Cinemacraft

Virtual Minecraft Presence Using OPERAcraft

Client Ivica Ico Bukvic

Instructor Edward A. Fox

Course CS 4624 Multimedia, Hypertext,
and Information Access
Virginia Tech
Blacksburg, VA 24061
Spring 2016

Members Barnes, Brittany
Godolja, Elsi
Kiseleva, Marina

Table of Contents

List of Figures and Tables..........c.oooiiiii i e e, 3
EXECUtIVE SUMMATY ..ovvinitit et e et e e, 4

User's Manual

SyStemM INSIIUCTIONS. ... ettt e et e e, 5

1.0 REQUITEMENLS. ...\ttt ettt et e e e e e ae e eaeeeaaeea s 6
1.1 Project DeSCIIPtION. ...ttt ettt et 6
0 0 1<) PP 6

Developer’s Manual

00 T € 1 7
1.3.1 Languages and Software............oovviiiiiiiiiiiiii e 7
L B T 7T (0] o 1<) 9
2.0 Software DeSI@N.......viiiii i e 10
2.1 Internal Software Data StrucCtures.oouiveiiiiiii e 10
2.2 Software Component INteraction.c.ooeiiieiiiiiie i ee e, 10
2.3 Temporary Data Structures.oo.eiiiiiii e 11
3.0 Implementation.c..oviniiiii e 12
3.1 Interactive COMPONENLS. ittt ettt et et e et et e e e et e eteeeeaneeenaeenanns 12
3.1.1 Nonfunctional Requirementsccoviriiiiiiiiiiii i eeeeaanns 12
3.1.2 Functional ReqUirements.............o.vvuiiiiiiiiiiiii e, 13
3.2 ProOJeCt FRAtUIS. . .ueeee ettt et e et 14
3.2.1 Development Timeline...........oouiviiiiiiiiiiiii e 15
3.3 Technical IMplementation...........ooevuiiitiieiiteit e e eeeaeans 15
331 MINECTAft. ..o 16
3.3.1.1 OpenSocketThread.java...........cooeeiiiiiiiiiiiiiiii e, 18
3.3.1.2 GuiNewChat.java.cccooeiiiiiiiii e, 18
3.3.1.3 ModelBiped.java.cooevieniiiiiiei e 18

3.3.1.4 GuilnGame.Java.oouiiniiiiiit e 18

3.3.1.5 OperaCraftPlayer.java........cccoeeviiiiiiiiii i 18

R G T (G 11 1S 18

3.3.2.1 Skeletal Tracking..........c.oviiiiiiiiiiii i e, 19

3.3.2.2 Facial Tracking.......cccoooviuiiiiiiiiiiii e, 19

333 PA-L20TK. . ceei et 20

3.4 MINECTAft ATt ..ottt e 20

341 AVALAL..c 20

342 WOrld. ..o e 21

OB {00317 o1 22
O 1) 01 1) 1 1) 1 22

1.1 SOTIWATE. ... 22

412 HaTAWATC. .. oottt e 23

4.2 FUNCHIONALIEYottt 24

5.0 DEDUZEING..... ettt e 26

Lessons Learned

6.0 FUture WOorK. ... e 27
6.1 FUture Adaptations...........iuieiiiniieie ettt e e e et e e 27

6.1.1 List Of Changes.......couiiiiiiii i e e 27

7 L0 1< 51 29
7.1 Single-user Usabilityooiiiiiiiiiii e e 29

7.2 Multi-user (Server-Camera-Client) Usability..............coooiiiiiiiiiiiiii e, 31
ACKNOWIEA@EMENLS.t 32
DS 157 (S5 1 61 33

List of Figures and Tables

Figure 1.3.1A: Kinect Sensor Live Skeletal Point Feed.
Figure 1.3.1B: Tracked Facial Points from Kinect Sensors.
Figure 1.3.1C: Pd-L20rk Connection Example for OPER Acraft.
Figure 1.3.1D: Minecraft Gameplay as seen by the User(s).
Figure 2.0: Project Components.

Figure 2.2: Eyebrow and Mouth Combination Matrix.
Figure 3.1.1: Interactive setup layout.

Figure 3.2.1: Gantt Chart for Feature Implementation.
Figure 3.3.1A: Class Structures.

Figure 3.3.1B: Project Information Dependencies.

Figure 3.3.2.1: Live Skeletal Tracking.

Figure 3.3.2.2: Visualization of tracked AUs.

Figure 3.4.1A: Minecraft Avatar.

Figure 3.4.1B: Minecraft Facial Expression Helmets.
Figure 4.1.2: Prototype Hardware Setup.

Figure 4.2: Prototype Functionality.

Figure 6.1.1: Avatar Jump Range.

Figure 7.1A: Arm Test Gestures.

Figure 7.1B: Arm Test Angles.

Figure 7.1C: Avatar Movement Testing.

Table 1.1: UDP Packet Constraints.
Table 4.2: Integral Feature Functionality Levels of the Prototype.
Table 5.1: Debugging Functionality.

Executive Summary

Cinemacraft allows users to view their mirror image in the form of a Minecraft avatar in an
interactive exhibit setting. Built off of OPERAcraft, a Minecraft modification created at Virginia
Tech, Cinemacraft uses Kinect motion-sensing devices that will track user movement and extract
the spatial data associated with it. The processed data is then sent through a middleware,
Pd-L20rk, to the Minecraft code where it is translated into avatar movement to be displayed on
the screen. The result is a realistic reflection of the user in the form of an avatar in the Minecraft
world.

Within the display limitations presented by Minecraft, the avatar can replicate the user’s skeletal
and facial movements; movements involving minor extremities like hands or feet cannot be
portrayed because Minecraft avatars do not have elbows, knees, ankles, or wrists. For the skeletal
movements, three dimensional points are retrieved from the Kinect device that relate to specific
joints of the user and are converted into three dimensional vectors. Using geometry, the angles of
movement are found in each plane (X, Y, and Z) for each body region (arms, legs, etc.). The
facial expressions are computed by mapping eyebrow and mouth movements within certain
thresholds to specific facial expressions (mouth smiling, mouth frowning, eyebrows furrowed,
etc.).

As it is sent to Minecraft, the movement data is intersected by Pd-L2Ork in order for it to be
scaled and normalized. This minimizes error and allows for more fluid and natural avatar
movements.

OPERACcraft itself is a Minecraft modification intended for K-12 students that allows users to
create and perform a virtual opera in Minecraft. Upon completion, the Kinect user recognition
modification created by this project is intended to be utilized by the main OPERAcraft system,
which previously used keyboard commands to simulate minor avatar movements.

System Instructions

. Ensure all hardware components, listed in Figure 4.1.2, are in present and functioning
properly.

. Connect the first and second monitors with a LAN connection so data can be exchanged.

. If a third monitor is available (to be used as the primary display), share the display
between the first and third monitors.

. Run the Kinect skeletal tracking code on the first monitor along with the Minecraft code
(if a third monitor is not available the first monitor will also be the primary display).

. Run the Kinect facial tracking code on the second monitor.

. Depending on the type of environment desired, set up the Minecraft game (i.e., open port
and create a LAN world if needed).

The user should stand in front of the Kinect sensors (in order to be tracked) in an open
and uncluttered environment.

1.0 Requirements

This project consists of three main components: Kinect sensors, middleware communication, and
Minecraft code. Users will need to have two Kinect sensors connected to two computers, in order
to track facial and skeletal movements, while simultaneously running the Minecraft code. Once
this is setup, users can move freely within the sensor’s range and control their Minecraft avatar
with their own body movements.

1.1 Project Description

OPERACcraft is a custom Minecraft modification (mod) created at Virginia Tech (VT). It is used
to bring together opera, movie production, and video games in real-time. Users are able to
control their avatars with body movements consisting of facial and skeletal gestures, real-time
camera feeds, subtitles, and, but not limited to, scene cues (2, 7).

Another software developed at Virginia Tech, Pd-L20rk, serves as the middleware between the
Kinect sensors and the OPERAcraft code (7). Pd-L20rk allows for the distribution of production
tasks (i.e. camera changes, subtitles, cues, etc.) and necessary data manipulation (7).

The project setup will consist of multiple screens and two Kinect sensors: one to track facial
movements and one to track skeletal movements. The overall goal is to capture Kinect sensor
feed data that tracks facial and skeletal body movements and translate it into Minecraft
movement, resulting in the Minecraft avatar mirroring the user.

A prototype was presented in an interactive demonstration at South by Southwest (SXSW) in
Austin, Texas in March 2016 and a later version at the Institute for Creativity Arts and
Technology (ICAT) Day at VT.

1.2 Clients

The target audience for Cinemacraft includes K-12 students who currently use OPERAcraft to
design, create, perform, and watch fully produced virtual operas. The additional functionality of
Cinemacraft will allow them to fully explore their creativity and truly be a part of the entire
experience since it is linked to their own personal body movements and expressions.

Additionally, another group of VT students working with FEET software will be using any
applicable parts of the Kinect code to further their own project studying how Autism affects
emotional comprehension from facial expressions. Particularly, adapting the code to register
categorized emotions (e.g. happy, sad, angry, etc.) would aid in their study, since that’s a large
part of their current work.

Also included among the clients are the attendees of both demonstrations: SXSW and ICAT
Day, in Austin, TX and Blacksburg, VA, respectively. These attendees will be able to participate
by having their body and facial movements mirrored onto a Minecraft avatar that will be

displayed on one of the setup screens. Cinemacraft will engage users and allow them to imagine
how it would feel to not only be a part of an orchestra production (OPERAcraft), but also to be

immersed in a real-time, virtual reality environment.
1.3 Skills

Because of this project’s scope, team members will
need to know how to use a variety of languages,
software, and integrated development environments
(IDEs). The various languages and IDEs used will
be linked together by middleware software. Though
team members are not expected to further develop
the middleware they need to be familiar with how to
utilize its functionality.

1.3.1 Languages and Software

Languages include Java and C# using Eclipse and
Visual Basic, respectively. Software includes Kinect
SDK/API, Pd-L20rk middleware, and various
monitors and screens used during testing and
demonstrations.

With respect to each language and software
program, the project has been split up into three
sections of work: obtaining and analyzing Kinect
data, utilizing Pd-L20rk middleware, and updating
the current OPER Acraft code.

First, Kinect sensor data of a user’s skeletal and
facial points, Figure 1.3.1A and Figure 1.3.1B
(Microsoft, 2016) respectively, will be captured, and
subsequently processed and analyzed using C# code
in the IDE, Visual Basic. The program is developed
on the Kinect software development kit (SDK). This
code will be used to properly format the body
movements into an interpretable format, which will
then be sent via UDP to the middleware.

The UDP packets must be formatted using
pre-existing constraints in order to be correctly read
by Pd-L20rk and OPERAcraft. These constraints
include delimiters, lines endings, avatar keywords,
and specific position values. A more detailed
account of the current and future constraints can be

7

Figure 1.3.1A: Kinect Sensor Live Skeletal Point Feed. Points
represent trackable joints, &nd are leheled to show joints of interest for
this project.

Figure 1.3.1B: Tracked Facial Points from Kinect Sensors, (Source:
Microsofl, 2006). For our project we track the points 16, 18, 20 (left

found in Table 1.1. Additionally, only one movement position can be specified on each line.

UDP Packet Constraints
.. Line Avatar Movement .. Movement

Delimiter(s) Ending(s) Keywords Movement Position Value(s) Position Types

eyes {0-3} integer

mouth {0-4} integer
head {(-90)-(90)} {(-180)-(180)} float (xrot, yrot)

rshoulder {(y)} float (y)

.) Ishoulder {y)} float (y)
whitespace \n larm {(-180)-(180)} {(-180)-(180)} | float (xrot, zrot)
rarm {(-180)-(180)} {(-180)-(180)} float (xrot, zrot)
lleg {(-90)-(90)} {(-90)-(90)} float (xrot, zrot)
rleg {(-90)-(90)} {(-90)-(90)} float (xrot, zrot)
torso {(x)} {()} {(-180)-(180)} float(x, y, yrot)

Table 1.1: UDP Packet Constraints. Details possible delimiters, line endings, avatar movement keywords, movement position values, and
movement position types. These UDP packets can only handle one movement position per line.

Second, the middleware, Pd-L20rk, will be used to receive the UDP packets containing properly
formatted Kinect sensor data (from the C# code) and relay it to the OPER Acraft/Minecraft code
(in Java). As long as formatting is correct, this portion of the project is fully implemented.
Pd-L20rk cuts down unnecessary compile time when making additional changes. The user will
not see any portion of this interaction. Figure 1.3.1C shows an example of P2-L20rk being used
to connect various user views in Minecraft for an OPER Acraft production.

Third, the existing OPERAcraft
system will be updated to work
with the additional functionality.
The program will need to be
updated to reflect additional
facial and body movement
commands. It will be used to
render the various game views
that users will see when
participating in an OPERAcraft
production. The user will never
see any portion of any of the code
and will only react with the
compiled version of the game
(depending on their role in the
production), displayed in Figure
1.3.1D.

projecior copmecls Lo projector
L L]
sercls
Lelegarting
open to LAN fading
CaMers e
mauth missemens
-"rD F‘E n]'J'Drt ? ﬂﬂﬂ change lime ol day

subritkes
wamings for participants

(d" connect to the projector’s word]

actory careras spectaton [mom agurd the world

Figure 1.3.1C: Pd-L20rk Connection Example for OPERAcraft (7).

Fiaht Ot
I - Laft Anals

0 — FRight F'Ingj.-a

f

® B Side oui

Figure 1.3.10: Minecraft Gameplay as seen by the User(s). Kinect sensors will pick up on movements like the ones
listed in the twop right (without needing their respective keyboard controls) (7).

1.4 Developers
Point of contact:

e Ivica Ico Bukvic, VT Associate Professor for the School of Performing Arts (ico@vt.edu)
Additional developers:

Barnes, Brittany, VT Undergraduate (blbarnes@vt.edu)
Godolja, Elsi, VT Undergraduate (elsiS@vt.edu)
Kiseleva, Marina, VT Undergraduate (marinaki@vt.edu)
Narayanan, Siddharth, VT Graduate (nsiddh3@yvt.edu)

Youssef, Amira, VT Graduate (amira.youssef(@gmail.com)

mailto:ico@vt.edu
mailto:blbarnes@vt.edu
mailto:elsi5@vt.edu
mailto:marinaki@vt.edu
mailto:nsiddh3@vt.edu
mailto:amira.youssef@gmail.com

2.0 Software Design

There are three major components of this project: the existing OPERAcraft/Minecraft code in
Java, C# code to process incoming data from Kinect software, and Pd-L20Ork which connects the
first two components. The flow of these components is demonstrated in Figure 2.0. Individually
these components use data structures to distribute information internally, as well as data
structures that are used to distribute information among the different components.

! I fa ™
Kinect Pd-L20rk Minecraft
(C#) (Java)
_J _J A
Figure 2.0 Project Components. This figuse demonstraies the flow of data throughout the peoject. Data
will be continuously streaming from the live Kinect feed into Pd-L20rk where it will be sent to Minecraft
in order fo reflect the wser’s movements through an avatar,

2.1 Internal Software Data Structure

The Kinect software uses data structures such as point clouds, geometry processing, and
computer vision (3). At 30 frames per second, the Kinect can generate point clouds which consist
of a set of X, Y, Z coordinates for each visible point on an object. Computer vision utilizes
concepts such as depth from focus (objects farther away tend to be blurrier), and depth from
stereo (objects closeby get shifted to the side, when looked at from a different angle) (3). The
Kinect then uses a decision tree to map depth images to body parts, and reconstructs the objects
in front of the image sensors (5). The Kinect SDK makes available these structures to allow for
retrieval of the information needed to send to the OPER Acraft software.

The OPERAcraft software is divided into several different components. The main components of
an OPERAcraft production are the actors (controlled by different people from their local
machines), cameras (to watch the actors, several cameras allows for different angles), projector
(hosts the mod world, and can follow one camera at a time), and the spectators (connect into the
game to observe the game from whatever angle). These components are then combined with
Pd-L20rk, which allows for the transportation of information in packets. Such packets can hold
information for subtitles, mapping, teleporting, fading, changing camera views, etc. The actors,
cameras, spectators, and Pd-L2Ork all connect to the projector.

2.2 Software Component Interaction

To transfer information between the major portions of the architecture, data structures from the
aforementioned software were used. The Kinect gathers the information from the sensors in point
clouds, and from these point clouds, the necessary points for the head, shoulders, arms, torso,
eyes, and mouth are retrieved (3, 5). These points are then packaged in a certain format and their
information is transferred via UDP packets. Consider this example of the information in proper
format: “torso 0.1 0.3 -1.3 2.5;\n” which

10

uses constraints detailed in Table 1.1. These
packets are transferred through Pd-L20Ork
from the Kinect to OPERAcraft. Upon
receiving this information, the Minecraft
code parses it and uses appropriate methods
to make the avatar perform the respective
mirrored movements.

Facial recognition is handled slightly
differently than the skeletal recognition.
While it follows the same packet formatting,
OPERAcraft uses different avatar helmets
for different facial expressions. These
expressions will allow for four different
mouth formations and four different
eyebrow formations.

The four eyebrow and mouth formations
were converted into a four by four matrix
which represents all the possible
eyebrow/mouth combinations. Twenty
helmets for the avatar were designed based
on this matrix, shown in Figure 2.2.

2.3 Temporary Data Structure

The only temporary data created for this
project are the UDP packets transferring
information gathered from the Kinect
directly to the middleware and then to

£\ 2,0 2,1 2,2 2,3

0,0 0,1 0, 2 0,3

1,0 1,1 1,2 1,3

3,0 3,1 3,2 3,3

| 40 4,1 4,2 4,3

Figure 2.2: Eyebrow and Mouth Combination
Matrix. This matrix displays the 20 possibilities
for avatar helmets within Minecraft, based on
the user’s facial expressions. Eyebrow and
mouth expressions are represented by column
and row values, respectively.

Minecraft. As previously mentioned, the Kinect creates point clouds at 30 frames per second, so
information is gathered quickly and often (3, 5). The UDP packets are created and sent through
Pd-L20rk to Minecraft from the moment OPER Acraft is started, all while new packets are being
created, sent, and received until the system is shut down.

11

3.0 Implementation

The main components implemented were facial and skeletal tracking with Kinect sensors,
processing and transforming the Kinect data into a usable format, transferring Kinect data (C#
code) to the Minecraft code (Java) via Pd-L20rk, editing the Minecraft code to allow for
mirrored avatar movements based on the processed Kinect data, and creating the imagery needed
to simulate the Minecraft environment and avatars.

This section will describe the nontechnical and technical project components, their
implementation strategies, and the overall processes followed.

3.1 Interactive Components

The project had a variety of non-technical and technical interactive requirements to fulfill. Due
to the unique nature of the project, and the fact it will be used in a variety of settings and by a
plethora of users from different backgrounds and ages, the team had to be especially critical of
the requirements to ensure maximum usability among users.

3.1.1 Nonfunctional Requirements

OPERAcraft, the foundational Java code utilized for the project, was originally designed to
engage children in computing and musical concepts. Since Cinemacraft will possibly be adopted
back into OPERAcraft, the team had to make note of this particular young user-base.
Furthermore, since the project will be displayed at conferences and events open to the public, the
variety of users that might interact with the system in these particular venues had to be taken into
consideration.

The following are the nonfunctional requirements determined for the diverse user-base:

1. Asauser, I want to feel like I am a part of the system.
a. The Minecraft avatar must portray the user as accurately as possible.
b. The Minecraft avatar needs to be as customizable as possible (e.g. gender)

2. Asauser, | want to feel engaged and creative using the product.
a. The product should allow for maximum creativity and movement on the part of
the user.
b. In whichever odd angles and directions the user can imagine moving, the
Minecraft avatar must be able to replicate (within system limitations).

3. Asauser, I want to feel safe using the product.
a. The space in which participants can move (in front of the Kinect sensors) must be
marked off and safe.

4. As an administrator, [want to feel at ease having the product be used in a public setting,
and ensure that no one can be harmed during use.

12

a. We must properly mark the space in which users can occupy and instruct them
accordingly.
b. We must keep the area clear of obstacles (e.g., trash, furniture).

The demonstration setup was constructed with all of these requirements in mind. A sketch of the
desired layout is shown in Figure 3.1.1. Components of this layout include a main table for the
display monitors, moveable tables or shelves for each Kinect sensor (facial tracking is more
accurate when the Kinect is closer, while skeletal tracking requires the Kinect to have more
room), and a marked off area on the floor to designate the project’s safe space.

Figure 3.1.1: Interactive setup lavout. The safe aren 15 muarked of T with tape on the Moor, the Kinect sensors each
hawe their own moveable tbles (or shelves), and the moniters are displayed on a main twble in the center.

3.1.2 Functional Requirements

The main technical component of the system that users will interact with is the Minecraft
display. The requirements of the external interface are:

1. The avatar will mirror the user’s movements.
a. The avatar’s arms, legs, torso, head, mouth, and eyebrows will move as the user
moves these respective parts of the body.
b. The movements will be mirrored, not replicated, i.e. the avatar’s left arm moves
when the user’s right arm moves.
c. The avatar walks or jumps when the user walks or jumps, respectively. This is
done by teleporting the avatar to the desired coordinate location.

2. The avatar will not unintentionally switch between users.

13

a. The avatar will only track the facial and skeletal movements of the closest person
in the safe space. This avoids displaying other movements.

3. The avatar will not mirror blocked body parts.
a. If a previously visible portion of the user’s body becomes hidden (i.e., blocked
from or outside of the Kinect sensor’s view), the avatar will maintain the last
accurate values instead of mirroring potentially erroneous values.

3.2 Project Features

In order to connect the live Kinect facial and skeletal data to the Minecraft avatar, each portion
of the project had to support the needed features. The features that are integral to the final
product and intermediate demonstrations (i.e., SXSW, ICAT Day) are considered required
features. These include the following, in descending order of importance:

1. Kinect sensors accurately tracks the desired facial points and skeletal joints.
a. Facial points include the eyebrows and mouth (displayed in Figure 1.3.1A).
b. Skeletal joints include wrists, elbows, shoulders, torso, hips, knees, and ankles
(displayed in Figure 1.3.1B).

2. The facial and skeletal data is processed appropriately and the user’s body movements
are outputted in a compatible format.
a. The format needs to match the Java code format used for Minecraft gameplay
with respect to OPER Acraft constraints (detailed in Table 1.1).
b. The data needs to be sent via UDP.

3. The Minecraft avatar mirrors the user’s movements.
a. Including arm, leg, head, and torso movements.
b. The avatar teleports (appears to move to the desired coordinate location) as the
user moves forward, backwards, or side to side.

4. The Minecraft avatar mirrors the user’s facial expressions.
a. Including mouth (e.g., smiling, frowning, open lips) and eyebrow movements
(e.g., furrowed, anxious, elevated, or surprised eyebrows). The different
combinations of these facial expressions are shown in Figure 2.2.

5. Developing a specific Minecraft avatar.
a. Create the art for the facial expressions displayed in Figure 2.2.
b. Create the art for the avatar’s body (known as a skin).

In addition to these necessary features, there are also several features that were desirable, but not
integral to the final product. Outlined below are the ideal features that are not required for the
project to function, but would enhance future functionality if pursued.

1. Incorporating gender recognition by having female and male avatars for female and male
users, respectively.
a. Design female and male skins (avatar bodies) and faces.

14

b. Differentiate between males and females in the Kinect program or implement a
switch within Pd-L2Ork.

2. Allowing multiple users to be mirrored at once.
a. Program the Kinect code to track multiple faces and skeletons at once.
b. Program the Minecraft code to project multiple avatars in the world
simultaneously.

3. Designing a specific Minecraft world for demonstrations.
a. Build all of the scenery within Minecratft.

3.2.1 Development Timeline
The development timeline for each feature is shown via a Gantt chart in Figure 3.2.1. Notable

deadlines include the South by Southwest Expo (SXSW) from March 12 to 13, and ICAT Day
on May 2.

February March April May
gl x1ralaaxza] o a2]aat]ex]1zx 2o xfor +| 21
Kinect Feasibility Test |

Kinect Facial Data Collecting
Kinect Skeletal Data Collecting
Pd-L20rk Integration |

Feature

UDP Packel Sending
Kinect Data Manipulation
Minecraft Avatar Facial Movements
Minecratt Avatar Skeletal Movements
Minecraft Art
Demonstration Planning and Organizing

Gender Recognition
Upgrade Kinect Devices |
lump Rangr

shoulders
Erttany | Demonstration
narina * Check-in
Ebsi
Siddharth
Amira
Figure %L1 Gantt Chart for Feature Implementation. The chart depicts the general tmelme of mmplementation for thes project. As seen above,

sormie o the iggest challenges were mampulating the Kinect data and making it Minecrafl-friendly. This involved compution the comect angles
between hgaments and the body. The dafficulty came when tramslating these angles from o cedain dimenssonal space in onder i make 1t match
the conrcimabe system m Mineorali.

3.3 Technical Implementation

The technical implementation for this project was done in three main environments: Visual Basic
for the C# code (Kinect data), Eclipse for the Java code (Minecraft), and Pd-L2Ork for the data
transfer (UDP). The Kinect code implements the movement recognition and mathematical
translation of movement into angles. Pd-L20rk acts as the middleware by accepting data from
the Kinect and making minor corrections to data errors (if any) before sending to the Minecraft

15

code. The Minecraft code parses the messages retrieved from the Kinect, and sends the
information to the respective parts of the code which handle player movement.

3.3.1 Minecraft

The existing OPERAcraft program was a Minecraft mod that allowed for avatar manipulation
through a player’s keyboard. The user could move the avatar left, right, forwards, and backward
(using keys ‘A’, ‘D’, ‘S’, and ‘W’, respectively). The avatar had six possible arm positions (e.g.,
raised, lowered) which could also be manipulated by the player’s keyboard (using keys ‘U’, J°,
‘K’, ‘L, ‘I’, ‘O’). The user was able to control the speed of the movements by holding down the
desired keys for shorter or longer periods of time.

The change that was to be implemented in the Minecraft Java code was to replace the keyboard
control with Kinect sensory data control, allowing the user to manipulate the avatar with their
own body and facial movements.

Development was done in six existing classes in order to complete the requirements. All of these
classes are located in a folder titled ‘net.minecraft.src’. A list of the altered classes includes:

OpenSocketThread.java
GuiNewChat.java
ModelBiped.java
GuilnGame.java, and
OperaCraftPlayer.java
Vars.java

The flow of information in these classes is as follows: OpenSocketThread.java accepts a
connection and interprets messages coming in from the port once it is opened. Then the
GuiNewChat.java calls existing methods to change the state of the player. For some calls, this
class was altogether bypassed, and instead messages were sent directly to ModelBiped.java. The
ModelBiped.java and OperaCraftPlayer.java are where the implementation of the arm rotations
and leg rotations were made, and the GuilnGame.java is where avatar positions were controlled.
Figure 3.3.1A depicts how the classes interact with one another, and Figure 3.3.1B provides a
visual representation of this flow, which were used as a guide throughout implementation.

16

Minecraft

+ theMinecraft: Minecraft]

GuiNewChat

+ mc - Minecraft

+ senthessages : List

+ printChatMessage (String pariSir) - void
+drawChat (int par1) : void GuiNewChat calls
getMinecraft() to
get current

Minecraft
instance

+ getMinecraft () - Minecraft

ModelBiped

ModelRenderer
+ bipedHead - ModelRenderer
+ bipedHeadwear' ModelRenderer /—\—4 e loa
P) + textureHeight - float

+ bipedBody : ModelRenderer

+ bipedRightArm - ModelRenderer ModelBiped is + render - void
+ bipedLeftArm - ModelRenderer made up of + setRotationPoint (float par1. . float par3) - void
ModelRenderer + render\WithRotation(float par1) - void

+ render - void
+ setRotationAngles (float par1, . float parg) - void objects
+ handleArmMovement(String username. float value) . void
+ renderEars(float par1) : void

+ renderCloak(float par1) : void

Figure 3.3.1A: Class Structures. Above represents the Class Structures for the Java OPER Acraft code component. OPER Acraft sends commands
to the Minecraft avatars using the built-in chat client (handled by GuiNewChat). Also relevant are the ModelBiped and ModelRenderer classes,
which convert commands and points into actual movement and appearance in Minecraft. The classes are slightly simplified to avoid listing the
redundant fields and methods, but the main components are listed.

(add username) @view 1

OpenSocketThread. java

sendChat -> network

GuiNewChat java

printChatMessage()
OperaCraftPlayer.java

ModelBibed.java
ROTATIONS

GuilnGame.java
{draws HUD)
set player location
FOSITION

Figure 3.3.1B Project Information Dependencies. This is the initial flow chart of the
information flow from the Kinect to Pd-L20rk to the different Java classes of the Minecraft
code. Emphasis is on the class dependencies in Java.

17

3.3.1.1 OpenSocketThread.java

This class is where Minecraft connects with Pd-L2Ork through a port (7000), and continuously
retrieves messages in a specific format (i.e., “@karm username xLeftRoation yLeftRotation
zLeftRotation xRightRotation yRightRotation zRightRotation). An interpretMessage() method
checks what the message is directed toward (i.e., @karm = kinect arm movement) and then it
sends this parsed message to the Minecraft player using the sendChatMessage() method.

A command was created to handle the arm (@karm), torso (@tosro), legs (@legs), head
(@head), eyebrow ((@eyes), and mouth (@mouth) movements. There was an existing keyboard
arm ((@arm) command which was not altered.

3.3.1.2 GuiNewChat.java

The purpose of this class is to relay messages to the ModelBiped (avatar). It receives chat
messages and parses them to call the appropriate method (e.g. changeOperaCraftArmState()) to
manipulate the ModelBiped.

3.3.1.3 ModelBiped.java

This class is what constructs the Minecraft avatar. It is made up of ModelRenderer objects such
as bipedHead, bipedHeadwear, bipedBody, bipedRightArm, etc. This class was essential in
handling arm and leg rotations. Fortunately, there were existing hooks for X, Y, and Z rotations
for each arm and each leg, which could handle values coming in from the Kinect. Additionally,
this is where methods were called to handle body movements, including HandleArmMovements,
HandleLegMovements, etc.

3.3.1.4 GuilnGame.java

This was the class that was modified to handle teleportation, based on the player’s location in
front of the Kinect. The changing position of the player and the redrawing of the environment
was handled here. This was done by resetting the X, y, z, rotation yaw, and rotation pitch
locations of the camera/projector position to manipulate the feed and create the illusion that the
avatar is actually moving within the Minecraft world.

3.3.1.5 OperaCraftPlayer.java

This is the class that was modified in order to set the appropriate x, y, z rotations of the player’s
arms, legs, torso, head, and headwear to reflect the data tracked by the Kinect sensor.

3.3.2 Kinect

As this was the first interaction OPERAcraft had with Kinect, the Kinect program was built from
the ground up, utilizing the Kinect for Windows SDK. Since two Kinects were used for the
project, two programs were developed to control and monitor the skeletal and facial tracking
programs separately.

18

3.3.2.1 Skeletal Tracking

The Kinect SDK was utilized to enable skeleton/body tracking. The
skeletal tracking program collects the three dimensional locations of
joints and landmark nodes on the body. An example of the skeletal
tracking program in use can be seen in Figure 3.3.2.1.

During implementation, specific useful joints were determined in
order to convert the users actual movements into Minecraft avatar
movements. These joints include the left and right wrists; left, right,
and center shoulders; torso (spine); left, right, and center hips; and
left and right ankles (depicted in Figure 1.3.1A). After storing this
data, during each frame (each time the Kinect sends in a different
feed view), the angles that each ligament had with respect to other
parts of the body were computed.

Angles of movement were computed for the arms, legs, and neck,
along the three planes of rotation (X, Y, and Z). First, the X, Y, and
Z coordinates of each joint were stored and were used to create three
dimensional vectors, using the existing Vector3D class. A series of
angle formulas were then used to compute the angles between the
different joints along each axis of rotation. For example, consider

Figure 3.3.2.1: Live Skeletal Tracking.
Above, 1 developer stands in front of
the Kinect device and views her skeleal
movements on the screen (the large
green figure on screen) Mote the
sl ler jgreen |'|guru also on the screen,
these false positives occur when the
Kinect picks up folse data or nearby
'P\,‘ﬂfl:{: This was avowsbed h}' oy
1|:;u'_'kif|g ane peraon {the closest) ar a
time.

arms moving up and down along the Y axis, sideways along the X, and forward and backward
along the Z. Further conversion was necessary to map these rotations to the existing rotation

system in OPERAcraft.

Once these angles were determined, they were turned into commands to be sent via UDP through

Pd-L20rk (where any needed scaling occurs) to
OPERAcraft where the avatar will move based
on the calculated angles of rotation.

3.3.2.2 Facial Tracking

To obtain the facial data, the Microsoft Face
Tracking SDK for Kinect for Windows (Face
Tracking SDK) was utilized. The Face Tracking
SDK tracks 2D points on the face, using three
points for each eyebrow and four points for the
mouth, as shown in Figure 1.3.1B.

Brow raiser
Brow lower
Lip raiser
Lip stretcher

Lip corner depressor
Jaw lower

. . Figure 3.3.2.2: Visualization of tracked Als This shows the areas
In addition to the 2D points, the SDK tracks of 2D points that would affect various AUs to yield the delia

animation units (AUs) which are subsets of the values froma face’s neutral position (4).

Candide3 model. These AUs are changes from
the neutral shape of the face and are used to

19

determine what expression the user is making. Each AU is expressed as a numeric weight
between -1 and +1. The AUs used in the project are: Neutral Face, Upper Lip Raiser, Jaw
Lowerer, Lip Stretcher, Brow Lowerer, Lip Corner Depression, and Outer Brow Raiser. A
visualization of these AUs can be seen in Figure 3.3.2.2.

In order to detect specific facial expressions using these AUs, thresholds were set for specific
expression values. In this way, five different mouths were detected: closed lips, open lips,
puckered lips, frowning, and smiling. Eyebrow shapes were computed in similar fashion and
divided into four categories: flat (neutral), furrowed (angry), raised (surprised), and slanted
(anxious). By combining the different combinations of eyebrows and mouths, 20 different
“helmets” were designed for the Minecraft avatar to display the maximum amount of
information. Helmet examples are depicted in Figure 3.4.1B, and the matrix of all facial
combinations can be seen in Figure 2.2.

3.3.3 Pd-L20rk

Pd-L20rk was utilized as the middleware in the project. Packets were sent from Kinect via UDP
to a certain port, where they were received through Pd-L20rk. The Pd-L20Ork program averages
five such data packets from each command, thereby finding a more fluid position of motion. The
corrected data is then sent to OPERAcraft. Before utilizing this averaging method the Minecraft
avatars would often appear jumpy. Through a generalization of a group of data points, the avatar
was able to move with more natural movement.

3.4 Minecraft Art

The Minecraft world is completely customizable, including the avatars and the world the avatars
interact in. Specific avatar bodies (Figure 3.4.1A), facial expressions (Figure 3.4.1B), and world
(in which the avatar will be depicted in), were designed for this project.

3.4.1 Avatar

An avatar, as shown in Figure 3.4.1A,
consists of an initial skin and facial
expression. Twenty helmets were developed
in order to map to the twenty detectable
facial expressions. These were -created
following Minecraft avatar structural
guidelines.

The skin and helmets were created using
Microsoft Paint. Each helmet is 16x16
pixels (stored in the mouths folder) and the
skin for the body is 64x32 pixels (stored in
the skins fOlder). The helmets are made up Figmre 3.4.0A: Minceraft Avatr. An example of our avorar in one of the skins
of six sides: back, tOp, bottom, left, I'lght, designed, wearing the initial newtral face.

and front (the face). Within OPERAcraft,

20

the helmets are placed on the respective characters by using the naming convention
“playerXsideY.png”, where X stands for the player number and Y is used only to differentiate
between the facial expressions. For this reason, left, right, top, bottom, and back do not have a Y
value. The skin follows the naming convention “username.png”. Examples of the front of these
helmets can be seen in Figure 3.4.1B.

]] |]
H . . .
Figure 3.4.18; Minccraft Facial Expression Helmets. These helmets were created to represent specific facial expressions detected

b the Kinect, From left to right the helmets represent; sad (anxious evebrows and a frown), surprsed (surprised eyvebrows and
open lips), angry (furrowed eyebrows and a frown), and kiss face (neutral eyebrows and puckered lips).

3.4.2 World

A specific world was designed for the Cinemacraft demonstrations. The world designed can be
seen in Figure 4.2.

21

4.0 Prototype

The goal of the prototype was to combine the necessary software components with the respective
hardware for data collection (of the user’s facial and skeletal movements) and display (the
mirrored movements of the user by a Minecraft avatar).

Below is a description of the software and hardware components utilized, the reasoning for their
inclusion, and the overall functionality of the prototype.

4.1 Components

OPERACcraft utilizes both software and hardware components. The software components are
what control the prototype’s functionality, while the hardware components are used for data
collection and presentation.

The various types of software and hardware utilized, and the reasons for their inclusion, are
described below.

4.1.1 Software

The software components are what control the level of functionality for the prototype. They
include:

e Pd-L20rk

o OPERACcraft (Minecraft code)
o Language: Java
o Environment: Eclipse Luna/Mars (64 or 32 bit)

e Kinect Skeletal/Facial Programs
o Language: C#
o Environment: Visual Basic (64 or 32 bit)

Pd-L20rk was chosen as middleware due to its portability. It allowed for rapid changes to the
prototype without having to recompile (which can be costly at demonstrations) or search through
the code to begin troubleshooting.

The system was built off of OPER Acraft, which was already developed in Java; therefore Java
was used to develop the system further. Finally, the Kinect code was completed in C# in order to
work best with the readily available Kinect SDK/API code, also available in C#.

The IDEs chosen to develop the project were not vital and were chosen due to preference.
Additionally, the programming languages for the project could be altered, as long as the
functionality is maintainable and the new language is compatible with the hardware being used
to run the Kinect and/or Minecraft code.

22

4.1.2 Hardware

The hardware used for this prototype consists of the
following items:

e Monitors/Computers (3)

o Two monitors/computers were needed to
connect the Kinect sensors in order to
collect, process, and distribute user
movement data.

© One additional monitor is used for
displaying the user’s movements within
Minecraft.

e Kinect Sensors (2)

o Two sensors are needed for tracking
skeletal and facial movements,
respectively.

e Kinect Fisheye Adapter (1-2)

o Used with the Kinect sensor tracking
skeletal movements to alter movement
area.

o Sometimes paired with the Kinect facial
tracking sensor when they are required to
be close together to minimize them

Figure 4.1.2: Prototype Hardware Sctup. As labeled, the prototvpe
ncludes the primary display monitor (1), the computers for

affecting each other’s data. Does shghtly collecting data {2, 3), and the Kincet devices (4, 5). This is the

. o SXEW 2016 display.,
skew the accuracy of the facial recognition Py

when this is done.

Three computers were used because multiple Kinects cannot share USB ports on the same hub,
and the computers used for the prototype have all the USB connections on the same hub.
Therefore the prototype requires two monitors to run, with an optional third monitor used solely
as a larger display at demonstrations. One computer (the display monitor/computer) runs the
Minecraft code, while the other two computers run skeletal and facial tracking programs
separately. The Kinect data is sent through Pd-L20Ork to the Minecraft instance running on the
primary computer, which is what is displayed to the users on the primary monitor. This setup can
be seen in Figure 4.1.2. Without the optional third monitor, one of the Kinect-running computers
also runs the Minecraft program.

The facial tracking Kinect is placed closer to the user than the skeletal tracker, to increase the
accuracy of the facial data. The proximity was especially significant since the facial movements,
which vary by only a few degrees, quickly become unrecognizable if the user is too far from the
Kinect device. Conversely, the skeletal tracking Kinect was placed further away from the user in
order to read in a wider range of positions. Allowing the user to move within a larger area was
key since the prototype needed to be accessible to a wide audience of varying heights and
mobility.

23

Further widening of the user’s movement area was achieved through adding a fisheye camera
attachment to the Kinect device tracking skeletal movement. This adaptation helped to avoid
joint detection loss, such as when a taller individual would not fit into the device’s camera frame
and would begin to produce erroneous data for that untracked joint.

4.2 Functionality

A few key aspects still need to be refined, but the prototype has full functionality for the majority
of the project’s integral features.

These integral features are listed in Table 4.2, with their respective levels of functionality, as
well as an indication of whether or not the functionality could be expanded. If the functionality
of a feature is considered complete but could be expanded, then there is an additional feature that
might be added once the base functionality of all features has been achieved.

Integral Feature Base I:evel.of Does it need to be Could it be

Functionality expanded? expanded?
Skeletal: arm movement complete no no
Skeletal: leg movement complete no no
Skeletal: torso movement complete no no
Skeletal: head movement complete no yes
Facial: eyebrow movement complete no yes
Facial: mouth movement complete no yes
All movements are mirrored complete no no
Minecraft: avatar art complete no yes
Minecraft: world art complete no yes

Table 4.2: Integral Feature Functionality Levels of the Prototype. This table details the various levels of functionality for the integral features of
the prototype. A feature can be complete and still be expanded upon, if there are additional features that would like to be achieved once the base

level of all features has been achieved.

Since the prototype was fully functional in all aspects except for facial expressions (not all faces
detailed in Figure 2.2 can be detected yet), it was made available for public use during the South
by Southwest Conference in Austin, TX in March 2016. In Figure 4.2, the prototype can be seen
exhibiting the level of functionality indicated in Table 4.2 as Virginia Tech’s president, Timothy
Sands, has his skeletal and facial movements mirrored by the Minecraft avatar.

24

Figure 4.2: Prototype Functionality. Virginia Tech President, Timothy Sands, is shown using the
prototype at SXSW 2016, The avatar is shown mirmoring Sands' arm movements (i.e. Sands’ right arm
is straight out with his left arm across his chest, and the avatar's left arm is straight out with its right
arm across her chest), as well as his facial movements (i.e. the avatar is smiling).

25

5.0 Debugging

After a change is made in the Kinect code the entire system should be tested to ensure it
maintains the desired functionality. For a better understanding of how to test the system refer to
section 7.0 Testing.

In the case that a malfunction or undesired effect occurs, Table 5.1 suggests the appropriate Java
classes to reference; however, it is not guaranteed this is where the problem will be or where the
fix should be implemented. But, assuming the Kinect code is correct and the Minecraft code
needs to be updated to support the change, the portion of the code that most likely should be
updated is listed in Table 5.1.

What is not functioning correctly? Handled in Java class:
Messages/UDP packet reception OpenSocketThread
Message parsing GuiNewChat
Avatar rendering ModelBiped
OperaCraftPlayer

X, y, and z rotations of arms, legs, torso, and head

Table 5.1: Debugging Functionality. If a change is made in the Kinect code causing one of the malfunctions or undesired effects listed above,
then the respective class that most likely should be updated is listed.

If an update to any portion of the software or hardware components is available and will be
integrated into the system, then all of the code will need to be properly updated. Typically, if

there is an update with Kinect code, this will not affect the Minecraft code, and vice versa.

26

6.0 Future Work

The core functionality of Cinemacraft is present within the prototype, however there are still
potential improvements that could be implemented in the future; these are detailed in Figure 4.2.

6.1 Future Adaptations

Each adaptation is ranked using a priority system that ranges from high, to medium, to low. A
high priority adaptation will be completed within the scope of the project, a medium adaptation
could be completed within the scope of the project, and a low priority adaptation could be
completed outside the scope of the project. Possible adaptations to the current prototype are
described in detail below. Figure 3.2.1 provides a timeline for in-progress adaptations.

6.1.1 List of Changes

1.

Adaptation: limit server (an offscreen avatar) distance from the actors (on screen avatars)
Priority: high. Status: complete.

At demonstrations the server needs to be further away from the actors in order to remain
unseen. On the other hand, during a production, the server can be closer to the actors. It
became apparent during the first SXSW demonstration that when the server is further away
from the actors, the movement commands are not being sent or executed properly.

The cause for this was the maximum distance to maintain full rendering clarity had been
exceeded. Testing and analysis was performed to establish a threshold limit for the distance
the server should be away from the actors.

Adaptation: upgrading current Kinect sensors to Kinect HD 2.0 sensors
Priority: high. Status: in progress.

The current version of the Kinect sensors require frequent use of fisheye lens attachments to
increase scope and minimize interference. Upgrading to Kinect HD 2.0 sensors will allow for
higher clarity (more accurate facial recognition especially) and a wider scope (necessary for
full skeletal tracking).

All of the facial tracking code has been successfully upgraded; however, the skeletal tracking
code still needs to be upgraded.

Adaptation: facial movements and recognition expanded
Priority: high. Status: complete.

The base level functionality for facial recognition is detecting each of the twenty eyebrow
and mouth combinations described in Figure 2.2. Currently, the prototype is only able to
recognize neutral, smiling, and open mouth positions, as well as neutral and raised eyebrows;
this only allows for six of the desired twenty possibilities.

27

Adaptation (2) was completed for facial tracking and this followed since the accuracy of
recognition was increased.

Adaptation: shoulder movement for shrugging
Priority: medium. Status: complete.

Shoulder movement would be a subset of the arm movements. The current implementation
for arm movements is considered complete, but only allows for the avatar to mirror the user’s
arm movement from the shoulder down.

Movement range was expanded to also include vertical
shoulder movements (y axis), in order to simulate a shrug.

Adaptation: avatar jump range expanded
Priority: medium. Status: complete.

With the current implementation, the avatar is able to mirror
a user’s jump. However, on screen the jump height, as seen
in Figure 6.1.1, is not as high as desired. Therefore, the
coordinate values for the avatar to jump to should be scaled
to create a larger jump range.

Figure 6.1.1: Avatar Jump Range. This is an
Jump values were scaled immediately after Kinect detection — example of how high the avatar can

by determining if a jump occurred, then multiplying those ~ Uiy jump when mirroring a user's

.) Jump, Nodice that the avatar is not jumping
coordinates by a predetermlned factor. higher than the weeds, suggesting a need o
scale the jump values in order 1o produce a

larger jump range.

Adaptation: gender recognition
Priority: low. Status: to be completed in future iterations.

Gender recognition would need to be achieved in the Kinect code, most likely during facial
detection. For the Minecraft code, instead of altering it to handle multiple avatar skins for the
same player, there could constantly be two avatars (one female and one male) in the game,
but only one on the screen at a time. As such, if the user is female, the female avatar will be
on screen, then if the current user switches out with a male user, the camera would focus on
the previously offscreen male avatar (who becomes the new actor) and the female avatar is
now offscreen. This would only require adding another player to the game, and switching
camera angles if a different gender is detected.

Adaptation: head movements expanded
Priority: low. Status: to be completed in future iterations.

The current implementation for head movements is considered complete, but only mirrors the
user’s head tilt and yaw. It would be expanded to also include purely forward (towards the
Kinect sensor) and backward (away from the Kinect sensor) head movements (solely on the z
axis).

28

7.0 Testing

In order to ensure usability and reliability, the integration of facial and skeletal tracking into the
existing OPERAcraft system was tested frequently throughout development. The usability tests
consisted predominantly of the developers acting as users to the system and allowing the
developers’ movements to be tracked while writing coordinates or commands to the console;
outputting commands to files; and/or visually analyzing the avatar’s responses.

Security, stress, and load testing for the original OPERAcraft system was addressed in previous
iterations of this project, so these criteria were not retested since the fundamental infrastructure
remained unchanged.

For suggestions on what Java classes to check while debugging refer to section 5.0 Debugging.

7.1 Single-user Usability

The main purpose of the system was to entertain and engage
users in their representation in the Minecraft world. Therefore

. . . right arm abowve
it was important to test how usable the entire system was for [fboth arms below - 0

. .. both arms below - O
a single user, and how realistically the avatar could reflect W 7 i s up, Tefr arm down

both arms below i
that user. right arm up, left arm down

both arms bE1ﬂ? : 0 9
. . . right arm up, eTT arm down
Testing occurred simultaneously with development. At each [« ,-Em ars abave

. . . . ight bov
major change, the device was tested visually by running the [rifnc arm vp. Jefr arm down

s 1 . : right arm above
system and mlmlckmg‘ user interaction. Developers woul‘d right arm above
stand in front of the Kinect sensors which would track their [gright arm above

. . right arm above
movement. These movements were analyzed in two major right arm above
right arm above

ways right arm up, left arm down

right arm up, left arm down
both arms below - 0

1 101 ; ; ; both arms below 0
e outputting the joint or facial point coordinates, 3D [fporh r2s pe_ow - 1
0

vectors, and/or the detected position (e.g. X, y, or z [fboth arms below
. . . left arm up, right arm down
coordinates), gestures (e.g., arms raised, jump), or Wi.f: arm up. ,.,-3,1 arm down

facial expressions (e.g., angry smile, raised kiss), and ~ W1eft arm up, right arm down

Figure 7.1A: Arm Test
Gestures. This is an example of
a typical file output used for
testing gestures (specifically
arms here) to ensure the code

e visually analyzing the avatar’s response to the user’s
movements

The console and file outputs were helpful when first
developing the Kinect tracking code. It was used to determine)
the correct orientation of the X, Y, and Z coordinates and ~ Was functioning properly.
angles in both the Kinect and Minecraft coordinate spaces.

The extremity coordinates and directions, needed to be

reversed or mapped to another plane in order to achieve the desired mirroring and movement,
were determined in this way. Figures 7.1A and 7.1B show examples of the types of file output

29

worked with when testing arm gestures and angles (similar files

extremities).

Further, console output was initially
used to test if the correct facial
expressions were being recognized.
Each of the twenty desired faces were
made by a tester in front of the facial
Kinect sensor (i.e. tester contorted face
to achieve each expression), and
checked that the output corresponded
to each face correctly. For example, if
the combination of raised eyebrows
and frown were being tested, the
console should output “raised frown”.

Once accurate console and file output
was achieved for a particular feature,
the team began visually testing the
feature by analyzing the avatar’s
movements (or lack thereof). This was

File Edit Format

| angle between
Angle betwaen
angle between
Angle between
angle between
angle between
angle between
angle betwaen
angle between
Aangle between
angle between
aAngle between
angle between
Angle between
angle between
Angle between

anqlp between

View

body
body
body
body
body
body
body
body
body
body
body
body
body
body
body
body
body

Help

and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and

4arm
arm
arm
arm
arm
arm
darm
arm
arm
arm
arm
arm
arm
arm
arm
arm
arm

LEFT SIDE
RIGHT side
LEFT SIDE
RIGHT side
LEFT SIDE
RIGHT side
LEFT SIDE
RIGHT side
LEFT SIDE
RIGHT side
LEFT SIDE
RIGHT side
LEFT SIDE
RIGHT side
LEFT SIDE
RIGHT side
LEFT SIDE

1n.

were produced for other

2620965222163

10. 4860853271407

30.
9.910147153900386
30.
9.
29.
9,29714813816006
29.
BE. 94601627220429
.4T75954B09E8E2
. 34777139004 211
L1B7 5669479179
153897 58645837
- 917533445982
.16127622005103
« 913904 3493105

BB45632621527
4981467238096
61686580648294
4639799377239

118464693765

L

Figure 7.1B: Arm Test ﬁmgles, This is an example of a
typical file output used for testing angles (specifically
for arms here) to ensure the code was functioning

properly.

done by opening an instance of the Minecraft game (username: ICATO1) and simulating body
movements. Seeing the avatar on the screen was the most reliable way to test since it provides
real-time, visual feedback. Testing in this manner shows exactly what a user would see and how
the data was being interpreted. A demonstration of this testing setup is shown in Figure 7.1C.

L TR L

j
i

Figure 7.1C: Avatar Movement Testing. The most common form of testing was done by visually analyzing the avatar's
movements (or lack thereof) in response to the tracked movements, Above, a developer is shown (on the right) moving
their arms 1o 1est how the avatar (on the 1efl) is responding,

30

Additionally, reference 8 provides a video showing a member of the Cinemacraft design team
executing a visual test before the system’s demonstration at SXSW. As can be seen in the video,
these testing methods allowed for final verification of the integral features.

7.2 Multi-user (Server-Camera-Client) Usability

In addition to handling a single person using the system, the software should also be able to
communicate with other users, which is a main part of the original OPERAcraft system.
Therefore, it was important to test how the software functioned during these connections.

In order to test this, three instances of the Minecraft game need to be opened, one for the client
(username: ICATOL1), one for the camera (username: ICATOS), and one for the server (username:
ICATO09). The client instance would need to start a game on the LAN network, and open a port
for data retrieval using the OPERAcraft command “/openport”. Once this is done, the other two
instances can join the client’s LAN instance game. This allows the camera and the server to view
the client’s avatar on their screen.

Multi-user capability was tested by
e making sure the movements being performed by the avatar representing the client were
not causing the camera or the server’s off-screen avatars (which are not visible to the
main client) to move,

e validating that the client’s avatar’s movements are being rendered in full detail, and

e checking that manipulating the display screen camera angles of the camera and the server
do not skew the client’s display angles

Each of these were successfully validated during testing, meaning the system will work for
multiple clients.

31

Acknowledgments

The completion of this project would not have been possible without the support and guidance of
Dr. Ivica Ico Bukvic (from the School of Performing Arts, ICAT, Center for Human-Computer
Interaction, Digital Interactive Sound and Intermedia Studio, and courtesy faculty of the
Computer Science Department at Virginia Tech), Amira Youssef of the FEET project and the
Electrical and Computer Engineering (ECE) Department, Siddharth Narayanan of the ECE
Department, Dr. Lynn Abbott of the ECE Department, technicians at SXSW, Phyllis Newbill
and the entire staff of ICAT, and the ICAT fellows who introduced us to the project and assisted

with testing.

We would also like to extend a special thanks to Dr. Edward Fox and Yilong Jin for their
feedback and assistance throughout the entire process.

32

References

. Aldawud, Omar. 2011. Software Design Specification Template. Retrieved from
http://www.cs.iit.edu/~oaldawud/CS487/project/software _design_specification.htm

. ICAT. 2016. OPERACcraft. Retrieved from https://www.icat.vt.edu/funding/operacraft

. Kim, Young Min. 2012. Kinect. Stanford.
http://graphics.stanford.edu/courses/cs468-12-spring/LectureSlides/17 Kinect.pdf

. Mao, Qi-rong, et al. Using Kinect for real-time emotion recognition via facial expressions.
April 2015. Frontiers of Information Technology & Electronic Engineering. Vol. 16. Issue 4.
pp 272-282. [Image] Retrieved February 2016.

. McCormick, John. 2011. How Does the Kinect Work? Dickinson College Math/CS
http://users.dickinson.edu/~jmac/selected-talks/kinect.pdf

. Microsoft. 2016. Tracked Facial Points from Kinect Sensors.

https://msdn.microsoft.com/en-us/library/jj130970.aspx

. OPERAcraft. 2016. Pd-L20rk Connection Example for OPERAcraft. [Image] Retrieved
from http://disis.music.vt.edu/OPERA craft/documentation.html

. OPERACcraft testing. March 2016. Virginia Tech. [Video] Available at:
https://drive.google.com/file/d/0B12jba-1Ut5;T2pPYTZoOExNWDg/view?usp=sharing

33

https://www.icat.vt.edu/funding/operacraft
http://graphics.stanford.edu/courses/cs468-12-spring/LectureSlides/17_Kinect.pdf
http://link.springer.com/journal/11714
http://users.dickinson.edu/~jmac/selected-talks/kinect.pdf
https://msdn.microsoft.com/en-us/library/jj130970.aspx
http://disis.music.vt.edu/OPERAcraft/documentation.html

