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Beurling-Lax Representations of Shift-Invariant Spaces, Zero-Pole

Data Interpolation, and Dichotomous Transfer Function Realizations:

Half-Plane/Continuous-Time Versions

Austin J. Amaya

(ABSTRACT)

Given a full-range simply-invariant shift-invariant subspace M of the vector-valued

L2 space L2
U(T) over the unit circle, the classical Beurling-Lax-Halmos (BLH) Theo-

rem obtains a unitary operator-valued function W on T so that M = WH2
U ; in this

case necessarilyM⊥ = W (H2
U)
⊥

. The BLH Theorem of Ball-Helton [2] obtains such

a representation for the case of a pair of shift-invariant subspaces (M,M×)—withM

forward full-range simply-invariant and M× backward full-range simply-invariant—

forming a direct-sum decomposition of L2
U(T) with a new almost everywhere invert-

ible W on T. For the case where (M,M×) is a finite-dimensional perturbation of

the model pair (H2
U(T), H2

U(T)⊥), Ball-Gohberg-Rodman [1] obtained a transfer func-

tion realization formula for the representer W , parameterized from zero-pole data

computed from M and M×. Later work by Ball-Raney [4] extended this analysis

to the nonrational case where the zero-pole data is taken in an appropriate infinite-

dimensional operator-theoretic sense. Our current work obtains the analogue of these

results for the case of a pair of subspaces (M,M×) of L2
U(R) invariant under the

forward and backward translation groups. These results rely on recent advances in

the understanding of continuous-time infinite-dimensional input-state-output linear

systems now codified in the book of Staffans [26].
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Chapter 1

Introduction

1.1 Overview; An Illustrative Diagram

Our purpose here is to present a number of theorems in the contexts of function

theory and linear system theory. We will concentrate on three (related) types of

results.

The first, found in Chapter 3, are representations of the type of the Beurling-Lax-

Halmos theorems; these results provide connections between functions and spaces

which are invariant under so-called shift operators. We state three such theorems:

we give a classic version in Theorem 1.2.1, we re-state a version due to Ball-Raney in

[4] as Theorem 3.5.4, and we give our own generalization thereof as Theorem 3.6.5.

The second type of result, which are considered in Chapter 4, are those that connect

shift-invariant spaces to quintets of operators that encode zero-pole data; we gen-

eralize results of Gohberg-Kaashoek-Lerer-Rodman in [9]. These results are closely

1



Austin J. Amaya Chapter 1. Introduction 2

connected to the theory of linear systems, as these operator quintets have natural

interpretations in terms of transfer functions of linear systems. These zero-pole data

results are also closely connected to interpolation problems such as the Nevanlinna-

Pick interpolation problem. Our zero-pole interpolation result is given as Theorem

4.2.10.

The final type of result, to be found in Chapter 5, relates to the question of finding

transfer-function realizations: that is, given a function belonging to a certain class,

we consider whether this function can be realized as the transfer function of a linear

system. We give an operator-theoretic form of a realization formula in Theorem 5.2.1.

Thereafter, we discuss two special cases where formulae may be explicitly computed;

in these cases, the connection to finite-dimensional transfer function realizations

becomes readily apparent.

Our particular purpose is to present continuous-time/half-plane versions of all of

these theorems; that is, we consider functions in and subspaces of L2(R) and continuous-

time linear systems.

The present document is efficiently summarized by Figure 1.1.

That is, we concern ourselves with three classes of objects: functions which are

L2
U(iR)-regular, subspaces of L2

U(iR) which are shift-invariant, and quintets of op-

erators comprising so-called admissible Sylvester data sets. Precise definitions of

these objects are given in Section 1.2 below. Our purpose here is to investigate the

connections between these objects.

Remark 1.1.1 (Notation). We identify standard notations which will be necessary

in the rest of the introduction.

First, notation. We let U be a (possibly infinite-dimensional) Hilbert space, which
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Dual Shift-Invariant Pair

(M,M×)

Zero Pole Data / Linear System

(C,A;Z,B; Γ)

L2

U
(iR)-Regular

Function W

Beurling-Lax Halmos Theorem
Chapter 3

Zero/Pole Data Interpolation
Chapter 4

Transfer Function Realization
Chapter 5

(C×, A×;Z×, B×; Γ×)

Figure 1.1: Guide to the Main Results

we will refer to as the coefficient space. L2 is the usual space of (Lebesgue) square-

integrable functions, and L2
U is the space of such functions taking value pointwise in

U . We may specify the set for our L2
U spaces: L2

U(T) comprises functions on the unit

circle in C, and L2
U(R) and L2

U(iR) are functions on the real axis and imaginary axis,

respectively.

We also have need of the Hardy space H2
U(D). This the space of analytic functions

on D with pointwise almost-everywhere nontangential limits on the circle T, such

that the limiting function is in L2
U(T). This space can be identified with a subspace

of L2
U(T). Similarly, we have Hardy spaces associated with the right half plane Π+

and the left half plane Π−; these are H2
U(Π+) and H2

U(Π−) respectively.

We also use the standard notation Mθ to represent the operator of multiplication by
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the function θ. As a particular example, Mz on L2
U(T) is given by

Mzf(z) = zf(z)

for f ∈ L2
U(T).

1.2 On Beurling-Lax-Halmos Theorems

A cornerstone of modern function theory is the Beurling-Lax-Halmos Theorem (see

[6], [20], and [12]), a version of which we state below. The essential nature of this

theorem is to characterize the invariant subspaces of shift operators. In fact, this

theorem completely characterizes all such invariant subspaces in terms of operator-

valued functions which are pointwise-a.e. unitary—so-called inner functions.

Theorem 1.2.1. The following are equivalent.

1. Let M⊂ L2
U(T) have the properties that

MzM⊂M, ∩n≥0M
n
zM = 0, and ∪n≤0 M

n
zM is dense in L2

U(T);

where here Mz is the multiplication operator given by Mzf(z) = zf(z) and U

is a finite-dimensional Hilbert space.

2. There exists a L(U)-valued function θ(z), a.e. defined on T that is unitary for

a.e. z ∈ T such that

M = MθH
2
U(D).

Here H2
U(D) is the Hardy space of analytic functions on D that have a.e.-defined
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nontangential limits in L2
U(T).

In the preceding Theorem 1.2.1, the operator Mz on L2
U(T) is an example of a shift.

As these operators are of central importance for us, we take a moment to discuss

basic examples thereof. We consider the space `2 of bi-infinite square summable

sequences:

`2 =

{
{ai}

∣∣ ∞∑
−∞

|ai|2 <∞

}
We define the suggestively-named right shift operator S by

S{ai} = {ai−1}.

That is, S shifts the sequence to the right by one. Clearly, S is unitary. We may

also define the left shift operator, which may be thought of as S−1 = S∗. Both S

and S∗ are examples of what we shall call bilateral shifts.

On the other hand, if we restrict S to `2
+ (which we define as the set of elements

{ai} of `2 such that ai = 0 when i < 0), we see that S
∣∣
`2+

is merely isometric: while

a left inverse exists, a right inverse does not. S
∣∣
`2+

is, however, a pure isometry, in

that

∩n≥0S
n`2

+ = {0}.

S
∣∣
`2+

is an example of what we shall call a unilateral shift.

In any of these examples, a family of operators may be generated by iteration. That

is, for all n ∈ N, Sn is a (bilateral or unilateral, as appropriate) shift. Thus are these

operators referred to as discrete shifts— that is, the family of operators is indexed

by the integers. We will instead primarily concern ourselves with continuous shifts,
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which are operator semigroups and with real indices. These are discussed at length

in section 2.1.

We take a moment to note the contributions of the authors credited in Theorem

1.2.1.

Original work on this problem appears to have been due to Beurling [6]. He con-

sidered the case wherein the coefficient space U was one dimensional: specifically,

U = C. He was motivated by the problem of developing a spectral theory for the

operator Mz on L2(T); the problem was of interest, of course, as Mz is neither

self-adjoint nor normal. The essential idea was to analyze the operator’s invariant

subspaces as a first step toward developing the operator’s spectral theory.

Further development on the theorem was due to Lax [20]; his contribution was to

consider the invariant subspaces of the translation group acting on L2(R); this group

is an example of a continuous shift.

Finally, the contribution of Halmos [12] was to extend to an arbitrary discrete shift

operator acting on an abstract Hilbert space X with an arbitrary abstract coefficient

Hilbert space U ; further the dimension of U was allowed to be infinite.

Another extension of Theorem 1.2.1 is of particular interest to us. But before dis-

cussing it, we first note that if M = MθH
2
U(D), then it follows—by the unitarity

of θ—thatM⊥ = MθH
2
U(D)⊥. A natural generalization of the Beurling-Lax-Halmos

Theorem arises from considering under what circumstances a pair of spaces (M,M×)

can be simultaneously represented by a single function W according to the formulae

M = MWH
2
U(D), M× = MWH

2
U(D)⊥.
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Such representations have applications to computing Wiener-Hopf factorizations. In

considering this question, we mark two more facts about M⊥. First, we note that

M⊥ is invariant under S∗: S∗M⊥ ⊂M⊥; and second—and tautologically—we have

thatM⊕M⊥ = L2
U(T). In fact, a generalized Beurling-Lax-Halmos Theorem holds

precisely when the pair (M,M×) share properties analogous to those of the pair

(M,M⊥), but omitting the orthogonality. This generalization was first proved by

Ball-Helton for discrete shifts in [2]. A refined proof, wherein more careful attention

was paid to the case where the coefficient space U is infinite-dimensional, due to

Ball-Raney, is found in [4].

We may now succinctly state our purpose in chapter 3: we seek to mirror the work

of Lax on the orthogonal case—i.e., when M× = M⊥—by extending the result of

Ball-Helton on the nonorthogonal case to continuous shifts.

Chapter 3 is organized along the following lines. Our essential idea is to analyze

our shift group not in terms of its generator, which is an unbounded operator, but

rather in terms of its cogenerator, which is bounded. We also make use of the

Cayley transform as an isometry between L2
U(iR) and L2

U(T). These two tools allow

us to reduce our problem to the previously solved case of discrete shifts on L2
U(T)

as found in [4]. We thus begin chapter 3 with a discussion of dual shift-invariant

pairs; we continue on to a discussion of cogenerators of semigroups, and follow with

an exposition on Cayley transforms. We then re-state the Beurling-Lax-Halmos

Theorem as found in [4] and, finally state and prove our generalization thereof as

Theorem 3.6.5.
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1.3 On Linear Systems

Of great importance to both Chapters 4 and 5 are linear systems. We take a moment

therefore to introduce them.

Linear systems are coupled vector differential and algebraic equations, traditionally

written in the form  ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
, x(t0) = x0,

where A, B, C, and D are matrices of the appropriate sizes, u(t) is a specified

function, and x(t0) = x0 specifies initial data. Traditionally, x(t) is called the state,

and is pointwise an element of the state space X ; u(t) is called the input and is

pointwise an element of the input space U ; and y(t) is called the output and is

pointwise an element of the output space Y . In solving a linear system, one seeks to

compute the output function y(t) in terms of a specified input function u(t) and the

initial state x0.

An efficient method for solving linear systems is via Laplace transforms. If we assume

for the moment that x0 = 0X , the zero element of X ; denoting by ·̂ the bilateral

Laplace transform; and letting z ∈ iR be the frequency variable; we have zx̂(z) = Ax̂(z) +Bû(z)

ŷ(z) = Cx̂(z) +Dû(z)

These equations are readily solved for ŷ(z) in terms of û(z) to find

ŷ(z) =
(
C(zI − A)−1B +D

)
û(z); (1.1)
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the L(U ,Y)-valued function G(z) := Ĉ(zI − Ẑ)−1B̂+D is termed the transfer func-

tion of the system. The transfer function is thus a multiplicative operator mapping

the (Laplace transform of) the input to the (Laplace transform of) the output. For

any specified input function u(t), then, the output function y(t) may be computed

via Laplace transforms and knowledge of G.

Equation (1.1) is called the transfer-function realization of G(z).

Of course, various generalizations of linear systems are of widespread interest. Our

concern will be to work with generalizations of linear systems where the state, input,

and output spaces are all allowed to be infinite dimensional. Necessarily, this requires

re-interpreting the system in terms of operator theory; we will generally allow all

operators that arise from such considerations to be unbounded.

The formalism for studying such infinite-dimensional continuous-time linear systems

has roots in the 1970s: cf. [8] and [13]. This formalism has only recently matured,

however. In particular, we refer the reader to the books of Staffans [26] and of

Weiss-Tucsnak [27].

1.4 On Zero/Pole Data Interpolation Theorems

In chapter 4, we consider so-called zero/pole data interpolation results. The nature

of these results is to connect shift-invariant spaces with sets of operators. By the

Beurling-Lax-Halmos Theorem 1.2.1 above, we know that any such spaces can be

written as the image of a multiplication operator Mθ on analytic functions. These

spaces necessarily therefore exhibit a rich zero/pole structure according to the zeroes

and poles of θ. The role of the sets of operators will be to provide an alternate
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method of encoding this structure.

We begin with a short review of the history of these interpolation problems; this

review should also serve to provide some intuition as to the nature of the results.

Our discussion starts with the consideration of the zero/pole structure of functions

and progresses to the inverse problem of finding an interpolating function which fits

specified zero/pole data.

We begin with a consideration of the scalar case of biproper rational functions on C;

that is, functions of the form

r(z) =
ΠM
i (z − zi)ζi

ΠN
j (z − pj)πj

,

where zi is a zero with multiplicity ζi, pj is a pole with multiplicity πj, zi 6= πj, and∑
ζi =

∑
πj. For such functions, given in this form, the locations and multiplicities

of the zeroes and poles may be simply read off. And conversely, given a specified set

of zeroes and poles with corresponding multiplicities (with equal sums), it is clearly

possible to construct an interpolating biproper rational function. More interesting

questions are to be found when one considers the case of rational matrix functions.

This topic seems to have been first pursued by Keldysch [19], who considered polyno-

mial matrix functions. He concluded that zeroes of such functions are characterized

not in terms of locations and multiplicities, but rather in terms of locations and null

chains. These null chains determine analytic row-vector-valued functions which map

the polynomial matrix functions to row-vector-valued power series. The null chain

takes the form N = {
[
ai bi

]
} The corresponding analytic function is given by the

obvious formula W (z) =
∑

i

[
ai bi

]
zi. The number of nonzero terms in the null

chain is the length of the null chain; this is also the order of the zero.



Austin J. Amaya Chapter 1. Introduction 11

We consider a simple-but-illustrative example of these null chains. Consider the

polynomial matrix

M(z) =

 z 1

0 z

 ;

we claim that M(z) has a zero of partial multiplicity 2 with a null chain of length 2

at the origin. We exhibit W (z) =
[

0 1
]

+ z
[
−1 0

]
as a null chain of length 2.

We compute W (z)M(z) and re-order terms according to the power of z:

W (z)M(z) =
[

0 0
]

+
[

0 0
]
z +O(z2),

which vanishes at order O(z2). This same information can be found by computing

the Smith normal form for M(z): we compute that

M(z) =

 1 0

z −1

 1 0

0 z2

 z 1

1 0



This work was extended by Gohberg-Sigal [11] to the case of rational matrix func-

tions; this necessarily required the consideration of pole chains in addition to null

chains. Another extension due to Gohberg-Rodman [10] considered analytic matrix

functions.

Of great interest to us in the present work were the results of Bart-Gohberg-Kaashoek

in [5] on rational matrix functions, wherein it was noticed that a function’s pole chains

are encoded in its transfer function realization. And, further, that the zero chains

are encoded in the realization formula of the inverse. From this insight, the inverse

problem seems to ask itself: given zeroes, null chains, poles, and pole chains, is it

possible to construct an interpolating function?
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This zero/pole data interpolation question was first considered in Gohberg-Kaashoek-

Lerer-Rodman in [9]. They organized the zero data into a matrix B which encoded

the null chains and a matrix Z which encoded the locations of the zeroes along with

partial multiplicities; together, (Z,B) was termed a null pair. Similarly, the pole

data was represented by the pole pair (C,A), which encoded the pole chains and

locations and partial multiplicities of the poles, respectively. They were able to find

an interpolating function W , but not uniquely.

Additional insight was added by Ball-Ran in [3], by considering a spaceM associated

with W byM = WO(σ), where σ ⊂ C containing the spectra of both A and Z, and

O(σ) is the set of functions analytic on σ. To the null pair and pole pair, they added

a fifth matrix Γ, called the coupling matrix, which satisfies the Sylvester equation

ΓA− ZΓ = BC. The role of Γ is to couple the zero data with the pole data in such

a way as to recover M according to the formula of Theorem 4.2.10. Thus the final

interpolation problem is expressed in terms of a quintet of operators: the so-called

Sylvester data set (C,A;Z,B; Γ).

Finally, the work of Ball-Raney in [4] considers the case where the pole pair (C,A)

and the null pair (Z,B) are in fact bounded operators on infinite-dimensional Hilbert

spaces. The coupling operator Γ was in general unbounded. Further, they simultane-

ously considered a dual problem involving a dual data set (C×, A×;Z×, B×; Γ×) with

associated space M× subject to the additional constraint that M+̇M× = L2
U(T).

Our purpose in chapter 4 will be to extend the result of Ball-Raney to consider the

case where the spaces (M,M×) are subspaces of L2
U(iR). As we shall see, this will

necessitate allowing both Sylvester data sets

(C,A;Z,B; Γ) and (C×, A×;Z×, B×; Γ×)
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to consist of unbounded operators.

Toward this end, chapter 4 is organized as follows. We first direct the reader’s

attention to section 2.3, in particular, which contains a “Graph Space Lemma” which

will be of great use. We also wish to emphasize the importance of section 2.4 on linear

systems, in terms of which our Sylvester data sets will have natural interpretation.

Then chapter 4 begins with careful definitions of Sylvester data sets followed by an

investigation of the role of the Sylvester equation. We then present a sequence of four

Lemmas, which amount to special cases of the general data interpolation Theorem.

Finally, we conclude with said Theorem.

1.5 On Transfer-Function Realizations

The last type of result with which we shall concern ourselves is that of transfer

functions realizations, which we will consider in chapter 5. These realizations were

mentioned in section 1.3 on linear systems.

The transfer function realization question is a simple version of an inverse problem:

that is, given a function W (z) with values pointwise in L(U ,Y), we seek a quadruplet

of operators (Â, B̂, Ĉ, D̂) determining a linear system such that W (z) is the transfer

function. Finding this system gives an alternate formulation for W (z):

W (z) = C(zI − A)−1B +D.

Such a formulation for W is clearly advantageous: for example, under natural mini-

mality conditions, the poles of W are given by the spectrum of A. Also, the behaviour

as z →∞ is given by D.
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We consider this realization theorem for a new class of functions in chapter 5. The

essential insight is to make use of the structure developed in chapters 3 and 4. That

is, given a function W which satisfies the hypotheses of the BLH type theorem of

chapter 3, we construct shift-invariant subspaces according to said theorem. To these

subspaces we apply the zero-pole data interpolation theorem as in chapter 4 in order

to construct Sylvester data sets of operators. In contrast to the discrete-time case

studied by Ball-Raney in [4], each operator in (C,A;Z,B; Γ) may be unbounded.

With some manipulation, these data sets can be seen to correspond to a continuous-

time infinite-dimensional linear system of type studied by Staffans in [26] and Weiss-

Tucsnak in [27].

The general realization theorem is found in section 5.2. Thereafter, we consider an

illustrative special case: in section 5.3, we consider the case where W is a so-called

inner function.



Chapter 2

Preliminary Definitions and Basic

Results

2.1 Abstract (Semi)group Theory

2.1.1 Definition and basic properties

Definition 2.1.1. Let As be a family of bounded operators on a Hilbert space X ,

defined for all values s ∈ R. This family is said to be a Strongly Continuous Group

if the following hold:

1. A0 is the identity operator on X ,

2. AsAt = As+t for all s and t, and

3. lims→0 ‖Asx− x‖X = 0 for every x ∈ X .

15
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Alternately, if the family As is defined for only nonnegative values of s, then As is a

(forward) Strongly Continuous Semigroup if

1. A0 is the identity operator on X ,

2. AsAt = As+t for all s, t ≥ 0, and

3. lims↓0 ‖Asx− x‖X = 0 for every x ∈ X .

If, instead, the family As is defined only for nonpositive values of s, but A−s is a

(forward) Strongly Continuous Semigroup, then we say As is a Backward Strongly

Continuous Semigroup.

We say that As is a (forward or backward) semigroup of isometries or contractions

if each As is an isometry or contraction, respectively.

Remark 2.1.2. We introduce a notation that will often occur in formulae below. If

Ts is a strongly continuous forward semigroup, then we interpret Ts with s < 0 to be

the mapping x 7→ 0. Similarly, if Ts is a strongly continuous backward semigroup,

then Ts with s > 0 is the mapping x 7→ 0.

Strongly-continuous semigroups have a norm growth restriction.

Definition 2.1.3. Given a strongly continuous (forward) semigroup T, the number

ω0(T) := inf
s>0

1

s
log ‖Ts‖

is called the (forward) growth bound of T.

We similarly define the (backward) growth bound of a backward semigroup T by

ω0(T) := inf
s<0

1

s
log ‖Ts‖ .
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Theorem 2.1.4. Let T be a strongly continuous (forward) semigroup with growth

bound ω0. Then for any ω > ω0, there exists a nonnegative constant Mω < ∞ such

that

‖Ts‖ ≤Mωe
ωs

for all s.

If, on the other hand, T is a strongly continuous backward semigroup with growth

bound ω0, then for any ω < ω0 there exists a nonnegative constant Mω <∞ satisfying

the same bound

‖Ts‖ ≤Mωe
ωs

for all s.

For the proof, we refer the reader to any of a number of standard references on

semigroups, for example, cf. Theorem 2.2 of [22].

2.1.2 Infinitesimal Generator, Cogenerator

The first important property of strongly continuous semigroups is that they admit

an infinitesimal representation in the form of an operator called the generator of the

semigroup.

Definition 2.1.5. We define the infinitesimal generator A with domain D(A) of a

strongly continuous group A on a Hilbert space X to be the mapping

A : x ∈ D(A) 7→ lim
s→0

1

s
(Asx− x) .

If, instead, A is a strongly continuous (forward) semigroup on X , then we define A
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by

A : x ∈ D(A) 7→ lim
s↓0

1

s
(Asx− x) .

And if A is a strongly continuous backward semigroup, we define:

A : x ∈ D(A) 7→ lim
s↑0

1

s
(Asx− x) .

In each case, the limit is evaluated with respect to the strong topology. The generator

A is generally unbounded, and has domain D(A) defined to be the set of all x such

that the defining limit exists.

For convenience, we include the following well-known result of Hille and Yosida which

characterizes generators in terms of semigroups and vice-versa. We state the theorem

as in [26], to which we also refer the reader for the proof.

Theorem 2.1.6 (Hille-Yosida). A linear operator A : D(A)→ X is the infinitesimal

generator of a strongly continuous semigroup A on X satisfying ‖As‖ ≤Meωt if and

only if the following conditions hold:

1. D(A) is dense in X;

2. every real λ > ω belongs to the resolvent of A, and

∥∥(λI − A)−n
∥∥ ≤ M

(λ− ω)n
for λ > ω and n = 1, 2, 3, . . .

It is worth noting the connection between generators of forward and backward semi-

groups.
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Proposition 2.1.7. Let As, with s ≤ 0, be a backward strongly continuous semi-

group with generator A and domain D(A). We define σ = −s and construct a for-

ward strongly continuous semigroup Âσ = As with corresponding generator Â having

domain D(Â). Then D(A) = D(Â) and for all x in the domain, Ax = −Âx.

Proof. We simply compute.

−Âx = − lim
σ↓0

1

σ

(
Âσx− x

)
= lim

s↑0

1

s
(Asx− x)

= Ax

Remark 2.1.8. We note that the above result does not represent the relationship

between the forward and backward semigroup restrictions of a group. Let T be a

strongly continuous group with generator T having domain D(T ). For the moment,

let Ts+ denote Ts
∣∣
s≥0

, the associated forward semigroup, and let Ts− similarly denote

the backward semigroup. Then we have

lim
s→0

1

s
(Tsx− x) = Tx

which implies that also

lim
s↓0

1

s

(
Ts+x− x

)
= Tx

and

lim
s↑0

1

s

(
Ts−x− x

)
= Tx.

That is, T is the generator of T, T+, and T−.
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2.1.3 Laplace Transform Formulae

Given a strongly continuous semigroup, the Laplace transform provides an essential

connection between the action of the semigroup and the action of the resolvent of

the generator. We record the formula below; for the proof, we refer the reader to

Proposition 2.3.1 of [27]. We remind the reader of our notation that for a forward

semigroup T, we have that Ts = 0 when s < 0; cf. Note 2.1.2.

Definition 2.1.9. We let the notation L : L2(R) → L2(iR) denote the bilateral

Laplace transform; thus

(Lf) (z) :=

∫ ∞
−∞

f(t)e−ztdt.

Theorem 2.1.10. Let A be a forward strongly continuous semigroup with growth

bound ω on a Banach space X, and let A be the generator of A. Choose z ∈ C with

Re z > ω. Then z ∈ ρ(A) and ∀x ∈ X

(zI − A)−1x = (LAtx)(z) =

∫ ∞
0

e−ztAtxdt.

Remark 2.1.11. We may always choose such a z: cf. Remark 5.4 of [22].

We also have cause to work with backward semigroups. The same formula, with

slight modifications, holds for such semigroups. We record the formula and proof

below.

Theorem 2.1.12. Let A be a backward strongly continuous semigroup with (back-

ward) growth bound ω on a Banach space X, and let A be the generator of A. Choose
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z ∈ C with Re z < ω. Then z ∈ ρ(A) and ∀x ∈ X

(A− zI)−1x = (LAtx)(z) =

∫ 0

−∞
e−ztAtxdt.

Proof. For t ≥ 0, we define a forward semigroup Tt = A−t. Then Tt is a forward

strongly continuous semigroup with (forward) growth bound ω, and we let T be its

infinitesimal generator. We use Theorem 2.1.10 to compute

(−T − zI)−1x = (LTtx)(−z)

=

∫ ∞
0

eztTtxdt,

and by the change of variable t 7→ −t we get

= −
∫ −∞

0

e−ztAtxdt

=

∫ 0

−∞
e−ztAtxdt.

Now we may use Theorem 2.1.7 to connect the generator of Tt to that of At to get

the claimed formula

(A− zI)−1x =

∫ 0

−∞
e−ztAtxdt = (LAtx)(z).
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2.1.4 Images of Semigroups under Bijective Isometries

Theorem 2.1.13. Let X and Y be Hilbert spaces. Let ˆ : X → Y denote a linear

bijective isometry with inverse denoted ˇ : Y → X . To a generic linear operator A

on X we associate a new operator Â on Y according to the following formula:

Ây := (Ay̌)ˆ.

Let T be a strongly continuous semigroup on X with generator T . Then the following

hold:

1. T̂ is a strongly continuous semigroup on Y.

2. T̂ is the generator of T̂ and D(T̂ ) = (D(T ))ˆ.

Proof. We begin with the statement (1). We evaluate

T̂0y =
(
T0y̌
)̂

= (y̌)ˆ = y

That is, T̂0 = 1Y , the identity on Y . Next, letting y = x̂ be an element of Y , we

check

T̂sT̂ty = T̂s
(
Ttx
)̂

=
(
TsTtx

)̂
=
(
Ts+tx

)̂
= T̂s+ty.
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Finally, we consider

∥∥∥T̂sy − y∥∥∥
Y
. =

∥∥∥T̂sx̂− x̂∥∥∥
Y

=
∥∥∥(Tsx)ˆ− x̂

∥∥∥
Y

=
∥∥∥(Tsx− x)

∥̂∥∥
Y

= ‖Tsx− x‖X .

But by hypothesis, T is strongly continuous on X , so as s ↓ 0, this norm goes to

zero. Thus we see that T̂ is strongly continuous on Y .

Next we prove statement (2). Let x ∈ D(T ) with image x̂ =: y. Further let T̂ ′ be

the generator of T̂ and T̂ to be the image of T under .̂ Then we consider

T̂ y − T̂ ′y = (Tx)ˆ− lim
s↓0

1

s

(
T̂sx̂− x̂

)
= (Tx)ˆ− lim

s↓0

1

s
(Tsx− x)ˆ,

but asˆis an isometry,

= (Tx)ˆ−
(

lim
s↓0

1

s
(Tsx− x)

)̂
= (Tx− Tx)ˆ

= (0X )ˆ = 0Y .

We may conclude therefore that D(T̂ ) ⊂ D(T̂ ′) and that, on D(T̂ )∩D(T̂ ′), T̂ x = T̂ ′x.

A very similar argument, considering Tx−
(
T̂ ′
)̌
x gives the other containment, that

D(T̂ ′) ⊂ D(T̂ ). Thus T̂ = T̂ ′.
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Remark 2.1.14. Perhaps the most important consequence of Theorem 2.1.13 comes

from considering the Laplace transform as a linear bijective isometry between L2
U(R)

and L2
U(iR). It allows us to conclude that “the Laplace transform of the generator

is the generator of the Laplace transform”.

2.1.5 General Shift (Semi)Groups

Classes of operators known as Shifts will be of great interest to us in the following

work. These linear operators act on Hilbert spaces. We will work with two classes of

shifts: discrete shifts and continuous shifts. We give general definitions of both, and

then introduce the specific shifts in which we will almost exclusively be interested.

Definition 2.1.15 (Discrete Shifts). Let X ⊂ Y be Hilbert spaces.

An operator S+ on X is a (unilateral) discrete shift if it is a pure isometry; that is, a

discrete shift is an operator such that for all x ∈ X , ‖S+x‖ = ‖x‖ and ∩n≥0S
n
+X =

{0}.

If S is a unitary operator on Y , then we call S a bilateral discrete shift if it is the

minimal unitary extension of some discrete shift S+ on X . That is, we require that

Sx = S+x for all x ∈ X and ∪n∈NS−nX is dense in Y .

We define continuous shifts in an entirely analogous way.

Definition 2.1.16. Again, let X and Y be Hilbert spaces.

A semigroup of isometries A+ acting on a Hilbert space X is a (unilateral) continuous

shift if

∩s≥0A
s
+X = {0}.
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If A is a unitary group acting on Y , then we call A a bilateral continuous shift if it

is the minimal unitary extension of some unilateral continuous shift A+ on X . That

is, we require that Ax = A+x for all x ∈ X and ∪s≤0A
sX is dense in Y .

Lemma 2.1.17. Let Ts be a bilateral shift on a Hilbert space X . Let X+ ⊂ X be

invariant under Ts when s ≥ 0. Then the images of X+ under Ts are nested in that

whenever s ≥ t we have that TsX+ ⊂ TtX+.

Proof. We consider the space TsX+; since Ts is unitary, we write

TsX+ = TtT−tTsX+ = TtTs−tX+ ⊂ TtX+,

since Ts−tX+ ⊂ X+ for s ≥ t.

We present the following pair of Lemmas which describe adjoints of shifts.

Lemma 2.1.18. Let X be a Hilbert space and let Ts be a bilateral shift on X . Let

X+ be a subspace of X such that Ts+ := Ts|X+
is the unilateral shift of which Ts is the

minimal unitary extension. Then
(
Ts
∣∣
X	X+

)∗
is a unilateral shift on X 	 X+.

Proof. Let X− := X 	 X+ and define Ts− := (Ts)∗
∣∣
X−

. Incidentally, since Ts is a

unitary group, we know that (Ts)∗ = T−s.

As Ts is a bilateral shift, both Ts and (Ts)∗ are unitary; it follows that Ts− is a

semigroup of isometries. Further, we have that Ts− : X− → X−. This statement

holds because, if x− ∈ X− and x+ ∈ X+,

((Ts)∗ x−, x+) = (x−,T
sx+) = 0,
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since Ts : X+ → X+. That is, we have that Ts− is a semigroup of isometries on X−.

It remains to be seen that ∩s≥0T
s
−X− = {0}. By Lemma 2.1.17, we know that

∩0≤s≤TT
s
−X− = TT−X+. Then we consider

TT−X− = T−T (X 	 X+) = T−TX 	 T−TX+ = X 	 T−TX+.

But applying Lemma 2.1.17 again gives that T−TX+ = ∪−T≤s≤0T
−TX+, so we have

that

∩0≤s≤TT
s
−X− = X 	

(
∪0≤s≤TT

−TX+

)
.

But by hypothesis, Ts is the minimal unitary extension of Ts+, so taking the limit as

T →∞ gives

∩s≥0T
sX− = X 	 ∪s≥0T

−sX+ = X 	 X = {0}.

Lemma 2.1.19. Let X be a Hilbert space and let T be a bilateral shift on X . Then

T∗ is also a bilateral shift on X .

Proof. As T is a bilateral shift on X , there must be a subspace X+ such that Ts+ :=

Ts|X+
is a unilateral shift on X+ and such that Ts is the minimal unitary extension of

Ts+.

Define X− = X 	 X+.

We consider Ts− := (Ts)∗|X−
. By Lemma 2.1.18, Ts− is a unilateral shift. We show

that (Ts)∗ is the minimal unitary extension of Ts−.
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For any T > 0, Lemma 2.1.17 gives that

∪−T≤s≤0 (Ts)∗X− =
(
T−T

)∗X−,
which may be rewritten as

(
T−T

)∗
(X 	 X+) = TTX 	 TTX+ = X 	 TTX+,

and Lemma 2.1.17 again implies that this

= X 	 ∩0≤s≤TT
sX+.

In the limit as T →∞, we see that

∪s≤0 (Ts)∗X− = X 	 ∩s≥0T
sX+ = X 	 {0} = X .

Remark 2.1.20. We note that if we restrict to considering only discrete shifts, then

the preceding Lemma is a particular case of the more general notion of duals of

subnormal operators; cf. [7].

Lemma 2.1.21. Let T be densely-defined operator on a Hilbert space X and let

M⊂ X be a subspace. If M is invariant under T, then M⊥ = X 	M is invariant

under T∗.

Proof. Let g ∈ T∗M⊥. By definition, this means that there is some f ∈M⊥ so that
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g = T∗f . Then for any m ∈M,

(g,m) = (T∗f,m) = (f,Tm) = 0

since TM⊂M by hypothesis. Thus T∗M⊥ ⊂M⊥.

2.2 Specific Strongly Continuous Groups and Semi-

groups: Hilbert Space Operators Acting on L2

and H2

Remark 2.2.1. We note that many of the results in this section are well known:

Theorem 2.2.4 may be found as Theorem 9.5 of [25], while Theorems 2.2.7 and

2.2.10 may be found in [14], [27], and [26]. We present novel proofs in physicists’

style, making use of Laplace transforms.

Also, in the following, we introduce the following notations. R is of course the real

line; we set R+ = [0,∞) and R− = (−∞, 0]. We identify L2
U(R+) and L2

U(R−) with

subspaces of L2
U(R). More generally, for any s, we view both L2

U [−∞, s] and L2
U [s,∞]

as subspaces of L2
U(R).

2.2.1 The Translation Groups and Semigroups

We will work almost exclusively with the following continuous shift acting on L2.

Definition 2.2.2. For any f ∈ L2
U(R) and for all s ∈ R, we define the translation



Austin J. Amaya Chapter 2. Preliminary Definitions and Results 29

group by the following formula on L2
U(R)

Ts : f(t) 7→ f(t− s).

If we restrict s to nonnegative values and f to L2
U(R+), we get the forward continuous

shift Ts+ on L2
U(R). If we restrict s to nonpositive values, we get the backward

continuous shift Ts− on L2
U(R).

We shall have ample cause to work with the Laplace transforms of the above shift

operator.

Lemma 2.2.3. Let f ∈ L2(R). Then

(Tsf)ˆ(z) = e−szf̂(z).

Proof. (Tsf)(t) = f(t− s), so

(Tsf)ˆ(z) = lim
N→∞

∫ N

−N
e−tzf(t− s)dt

= lim
N→∞

∫ N−s

−N−s
e−(t′+s)zf(t′)dt′

= e−sz lim
N→∞

∫ N−s

N−s
e−t

′zf(t′)dt′

= e−szf̂(z),

where the limits are evaluated with respect to the L2
U(iR) norm.

Theorem 2.2.4. The continuous shift T is a strongly continuous group on L2(R).
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Proof of Theorem 2.2.4. By Lemma 2.2.3, we know that

(Tsf − f)ˆ(x) = (e−sz − 1)f̂(z),

so we consider

lim
s↓0
‖Ssf − f‖2

2 = lim
s↓0

∥∥∥(e−sz − 1)f̂(z)
∥∥∥2

2

= lim
s↓0

∫ ∞
−∞

∣∣e−sz − 1
∣∣2 ∣∣∣f̂(z)

∣∣∣2 dz,
but |e−sz − 1|2 ≤ 4, so by dominated convergence with 4

∣∣∣f̂(z)
∣∣∣2 as the dominating

function,

=

∫ ∞
−∞

lim
s↓0

∣∣e−sz − 1
∣∣2 ∣∣∣f̂(z)

∣∣∣2 dz
= 0

Therefore Ts is a strongly continuous semigroup on L2(R).

We take a moment to justify calling the various T operator families shifts.

Theorem 2.2.5. The forward continuous shift Ts+ on L2
U(R+) is a unilateral con-

tinuous shift. Similarly, the backward continuous shift Ts− on L2
U(R−) is a unilateral

continuous shift.

The continuous shift Ts is a bilateral continuous shift. Indeed, it is the minimal

unitary extension Ts+.

Proof. We note that Ts+L
2
U(R+) = L2

U [s,∞]; therefore ∩s≥0T
s
+L

2
U(R+) = {0}. Thus
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Ts+ is a unilateral continuous shift.

That Ts− is also a unilateral continuous shift is similar.

Clearly, the definitions of Ts and Ts+ give, for all f ∈ L2
U(R+), Tsf(t) = Ts+f(t).

Further, note that TsL2
U(R+) = L2

U(s,∞) for all s, so ∪s≤0T
sL2
U(R+) is dense in

L2
U(R); we conclude that Ts on L2

U(R) is a bilateral continuous shift.

Remark 2.2.6. We introduce the space AC(R) of absolutely continuous functions

on R. See for example [25].

Theorem 2.2.7. The infinitesimal generator of the continuous shift Ts is given by

the mapping

T : f(t) 7→ −f ′(t)

with domain

D(T ) = {f ∈ L2(R)
∣∣ f ∈ AC(R), f ′ ∈ L2(R)}.

Proof. This proof proceeds in two parts. First, we characterize functions f in D(T )

as being such that their Laplace transforms satisfy −zf̂(z) ∈ L2(iR). We then

demonstrate that any function with such a Laplace transform is locally absolutely

continuous and has derivative in L2(R). Combining these two parts gives the desired

result.

We begin with the claim that f ∈ D(T ) if and only if −zf̂(z) ∈ L2(iR).

First we assume that −zf̂(z) ∈ L2(iR). We show that the Laplace transform of

the defining limit of the infinitesimal generator (cf. Definition 2.1.5) converges to
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−zf̂(z). Consider

∥∥∥∥1

s
(Tsf − f)ˆ− (−zf̂)

∥∥∥∥2

2

=

∥∥∥∥1

s

(
e−sz − 1

)
f̂ + zf̂

∥∥∥∥2

2

by Lemma 2.2.3. Then by the Mean Value Theorem, there exists a function σ(s)

with 0 < σ(s) < s and so that 1
s
(e−sz − 1) = −ze−σ(s)z, so

=
∥∥∥−ze−σ(s)zf̂ + zf̂

∥∥∥2

2

=

∫ ∞
−∞

∣∣eσ(s)z − 1
∣∣2 ∣∣∣−zf̂(z)

∣∣∣2 dx,
which tends to zero as s ↓ 0 by dominated convergence with 4

∣∣∣−zf̂(z)
∣∣∣2, integrable

since −zf̂(z) ∈ L2, as the dominating function. Since the limit exists, it follows that

any f with −zf̂(z) ∈ L2(R) is an element of D(T ).

We now turn our attention to the converse: assume f ∈ D(T ). This implies that

there exists some g ∈ L2(R) with 1
s
(Tsf − f)→ g in L2. By the Plancherel theorem

and Lemma 2.2.3 it follows that∥∥∥∥1

s
(e−sz − 1)f̂ − ĝ

∥∥∥∥2

2

→ 0

as s ↓ 0. By the Mean Value Theorem again, there exists some σ(s) with 0 < σ(s) < s

and 1
s
(e−sz − 1) = −ze−σ(s)z, so

∥∥∥−ze−σ(s)zf̂(z)− ĝ(z)
∥∥∥2

2
→ 0.
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Equivalently, one may write

∥∥∥zf̂(z) + eσ(s)zĝ(z)
∥∥∥2

2
→ 0.

But notice that

∥∥eσ(s)zĝ(z)− ĝ(z)
∥∥2

2
=
∥∥(eσ(s)z − 1)ĝ(z)

∥∥2

2

=

∫ i∞

−i∞

∣∣eσ(s)z − 1
∣∣2 |ĝ(z)|2 dz;

this integral converges to 0 as s ↓ 0 by dominated convergence with |2ĝ|2 as the dom-

inating function. We thus have that eσ(s)zĝ(z) → zf̂(z) and also that eσ(s)zĝ(z) →

ĝ(z), so ĝ(z) = zf̂(z) and therefore zf̂(z) ∈ L2(iR).

We proceed to the second part of the proof: we show that f ∈ L2(R) is such that

zf̂(z) is also in L2(R) if and only if f is locally absolutely continuous and has deriva-

tive f ′ in L2(R).

Let us first assume that f ∈ L2(R) is such that zf̂(z) ∈ L2(iR), with the intention

of showing that f ∈ AC(R) and f ′ ∈ L2(R). Instead—and equivalently by the

Plancherel Theorem—we show that if f ∈ L2(R) and tf(t) ∈ L2(R), then f̂ ∈ L2(iR),

f̂ ∈ AC(iR), and f̂ ′ ∈ L2(iR).

We define some auxiliary functions: For τ ≥ 0, let

fτ (t) :=

 f(t) if |t| ≤ τ

0 otherwise
;

let g(t) := tf(t) and we define gτ (t) := tfτ (t). The function g(t) ∈ L2(R) by

hypothesis. Further, for every τ > 0, both fτ and gτ are in L1(−τ, τ).
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Our first goal is to show that f̂ is locally absolutely continuous. We first show that

f̂τ is locally absolutely continuous: Consider that

∫ ix2

ix1

ĝτ (z)dz =

∫ ix2

ix1

∫ τ

−τ
−tfτ (t)e−tzdtdz,

and since −tfτ is in L1[−τ, τ ] for every τ , Fubini-Tonelli implies

=

∫ τ

−τ

∫ ix2

ix1

−tfτ (t)e−tzdzdt

=

∫ τ

−τ
fτ (t)(e

−itx2 − e−itx1)dt

= f̂τ (ix2)− f̂τ (ix1).

Thus f̂τ is locally absolutely continuous. To make a conclusion about f̂ , we take the

limit as τ →∞. The immediately preceding calculation shows that

f̂τ (ix2) = f̂τ (ix1) +

∫ ix2

ix1

ĝτ (z)dz.

By construction, L2 -limτ→∞ fτ (t) = f(t); therefore we have that L2 -limτ→∞ f̂τ (z) =

f̂(z). We also know that ĝ ∈ L2(iR), so then ĝ ∈ L1(ix1, ix2) for any finite real x1

and x2; we then use dominated convergence to compute the limit
∫ x2
x1
gτds. Thus we

have

f̂(ix2) = f̂(ix1) +

∫ ix2

ix1

ĝ(z)dz.

We conclude that f̂ is locally absolutely continuous. Indeed, we also see that f̂ ′ = ĝ

which is in L2(iR) by hypothesis.
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We turn our attention to the converse direction.

We assume that f ∈ L2(R) is locally absolutely continuous and that f ′ ∈ L2(R) and

intend to show that zf̂(z) ∈ L2(iR). Consider

(f ′)ˆ(z) = lim
τ→∞

∫ τ

−τ
e−ztf ′(t)dt

= lim
τ→∞

(
e−ztf(t)

∣∣τ
−τ −

∫ τ

−τ
(−z)e−ztf(t)dt

)
= lim

τ→∞

(
e−zτf(τ)− ezτf(−τ) + z

∫ τ

−τ
e−ztf(t)dt

)
;

and, since we know that limt→∞ f(t) = 0, by Lemma 2.5.1 to come,

= lim
τ→∞

z

∫ τ

−τ
e−ztf(t)dt

= zf̂(z).

That is, zf̂(z) = (f ′(t))ˆ∈ L2(iR).

We now have a great deal of information about our operator family Ts. It is a

strongly continuous group on L2(R), a continuous bilateral shift, and we know both

its generator and the domain of its generator. We now turn our attention to the shift

semigroups which are derived from the shift group Ts.

The forward and backward shift semigroups have already been defined; see Definition

2.2.2. We take a moment to compute their adjoints.

Lemma 2.2.8. Let π± : L2
U(R) → L2

U(R±) be orthogonal projections. Then for

every s either nonnegative or nonpositive, as appropriate, (Ts±)∗ = π±(Ts)∗
∣∣
L2
U (R±)

=

π±(T−s)
∣∣
L2
U (R±)

.
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Proof. Here, both Ts+ and
(
Ts+
)∗

are bounded. Let f, g ∈ L2(R+), and embed both

into L2(R) in the usual way. Then we may compute

(
f,
(
Ts+
)∗
g
)

= (Ts+f, g) =

∫ ∞
0

(Ts+f)(τ)g(τ)dτ =

∫ ∞
s

f(τ − s)g(τ)dτ

=

∫ ∞
0

χ[0,∞)f(τ ′)g(τ ′ + s)dτ ′ =

∫ ∞
0

f(τ ′)χ[0,∞)g(τ ′ + s)dτ ′

= (f, χ[0,∞)T
−sg) = (f, π+T

−sg).

The claimed result for
(
Ts−
)∗

follows by exchanging minuses for pluses.

Definition 2.2.9. Let π± be the natural projection from L2
U(R) onto L2

U(R±) and

let Ts be the bilateral continuous shift on L2
U(R).

By the term Compressed Forward Shift on L2
U(R−), we mean the adjoint operator

(
Ts−
)∗

: f(t) ∈ L2
U(R−) 7→ π−f(t− s), s ≥ 0

and by Compressed Backward Shift on L2
U(R+), we mean

(
Ts+
)∗

: f(t) ∈ L2
U(R+) 7→ π+f(t− s), s ≤ 0.

We now have, in addition to the original bilateral continuous shift Ts, four unilateral

continuous shifts: on L2
U(R+), we have the forward shift Ts+ and the compressed

backward shift
(
Ts+
)∗

; and on L2
U(R−), we have the backward shift Ts− and the

compressed forward shift
(
Ts−
)∗

. The strong continuity of each follows directly from

the strong continuity of Ts itself.

We record the infinitesimal generators of the restricted semigroups as well as the
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domains of the generators.

Theorem 2.2.10. Let Ω ⊂ R and let AC(Ω) refer to absolutely continuous functions

on Ω.

The bilateral continuous shift group Ts acting on L2
U(R) has the generator

T : f(t) 7→ −f ′(t)

with domain

D(T ) = {f ∈ L2
∣∣ f ∈ AC(R), f ′ ∈ L2(R)}.

The forward unilateral shift Ts+ acting on L2
U(R+) has generator

T+ : f(t) 7→ −f ′(t)

with domain

D(T+) = {f ∈ L2(R+)
∣∣ f ∈ AC(R+), f ′ ∈ L2(R+), f(0) = 0}.

The backward unilateral shift Ts− acting on L2
U(R−) has generator

T− : f(t) 7→ f ′(t)

with domain

D(T−) = {f ∈ L2(R−)
∣∣ f ∈ AC(R−), f ′ ∈ L2(R−), f(0) = 0}.
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The compressed forward unilateral shift
(
Ts−
)∗

acting on L2
U(R−) has generator

T ∗− : f(t) 7→ −f ′(t)

with domain

D(T ∗−) = {f ∈ L2(R−)
∣∣ f ∈ AC(R−), f ′ ∈ L2(R−)}.

The compressed backward unilateral shift
(
Ts+
)∗

acting on L2
U(R+) has generator

T ∗+ : f(t) 7→ f ′(t)

with domain

D(T ∗+) = {f ∈ L2(R+)
∣∣ f ∈ AC(R+), f ′ ∈ L2(R+)}.

Proof. That the generator of the bilateral shift is the mapping f 7→ −f ′ is a clear

corollary of Theorem 2.2.7, as is the domain of the generator of the forward shift

when acting on L2(R). That the generator of the backward semigroups is the same

has been discussed already in Note 2.1.8.

When we intersect D(T ) with L2(R+), we get precisely D(T
∣∣
L2(R+)

). We also imme-

diately get D(−T
∣∣
L2(R−)

) by symmetry.

By Lemma 2.2.8, we know that (Ts+
∣∣
L2(R+)

)∗ = Ts−
∣∣
L2(R+)

. Thus finding D(−T
∣∣
L2(R+)

)

reduces to determining the domain of the adjoint T
∣∣
L2(R+)

.

Define D∗ := {f ∈ L2(R+)
∣∣ f ∈ AC(R+), f ′ ∈ L2(R+)}.
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We first demonstrate that D∗ ⊂ D(T ∗+). Let f ∈ D(T+) and let g ∈ D∗. Then we

compute

(f, T ∗+g) = (T+f, g) =

∫
+

f ′ḡ = fḡ
∣∣∞
0
−
∫

+

fḡ′ = fḡ
∣∣∞
0

+ (f,−g′).

By hypothesis, f(0) = 0. Since f ∈ L2(R+), f ∈ AC(R+), and f ′ ∈ L2(R+), Lemma

2.5.1 gives limt→∞ f(t) = 0. The same is true of g. Thus we conclude that D∗ ⊂

D(T ∗+) and that when g ∈ D∗, T ∗+ : g 7→ −g′.

Before we demonstrate the reverse inclusion, we first construct an auxiliary function

F ∈ D(T+). Fix 0 < T < ∞. Choose some f ∈ L2(R+) with
∫ T

0
f(s)ds = 0 and

f(t) = 0 when t > T . Note that, by construction, f ⊥ 1 on L2[0, T ]. Finally, let

F (t) :=
∫ t

0
f(s)ds; then F ∈ D(T+), T+F = −f , and if t > T then F (t) = 0.

Now assume that g ∈ D(T ∗+). Then there exists some h ∈ L2(R+) so that for any

x ∈ D(T+), the equality (T+x, g) = (x, h) holds. (That is, T ∗+g = h.) In particular,

this equality must hold for F . We compute:

0 = (F, h)− (T+F, g)

=

∫ ∞
0

F (t)h(t)dt+

∫ ∞
0

f(t)g(t)dt

=

∫ T

0

F (t)h(t)dt+

∫ T

0

f(t)g(t)dt
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which, by integration by parts,

= −
∫ T

0

f(t)

∫ t

0

h(s)dsdt+

∫ T

0

f(t)g(t)dt

=

∫ T

0

f(t)

(
g(t)−

∫ t

0

h(s)ds

)
dt

=

(
f(t), g(t)−

∫ t

0

h(s)ds

)
L2(0,T )

,

where the interpretation as an inner product is justified since
(
g(t)−

∫ t
0
h(s)ds

)
∈

L2[0, T ] because g, h ∈ L2(R+). Thus g(t) −
∫ t

0
h(s)ds is perpendicular to f , but f

is an arbitrary function perpendicular to the constants in L2[0, T ]. It follows that

g(t)−
∫ t

0
h(s)ds itself equals a constant (which a priori may depend on T ), which we

call cT . But since this same computation works for any arbitrary T , the constant

cannot actually depend on T , so we conclude that there exists some constant c with

g(t)−
∫ t

0

h(s)ds = c.

Thus we see that g ∈ D(T+) is locally absolutely continuous and g′ = h ∈ L2(R+),

which is the reverse inclusion that we sought.

We have now fully characterized D(T ∗+).

2.2.2 Laplace Transforms of Shifts

There is one more fact about our shift (semi)groups that we need to record. We use

the bilateral Laplace transform to induce a shift operator on L2
U(iR). We give the

definition and follow it immediately with an explicit formula.
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Definition 2.2.11. We define the Laplace transform of the shift group T̂s on L2
U(R)

in the usual way that one defines such things; namely, by

(
T̂sf

)
(z) =

(
Tsf̌

)̂
(z)

Proposition 2.2.12. We record the following formula:

(
T̂sf

)
(z) = e−szf(z).

Proof. We need only compute. For F ∈ L2
U(iR), there exists f ∈ L2

U(R) with F (z) =

f̂(z). Then

(
T̂sF

)
(z) = (Tsf)ˆ(z)

=

∫ ∞
−∞

Tsf(t)e−zt dt

=

∫ ∞
−∞

f(t− s)e−zt dt

= e−szf̂(z).

2.3 A Graph Space Lemma

If a Hilbert space X can be orthogonally decomposed into closed subspaces, then the

following Lemma states that any closed subspaceM of X is “almost” a graph space.
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Lemma 2.3.1 (Almost Graph Space). Let X be a Hilbert space that has an orthog-

onal sum decomposition into (closed) subspaces X− and X+; that is, X = X− ⊕ X+.

Let M⊂ X be a closed subspace. Further let PX− be the orthogonal projection of X

onto X−.

Define three additional subspaces related to M as follows: let P := PX−M, let

M0 =M∩X+, and let Z = X+	M0 with PZ the orthogonal projection of X+ onto

Z.

Then there is a unique closed operator Γ : D(S+) ⊂ P → Z, densely-defined, such

that

M = {mP +mZ +m0

∣∣ mP ∈ D(Γ) ⊂ P , mZ ∈ Z, m0 ∈M0, and ΓmP = mZ}

Proof. For any mP ∈ PX−M, there exists at least one m′ ∈ X+ so that mP+m′ ∈M.

Choose any such m′ and define ΓmP = PZm
′. Note that this definition of ΓmP is

unique, because if m′′ ∈ X+ so that mP +m′′ ∈M, then

(mP +m′)− (mP +m′′) = m′ −m′′

must be in M∩X+; thus PZ(m′ −m′′) = 0. It also follows from this definition that

(mP + ΓmP) ∈ M; indeed, we let m = mP + m′ be the element of M associated

with mP so that

m = (mP + ΓmP) + (m′ − ΓmP) = (mP + ΓmP) + (m′ − PZm′),

thus

mP + ΓmP = m− (m′ − PZm′).
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The latter quantity in parentheses is in M0 and thus in M. Since (mP + ΓmP) is

the difference of elements of M, it is an element of M.

Note that MP is the closure of D(Γ); Γ is thus trivially densely-defined.

Finally, to see that Γ is closed, assume the existence of a sequence mP,n in D(Γ)

converging to mP ∈ X− and such that ΓmP,n converges to y ∈ X+. In fact, since

M is closed, (mP + y) ∈ M. Clearly, PX−(mP + y) = mP , so mP ∈ D(Γ). Further,

since M and X+ are closed, so is M0. As is Z, as an orthocomplement. Thus y is

in Z. It is the unique such element so that (mP + y) ∈ M, so in fact y = ΓmP and

Γ is closed.

2.4 Continuous Time System Theory: Well-Posed

Linear Systems

2.4.1 Introduction

Many of the results we are interested in are stated most naturally in the context of

abstract systems. Systems wherein the underlying spaces are finite-dimensional have

been well understood for some time. New, however, is the understanding of infinite-

dimensional systems and, especially, the idea of L2-admissible systems as laid out in

[26]; preliminary versions of these ideas go back at least as far as [?], [13], among

others.
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2.4.2 Rigged Spaces

We introduce the so-called rigged spaces. In our context, these form a bi-infinite

nested sequence of Hilbert spaces with each densely contained in the previous. These

spaces are vital to the development of a theory of infinite-dimensional continuous-

time linear systems. We take a moment to introduce these spaces now. For more

thorough discussions, we refer the reader to [26] or [27].

Proposition 2.4.1. Let X be a Hilbert space with norm ‖·‖X and let A : D(A) ⊂

X → X be a closed, densely-defined operator with nonempty resolvent on X . Then

for some α ∈ ρ(A) and x ∈ D(A), we equip D(A) with the norm

‖x‖1 := ‖(αI − A)x‖X .

Then with this norm, D(A) is a Hilbert space which we denote X1. Further, the

norm ‖·‖1 is independent of the choice of α, in that all such norms are equivalent.

In particular, each norm is equivalent to the graph norm.

The preceding proposition is more or less a restatement of Proposition 2.10.1 in [27],

to which we mostly refer the reader for the proof. We do, however, give an explicit

proof of the equivalence of the rigged norms to the graph norm below in Lemma

2.4.4. We next define the rigged spaces with negative indices.

Proposition 2.4.2. Let X , A, and α be as in Proposition 2.4.1 above. For x ∈ X ,

we define the norm

‖x‖−1 :=
∥∥(αI − A)−1x

∥∥
X .

We define X−1 to be the completion of X with respect to the norm ‖·‖−1. Then X−1

is a Hilbert space. Further, the norm ‖·‖−1 is independent of choice of α.
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As before, this proposition is a restatement of Proposition 2.10.2 from [27], to which

we refer the reader for the proof.

Remark 2.4.3. We note that the construction of X1 may be iterated. That is,

having defined X1, we may go on to define X2, X3, &c.

Similarly, having defined X−1, we may define X−2, X−3, &c.

Thus the rigged spaces form a bi-infinite densely nested sequence of Hilbert spaces

with

· · · ⊃ X−2 ⊃ X−1 ⊃ X ⊃ X1 ⊃ X2 ⊃ · · ·

Further, by our construction, for all k ∈ N, we have that (αI −A)−1 : Xk → Xk+1 is

bijective.

We also note that, as X is a Hilbert space, one may also construct a bi-infinite

sequence of nested spaces using A∗ on X instead of A. In this case one recovers a

sequence

· · · ⊃ X ∗−2 ⊃ X ∗−1 ⊃ X ⊃ X ∗1 ⊃ X ∗2 ⊃ · · ·

We clarify the relationship between the two sequences of rigged spaces in Lemma

2.4.6.

We now give a proof of an illustrative special case of the equivalence of the X1 norm

and the graph norm on D(A).

Lemma 2.4.4. Let X be a Hilbert space and let A be an operator that generates a

rigged space structure on X such that 1 is in the resolvent of A. On the space X1,
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we define the following three norms: first, the graph norm

‖x‖G :=

√
‖x‖2

X + ‖Ax‖2
X .

Second, another graph norm

‖x‖M := ‖x‖X + ‖Ax‖X .

Finally, the usual rigged space norm

‖x‖X1
:= ‖(I − A)x‖X .

Then these norms are equivalent.

Proof. The equivalence of the two graph norms follow from the general result that

norms on finite-dimensional spaces are equivalent. That is, there are constants 0 <

m ≤M <∞ so that for any two nonnegative real numbers r1 and r2, we have that

m(r1 + r2) ≤
√
r2

1 + r2
2 ≤M(r1 + r2).

Setting r1 = ‖x‖X and r2 = ‖Ax‖X gives the equivalence of the two graph norms.

We show that the Manhattan graph norm is equivalent to the rigged space norm.

Clearly, we have that ‖x‖X1
= ‖(I − A)x‖X ≤ ‖x‖X + ‖Ax‖X = ‖x‖M . To see the
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reverse inequality, consider

‖x‖M = ‖x‖X + ‖Ax‖X

=
∥∥(I − A)−1(I − A)x

∥∥
X + ‖(Ix− Ix) + Ax‖X

≤
∥∥(I − A)−1

∥∥ ‖(I − A)x‖X + ‖x‖X + ‖(I − A)x‖X

≤
∥∥(I − A)−1

∥∥ ‖x‖X1
+
∥∥(I − A)−1(I − A)x

∥∥
X + ‖x‖X1

= (2
∥∥(I − A)−1

∥∥+ 1) ‖x‖X1
.

We note the following result which describes the pairing (·, ·)X1,X−1 in the case that

the second argument is, in fact, an element of X .

Lemma 2.4.5. Let X be a Hilbert space and let Z be an operator that generates a

rigged space structure on X . Further let x ∈ X ∗1 and let y ∈ X , which we consider

as a dense subset of X−1. Then

(x, y)∗1,−1 = (x, y)X .

Proof. As x ∈ X ∗1 , there exist an α ∈ ρ(Z) and an x′ ∈ X so that we may write
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x = (αI − Z∗)−1x′. Similarly, there exists a y′ ∈ X so that y = (αI − Z)y′. Then

(x, y)(∗1,−1) =
(
(αI − Z∗)−1x′, (αI − Z)y′

)
(∗1,−1)

= (x′, y′)X

=
(
(αI − Z∗)−1x′, (αI − Z)y′

)
X

= (x, y)X

Having defined the rigged spaces, we turn our attention to a result that serves to

describe the connections between them.

Lemma 2.4.6. Let X be a Hilbert space and let Z be an operator that generates the

rigged spaces {Xn}, n = 0,±1,±2, · · · . Let the set of rigged spaces generated by Z∗

be denoted {X∗,n}. Then for n = 0, 1, 2, · · · , (X−n)∗ = X∗,n.

Of special interest is the n = 1 case: (X−1)∗ = X∗,1.

Proof. We proceed by induction. Clearly, (X0)∗ = X ∗ = X = X∗,0. We assume,

then, that for some n ≥ 1, (X−(n−1))
∗ = X∗,(n−1).

We set the parameter α from the definition of rigged spaces to 1.

First, we show that X∗,n ⊂ (X−n)∗. Let x ∈ X−n and let x∗ ∈ X∗,n. Then we have

that x∗(x) := ((I − Z∗)nx∗, (I − Z)−nx)X , which is clearly continuous.

To show the reverse inclusion, we let l ∈ (X−n)∗. By construction of the rigged

spaces, (I − Z)−1 : X−n → X−(n−1) is an isometry, so the composition l ◦ (I − Z) :

X−(n−1) → U is continuous. By hypothesis, there exists some y ∈ X∗,(n−1) so that for
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every x ∈ X−(n−1),

l ◦ (I − Z) : x 7→ (x, y)(X−(n−1),X∗,(n−1)).

Recall that X−(n−1) is dense in X−n; we choose some x′ in their intersection and

define x ∈ X−n by x := (I − Z)−1x′. Then we can compute

l(x′) =
(
(I − Z)−1x′, y)

)
(X−(n−1),X∗,(n−1))

=
(
x′, (I − Z∗)−1y

)
(X−(n−1),X∗,(n−1))

.

As (I − Z∗)−1y ∈ X∗,n, this is nearly the representation we seek. So far, it is only

defined on X−(n−1); we seek to extend it to X−n.

For x′ ∈ X−(n−1) ⊂ X−n, we have the estimate

|l(x′)| =
(
(I − Z)−1x′, y)

)
(X−(n−1),X∗,(n−1))

≤
∥∥(I − Z)−1x′

∥∥
X−(n−1)

‖y‖X∗,(n−1)
= ‖x′‖X−n

‖y‖X∗,(n−1)
.

We may thus extend l uniquely and continuously to X−n. If we define y′ := (I −

Z∗)−1y, then we have the form

l : x′ ∈ X−n 7→ (x′, y)(X−n,X∗,n),

which demonstrates our reverse inclusion.

2.4.3 Control and Observation Operators

We begin with a sequence of four definitions: we define Π−- and Π+-Admissible

State/Output Pairs, and Π−- and Π+-Admissible Input/State Pairs.
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Definition 2.4.7. Let X×P and U be Hilbert spaces, let A× : X×P,1 → X×P be a

densely-defined linear operator, and let C× : X×P,1 → U be a linear operator. We call

the pair (C×, A×) a Π−-Admissible State/Output Pair if

1. A× generates a strongly continuous forward semigroup A× on X×P ,

2. C× is bounded as an operator from X×P,1 to U ,

3. the mapping (
OfC×,A×x0

)
(t) := C×A×,tx0, t ≥ 0

can be extended to a continuous map from X×P to L2
U(0,∞).

If, in addition, the operator OfC×,A× is one-to-one, we call the pair (C×, A×) a Π−-

Admissible Observable Pair.

We name the (extended) operator OfC×,A× on X×P the forward Observation operator.

Let XP and U be Hilbert spaces, let A : XP,1 → XP be a densely-defined linear

operator, and let C : XP,1 → U be a linear operator. We call the pair (C,A) a

Π+-Admissible State/Output Pair if

1. A generates a strongly continuous backward semigroup A on XP ,

2. C is bounded as an operator from XP,1 to U , and

3. the mapping (
ObC,Ax0

)
(t) := CAtx0, t ≤ 0

can be extended to a continuous map from XP to L2
U(−∞, 0).
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If, in addition, the operator ObC,A is one-to-one, we call the pair (C,A) a Π+-

Admissible Observable Pair.

We define the (extended) operator ObC,A on XP to be the backward Observation

operator.

Let X×Z and U be Hilbert spaces, let Z× : X×Z,1 → X
×
Z be a densely-defined linear

operator, and let B× : U → X×Z,−1 be a linear operator. We call the pair (Z×, B×) a

Π−-Admissible Input/State Pair if

1. Z× generates a strongly continuous forward semigroup Z× on XZ ,

2. B× is bounded as an operator from U to X×Z,−1, and

3. the mapping

CfZ×,B× : u ∈ L2(−∞, 0) 7→
∫ 0

−∞
Z×,−s|X×Z,−1

B×u(s)ds,

a priori defined only for u ∈ L2
U(0, T ) for finite T with image in X×Z,−1, in fact

has image in X×Z and extends to a bounded map from L2(−∞, 0) into X×Z .

If, in addition, the operator CfZ×,B× has dense range, then we call the pair (Z×, B×)

a Π−-Admissible Controllable Pair ; we additionally call the operator CfZ×,B× on

L2(−∞, 0) the backward Control operator.

Finally, let XZ and U be Hilbert spaces, let Z : XZ,1 → XZ be a densely-defined

linear operator, and let B : U → XZ be a linear operator. We call the pair (Z,B) a

Π+-Admissible Input/State Pair if

1. Z generates a strongly continuous backward semigroup Z on XZ ,
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2. B is bounded as an operator from U to XZ,−1, and

3. the mapping

CbZ,B : u ∈ L2(0,∞) 7→ −
∫ ∞

0

Z−sBu(s)ds,

a priori defined only for u(s) ∈ L2
U(0, T ) for finite T with image in XZ,−1, in

fact has image in XZ and extends to a map from L2(0,∞) into XZ .

If, in addition, the operator CbZ,B has dense range, then we call the pair (Z,B) a

Π+-Admissible Controllable Pair and we call the operator CbZ,B from L2
U(0,∞) to XZ

the backward Control operator.

Definition 2.4.8. A Π−-Admissible Observable pair (C×, A×) is called Exactly Ob-

servable if the forward observation operator OfC×,A× is bounded below as a mapping

from X×P to L2(0,∞).

A Π+-Admissible Observable pair, (C,A), on the other hand, is called Exactly Ob-

servable if the backward observation operator ObC,A is bounded below as a mapping

from XP to L2(−∞, 0).

A Π−-Admissible Controllable pair (Z×, B×) is called Exactly Controllable if the

forward control operator CfZ×,B× is also onto X×Z .

A Π+-Admissible Controllable pair (Z,B) is called Exactly Controllable if the back-

ward control operator CbZ,B is also onto XZ .

Having defined the Control and Observation operators, we present a pair of theorems

exhibiting relationships between them under adjoints.

Theorem 2.4.9. Let X be a Hilbert space. Let (C,A) be a Π+-Admissible Exactly

Observable pair on X . Then (−A∗, C∗) is a Π−-Admissible Exactly Controllable pair
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on X , and (
ObC,A

)∗
= Cf−A∗,C∗ .

Theorem 2.4.10. Let X be a Hilbert space. Let (Z,B) be a Π+-Admissible Exactly

Controllable pair on X . Then (B∗,−Z∗) is a Π−-Admissible Exactly Observable pair

on X , and (
CbZ,B

)∗
= −OfB∗,−Z∗ .

Remark 2.4.11. We note that the preceding theorem is also true with all instances

of the word “Exactly” deleted, as the proof shows.

Proof. First, we note that if Z generates a forward (resp. backward) strongly contin-

uous semigroup, then −Z∗ generates a backward (resp. forward) strongly continuous

semigroup. Similarly, if B is bounded, then so is B∗. To verify the other claimed

properties of the pair (B∗, Z∗), we turn our attention to constructing the operator

OfB∗,−Z∗ .

Fix some T ∈ (0,∞). We define

−Cb,TZ,B : f ∈ L2
U(0, T ) 7→

∫ T

0

Z−s|XZ,−1
Bf(s)ds.

We first seek to compute
(
Cb,TZ,B

)∗
; later we will use this result to find

(
CbZ,B

)∗
.

To this end, we will first regard CbZ,B and Cb,TZ,B as mappings into XZ,−1. This is

the natural assumption with which to begin the analysis, as their integrands are

pointwise in XZ,−1. Later, we will apply the admissibility assumption on (Z,B) and



Austin J. Amaya Chapter 2. Preliminary Definitions and Results 54

treat both CbZ,B and Cb,TZ,B as mappings onto XZ .

Choose some f ∈ L2
U(0, T ) and x∗ ∈ (XZ,−1)∗ = XZ∗,1. We compute

(f,
(
CbZ,B

)∗
x∗)L2

U (0,T )

=(CbZ,Bf, x∗)(−1,∗1)

=(

∫ T

0

Z−s|XZ,−1
Bf(s)ds, x∗)(−1,∗1),

but by construction, the (·, ·)(−1,∗1) pairing is continuous, so this

=

∫ T

0

(Z−s|XZ,−1
Bf(s), x∗)(−1,∗1)ds

=

∫ T

0

((f(s), B∗
(
Z−s|XZ,−1

)∗
x∗)Uds.

But the quantity B∗(Z−s|XZ,−1
)∗x∗ is pointwise in U and is continuous in s by the

continuity of both Z−s|XZ,−1
and B∗. As a function of s, therefore, it is in L2

U(0, T ). We

therefore interpret the last integral above as

=(f,B∗(Z−s|XZ,−1
)∗x∗)L2

U (0,T ).

As f and x∗ were arbitrary, we conclude that

(
Cb,TZ,B

)∗
x∗(s) = B∗(Z−s|XZ,−1

)∗x∗(s)

for 0 ≤ s ≤ T .

Note that, by hypothesis, the pair (Z,B) is exactly controllable and so the operator

CbZ,B is bounded from L2
U(R+) onto XZ . Clearly, the operator Cb,TZ,B is also bounded
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with norm dominated by
∥∥CbZ,B∥∥. We write

∥∥∥Cb,TZ,Bu∥∥∥X ≤M ‖u‖L2
U (0,T ) ,

where M =
∥∥CbZ,B∥∥ is independent of T .

We construct the following bound. Consider

∥∥∥B∗(Z−s|XZ,−1
)∗x∗

∥∥∥
L2
U (0,T )

= sup
u∈L2

U (0,T ),‖u‖≤1

∣∣∣(B∗(Z−s|XZ,−1
)∗x∗, u)L2

U (0,T )

∣∣∣
= sup

u∈L2
U (0,T ),‖u‖≤1

∣∣∣(x∗,−Cb,TZ,Bu)(∗1,−1)

∣∣∣ ;
but we know—by hypothesis—that Cb,TZ,Bu ∈ X ; additionally, x∗ ∈ X ∗Z,1 ⊂ XZ , so we

may apply Lemma 2.4.5 to get

= sup
u∈L2

U (0,T ),‖u‖≤1

∣∣∣(x∗,−Cb,TZ,Bu)XZ

∣∣∣ ,
to which we can apply the estimate

≤ sup
u∈L2

U (0,T ),‖u‖≤1

‖x∗‖XZ M ‖u‖L2
U (0,T )

≤M ‖x∗‖XZ .

We denote the operator x 7→ B∗
(
Z−s|XZ,−1

)∗
x by Of,TB∗,−Z∗ . We may thus conclude

that Of,TB∗,−Z∗ extends continuously to map XZ into L2
U([0, T ]).

Next we attempt to extend Of,TB∗,−Z∗ to an operator into L2
U(0,∞). We consider
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L2
U(0, T ) as embedded in L2

U(0,∞) and revisit the above inequality:

∥∥∥Of,TB∗,−Z∗x∗∥∥∥
L2
U (0,T )

≤M ‖x∗‖XZ .

Taking limits as T → ∞, we denote by OfB∗,−Z∗ the limit limT→∞Of,TB∗,−Z∗ , and

conclude ∥∥∥OfB∗,−Z∗x∗∥∥∥
L2
U (0,∞)

≤M ‖x∗‖XZ .

So, we have seen that, if Cb,TZ,B is taken to be a mapping from L2
U(0, T ) to XZ,−1, then

Of,TB∗,−Z∗ is a bounded mapping from X ∗Z,1 to L2
U(0, T ); and the same can be extended

to a mapping OfB∗,−Z∗ : XZ → L2
U(0,∞). If we now apply the hypothesis of exact

controllability, then we know what Cb,TZ,B is a mapping to XZ . Under this additional

assumption, and applying Lemma 2.4.5 again, we have

(−Cb,TZ,Bu, x
∗)(−1,∗1) = (−Cb,TZ,Bu, x

∗)XZ

= (u,Of,TB∗,−Z∗x
∗)L2

U (0,T )

for all x ∈ X ∗Z,1. We know from above that Of,TB∗,−Z∗ is bounded on X ; we further

know by construction that X ∗Z,1 is dense in XZ ; we may thus extend the above inner

product continuously to all of XZ to get (Cb,TZ,B)∗x = −Of,TB∗,−Z∗x for all x ∈ XZ . In

this relation we let T →∞ to get that (CbZ,B)∗ = −OfB∗,−Z∗ .

Thus our operator OfB∗,−Z∗ satisfies the extendability requirement for (B∗,−Z∗) to

be a Π+-admissible pair.

Further, by the exact controllability hypothesis, we know that CbZ,B is onto. It follows

that OfB∗,−Z∗ = (−CbZ,B)∗ is one-to-one. (We note that mere density of the range of
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CbZ,B is enough to ensure that OfB∗,−Z∗ is one-to-one.) Indeed, the stronger hypothesis

that CbZ,B is onto guarantees that OfB∗,−Z∗ is bounded below; we state this fact as the

separate Lemma 2.4.12 below.

Lemma 2.4.12. Let X and Y be Banach spaces. Let T : X → Y be a continuous

linear operator such that T ∗ : Y ∗ → X∗ is onto. Then T is bounded below.

Proof. T must be one-to-one, as T ∗ is onto. Further, as T ∗ is onto, it trivially

has closed range; T must therefore also have closed range (Theorem 4.14 in [23]).

Considering Ran(T ) as a Banach space in its own right, then, we have that T : X →

Ran(T ) is continuous, linear, one-to-one, and onto. We appeal to Corollary 2.12(c),

also in [23], to conclude that T is bounded below.

We will have many occasions where we will work with Laplace transforms of the Ob-

servation and Control operators rather than with the operators themselves directly.

While we are content to leave the formula for the transform of the Control opera-

tor implicit, it will be to our benefit to record an explicit formula for the Laplace

transform of the Observation operator. We do so below.

Lemma 2.4.13. The bilateral Laplace transforms of the forward and backward ob-

servation and control operators are as follows.

1. The forward observation operator OfC×,A× : X×Z → L2(R+) has transform

ÔfC×,A× : X̂×Z → H2(Π+) given by

(
ÔfC×,A×x

)
(z) = C×(zI − A×)−1x.
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2. The backward observation operator ObC,A : XZ → L2(R−) has transform ÔbC,A :

X̂Z → H2(Π−) given by

(
ÔbC,Ax

)
(z) = −C(zI − A)−1x.

Proof. Statement (1) is an immediate consequence of the well-known formula (cf., for

example, [27] Proposition 2.3.1) for the Laplace transform of a semigroup in terms

of the resolvent of its generator: that is, if Ss is a forward semigroup with generator

S and growth bound ω, then for all z with Re z > ω,

(zI − S)−1x =

∫ ∞
0

e−zsSsx ds;

see Theorem 2.1.10.

In particular, our semigroups are contractive, so we may take ω = 0.

2.5 A Result on Functions in a Sobolev Space

The following result is well known in the context of Sturm-Liouville theorey; in

particular, the following results appears (at least implicitly) on page 345 of [17]. We

provide an independent proof.

Lemma 2.5.1. If f ∈ L2(R) is locally absolutely continuous and f ′ ∈ L2(R), then

limt→±∞ f(t) = 0.

Proof. Assume that limt→∞ f(t) does not exist. Then ∃ε0 > 0 so that for any M > 0

there is an m > M with |f(tm)| > 2ε0. Let {tm} be a sequence of such numbers
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going to infinity. We derive an inequality:

|f(t)− f(tm)| =
∣∣∣∣∫ t

tm

f ′(s)ds

∣∣∣∣
≤
∫ t

tm

|f ′(s)| ds

≤ ‖f ′‖2

∥∥1(tm,t)

∥∥
2

= ‖f ′‖2

√
|(t− tm)|.

In particular, since ‖f ′‖2 is fixed, if t is such that
√
|t− tm| ≤ ε0

‖f ′‖2
, we get

|f(t)− f(tm)| ≤ ε0.

Now consider, for such a t,

|f(t)| = |f(t)− f(tm) + f(tm)|

= |f(tm)− (f(tm)− f(t))|

≥ ||f(tm)| − |f(tm)− f(t)||

≥ |f(tm)| − |f(tm)− f(t)|

≥ 2ε0 − ε0

= ε0.

That is, if t satisfies |t− tm| ≤ ε2/ ‖f ′‖2
2, then |f(t)| ≥ ε0. If we let {Ij} be a set of

disjoint intervals of length ε2/ ‖f ′‖2
2 such that there is at least one element of {tm}
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in each Ij, then we may estimate

‖f‖2
2 =

∫ ∞
−∞
|f(t)|2 dt

≥
∫
∪Ij
|f(t)|2 dt

≥
∞∑
j=1

ε2
0

ε2
0

‖f ′‖2
2

=∞,

which contradicts the hypothesis that f ∈ L2(R).

Clearly, an identical argument yields that limt→−∞ f(t) = 0 as well.



Chapter 3

Generalized BLH Theorems

We give a version of the Buerling-Lax-Halmos Theorem appropriate to the continuous-

time—alternately, right half-plane—case. We base our result on the version of the

BLH Theorem given by Ball-Helton in [2]; however, for the proof thereof we refer

the reader to [4], which is the cleaner proof.

3.1 Dual Shift-Invariant Pairs

Definition 3.1.1. IfM is a closed subspace of L2
U(R) and let T be a shift on L2

U(R).

We say that M is shift-invariant if TsM⊂M for all s ≥ 0.

A shift-invariant subspace M is simply-invariant if

∩s≥0T
sM = {0}

61
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and/or full-range if

∪s≥0T
∗sM is dense in L2

U(R)

Alternately, if T is a discrete shift, then the same definitions hold with the natural

modifications: instead of demanding that the conditions hold for s ≥ 0, we demand

that they hold for n ∈ N.

Definition 3.1.2. Let M and M× be a pair of closed subspaces of a Hilbert space

X . Let S be a (continuous or discrete) bilateral shift on X . We say that the pair

(M,M×) is a dual shift-invariant pair if the following hold:

1. M is full-range and simply invariant under S.

2. M× is full range and simply invariant under S∗.

3. M and M× together form a direct sum decomposition of X :

M+̇M× = X .

Remark 3.1.3. We note that the conditions for a dual shift-invariant pair can be

weakened. Let closed subspaces (M,M×) form a direct-sum decomposition of X .

Then the following are equivalent:

1. (M,M×) is a dual shift-invariant pair.

2. M is simply invariant under S and M× is simply invariant under S∗.

3. M is full range under S and M× is full range under S∗.
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To see this, it suffices to consider the two decompositions

L2
U(iR) = SsL2

U(iR) = SsM+̇SsM×

and

L2
U(iR) = S∗sL2

U(iR) = S∗sM+̇S∗sM×.

From the first decomposition, we see thatM is simply invariant under S if and only

ifM× is full-range invariant under S∗. From the second, we see thatM is full-range

invariant under S if and only if M× is simply-invariant under S∗.

We exhibit a few properties of and connections between full-range and simply-

invariant spaces.

Lemma 3.1.4. Let S be a (continuous or discrete) closed bilateral shift on a Hilbert

space X . Let M be a closed subspace of X such that S
∣∣
M is a unilateral shift and

such thatM is simply invariant under S. ThenM⊥ is a Full-Range invariant space

under S∗.

Proof. Let s be either a nonnegative integer or a nonnegative real number, as ap-

propriate to whether S is a discrete or continuous shift, respectively. We note that

being Full Range under S∗ means that

X = ∪s≥0(S∗s)∗M⊥ = ∪s≥0S
sM⊥.

Then we consider that

X = SsX = SsM⊕SsM⊥,
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But by Lemma 2.1.17, we know that SsM = ∩0≤t≤sS
tM and that SsM⊥ =

∪0≤t≤sS
tM⊥, so that in fact

X =
(
∩0≤t≤sS

tM
)
⊕
(
∪0≤t≤sS

tM⊥)
Taking the limit as s → ∞ and applying the simple invariance of M, we conclude

that

X = L2 -clos∪t≥0S
tM⊥.

3.2 Semigroups of Contractions

Definition 3.2.1. Let As be a strongly continuous semigroup. Then we say that As

is a semigroup of contractions if

‖As‖ ≤ 1

for s ≥ 0.

We can restate the preceding definition in terms of the growth bound of the semigroup

(cf. Theorem 2.1.4). That is, a semigroup As is a semigroup of contractions if it

satisfies the bound ‖As‖ ≤Meωs with M = 1 and ω = 0.

It is worthwhile to note that the Hille-Yosida Theorem 2.1.6 implies that if A is a

semigroup of contractions, then 1 is in the resolvent of its generator A. We make

use of this fact to define another linear operator associated with A; namely, the

cogenerator.



Austin J. Amaya Chapter 3. Generalized BLH Theorems 65

3.3 Cogenerators, FRSI under cogenerators

3.3.1 General Cogenerators and FRSI preservation proper-

ties

Definition 3.3.1. If As is a semigroup of contractions with generator A, then we

define the cogenerator of As to be the operator

A := (I + A)(I − A)−1.

The cogenerator is already well characterized in the literature; see, for example,

section 8 of chapter 3 of [21]. We re-state without further proof a few results which

we will make particular use of.

Theorem 3.3.2 (Propositions 8.2, 8.3, and 9.2 of [21]). Let A be a strongly con-

tinuous semigroup of contractions and let A be its cogenerator. Then A is also a

contraction. If additionally, for each s ≥ 0, As is normal, self-adjoint, unitary,

completely nonunitary, or an isometry, then A exhibits the same property, and con-

versely.

Remark 3.3.3. We should point out that an equivalent characterization of simple

invariant subspaces is that the shift, restricted to the subspace, is completely non-

unitary. Thus the preceding theorem implies that a subspace is simply invariant

under a continuous shift if and only if it is simply invariant under the cogenerator of

the continuous shift.

We append to Theorem 3.3.2 the following result about full-range invariance.
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Lemma 3.3.4. Let T be a closed (continuous) bilateral shift with cogenerator T on

a Hilbert space X . Let M ⊂ X be a closed subspace such that T
∣∣
M is a unilateral

shift. Then M is full-range under T if and only if it is full-range under T.

Proof. By Lemma 3.1.4, we know thatM⊥ is simply invariant under T∗. By Theorem

3.3.2 (cf. Remark 3.3.3), we know that M⊥ is simply invariant under T∗. But by

Lemma 3.1.4 again, we conclude that M is full range under T.

Clearly, this argument also works in reverse, as the cited Lemmas are in fact equiv-

alent characterizations.

We combine the previous results into the following Theorem regarding dual shift-

invariant pairs. As we will be working extensively with these pairs of spaces, it is

this Theorem that will be of the greatest practical use to us.

Theorem 3.3.5. Let T be a closed (continuous) bilateral shift on a Hilbert space X

with cogenerator T. Further let M and M× be closed subspaces of X . Then the pair

(M,M×) forms a dual shift-invariant pair for T if and only if it also forms a dual

shift-invariant pair for T.

3.3.2 Shift semigroup cogenerator

We have worked almost exclusively with the translation semigroup on L2
U(R) and its

Laplace transform, which is a shift on L2
U(iR). We consider it more convenient to

develop the following theory using the Laplace transform; that is, we act in the so-

called frequency domain. We take a moment, therefore, to compute the cogenerator

of the Laplace transformed shift semigroup.
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Lemma 3.3.6. Let T̂ denote the semigroup on L2
U(iR) given by

(
T̂sg
)

(z) = e−szg(z).

Then the cogenerator of T̂ is T̂ given by

(
T̂g
)

(z) =
1− z
1 + z

g(z).

Proof. We recall that this semigroup has generator T̂ = M−z; that is,

(
T̂ g
)

(z) = −zg(z).

Applying the definition of the cogenerator T̂ gives

T̂g = (I + T̂ )(I − T̂ )−1g = (I +M−z)(I −M−z)−1g =
1− z
1 + z

g(z)

For our purposes, we shall think of mapping from a semigroup of contractions to

its cogenerator as a mapping from a continuous shift to a discrete shift; better, it

is a mapping that preserves the property of dual shift-invariance. Next, we turn

our attention to a mapping which transforms a discrete shift on L2
U(iR) which is a

contraction to a discrete shift on L2
U(T).
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3.4 Cayley transforms, FRSI under Cayley trans-

form

We begin by exhibiting a bijective isometry between L2
U(iR) and L2

U(T). We follow

the discussion beginning on page 105 of [15].

Theorem 3.4.1. Let f ∈ L2
U(iR) and let λ ∈ T. We define

Cf(λ) :=

√
2

1− λ
f

(
1 + λ

1− λ

)
.

Then Cf ∈ L2
U(T) and C is a bijective isometry from L2

U(iR) onto L2
U(T) with inverse

given by

C−1h(z) =

√
2

z + 1
h

(
z − 1

z + 1

)
.

Proof. The transform C is precisely a weighted Cayley transform; specifically, it is

derived from the transform that maps right half-plane to the unit disc. We leave it

to the interested reader to verify that if λ ∈ T \ {1}, then 1+λ
1−λ ∈ iR. It follows that

Cf(λ) is well defined on T \ {1}. Now we compute

‖Cf(λ)‖2
L2
U (T) =

∮
T

∣∣∣∣∣
√

2

1− λ
f

(
1 + λ

1− λ

)∣∣∣∣∣
2

dλ,

and, upon changing variables to z := 1+λ
1−λ , we find

=

∫
iR
|f(z)|2 dz,
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which of course is ‖f‖2
L2
U (iR). Thus C is an isometry.

A straightforward computation, which we leave to the reader, verifies that the claimed

C−1 is in fact the inverse of C.

Given a linear operator on L2
U(iR), we use the transform C to generate an operator on

L2
U(T) in the usual way. Specifically, we apply this construction to the cogenerator

T̂ of the shift semigroup T̂ on L2
U(iR).

Theorem 3.4.2. Let f ∈ L2
U(T) and let T̂ be the cogenerator of the shift group T̂

on L2
U(iR). With T̂, we associate a linear operator C(T̂) on L2

U(T) by

C(T̂)f(λ) := C
(
T̂C−1f

)
(λ).

Then

C(T̂)f(λ) = λf(λ).

That is, the Cayley transform of the cogenerator T̂, acting on L2
U(T), is the operator

of multiplication by λ. This operator is itself a (discrete) shift on L2
U(T). For further

discussion on this shift, see, e.g., [21] or [15].

Proof. We simply compute:

C(T̂)f(λ) = C
(
T̂C−1f

)
(λ)

= C
(
z − 1

z + 1
C−1f

)
(λ)

= λf(λ).
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Thus our mapping C gives us a correspondance between the (discrete) shift T̂ on

L2
U(iR) and the (discrete) shift Mλ : f(λ) ∈ L2

U(T) 7→ λf(λ). Further, as we show,

C maps T̂-invariant subspaces to Mλ-invariant subspaces; additionally, it preserves

the properties of simple invariance and full range invariance.

Lemma 3.4.3. Let T̂ be a bilateral shift on L2
U(iR) and let M⊂ L2

U(iR) be a closed

subspace such that T̂ is a unilateral shift on M. Let CM be the image of M under

the mapping C and let CT̂ be the image of T̂ under C, each as defined above. Then

M is T̂-invariant, simply-invariant, or full-range invariant if and only if CM is

CT̂-invariant, simply-invariant, or full-range invariant, respectively.

Proof. We begin with the statement of equivalence of invariance. First assume that

T̂M⊂M. Then consider

(
C(T̂)

)
(CM) = {

(
C(T̂)

)
g
∣∣ g ∈ CM}

= C{
(
T̂C−1g

) ∣∣ g ∈ CM}
= C{T̂f

∣∣ f = C−1g, g ∈ CM}

= C
(
T̂M

)
⊂ CM

The proof of the converse is essentially similar, except with the roles of C and C−1

reversed.

Next, we consider the equivalence of simple invariance. We assume that M is T̂-

simply invariant. A simple computation verifies that C(T̂N) = (C(T̂))N . In which
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case

∩∞n=0C(T̂)n (CM) = C
(
∩∞n=0

(
T̂nM

))
= C{0} = {0}.

Again, the converse statement is similar.

Finally, we consider the statement of equivalence of full-range invariance. We assume

that ∪∞n=0T̂
−nM = L2

U(iR) and consider

∪∞n=0C(T̂)−n (CM) = C
(
∪∞n=0T̂

−nM
)
.

If we take the closure, then, we see that

L2 -clos
(
∪∞n=0C(T̂)−n (CM)

)
= L2 -clos

(
C
(
∪∞n=0T̂

−nM
))

= C
(
L2 -clos

(
∪∞n=0T̂

−nM
))

= CL2(iR) = L2(T).

Upon taking the limit N → ∞, we get our desired statement of the equivalence of

full-range invariance. The converse statement is again, of course, essentially similar,

where one works with C−1 instead of C.

3.5 Generalized BLH Theorem due to Ball-Helton

For convenience, we restate—without proof, but with minor clarification of notation—

the version of the Beurling-Lax-Halmos Theorem as found in [4]. This theorem was

itself a restatement, complete with a more polished proof, of the result in [2]. First,

however, we define some useful auxiliary spaces. These are the spaces of so-called
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trigonometric polynomials.

Definition 3.5.1. We define the following subspaces of L2
U(T).

PU :=

{
f(λ) =

∑
n∈Z

fnλ
n
∣∣ fn ∈ U , and fn = 0 for all but finitely many n

}

PU ,+ :=

f(λ) =
∑
n∈Z+

fnλ
n
∣∣ fn ∈ U , and fn = 0 for all but finitely many n


PU ,− :=

f(λ) =
∑
n∈Z−

fnλ
n
∣∣ fn ∈ U , and fn = 0 for all but finitely many n


Remark 3.5.2. Note that the space PU is dense in L2

U(T). Further, L2 -closPU ,+ =

H2
U(T) and L2 -closPU ,− = H2

U(T)⊥. These latter two facts shed some light on

statement (2) in the following Theorem 3.5.4.

Also before stating our main Theorem of the section, we introduce a new class of

operator-valued functions.

Definition 3.5.3. We say that an a.e.-defined L(U)-valued function W on T is

L2(T)-regular if

1. W−1(λ) exists for almost all λ ∈ T and both MW and MW−1 are in L2
L(U)(T);

that is, multiplying by either W (z) or W−1(z) maps U into L2
U(T); and

2. the operator

MWPH2
U
M−1

W : PU → L1
U(T)

has range in L2
U(T) and extends to define a bounded operator from L2

U(T) into

itself.
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Theorem 3.5.4 (3.4 of [4]). We define a (discrete) shift Mλ on L2
U(T) by Mλf(λ) =

λf(λ). Now suppose thatM andM× are two subspaces of L2
U(T). Then the following

are equivalent

1. (M,M×) is a dual shift-invariant pair with respect to Mλ.

2. There exists a L2-regular L(U)-valued function W so that

M = L2 -closMWPU ,+ and M× = L2 -closMWPU ,−,

where MW denotes the operator which multiplies by W .

Moreover, in this case the dual shift-invariant pair (M,M×) uniquely determines W

up to an invertible constant right factor; i.e., if W ′ is another L2
U -regular L(U)-valued

function as in part (2), then there is an invertible constant operator X ∈ L(U) so

that W ′(λ) = W (λ)X.

3.6 Generalized BLH Theorem

We may now state a generalized version of Theorem 3.5.4 which allows continuous

shifts acting on L2
U(iR). Before we do so, however, we will introduce two auxiliary

subspaces of L2
U(iR).
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Definition 3.6.1. We define the following subspaces of L2
U(iR):

QU :=

{
f(z) =

∑
n∈Z

√
2fn

z + 1

(
z − 1

z + 1

)n ∣∣ fn = 0 for all but finitely many n ∈ Z

}
,

QU ,+ :=

f(z) =
∑
n∈Z+

√
2fn

z + 1

(
z − 1

z + 1

)n ∣∣ fn = 0 for all but finitely many n ∈ Z+

 ,

and

QU ,− :=

f(z) =
∑
n∈Z−

√
2fn

z + 1

(
z − 1

z + 1

)n ∣∣ fn = 0 for all but finitely many n ∈ Z−

 .

Remark 3.6.2. As suggested by the notation, these spaces are intimately related

to the P-spaces defined as a part of Theorem 3.5.4. To wit: the Q-spaces are the

images under the inverse Cayley transform C−1 of the P-spaces. Thus

QU = C−1PU , QU ,+ = C−1PU ,+, and QU ,− = C−1PU ,−.

It follows from this, as C is an isometry (cf. Theorem 3.4.1), that QU is dense in

L2
U(iR), L2 -closQU ,+ = H2

U(Π+), and L2 -closQU ,− = H2
U(Π−). These statements

could also be proven directly, of course.

The structure of the Q spaces is such that QU ,+ is Full-Range Simply-Invariant under

T̂ and QU ,− is Full-Range Simply-Invariant under T̂∗, as exhibited in the following

Lemma.

Lemma 3.6.3. Let Q, QU ,+, and QU ,− be as above and let T̂ be the multiplication
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operator on L2
U(iR) defined by

T̂f(z) =
z − 1

z + 1
f(z).

Then QU ,+ is Full-Range Simply-Invariant under T̂ and QU ,− is Full-Range Simply-

Invariant under T̂∗.

As before, we introduce a new class of operator-valued functions on iR.

Definition 3.6.4. We say that an a.e.-defined L(U)-valued function W on iR is

L2(iR)-regular if

1. W−1(z) exists for almost all z ∈ iR and both 1
z+1

MW and 1
z+1

MW−1 are in

L2
L(U)(iR); that is, multiplying by either W (z) or W−1(z) maps U into L2

U(iR);

and

2. the operator

MWPH2
U
M−1

W : QU → (z + 1)L1
U(iR)

has range in L2
U(iR) and extends to define a bounded operator from L2

U(iR)

into itself.

Note that if W is L2
U(iR)-regular, then multiplication by 1

z+1
W (z) maps U into

L2
U(iR).

Theorem 3.6.5. Let T̂ on L2
U(iR) be the Laplace transform of the translation group.

Let M and M× be closed subspaces of L2
U(iR) such that T

∣∣
M and T∗

∣∣
M× are unilat-

eral shifts. Then the following are equivalent:

1. The pair (M,M×) is a dual shift-invariant pair with respect to T̂.
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2. There exists a L2(iR)-regular function W such that

M = L2 -closWQU ,+ and M× = L2 -closWQU ,−.

Moreover, in this case, the dual shift-invariant pair (M,M×) uniquely deter-

mines W up to an invertible constant right factor; that is, if W ′ is another

function as in part (2), then there is an invertible constant operator X ∈ L(U)

so that W ′(z) = W (z)X.

Proof. We begin with the proof that (1) =⇒ (2).

By Theorem 3.3.5, the pair (M,M×) is dual shift-invariant under T̂, the cogenerator

of T̂. But then by Theorem 3.4.3, the pair (CM, CM×) is dual shift-invariant under

C(T̂) = Mλ.

To the pair (CM, CM×), then, we apply Theorem 3.5.4. Thus we have a L2
U(T)-

regular function, which we call W ′, satisfying the following representations:

CM = L2 -closW ′PU ,+, and CM× = L2 -closW ′PU ,−.

To these representations we apply C−1. As C−1 is an isometry from L2
U(T) to L2

U(iR),

it preserves closures. Thus we get

M = L2 -closW ′
(
z − 1

z + 1

)
QU ,+, and M× = L2 -closW ′

(
z − 1

z + 1

)
QU ,−.

If we identify W (z) := W ′( z−1
z+1

)
, then we have the claimed representations ofM and

M×.

Next we check that W is weighted L2(iR)-regular.



Austin J. Amaya Chapter 3. Generalized BLH Theorems 77

We first note that

√
2

z + 1
W (z) =

√
2

z + 1
W ′
(
z − 1

z + 1

)
= C−1W ′.

As W ′ ∈ L2
U(T), so 1

z+1
W (z) ∈ L2

U(iR), as claimed. Next, we clearly have that

W−1(z) = (W ′)−1( z−1
z+1

)
; thus we similarly have that 1

z+1
W−1(z) = 1√

2
C−1(W ′)−1

must be in L2
U(iR).

As W ′ is L2(T)-regular, we know that

M′ := MW ′PH2
U (T)M

−1
W ′

extends to a bounded operator from L2
U(T) into itself. But then the operator

M := C−1(M′)

similarly extends to a bounded operator from L2
U(iR) into itself.

From Theorem 3.5.4, we know that W ′ is unique up to an invertible constant right

factor; but W ′ uniquely determines W , so it follows that W is uniquely determined

up to a constant factor.

Now we show that (2) =⇒ (1). We first show that M+̇M× = L2
U(iR). To do this,

we show that the extended operator MWPH2
U (Π+)MW−1 is the projection from L2

U(iR)

onto M along M×.

Let f ∈ M. Then by hypothesis, there is a sequence fn ∈ QU ,+ so that Wfn →

f . Then, since MWPH2
U (Π+)MW−1 is bounded, MWPH2

U (Π+)MW−1Wfn → f . But

MWPH2
U (Π+)MW−1Wfn = Wfn ∈ M, thus MWPH2

U (Π+)MW−1f = f ∈ M. We may
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therefore conclude that M⊂ RanMWPH2
U (Π+)MW−1 .

We now let f ∈ L2
U(iR); as W is an (almost-everywhere) invertible mapping on

L2
U(iR), there exists some g ∈ L2

U(iR) with f = Wg. As the space QU is dense in

L2
U(iR), there exists a sequence {gn} ⊂ QU so that Wgn → f . We may write gn =

gn,+ + gn,− where gn,+ ∈ QU ,+ and gn,− ∈ QU ,−. We consider MWPH2
U (Π+)MW−1f :

MWPH2
U (Π+)MW−1f = L2 -limMWPH2

U (Π+)MW−1fn

= L2 -limMWPH2
U (Π+)MW−1Wgn

= L2 -limMWPH2
U (Π+)(gn,+ + gn,−)

= L2 -limMWgn,+.

But by our hypothesized representation ofM, we conclude that L2 -limWgn,+ ∈M,

and thus that RanMWPH2
U (Π+)MW−1 ⊂M.

We conclude that MWPH2
U (Π+)MW−1 maps L2

U(iR) onto M.

Now we consider f× ∈M×. Then there is a sequence gn,− ∈ QU ,− so that Wgn,− →

f×. We compute

MWPH2
U (Π+)MW−1f× = L2 -limMWPH2

U (Π+)MW−1Wgn,− = L2 -limMWPH2
U (Π+)gn,− = {0}

Thus MWPH2
U (Π+)MW−1 is in fact the projection onto M along M×. It follows that

L2
U(iR) =M+̇M×.

We next show thatM is invariant—indeed, simply invariant—under T̂. By Theorem

3.3.5, it suffices to show that M has these properties under T̂. We recall that T̂ is

an isometry on L2
U(iR): this follows from Theorem 3.3.2, as T̂ is an isometry. Then
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we have

T̂M = T̂L2 -closWQU ,+

= L2 -clos T̂WQU ,+,

but as T̂ is simply multiplication by z−1
z+1

, cf. Lemma 3.3.6, T̂ and W commute, so

= L2 -closW T̂QU ,+,

⊂ L2 -closWQU ,+

=M

Which is to say, M is T̂-invariant. To see that M is actually simply invariant is

fundamentally similar:

∩∞n=1T̂
nM = L2 -closW ∩∞n=1 T̂nQU ,+ = {0}.

The same argument, with the roles of T̂ and QU ,+ exchanged for those of T̂∗ and

QU ,−, shows that M× is simply invariant under T̂∗.

By Remark 3.1.3, it follows that the pair (M,M×) is dual shift-invariant.



Chapter 4

Data Representation Theorem

4.1 Sylvester Data Sets

We define both Π+- and Π−-admissible Sylvester data sets at once. Here, Π stands

for either Π+ or Π−.

Definition 4.1.1. We define an infinitesimal Π-admissible Sylvester data set to be

a quintet of operators (C,A;Z,B; Γ) acting on Hilbert spaces XP , XZ , and U as

follows:

1. The pair (C,A) : (D(A),D(A)) ⊂ (XP ,XP) → (U ,XP) is a Π exactly observ-

able pair,

2. the pair (Z,B) : (D(Z) ⊂ XZ ,U) → (XZ ,XZ,−1) is a Π exactly controllable

pair,

3. the operator Γ : D(Γ) ⊂ XP → XZ is closed and has dense domain,

80
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and that Γ additionally satisfies the Sylvester equation requirement, that

4. the semigroup A restricted to D(Γ) is strongly continuous in the graph norm

on D(Γ), and if we denote the domain of the generator of A|D(Γ) by D(Γ)1, then

for all x ∈ D(Γ)1, the Sylvester equation ΓAx− ZΓx = BCx holds.

We also introduce standard notation. We let

S := (C,A;Z,B; Γ)

denote a Π+-admissible Sylvester data set. Additionally, we let

S× := (C×, A×;Z×, B×; Γ×)

denote a Π−-admissible Sylvester data set.

Definition 4.1.2. Given a Π+-admissible Sylvester data set, we associate with it a

subspace of L2
U(R) by the following formula:

MS := {ObC,Ax+ f
∣∣ x ∈ D(Γ), f ∈ L2

U(R+), such that CbZ,Bf = Γx}.

And given a Π−-admissible Sylvester data set, we associate with it the subspace of

L2
U(R) defined by

M×
S := {g +OfC×,A×y

∣∣ g ∈ L2
U(R−), y ∈ D(Γ×), such that CfZ×,B× = Γ×y}

We take the Sylvester equation to be of the form ΓAx− ZΓx = BCx for all appro-

priate x. This matches the Sylvester equation used in [4], wherein it arises naturally



Austin J. Amaya Chapter 4. Data Representation Theorem 82

and is of immediate usefulness. In this current continuous-time context, we find that

this form of the Sylvester equation is in fact the infinitesimal form of an equivalent

equation involving the observation and control operators; we’ll refer to this as the

integrated Sylvester equation. Here we define the integrated Sylvester equation and

demonstrate its equivalence to the infinitesimal version.

Definition 4.1.3. Let (C,A;Z,B; Γ) be an infinitesimal Π− Sylvester Data Set.

Then for x ∈ D(Γ), we define the integrated Sylvester equation to be the equation

ΓA−sx = −
∫ s

0

Z−t|XZ,−1
BCAt−sxdt− Z−sΓx. (4.1)

Remark 4.1.4. We take a moment to note that the infinitesimal Sylvester equation

in a discrete-time context has an integrated form, to which it is equivalent. Indeed,

(C,A;Z,B; Γ) be an Admissible Sylvester Data Set in the sense of [4]. As A : D(Γ)→

D(Γ), we may use the Sylvester equation to compute ΓA(Ax):

ΓA(Ax) = BC(Ax) + ZΓ(Ax)

= BCAx+ Z(BCx+ ZΓx)

= BCAx+ ZBCx+ Z2Γx

Similarly, we may compute ΓA(A2x) and, in general, ΓA(An−1x). A brief induction

argument yields the (discrete-time) integrated Sylvester equation

ΓAnx =
n−1∑
i=0

ZiBCAn−1−i + ZnΓx,

which is clearly a discrete version of Equation (4.1).
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Of course, by setting n = 1 in the discrete-time integrated Sylvester equation, we

recover the discrete-time infinitesimal Sylvester equation.

Theorem 4.1.5. Let (C,A;Z,B) be as in a Π+ Sylvester Data Set, and let Γ be a

closed (not necessarily bounded) operator with dense domain such that A restricted

to D(Γ) is strongly continuous in the graph norm. Then the infinitesimal form of the

Sylvester equation

ΓAx− ZΓx = BCx (4.2)

holds for every x ∈ D(Γ) if and only if the integrated form of the Sylvester equation

ΓA−sx+ Z−sΓx = −CbZ,BTsObC,Ax (4.3)

holds for every x ∈ D(Γ).

Remark 4.1.6. We recall our notation that, if A is a strongly continuous backward

semigroup, then Asx = 0 when s > 0. Thus

CbZ,BTsObC,Ax =

∫ ∞
0

Z−t|XZ,−1
BTsCAtxdt =

∫ s

0

Z−t|XZ,−1
BCAt−sxdt.

Proof. First we demonstrate that the infinitesimal form gives rise to the integrated

form.

We choose an s contained in a right half-plane contained in ρ(A) ∩ ρ(Z)—such an

s is guaranteed to exist, as both A and Z generate strongly continuous semigroups.

We add sΓx to both sides of the Sylvester equation to get

Γ(A+ sI)x = (Z + sI)Γx+BCx.
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We define x′ := (A+ sI)x and multiply both sides of our equation by (Z + sI)−1 to

get, after rearrangement of terms,

Γ(A+ sI)−1x′ = (Z + sI)−1Γx′ − (Z + sI)−1BC(A+ sI)−1x′. (4.4)

Each term can now be recognized as a Laplace transform of a backward semigroup

as per Theorem 2.1.12. Specifically, we have that

Γ(A+ sI)−1x′ = Γ

∫ ∞
−∞

estAtx′dt

and

(Z + sI)−1Γx′ =

∫ ∞
−∞

estZtΓx′dt.

The remaining term is a product of Laplace transforms; it therefore corresponds to

the Laplace transform of a convolution:

(Z + sI)−1BC(A+ sI)−1x′ =

∫ ∞
−∞

est
∫ ∞
−∞

ZτBCAτ−sx′dτdt

We may now apply an inverse Laplace transform to (4.4) to get

ΓA−sx = −
∫ s

0

Z−t|XZ,−1
BCAt−sxdt− Z−sΓx.

Referring to our formulae for control and observation operators (cf. Definition 2.4.7)

as well as Remark 4.1.6, we see this is precisely the claimed integrated form of the

Sylvester equation.

Now we assume that the integrated form holds, and derive the infinitesimal form.

The essence of the computation is to differentiate with respect to s in the XZ,−1 norm
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and evaluate at s = 0. We treat the left- and right-hand sides separately, beginning

with the left-hand side.

In the following, we restrict to x ∈ D(Γ)1. The difference quotient of ΓA−sx is given

by
1

s

(
ΓA−sx− Γx

)
.

This difference quotient converges in ‖·‖XZ to −ΓAx as s→ 0, since A−s is a strongly

continuous semigroup on D(Γ) by condition (4) in Definition 4.1.1. That is, by

definition, if x ∈ D(Γ)1, then 1
s
(A−sx − x) converges to −Ax in the graph norm;

equivalently,∥∥∥∥1

s
(A−sx− x) + A−sAx)

∥∥∥∥2

XP
+

∥∥∥∥Γ

(
1

s
(A−sx− x) + A−sAx)

)∥∥∥∥2

XZ

converges to zero. The second term here is of particular interest, as it implies the

claimed convergence in XZ .

Turning our attention to the right-hand side of (4.1), we claim that the derivative of

the first term is given by BCx. This can be seen by computing the following (where

all norms are in XZ,−1 unless otherwise specified):∥∥∥∥1

s

∫ s

0

Z−tBCAt−sxdt−BCx
∥∥∥∥

=

∥∥∥∥1

s

∫ s

0

Z−tBCAt−sxdt+
1

s

∫ s

0

Z−tBCxdt− 1

s

∫ s

0

Z−tBCxdt−BCx
∥∥∥∥

=

∥∥∥∥1

s

∫ s

0

Z−tBC(At−s − I)xdt+
1

s

∫ s

0

(Z−t − I)BCxdt

∥∥∥∥
≤ 1

s

∫ s

0

(∥∥Z−tBC(At−s − I)x
∥∥+

∥∥(Z−t − I)BCx
∥∥) dt

As Z−tBC is norm-bounded for t in compact sets, the first integrand goes to zero as
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s ↓ 0 as a consequence of the strong continuity of A on D(A) ⊂ XP . Similarly, in the

second integrand, BCx is a fixed element of XZ,−1, so convergence of the integrand

to zero is a consequence of the strong continuity of Z−t on XZ,−1.

Penultimately, the second term on the right-hand side of (4.1) is simplest. As XZ
is precisely the domain of the generator of Z−s|XZ,−1

, the derivative exists and equals

−ZCbZ,Bf = −ZΓx.

Finally, we may evaluate the derivative of (4.1) in the XZ,−1 norm to get −ΓAx =

−BCx− ZΓx, or, rearranging,

ΓAx− ZΓx = BCx.

We note that in Definition 4.1.1, the Sylvester equation requirement (4) is qualita-

tively different from requirements (1) through (3). The following Lemma sheds light

on this requirement.

Lemma 4.1.7. Let M⊂ L2
U(R) be a subspace and let (C,A;Z,B; Γ) be a quintet of

operators satisfying conditions (1) through (3) in Definition 4.1.1 and such that M

has the form

M = {ObC,Ax+ f
∣∣ x ∈ D(Γ), f ∈ L2

U(R+), CbZ,Bf = Γx}. (4.5)

ThenM is closed and, further, is shift-invariant if and only if Γ satisfies the Sylvester

equation requirement (4) in Definition 4.1.1.

Remark 4.1.8. We wish to stress that the interpretation of Equation (4.5) is that,
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for any m ∈M,

m(t) =


(
ObC,Ax

)
(t), t < 0

f(t), t > 0

Proof. We may see that M is closed by the following: Let mn be a sequence in M

which converges to m. By hypothesis, each mn admits the representation mn =

ObC,Axn + fn for some xn ∈ D(Γ) and f ∈ L2
U(R+). As ObC,Axn ∈ L2

U(R−) and

L2
U(R−) is closed, we conclude that ObC,Axn → f− ∈ L2

U(R−). Similarly, the fn →

f+ ∈ L2
U(R+). Thus m = f− + f+.

As the pair (C,A) is Π+-admissible exactly observable, ObC,A is invertible; we may

therefore conclude that xn → x, where x = (ObC,A)−1f− ∈ XP . But we may say

more: we also have by hypothesis that CbZ,Bfn = Γxn. As the pair (Z,B) is exactly

controllable, CbZ,B is bounded. We conclude that Γxn converges to CbZ,Bf+. But as Γ

is closed, it must be that x ∈ D(Γ) and CbZ,Bf+ = Γx. We conclude that m takes the

form ObC,Ax + f+ such that CbZ,Bf+ = Γx; but this means that m ∈ M and that M

is closed.

We first assume that the Sylvester equation requirement 4 in Definition 4.1.1 holds;

this includes the assumption that the infinitesimal Sylvester equation holds. We

appeal immediately to Lemma 4.1.5 and work instead with the integrated Sylvester

equation.

We choose some element m ∈ M and assume it has a representation of the form

(4.5). We examine what happens when we apply Ts:

(Tsm)(t) = (Ts(ObC,Ax+ f))(t)

= CAt−sx+ f(t− s),
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which, in the light of Note 4.1.8 above, is to be interpreted as

=


CAt−sx = CAtA−sx, t < 0

CAt−sx, 0 < t < s

f(t− s), s < t

For fixed s, we define x′ := A−sx and f ′(t) := CAt−sx + f(t − s). By hypothesis,

A : D(Γ) → D(Γ), so x′ ∈ D(Γ). Also by hypothesis (C,A) comprises an exactly

observable pair, so CAt−sx ∈ L2
U(R+); so, too, therefore is f ′. Thus we have

Tsm = ObC,Ax′ + f ′(t).

for x′ ∈ D(Γ) and f ′ ∈ L2
U(R+). Since Tsm has the right form to be in M, all that

need be checked is the coupling condition Γx′ = CbZ,Bf ′.

Consider then

CbZ,Bf ′ =

 CbZ,BCAt−sx, 0 < t < s

CbZ,Bf(t− s), s < t

= −
∫ s

0

Z−t|XZ,−1
BCAt−sxdt−

∫ ∞
0

Z−t−s|XZ,−1
Bf(t)dt,

which, by the integrated Sylvester equation,

= ΓA−sx = Γx′.

We conclude that M is shift-invariant.

Now we prove the converse direction; we assume that M is shift-invariant.
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If m ∈M, then by (4.5),

Tsm = Ts(ObC,Ax+ f) = CAt−sx+ f(t− s).

But as TsM⊂M, we must have x′ and f ′ so that

CAt−sx+ f(t− s) = CAtx′ + f ′(t). (4.6)

Evaluating (4.6) in different cases will give us the other results we claim.

When t < 0, (4.6) becomes

CAt−sx = CAtx′

so A−sx = x′ since CAt has bounded left inverse. As both x and x′ are in D(Γ), an

immediate consequence of this is that As : D(Γ)→ D(Γ), as claimed.

On the other hand, if t > 0, then (b) tells us

CAt−sx
∣∣
0≤t<s + f(t− s)

∣∣
t≥s = f ′(t).

Applying CbZ,B to both sides, recalling that CbZ,Bf ′ = Γx′ = ΓA−sx gives

ΓA−sx =

 CbZ,BCAt−sx, 0 < t < s

CbZ,Bf(t− s), s < t
.

We rewrite the right hand side, also expanding the control and observation operators,

to get

ΓA−sx = −
∫ s

0

Z−t|XZ,−1
BCAt−sxdt−

∫ ∞
s

Z−t|XZ,−1
Bf(t− s)dt,
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or, relabeling t in the right integral,

ΓA−sx = −
∫ s

0

Z−t|XZ,−1
BCAt−sxdt−

∫ ∞
0

Z−t−s|XZ,−1
Bf(t)dt.

But this last term can be identified with Z−sCbZ,Bf , which can be further identified

with Z−sΓx by the coupling condition in the definition of M; this gives, finally,

ΓA−sx = −
∫ s

0

Z−t|XZ,−1
BCAt−sxdt− Z−sΓx (4.7)

Equation (4.7) is nothing other than the integrated form of the Sylvester equation,

cf. (4.1). Lemma 4.1.5 states that this is equivalent to the infinitesimal form of the

Sylvester equation.

We will continue to work with the integrated Sylvester equation in order to show

that A−s is strongly continuous on D(Γ) in the graph norm.

We now consider D(Γ) as a space in its own right, and we equip it with the Γ-graph

norm. We seek to show that A−s is strongly continuous on D(Γ). We know by strong

continuity of Ts that for any m ∈ M, we have Tsm → m strongly as s ↓ 0. As M

is shift-invariant, we have that Tsm ∈M; we may apply our representation to both

m and Tsm, then, to get that an x and xs in X and f and f s in L2
U(R+) so that

m = ObC,Ax+ f, and Tsm = ObC,Axs + f s,

and further that xs = A−sx. Strong continuity of Ts guarantees therefore that

ObC,Axs + f s → ObC,Ax+ f



Austin J. Amaya Chapter 4. Data Representation Theorem 91

strongly as s ↓ 0; but we have that both ObC,Axs and ObC,Ax are in L2
U(R−) and that

both f s and f are in L2
U(R+), so it follows that ObC,Axs → ObC,Ax and that f s → f ,

where each convergence is strong.

As ObC,A is bounded by hypothesis, we conclude that xs → x strongly.

We know that f s converges strongly to f ; but as CbZ,B is bounded, we may conclude

that CbZ,Bf s → CbZ,Bf , also strongly. By our representation assumption on M, we

may conclude that Γxs → Γx strongly.

We now have that both xs → x and Γxs → Γx, implying precisely that xs → x in

the Γ graph norm. As xs = A−sx, we conclude that A−s is strongly continuous on

D(Γ).

As A−s
∣∣
D(Γ)

is strongly continuous, it has a closed generator A′ with a domain that

we denote D(Γ)1, dense in D(Γ) in the graph norm. As A′ is a restriction of A, we

have that D(Γ)1 ⊂
(
D(Γ) ∩ D(A)

)
⊂ XP . But as, trivially,

‖·‖XP ≤ ‖·‖D(Γ) ,

D(Γ)1 is in fact dense in D(Γ) with respect to ‖·‖XP ; it follows that D(Γ)1 is dense

in XP with respect to ‖·‖XP .
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4.2 The Data Representation Theorem

4.2.1 Four Lemmas on Data Representations in Special Cases

We present four Lemmas, which can be thought of as special cases of our data set

representation Theorem. In fact, as we will show in Theorem 4.2.10 below, the

general case can in a sense be reduced to these four special cases.

Lemma 4.2.1. Let P× ⊂ L2
U(R+) be a closed subspace which is invariant under the

compressed backward shift
(
Ts+
)∗

. Then there exists a Hilbert space X×P , a densely-

defined operator A× generating a rigged structure on X×P , and a further operator

C× : X×P,1 → U such that the pair (C×, A×) constitutes a Π−-admissible exactly

observable pair and that

P× = RanOfC×,A× .

Remark 4.2.2. We note that an alternate proof may be found in [8] page 292.

Proof. We take inspiration from the analogous result for M⊂ L2(Z+) in which one

may choose X =M, A : X → X to be the backward (discrete) shift, and C : X → Y

to be

C :


x0

x1

x2

...

 7→ x0.

With these choices, it is easy to check that OC,A
∣∣
X = IX and that, trivially therefore,

M = OC,AM.

Consequently, we choose X =M. We choose A to be the generator of
(
Ts+
)∗ ∣∣
M, the
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compressed backward (continuous) shift. By Proposition 2.2.7, A : x 7→ −x′ with

D(A) = {x ∈M ⊂ L2(R+) : x ∈ AC(R+) and x′ ∈ L2(R+)}.

We choose C : D(A) → U to be the Dirac delta function at zero; that is, let C :

x(t) ∈ D(A) 7→ x(0). Then C
(
Ts+
)∗

is well defined as a mapping from D(A) to U ;

therefore OfC,A : x 7→ C
(
Ts+
)∗
x is well defined as a mapping on D(A). For x ∈ D(A),

OfC,Ax = {C
(
Ts+
)∗
x(t)}s≥0 = {Cπ+T

sx(t)}s≥0 = {Cx+(t + s)}s≥0 = {x(s)}s≥0,

which can be identified with x ∈ L2(R+). In other words,

OC,A
∣∣
D(A)

= I
∣∣
D(A)

.

As D(A) is dense in L2(R+) and thus inM, OC,A has a unique continuous extension

from D(A) ∩M to M: namely IM =: OC,A. Thus with these choices of (C,A) and

X , we get M = OC,AM. What needs to be shown is that (C,A) form an exactly

observable pair.

First we show that (C,A) is an L2-admissible pair. A is, by definition, the generator

of the semigroup
(
Ts+
)∗

which is strongly continuous by Theorem 2.2.4. To show

that C has the required properties is, however, more delicate: it must be shown that

there exists some M > 0 so that

‖Cx‖Y ≤M
(
‖x‖2

2 + ‖x′‖2
2

) 1
2
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for every x ∈ D(A). Consider

‖Cx‖U = ‖x(0)‖U

=

∫ 1

0

‖x(0)‖U dt

=

∫ 1

0

∥∥∥∥x(t)−
∫ t

0

x′(s)ds

∥∥∥∥ dt,
since x ∈ AC(R+), so

≤
∫ 1

0

‖x(t)‖U dt+

∫ 1

0

∫ t

0

‖x′(s)‖U dsdt

≤
∫ 1

0

‖x(t)‖U dt+

∫ 1

0

∫ 1

0

‖x′(s)‖U dsdt,

= ‖x‖L1((0,1)) + ‖x′‖L1((0,1))

≤ ‖x‖L2(0,1) + ‖x‖L2(0,1)

≤ ‖x‖L2(R+) + ‖x‖L2(R+) .

But this last expression may be viewed as the Manhattan norm of (‖x‖L2(R+) , ‖x′‖L2(R+)) ∈

R2, and it is well known that all norms on R2 are equivalent; therefore there exists

some M so that

‖x‖L2(R+) + ‖x‖L2(R+) ≤M
(
‖x‖2

2 + ‖x′‖2
2

) 1
2
.

Thus is the desired inequality shown. With this inequality, it is seen that C can be

thought of as a bounded operator from D(A) to U , if D(A) is equipped with the

graph norm. Finally, the unique extension of OC,A from D(A) ∩ X to X is, by the
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above discussion, IX . Trivially this extension satisfies the bound

‖OC,Ax‖X = ‖x‖X ≤ 1 · ‖x‖X .

All conditions for (C,A) to be an L2-admissible observable pair are thus satisfied.

But it is also claimed that (C,A) is exactly observable; one may verify this as follows:

since OC,A = IX , clearly KerOC,A = {0}. By construction, RanOC,A =M, which is

closed by hypothesis. Since the kernel of OC,A is trivial and its range is closed, the

pair (C,A) is exactly observable.

That is, the pair (C,A) is an exactly observable pair of operators and X =M is a

Hilbert space so that M = RanOC,A.

Definition 4.2.3. We define the pair (C×, A×) with state space XP = M as con-

structed in Lemma 4.2.1 above to be the model Π−-admissible exactly observable pair

and use (C×,A×) to denote it.

Lemma 4.2.4. Let M0 ⊂ L2
U(R+) be a closed subspace which is invariant under the

forward shift Ts. Then there exists a Hilbert space XZ , a densely-defined operator Z

generating a rigged structure on XZ , and a further operator B : U → XZ,−1 such that

the pair (Z,B) constitutes a Π+-admissible exactly controllable pair and that

M0 = Ker CbZ,B.

Proof. We are given that M0 ⊂ L2
U(R+) is forward shift invariant. But then by

Lemma 2.1.21, we have that P× := L2
U(R+) 	 M is compressed backward shift

invariant.

We apply Theorem 4.2.1 to P× to construct Hilbert space X×P and an exactly ob-
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servable pair of operators (C×, A×) such that P× = ObC×,A×X
×
P .

By Theorem 2.4.9 we know that the pair (−(A×)∗, (C×)∗) is an Π−-admissible exactly

controllable pair. Further, we have that

M0 = (P×)⊥ =
(
RanObC×,A×

)⊥
= Ker

(
ObC×,A×

)∗
= Ker Cf−(A×)∗,(C×)∗ .

It therefore suffices to take X×Z = X , Z = −(A×)∗, and B = (C×)∗.

In particular, one choice is to set (Z,B) = (−(A×)∗, (C×)∗) with (C×,A×) as in

Definition 4.2.7.

Definition 4.2.5. We define the pair (Z,B) constructed at the end of the proof of

Lemma 4.2.4 above to be the model Π+-admissible exactly controllable pair and use

(Z,B) to denote it.

Lemma 4.2.6. Let P ⊂ L2
U(R−) be a closed subspace which is invariant under the

compressed forward shift
(
Ts−
)∗

. Then there exists a Hilbert space XP , a densely-

defined operator A generating a rigged structure on XP , and a further operator C :

XP,1 → U such that the pair (C,A) constitutes a Π+-admissible exactly observable

pair and that

P = RanObC,A.

Proof. This proof closely parallels that of Lemma 4.2.1. It is, in fact, precisely a

time-reversed version thereof.

We choose XP = P , A to be the generator of
(
Ts−
)∗ ∣∣
P , and C to be the point-

evaluation operator at zero C : f ∈ D(A) 7→ f(0). Having made these choices, we

show that the pair (C,A) is Π+-admissible exactly observable.
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By definition, A is the generator of
(
Ts−
)∗ ∣∣
P , which is a strongly continuous forward

semigroup by Theorem 2.2.4. We then define the rigged spaces XP,−1 and XP,1 with

respect to A as per section 2.4.2.

We have fully characterized the generator of the full semigroup
(
Ts−
)∗

in Theorem

2.2.10. In particular, the domain D(T ) consists of functions which are absolutely

continuous. As XP,1 = D(T ), C is defined on XP,1.

We turn our attention to C in order to show that it is bounded as an operator from

XP,1 to U . This computation parallels a similar computation in the proof of Lemma

4.2.1. We consider, for x ∈ XP,1

‖Cx‖U = ‖x(0)‖U

=

∫ 0

−1

‖x(0)‖U dt

=

∫ 0

−1

∥∥∥∥x(t) +

∫ 0

t

x′(s) ds

∥∥∥∥
U
dt

≤
∫ 0

−1

‖x(t)‖U dt+

∫ 0

−1

∫ 0

t

‖x′(s)‖U ds dt

≤
∫ 0

−1

‖x(t)‖ dt+

∫ 0

−1

∫ 0

−1

‖x′(s)‖U ds

= ‖x‖L1(−1,0) + ‖x′‖L1(−1,0)

≤ ‖x‖L2(−1,0) + ‖x′‖L2(−1,0)

≤ ‖x‖L2(R−) + ‖x′‖L2(R−) ,



Austin J. Amaya Chapter 4. Data Representation Theorem 98

but now we recognize that x′ = Ax and that X is a subspace of L2(R−), so we may

write

= ‖x‖X + ‖Ax‖X .

We may now apply Lemma 2.4.4 to the last estimate to conclude the existence of

some M ≥ 0 such that

‖Cx‖U ≤M ‖x‖XP,1
.

With these definitions, we have for x ∈ XP,1 thatObC,Ax = {CAsx}s≤0 = {C
(
Ts−
)∗
x}s≤0 =

{Cx(t − s)}s≥0 = {x(−s)}s≥0, which we may identify with x ∈ L2(R−). Thus on

XP,1, we have ObC,A = I, the identity operator. Clearly this extends continuously

to all of XP and the extended operator (also called) ObC,A is also the identity. This

extended ObC,A is trivially one-to-one.

So far we have that (C,A) is a Π+-Admissible Observable Pair. But the extended

operator ObC,A is also trivially onto, so we may conclude that (C,A) is in fact exactly

observable.

Finally, also trivially, we have that P = RanObC,A.

Definition 4.2.7. We define the pair (C,A) constructed in the proof of Lemma

4.2.6 above to be the model Π+-admissible exactly observable pair and use (C,A) to

denote it.

Lemma 4.2.8. Let M×
0 ⊂ L2(R−) be a closed subspace which is invariant under the

backward shift Ts−. Then there exists a Hilbert space X×Z , a densely-defined operator

Z× generating a rigged structure on X×Z , and a further operator B× : U → X×Z,−1

such that the pair (Z×, B×) constitutes a Π+-admissible exactly controllable pair and
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that

M×
0 = Ker CfZ×,B× .

Proof. We consider P := L2(R−) 	 M×
0 . By Lemma 2.1.21, we have that P is

invariant under
(
Ts−
)∗

, the compressed forward shift.

We may therefore apply Lemma 4.2.6 to P to get a Π−-admissible exactly observable

pair (C,A) such that P = RanObC,A.

By Theorem 2.4.9, though, we know that the pair (−A∗, C∗) is a Π+-admissible

exactly controllable pair and that (ObC,A)∗ = Cf−A∗,C∗ . Further, we have that

M×
0 = (P)⊥ = (RanObC,A)⊥ = Ker(ObC,A)∗ = Ker CfA∗,C∗ .

It therefore suffices to take X×Z =M×
0 , Z× = −A∗, B× = C∗.

One particular choice of (Z×, B×) is (−A∗,C∗), where (C,A) is the model Π+-

admissible exactly observable pair as in Definition 4.2.7.

Definition 4.2.9. We define the pair (Z×, B×) defined in Lemma 4.2.8 above to be

the model Π+-admissible exactly controllable pair and use (Z×,B×) to denote it.

4.2.2 The General Data Representation Theorem

Theorem 4.2.10. 1. IfM is a closed subspace of L2
U(R), then it is forward shift-

invariant if and only if there is a Π+-admissible Sylvester data set (C,A;Z,B; Γ)
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so that

M = {ObC,Ax+ f : x ∈ D(Γ), f ∈ L2
U(R+), CbZ,Bf = Γx}.

2. If M× is a closed subspace of L2
U(R), then it is backward shift-invariant if and

only if there is a Π−-admissible Sylvester data set (C×, A×;Z×, B×; Γ×) so that

M× = {g +OfC×,A×y : y ∈ D(Γ×), g ∈ L2
U(R−), CfZ×,B×g = Γ×y}.

3. Let (M,M×) be a pair of spaces which have the forms M =MS and M× =

M×
S× for a Π+-admissible Sylvester data set S and a Π−-admissible Sylvester

data set S×. Then the pair (M,M×) forms a direct sum decomposition of

L2
U(R) if and only if the coupling matrix

ΓS,S× :=

 CfZ×,B×ObC,A Γ×

Γ CbZ,BO
f
C×,A×


is invertible.

Proof of (1). We begin by assuming thatM is shift-invariant and construct the Π+-

admissible Sylvester data set.

Let π− be the orthogonal projection from L2
U(R) onto L2

U(R−). We define three

auxiliary spaces P := π−M, M0 := M∩ L2
U(R+), and Z := L2

U(R+) 	M0. Then

we have that P is a compressed forward shift invariant subspace of L2
U(R−) andM0

is a forward shift invariant subspace of L2
U(R+).

We apply Lemma 4.2.6 to P and obtain a Hilbert space XP and the model Π+-
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admissible exactly observable pair (C,A) such that P = ObC,AXP .

Similarly, we may apply Lemma 4.2.4 toM0 to get a Hilbert space XZ and the model

Π+-admissible exactly controllable pair (Z,B) such that M0 = Ker CbZ,B.

To construct the operator Γ, we apply Lemma 2.3.1 with X = L2
U(R), X− = L2

U(R−)

and X+ = L2
U(R+). Our auxiliary spaces P , M0, and Z correspond exactly to

their Lemma 2.3.1 counterparts. Then we have a densely-defined closed operator

Γ : D(Γ) ⊂ P → X+ 	M0 =: XZ such that we may write

M = {mp + f
∣∣ mp ∈ D(Γ), f ∈ L2

U(R+),Γmp = PXZf}.

But as ObC,A = IP , the identity on P , we may write

M = {ObC,Amp + f
∣∣ mp ∈ D(Γ), f ∈ L2

U(R+),Γmp = PXZf}.

Further, referring again to Lemma 4.2.4, we recognize that the operator CbZ,B is given

by CbZ,Bf = PXZf for f ∈ L2
U(R+). Thus we may write

M = {ObC,Amp + f
∣∣ mp ∈ D(Γ), f ∈ L2

U(R+),Γmp = CbZ,Bf}.

ThusM has the desired representation in terms of (C,A; Z,B; Γ). All that remains

to be seen that (C,A; Z,B; Γ) satisfies the Sylvester equation. But in Lemma 4.1.7,

we showed that satisfying the Sylvester equation is equivalent to M being shift-

invariant.

We now assume that (C,A;Z,B; Γ) is a Π+-admissible Sylvester data set and define
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the space

M = {ObC,Amp + f
∣∣ mp ∈ D(Γ), f ∈ L2

U(R+),Γmp = CbZ,Bf}.

Then Lemma 4.1.7 immediately gives thatM is both closed and shift-invariant.

Proof of (2). We assume that M× is backward shift-invariant and construct the

Π−-admissible Sylvester data set. This proceeds in exact analogy to the proof of (1)

above.

We let π+ be the orthogonal projection from L2
U(R) onto L2

U(R+) and define three

auxiliary spaces: P× := π+M×, M×
0 := M∩ L2

U(R−), and Z× := L2
U(R−) 	M×

0 .

We note that P× is a compressed backward shift invariant subspace of L2
U(R+) and

that M×
0 is a backward shift invariant subspace of L2

U(R−).

We apply Lemma 4.2.1 to P× to obtain a Hilbert space X×P and the model Π−-

admissible exactly observable pair (C×,A×) such that P× = OfC×,A×XP .

We apply Lemma 4.2.8 to M×
0 to obtain a Hilbert space X×Z and the model Π−-

admissible exactly controllable pair (Z×,B×) such that M×
0 = Ker CfZ,B.

We construct the operator Γ× by the application of Lemma 2.3.1 with X = L2
U(R),

X− = L2
U(R−), and X+ = L2

U(R+); here our spaces P×, M×
0 , and Z× correspond to

their Lemma 2.3.1 non-cross counterparts. Then we have a closed, densely-defined

operator Γ× : D(Γ×) ⊂ P× → Z× such that

M× = {g +mp

∣∣ mp ∈ D(Γ×), g ∈ L2
U(R−),Γ×mp = PX×Z

g}.

Similarly to before, we recognize that since OfC×,A× = I and that CfZ,B = PX×Z
, we
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may rewrite this as

M× = {g +OfC×,A×mp

∣∣ mp ∈ D(Γ×), g ∈ L2
U(R−),Γ×mp = CfZ,Bg}.

Thus M× has the desired representation in terms of (C×,A×; Z×,B×; Γ×). What

remains to be seen is that (C×,A×; Z×,B×; Γ×) satisfies the Sylvester equation. But

again, we appeal to Lemma 4.1.7.

We now assume that (C×, A×;Z×, B×; Γ×) is a Π−-admissible Sylvester data set and

construct the space

M× = {g +OfC×,A×mp

∣∣ mp ∈ D(Γ×), g ∈ L2
U(R−),Γ×mp = CfZ,Bg}.

By Lemma 4.1.7, we see immediately that M× is both closed and backward shift-

invariant.

Proof of (3). We first characterize M∩M× in terms of the kernel of ΓS,S× .

Let h ∈M∩M×, and we write h = h− + h+ with h− ∈ L2
U(R−) and h+ ∈ L2

U(R+).

By hypothesis, h can be written as an element of MS, so

h− + h+ = ObC,Ax+ f, with CbZ,Bf = Γx.

But by orthogonality, we conclude that h− = ObC,Ax and h+ = f ; therefore also

CbZ,Bh+ = Γx. As h is also an element of M×, it has a representation as an element

of M×
S× :

h− + h+ = g +OfC×,A×y, with CfZ×,B×g = Γ×y.
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As before, we may conclude that h+ = OfC×,A×y, h− = g, and CfZ×,B×h− = Γ×y.

Notice then that any h ∈ M ∩M× has the form h = ObC,Ax + OfC×,A×y for a pair

(x, y) ∈ (D(Γ),D(Γ×)) satisfying the additional constraints CbZ,BO
f
C×,A×y = Γx

CfZ×,B×O
b
C,Ax = Γ×y

. (4.8)

Now consider some pair (x, y) ∈ (D(Γ),D(Γ×)) satisfying the constraints (4.8)

and construct h = ObC,Ax + OfC×,A×y. Then h ∈ M as the coupling condition

CbZ,BO
f
C×,A×y = Γx is satisfied. Similarly based on the other coupling condition we

conclude that h ∈M×.

Putting the two previous paragraphs together, we conclude that h ∈ M ∩M× if

and only if it has the form ObC,Ax+OfC×,A×y satisfying the conditions (4.8) for a pair

(x, y) ∈ (D(Γ),D(Γ×)). We also write

h =
[
ObC,A −OfC×,A×

] x

−y

 .
But as we may re-write the coupling conditions (4.8) as

 CfZ×,B×ObC,A Γ×

Γ CbZ,BO
f
C×,A×

 x

−y

 =

 0

0

 ,
we recognize that any pair (x,−y) satisfying the coupling conditions is, in fact, in

Ker ΓS,S× and conversely.

Finally, then, we exhibit the mapping
[
ObC,A −OfC×,A×

]
as a bijection from Ker ΓS,S×
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to M∩M×. In particular, we conclude that

dim Ker ΓS,S× = dimM∩M×. (4.9)

Now we assume that the pair (M,M×) forms a direct-sum decomposition of L2
U(R).

As this implies that M∩M× = {0}, we immediately conclude by (4.9) that ΓS,S×

is one-to-one. It therefore suffices to show that ΓS,S× is onto.

Choose some h ∈ L2
U(R). By hypothesis, we may write h = m×+m where m× ∈M×

and m ∈M; further

m× = g +OfC×,A×y where CfZ×,B×g = Γ×y

and

m = ObC,Ax+ f where CbZ,Bf = Γx.

As we may also use the decomposition h = h− + h+, we conclude

h− = g +ObC,Ax and h+ = OfC×,A×y + f.

Applying control operators and re-writing in terms of ΓS,S× , we have

ΓS,S×

 x

y

 =

 CfZ×,B× 0

0 CbZ,B

 h−

h+

 . (4.10)
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As we chose h arbitrarily, we see that

Ran ΓS,S× ⊃ Ran

 CfZ×,B× 0

0 CbZ,B


As the control operators are onto by hypothesis, we conclude that ΓS,S× is in fact

onto.

We turn our attention to the converse; we assume that ΓS,S× is invertible. Thus

dim Ker ΓS,S× = 0 and by (4.9) we conclude that M∩M× = {0}. We now choose

some h = h− + h+ ∈ L2
U(R); referring to (4.10) and the preceeding analysis, we see

that as ΓS,S× is invertible, we may solve for unique (x, y) such that

h = (ObC,Ax+ f) + (g +OfC×,A×)

subject to CbZ,Bf = Γx and CfZ×,B×g = Γ×y. Which is to say, h has the form m×+m

for m× ∈M× and m ∈M. As h was arbitrary, we conclude thatM+M× = L2
U(R).



Chapter 5

Realization Theorem

We now consider the transfer-function realization question for L2
U(iR)-regular func-

tions. That is, given such a function W , we seek a well-posed linear system which has

W as its transfer function. We will make use of the preceding two chapters to do so:

that is, we will first use W to generate a dual shift-invariant pair (M,M×) and then

find data sets (C,A;Z,B; Γ) and (C×, A×;Z×, B×; Γ×) which represent (M,M×).

We then use these operators to construct our linear system.

We introduce a standard notation for this chapter. Almost exclusively, we will be

working with the Laplace transforms of the operators and spaces from the preceding

chapters. That is, we will be working in the frequency domain, as opposed to the time

domain. Normally we mark the difference with a “hat”: for example, if A is an oper-

ator on L2
U(R), we would write Â to denote the associated operator on L2

U(iR) which

is the Laplace transform of A. As we work only with the Laplace transform in this

chapter, implementing the hat notation would result in an unthinkable proliferation

of hats. To avoid this catastrophe, we dispense with the hats entirely.

107
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Our realization formula is written in an unusual format. One reason for this is

that we take advantage of the fact that the Hardy spaces H2
U(Π+) and H2

U(Π−) are

reproducing kernel Hilbert spaces. We therefore discuss these spaces briefly before

moving on to the main theorem.

5.1 Reproducing Kernel Hilbert Spaces

Definition 5.1.1. A Reproducing Kernel Hilbert Space is a Hilbert space X whose

elements are U -valued functions on a set Ω for which the operation of point evaluation

is continuous for each z ∈ Ω. That is, the mapping Λz : X → U given by Λzf = f(z)

is continuous.

By the Riesz representation theorem, it follows that there is a unique element kz(·) ∈

X such that, for all z, 〈f, kz〉X = f(z). We call this element kz the Reproducing Kernel

for X .

In particular, we will focus on the Hardy spaces H2
U(Π+) and H2

U(Π−) as reproducing

kernel Hilbert spaces. The reproducing kernels for these spaces are well known; we

state the kernels below and refer the reader to [15] for the proof.

Theorem 5.1.2. The Hardy space H2(Π+) is a reproducing kernel Hilbert space with

kernel

kz(ζ) =
1

ζ + z
,

where z ∈ Π+.
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Similarly, the Hardy space H2(Π−) is a reproducing kernel Hilbert space with kernel

k⊥w (ζ) = − 1

ζ + w
,

where w ∈ Π−.

5.2 The General Theorem

Theorem 5.2.1. Let W be L2
U(iR)-regular (see Definition 3.6.4; define subspaces

M := L2 -closMWQU ,+ and M× := L2 -closMWQU ,−.

Then the pair (M,M×) is a dual shift-invariant pair with respect to Tt = Mest on

L2
U(iR) (see Definition 3.1.2).

Furthermore, withM we associate the Π+-admissible Sylvester data set S := (C,A;Z,B; Γ)

and withM× we associate the Π−-admissible Sylvester data set S× := (C×, A×;Z×, B×; Γ×);

we make both of these associations according to Theorem 4.2.10. We addition-

ally let ΓS,S× be the coupling matrix from the same Theorem. Then the operator

P := I −MWPH2
U (Π+)M

−1
W acting on L2

U(iR) is a (generally nonorthogonal) projec-

tion. Further, if we consider P as a block 2 × 2 operator on H2
U(Π−) ⊕ H2

U(Π+)

according to the formula

P =

 PH2
U (Π−)

PH2
U (Π+)

 (I −MWPH2
U (Π+)M

−1
W )

[
PH2
U (Π−) PH2

U (Π+)

]
, (5.1)

then P admits the following realization formula: for all w′, z′ ∈ Π−, w, z ∈ Π+, and
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u, u′, v, v′ ∈ U

〈
P
[
k⊥
w′u
′

kwu

]
,
[
k⊥
z′v
′

kzv

]〉
=
〈[

k⊥
w′ (z

′) 0

0 0

]
[ u
′
u ] , [ v

′
v ]
〉
U×U
−〈[

C(z′I−A)−1 0

0 C×(zI−A×)−1

]
Γ−1
S,S×

[
(w̄′I+Z×)−1B× 0

0 (w̄I+Z)−1B

]
[ u
′
u ] , [ v

′
v ]
〉
U×U

(5.2)

Proof. By our generalized Beurling-Lax-Halmos Theorem 3.6.5, we know that the

pair (M,M×) is a dual shift-invariant pair and that L2
U(iR) =M+̇M×.

To this pair (M,M×), we may apply our general data representation Theorem

4.2.10—or rather, we apply the Laplace transform thereof. Dispensing with the

usual hats to denote the Laplace transform, we thus have a Π+-admissible Sylvester

data set S = (C,A;Z,B; Γ) such that

M = {ObC,Ax+ f : x ∈ D(Γ), f ∈ H2
U(Π+), CbZ,Bf = Γx}. (5.3)

a Π−-admissible Sylvester data set S× = (C×, A×;Z×, B×; Γ×) such that

M× = {g +OfC×,A×y : y ∈ D(Γ×), g ∈ H2
U(Π−), CfZ×,B×g = Γ×y}. (5.4)

and we know that the associated coupling matrix ΓS,S× is invertible.

We identify L2
U(iR) = H2

U(Π−) ⊕ H2
U(Π+) and concentrate on the operator P on

H2
U(Π−) ⊕ H2

U(Π+), which we define to be the projection onto M× along M. We

exhibit two formulas for P , whence will come the claimed realization formula.

From the proof of Theorem 3.6.5, we know that the operatorMWPH2
U (Π+)MW−1 acting
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on L2
U(iR) is the projection onto M along M×. It follows that

I −MWPH2
U (Π+)M

−1
W

is the projection onto M× along M. We then construct the block 2 × 2 version of

P according to (5.1). This is the first formula.

To exhibit the second formula, we consider an arbitrary h ∈ L2
U(iR); we may of

course write h = h− + h+ with h− ∈ H2
U(Π−) and h+ ∈ H2

U(Π+). Additionally, as

L2
U(iR) =M×+̇M, there exist m× and m so that h = m× + m. According to Eqs.

5.3 and 5.4, then, there exist f ∈ H2
U(Π+), g ∈ H2

U(Π−), x ∈ XP , and y ∈ X×P so

that

m× = g +OfC×,A×y, with CfZ×,B×g = Γ×y, and

m = ObC,Ax+ f, with CbZ,Bf = Γx

We thus have the representations h− = g +ObC,Ax and h+ = OfC×,A×y + f . For the

second projection formula, we seek an operator P fulfilling the formula

P

 h−

h+

 =

 g

OfC×,A×y

 .
Following the proof of Theorem 4.2.10, as ΓS,S× is invertible, we may solve for the

pair (x, y) in terms of (h−, h+) thus:

 x

y

 = Γ−1
S,S×

 CfZ×,B× 0

0 CbZ,B

 h−

h+


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And from g = h− −ObC,Ax, we have

 g

0

 =

 I 0

0 0

 h−

h+

−
 ObC,A 0

0 0

 x

y

 .
Thus we may conclude that

P =

 I 0

0 0

+

 −ObC,A 0

0 OfC×,A×

Γ−1
S,S×

 CfZ×,B× 0

0 CbZ,B

 . (5.5)

This is our second formula for P .

We now note that computing the kernel Gramian of the first formula (5.1) leads to

the left hand side of our claimed realization (5.2) in Theorem 5.2.1.

To complete our theorem, we use our second representation 5.5 to compute the so-

called kernel Gramian. That is, for arbitrary w′, z′ ∈ Π−, w, z ∈ Π+, and u, u′, v, v′ ∈

U , we compute 〈
P

 k⊥w′u
′

kwu

 ,
 k⊥z′v

′

kzv

〉
H2(Π−)⊕H2

U (Π+)

(5.6)

As much due to a lack of space as for the purpose of clarity, we break the computation

down into steps. The first term is trivial to compute:

〈 I 0

0 0

 k⊥w′u
′

kwu

 ,
 k⊥z′v

′

kzv

〉 =

〈 k⊥w′(z
′)u′

0

 ,
 v′

v

〉
U×U

, (5.7)

where, of course, the equality follows via the reproducing kernel property. The second
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term is the interesting one. We have

〈 −ObC,A 0

0 OfC×,A×

Γ−1
S,S×

 CfZ×,B×k⊥w′u′
CbZ,Bkwu

 ,
 k⊥z′v

′

kzv

〉 (5.8)

=

〈 CfZ×,B×k⊥w′u′
CbZ,Bkwu

 ,Γ−1,∗
S,S×

 −(ObC,A)∗ 0

0 (OfC×,A×)∗

 k⊥z′v
′

kzv

〉

We therefore consider inner products of the form
〈
CbZ,Bkwu, x

〉
XZ

, where x ∈ XZ is

arbitrary.

We compute

〈
CbZ,Bkzu, x

〉
XZ

=
〈(
−OfB∗,−Z∗

)∗
kzu, x

〉
XZ
,

as control operators are adjoints of observation operators by Theorem 2.4.10; this

then

= −
〈
kzu,OfB∗,−Z∗x

〉
H2
U (Π+)

;

but we may take advantage of the reproducing kernel property, as well as our explicit

formula for (Laplace transforms of) observation operators in Lemma 2.4.13, to see

that this

= −
〈
u,B∗(zI + Z∗)−1x

〉
U

= −
〈
(z̄I + Z)−1Bu, x

〉
XZ
.

A similar computation gives that
〈
CfZ×,B×k

⊥
w′u
′, x′
〉

= 〈−(w̄′I + Z×)−1B×u′, x′〉.
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We may thus rewrite (5.8) as

〈 −ObC,A 0

0 OfC×,A×

Γ−1
S,S×

 −(w̄′I + Z×)−1B×u′

−(w̄I + Z)−1Bu

 ,
 k⊥z′v

′

kzv

〉 ;

but in this form, we may explicitly evaluate the reproducing kernel inner products

to get

〈 C(z′I − A)−1 0

0 C×(zI − A×)−1

Γ−1
S,S×

 −(w̄′I + Z×)−1B×u′

−(w̄I + Z)−1Bu

 ,
 v′

v

〉 ;

(5.9)

Combining equations (5.7) and (5.9) gives the claimed result.

5.3 The Inner Case

We now consider a special case wherein our L2-regular function W is in fact two-

sided inner. This is a very important special case for the reasons of being both

illustrative and—perhaps more imporantly—motivating. In particular, as we work

out the details of Theorem 5.2.1, we shall recover a much more common form of

realization theorem; this motivates us in claiming that said Theorem is in fact a

realization theorem. Before considering the details, we first give the definition of

inner functions.

Definition 5.3.1. Let W ∈ H∞L(U)(Π+) be contraction-valued. Considered as a

function on iR, we say that W is

1. inner if W (z) is a.e. an isometry,



Austin J. Amaya Chapter 5. Realization Theorem 115

2. ∗-inner if W (z) is a.e. a coisometry,

3. and two-sided inner if W (z) a.e. unitary.

Note that W is two-sided inner if and only if it is both inner and ∗-inner.

One can similarly speak of an inner, ∗-inner, or two-sided inner function inH2
L(U)(Π−).

Remark 5.3.2. We note that if W is (Π+) two-sided inner, then MW is a mapping

from H2
U(Π+) into itself.

By hypothesis, W (z) is invertible on the line iR and equals W ∗(z). Noting that for

z ∈ iR we have z = −z̄, we may write

W−1(z) = W ∗(−z̄). (5.10)

This formula allows us to extend W−1 analytically to Π−. Further, via this extension,

we have that W−1 ∈ H∞L(U)(Π−) and that M−1
W maps H2

U(Π−) into itself.

Corollary 5.3.3. Let W ∈ H∞L(U)(Π+) be two-sided inner. In this case, the realiza-

tion formula (5.2) of Theorem 5.2.1 takes the following form: for all z, w ∈ Π+,

IU −W (z)W (w)∗

z + w̄
= −B∗(zI + Z∗)−1Γ−1

S,S×(w̄I + Z)−1B. (5.11)

Proof. We first note that inner functions are L2(iR)-regular: as W is unitary, for

any u ∈ U , we have that∥∥∥∥ 1

z + 1
MWu

∥∥∥∥2

2

≤ ‖u‖2
U

∫
iR

1

|z|2 + 1
dz = π ‖u‖2

U .
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Also as W is unitary, the same estimate holds for W−1 = W ∗. Further, we clearly

have that, as an operator on QU ,
∥∥∥MWPH2

U
MW−1

∥∥∥ ≤ 1; thus MWPH2
U
MW−1 extends

to a bounded operator on L2
U(iR) with image in L2

U(iR).

Now, due to the structure of M and M×, we can in fact say more about the data

sets S and S×. That M⊂ H2
U(Π+) implies that M is fully represented by Lemma

4.2.4; thus

S = (0, 0, Z,B, 0)

with XP = {0} and XZ = H2
U(Π+)	M.

Somewhat similarly, we decompose M× as M× = H2
U(Π−)⊕ PH2

U (Π+)M×; but then

PH2
U (Π+)M×, and thus all of M×, is fully characterized by Lemma 4.2.1. It follows

that

S× = (C×, A×, 0, 0, 0)

with X×P = PH2
U (Π+)M× and X×Z = {0}.

But we may say even more about S×. Recall that M = L2 -closWQU ,+ and that

M× = L2 -closQU ,−. Thus for any m ∈ M and m× ∈ M×, we have sequences

{fi} ⊂ QU ,+ and {gi} ⊂ QU ,− with Wfi → m and Wgi → m×. We consider the

L2
U(iR) inner product 〈Wfi,Wgj〉, which of course equals 〈fi, gj〉 since W is unitary.

By the continuity of the inner product, we may take limits as i, j →∞ to conclude

that 〈m,m×〉 = 0. That is, we conclude that M× = M⊥. But then it follows that

X×P = PH2
U (Π+)M× = H2

U(Π+)	M = XZ . And thus, by the proof of Lemma 4.2.4,

we may conclude that in fact, we have that C× = B∗ and that A× = −Z∗, so that

S× = (B∗,−Z∗, 0, 0, 0)
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Finally, we also thus know that

ΓS,S× =

 0 0

0 CbZ,BO
f
B∗,−Z∗

 .
Recall that we also know that ΓS,S× is invertible; in this case this means that(
CbZ,BO

f
B∗,−Z∗

)−1

exists—although the individual inverses do not—and that

Γ−1
S,S× =

 0 0

0
(
CbZ,BO

f
B∗,−Z∗

)−1

 =

 0 0

0
((
OfB∗,−Z∗

)∗
OfB∗,−Z∗

)  .
Hereafter, we shall abuse notation slightly and write Γ−1

S,S× = −
((
OfB∗,−Z∗

)∗
OfB∗,−Z∗

)−1

.

Now we may begin to specialize (5.2). We begin with the right hand side thereof.

Applying our knowledge of data sets S and S×, we have

〈
k⊥w′(z

′)u′, v′
〉
U −

〈
B∗(zI + Z∗)−1Γ−1

S,S×(w̄I + Z)−1Bu, v
〉
U

(5.12)

Considering the left hand side next, we see from (5.2) that P has, in fact, the block

matrix form

(I −MWPH2
U (Π+)M

−1
W )

 1 1

1 1

 .
Writing temporarily P = I −MWPH2

U (Π+)M
−1
W , we see thus that we have four terms

to compute:

〈
Pk⊥w′u

′, k⊥z′v
′〉︸ ︷︷ ︸

1

+
〈
Pkwu, k

⊥
z′v
′〉︸ ︷︷ ︸

2

+
〈
Pk⊥w′u

′, kzv
〉︸ ︷︷ ︸

3

+ 〈Pkwu, kzv〉︸ ︷︷ ︸
4
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We take each term in turn.

Considering term 1, we have

〈
Pk⊥w′u

′, k⊥z′v
′〉 = 〈kw′(z′)u′, v′〉 −

〈
MWPH2

U (Π+)M
−1
W k⊥w′u, k

⊥
z′v
′
〉
.

But from Remark 5.3.2, we know thatM−1
W k⊥w′ ∈ H2

U(Π−), so that 0 = PH2
U (Π+)M

−1
W k⊥w′ .

Thus we may conclude that

〈
Pk⊥w′u

′, k⊥z′v
′〉︸ ︷︷ ︸

1

= 〈kw′(z′)u′, v′〉 . (5.13)

We turn to term 2. We have

〈
Pkwu, k

⊥
z′v
′〉 =

〈
kwu, k

⊥
z′v
′〉− 〈MWPH2

U (Π+)M
−1
W kwu, k

⊥
z′v
′
〉
.

The first inner product is clearly zero by orthogonality. The second inner product is

also zero:

〈
MWPH2

U (Π+)M
−1
W kwu, k

⊥
z′v
′
〉

=
〈
PH2
U (Π+)M

−1
W kwu,M

−1
W k⊥z′v

′
〉
.

Again from Remark 5.3.2, we know that M−1
W k⊥z′ ∈ H2

U(Π−), thus this inner product

is also zero by orthogonality. We conclude

〈
Pkwu, k

⊥
z′v
′〉︸ ︷︷ ︸

2

= 0 (5.14)

Term 3 comprises two inner products. The first inner product is zero by orthog-

onality, precisely as it was for term 2. The second inner product is also zero, as
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M−1
W k⊥w′ ∈ H2

U(Π−) just as in term 1. Thus

〈
Pk⊥w′u

′, kzv
〉︸ ︷︷ ︸

3

= 0. (5.15)

Finally, we compute term 4. We have

〈Pkwu, kzv〉 = 〈kw(z)u, v〉 −
〈
MWPH2

U (Π+)M
−1
W kwu, kzv

〉
= 〈kw(z)u, v〉 −

〈
M−1

W kwu, PH2
U (Π+)M

−1
W kzv

〉
(5.16)

In order to compute the second inner product, we consider terms of the form〈
M−1

W kwu, f
〉
H2
U (Π+)

for arbitrary f ∈ H2
U(Π+). By Remark 5.3.2, and inserting the

dummy variable of integration ζ, we rewrite this as
〈
W ∗(−ζ̄)kw(ζ)u, f(ζ)

〉
. But

we may rewrite this as
〈
kw(ζ)u,W (−ζ̄)f(ζ)

〉
; in this last expression we may take

advantage of the reproducing kernel property to get 〈u,W (−w̄)f(w)〉U . We may now

move W back to the left side of the inner product to get 〈W−1(−w̄)u, f(w)〉U . To

this expression, we re-insert the reproducing kernel kw(ζ) to conclude that

〈
M−1

W kwu, f
〉
H2
U (Π+)

=
〈
kw(ζ)W−1(−w̄)u, f(ζ)

〉
H2
U (Π+)

.

We may thus rewrite (5.16) as

〈Pkwu, kzv〉 = 〈kw(z)u, v〉 −
〈
MWPH2

U (Π+)kwW
−1(−w̄)u, kzv

〉
But as kw ∈ H2

U(Π+), we may simply evaluate the inner product using the reproduc-
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ing kernel on the right side to get

〈kw(z)u, v〉 −
〈
kw(z)W (z)W−1(−w̄)u, v

〉
;

we combine the two inner products to finally conclude that

〈Pkwu, kzv〉︸ ︷︷ ︸
4

=
〈
kw(z)

(
IU −W (z)W−1(−w̄)

)
u, v
〉
. (5.17)

Thus the left hand side of (5.2) is computed by adding equations (5.13), (5.14),

(5.15), and (5.17):

〈
k⊥w′(z

′)u′, v′
〉

+ 〈kw(z)u, v〉 −
〈
kw(z)W (z)W−1(−w̄)u, v

〉
. (5.18)

We have computed the right hand side of our equation as (5.12) and the left hand side

as (5.18); setting these two expressions equal to each other gives—after cancellation

of a common term—

〈
kw(z)

(
IU −W (z)W−1(−w̄)

)
u, v
〉

= −
〈
B∗(zI + Z∗)−1Γ−1

S,S×(w̄I + Z)−1Bu, v
〉
.

Recalling the formula for kw(z) (cf. Theorem 5.1.2) and that W−1(−w̄) = W ∗(w),

we conclude that

IU −W (z)W ∗(w)

z + w̄
= −B∗(zI + Z∗)−1Γ−1

S,S×(w̄I + Z)−1B,

in exact agreement with the claimed equation (5.11).
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Remark 5.3.4. We note that Γ−1
S,S× = −

((
OfB∗,−Z∗

)∗
OfB∗,−Z∗

)−1

< 0. Thus our

factorization

IU −W (z)W ∗(w)

z + w̄
= B∗(zI + Z∗)−1(−Γ−1

S,S×)(w̄I + Z)−1B

exhibits the deBranges-Rovnyak kernel

IU −W (z)W ∗(w)

z + w̄

as a positive kernel.

Remark 5.3.5. We note that our approach to the realization of a two-sided inner

function complements that of Jacob-Zwart in [16].

5.4 The Wiener-Hopf Case

We consider a second illustrative special case wherein our representing function W

has all zeroes and poles contained within Π+. This case has applications to the

construction of Wiener-Hopf factorizations; hence the name of this case.

With great similarity to the Inner Case, we will find that the Sylvester data sets are

degenerate. This leads to a great simplification of our realization formula and allows

for explicit computation of the kernel Gramians.

Corollary 5.4.1. Let W ∈ H∞L(U)(Π−) be invertible with W−1 ∈ H∞L(U)(Π−) as well.

Then the realization formula (5.2) of Theorem 5.2.1 takes the following form: for all
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w ∈ Π+ and z′ ∈ Π−,

IU −W (z′)W (−w̄)−1

z′ + w̄
= −C(z′I − A)−1Γ−1(w̄I + Z)−1B. (5.19)

Proof. As both W and W−1 are bounded, it follows that W is L2(iR)-regular. The

argument is essentially the same as that in the first paragraph of the proof of Corol-

lary 5.3.

Next, we note that M× = H2
U(Π−). This fact follows immediately from the repre-

sentation M× = L2 -closWQU ,−. As W ∈ H∞L(U)(Π−), we may pass the closure past

W to get M× = WH2
U(Π−). But as W−1 ∈ H∞L(U)(Π−) as well, we may say that

WH2
U(Π−) = H2

U(Π−).

Having identified M×, we may construct the data set (C×, A×;Z×, B×; Γ×). We

first consider PH2
U (Π+)M× = {0}. We then construct the pair (C×, A×) by Lemma

4.2.1; we conclude that C× = 0. In this case, we may as well also take A× = 0. We

construct the pair (Z×, B×) by considering M× ∩ H2
U(Π−) = H2

U(Π−). By Lemma

4.2.8, we have that Ker CfZ×,B× = H2
U(Π−); as this is the entire space, we conclude

that CfZ×,B× = 0. It follows that B× = 0, in which case we may take Z× = 0

as well. Finally, the choice Γ× = 0 suffices to complete our degenerate data set

(C×, A×;Z×, B×; Γ×) = (0, 0; 0, 0; 0).

We thus also know that

ΓS,S× =

 0 0

Γ 0

 :

 D(Γ)

{0}

→
 {0}
XP

 .
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In this case, we interpret the invertibility of ΓS,S× to mean that Γ−1 exists. We

further identify Γ−1
S,S× as

Γ−1
S,S× =

 0 Γ−1

0 0


We may now specialize equation (5.2). We begin with the right-hand side, which we

write as 〈
k⊥w′(z

′)u′, v′
〉
−
〈
C(z′I − A)−1Γ−1(w̄I + Z)−1Bu, v′

〉
(5.20)

We turn our attention to the left-hand side of (5.2). As in the inner case, writing

P = I −MWPH2
U (Π+)M

−1
W , we recognize that we must compute four terms:

〈
Pk⊥w′u

′, k⊥z′v
′〉︸ ︷︷ ︸

1

+
〈
Pkwu, k

⊥
z′v
′〉︸ ︷︷ ︸

2

+
〈
Pk⊥w′u

′, kzv
〉︸ ︷︷ ︸

3

+ 〈Pkwu, kzv〉︸ ︷︷ ︸
4

We begin with term 1.

〈
Pk⊥w′u

′, k⊥z′v
′〉︸ ︷︷ ︸

1

=
〈
k⊥w′(z

′)u′, v′
〉
−
〈
MWPH2

U (Π+)M
−1
W u′, v′

〉
=
〈
k⊥w′(z

′)u′, v′
〉
, (5.21)

as M−1
W maps H2

U(Π−) onto H2
U(Π−).

Term 2 turns out to hold the most interest for us. We compute

〈
Pkwu, k

⊥
z′v
′〉︸ ︷︷ ︸

2

=
〈
kwu, k

⊥
z′v
′〉− 〈MWPH2

U (Π+)M
−1
W kwu, kz′v

′
〉
. (5.22)

The first inner product is zero by orthogonality. To compute the second inner

product, we first focus on terms of the form 〈W−1(ζ)kw(ζ)u, f(ζ)〉 for arbitrary



Austin J. Amaya Chapter 5. Realization Theorem 124

f ∈ H2
U(Π+). Then

〈
W (ζ)−1kw(ζ)u, f(ζ)

〉
=
〈
kw(ζ)u,

(
W (ζ)−1

)∗
f(ζ)

〉
L2
U (iR)

=
〈
kw(ζ)u,

(
W (−ζ̄)∗

)
f(ζ)

〉
L2
U (iR)

where we now recognize that
(
W (−ζ̄)−1

)∗ ∈ H∞L(U)(Π+), so that

=
〈
kw(ζ)u,

(
W (−ζ̄)−1

)∗
f(ζ)

〉
H2
U (Π+)

=
〈
u,
(
W (−w̄)−1

)∗
f(w)

〉
U

=
〈
W (−w̄)−1u, f(w)

〉
U

=
〈
kw(ζ)W (−w̄)−1u, f(ζ)

〉
H2
U (Π+)

We now recognize that (5.22) may be rewritten as

−
〈
W (ζ)kw(ζ)W (−w̄)−1u, k⊥z′v

′〉 . (5.23)

We consider therefore the projection of MWkw onto H2
U(Π−). We note that

MWkwu =
W (ζ)

ζ + w̄
u =

W (ζ)−W (−w̄)

ζ + w̄
u+

W (−w̄)

ζ + w̄
u.

The second term equals kw(ζ)W (−w̄)u and is thus in H2
U(Π+). The first term is in

H2
U(Π−), as the numerator is analytic in Π− and zero at ζ = −w̄, canceling the pole.
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We may finally thus rewrite (5.23) as

−
〈
(W (ζ)−W (−w̄))kw(ζ)W (−w̄)−1u, k⊥z′v

′〉− 〈kw(ζ)W (−w̄)W (−w̄)−1u, k⊥z′(ζ)
〉

= −
〈
(W (z′)−W (−w̄))kw(z′)W (−w̄)−1u, v′

〉
U

=
〈(
I −W (z′)W (−w̄)−1

)
kw(z′)u, v′

〉
U

We finally conclude therefore that

〈
Pkwu, k

⊥
z′v
′〉︸ ︷︷ ︸

2

=
〈(
I −W (z′)W (−w̄)−1

)
kw(z′)u, v′

〉
U . (5.24)

We next turn our attention to term 3. We have that

〈
Pk⊥w′u

′, kzv
〉︸ ︷︷ ︸

3

=
〈
k⊥w′u

′, kzv
〉
−
〈
MWPH2

U (Π+)M
−1
W k⊥w′u, kzv

〉
= 0. (5.25)

That the first inner product is zero is a consequence of the orthogonality of H2
U(Π−)

and H2
U(Π+). The second inner product is zero follows from that fact that M−1

W maps

H2
U(Π−) onto H2

U(Π+).

Finally, we conclude with term 4. We have

〈Pkwu, kzv〉 = 〈kw(z)u, v〉 −
〈
MWPH2

U (Π+)M
−1
W kwu, kzv, .

〉
In order to compute this, we consider terms of the form

〈
M−1

W kwu, f
〉

for arbitrary
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f ∈ H2
U(Π+). Then

〈
M−1

W kwu, f
〉

=
〈
W (ζ)−1kw(ζ)u, f(ζ)

〉
=
〈
kw(ζ)u,

(
W (ζ)−1

)∗
f(ζ)

〉
L2
U (iR)

=
〈
kw(ζ)u,

(
W (−ζ̄)−1

)∗
f(ζ)

〉
L2
U (iR)

;

but we may identify this last inner product as actually taking place in H2
U(Π+) so

that we may take advantage of the reproducing kernel property to get

=
〈
u,
(
W (−w̄)−1

)∗
f(w)

〉
U

=
〈
W (−w̄)−1u, f(w)

〉
U

=
〈
kw(ζ)W (−w̄)−1u, f(ζ)

〉
H2
U (Π+)

.

We may thus rewrite
〈
MWPH2

U (Π+)M
−1
W kwu, kzv

〉
= 〈W (ζ)kw(ζ)W (−w̄)−1u, kz(ζ)v〉.

We now compute, using a similar argument,

〈
W (ζ)kw(ζ)W (−w̄)−1u, kz(ζ)v

〉
=
〈
kw(ζ)W (−w̄)−1u,W (ζ)∗kz(ζ)v

〉
L2
U (iR)

=
〈
kw(ζ)W (−w̄)−1u,W (−ζ̄)∗kz(ζ)

〉
H2
U (Π+)

=
〈
W (−w̄)−1u,W (−w̄)∗kz(w)

〉
U

= 〈u, kz(w)v〉U

= 〈kw(z)u, v〉U .

Finally, then, we may conclude that

〈Pkwu, kzv〉︸ ︷︷ ︸
4

= 0. (5.26)
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Putting together equations (5.21), (5.24), (5.25), and (5.26), we conclude that the

left-hand side of (5.2) equation equals

〈
k⊥w′(z

′)u′, v′
〉
U +

〈(
I −W (z′)W (−w̄)−1

)
kw(z′)u, v′

〉
U (5.27)

Combining the right-hand side of (5.2) in (5.20) with the left-hand side in (5.27)

gives our realization formula

〈(
I −W (z′)W (−w̄)−1

)
kw(z′)u, v′

〉
U = −

〈
C(z′I − A)−1Γ−1(w̄I + Z)−1Bu, v′

〉

Remark 5.4.2. We note that in the rational matrix case—i.e., where W is a rational

matrix—a realization formula of the form

I −W (z′)W (w)−1

z − w
= C(zI − A)−1Γ−1(wI − Z)−1B,

i.e., formula (5.19) with w in place of −w̄, and where (C,A;Z,B; Γ) is a so-called

global null-pole triple for W in the terminology of [1], was observed and developed

by Katsnelson [18].
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