there is another buckling mode associated with a 

lower buckling load. This can be accomplished by checking the second-order optimality conditions 

for the buckling mode variables u given by 

for every r such that 
(3 - 19) 

where [V~P"'] = [ 32p+ ] 
OUs out 

v h={_Qh_} u OUs 

h=uTKG u-1. 

Alternatively we can solve the buckling problem (3-6) for the current design and check whether 

the buckling load obtained from the stationary conditions is truly the lowest one. The transition 

of type 3 is detected by checking if 

(3 - 20) 

where p is the buckling load obtained from the stationary conditions while p1 is the first buckling 

load obtained by solving the stability conditions (3-6) for the given structure. 
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3.3.2 Choosing an optimum path 

Once a transition point is located, we need to choose a path which satisfies the optimality con-

ditions. Choosing an optimum path constitutes finding a set of active bound constraints for type 

1 and 2 transitions and the correct buckling modes for type 3 and 4 transitions. These are obtained 

by using the Lagrange multipliers of the previous path and the sensitivity calculation on the 

buckling load. The procedure is explained separately for each type of transition. 

A type l transition occurs when one of design variables, vi , hits the upper or lower bound. Then 

vi is set at vi m:.X or vi min and treated as a constant value. The number of design variables is reduced 

by one. 

At a type 2 transition, one of the Lagrange multipliers for the bound 'constraints, A.Ii and J.2i, is 

found to be negative. The bound constraint corresponding to the negative ),Ii or ).21 is set to be 

inactive and the. number of design variables is increased by one. 

At a transition from a unimodal solution to a bimodal solution (a type 3 transition), the formu-

lation requires two buckling modes, u1 and u2, for the solution of the upcoming bimodal path. 

These modes can be obtained by solving the stability conditions (3-6) of the previous unimodal 

formulation, since the stability conditions give two buckling modes at the bimodal transition point. 

At a transition from a bimodal to a unimodal solution (a type 4 transition), two buckling modes 

are given from the bimodal solution. One of the Lagrange multipliers for the normalization con-

straints, ri, is known to be negative from the previous transition check, so the buckling mode cor-

responding to the positive ri is chosen. 

Some of the above transitions can occur simultaneously. Special treatment is required in certain 

cases where the Lagrange multipliers are not available. In general, the optimum design requires at 
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least one design variable vi for a unimodal case and two design variables for a bimodal case. At a 

type l transition, the number of design variables is reduced by one, and at a type 3 transition the 

bimodal formulation requires one more design variable in case the previous unimodal path has only 

one design variable. So some type 1 or type 3 transitions occur simultaneously with a type 2 

transition which allows an additional design variable. In that case, the Lagrange multipliers 

). 1i and Aw which are used at a type 2 transition to determine a new design variable, are not avail-

able. We then rely on the sensitivity information of p with respect to v. For a unimodal case, the 

location of the new design variable vi is determined where ~~ is maximized. For a bimodal case, 

we need to find a combination of i and j which maximizes the value of the bimodal buckling load 

for a small increment of the total available resource. Considering the bound constraints in the 

formulation, the new design variables are determined by 

max 
1, J 

such that 

and 

3p1 dvi 3p1 dv· 3p 
-+- __ J =--2 

avi de Dvi de avi 
dv· 1>0 for vi =vi min de -
dv 

1 <0 for vi= Vi max de -
dv 

J > 0 for vi= Vj min dO -
dv· 

J <0 for vj = vj max de -

dvi 3p2 -+--de avj 

(3 - 21) 

dvj 
dB 

where p1 and p2 are the buckling loads corresponding to the buckling modes u1 and u2, respectively. 

After we obtain the design variables v and the buckling modes u, we need the Lagrange multi-

pliers µ, >), and y at the transition point to complete the set of starting values for the next solution 

path. These are obtained by solving the stationary conditions for the given u and v. For example, 
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in the unimodal case, ri is obtained from the stability conditions (3-6) and µis obtained by solving 

one of the optimality conditions (3-5). 

3.4. Optimal Foundation for Uniform Column Example 

The example used to demonstrate the tracing procedure is a simply supported column on an 

elastic foundation taken from the previous chapter. 

The design problem is to find the optimum distribution of the foundation to maximize the lowest 

buckling load. The design variable is the foundation stiffness. The column is modeled by sixteen 

beam finite elements and the foundation stiffness for each element is assumed to be constant. The 

geometry· of the column and the foundation is shown in Fig. 8. Because of the symmetry of the 

problem, the foundation distribution is assumed to be symmetric, so there are eight design variables, 

K 1, ... , K8• The constraint of the total foundation stiffness is given by 

8 t LKi=KT (3 - 22) 
i=l 

where KT is the total foundation stiffness used as the homotopy parameter. 

The upper and lower bound constraints are given by 

for i = l, ... , 8 (3 - 23) 

where Kmin is the lower bound and Kmax is the upper bound of the foundation stiffness. The 

buckling load P and the foundation stiffness parameters are expressed in nondimensional form as 
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where EI is the bending stiffness of the column. The lower bound kmin is set at 0 and the upper · 

bound kmax is set at 20,000. The procedure starts with a uniform column without any foundation 

material (the total nondimensional foundation stiffness kT is zero) and optimum designs are ob-

tained for values of kT up to 20,000. 

Figure 9 shows the buckling loads corresponding to optimum designs obtained for 

0::;; kT::;; 20,000. This curve has 18 transition points and consists of 19 solution paths denoted by 

the letters A through S. The circles on the curve indicate the transition points and the dots are the 

solutions traced along the optimum path. The solutions on the first path A and the last path S are 

unimodal and the other solutions are bimodal. This is due to the fact that the starting point of 

kT = 0 and the last point of kT = 20,000 are uniform designs (with unimodal solutions) in which 

foundations are all at the lower or at the upper bound. The buckling loads for a uniform founda-

tion are also shown in Fig. 9 (dashed line). Note that the two curves meet at the last point wherr; 

all design variables are at their upper bound and the only feasible design is uniform. 

One point from each path in Fig. 9 is selected, and the optimum foundation distribution and 

corresponding buckling mode for these points are shown in Fig. 10 - Fig. 13. 

At the starting point of kT = 0, the column has no foundation at all. So we need to find a column 

element at which the foundation is placed when we increase kT. Since Lagrange multipliers 

Xii and A.2i are not available at this point, it is treated the same as if a type 1 transition occurs si-

multaneously with a type 2 transition. For this example, a foundation is initially placed at the 

'd h dp . . rm -span w ere dk 1s maxunum. 
T 
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The unimodal solution becomes bimodal at the transition point AB from path A to path B (this 

is a type 3 transition). This requires one more design variable because the previous unimodal path 

has only one design variable (a type 2 transition occurs at the same time). At transition points BC, 

CD, DE, and EF, one of the foundation stiffnesses becomes zero (the lower bound) and another 

foundation stiffness becomes nonzero. Each of these points is a simultaneous transition of types 1 

and 2 in the bimodal solution, requiring the solution of equation (3-21). At transition points FG, 

GH, IJ, JK, MN, OP, and QR, new variables become nonzero. These are type 2 transitions where 

the lower bound constraint becomes inactive. At transition points HI, KL, LM, NO, and PQ, one 

of the foundation stiffnesses hits the lower or upper bound. These are type 1 transitions. The last 

transition (RS) is a type 4 transition at which the bimodal solution becomes unimodal. 

Most of the computational effort of tracing the optima is associated with the evaluation of the 

Jacobian matrix. The curve of Fig. 9 required about 200 integration steps to trace, each requiring 

1 to 3 (mostly 1) Jacobian evaluations. The Jacobian was evaluated numerically, using forward 

finite differences. 
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Chapter 4 

Equivalence of U nstiff ened Plate Designs \Vi th 

Different Stacking Sequences 

Composite materials are ideal for structural applications where high strength-to-weight and 

stiffness-to-weight ratios are required. Design optimization of composite structures has gained im-

portance in recent years as the engineering applications of fiber-reinforced materials have increased 

and weight savings has become an essential design objective, especially for aircraft and spacecraft 

structures. 

Previous work on the optimal design of composite plates has focused on optimization v.'ith re-

spect to the fiber orientations (33-42]. In Refs. (43-48), however, laminate optimization is consid-

ered, in which the thicknesses of plies with specified orientation angles are treated as the design 

variables. The thickness of material at each preassigned orientation is treated as a continuous var-

iable. More sophisticated approaches dealing with discrete values for the thicknesses by employing 

integer variables are presented by Mesquita and Kamat (49, 50) and Olson and Vanderplaats (51]. 
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The present study avoids the difficulties associated with discrete or integer variables by treating the 

thickness variables as continuous variables. 

In this chapter, we study the effect of the stacking sequence on the optimum design and we prove 

a useful result on the equivalence of plates with different stacking sequences. 

4.1 Equivalent Bending Stiffnesses in the Laminated Plates 

4.1.1 Bending Stiffizesses from the Classical Lamination Theory 

The laminates considered in this study are symmetric about the middle surface, so that the 

bending response is not coupled to the membrane action. The moment-curvature relations are then 

expressed in the form 

(4- 1) 

where [DJ is the laminate bending stiffness matrix, {M} is the bending and twisting moments per 

unit length, and { K} is the corresponding curvatures given by 

{ :~ } = {- 82\~ 
Kxy ax 

T 
;J2w } 

- 2 axaY · (4- 2) 

Figure 14 shows the geometry of a laminate with 2n layers. The Z axis is taken perpendicular 

to the midplane of the laminate and is positive in the downward direction. Below the midplane, 

the value of Z at the bottom of layer k is denoted Zk. The thicknesses of the layers are given by 
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for i = l, 2, ... , n, (4- 3) 

with Zn+i = 0. 

Using classical lamination theory, the bending stiffness matrix [DJ in Eq. ( 1) can be written as 

(4- 4) 

where [Q]k is the transformed reduced stiffness matrix of the k-th layer, which can be defined in 

terms of the ply angle </> and elastic constants Eu, E22 , v12 and G12 of the orthotropic layer as 

(4- 5) 

The superscript -1 denotes the matrix inverse and -T denotes the transpose of the inverse matrix. 

The matrix [T]k is the coordinate transformation matrix and [Q] is the reduced stiffness matrix, 

given by 

Equivalence of Unstiffened Plate Designs with Different Stacking Sequences 57 



4.1.2 Bending Stiffness Equivalence 

The bending stiffness matrix will now be shown to have an important property: when the 

stacking sequence is changed. we can alwavs recover the original bending stiffness matrix by ap-

propriately changing layer thicknesses while preserving the total laminate thickness. This property 

is proved in two steps. First, it is shown that when the ply orientations in two adjacent layers are 

interchanged, there exists an equivalent design with the same bending stiffness and the same total 

thickness. Then we show by induction that the same property applies to the general rearrangement 

of all layers. 

Consider a symmetric laminated plate with 2n layers (Fig. 15-a). The elements of the original 

bending stiffness matrix are given by 

(4- 7) 

for i, j = 1, 2, 6. 

When the ply orientations in the -r -1 and -r layers are interchanged (shown in Fig. 15-b ), we can 

still obtain the same Dii by changing the thicknesses of layers -r -1 and T. The bending stiffness of 

the laminate in Fig. 15-b is 

(4- 8) 

for i, j = 1, 2, 6. 

where z. is the new height of the bottom oflayer -r, determined so that the two plates have the same 

bending stiffness. Setting D~ = D~ from Eqs. (4-7) and (4-8), we obtain 
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1, 2, 6. (4- 9) 

These equations are satisfied for arbitrary Q's if Z. is chosen such that 

(4- 10) 

Since Z,_1 ~ Z, ~ ZT+I 'z;+I - z; ~ 0 and, from Eq. (4-10), z. ~ z,_1 . Similarly, z;_I -z; ~ 0 so 

that z. ~ Z<+1• Hence the height z. always falls between Z,_1 and Z,+1• This shows that there al-

ways exists a design producing the same bending stiffness matrix [DJ when ply orientations in two 

adjacent layers are interchanged. 

The general results for interchanging ply orientations in any number of layers follows by in-

duction, because a general interchange is a sequence of transpositions. For example, an equivalent 

design for a ( 45° /90° /0°), laminate can be obtained from a (0° /90° /45°), laminate using three tran-

spositions and thicknesses recomputed by Eq. (4-10). First, we obtain an equivalent design for a 

(90° /0° /45°), laminate from the (0° /90° /45°), laminate, then a (90° /45° /0°), laminate is obtained 

from the (90° /0° /45°), laminate, and finally the (45° /90° /0°), laminate is obtained from the 

(90° /45° /0°), . 

It should be noted that the above transformation changes the individual thicknesses of the ori-

ginal laminate. Therefore the membrane stiffness is changed, while the bending stiffness remains 

the same. The existence of multiple laminate designs with the same total thickness and the same 

bending stiffness has important implications for the optimization process in that it results in mul-

tiple optima, as will be shown in the next example. 
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4.2 Optimal Plate Designs 

The plate we consider is simply supported along all four edges and subject to uniform in-plane 

loading in the X-direction, as shown in Fig. 16. The dimensions of the plate in the X and Y di-

rections are a and b, respectively. Half the thickness of the plate is denoted by TT and is considered 

small in comparison with the other dimensions. Shear deformation is not considered in the analy-

sis. 

4.2.1 Optimization Problem 

The optimization problem that we consider here is to maximize the buckling load of a plate for 

a given total plate thickness. The thickness of each layer is assumed to be constant over the plate, 

and for a given stacking sequence of the layers, each thickness is taken as a design variable. Here 

we use nondimensional values for th{! plate dimensions and the buckling load. Details of the non-

dimensional process are given in the next chapter, section 5.1.1. 

The nondimensional thicknesses, t;, are subject to bound constraints 

for i = l, ... , n, (4- U) 

where tmax and tmin are upper and lower bounds, respectively. 

The optimization problem is written as 

(4 - 12) 
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n 

such that Lti - tT = 0 
i=l 

for i = 1, . . . , n, 

where nx is the nondimensional buckling load and tT is the nondimensional value of TT (half the 

thickness of the plate). 

4.2.2 Results and Discussion 

Some examples .are presented to demonstrate the effect of optimization of layer thicknesses on 

the buckling of laminated plates. A graphite/epoxy composite plate is selected and its material 

properties are given by E11 = 21.374xl010 pa (31.0xl06 psi), E22 = 2.334xl010 pa (3.4xl06 psi), 

G12 = 0.517xl010 pa (0.75xl06 psi), and v12 = 0.28, corresponding to nondimensional properties 

e22 = 0.1097, g12 = 0.02419. The plate aspect ratio (11/12) is chosen to be 1.2. 

The solution process of Problem ( 4-12) and the complete results for (0° /90° /45°), and 

(45°/90°/0°), laminates are presented in the next chapter, sections 5.1.2 - 5.1.5. 

Results for these examples show that the optimum designs at tT = l.O give the same buckling 

loads (n, = 16.232) for both (0° /90° /45°), and ( 45° /90° /0°), laminates. The operation described in 

section 4.1.2 enables us to obtain a (45° /90° /0°), design transforming from a (0° /90° /45°), design 

with the same stiffness matrix and the same total thickness. In fact, there are six possible stacking 

sequences for this case. Designs for all five other sequences were obtained from the (0° /90° /45°), 

design using Eq. ( 4-10) and the results are summarized in Table 4. The thickness distribution of 

the ( 45° /90° /0°), laminate matches the result obtained from the optimization procedure, as it must. 

The buckling loads for all six designs are the same. Their relationships to the buckling loads for 
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the plate with equal thicknesses are given in the last column of Table 4. In transforming to an 

equivalent design we assume all the design variables for both designs are free from the bound con-

straints. 

In practical design, the thickness of each layer can take only discrete values due to manufacturing 

requirements. For example, assume that there is a total of 50 plies in the laminate so that each layer 

is made up from laminas of nondimensional thickness 0.04. The optimal thicknesses from Table 4 

are rounded off to the nearest multiple of 0.04. If this leads to a total thickness which is not unity, 

we modify one of the thickness such that the percentage change from the continuous solution is 

minimal. The· results are presented in Table 5. It is seen that the buckling loads for all six laminates 

are within 1 % of each other and are close to the previous optimal value n. = 16.232. 

The existence of equivalent designs with various stacking sequences has two important impli-

cations in terms of multiplicity of optimal designs. First, when an optimum design for a given 

stacking sequence is obtained, all the designs (with the same total thickness and bending stiffnesses) 

obtained by permuting the stacking sequences are also optimum. This can be proven as follows: 

If there is another design for a rearranged stacking sequence which has a higher buckling load than 

the transformed design, a backward transformation should give a design which has a higher buckling 

load than the optimum design for the original stacking sequence. This is impossible, so the trans-

formed design is also optimum. In fact, the results in Table 4 were verified to be optimum by direct 

optimization. 

Second, for a given stacking sequence, when two or more layers have the same ply orientation, 

the optimum design is not unique. For example, consider a four-layer ( 45° /0° /45° /90°), laminate 

We can exchange the 0° and 45° layers to get a 

(45° /45° /0° /90°), design with thicknesses t1, t/, t3', t4, and then change the division between the 

two adjacent 45° layers. For example, we can redefine the thicknesses as V2t1, V2t1 + t/, t3', t4• 

Finally, we can switch the adjacent 45° and 0° layers to get a (45° /0° /45° /90°), laminate with 
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thicknesses Y2t 1, t/, t3", t4 , which has the same stacking sequence, the same buckling load and 

the same total thickness as the original design (so that it is also optimum), but different individual 

thicknesses. 

We reiterate that these properties assume that the thicknesses are not equal to one of their 

bounds, and that the plate behavior is governed by Eqs. (4-1) and (4-2) so the membrane stiffnesses 

are not included. 
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Stacking Reference 
sequence plate ZT·t I ZT . Zr-I z. t1 
of lamina 

(0° /90° /45°), - - - - - 0.0366 

(fl° /45° /90°), (0° /900 /45°), 0. 0.8095 0.9634 0.7139 0.0366 

(45° /D° /90°), (0° /45° /90°), 0.7139 0.9634 1.0 0.7772 0.2228 

( 45° /90° /0°), (45° /0° /90°), 0. 0.7139 0.7772 0.4729 0.2228 

(90° /45° /0°), ( 45° /90° /!l°), 0.4729 0.7772 1.0 0.8601 0.1399 

(90° /0° /45°), (90° /45° /0°), 0. 0.4729 0.8601 0.8095 0.1399 

1 R is the ratio of the optimal buckling load to the buckling load when 11 =t2 =13 = 1/3. 

Table 4. Equivalent optimum designs ohtaiued h)' permutation of stacking sequence (t1 = 1.0) 

t2 h RI 

0. I 539 0.8095 1.38 

0.2496 0.7139 1.31 

0.0634 0.7139 1.12 

0.3044 0.4729 1.03 

0.3872 0.4729 1.32 

0.0506 0.8095 1.17 



Table 5. Nondimcnsional buckling loads for 6 optimal laminates with integer number of plies 

Stacking 
sequence t1 tz t3 nx 
of lamina 

(0° /90° 4/45° 20), 0.04 0.16 0.80 16.21 

(0° /45°6/90°18), 0.04 0.24 0.72 16.21 

( 45° 5/0° 2/90° 18), 0.20 0.08 0.72 16.09 

( 45° 5/90°8/0° 12), 0.20 0.32 0.48 16.05 

(90°3/45°10/0°12)s 0.12 0.40 0.48 16.10 

(90° 3/0° /45° 21)s 0.12 0.04 0.84 16.19 
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Figure 14. Geometry of Half of a 2n-layered Symmetric Laminate 
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Chapter 5 

Sequential Nested Approach 

In Chapter 3, the homotopy optimization method was formulated using a simultaneous ap-

proach. In this chapter, we apply the method with the more traditional sequential approach. Here 

the buckling equation is solved separately from the optimality equations. The procedure is applied 

to two examples; the design of unstiffened laminated plates and the design of stiffened laminated 

plates. 

5.1 Design. of Unstiffened Laminate Plates 

The same plate model from the previous chapter is used for this study. It is simply supported 

along all four edges and subject to uniform in-plane loading in the X-direction, as shown in Fig. 

16. 
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5. I. I Buckling Analysis 

The differential equation for the buckling analysis is given by 

(5 - 1) 

where N x is the buckling load and W denotes the transverse deflection of the middle surface of the 

plate. The moments are given in Eq. (4-1). 

The analysis is performed with dimensionless quantities. First, using the nondimensional mate-

rial properties, 

(5 - 2) 

the nondimensional reduced stiffness matrix is 

(5 - 3) 

Quantities relating to plate thickness such as Zi, TT• and T1 are normalized by T Tmax• the maxi-

mum total thickness considered in the optimization study: 

Zj= T ' 
Tm ax 

ti= T 
Tmax 

(5- 4) 

Substituting Eqs. (5-3) and (5-4) into Eq. (4-4) in the previous chapter, we obtain the nondimen-

sional laminate stiffness matrix 
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n 
1 2"\' 3 3 [d] = 3 [DJ= 3 Li [q]k (zk - zk+1)· 

E1 l T Tmax k=l 
(5 - 5) 

The coordinates and displacements are nondimensionalized by the plate length in the x-direction, 

x x=-
11 ' 

w w=-1 ' I 

and the nondimensional moments, mx, my, and mxy are defined as 

~2 ow ---
ay2 

aw 2 }T 
- 2 oxoy . 

(5 - 6) 

(5 - 7) . 

Finally, using Eqs. (5-6) and (5-7) the original buckling differential equation is transformed to 

(5 - 8) 

where n. is the nondimensional buckling load defined by 

(5 - 9) 

The differential equation is solved by the finite element method using a 16-degree-of-freedom ele-

ment first introduced by Bogner, Fox, and Schmit [52). 

Assuming the in-plane load is uniform, the finite element discretization of Eq. (5-8) is 

(5 - 10) 
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where [K] is the system stiffness matrix, [KG] is the system geometric stiffness matrix, and {U} is 

the buckling mode. The above matrix equation is solved using SNLASO, one of the subroutines 

from the package LAS02 [ 53], which computes a few eigenvalues and the associated eigenvectors 

of a large (sparse) symmetric matrix using the Lanczos algorithm [54]. 

The optimization procedure requires derivatives of the buckling load with respect to the thickness 

variables ti. These are calculated explicitly by differentiating the Rayleigh quotient associated with 

Eq. (5-10): 

{U} T o[K] {U} 
Oti 

(5 - 11) 

Th iff: · d · · o[K] . d b " d fi . d:~ . . e st ness matnx envat1ves, -,,-, are estrmate y 1orwar rmte 111erence approxrmat10ns. 
uti 

Sometimes the optimum design is bimodal, in which case there are two eigenvectors corre-

spending to the lowest eigenvalue. The buckling load is not differentiable for this case. To elimi-

nate this difficulty, we use a constraint, n.1 = 0.999 nxi in the bimodal formulation (see section 5.1.3) 

so that the buckling modes can be determined separately for the first buckling load, n.1 , and the 

second buckling load, nxi . 

5.1.2 Optimization Problem 

The optimization problem that we consider here is to maximize the buckling load of a plate for 

a given total plate thickness. The thickness of each layer is assumed to be constant over the plate, 

and for a given stacking sequence of the layers, each thickness is taken as a design variable. The 

nondimensional thicknesses, ti, are subject to bound constraints 
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for i = l, ... , n, 

where tmax and tmin are upper and lower bounds, respectively. 

The optimization problem is written as 

n 

such -that L ti - tT = 0 
i=l 

for i = 1, ... , n, 

where the nondimensional buckling load, nx, is obtained by solving Eq. (5-10). 

(5 - 12) 

(5 - 13) 

The problem (5-13) can be solved using the homotopy technique described in section 3.2. The 

total thickness of the plate, tT , is chosen as the homotopy parameter, and for the initial conditions 

for the initial value problem we use the minimum-thickness plate with tT corresponding to all design 

variables at their lower bound. The trajectory of the initial value problem is a path of optima 

corresponding to varying tT' 

The equations defining the path of optimal designs are obtained using Lagrange multipliers. The 

optimum path consists of several smooth segments, with breaks in smoothness at points where the 

active constraint set changes. Following the same discussion in the section 3.1.1, we can set the 

active inequality constraints as equality constraints, 

for j e IA, (5 - 14) 
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where IA is the set of indices of thicknesses which are at a lower or upper bound. These variables 

are eliminated from the optimization problem, while the other variables are left unconstrained. The 

optimization problem along a segment can, therefore, be written as 

max 
t· I 

n 

such that L ti - tT = 0. 
i=I 

5.1.3 Stationary Conditions 

Using a Ligrange multiplierµ, the augmented function nx * is 

n 

nx * = nx - µ[Lti - tTJ. 
i=l 

(5 - 15) 

(5 - 16) 

(5 - 17) 

Taking the first derivatives of nx +with respect to t; andµ, and setting them equal to zero, we obtain 

the optimality conditions 

(5 - 18) 

and the total thickness constraint of Eq. (5-16). Equations (5-16) and (5-18) form a system of 

nonlinear equations to be solved for t; and µ. A homotopy method is used to find the solution 

of these equations for varying tr. 

The stationary conditions for bimodal solutions are obtained by adding a bimodality constraint 

into the augmented function in Eq.(5-17). Then we have 
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i) Optimality conditions 

anxl anx2 (1 - y)-- + 0.999 y-~ - - µ = 0 
ati oti 

(5 - 19) 

ii) Bimodality constraint 

nxl - 0.999 nx2 = 0 (5- 20) 

and the total thickness constraint of Eq. (5-16). In Eq. (5-19), y denotes the Lagrange multiplier 

of the bimodality constraint. 

5.1.4 Tracing Optima 

There are four types of transitions as was described in Section 3.3: 

Type 1: A bound constraint becoming active (i.e., being satisfied as an equality); 

Type 2: A bound constraint becoming inactive; 

Type 3: Transition from a unimodal solution to a bimodal solution; 

Type 4: Transition from a bimodal solution to a unimodal solution. 

Transition points of type 1 are located by checking the bound constraints (5-12). 

Transition points of type 2 are detected by checking positivity of all Lagrange multipliers for 

bound constraints. These multipliers are obtained by replacing the augmented function flx +(for the 

unimodal case) in Eq. (5-17) by 
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n 

nx + = nx - µ[2..)i - tT] - L ;,li[tmin - ti] - L )·2i[ti - tmaxJ. (5 - 21) 
i=I ie IA ie IA 

Taking the first derivatives of n. + with respect to ti and setting them equal to zero, we obtain 

for i e IA. (5 - 22) 

Since A.Ii = 0 for t = tmax and A. 2i = 0 for t = tmin• A. 11 and A. 21 are given by 

(5 - 23) 

Similar equations for the bimodal case are as follows. 

(5 - 24) 

A transition of type 3 occurs when two buckling loads approach together and meet, as shown in 

Fig. 17. Optimal designs become bimodal for the subsequent segment on the solution path. The 

homotopy routine traces solutions on a smooth path using sensitivity information obtained from 

the previous point. To preserve the smoothness of the solution path, the tracing routine picks at 

each step the eigenvalue nx corresponding to the critical nx in the previous step. As soon as the 

transition is passed this n. is no longer the lowest one, and this event identifies transition type 3. 

The bimodal formuiation includes an additional constraint for the bimodality requirement, and 

this constraint is handled wiih a Lagrange multiplier y. The following inequality is necessary in the 

bimodal range and can be used to detect the type 4 transition from bimodal to unimodal: 
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Osys 1. (5 - 25) 

At a transition point there are a number of solution paths which satisfy the stationary equations, 

so we need to choose a path which satisfies the optimality conditions. Choosing an optimum path 

constitutes finding a set of active bound constraints for type 1 and 2 transitions and the correct 

buckling modes for type 3 and 4 transitions. This procedure was explained in section 3.3.2. 

5.1.5 Results and Discussion 

Some examples are presented to demonstrate the effect of optimization of layer thicknesses on 

the buckling of laminated plates. A graphite/epoxy composite plate is selected and its material 

properties are given by E11 = 21.374xl010 pa (31.0xl06 psi), E22 = 2.334xl010 pa (3.4xl06 psi), 

G12 = 0.5 l 7xl 010 pa (0. 75xl06 psi), and v 12 = 0.28, corresponding to nondimensional properties 

e22 = 0.1097, g12 = 0.02419. The plate aspect ratio (11/12) is chosen to be 1.2. 

To determine an appropriate mesh size for the finite element analysis, a series of numerical tests 

were performed for a (0° /90° /45°), laminate. The nondimensional thickness of each layer was set 

at 1/3. Table 6 shows the first and second buckling loads for different meshes. The first buckling 

load is quite accurate even for a 2x2 mesh (less than 1 % difference compared to the 6x6 mesh); 

however, the second buckling load, which has a full sine mode in the x-direction, converges more 

slowly as the mesh is refined. Since the optimum designs are often bimodal, the first two buckling 

loads must be considered in the analysis, and a 4x4 mesh is chosen for the finite element analysis. 

First, optimization results are presented for this (0° /90° /45°), laminate for which the thickness 

of each layer is taken as a design variable. This laminate consists of six layers; however, only three 

of them are treated as design variables due to symmetry. The nondimensional minimum gage, 
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tmin• is set at 0.01, so the design starts from tT = 0.03 where all design variables are at the minimum 

gage. 

Figure 18 shows the nondimensional height of each layer of the optimum design (above the 

middle surface) obtained for 0.03 ~ tT ~ 0.3. The thickness of each layer is the distance between 

the two adjacent heights. In Fig. 18, each curve has three transition points and consists of four 

solution segments. The circles on the curves indicate the transition points and the dots are the 

solutions traced along the optimum path. Along the first two segments (0.03 ~ tT ~ 0.185), the 

optimum designs are unimodal, and along the last two segments (0.185 ~ tT ~ 0.3), the optimum 

designs are bimodal. Along the first segment, only one layer (corresponding to the 45° fibers) varies 

its thickness, along the second and the third segments two layers (90° and 45°) vary, and along the 

last segment all three layers change thickness. In Fig. 19, the nondimensional buckling loads, nx, 

corresponding to these optimum designs are shown in semi-log scale for the same range of tT. The 

dashed line indicates the buckling loads of reference designs in which all layers have the same 

thickness. Once all design variables are above their minimum gages (tT ~ 0.274) we reach the op-

timum unconstrained ratios of layer thicknesses. These optimum ratios are preserved as we increase 

the total thickness of the plate, tT . Above tT = 0.274 the design variables are increased propor-

tionally to tT, the buckling load is proportional to tt, and the set of active constraints is fixed. 

Therefore, there is no need to trace the optimal path beyond tT = 0.274. 

Next, a (45° /90° /0°). laminate is considered. Figure 20 shows the height of each layer of the 

optimum design for 0.03 ~ tT ~ 0.05 and Fig. 21 shows the corresponding nondimensional buckling 

loads. This path has two transition points and consists of three solution segments. Along the first 

segment 0.03 ~ tT ~ 0.0337 the optimum designs are unimodal, and along the last two segments the 

optimum designs are bimodal. Along the first segment, only the 0° layer varies its thickness, along 

the second segment two layers (90° and 0°) vary, and along the last segment (tT ~ 0.0449) all three 

layers change thickness. The nondimensional buckling load at tT > 0.0449 is obtained by scaling 

the buckling load at tT = 0.0449 by (tT/0.0449)3. 
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5.2 Design of Laminated Plate with a Stiffener 

The plate model in this section has a symmetric blade stiffener at center as shown in Fig. 22. 

Again the plate is simply supported along all four edges. 

5.2.J Buckling Analysis 

The analysis of the stiffened plate is performed in two steps for the finite element analysis. First, 

the stiff encr at the center is treated as a beam in forming the global stiffness matrix. Then, the local 

buckling of the stiffener is considered separately from the main finite element analysis. 

Overall Plate Buckling Analysis 

The governing differential equation for the beam stiffener is 

(5 - 26) 

where "denotes d~2 and Pb is the beam axial load. lb is the moment of inertia of the beam given 

by 

(5 - 27) 

where B is the width, H is the height of the stiffener and TT is half the total thickness of the laminate 

plate (see Fig. 22). Using nondimensional quantities 
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H h=-11 , 

w w=-11 , 
x x=-11 , 

we get the differential equation in nondimensional form: 

(5 - 28) 

(5 - 29) 

Nondimensional buckling analysis for the plate is obtained replacing Eq. (5-4) in the Section 5.1.1 

by 

T t . l 
i=-1-· 

1 

Then we have 

l nx=El Nx. 
11 1 

The overall buckling equation in matrix form is 

(5 - 30) 

(5 - 31) 

(5 - 32) 

where [K) and [K]b are the plate and the beam stiffness matrices, respectively, [KG] and [KG]b are 

the plate and the beam geometric stiffness matrices, respectively, and {U} is the buckling mode. 

The total load on the stiffened plate P is distributed as pg1 to the plate and pg2 to the stiffener, where 

(5 - 33) 

where sP and sb are the nondimensional cross- sectional area of plate and beam, respectively, ex-

pressed as sP = 212tT and sb = 2 b h. And eP is the stiffness of the laminated plate given by 
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l 
ep (5 - 34) 

where [a] is the nondimensional stretching stiffness matrix expressed as [a]= ; ~[C[]k (zk - zk+1). 

Equation (5-32) may be written now as 

(5 - 35) 

Local Stiffener Buckling Analysis 

The local buckling of the stiffener is analyzed separately from the overall plate analysis. The 

stiffener is treated as a plate which is simply supported at 3 edges and is free at one edge. Levy's 

solution [55] was used for this local stiffener buckling ioad, p, . 

5.2.2 Optimization Problem 

The optimization problem is to maximize the buckling load of a plate for a given total plate 

thickness. The design variables are set as the individual thickness of each layer, the width and the 

height of the stiffener. Here we denote the width and the height of the stiffener as t; 

tn+i = b, tn+2 = h. The nondimensional design variables, t1 , are subject to bound constraints 

for i = l, 2, ... , n + 2, (5 - 36) 

where t1 max and t1 min are upper and lower bounds, respectively, and n is half the number of layers 

for the symmetric plate. 
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The optimization problem is written as 

{3 

such that p1 :2: {3 

and 

P2 :2: f3 

Ps :2: f3 
cTt-8=0 

fori= 1, ... , n+2, 

(5 - 37) 

where p1 and p2 are the first and the second buckling load, respectively, for the overall plate and p, 

is the stiffener buckling load. c is a positive cost vector and e is the total volume of the structure. 

The problem (5-37) can be solved using the homotopy technique described in section 3.2. The 

total volume of the plate, e , is chosen as the homotopy parameter. 

Following the same discussion in the section 3.1. l, we can set the active inequality constraints as 

equality constraints, 

(5 - 38) 

where IA is the set of indices of design variables which are at a lower or upper bound. These vari-

ables are eliminated from the optimization pro bl em, while the other variables are left unconstrained. 

The optimization problem along a segment can, therefore, be written as 

{3 (5 - 39) 
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such that p 1 ~ f3 

P2 ~ f3 

Ps ~ f3 
and cTt- 8 = 0 

5.2.3 ·stationary Conditions 

Using the Lagrange multiplier technique the augmented function p+ is 

(5 - 40) 

>vhere y1, Yi. YJ, andµ are Lagrange multipliers and r1, r2, and r3 are slack variables. Taking the 

first derivatives of p+ with respect to all these variables and setting them equal to zero, we obtain 

the stationary conditions, 

l-y1-Y2-y3=0 (5 - 41) 

(5 - 42) 

2 P1 - r1 - f3 = 0 (5 - 43) 

(5 - 44) 

2 P2 - r1 - /3 = 0 (5 - 45) 

(5- 46) 

2 Ps - r3 - fi = 0 (5- 47) 
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(5 - 48) 

(5 - 49) 

These equations form a system of nonlinear equations to be solved for optimal design. The 

homotopy method is used to find the solution of these equations for varying e. The slack variables 

are eliminated from Eqs. (5-43) - (5-48) and these equations are changed to 

5.2.4 Tracing Optima 

Again there are four types of transitions: 

Type 1: A bound constraint becoming active (i.e., being satisfied as an equality); 

Type 2: A bound constraint becoming inactive; 

Type 3: An inequality buckling load constraint becoming active; 

Type 4: An inequality buckling load constraint becoming inactive. 

Transition points of type 1 are located by checking the bound constraints (5-36). 

(5 - 50) 

(5 - 51) 

(5 - 52) 

Transition points of type 2 are detected by checking positivity of all Lagrange multipliers for 

bound constraints. These multipliers are given by 
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A transition of type 3 is detected by checking the buckling load constraints; 

P1 ~ fJ, 

P2 ~ fJ, 

Ps ~ fJ. 

(5 - 53) 

(5 - 54) 

A transition of type 4 is detected by checking if the Lagrange multipliers associated with the 

buckling load constraints are positive; 

Y1 ~ 0, 

Y2 ~ 0, (5 - 55) 

Y3 ~ 0. 

At a transition point there are a number of solution paths which satisfy the stationary equations, 

so we need to choose a path which satisfies the optimality conditions. This procedure was ex-

plained in section 3.3.2. 

5.2.5 Results and Discussion 

The graphite/epoxy composite material in this example is the same as the one in the previous 

example. The plate aspect ratio (1 1/12) is 1.2 and the mesh size for the finite element analysis is also 

4x4. 
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Optimization results are presented for the (0° /90° /45°), laminate with a stiffener in which 0° and 

90° layers are mixed with the same proportion. There are five design variables; three thicknesses 

of plate layers, width and height of the stiffener. The nondimensional minimum gage, tmin• ·is set 

at 0.002 for the thickness of each layer and the width of the stiffener, and 0.01 for the height of the 
3 

stiffener. The total volume of the plate are expressed as e = 2(12:2)1 + b h). And the design starts 
i=l 

from e = 0.01004 where all design variables are at the minimum gage. 

Figure 23 shows the nondimensional height and the width of the optimum design obtained for 

0.01004::; e::; 0.010827. The thicknesses of three layers remain at the minimum gage. Initially the 

optimum design starts with a unimodal solution. The first buckling load of the plate structure, p1, 

is active and the optimal design changes only the height of the stiffener. When the total volume 

reaches at 0.010072, the local buckling load of the stiffener, p,, also becomes active and the design 

changes to bimodal. The width of the stiffener and the height changes at the same time from this 

point. This transition point is indicated by a circle in the Figure 23 and the dots are the solutions 

traced along the optimum path. 

In Fig. 24, the nondimensional buckling loads p corresponding to these optimum designs are 

shown for the same range of e. It is noted that the buckling load is increased by 325% while the 

total volume is increased only 8%. This shows the efficiency of stiffener in designing plate structures 

for buckling load. 

The homotopy routine stopped tracing the optimal path at e = 0.010827 due to ill-conditioning 

of the optimal design problem as the solution approaches a trimodal condition; i.e., p1 = p2 = p,. 

The Lagrange multiplier for the second buckling load constraint, y2 , is 0 at the second segment of 

the optimum path (because only p1 and p, are active ). As we increase the total volume along the 

segment, the second buckling load, p2, also approaches top, so both terms in Eq. (5-51) approach 

to 0. This causes an ill-conditioned Jacobian matrix of the nonlinear system of equations which 

homotopy method cannot handle. 
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Table 6. Comparison of buckling loads for different meshes;(0° /90° /45°), laminate with t1 = t2 = t3 = 1/3 

:\:Tesh 

First 
buckling load 

Second 
buckling load 

Sequential Nested Approach 

2x2 3x3 

11.800 11. 742 

27.196 23.369 

4x4 5 x 5 6x6 

11.729 11.725 11.724 

23.089 23.000 22.969 
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Chapter 6 

Concluding Remarks 

Direct solution of optimality conditions was proposed in this study. It was shown that the op-

timality conditions which are obtained from variational formulation can be solved effectively using 

standard methods for nonlinear system of equations. 

First, we employed a Newton-type method. A typical difficulty with the solution of optimality 

conditions is that there are many nonoptimal solutions. The use of second-order conditions was 

explored to validate solutions obtained from the first-order optimality conditions. Another diffi-

culty in using a Newton-type method is that the method is not guaranteed to converge to the sol-

ution, unless the initial estimate is very close to the solution. A tracing technique was developed 

to eliminate this difficulty. The technique employs a homotopy method to trace the optimal sol-

ution with guaranteed convergence. In the present study, the original globally convergent 

homotopy method is adapted to the optimal structural design. The homotopy method showed 

definite advantage in the sense that we obtained an entire family of optima parameterized by the 

amount of resources. The solution path has several branches due to changes in the active constraint 

set. The Lagrange multipliers and second-order optimality conditions were used to detect branch-
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ing points and to switch to the optimum solution path. The procedure was applied to find optimal 

foundation designs and optimal laminated plate designs. 

This study reveals that the design problems with a buckling load constraint require very accurate 

nonlinear analysis because eigenvalues are placed quite closely as the design approaches to the op-

timum design. The bimodal formulation was given and it showed strong confidences in finding 

bimodal solutions. However, difficulty in tracing optimal solutions near trimodal design was ex-

perienced. The difficulty comes out from ill-conditioning of the Jacobian matrix in the homotopy 

tracing. Detailed studies on different formulations in relation to the condition of the Jacobian 

matrix are recommended for future work. 
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