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Kenyan Vegetable Farmers’ IPM adoption: barriers and impacts 
 

Ryan Keefe O’Reilly 
 

ABSTRACT 
 
 
This thesis analyzes factors affecting adoption of integrated pest management (IPM) 
techniques by Kenyan vegetable farmers, including the role of their risk preferences.  It 
also analyzes factors affecting their pesticide applications and expenditures. A survey 
was administered to 450 Kenyan vegetable growers to identify their pest management 
practices, and a behavioral experiment was run to elicit their risk preferences utilizing. 
Cumulative Prospect Theory. Loss aversion was found to be correlated with higher 
likelihood of IPM adoption while risk aversion was associated with higher pesticide 
application rates and expenditures. The influence of IPM adoption on pesticide use 
differed by IPM technique. 
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GENERAL AUDIENCE ABSTRACT 

 
 

Integrated Pest Management (IPM) techniques can improve small holder farmers’ 
livelihoods by lowering production costs and decreasing dependence on chemical 
pesticides. Even though some IPM techniques have been available to Kenyan vegetable 
farmers since the 1990’s, IPM adoption remains relatively low while chemical pesticide 
use remains high. A farm-household survey and behavioral experiment were conducted to 
identify factors that influence farmer decisions to adopt IPM and to apply pesticides. 
Factors that influence IPM adoption were found to differ from those that influence 
pesticide decisions. Furthermore, IPM adoption by Kenyan farmers does not decrease use 
of chemical pesticides for all IPM techniques.
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Chapter 1. Introduction 

Sub-Saharan Africa’s economic progress has been a focal point for international 

development agencies for decades. Billions of dollars of development aid have been targeted at 

the region for micro finance and entrepreneurship, environmental conservation, gender equality, 

education, sanitation, nutrition, health, political systems, trade, infrastructure, communication, 

agriculture, etc. (Ndikumana and Pickbourn 2017; World Bank 2018; Thirtle and Lin 2003). 

Progress has been made in recent years and is reflected in many areas such as literacy, 

agricultural development, and poverty. For many countries in Sub-Saharan Africa, agricultural 

production plays an important role in income generation, subsistence and nutrition. Considerable 

foreign assistance attention in recent decades has focused on Kenya’s agricultural development, 

with programs such as USAID’s Feed the Future being a good example (World Bank 2018).  

The importance of Kenyan agriculture to the country’s development and stability is 

multifaceted. With over 75% of Kenyans working at least part time in agriculture, and 75% of 

agricultural output derived from small scale, rain-fed production, the development of rural areas 

has been focal point for many development projects (World Bank 2018). The current population 

of 50 million, population growth rate of 1.57 percent, and dependency ratio of 78.3 percent poses 

a major challenge for Kenya’s development. The country’s vulnerability to economic shocks 

shows the immediate need to improve both agricultural and non-agricultural sectors. Especially 

during times of extended drought, such as 2008-2013, the high dependency ratio causes 

increased food insecurity and heavy reliance on international aid. International support has 

increased in recent years, and in 2019 the U.S. alone contributed $102.1 million dollars and 

43,325 MT of food (USAID 2020). Furthermore, Kenya’s high population growth rate has 

caused land parcels in areas of high productivity to shrink in size, pushing new farms to marginal 
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lands, limiting the productivity of farmers, and contributing to the vulnerability of Kenyans 

(FAO 2012; Peter and Bukachi 2018). However, progress has been made since 2005, and Kenya 

has seen the proportion of its population living below the national poverty line, $1.90 a day, fall 

from 46.8 to 36.1 percent (World Bank 2018). Kenya’s agricultural development will continue to 

be an integral part of the country’s success. 

 Kenya’s horticultural sector continues to be a major contributor to nutrition, income 

generation, and exports for the country (Kabaluk 2010; CARE 2016). Overall, the sector 

contributes the highest share of agriculture’s GDP, with commercial large-scale operations 

dominating the export sector while domestic markets are supplied by small scale producers that 

account for 80 percent of all growers. Yet, the productivity and marketability of the country’s 

horticultural sector has considerable room for improvement. Specifically, the industry is 

characterized with low fertilizer use, high crop losses, overuse of pesticides, and a changing 

dynamic of pests affecting horticulture in Kenya (Midega and Murage 2016; Datta and 

Mullainathan 2014; EAVCIPM-IL report; Peter and Bukachi 2018; CARE 2016). Integrated Pest 

Management (IPM) is a solution that can address some of these challenges and is actively being 

disseminated in Kenya. 

 IPM is a pest treatment portfolio of chemical, biological, and cultural pest management 

techniques that can be used to minimize pesticide use and reduce production costs to the farmer 

(Sparger and Alwang 2011; Carrión Yaguana and Alwang 2016; Lagnaoui and Santi 2004; 

Gautam and Schreinemachers 2017; Larochelle and Alwang 2017; Orr and Ritchie 2004; De 

Groote and Vanlauwe 2010; Abtew and Niassy 2016; Macharia and Ndegwa 2009; Parsa and 

Morse 2014). IPM programs began in southeast Asia in the 1980’s with rice production and 

made their way to Africa in the early 1990’s with assistance from the International Centre for 
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Insect Physiology and Ecology (ICIPE) (Bekele and Mithöfer 2011) and additional support from 

FAO and USAID. Studies have shown that reducing pesticide use through IPM adoption can 

lead to health benefits, reductions in pesticide resistance, and environmental conservation: 

improved biodiversity, soil quality, water quality (Abtew and Niassy 2016; Parsa and Morse 

2014). However, as the data show, IPM adoption is not widespread world-wide. Adoption of 

IPM techniques by farmers depends on a variety of factors that make their farms unique (Carrión 

Yaguana and Alwang 2016; Orr and Ritchie 2004; Parsa and Morse 2014). Farm size, crops 

cultivated, type of production, household demographics, climate, distance from inputs and 

markets, credit restrictions, access to extension, time constraints, risk preferences, social 

networks is a non-exhaustive list that can contribute to a farmers’ decisions to adopt, postpone 

adoption, or reject IPM techniques (Parsa and Morse 2014; Lagnaoui and Santi 2004).  

The East African Vegetable Crop IPM Innovation Lab (EAVCIPM-IL) project was 

established to induce technology development in the Feed the Future priority areas in Tanzania, 

Ethiopia, and Kenya. The objective of the project is to work with local delegates to advise 

national and regional policy for agricultural technology development that is locally adaptable, 

gender-appropriate, reduces environmental degradation, and improves producer welfare. IPM 

techniques that meet the criteria set by the EAVCIPM-IL have been regionally adapted and 

actively disseminated since 2015. The priority crops for the program are tomato, onion, African 

eggplant, cabbage, chilies, and beans. The program was implemented in three countries with 

region specific objectives.  

This study will focus on the crops and IPM technologies promoted by the EAVCIPM-IL in 

Kenya and evaluate the factors affecting adoption by Kenyan farmers. The Kenyan IPM 

techniques that were introduced in the region were tailored to cabbage, tomatoes, and French 
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beans in vegetable producing areas around Mount Kenya. The priority crops were identified by 

the program during the initial year of the program with support from EAVCIPM-IL partner 

Kenyan Agriculture and Livestock Research Organization (KALRO). KALRO is a Kenyan led 

research organization established by the Kenya Agricultural and Livestock Research Act of 2013 

to “establish suitable legal and institutional framework for coordination of agricultural research 

in Kenya.” (Kenya 2014). The crops are susceptible to a wide range of pests, are grown 

extensively in Kenya under a variety of conditions, are a source of critical income for small-scale 

farmers, highly nutritional, and show new dynamics of pests affecting them. The changing pest 

dynamics, as stated by the program, has led to increased crop losses, synthetic pesticide use, 

pesticide resistance, production costs, and human exposure to pesticides, and a reduction in bio-

diversity. The IPM techniques advocated by the program are the use of pest-resistant plant 

varieties (PRV), healthy seeds/sanitizing seed treatments, solarization, starting seedlings in 

growing trays, nursery nets to protect plants, removing damaged plants from fields, yellow sticky 

traps, microbial pesticides, bio-pesticides, Trichoderma, and mulching.  

The underlying problem is that the IPM techniques advocated by the EAVCIPM-IL program 

have had a low adoption rate in the region, at least as indicated by the 2016 baseline survey. The 

critical question is whether adoption remains low in the region and why. A follow-up 

questionnaire was deployed June 2019 and tailored to understand the factors of IPM adoption 

and effects of adoption on pesticide use.  

1.1 Significance and objectives of research 

The agriculture technology adoption literature is large. A question that is commonplace 

for development agencies is: How are we going to meet the food demand of future populations 

with current land and water resource scarcities? One answer is to increase farmers’ productivity 
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by developing and disseminating agricultural technologies tailored to regional needs. However, 

as the literature shows, dissemination of productive technologies is not simple and poverty traps 

can inhibit development and speed of adoption of new productive technologies? Poverty traps 

are mechanisms that prevent the impoverished from earning enough capital to escape poverty.  

Restrictions that the literature identifies as sources for poverty traps are market inefficiencies in 

labor, land, credit, information, and human preferences such as risk aversion (Tanaka and 

Camerer 2010; Kostandini and Mills 2011; Foster and Rosenweig 2010; Dorward and Kydd 

2004; B. Kelsey Jack 2013). The research presented here will add to this literature and add a new 

perspective on the factors affecting agricultural technology adoption in rural Kenya.  

Few publications identify both social learning networks and risk preferences as factors 

affecting agricultural technology adoption. That being said, the impact that social networks have 

on agricultural technology adoption is not revolutionary and received increased attention over the 

years (Munshi 2004; Bandiera and Rasul 2006; Conley and Udry 2010; Maertens and Barret 

2013). Additionally, Liu 2013, Shimamoto and Yamada 2018, and Schleight and Gassmann 2018 

published research that elicited risk parameters, which they included as a factor affecting 

technology adoption. Only Schleight and Gassman used a variable that could capture social 

network effects on adoption. However, the research focused on adoption of energy efficient 

technologies in the EU. The primary objective of the current study is to identify the factors that 

influence Kenyan vegetable farmers’ IPM adoption. There are six additional sub-objectives: 

Sub-Objective 1 

Assess the current state of adoption of vegetable IPM practices in eastern Kenya and whether 

adoption has increased over the life of the EAVCIPM-IL project. 

Sub-Objective 2 
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Determine whether risk preference affects the level of vegetable IPM adoption 

Sub-Objective 3 

Determine whether risk preference affects pesticide use on vegetables 

Sub-Objective 4 

Determine whether IPM training reduces the number of seasonal vegetable pesticide applications  

Sub-Objective 5 

Determine whether farmer’s trust towards people in general, agricultural extension officers, and 

agricultural input salespeople affects IPM adoption 

Sub-Objective 6 

Determine whether farmer’s trust towards people in general, agricultural extension officers, and 

agricultural input salespeople is a factor in total pesticide application count and total pesticide 

expenditures 

Hypotheses 

Hypothesis 1: Vegetable IPM adoption in Eastern Kenya has not increased from 2016 to 
2019. 

Hypothesis 2: Risk averse farmers will adopt more vegetable IPM practices than risk 
neutral or preferring farmers. 

Hypothesis 3: Risk averse farmers will have more pesticide applications on vegetables 
than risk neutral or preferring farmers. 

Hypothesis 4: Risk averse farmers will spend more on pesticides for vegetables than will 
risk neutral or risk preferring farmers. 

Hypothesis 5: Farmers who place higher values on prospects with higher probability will 
adopt fewer IPM practices than farmers who place more value on prospects with lower 
probability. 
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Hypothesis 6: Farmers who place higher values on prospects with higher probability will 
apply pesticides more times than farmers who place more value on prospects with lower 
probability. 

Hypothesis 7: Farmers who place higher values on prospects with higher probability will 
have higher pesticides expenditures than farmers who place more value on prospects with 
lower probability. 

Hypothesis 8: Loss averse farmers will adopt more vegetable IPM practices than loss 
neutral or loss preferring farmers.  

Hypothesis 9: Loss averse farmers will make more pesticide applications than farmers 
who are loss neutral or loss preferring.  

Hypothesis 10: Loss averse farmers will have higher pesticide expenditures on vegetables 
than farmers who are loss neutral or loss preferring.  

Hypothesis 11: Farmers who have received more IPM training will apply less pesticides 
than farmers with less IPM training 

Hypothesis 12: Farmer’s trust in people in general does not affect IPM adoption  

Hypothesis 13: Farmer’s trust people in general does not affect the number of pesticide 
applications or pesticide expenditures 

Hypothesis 14: Farmers who trust agricultural extension officers in general will adopt 
more IPM techniques than farmers who do not 

Hypothesis 15: Farmers who trust agricultural extension officers in general will have 
fewer pesticide applications and lower pesticide expenditures than farmers who do not  

Hypothesis 16: Farmers who trust agricultural salespeople in general will adopt fewer 
IPM techniques than farmers who do not 

Hypothesis 17: Farmers who trust agricultural salespeople in general will apply more 
pesticide applications and have higher pesticide expenditures than farmers who do not  

Hypothesis 18: Farmers from Tharaka-nithi adopt more IPM techniques than farmers 
from Kirinyaga and Nyeri. 

Hypothesis 19: Farmers from Tharaka-nithi do not apply more pesticides than farmers 
from Kirinyaga and Nyeri. 
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Hypothesis 20: Farmers from Tharaka-nithi do not have more pesticides expenditures 
than farmers from Kirinyaga and Nyeri. 
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Chapter 2. Background on technology adoption 

When agricultural technologies are disseminated, they must have a selling point that 

justifies their adoption by farmers. Promises of higher yields, lower production risk, lower health 

risk, better quality, lower costs, and or reducing environmental problems are selling points that 

can influence farmers to consider a technology or change intensity of use if the technology is 

already being utilized. However, new unfamiliar technologies may come with high risks since it 

is uncertain that the productivity of the technology will meet the promises of the salesperson. 

Some farmers will accept the risk and adopt them, placing their trust in the word of the 

individual or organization providing the product. Perhaps this trust originates from previous 

experiences the farmer has had purchasing products from the salesperson, or perhaps it is not 

trust that influences adoption but rather an ambitious entrepreneur eager to find the next best 

practice and willing to accept the risk ahead of his or her competitors. In either situation, if the 

technology truly is new to the farmer, before adopting they should know the full risk that 

adoption poses and the challenges that could lie ahead; i.e. market preferences, susceptibility to 

drought, pest resistance, input requirements, etc. Each farmer must assess the technology’s 

potential benefits, costs, and production constraints before making a change in their production. 

However, to even arrive at this point of consideration the necessary conditions are that the 

product or practice be known and available to the farmer. Market inefficiencies that limit these 

necessary conditions will be addressed following the conceptual framework that models the 

adoption decision.  

2.1 Conceptual Framework 

The decision to make changes to a farm management plan can be portrayed using a utility 

framework in which the farmer maximizes expected utility from consumption of material and 
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non-material goods and services (Moser and Barrett 2006). The farmer’s agricultural production 

is assumed to be the sole source of income and the reference point for the decision to change the 

farm management plan will be the farmer’s current level of wealth. The model portrays the 

farmer’s decision process, where they select levels of choice variables with the objective of 

maximizing expected utility (EU) of material and non-material consumption subject to 

idiosyncratic constraints. This decision has been modeled many times previously, adding 

additional dynamics with each round of research (Pope and Just 1977; Antle 1989, Hurd 1994; 

Staal and Baltenweck 2002). Each study assumes that the farmer is trying to maximize expected 

utility subject to his or her production constraints and preferences. The general model, tailored to 

represent a decision between two crop varieties, is presented below. This model could be 

expanded to capture the decision to use various IPM technologies versus their conventional 

counterparts, or to apply more/less pesticides. 

𝑀𝑎𝑥!	𝐸𝑈(𝑌)	𝑠. 𝑡. [𝑋# , 𝑍# , 𝐿# , 𝐾#!(𝑋# , 𝑍# , 𝐿#)]……………………………………………….(1) 

Equation 1 illustrates farmer i’s production decision where expected utility is being maximized 

by selecting crop variety, c, to be planted on all of farmer i’s arable land, in order to generate 

income, Y. The farmer’s agricultural production is assumed to be their only source of income, 

while income is converted to utility through consumption of material and non-material goods. 

Expected utility of Y is a function of expected mean yield of crop c and variance of expected 

mean yield subject to expectations of c’s productivity given the farmer’s endowment of land 𝑋#, 

exogenous factors 𝑍#	 (e.g. soil characteristics, pest intensity, weather, prices of commodities and 

inputs, proximity to other adopting farmers, etc.) and family labor 𝐿# . The last variable 

𝐾#,!(𝑋# , 𝑍# , 𝐿#)	is the farmer’s knowledge of the variety, which shapes expectations of how the 

crop should perform on their farm in various growing scenarios. Similar to Moser and Barret, the 
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model assumes that knowledge of crops, 𝐾#,!, can only increase and not be reduced. Knowledge 

in this sense is used to determine expected utility, or the expected yield of cropc, for all growing 

conditions.   

Suppose that c represents two possible choices Rambo and Commando, two varieties of 

tomatoes cultivated in Kenya.  

𝐸𝑈%&'() = ∑ 𝑈(𝑌)	*
+ 𝑠. 𝑡. 6𝑋# , 𝑍# , 𝐿# , 𝐾#,%&'()(𝑋# , 𝑍# , 𝐿#)7…………………………....…………(2) 

 
𝐸𝑈,)''&-.) 	= ∑ 𝑈(𝑌)𝑠. 𝑡. [𝑋# , 𝑍# , 𝐿# , 𝐾#,,)''&-.)(𝑋# , 𝑍# , 𝐿#)]	*

+ …………….....................…..(3) 
 

The expected utility of each crop’s outcome for each possible growing scenario (i.e. 

quality of growing season is summed, with N possibilities. The farmer’s decision of which crop 

to plant would be determined by the crop that yields the highest expected utility. If the Rambo 

variety’s expected utility is higher than Commando’s and is planted this year, that does not imply 

that Rambo will be planted instead of Commando every year. The farmer can choose to reject 

Commando entirely or choose to postpone adoption until they are certain the variety’s expected 

utility exceeds that of Rambo’s. Postponing adoption allows farmers to circumvent the risk 

associated with early adoption of an unfamiliar technique and gather information on the 

technology that will be utilized in the decision process for the next cropping season.  

A 1957 paper by Zvi Griliches analyzed the adoption rate distribution of hybrid corn in 

the U.S. He assumed an S-shaped pattern of adoption (Griliches 1957). The exact shape of 

diffusion was linked to regional characteristics of the mid-western states such as profitability, 

communication, risk aversion, and other economic factors (Feder, Just, and Zilberman 1985). 

These same factors that served as a barrier to adoption in the U.S. have also been identified as 

challenges facing technology adoption in developing countries. B. Kelsey Jack (2013) provides a 
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detailed review of the agriculture technology adoption literature in developing countries and 

identifies seven market inefficiencies that can limit diffusion of technologies. 

1. Externalities 
2. Input and output market inefficiencies 
3. Land market inefficiencies 
4. Labor market inefficiencies 
5. Credit market inefficiencies 
6. Informational inefficiencies 
7. Risk market inefficiencies 

 
Our study will focus on informational inefficiencies and risk market inefficiencies as they apply 

to decisions by Kenyan horticulture producers to adopt IPM techniques.  

2.2 Social Learning Network 

One of the assumptions for perfect markets is that there is perfect information. In reality 

we know that perfect information often if not always falls short regardless of the market. For 

IPM dissemination in rural Kenya several assumptions are made. Kenyan farmers like other 

farmers operate under uncertainty, whether it’s about future input and commodity prices or the 

weather in the upcoming growing season. In order to make changes to the existing farm 

management plan, the farmer gathers information about the agricultural practice under 

consideration before making a decision. Sources of information flow from the farmers’ on-farm 

trials and the sources in their social network such as friends/neighbors, family, agricultural 

extension officers, agricultural input suppliers, research organizations, etc. (Munshi 2004; 

Maertens and Barrett 2012). 

Going back to the previous example of a farmer’s decision between two tomato varieties, 

suppose that c represents two possible choices Rambo (equation 4) and Commando (equation 5). 

𝐸𝑈%&'() = ∑ 𝑈(𝑌)	*
+ 𝑠. 𝑡. 6𝑋# , 𝑍# , 𝐿# , 𝐾#,%&'()(𝑋# , 𝑍# , 𝐿#)7……………………….……...………(4) 

 
𝐸𝑈,)''&-.) 	= ∑ 𝑈(𝑌)𝑠. 𝑡. [𝑋# , 𝑍# , 𝐿# , 𝐾#,,)''&-.)(𝑋# , 𝑍# , 𝐿#)]	*

+ …...………………...…...…..(5) 
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The expected value of each crop is summed for each possible quality of growing season, with N 

possibilities. The farmer’s decision about which crop to plant would be determined by the crop 

that yields the highest expected utility.  

Figure 2.1 visualizes the farmer’s decision comparing the expected utility of planting 

Rambo (blue secant line) to Commando (red secant line) for different income scenarios. The 

visualization assumes the farmer’s only income source is his tomato crop, and the farmer is risk 

averse. In this depiction there are two expected utility scenarios for each crop, which are 

represented by the two points that touch the expected utility curve for each secant line. Each 

secant line, the point with the lowest expected utility represents the expected utility of crop c for 

a poor-quality growing season, while the point with the highest expected utility represents the 

expectations of expected utility for a high quality of growing season. The variance of expected 

utility from income/yield for crop c is represented by the length of the respective secant line. 

Points A and B represent the expected utility of Rambo and Commando respectively, which are 

functions of the varieties mean expected income/yield and variance of income/yield. Since point 

A lies above point B in this scenario, the farmer would choose to plant Rambo over Commando.   

Figure 2.1 
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Figure 2.1 shows a much larger variance of expected utility of the Commando variety than 

Rambo’s. The high variance could be due to unfamiliarity with the variety’s outcome, which 

could cause some farmers to postpone adoption until the variance is reduced. Suppose the farmer 

attends a farmer field day (FFD) led by an agricultural extension officer where they are informed 

about the benefits and witness a plot of the Commando variety. This information update is 

depicted in figure 2.2. The new information from the FFD causes a change in 𝐾#,,)''&-.)(	. ) 

which reduces the variance of the expected utility of the variety and updates the expected utility 

of the Commando variety from B to B`. The farmer in this scenario would choose to plant the 

Commando variety over the Rambo variety. 

 

Figure 2.2 

 
 

In this simple model, the expected utility functions were drawn to represent a risk averse farmer, 

however, the functional form depends on each farmer’s preference towards uncertainty. Each 

farmer has a unique risk preference, and as a result, differences in risk preferences could 

influence some farmers to adopt the Commando variety in the first scenario when the variance of 

Commando is high, while others postpone adoption until more information is gathered. Farmer’s 
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risk tolerance and how risk preference applies to their adoption decision will be addressed in the 

subsequent section. 

2.3 Risk-Individual Preference Towards Uncertainty  

Uncertainty is all around us from the commute to work to the decision about where to 

travel over the holidays. Nevertheless, we learn to live with uncertainty and rationalize living 

within a threshold of acceptable risk. Some people are willing to accept more risk than others 

and risk comes in many forms from dangers inherent in deciding to ride a motorcycle to those 

associated with starting a business. Both activities involve a certain level of risk but those risks 

are clearly of different types. The type of risk addressed in this document will focus on income 

risks from making changes to farm management plans.  

Farmers have a variety of factors that make their agricultural operations uncertain. 

Variability in weather, prices of inputs, commodity prices, and international trade relations all 

contribute to farmers’ production uncertainty. Access to credit, government subsidies, crop 

insurance, improved crop varieties and improved farm management practices are tools that 

farmers use to mitigate production risks, yet these tools are not available to all farmers. However, 

even when the tools are available the agricultural technology adoption literature indicates that 

adoption rates and the factors influencing them vary by location (Cole and Gine 2013; Parsa and 

Morse 2014). Konstandini and Mills 2011 identify studies that assess how exposure to risk can 

establish poverty traps that restrict development and adoption of productive technologies of the 

rural poor. As the saying goes, if there is no risk there is no reward, but many of the individuals 

in developing countries live on less than $2 a day and in regions where susceptibility to climate 

change and violent conflict are high. Consequently, some households without access to financial 

and agricultural risk mitigation tools are on the tipping point where one mistake could put them 
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in a situation where their household regresses even further into poverty. This vulnerability makes 

some households reluctant to try new technologies and could be one of the factors influencing 

the pace of IPM adoption in Kenya.  

Going back to the previous example with the two tomato varieties, suppose we have two 

Kenyan farmers, farmer A and farmer B, who are nearly identical and are considering planting 

the new Commando variety (red secant line) over a familiar Rambo variety (blue secant line). 

The farmers have the same farm characteristics, use the same practices, grow the same crops, 

both trust agricultural extension officers, and even receive the same information. However, even 

though the farmers are almost identical, farmer B plants the new variety right away while farmer 

A only adopts the new variety until the uncertainty in the variety’s expected utility is reduced. 

One mechanism that would rationalize this decision is that the two farmers have different 

preference towards income risk. Figure 2.3 shows how different functional forms of the expected 

utility function would rationalize the decision to adopt right away, farmer B, or postpone 

adoption of the new variety, farmer A.  

Figure 2.3 

 

Through an international development lens, facilitation of agricultural development could 

be challenging in regions that are composed of many individuals like farmer A. Researchers over 

the years have tested the relationship between individuals decisions under uncertainty and 



 

17 
 

technology adoption and have found evidence to support the theory that individual’s risk 

preference, as elicited using Expected Utility Theory (EU) (Binswager 1980; Bocqueho and 

Jacquet, 2013; Cook 2013) or Cumulative Prospect Theory (CPT), an analog to EU, (Liu 2013; 

Bocqueho and Jacquet, 2013; Shimamoto and Yamada 2017; Schleich and Gassmann 2019), has 

inhibited adoption and slowed the pace of development in some communities. However, the 

literature that combines both the influence of social networks and risk preferences as factors 

affecting adoption is limited. Programs such as USAID’s Feed the Future and EAVCIPM-IL 

Kenya have been working to reduce uncertainty associated with adopting productive agricultural 

technologies by tailoring the programs to disseminate the relevant knowledge needed to make an 

informed decision. The results of our analysis may provide information to help improve the 

speed of technology adoption in developing countries by enhancing the understanding how 

farmer’s information networks and risk preferences effect their adoption process.  

In summary, households can be stuck in poverty traps that limit their development, where 

a household’s inability to accept the risk associated with adopting new technologies results in 

low marginal productivity and limits income generation and savings. With low income, the 

ability to save is difficult and households become vulnerable to income shocks that cause them to 

remain in the cycle of poverty. Therefore, if an agricultural technology or system has proven to 

improve the welfare of adopters, facilitating its adoption should be of the upmost importance for 

development groups. Due to the financial limitations of development groups, financial resources 

are often allocated to areas that have the highest social impact. In order to gauge the likelihood of 

programs to facilitate technology adoption, risk preference of a community or region could be 

one metric that determines the willingness to accept a technology and the investment needed to 

facilitate adoption. The work by Kahneman and Tversky (1979 and 1992) provided evidence that 
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Cumulative Prospect Theory (CPT) is a useful method for improving our understanding of 

human behavior. The risk parameters that CPT elicit have the ability to provide development 

groups with insight into their population’s behavior under uncertainty. This knowledge may help 

improve the speed of adoption of agricultural technologies and systems and serve to raise 

incomes, reduce perceived production uncertainty, and improve resiliency by tailoring 

dissemination programs and marketing strategies. A comparison of the two leading methods for 

estimating risk aversion EU and CPT, the risk parameters used in this study, and the behavioral 

experiment used to elicit the risk parameters are provided in the Methods chapter. 

Chapter 3.  Methods 

3.1 Social Learning Network 

The agricultural technology adoption literature points to family, friends/neighbors, 

extension officers, farmer groups, salespeople, and non-governmental organizations as sources of 

agricultural information for farmers in developing countries (Munshi 2004; Maertens and Barrett 

2012; Bandiera and Rasul 2006). Discussions about timing of planting/harvesting, severity of 

pest infestations, market information, or even observing a neighboring plot and their 

management practices all influence farmers’ decisions. Yet, the confidence that one farmer might 

place in their agricultural extension officer for agricultural information is likely different than 

other farmers who are also served by that same officer. Coleman 1990 (as cited in Algan and 

Cuhuc 2014) defined trust as, ‘an individual trusts if he or she voluntary places resources at the 

disposal of another party without any legal commitment from the latter, but with the expectation 

that the act of trust will pay off.’. The value that individuals place on an information source is a 

function of how much trust they have in the source and the quality of information provided.   

Algan and Cahuc provide a detailed review of the literature on trust, methods used to estimate 
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trust in a survey setting, and how trust relates to development and friction in technology 

adoption.  

Due to the time constraints of farmers and the fact that numerous IPM techniques have been 

disseminated in Kenya for many years by a multitude of organizations, we posed questions that 

assessed trust in general sources. An overview of IPM adoption and survey demographics in the 

region is presented in the results section 4.1. Survey Comparison: 2016 to 2019. 

The following set of questions were asked to understand the relationship between the 

previously mentioned sources and Kenyan farmers’ adoption decisions.  

Table 1: Social Learning Network Questions 

1. Generally speaking, do you believe that most people can be trusted? 

2. Generally speaking, do you believe that most agricultural extension workers can be trusted? 

3. Generally speaking, do you believe that most agricultural salespeople can be trusted? 

Notes: All responses to the questions were Yes or No  
 
The generalized trust question first posed by Almond and Verba (1963) (as cited in Algan and 

Cuhuc 2014) gauge individuals trust towards IPM information sources. From the baseline survey 

and our colleagues in Kenya, the two sources deemed most important for disseminating 

information about agriculture technologies were extension and agricultural input salespeople. 

Thus, two specific questions were used to estimate the strength of connection that the farmers 

place on their information. 

 
3.2  Risk-Introduction 

Two leading methods of risk elicitation have been used to estimate the risk parameters of 

individuals: Expected utility theory (EU) and Cumulative Prospect Theory (CPT). It is the 

objective of this section to present the theory behind risk preferences, present the method most 
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suitable for analysis of risk preferences of Kenyan farmers, and identify the impact that those 

preferences can have on their adoption decisions.   

 
3.3  Early Behavioral Economics Theory 

In order to understand theory and advanced economic models related to EU and CPT, it is 

best to start with the early developments and the assumptions in which the models found traction. 

The advanced risk elicitation methods took root with the St. Petersburg paradox in which 

mathematician Daniel Bernoulli proposed that individuals do not consider directly the dollar 

prizes of a gamble but rather the expected utility from participating in the gamble. Utility in an 

economic framework is the value an individual receives through his or her consumption of goods 

(consumable and non-consumable) and leisure. Bernoulli rationalized individuals lack of 

willingness to pay large amounts of money to participate in the gamble known as the St. 

Petersburg paradox, which entailed a series of coin flips, by determining that the utility of wealth 

increases at a decreasing rate as wealth increases as shown in figure 3.1. In other words, 

marginal utility of wealth decreases at an increasing rate as wealth increases.  

Figure 3.1: Marginal utility of wealth is decreasing at an increasing rate. 

 

Even though the expected monetary value of the Bernoulli’s gamble was infinite, the fact 

that individuals would only pay a finite amount of money to play provided rationalization for his 
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theory. Neumann and Morgenstern continued to build on the Bernoulli’s work with their book 

The Theory of Games and Economic Behavior. The book presented the basic axioms of 

rationality and expected utility maximization theory, which is the basis on which the risk 

aversion elicitation methods find ground. Utility maximization theory states that individuals will 

try to maximize their utility through consumption of goods and leisure subject to their budget 

and time constraints. Although individuals do not receive utility directly from money but rather 

the goods they purchase with the money, utility functions are often portrayed as a function of 

wealth rather than goods and leisure to facilitate discussion. Bernoulli’s discovery of the 

curvature of the utility function and Neumann and Morgenstern’s utility maximization theory are 

used to define risk preferences and to rationalize individuals’ decisions which is the basis of both 

EU and CPT (Snyder and Nicholson 2012). 

As stated previously, when making a decision, individuals compare the respective 

expected values of prospects in order to determine the option that is most likely to maximize 

their utility. A prospect as defined by Kahneman and Tversky as (x1, p1; …;xn, pn), where xi 

represents the outcome (value) of the prospect and pi its respective probability such that p1.+ 

p2+…+ pn = 1 (In the context of comparing two agricultural practices, p1 could be the Rambo 

tomato variety previously mentioned and x1 its expected value for a certain quality of a growing 

season). Assuming individuals behave rationally, their subjective utility curves can be estimated 

by asking participants to select between options of varying probability of outcomes and 

monetary values or both; which is in fact how both EU and CPT estimate their risk parameters. 

The estimates that the models derive can be used model an individual’s behavioral response to 

goods with varying levels of uncertainty and value. Their behavioral response towards risk is 

categorized into three thresholds of risk preference: risk averse, risk neutral, and risk loving. A 
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person who is risk averse, as defined by Nicholson and Snyder, is “an individual who always 

refuses fair bets” or similarly an individual whose marginal utility of wealth is increasing at a 

decreasing rate (figure 3.1). A fair bet is where the expected value of a gamble is equal to zero 

(e.g. coin flip gamble where if heads individual receives $1 and if tails individual pays $1). A 

person who is risk loving is characterized with the value function portrayed in figure 3.2.  

Figure 3.2: Utility of wealth is increasing at an increasing rate. 

 

As figure 3.1 becomes more concave, the individual’s level of risk aversion increases and 

as figure 3.2 becomes more convex the value that the individual receives from participating in a 

gamble also increases, as does the individuals risk loving preference. However, the two methods 

EU and CPT vary greatly in regard to the reference point of the decision process, valuation of 

prospects, and domain of risk preferences. For these reasons, the two methods rely on different 

assumptions to rationalize decisions and define the respective risk parameters.  

3.4  Expected Utility or Cumulative Prospect Theory 

In the 1979 article by Kahneman and Tversky (KT), the assumptions that EU was based 

on were put to the test. The three assumptions were: 

E[U(x1, p1; …;xn, pn) = p1u(x1)+…+ pnu(xn)]…………………………………………….…….(6) 

U(w+x1, p1; …;w+xn, pn) > u(w)… …………………………………………………………....(7) 
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U is concave (u” < 0)………… ………………………………………………... …………….(8) 

The first equality (equation 6) shows that the expected value (utility; U) of a prospect is a 

function of the probability of the respective prospect’s outcomes and their subjective utilities. 

Equality 2 (equation 7) represent the subject’s asset integration equality. It states that the subject 

will accept a prospect if and only if the utility from its consumption plus the utility of their assets 

(wealth), w, is greater than the utility of their assets alone. The third equality (equation 8) defines 

risk aversion and the subject is determined to be risk averse if the rate of change of the utility 

function is decreasing.  

Through a series of questions, the KT study asked Israeli students to select between two 

prospects of varying degrees of uncertainty and payouts. The findings of the KT study 

determined that some of the tenants underlying EU theory were not consistent with participants’ 

choices in their behavioral experiment. The questions and results of the study relevant to our 

choice of CPT over EU are shown in the Appendix: Kahneman and Tversky Behavioral 

Experiment 1979. The KT findings are summarized below.   

Equation six above indicates that individuals weight the prospects’ outcomes solely by 

their probabilities. However, KT discovered that this principle was consistently violated. They 

found that individuals overweight outcomes with certainty and small probabilities, which implies 

that outcomes are weighted not by their probabilities but by decision weights, πi, where i is an 

indicator for the decision weights applied to the respective prospects’ n outcomes. In order to 

satisfy stochastic dominance and allow utilization of the weighting function for prospects with 

many outcomes, the decision weights are normalized such that ∑ π#-
#/0  (Tversky and Kahneman, 

1992). Additionally, the KT study discovered further deviation from EU with regard to 

individuals’ reference point used in the decision process. Specifically, they found that 
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individuals’ decisions between prospects did not use their final assets as the reference point but 

rather only the gains and losses of the prospects themselves. Furthermore, KT found that the 

value function was consistently concave in the domain of gains and convex for losses, while the 

rate of change of the value function was greater in absolute value in the loss domain than in the 

domain for gains. They also make the assumption that the value function is centered at zero (the 

reference point) (figure 3.4).  

Figure 3.4: CPT value function 

 

In review, the empirical results suggest that: 1) the value of outcomes are multiplied by 

their respective decision weights, not their probabilities; 2) the reference point for a decision is 

not final assets but the values of the prospects; 3) the value function tends to be convex in the 

domain of losses and concave in the domain of gains, and steeper in the domain of losses than in 

the domain of gains. 

3.5  Cumulative Prospect Theory Methodology 

 In order to capture the unique characteristics that shape an individual’s respective value 

function and weighting function, which rationalize the individual’s preference between 

prospects, Kahneman and Tversky developed a system of equations. The parameters of interest 

that define an individual’s preferences are 𝜎, 𝜆, and 𝛼. For this study, the 𝛼 parameter will be 

derived using the Drazen Prelec’s method, which has been used consistently in the literature 
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(Campos-Vazquez and Cuilty 2014; Tanaka and Camerer; 2010, Bocqueho and Jacquet 2013). 

Their system of equations is presented below, which will be followed by the risk elicitation 

behavioral experiment. 

Equation 9 represents the value of a prospect. 

𝑣(𝑦) + 𝜋(𝑝)(𝑣(𝑥) − 𝑣(𝑦))	 for xy > 0 and |x| > |y| or 	𝑣(𝑦) + 𝜋(𝑝)𝑣(𝑥) + 𝜋(𝑞)𝑣(𝑦)……..…(9) 

Variables p and q are the probabilities of outcomes x and y, respectively, with values of 

𝑣(𝑥)and	𝑣(𝑦). Additionally, a piecewise power function is used to represent the value for each 

individual in the domain of gains and losses.   

Gains  𝑣(𝑥) = 𝑥1   [x > 0]…………………………………………………………(10) 

Losses 𝑣(𝑥) = −𝜆(−𝑥1)  [x < 0]…………………………………………………………(11) 

Parameters	𝜎 and 𝜆	are estimates that identify the concavity of the value function in the domain 

of gains (degree of risk aversion), and the convexity of the function in the domain of loss (degree 

of loss aversion). The greater 𝜎 the less risk averse an individual is and the less concave the 

value function is in the domain of gains. The greater 𝜆, the more loss averse an individual is and 

the more convex the value function is in the domain of loss.  

The probability weighting function is 

 𝜋(𝑝) = 	 [ 0
234	(6-!")

]8………………..……………………..……………………..…...….……..(12) 

Equation 12’s is shown in figure 3.5 below with varying values for 𝛼. If 𝛼 = 1, the probability 

weighting function is linear and the individual would weight decisions solely on the probability 

of their prospects. If 𝛼 < 1, the function is an inverted S-shape implying that the individual 

overweight small probabilities and underweights large probabilities and conversely if 𝛼 > 1.  

Figure 3.5: Drazen Prelecs’ weighting function. 
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The three Series used in the behavioral experiment for this study are presented in figure 

3.6 below. The values of the respective options are based on the monthly earnings of Kenyan 

farmers and are most similar to the percentages of monthly income used in the Tanaka CPT 

experiment in Vietnam. It is important to note that during the actual experiment the column titled 

expected payout was not shown. However, it is depicted here to show that the expected payoffs 

of the prospects are decreasing as we go down in the series for Series 1 and 2 and increasing in 

expected payoffs for Series 3. Each row represents a choice to participate in the gamble 

presented in Option A or Option B. Participants were asked to identify the row where they would 

“switch” from participating in the gamble presented in Option A to Option B. This switching 

point is used to determine the parameters of interest. The switching points of Series 1 and Series 

2 mutually determine parameters 𝛼 and 𝜎 by the intersection of the combination possibilities of 

the two parameters that rationalize the individual’s decision. For example, suppose an individual 

switches in Series 1 and Series 2 at the seventh question. For both series this implies that the 

subjective value of Option A question 6 is greater than the value of Option B question 6 and that 

in all following rows the value of Option A is less than that of Option B for that individual. The 

non-linear system of equations would use equations 9, 10, and 12 to determine all combinations 

of  𝛼 and 𝜎 that would satisfy the system of equations. Each series switching point creates two 
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equations with two unknowns, the parameters of interest. The union of parameters that satisfy the 

inequalities for the participant’s switching point in Series 1 and Series 2 determines that 

individual’s 𝛼	and	𝜎, which defines the uniqueness of their utility function in the domain of 

gains. The same process is used for determining 𝜆, however the solution uses equations 9, 10, 11, 

and 12.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6: Behavioral Experiment Kenya 2019 
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3.6  CPT Behavioral Experiment Implementation  

 
The literature shows that monetary versus theoretical incentives, participant 

comprehension, and model assumptions should be fully acknowledged when determining the 

best experiment for the elicitation of participant’s risk preferences (Tanaka and Camerer 2010; 

Binswager 1980; Cook and Chaterjee 2013; Dohmen and Falk 2010). With regard to monetary 

incentives, two approaches have been used. Some studies have offered explicit monetary 

incentives for participation in behavioral experiments (Epper and Fehr-Duda 2009; Tanaka and 

Camerer 2010; Binswager 1980h). Often payments or partial monetary incentives are given to 

control groups as an additional robustness check of data validity (Schleich and Gassmann 2018; 

30% 70% 10% 90% Expected payoff
1 300 70 500 35 57.41
2 300 70 550 35 52.41
3 300 70 600 35 47.41
4 300 70 650 35 42.41
5 300 70 750 35 32.41
6 300 70 850 35 22.41
7 300 70 1000 35 7.41
8 300 70 1300 35 -22.59
9 300 70 1550 35 -47.59

10 300 70 2000 35 -92.59
11 300 70 3000 35 -192.59
12 300 70 4000 35 -292.59
13 300 70 7000 35 -592.59
14 300 70 12000 35 -1092.59

90% 10% 70% 30% Expected payoff
1 300 200 380 35 14
2 300 200 400 35 -1
3 300 200 420 35 -15
4 300 200 440 35 -29
5 300 200 480 35 -57
6 300 200 520 35 -85
7 300 200 560 35 -113
8 300 200 600 35 -141
9 300 200 680 35 -197

10 300 200 760 35 -253
11 300 200 840 35 -309
12 300 200 940 35 -379
13 300 200 1040 35 -449
14 300 200 1200 35 -561

50% 50% 50% 50% Expected payoff
1 180 30 210 -150 75
2 30 30 210 -150 0
3 10 30 210 -150 -10
4 10 30 210 -110 -30
5 10 60 210 -110 -15
6 10 60 210 -100 -20
7 10 60 210 -80 -30

Option A Option B

Option A Option B
Series 3

Option A Option B

Series 2

Series 1

Behavioral Experiment: Revealed Choice
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Sarin and Wieland 2015; Bocqueho and Jacquet 2013; Harrison and Johnson 2005). However, 

some studies have argued that monetary incentives do not have a significant impact on the 

validity of the risk parameters and support use of hypothetical values (Camerer and Hogarth 

1999).  

For our study, we offered partial monetary incentives following the approach by 

Bocqueho and Jacquet 2013. Starting out the experiment Bocqueho and Jacquet gave each 

participant 15 euros and they advised them that they would only receive a percentage of the 

payoffs that were presented in the behavioral experiment. The actual percentage amount was 

placed in a sealed envelope on the table and would be revealed after the experiment had 

concluded. Participants could either win or lose money. However, the experiment was 

constructed in such a way that participants could not lose more than the 15 euros provided to 

them for participation. The behavioral experiment used for this study was conducted in Kenya 

2019 and followed Bocqueho and Jacquet’s method. Participants were given 100KSH (roughly 

$1 USD) and an opaque sealed bag was laid on the table that concealed the percentage amount of 

2% that would be used to determine final payouts. After the experiment was completed, a 

number was drawn at random that represented each row in the series (1-35), and participant’s 

choices for that row would determine which option would be played for real money. The 

enumerators script for the behavioral experiment is provided in the APPENDIX: Behavioral 

Experiment.   

Participant comprehension has been an issue with these types of behavioral experiments. 

Binswager 1980 used “risk inefficient” selections of participants to identify whether or not they 

comprehended the task. If the risk inefficient option was selected, the participant’s results would 

be excluded from the analysis. Multiple Price List (MPL) elicitation is another method that can 
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used to test participant comprehension and is the most similar to the method used in Kenya. MPL 

has individuals identify their preference between Option A and Option B for each row. Provided 

that the rows hold probabilities constant and increase monetary incentives for Option B 

ascending in the series, a participant that switched multiple times in the series would identify 

confusion with the experiment, thus identifying an observation to exclude from analysis (Cook 

and Chatterjee 2011). Additionally, for further MPL experiment robustness, question order 

randomization or establishment of control groups with different question ordering could be used 

(Harrison and Humphrey 2010). This would protect the validity of the results by reducing 

framing bias. Once again, if the participant switched multiple times this would identify a lack of 

comprehension and the observation should be thrown out.  

For the sake of time of completion of each survey, the experiment conducted in Kenya 

followed the method presented by Tanaka 2010, which enforced monotonicity by asking 

participants to identify a single switching point for each series, held probabilities constant, and 

listed prospects in order of increasing monetary incentives. In order to identify individuals who 

did not understand the experiment, our experiment added two processes. First, to identify 

individuals who did not understand probability enumerators presented the participant with a bag 

of colored stones (9 white stones and 1 black stone of equal sizes). The enumerator then asked if 

one stone was to be pulled at random from the bag which color is most likely to be drawn. The 

same process was repeated for a second bag of colored stones (7 orange and 3 green stones of 

equal sizes) and responses were recorded. If the participant got either question that tested their 

probability wrong, the enumerators would not proceed with the experiment. Second, prior to 

survey deployment, practice questions were drawn at random from Series 1 and Series 2 using a 

random number generator.  Row 1 Series 1 and Row 7 Series 2 were selected to be the practice 
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questions for the respective series. The participant’s practice question responses would be 

compared to their switching point for the respective series and if both of their practice question 

responses differed, this indicated that the farmer could have had difficulty understanding the 

behavioral experiment. Upon completion of the survey, a subset of the data would be created 

using only the farmers that got at least one of the practice questions correct. This subset of 

observations would be used for additional analysis which would serve as a robustness check of 

CPT results.  

The techniques used in the behavioral experiment were selected to ensure each CPT 

parameter’s validity. As a result, inclusion of the CPT parameters in the proceeding econometric 

analysis should represent each farmer’s value function respectively and identify on average how 

risk aversion, loss aversion, and probability weighting is affecting Kenyan horticulture grower’s 

IPM adoption and pest management decisions.  

3.7 Modeling IPM adoption  

The IPM adoption decision ties into utility maximization theory when the farmer is 

evaluating his or her adoption decision (accept, reject, or post-pone adoption). Following Staal 

and Baltenweck 2002, the adoption decision for farmer i is represented by	𝑌#,9 where the 

expected benefits (income), 𝐵#,9, from adopting an agricultural technology, k, must exceed a 

certain threshold, 𝑇#,9, that is determined from the farmer’s perception of the technology under 

consideration and its substitutes. Where 𝑌#,9 is 1 if the farmer adopts technology k (equation 13), 

and 0 if the farmer rejects or postpones adoption of technology k (equation 14). If the expected 

benefit of the new technology exceeds the threshold, 𝑇#,9, the farmer will adopt and if it does not, 

the farmer will either reject adoption or post-pone adoption until they are confident that the 

expected benefits of the technology exceeds 𝑇#,9. The theoretical model is presented below. 
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𝑌#,9 = 1	𝑖𝑓	𝐵#,9 > 𝑇#,9→ 	𝐵#,9𝑋 + ε#,9 	 > 𝑇#,9 …………..……………………………………..(13) 

Farmer adopts 

𝑌#,9# = 0	𝑖𝑓	𝐵#,9 < 𝑇#,9→ 	𝐵#,9𝑋 + ε#,9 	  < 𝑇#,9….………………………………..…………....(14) 

Farmer does not adopt 

Where X is a vector of explanatory variables and	𝐵#,9 their respective estimated effects on 

farmer i’s adoption decision of technology k. The error term ε#,9 ,	represents farmer i’s 

uncertainty with the expected benefit of technology k. With regard to IPM adoption of Kenyan 

farmers, X represents the independent variables elicited through survey responses and 𝐵#,9 their 

marginal effects on the adoption decision. The literature shows that a variety regression models 

(linear regression, logit, probit, order logit, log-log models, multinomial logit, Poisson, negative 

binomial, double hurdle, etc.) can be used to regress adoption of a technology or technologies on 

factors of adoption (Norton and Swinton 2001; Bandiera and Rasul 2006; Amudavi and Khan 

2009; Joachim Schleich 2018; Fleiter and Schleich 2012; Owusu and Kakraba 2015; Sharma and 

Peshin 2015; Ainembabazi and van Asten 2017; Gautam and Schreinemachers 2017). The 

dependent and independent variables along with their interpretations are presented in the next 

three sections. 

3.8   Response Variable 

Three response variable categories are used to estimate IPM adoption. The categories were 

constructed so the study could identify differences in the factors that affect adoption of IPM 

practices in general, advanced IPM practices, and basic IPM practices. The response variable 

categories represent the number of IPM techniques used last season and is aggregated across the 

three crops: tomato, cabbage, and French beans. The aggregation methodology for the response 

variables is described below. The dependent variable takes on three different specifications. 
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1. IPM Count 
2. Advanced IPM 
3. Basic IPM 

The first specification is a count variable of all IPM techniques used. The possibilities are use 

of a pest resistant variety (PRV), selecting healthy seeds or sanitizing seed treatment 

(Select/Sanitize), Trichoderma, starter trays (Trays), soil solarization (Solarization), sticky traps 

(Sticky), microbial pesticide (Microbial), bio-pesticide (Bio), nursery nets (Nets), mulching 

(Mulch), and removing damaged plants (Removed). For French beans, nursery trays and nursery 

nets were excluded because French beans are not transplanted. The aggregation methodology for 

the three categories does not double count the same technique across crops, e.g. if we had a 

farmer that used Trichoderma on their tomato crop and cabbage crop and a PRV for their tomato 

crop, that farmer’s IPM Count would be 2. The maximum IPM Count a farmer could have is 11. 

The second specification, Advanced IPM, represents the count of all advanced IPM 

practices used last season across the three crops. They are considered advanced because they 

require significant knowledge to implement the practice effectively. The Advanced IPM are Bio, 

Select/Sanitize, Microbial, use of Trichoderma, Solarization, Trays, and Nets. Going back to the 

previous example, if we had a farmer that used Trichoderma on their tomato crop and cabbage 

crop and a PRV for their tomato crop, that farmer’s Advanced IPM would be 1. The maximum 

Advanced IPM count a farmer could have is 7. 

The last specification, Basic Practices, represents the count of all basic IPM practices 

used last season across the three crops. The practices are considered basic because the practices 

require little knowledge for successful implementation. These technologies are use of PRV’s, 

Sticky, Mulch, and Removed. If we had a farmer that used Trichoderma on their tomato crop and 
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cabbage crop and a PRV for their tomato crop, that farmer’s Basic IPM would be 1. The 

maximum Basic IPM count a farmer could have is 4. 

3.9  Definitions, variable specifications, and expectations 

Given the main objective of the study, to identify the factors of IPM adoption, the 

covariates of our models will consist of demographic variables, farm characteristics, social 

network variables, risk preferences, county level controls, and IPM training count.  

Farmer i’s adoption level of IPM category a is represented by 𝑦#,&, where 𝑦#,& =

∑ 𝑦#,9#
*#
+ . The variable 𝑘& is a vector of all IPM techniques within IPM category a. 𝑦#,9# 

represents the individual adoption decision of each IPM practice within category a with a 

maximum count of 𝑁& (𝑁& = 11, 7, and 4 for IPM Count, Advanced IPM, and Basic IPM 

respectively). The factors used to estimate 𝑦#,&	are represented by X. Where X is a vector of 

demographic variables, farm characteristics, risk preferences, social network variables, and 

county level controls. The independent variables used in the IPM adoption regressions, binary 

variables’ reference category, and expected relationship with IPM are discussed below. Table 2 

provides a concise version of the independent variables used and expected relationship with the 

response variables. 

The demographic variables used are the primary decision maker’s education level 

(Education), gender, number of workable dependents (Working Age), and horticulture 

Experience in years. Education has two levels: 1 if the farmer’s education is less than or equal to 

primary or 0 if their education level is greater than completed primary. It is expected that farmers 

with an education higher than completed primary school will be more likely to adopt Advanced 

IPM techniques than their less educated counterparts, while Education is not expected to be a 

significant factor in predicting Basic IPM count. Due to the complex nature of Advanced IPM we 
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expect less educated farmers to have difficulty implementing Advanced IPM successfully. Over 

time, less educated farmers who did not see crop production results that met their pre-season 

expectations would switch away from Advanced IPM to a substitute with lower complexity 

where the expected benefits would exceed the previously mentioned threshold, 𝑇#,9. Conversely, 

having an education higher than completed primary school is expected to increase the likelihood 

of successful implementation; hence farmers with Education = 0 are expected to have higher 

counts Advanced IPM than farmers with Education = 1. Therefore, we expect Education's 

estimated effect to be negative in the Advanced IPM regression. The variable that controls for the 

primary decision maker’s gender can take on three options: Male, Female, and Both Male and 

Female. The last option was used if the male and female of the household make farm decisions 

jointly. The gender category, Male, is used as the reference category for all preceding 

regressions. If gender was indicated as Both Male and Female, the enumerator would interview 

both partners jointly and the behavioral experiment would be completed together. If their partner 

was unavailable, they would interview the farmer that was available. Furthermore, with regard to 

education level, the partner with the highest education was used to determine the independent 

variable Education. Females are expected to adopt fewer practices in each IPM category than 

their male counterparts due to the time burden of child rearing restricting the likelihood of higher 

education, ability to implement practices, and learn about new pest management practices. 

Experience was determined by taking the farmer’s highest level of experience across the three 

crops. For example, if the farmer grew tomatoes, cabbages, and French beans for 10, 5, and 4 

years respectively, that farmer’s Experience would be 10. Experience is expected to increase the 

likelihood of adoption for all IPM categories.  
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Farm characteristics that are used as factors affecting IPM adoption are: total acres 

farmed (Acres), number of working age dependents (Working age), whether the farmer borrowed 

to finance last year’s agricultural production (Borrowed), and vegetable production’s revenue as 

a percent of total income (% Income). Acres is the total acres farmed for the three crops of 

interest. It is expected that as the number of acres farmed increases, vegetable revenue would 

also increase, which would cause the farmer to seek out new pest management strategies to 

protect revenue from volatility. As a result, the likelihood of finding at least one IPM technique 

that exceeds 𝑇#,9 is expected to increase, leading to higher levels of IPM adoption on average for 

each IPM category. A farmer’s ability to borrow to finance their horticulture production is 

expected to relax financial constraints that may have deterred IPM adoption. Hence, we expect 

Borrow to have a positive relationship with all IPM adoption categories. We expect labor to be a 

substitute for IPM practices; thus we expect Working age to have a negative relationship with the 

three adoption response variables. Similar to the argument made for Acres, % Income is expected 

to have a positive relationship with the dependent variables because as % Income increases so 

too does the farmer’s dependence on their vegetable production, which could influence the 

search pest management practices that yield higher net benefits. 

Social network variables consist of three trust variables that represent farmers’ responses 

to the following questions: Generally speaking, do you believe that most people can be trusted? 

(Trust Gen.); Generally speaking, do you believe that most agricultural extension workers can be 

trusted? (Trust Ext.); Generally speaking, do you believe that most agricultural salespeople can 

be trusted? (Trust Sales). The responses could either be Yes or No and the reference category for 

each trust variable is No. We believe that Trust Gen. could both increase and decrease the 

likelihood of IPM adoption and that the effect really depends on the social network that 
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surrounds each individual farmer. However, given Kenyan horticulture’s notoriety for high 

pesticide levels, we expect the effect of Trust Gen. to reflect preference towards conventional 

pest management methods over IPM adoption. Hence, we expect the effect to decrease the 

likelihood of IPM adoption on average. Trust Ext. is expected to increase the likelihood of IPM 

adoption for two reasons. One, all foreign Kenyan IPM dissemination efforts/programs are 

required to have government extension officers present when meeting with farmers. Two, 

extension officers are expected to have a strong working knowledge of agronomy as it applies to 

production in their region. Both would increase government extension officers’ understanding of 

the benefits of IPM and advocate for the IPM practices that best meet the needs of the farmers 

they serve leading to higher IPM counts for farmers with Trust Ext. = 1. Trust Sales is expected 

to have a negative relationship with the response variables. Though agricultural salespeople’s 

wages are tied to sales of horticulture inputs, with both IPM and pesticide practices sales 

included in their wages, given the low rate of IPM adoption observed in the 2016 survey 

(Methods: Survey Comparison: 2016 to 2019), it is expected that agricultural salespeople 

promote conventional pest management methods more than IPM practices on average.  

Cumulative Prospect Theory was used to elicit farmer’s risk preference. Following 

Tanaka 2010, the three parameters used to estimate farmer’s risk preference are 𝛼, 𝜎, and 𝜆. Liu 

and Huang 2013 identify the pathways CPT variables connect with decisions to spray pesticides 

and the potential ambiguity that can arise from risk preference and the decision to spray 

pesticides (Liu and Huang 2013 studied Chinese cotton farmer’s pesticide decisions). They posit 

that there are two pathways where the CPT parameters can affect farmer’s utility functions. The 

pathways are risk to farmer’s income and health associated with apply pesticides. They find that 

more risk averse farmers use higher pesticide quantities while farmers that are loss averse use 
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less pesticides quantities. Since IPM techniques can be used both as a substitute for and a 

complement to pesticides, we believe that the effect of the parameters can have an ambiguous 

effect with IPM adoption. However, given the low IPM adoption identified in the 2016 survey 

and the high levels of pesticide use characterized by Kenyan horticulture, we expect the health 

risks of pesticide applications to play a minimal role in the IPM decision process, leading us to 

the following expectations. As 𝛼 increases, so does the weight farmers place on prospects with 

higher probabilities (certainty). Given the low rate of IPM adoption indicated by the 2016 

survey, it is expected that IPM techniques are associated with high levels of uncertainty and low 

probabilities of success. As a result, 𝛼 is expected to have a negative relationship with all IPM 

adoption dependent variable specifications. Holding all else constant, IPM adoption will 

diversify the pest management portfolio, which can increase the probability of generating higher 

incomes and lower the risk of pesticide poisoning associated with IPM alternatives. Both effects 

lead us to expect that 𝜎 will have a positive effect on IPM adoption. We also expect a positive 

effect from the loss aversion parameter, 𝜆, because as farmers diversify pest management 

practices, they decrease the likelihood of income losses from pest infestations.  

Variables used to control for regional differences are dummy variables for the three 

counties sampled in the 2019 survey (Nyeri, Kirinyaga, and Tharaka-nithi). The reference 

category for the county variables is Tharaka-nithi. It is expected that farmers from Tharaka-nithi 

will adopt more IPM techniques than the other counties.  

Table 2: Definition of variables in the IPM adoption model 

Variable Definition Expected sign 

Education 1 if the farmer’s education is less or equal to completed primary school Negative 

Gender* Gender of primary decision maker See notes 

Experience Horticulture Experience (in years) Positive 
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Acres Total Acres Farmed Positive 

Borrow 1 if the farmer borrows to finance their agricultural production last year Positive 

Working age Number of working age dependents Negative 

Veg Sales % of Income Vegetable sales as percent of income Positive 

Trust General 1 if the farmer believes in general most people can be trusted Positive 

Trust Extension 1 if the farmer believes government agricultural extension workers can be trusted Positive 

Trust Sales 1 if the farmer believes agricultural salespeople can be trusted Negative 

α CPT Parameter: The larger α becomes the more weight the individual places on 
large probabilities and less weight on small probabilities 

Negative 

σ CPT Parameter: The greater σ, the less risk averse an individual is Positive 

λ CPT Parameter: The greater λ, the more loss averse the individual is Positive 

County* 1 indicating the farmers county of residence See notes 

Training count Count of the number of times the farmer was trained on IPM  Positive 

Notes: Gender can take on three forms. Male, Female, and Both Male and Female if the partners share equal responsibility in 
making decisions. The reference category for gender for all the regressions is Male. It is expected that both Male, and Both Male 
and Female will have a positive relationship with IPM adoption. The County variable represents the three counties: Tharaka-Nithi, 
Nyeri, and Kirinyaga. The reference county for each regression is Tharaka-nithi. It is expected that the highest level of IPM 
adoption will be in Tharaka-Nithi due to the work done by KALRO in the county since 2015.  

 

3.10  Estimation Strategy 

Estimation Strategy: Poisson  

A Poisson regression is used to model IPM adoption since the dependent variable can 

only take on positive values and the level of adoption is measured by a count of IPM practices 

used (equation 15). 

Ε(𝑦#,&|𝑥0 + 𝑥:, … , 𝑥9#) = exp	(𝛽#,&𝑋 +∈#,&)………………………...………………...……..(15) 
 
Where the left-hand side (LHS) is the expected count of IPM category, a, for farmer i. The 

righthand side (RHS) represents the exponentiated marginal effects 𝛽 of IPM category a with 

respect to X, a vector of independent variables, and the error term ∈#,& for farmer i. The Poisson 
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model requires that the latent variable takes on a Poisson distribution. This distribution is 

presented in figure 3.7, where the parameter λ controls the distributions portrayed in the figure.  

Figure 3.7: Examples of Poisson Distribution 

 

Since, the count variable cannot be negative, maximum likelihood estimation is used and 

independent variables are exponentiated to ensure that the predicted values for the response 

variable remain positive. This can make estimate interpretation a bit challenging and often 

research that estimates count data converts the estimates to incident rate ratios (IRR). IRR’s are 

constructed by exponentiating the estimates and converting to a percentage. All Poisson 

estimates are presented as estimates from equation 15 but are converted to IRR in the discussion 

to improve interpretation. Wooldridge 2016 states that “all of the higher moments of the Poisson 

distribution are determined entirely by the mean.”. Specifically, the mean variance assumption 

that is presented in equation 16. 

 
 Var(y|x) = E(y|x).…….………………………………………………………………………..(16) 
 
Equation 16 shows that the variance of y given x is equal the expected count of y given x. If this 

assumption does not hold the model’s standard errors can either be too high or too low. One way 

to correct for this is to check for the presence of over or under dispersion and adjust the standard 

errors accordingly. This is done by the solving for an unknown non-negative parameter 𝜎:, 

which is shown in equation 17. 



 

41 
 

Var(y|x) = 𝜎:E(y|x	)……………………………………………………………………..……..(17) 
	
If 𝜎: > 1, the variance is greater than the mean for all predictor variables which causes the 

standard errors to be inflated, conversely for  𝜎: < 1. A 𝜎: = 1 causes equation 2 to hold.  

Estimation strategy: selecting model most appropriate response variables  
 

Another hurdle that using count data must address is selecting the most appropriate 

model given the distribution of the response variable. The density of 0’s (no IPM adoption) with 

respect to density of positive counts is one example that could result in misleading maximum 

likelihood estimates provided by the Poisson model. One way to test the goodness-of-fit of a 

Poisson model is to check the significance of the deviance and Pearson’s chi2. If the tests are 

highly significant, this indicates that the Poisson model is inappropriate, and another model 

could be more appropriate given the distribution of the response variable. Thus, a high presence 

of no IPM adoption could cause a violation in the mean variance assumption of the Poisson 

model, which could bias our model’s estimates. Negative binomial and Double Hurdle models 

are two options for count data regressions in which a high presence of zero counts (no adoption) 

is observed. 

Estimation strategy: Negative Binomial model 

Similar to the Poisson regression, negative binomial regression (NegBin) model is used 

for nonnegative count dependent variables. However, variance in the model is allowed to be 

greater than what the Poisson model allows, which relaxes the equi-dispersion assumption of the 

Poisson model (equation 17). The negative binomial model specification is shown below. 

ΕY𝑦#,&Z𝑥0 + 𝑥:, … , 𝑥9 , ∈#,&[ = expY𝛽0X + 𝑑#,& 	+∈#,&[ = ℎ#,&𝑦_#,&……………………..….…..(18) 
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The parameter 𝑑#,& in equation 18 controls for overdispersion (underdispersion), and thus could 

be a better model selection if the Poisson model’s goodness-of-fit tests are nonsignificant. It is 

assumed that ℎ# = exp(∈#,&) and has a one parameter gamma distribution, ∈(𝜃, 𝜃).	The greater 

𝑑#,& , the greater the overdispersion. 𝑑#,&	= 0 reduces equation 18 to the standard Poisson model in 

equation 15. 

Estimation strategy: Double hurdle model 

Cragg 1971 proposed a two-stage regression model similar to a Tobit model where the 

presence of 0’s (no adoption) can be controlled while using MLE and uses two equations to 

model the adoption decision (selection equation and intensity equation). Cragg’s Double Hurdle 

Model (DH) allows for different RHS variables than the independent variables in the selection 

equation. However, for this work both equation’s independent variables are the same. The latent 

variable for the first equation is left truncated at 1 (𝑦0,#,& ≤ 1), while the intensity equation is 

right censored at 1 (𝑦:,#,& ≥ 1). IPM adoption response variables that have an overwhelming 

presence of no adoption could use the DH model for two reasons. One, the DH model is tailored 

for response variables that have a high density of zeros, with respect to higher counts, which 

could improve accuracy of the DH estimates when compared to the Poisson model. Two, DH can 

improve understanding of the factors of IPM adoption because the DH model provides estimates 

for why farmers choose to participate in the market for IPM techniques (selection equation) and 

estimates for the factors that influence their intensity of adoption (intensity equation). The two 

sets of estimates are unique and can be used to tailor future IPM program strategies and 

objectives. These equations are shown in equations 19 and 20 respectively.  

𝑦c0,#,& = β0,#,&𝑋 + 𝜇#,&……………………………………………………………………..……(19) 
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𝑦c:,#,& = β:,#,&𝑋 + 𝜀#,&…………………………………………………………….……….……(20) 

Equation 19 represents the IPM market entrance equation (selection) and equation 20, the IPM 

intensity equation (level of IPM adoption). Where farmer i will participate in the market for 

IPM’s, 𝑦0,#,& = 1, if 𝑦c0,#,&	> 0, or not participate (no IPM adoption), 𝑦0,#,& = 0, if	𝑦c0,#,& ≤ 0. 

Equation 19’s X is a vector of variables that serve as proxies for mechanisms that influence 

farmers to participate in the market for IPM strategies. β0,#,& is the respective effects of X and 

𝜇#,& is the error term where 𝜇#,&∼𝖭(0,1). Equation 20’s 𝑦c:,#,&	is the response variable that 

estimates farmers IPM intensity (count of IPM techniques used last season) where 𝑋 is a vector 

of determinants of IPM intensity IPM category a and the error term,	𝜀#,&∼𝖭(0,σ!). As noted 

before the same independent variables are used in both equations which is reflected in our 

notation but the estimates of X’s are not equal, 𝛽0,#,& ≠ 𝛽:,#,&.  

3.11  Addressing endogeneity 

Addressing endogeneity: Training count  

Motivated farmers may be more likely to attend IPM training sessions than their less 

motivated counterparts. Therefore, including IPM training (Training count) in our models 

without accounting for endogeneity could lead to biased estimates and misleading results. An 

instrumental approach can be used to address this issue. The instruments considered for Training 

count are farmer i’s distance to the nearest market (D. Market) in kilometers, and percentage of 

farmers trained on IPM at the sub county level (% IPM). D. Market is expected to have a 

negative relationship with the dependent variable as markets are typically located in the center of 

Kenyan villages. It is assumed that being closer to the community center increases the likelihood 

of social interaction, which would increase the chances of hearing about and attending IPM 

training sessions. % IPM is expected to have a positive relationship with Training count because 
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% IPM is believed to be a function of time and not constant from year to year, implying that 

more IPM training opportunities are available for farmers each year. As a result, as the number 

of opportunities increases so too does the likelihood of participating IPM training sessions, 

leading to higher Training counts. Furthermore, given the complexity of many of the IPM 

practices, % IPM is only expected to affect IPM adoption when a farmer is trained on IPM. 

Addressing endogeneity: Testing the validity and necessity of instruments 

This research uses three dependent variable specifications for IPM adoption (IPM Count, 

Advanced IPM, and Basic IPM). The instrumental variables previously mentioned are tested in 

2SLS regressions to determine whether they are valid for each of the dependent variable 

specifications. The test consists of a test for weak instruments (Montiel Oleo-Pflueger 2013), 

presence of endogeneity using Wooldridge’s (1995) robust score test and a robust regression-

based test, and testing for overidentification if the endogenous variable has more than one 

instrument. (Wooldridge 1995).  

Good instruments are highly correlated with the potential endogenous variable and not 

correlated with the error term in the second stage regression. If the first condition does not hold, 

instruments could be weak, which would result in biased estimates. An F statistic of the 

instrument(s) in the first stage regression is one way to test for a good instrument(s), following 

Cragg and Donald (1993) the Ho is that the instrument is weak in the first stage regression. If the 

F statistic is not significant, then the instruments used as proxies for the endogenous variable 

have no explanatory power and new instruments should be implemented or the presence of 

endogeneity assumed away, which is not advised. However, significance of the F statistic alone 

is not sufficient to determine a strong instrument. Stock, Wright, and Yogo (2002) show that the 

F statistic should exceed 10 for a consistent estimator. For further discussion on weak 
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instruments see Pflueger, C. E., & Wang, S. (2015). The first stage F statistic used in this work 

use the Montiel Oleo-Pflueger (2013) test from the “ssc” package in STATA to correct for the 

shortcomings of the Kleibergen-Paap F statistic presented by Andrews and Stock 2018. If the F 

statistic does not exceed 10 and if there are more instruments than endogenous variables, Limited 

Information Maximum Likelihood (LIML) estimation will be used and results compared with 

2SLS (Stock, Wright, and Yogo 2002; Mikusheva and Poi 2006). However, our instruments 

meet the condition for strong instruments and LIML estimation is not used.  

Wooldridge 1995 proposed a method similar to the Durban-Wu-Hausman test that 

identifies the presence of endogeneity in a model by including the residuals of the endogenous 

variables with the exogenous variables in a regression of the original model. If we fail to reject 

the exogeneity of Training count, the most appropriate count model will be used given the 

distribution of the dependent variable (Poisson, Negative Binomial, or Double Hurdle). The 

Wooldridge tests are tailored for models with heteroskedasticity (i.e. allows for robust standard 

errors) whereas the Durban-Wu-Hausman is not. The tests evaluate the Ho that the potential 

endogenous variable is exogenous. There are two tests, a Chi2 test and an F-statistic. If either one 

is significant, we fail to reject the null and the potential endogenous variable could be 

exogenous.  

The test for overidentification is only performed when there are more instruments than 

endogenous variables. Similar to the test for endogeneity, the test for overidentification uses the 

first stage OLS estimation of the endogenous variable on all exogenous variables where the Ho is 

that our endogenous variable is not overidentified. If the Chi2 is not significant and we fail to 

reject the null,  we have support for the conclusion that endogenous variable is not 

overidentified.  
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Addressing endogeneity: model selection 
 

As discussed in the previous section, IPM training count could be endogenous with the 

decision to adopt IPM techniques. As a result, the standard Poisson model would be insufficient 

in estimating the response variables because it cannot control for endogeneity. Further, 2SLS is 

inappropriate because the response variables are not continuous and can only take on non-

negative values. Hence, if endogeneity is present, for IPM adoption category a, we will estimate 

IPM adoption following Mullahy 1997’s generalized method of moments (GMM) using additive 

errors. Equation 15 then becomes: 

ΕY𝑦0,#,&Z𝑥0 + 𝑥:, … , 𝑥9#[ = expY𝛽0,#,&𝑋 + 𝛽:,#,&𝑦:,#,&[ +∈#,&……………………………...…..(21) 

Where the adoption decision for farmer i for IPM category a is represented by 𝑦0,#,&, which is a 

function of the exogenous covariates 𝑋 and endogenous variable 𝑦:,#,&, and additive error term 

∈#,&. The endogenous variable Training count takes the form: 

𝑦:,#,& = 𝛿0,#,&𝑋 + 𝛿:,#,&𝑍& + 𝑣#,&………………………………………………………………..(22) 

Where 𝑍&is(are) the instrument(s) and 𝑣#,& are the residuals of the linear regression of Training 

Count. Substituting the estimates of the RHS of equation 22 into equation 21 for 𝑦:,#,& results in 

the second stage regression where the estimate of 𝑣# controls for endogeneity in equation 21. 

Solving for ∈# leads to the following error function, equation 23 and the population-moment 

condition, equation 24.  

𝑢(𝑦0,#,& , 𝑋,	𝑦:,#,&,	𝛽0,#,& , 𝛽:,#,&) = 𝑦0,#,& − expY𝛽0,#,&𝑋 + 𝛽:,#,&𝑦:,#,&		[……………..….…….…..(23) 

	𝐸j𝑍k#𝑢Y𝑦0,#,& , 𝑋,	𝑦:,#,&			𝛽0,#,& , 𝛽:,#,&[l = 0	……………………...….………………………….(24) 

The GMM estimator minimizes the sample-moment condition to make it as close to zero as 
possible. 
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3.12   Pesticide Applications and Expenditures 

 
Total pesticide applications represents the total count of pesticide applications made last 

season across the three crops (Pesticide applications). Total pesticide expenditures last season is 

the sum of all pesticide expenditures (no labor nor pesticide application costs are included in its 

calculation) and is divided by the total acres farmed across the three crops and adjusted to 2019 

USD (Pesticide expenditures). The regressions for pesticide applications and expenditures use 

the same independent variables as the IPM adoption regressions with the exception of acres for 

the pesticide expenditure regression. Advanced IPM and Basic IPM adoption are also included in 

the regressions to evaluate the impact that IPM adoption has on the two pesticide related 

response variables. We include the individual IPM techniques instead of the aggregated variables 

in separate regressions in order to isolate the effects of specific techniques. We control for 

seasonal pest severity by including the variable Severity, which represents the average pest 

severity across the crops grown last season. Farmers were asked to rank their pest infestation last 

season for each of the three crops. Severity had four categories: ‘none’, ‘low’, ‘medium’, and 

‘high’. The Severity for each crop was converted to 0-3 with 0 being no pest infestation and 3 

being high pest severity. The average severity for the three crops is used as the independent 

variable Severity in the two pesticide regressions. 

The first regression represents Pesticide applications using the aggregated IPM adoption 

categories Advanced IPM adoption and Basic IPM adoption for farmer i, which can only take on 

positive values, and hence a Poisson regression is used. The regression takes the following form: 

 
Ε(𝑦|𝑥0 + 𝑥:, … , 𝑥;) = exp(𝛽0𝑋#+𝛽<𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦#+𝛽=𝐴𝑑𝑜𝑝𝑡#,&)……………………………......(25) 
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Where 𝑋# are the covariates used in the previous adoption regressions and 𝛽0 their respective 

coefficients. Average pest severity last season for farmer i is represented by 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦# 	while 

𝐴𝑑𝑜𝑝𝑡#,& is farmer i’s aggregated IPM adoption level a last season (changing 𝐴𝑑𝑜𝑝𝑡#,& to 

𝐴𝑑𝑜𝑝𝑡#,9 indicates that the individual IPM techniques, k, are used instead of the aggregated 

techniques. This will be done for regressions following the aggregated regressions).  

Similarly, Pesticide expenditure is represented by equation 26 below using the same 

variables, but OLS is used to model the continuous variable (Acres is excluded from equation 26 

because the dependent variable is specified per acre, hence 𝑋′#).  

 
𝑦# = 𝛽+ + 𝛽0𝑋′# + 𝛽:𝑅𝑖𝑠𝑘#+𝛽<𝑆𝑒𝑣𝑒𝑟𝑒#+𝛽=𝐴𝑑𝑜𝑝𝑡#)……………………………….............(26) 

 

Chapter 4.  Summary Statistics for 2016 and 2019 Surveys 

4.1  Survey Comparison: 2016 to 2019 

 In 2016 a baseline survey was conducted in Kenya’s major vegetable producing 

counties, which was followed by a survey three years later to gauge IPM adoption rates. The 

2016 survey used a simple random sampling method using village lists provided by village elders 

and selected random households using a random number generator. The baseline survey included 

a sample of 402 farm households, 206 of them in two counties in the Rift Valley Province, 

Bomet and Nakuru counties, 96 collected from the Central Province, Nyeri county, and 100 

taken from Tharaka-nithi county located in the Eastern Province. Three years later our follow up 

survey was conducted, and a total of 447 farmers were surveyed in June 2019 in three major 

horticulture producing counties in Kenya. Two of the counties, Kirinyaga and Nyeri, are located 

in the Central Province where 113 and 101 farmers were surveyed respectively, and 233 farmers 
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were surveyed farther east in Tharaka-nithi. The survey used a simple sampling method designed 

to minimize bias. It involved a snowballing method because we were unable to acquire village 

lists of households in the study area. The method was performed using two teams made up of 

two enumerators, one manager, and a driver. The managers coordinated with the sub-counties’ 

government extension workers so enumerators would not oversample any village. If the number 

of villages for the day was not a multiple of four, a village(s) would be selected at random where 

additional surveys were collected. Enumerators would be dropped off in their respective villages 

and walk seven houses and begin the survey at the seventh house. If the seventh house did not 

produce any of the crops of interest, the enumerator would go to the next house until a vegetable 

farmer was found. After finishing the interview, the enumerator would count another seven 

houses and the process would continue until they collected the predetermined number of 

interviews to be collected from that village. After the driver would pick them up and take them to 

the next village and the process would continue. The follow up study did not seek out the 

households that were interviewed in the baseline survey. The summary statistics for the two 

surveys are shown in tables 3-8. 

The major difference in the results in table 3 is that the sample population in the second 

survey is more dependent on agriculture for income generation than is the population in the first 

survey. The 2019 sample shows that 96% of all households surveyed have agriculture as their 

main income source as compared to the 78% in the baseline survey. The difference between the 

primary income sources in the two samples could be due to the difference in counties sampled or 

to how the households were sampled. A relatively even distribution across counties’ primary 

income sources is seen for the four employment types in the 2016 survey. Agriculture primary: 

Bomet 26%, Nakuru 25%, Nyeri 26%, and Tharaka-nithi 23%. Wage job: Nyeri 20%, Bomet 
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28%, Nakuru 22%, and Tharaka-nithi 30%. Households that claimed business as their primary 

source of income had even less variation across counties as all but Nyeri county, with 17%, 

showed 28% of households with business as their primary profession. The percentage of income 

that vegetable sales provide saw a large increase from 33% to 67% between the two surveys, 

while the percentage of vegetable production consumed by the household fell from 25.2% in 

2016 to 7% in the 2019 sample. Hence, the 2019 sample suggests a population that has a higher 

dependence on their own agricultural production than the sample in 2016. 

 With regard to crop production, the follow up survey identified 14% more farmers who 

had access to irrigation for their crop production, rising from 57% to 71% in three years (table 

3). The Mbogoni irrigation scheme that planned to begin in 2014 in Tharaka-nithi county is 

likely a major reason for this jump in access to irrigation, with over two thirds of the 2019 

sample using irrigation being from Tharaka-nithi county. Surprisingly, only 1 household had 

access to irrigation in Nyeri county in the 2019 sample.  

 

Table 3. Characteristics of the respondents in the 2016 and 2019 Kenyan samples 

Variable Description 2016 2019 
N = 402 N = 445 

Age of Primary Decision Maker 48.87 47.59 
Family members under same roof 2.73 3.91 
Years in School of Primary Decision Maker 9.36 9.59* 
Gender of Primary Decision Maker   

Male  51% 60% 
Female  49% 32% 

Male and Female Share Responsibility Equally NA 9% 
Married household head 82% 78% 
Primary Income Source 

  

Agriculture  78% 96% 
Business 9% 2% 

Wage Job 12% 2% 
Other 1% 0% 

Acres Owned 3.09 2.79 
Acres Farmed 2.69 1.81 
Livestock Owned 7.47 5.93 
Veg Sales % of Income 33% 67% 
Consumption % of total vegetable production 25.2% 7% 
Borrow to finance crop production 25% 24% 
Were you able to borrow enough 56% 77% 
Irrigation 57% 71% 
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Distance Market 3.89 5.16 
Distance Extension 7.62 6.95 
Distance Inputs 5.62 5.15 
Notes: Years in school of the Primary Decision Maker for the 2019 survey asked which education 
category best represented the education of the primary decision maker (Did not attend school, Did not 
complete primary (less than 7 years), Completed Primary (7 or 8), Secondary (9-13), Some tertiary 
(greater than 13), and Completed a university program  some primary, completed university program,  
These categories were used to generate the estimate shown for Years in School of Primary Decision 
Maker.  

 
The summary statistics for tomato, cabbage, and French bean producers in the two 

samples are presented in table 3. For the baseline survey, Tharaka-nithi held the majority of 

tomato growers (40%) followed by Bomet (29%), Nyeri (17%), and Nakuru (14%). The largest 

number of cabbage growers in the 2016 were in Nyeri (38%) followed by Bomet (34%), Nakuru 

(21%), and Tharaka-nithi (7%). French bean growers in the initial survey were overwhelming in 

Nakuru (75%), followed by Nyeri (21%), and both Bomet and Tharaka-nithi at 2%. Similar to 

the baseline survey, in the 2019 survey the majority of tomato farmers were in Tharaka-nithi 

(61%), followed by Kirinyaga (31%), and Nyeri (8%). The majority of cabbage growers in the 

follow-up survey were from Nyeri (49%), with 40% in Tharaka-nithi growers and 11% in 

Kirinyaga. Similarly, Tharaka-nithi had the greatest change in quantity of French bean growers 

between the surveys and holds the majority of producers for the sample (40%) followed by 

Kirinyaga (34%), and Nyeri (26%). The clear changes in Tharaka-nithi vegetable production 

could be a direct result of the Mbogoni irrigation scheme.  

The baseline survey did not ask how many years of experience each farmer had with the 

three crops respectively, but rather how many years the farmer had grown vegetables. The 

average was 14.8 years. The 2019 survey found that farmers in the sample had the most 

experience with cabbage and tomatoes, 9.48 and 8.14 years respectively, followed by roughly 6 

years for French beans. The average plot size for tomatoes increased by 0.9 acres, decreased for 

cabbage by 0.13 acres, and decreased by 0.36 for French beans. Tomato growers in the 2019 

reported on average $1009 in sales from their tomato crop for the past year. This is an increase of 
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about $560 dollars from the 2016 sample average. Cabbage sales also increased by $143 between 

the two samples. Though the 2019 sample reported higher sales for tomatoes and cabbages, 

revenue per acre for both of these crops decreased by 25% and 16%, respectively. Not 

surprisingly, given the 70% decrease in average plot size, French bean sales decreased. However, 

the revenue per acre increased about 19%.  

In order to understand the types of non-market factors that influenced the productivity of 

each sample’s producers, the pest influence, pesticide use, and IPM use are presented below in 

tables 4-6.  

Table 4. Crop producer summary statistics for Kenyan 2016 and 2019 samples 

Variable Description 
2016 2019 

N = 402 N = 445 
Crop Producers   

Tomato Growers 141 35% 254 57% 
Cabbage Growers 182 45% 186 42% 

French Bean Growers 48 12% 96 22% 
Years grown tomatoes NA 8.14 
Year grown cabbages NA 9.42 

Years grown French Beans NA 6.01 
Acres Farmed 

  

Tomato 0.38 0.47 
Cabbage 0.53 0.4 

French Beans 0.51 0.15 
Value in 2019 adjusted currency for last year’s crop production KSh. $ KSh. $ 

Tomato 44990.36 447.36 101500.00 1009.27 
Cabbage 37319.91 371.09 51769.73 514.77 

French Beans 49972.98 496.91 43076.77 428.34 
Value per acre in 2019 adjusted currency for last year’s crop production KSh. $ KSh. $ 

Tomato 199860.21 1987.32 151866 1510.09 
Cabbage 115436.04 1147.84 96761 962.15 

French Beans 74140.83 737.22 88114 876.17 
 

 
Table 5 presents the pest severity and worst pest for tomatoes, cabbage, and French 

beans. Questions presented to respondents in both samples were asked in the same way, with 

farmers asked to rank the severity of diseases or insect pests for the past growing season for each 

of the three crops.  

The comparison suggests that tomato producers in the 2016 sample had a worse growing 

season with respect to tomato pests. The worst pest changed from disease/viruses in the 2016 

survey to insect/worms in the 2019 survey. Both Cabbage and French bean producers 
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experienced similar pest severity in the two years, with the largest difference being French bean 

insect severity, with 10% higher “high severity” in 2016 than in 2019. However, given the small 

sample of French bean producers (47) for baseline survey, caution is needed when comparing the 

French bean samples. Similar to tomato producers’ worst pest, cabbage and French bean 

producer’s worst pest switched from disease/virus to insect/worms between the samples.  

Table 5. Pest severity 2016 and 2019 samples 

Variables 2016 2019 
Severity of Tomato Diseases 

  

High 50% 29% 
Medium 23% 33% 

Low 26% 38% 
None 0% 0% 

Severity of Tomato Insect Pests 
  

High 50% 34% 
Medium 13% 33% 

Low 35% 33% 
None 1% 0% 

Worst Tomato Pest 
  

Diseases/viruses 59% 44% 
Insects/Worms 40% 56% 

Weeds 1% 1%    

Severity of Cabbage Diseases 
  

High 25% 21% 
Medium 26% 31% 

Low 43% 47% 
None 5% 2% 

Severity of Cabbage Insect Pests 
  

High 23% 19% 
Medium 23% 44% 

Low 48% 36% 
None 6% 1% 

Worst Cabbage Pest 
  

Diseases/viruses 52% 46% 
Insects/Worms 45% 53% 

Weeds 3% 1%    

Severity of French bean Diseases 
  

High 23% 27% 
Medium 45% 49% 

Low 26% 21% 
None 6% 3% 

Severity of French Bean Insect Pests 
  

High 36% 25% 
Medium 32% 43% 

Low 28% 31% 
None 4% 1% 

Worst French Bean Pest 
  

Diseases/viruses 45% 41% 
Insects/Worms 53% 59% 

Weeds 2% 0% 

 
Characteristics of pesticide applications for the two samples are presented in table 6. The 

average number of times tomato and cabbage producers applied pesticides in the last growing 
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season remained similar between years, with about 8 and 4.5 applications respectively. The 

average number of applications on French beans decreased by nearly 2 across the two samples. 

Even though the number of applications remained similar across samples, 38% more farmers that 

applied pesticides last year exhibited health symptoms after applying pesticides on their 

vegetable crops. Pesticide expenditures per acre decreased across all crops from 2016 to 2019, by 

almost half for both cabbage and French bean producers and by about 14% for tomato producers. 

However, the 2016 survey did not explicitly ask for only the pesticide cost while the 2019 survey 

did, therefore this large difference could be due to labor costs included in the 2016 average.  

In both samples, respondents were asked to state whether their pesticide applications 

were effective on their vegetable crops. This response changed little between the two years and 

in both samples more than 80% of the farmers stated that their pesticide applications were 

effective in fighting insect pests. Both samples of farmers were asked how they determine when 

to apply pesticides on their vegetable crops. The respondents were allowed multiple responses 

and the percentages are based on the number of respondents to the question for each sample 

respectively. In the 2016 survey, the top responses were: Based on visible damage to the plant 

76%; Growth stage of plant 71%; Read label on pesticide container 70%; Spray at regular or 

fixed intervals 66%; Advice from pesticide dealer 62%. The 2019 sample had Based on visible 

damage 85%; Based on number of pests 81%; Spray at regular or fixed intervals 45%; Growth 

stage of the plant 43%; Read label on pesticide container 42%. 

 
Table 6. Pesticide use for 2016 and 2019 Kenyan samples 

Variable 2016 2019 
Tomato Pesticides KSh. $  KSh. $ 

Applications last season 7.87 8.11 
Expenditure 2019 adjusted   4989.62 $49.61 6722.31 $66.84 

Expenditure 2019 adjusted per acre 21433.74 213.13 18447.4 183.43 
Cabbage Pesticides   2019 

Applications last season 4.52 4.63 
Expenditure 2019 adjusted 2827.50 $28.12 2503.3 $24.89 

Expenditure 2019 adjusted per acre 13838.76 137.61 4905.7 48.78 
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French Beans Pesticides      
Applications last season 7.11 5.2 

Expenditure 2019 adjusted 4683.76 46.57 2768.26 27.53 
Expenditure 2019 adjusted per acre 13068.80 129.95 6677.5 66.40 

     
Health symptoms exhibited after applying pesticides 42% 80% 
     
Effectiveness of pesticides      

Pesticides were effective 83% 88% 
Pesticides were not effective 13% 11% 

Don’t know 1% 0% 
Did not apply pesticides 3% 1% 

   
How pesticide application timing is determined   

Read label on pesticide container 70% 42% 
Advice from pesticide dealer 62% 38% 
Advice from extension agent 35% 24% 

Advice from relative or friend 39% 30% 
Growth stage of plant 71% 43% 

Spray at regular or fixed intervals 66% 45% 
Based on number of pests 64% 81% 

Based on visible damage to the plant 76% 85% 
Other 12% 0% 

 
The following tables show the IPM training and adoption rates across the two samples 

and for the three crops, tomato, cabbage, and French beans. Table 7 shows that the 2019 sample 

had an additional 14% of the sample trained on IPM, 34%, compared to the 20% that had 

received IPM training in 2016. Additionally, the number of times an individual received IPM 

training, Training count, tripled from around 2 times in the baseline survey to around 6 times in 

2019.  

Table 7. Household Integrated Pest Management training for 2016 and 2019 samples 

 Variable 2016 2019 

Received IPM Training 20% 34% 

Training count 2.04 6.16 
 

The largest difference in IPM adoption rates is the pest-resistant varieties (PRV) 

increasing from 34.8% to 80%, 29.1% to 71%, and decreasing from 38.8% to 33% for tomato, 

cabbage, and French beans, respectively. However, after comparing how the questions were 

presented to the farmer between surveys, a word of caution is in order. The 2016 survey asked 

farmers whether they adopted any pest resistant variety for a given crop, while the 2019 survey 

asked them whether they used specific PRV’s that were provided by KALRO scientists, a 
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Kenyan agriculture research organization. Selecting healthy seeds or providing a sanitizing seed 

treatment increased from 10.6% to 12%, decreased from 12.7% to 7.6%, and decreased from 

25% to 7.6% for tomato, cabbage, and French beans. Use of trays to raise seedlings in sterilized 

soil, coco peat, or peat moss decreased for both tomatoes 12.8% to 4.4% and cabbage 7.1% to 

1.1%. Use of nursery nets to exclude insects from seedlings decreased from 23.4% to 16.4% and 

from 21.4% to 7.6% for tomato and cabbage respectively. Trichoderma use on seeds, seedlings 

or soil saw the most consistent change in use across all crops. Increasing by 9% for tomato 

growers, 7.3% by French bean growers, and 4.3% for cabbage growers. Removing damaged 

plants is still a practice that the majority of farmers utilize. It Decreased by about 8% and 15% 

for tomato growers and French bean growers respectively, but increased for cabbage growers by 

2%. Use of sticky traps increased in use for all growers. It increased by about 1%, 3.5%, and 6% 

for tomato, cabbage, and French bean growers respectively. Use of microbial pesticides showed 

mixed results, increasing by 6% for tomato growers, decreasing by 6% for cabbage growers, but 

was unchanged for French bean growers. Use of Bio-pesticides increased by 5% for tomato 

growers, saw little change for cabbage growers, and increased by 14% for French bean growers. 

Use of mulch and sowing seeds in solarized soil in seed beds were not asked in the 2016. 

 
 

Table 8. IPM adoption for 2016 and 2019 samples 

IPM Practices 
2016 2019 

Tomato Cabbage French 
bean Tomato Cabbage French 

bean 
Use of pest resistant varieties 34.8 29.1 38.8 80.0 71.0 33.0 
Selecting healthy seeds or sanitizing seed treatment 10.6 13.7 25.5 12.0 7.6 7.6 
Raise Tomato Seedlings in trays with sterilized soil, 
coco peat, or peat moss 12.8 7.1 NA 4.4 1.1 NA 

Use of nursery nets to exclude insects 23.4 21.4 NA 16.4 7.6 NA 
Apply Trichoderma on seeds, seedlings, or soil 1.4 4.4 6.4 10.4 8.7 13.7 
Remove damaged plants 72 73.1 80.8 64.4 75.3 65.3 
Use sticky traps 5.7 7.0 4.3 16.4 10.4 11.6 
Use of microbial pesticide 2.1 9.0 6.4 8.0 2.7 6.3 
Use of Bio-pesticides 5.7 9.0 2.1 11.2 7.7 15.8 
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Use of Mulch NA NA NA 37.6 37.9 23.2 
Sowing of seeds in solarized soil in seed beds NA NA NA 10.0 5.4 8.4 
Notes: The percentages represent the number of the farmers that adopted the individual IPM technique with respect to crop and IPM 
technique.  

 

In conclusion, comparison of the 2016 and 2019 surveys showed a population that is 

more dependent now on agricultural production for income generation. The data also suggest that 

the growing season pest severity, number of pesticide applications, and pesticide effectiveness 

remained similar or decreased with respect to pest severity across years for tomato and cabbage 

farmers. Yet, revenue per acre for tomato and cabbage growers decreased by 25% and 16% 

respectively. French bean farmers showed a 19% increase in revenue per acre with a similar pest 

severity and a reduction of seasonal pesticide applications by about 2. However, sample size for 

French bean farmers in 2016 was small. Though the percentage of total farmers trained on IPM 

and the average amount of IPM training sessions attended increased by about 15% and 4 training 

sessions respectively, IPM adoption did not increase across all practices. The only two IPM 

practices that saw increases for all crops were Trichoderma and use of sticky traps. Ignoring 

comparison of the PRV results because of the difference in question framing, tomato farmers 

appear to have experienced the greatest increase in IPM utilization across specific practices. 

Table 8 shows that tomato growers are utilizing six of the eight IPM practices more than they did 

in 2016. With regard to cabbage, the data showed that adoption of only three of the eight IPM 

practices increased. For French beans, two of the six IPM practices increased and one practice 

remained roughly the same.  

Chapter 5.  Results 
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5.1  IPM Adoption Dependent Variables 

The following table presents summary statistics for the response variable categories in the 

2019 sample. The average farmer uses 2.57 IPM practices (IPM Count) and on average tomato 

growers use the highest number of IPM practices in each category. Additionally, 2.5% of tomato 

growers and only 1% of cabbage growers do not use any IPM techniques while, 24% of French 

bean growers do not use any IPM techniques and only 23% use Advanced IPM. The average 

adoption rate for Advanced IPM for each specification is below 1, implying that most farmers do 

not utilize any Advanced IPM practice. The average farmer uses 0.62 Advanced IPM practices 

with cabbage farmers utilize the fewest. The average farmer in our sample uses around 2 Basic 

Practices, with French bean farmers adopting the least among the three crops. 

 

Table 9. Dependent Variable Descriptive Statistics for Study Region 

 Observations Min Max Mean Std.dev 

IPM Count 437 0 10 2.57 1.89 

Tomato Count 250 0 10 2.74 1.99 

Cabbage Count 181 0 9 2.41 1.39 

French bean Count 95 0 9 1.89 1.89 

Advanced IPM 437 0 7 0.62 1.38 

Tomato Advanced IPM 250 0 7 0.74 1.53 

Cabbage Advanced IPM 181 0 6 0.45 1.03 

French bean Advanced IPM 95 0 5 0.56 1.22 

Basic Practices 437 0 4 1.94 0.98 

Tomato Basic Practices 250 0 4 2 0.94 

Cabbage Basic Practices 181 0 4 1.96 0.86 

French bean Basic Practices 95 0 4 1.34 1.03 
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The distribution of the three IPM categories, a, is shown in figure 5.1. Both IPM Count and 

Basic Practices appear to follow the Poisson distribution. The distribution of Advanced IPM 

shows that nearly 75% of all farmers do not use any Advanced IPM practice. This result could 

cause a violation of the mean variance assumption of the Poisson model and lead to misleading 

results. Based on the results in table 9 and figure 5.1, the Poisson models appears to be the best 

choice for IPM Count and Basic Practices, while Negative Binomial and Double Hurdle are best 

for Advanced IPM which has limited adoption. 

Figure 5.1. Distribution of IPM Adoption 

 
 

5.2  Independent variables 

Table 10 presents descriptive statistics for the sample and shows that the majority of 

farmers grew tomatoes (250), followed by cabbage (181), and French beans (91). Forty percent 

of the farmers interviewed had less than or equal to a primary education. The data indicate that 

roughly 60% of decision makers were male, 30% female, and for 10% of the sample, a male and 

a female share equal responsibility for farm decision making. The average years of horticulture 

experience for the sample is 9.38. Cabbage farmers on average are the most experienced, 

followed by tomato farmers, and French bean farmers. The lower French bean experience is 

expected given that the crop is not a common Kenyan food and has only recently been promoted 

as an export crop in the region. Similar to experience, cabbage farmers on average have the 

largest parcels, followed by tomato farmers, and French bean farmers. The average plot size is 
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about an acre, but this result is skewed by a few outliers (50% of all farms in the sample are less 

than a half-acre and 25% are between a half-acre and one acre). Only 25% of farmers borrowed 

to finance last year’s crop production and the average number of working age dependents is 2.54. 

The sample is highly dependent on vegetable sales for income, with 67% of all income on 

average being generated by vegetable production (% income). The trust variables, which indicate 

beliefs about whether most people, agricultural extension officers, and agricultural salespeople 

can be trusted, indicate farmers on average are trusting of sources within their social networks. 

Agricultural extension officers are the most trusted in the sample with 85% of all farmers 

surveyed indicating that they believe most agricultural extension workers can be trusted. About 

35% of all farmers were trained on IPM, and for those that received IPM training the average 

number of times trained was six. The sample’s average IPM training count was about 2 times 

(Table 10 notes).  

Table 10: Sample Descriptive Statistics 

Variable Mean Std.dev Min Max 

Education 0.40  0 1 

Male  0.60  0 1 

Female  0.32  0 1 

Both Male and Female  0.09  0 1 

Experience  9.38 7.81 1 40 

Experience tomatoes 8.14 7.21 1 40 

Experience cabbage 9.42 8.22 1 40 

Experience French beans 6.05 5.54 1 26 

Acres 1.01 1.68 0.01 25 

Acres Tomato 0.786 1.24 0.01 15 

Acres Cabbage 0.956 2.01 0.062 25 

Acres French bean 0.623 0.667 0.062 5 
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Borrow 0.25  0 1 

Working Age 2.54 1.49 0 15 

% Income 67.1 30.4 1 100 

Trust Gen. 0.70  0 1 

Trust Ext. 0.85  0 1 

Trust Sales 0.79  0 1 

IPM Train 0.34  0 1 

Training count* 6.16 6.80 1 50 

Notes: Training count is for those farmers that received IPM Training, not the entire sample.  
The average for the entire sample is 2.12 training sessions. 

 
Table 11 shows farming characteristics for the three counties. Most of the tomato farmer 

observations are from Tharaka-Nithi (155), followed by Kirinyaga (78), and Nyeri (21). 

Kirinyaga had the smallest proportion of cabbage farmers, 21%, followed by 32% in Tharaka-

nithi, and 90% in Nyeri. The number of French bean farmers are similarly dispersed across 

counties, but as a percentage of total county farmers there is a large difference. Roughly 30% of 

all farmers from Kirinyaga and Nyeri grow French beans, but only 16% of Tharaka-nithi farmers 

grow the crop. Kirinyaga has the largest tomato and French bean plots with 0.81 acres and 0.25 

acres on average respectively. Nyeri has the largest cabbage plots by far, with an average plot 

size of 1.37 acres. The most experienced tomato farmers are in Kirinyaga, which is not surprising 

given the reputation the county has for producing tomatoes. Nyeri farmers have the most 

experience growing cabbages and French beans with over 13.5 and 9 years on average 

respectively. Tharaka-nithi has a slightly higher percentage of farmers trained in IPM, but those 

who have been trained have on average 2 more sessions than farmers in Nyeri, the county with 

the second highest IPM training count.  

Table 11: County Descriptive Statistics 



 

62 
 

Variable Tharaka-Nithi Kirinyaga Nyeri 

Observations 233 113 101 

Tomato Farmers 155 78 21 

Cabbage Farmers 75 20 91 

French B. Farmers 38 33 25 

Acres Tomato 0.42 0.81 0.14 

Acres Cabbage 0.17 0.11 1.4 

Acres French B. 0.08 0.25 0.19 

Experience Tom 6.35 11.24 9.9 

Experience Cab 6.57 8.03 13.58 

Experience French B. 3.7 6.6 9.09 

Trained on IPM 39.48% 21.24% 37.62% 

IPM Train Count* 7.28 3.75 4.95 

Notes: IPM Train Count is for those farmers that received  
IPM Training not the entire sample.  

 

With regard to CPT results, the risk parameters α and σ range 0-1.5 and for λ, 0-12. Twenty-one 

farmers did not pass the first test that evaluated their ability to interpret probabilities. These 

observations were excluded from the sample. The risk descriptive statistics are presented in table 

12.  

Table 12: Risk Parameters’ Descriptive Statistics (n = 426) 

Variable Mean Std.dev Min Max 

α 0.73 0.38 0.05 1.5 

σ 0.54 0.5 0.05 1.5 

λ 4.08 4.31 0.1 12 
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An additional test checked whether their practice answers were consistent with their 

results in the actual behavioral experiment with the three series. A new sample was created for 

farmers who passed at least one of the practice questions. Forty-nine farmers did not pass the 

second test. The CPT results using the sub-sample that passed both tests are presented in table 

13. We see little change in the weighting parameter, α, and the risk aversion parameter, σ, for the 

new sample compared to the original. The loss aversion parameter, λ, changed by 0.45, reflecting 

a sample that is less loss-averse on average. The regressions shown in the following sections use 

the sample that passed the first test that checked whether they understood probabilities. The 

regressions that use the sample that passed at least one of the practice examples are provided in 

the Appendix: Participant Comprehension: CPT table A1-A5. We find that not including these 

observations in the IPM adoption regressions has little impact on the non-CPT variable estimates 

and few changes were observed for the CPT estimates. The regressions presented below use the 

full sample and differences with sample CPT estimates are discussed in their respective sections.  

Table 13: Risk Parameters Descriptive Statistics using sub sample (n = 377) 

Variable Mean Std.dev Min Max 

α 0.75 0.39 0.05 1.5 

σ 0.55 0.48 0.05 1.5 

λ 3.63 4.12 0.1 12 

 
 

The sample average α and σ are 0.75 and 0.55 respectively, which implies that the sample 

overweights small probabilities and underweights large probabilities and that the average farmer 

is risk averse. The average loss aversion parameter of 3.63 implies that farmers are loss averse on 

average. Table 14 presents a comparison of average CPT parameter values for five studies. 

Notice that the parameters are similar across them. 
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Table 14: CPT parameter comparison 

Studies α σ λ 

O’Reilly and Norton 0.75 0.55 3.63 

Kahenman and Tversky NA NA 2.25 

Tanaka 0.74 0.61 2.63 

Liu 0.69 0.48 3.47 

Bocqueho 0.65 0.51 3.76 

 

5.3  Instrumental variables 

 Table 15 presents the IPM training percentages at the sub-county level (% IPM), with results 

ranging from 20.41%-52.94%. The smallest % IPM is found in Kirinyaga West with roughly 

20% of farmers in that sub-county identified as being trained on IPM. Chuka sub-county has the 

highest % IPM at about 53%.  

Table 15: IPM training percentages on the sub-county level (% 
IPM) (n= 447) 

Sub-County % IPM County 

Kieni East 37.78 Nyeri 

Kieni West 39.47 Nyeri 

Mathira 26.32 Nyeri 

Kirinyaga West 20.41 Kirinyaga 

Miwea East 22.73 Kirinyaga 

Miwea West 34.3 Kirinyaga 

Maara 25.44 Tharaka-nithi 

Chuka 52.94 Tharaka-nithi 

 
The summary statistics for D. Mrkt are presented in table 16. The average distance from farmers 

to the nearest market is 5.16 kilometers. There is little difference between the famers from 

Kirinyaga and Tharaka-nithi with respect to D. Mrkt, however farmers from Nyeri on average are 

about 2 kilometers farther away from markets then farmers from the other two counties.  

Table 16: Summary statistics of D. Mrkt (n=447)  

  D. Mrkt 
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All Counties 5.16 

Nyeri 6.54 

Kirinyaga 4.68 

Tharaka-nithi 4.76 
Note: The average distance from county farmers to 
the nearest market is shown in kilometers.  

 

Table 17 presents OLS results for training count, with robust standard errors provided in 

parentheses. Both instruments are highly correlated with the potential endogenous variable and 

significant (D. Mrkt p < 0.05; % IPM p < 0.01). Therefore, both D. Market and % IPM will be 

considered for instrumenting IPM training count.  

Table 17: Testing for Instruments  

  Training Count 
Intercept -0.61 

 (0.75) 

D. Mrkt -0.12** 
 (0.04) 

% IPM 0.10*** 
 (0.02) 

N 446 

R-sq 0.07 

adj. R-sq 0.07 

 

5.4  IPM adoption instrumental variable tests 

Table 18 presents the instrument/endogeneity results for the three IPM adoption 

specifications, a. Training count is instrumented using three variable specifications: Both (% 

IPM and D. Mrkt), % IPM, and D. Mrkt. When the potential endogenous variable is instrumented 

using two variables, an overidentification test is performed for the respective panel (Both; panels 

1, 4, and 7). The Breusch-Pagan Cook-Weisberg test was used to test for heteroskedasticity for 

the three model specifications. The results indicate that heteroskedasticity is present in each IPM 

adoption specification and therefore robust standard errors were used in the 2SLS specification 
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and Wooldridge’s endogeneity and overidentification tests (Breusch-Pagan Cook-Weisberg chi2 

results: IPM Count chi2 133.46  (prob > chi2 0.00), Advanced IPM chi2 218.72  (prob > chi2 0.00), 

Basic IPM chi2 29.70  (prob > chi2 0.04)). For all specifications using Both, we find that the 

model is overidentified which could imply that one or more of our instruments is invalid. 

Instrumenting training count using % IPM and D. Mrkt separately shows that D. Mrkt is a better 

choice for an instrument (F stat >10). However, we reject the null of Training count being 

exogenous for Count IPM and Basic Practices but fail to reject for Advanced IPM. Hence, 

training count will be instrumented using D. Mrkt for Count IPM and Basic Practices and treated 

as exogenous for Advanced IPM.  

Table 18: Results for Training count instrumental variables 
  
  
  

Count IPM Advanced IPM Basic IPM 
 

Both 
(1) 

% IPM 
(2) 

D. Mrkt 
(3) 

Both 
(4) 

% IPM 
(5) 

D.Mrkt 
(6) 

Both 
(7) 

% IPM 
(8) 

D. Mrkt 
(9) 

Weak Instrument          

F (1,217) 8.86 8.57 10.54 8.86 8.57 10.54 8.86 8.57 10.54  
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Endogeneity          

Robust Sore Chi2(1) 9.98 24.03 4.60 32.22 45.57 0.00 7.89 0.74 16.23  
(0.00) (0.00) (0.03) (0.00) (0.00) (1.0) (0.01) (0.39) (0.00) 

Robust Regression F (1,216) 9.13 26.08 3.89 28.77 56.94 0.00 7.63 0.70 11.24 
 

(0.00) (0.00) (0.05) (0.00) (0.00) (1.0) (0.01) (0.40) (0.00) 
Overidentification          

Score Chi2(1) 14.82 NA NA 8.14 NA NA 3.83 NA NA 
  
  
  

(0.00) NA NA 0.00 NA NA (0.05) NA NA 

Observations 403 403 403 403 403 403 403 403 403 

Notes: p values are presented in parenthesis.  

5.5 IPM adoption regression results 

 
IPM Count 
 

Table 19 shows the results for IPM Count using training count as the endogenous 

variable instrumented by distance to market (D. Mrkt). With respect to the risk parameters, both 



 

67 
 

α and σ are not significant predictors of IPM Count. However, the loss aversion parameter, λ, is 

highly significant and positive (p < 0.01). Table A1 in the Participant Comprehension: CPT 

section of the appendix provides results of a robustness check for the estimates of the risk 

parameters. The table shows the same regressions performed in table 19 but for a sub-sample of 

farmers who passed at least one of the practice questions. The results are similar between the two 

samples. Thus, farmers who are loss averse on average adopt more practices than less loss-averse 

counterparts. The 2SLS results suggest that for each marginal increase in λ, the IPM Count 

increases by 0.08. Furthermore, using the IV Poisson specification and converting to IRR shows 

that each unit increase in λ increases the likelihood IPM adoption by 3% on average, ceteris 

paribus.  

Gender impacts between 2SLS and IV Poisson are inconsistent across model 

specifications. Females are found to have a lower IPM Count than their male counterparts in the 

IV Poisson regression (p < 0.10), but the results are non-significant in the 2SLS regression. 

Farms where males and females share joint responsibility for farm management decisions with 

respect to farms run by males alone are found to have higher IPM Counts in the 2SLS regression 

(p < 0.10) but not in the IV Poisson regression. Experience, # Crops, Borrow, Trust Ext, and 

county variables show consistent results across panels. Ten years of experience increases the 

likelihood of adopting IPM practices by 20% (e^(0.02)*10 = 1.20) (p < 0.01), while each of the 

three crops of interest grown by the farmer increases the likelihood of IPM adoption by about 

27% (p < 0.01), all else held constant. Borrowing to finance last year’s production is found to be 

a strong positive influence on IPM adoption. If the farmer received financing to support their 

agricultural production, they were 19% more likely to adopt IPM techniques (p < 0.05). Given 

the low-income levels for farmers in the sample, this could reflect a liquidity constraint limiting 
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IPM adoption in the region. Farmers who indicated that they believe most agricultural extension 

workers can be trusted, Trust Ext., are 34% more likely to adopt IPM techniques on average than 

those that do not, ceteris paribus (p < 0.05). The county variables Nyeri and Kirinyaga use 

Tharaka-nithi as the reference category. The results show that Tharaka-nithi farmers are the most 

likely to adopt IPM techniques (p < 0.01). The endogenous variable, Training Count, though 

significant in the OLS specification, remained a non-significant factor in each regression that 

included D. Mrkt as its instrument.  

Table 19: IPM Count regression  

  
OLS 
(1) 

2SLS 
(2) 

IV.Poisson 
(3) 

    
education -0.05 -0.04 -0.03 

 (0.17) (0.20) (0.08) 
    

female -0.36* -0.30 -0.13* 
 (0.19) (0.19) (0.07) 
    

both male and 
female 0.79** 0.97* 0.24 

 (0.31) (0.52) (0.15) 
    

experience 0.03** 0.04*** 0.02*** 
 (0.01) (0.01) (0.00) 
    

acres 0.14*** 0.16 0.05 
 (0.05) (0.13) (0.03) 
    

# crops 0.91*** 0.75*** 0.24*** 
 (0.20) (0.27) (0.09) 
    

borrow 0.48** 0.43* 0.17** 
 (0.20) (0.22) (0.08) 
    

workable age -0.06 -0.02 -0.00 
 (0.06) (0.06) (0.03) 
    

% income 0.00 -0.00 -0.00 
 (0.01) (0.01) (0.00) 
    

trust Gen -0.20 -0.13 -0.08 
 (0.23) (0.24) (0.09) 
    

trust Ext. 0.34 0.68** 0.29** 
 (0.25) (0.28) (0.12) 
    

trust Sales -0.01 -0.18 -0.09 
 (0.23) (0.25) (0.10) 
    

α -0.07 -0.15 -0.05 
 (0.22) (0.23) (0.09) 
    

σ -0.31* -0.23 -0.10 
 (0.18) (0.21) (0.09) 
    

λ 0.05** 0.08*** 0.03*** 
 (0.02) (0.03) (0.01) 
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nyeri -1.71*** -2.00*** -0.80*** 

 (0.26) (0.31) (0.13) 
    

kirinyaga -1.08*** -1.55*** -0.62*** 
 (0.23) (0.29) (0.11) 
    

training count 0.08*** -0.10 -0.05 
 (0.02) (0.09) (0.05) 
    

Intercept 1.50*** 1.78*** 0.67*** 
 (0.45) (0.48) (0.18) 
N 404 404 404 
R2 0.29   
Note: robust standard errors are listed in parentheses. * significant at 10%; ** 
significant at 5%; *** significant at 1%. 

 
Advanced IPM  
 
 The results in table 18 are from the tests that evaluated the need and validity of the 

potential instruments for Training count. We concluded that endogeneity was not present when 

we specified the model using Advanced IPM adoption as the dependent variable, resulting in the 

regressions choices presented in table 20: Poisson, Negative Binomial, and Double Hurdle. As 

noted in the previous chapter, roughly 70% of all farmers did not adopt any Advanced IPM 

practices. The Pearson’s chi2 and deviance goodness of fit suggest that Poisson model is 

inappropriate given the distribution of the response variable (795.94 (p < 0.001) and 495.82 (p < 

0.001) respectively). As a result, we have included negative binomial (regression 3) and double 

hurdle models (regression 4) for this regression. However, as table 20 shows, little difference is 

observed between Poisson and NegBin estimates. NegBin’s estimate for d, the parameter that 

controls for over- or under-dispersion, indicates that our data are over-dispersed 

(exp(0.39)=1.48). Not only are the new models more appropriate for the response variable, but 

the double hurdle model provides further insight into the adoption process with its selection and 

intensity equations.  

The estimates remain consistent across the first three model specifications with minor 

differences between the exponential and OLS regressions. The risk aversion parameter, σ, shows 

no significant effects in Advanced IPM adoption, while λ is a positive significant factor in the 
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first three specifications and α a negative factor in regression 3 (NegBin). The results for α hold 

when we control for farmers who potentially did not understand the behavioral experiment, and λ 

becomes significant at the 1% level for the first three models and at the 5% level for the entrance 

equation for model 4 (Appendix, section Participant Comprehension: CPT, table A2). The 

estimates for λ are consistent with the results in the previous regression. A marginal increase in 

the loss aversion parameter is expected to increase the likelihood of adopting Advanced IPM by 

about 5-6%, ceteris paribus. The result for the weighting parameter α suggests that individuals 

who place more value on prospects with higher probabilities (certainty) are 50% less likely to 

adopt Advanced IPM techniques (p < 0.10). This result could reflect uncertainty in Advanced 

IPM which could be a shortcoming to address with future IPM training.  

Gender impacts are not consistent across all models, but the Poisson and Negative 

Binomial regressions find that Females are about 70% less likely than males to adopt Advanced 

IPM (p < 0.05). Both Experience and Acres are found to be significant positive factors 

influencing Advanced IPM adoption in each of the model specifications. The results for 

experience are consistent with the previous results for IPM count. Total acres farmed appear to 

be a significant positive factor in the Advanced IPM intensity equation but not the entrance 

equation, in which each acre farmed increases the likelihood of Advanced IPM adoption by about 

13%, ceteris paribus. Similar to the results for experience, # Crops is identified as a positive 

factor for Advanced IPM adoption. The Dbl. Hurdle model shows that # Crops is a factor 

influencing the intensity of adoption (p < 0.01) and not the selection equation. These results 

indicate that farmers who grow more than one of the three crops have different portfolios of IPM 

techniques across crops. This could imply that farmers are tailoring their IPM adoption based on 

the specific needs of their crops, which is one of the main tenets for successful IPM. Borrowing 
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to finance crop production last year is found to be a highly significant positive factor in the 

Advanced IPM adoption, but the Dbl. Hurdle model shows that it only affects the probability of 

adopting at least one technique and not the intensity of adoption. This result could reflect a 

liquidity constraint limiting Advanced IPM adoption in the region and a preference towards 

conventional pest management methods. Dependence on vegetable production, % Income, has a 

positive relationship with Advanced IPM adoption, though only significant at the 10% level in 

most models. Farmers in Tharaka-nithi again are found to adopt more IPM techniques on 

average than those in the other two counties. Furthermore, not only are Tharaka-nithi farmers 

more likely to adopt any advanced technique, but they adopt with higher intensity on average, 

ceteris paribus (p < 0.01). IPM training count is highly significant in each regression (p < 0.01) 

and positively affects the likelihood of adopting at least one technique and adoption intensity. 

Each training session attended is expected to increase Advanced IPM adoption by about 5% (p < 

0.01). 

 
Table 20: Advanced IPM regression 

  
OLS 
(1) 

Poisson 
(2) 

NegBin 
(3) 

Dbl. Hurdle 
(4) 

    Selection Intensity 
education 0.05 0.02 0.11 0.07 0.02 

 (0.13) (0.19) (0.20) (0.16) (0.11) 
      

female -0.23 -0.51** -0.54** -0.16 -0.23** 
 (0.14) (0.22) (0.23) (0.17) (0.11) 
      

both male and female 0.40* 0.04 0.04 0.09 -0.06 
 (0.23) (0.23) (0.27) (0.24) (0.17) 
      

experience 0.02** 0.05*** 0.05*** 0.02* 0.03*** 
 (0.01) (0.01) (0.01) (0.01) (0.01) 
      

acres 0.10*** 0.17*** 0.18*** 0.05 0.13*** 
 (0.04) (0.04) (0.07) (0.04) (0.03) 
      

# crops 0.41*** 0.59*** 0.56*** 0.22 0.30*** 
 (0.15) (0.18) (0.20) (0.17) (0.10) 
      

borrow 0.46*** 0.57*** 0.53*** 0.45*** 0.02 
 (0.15) (0.17) (0.19) (0.16) (0.11) 
      

workable age -0.05 -0.05 -0.06 -0.01 -0.07** 
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 (0.04) (0.07) (0.06) (0.05) (0.03) 
      

% income 0.01 0.01 0.01 0.01 0.00 
 (0.00) (0.00) (0.01) (0.01) (0.00) 
      

trust Gen -0.09 -0.37 -0.35 -0.17 -0.12 
 (0.17) (0.26) (0.25) (0.21) (0.12) 
      

trust Ext. 0.03 0.23 0.51 0.22 0.34** 
 (0.19) (0.29) (0.32) (0.24) (0.16) 
      

trust Sales 0.03 -0.13 -0.23 -0.07 0.07 
 (0.17) (0.26) (0.30) (0.21) (0.14) 
      

α -0.08 -0.35 -0.43* -0.32 0.02 
 (0.17) (0.25) (0.25) (0.20) (0.13) 
      

σ -0.03 0.05 0.11 -0.04 0.07 
 (0.14) (0.21) (0.27) (0.17) (0.17) 
      

λ 0.05*** 0.07*** 0.07** 0.03 0.02 
 (0.02) (0.02) (0.03) (0.02) (0.02) 
      

nyeri -1.47*** -3.89*** -3.50*** -1.60*** -1.00*** 
 (0.20) (0.63) (0.57) (0.33) (0.19) 
      

kirinyaga -0.98*** -2.29*** -2.35*** -1.11*** -0.98*** 
 (0.17) (0.34) (0.39) (0.23) (0.19) 
      

Training count 0.06*** 0.05*** 0.05*** 0.03** 0.02** 
 (0.01) (0.01) (0.01) (0.01) (0.01) 
      
constant 0.15 -1.17** -1.25** -0.74* -0.11 
 (0.34) (0.50) (0.49) (0.40) (0.27) 
       
      
d   .39*   

   (0.24)   
      

Ln(std.dev error term)    -0.70***  
    (0.06)  
      
std.dev error term    0.55  
    (-0.03)  
       
N 404 404 404 404  
R2 0.27     
Note: robust standard errors are listed in parentheses. * significant at 10%; ** significant 
at 5%; *** significant at 1%. 

 
Basic IPM  
 

Table 21 presents the results for Basic IPM adoption using D. Mrkt. as the instrument for 

training count. λ, Both male and female, Experience, # crops, and Trust Ext. are positive factors 

influencing Basic IPM adoption across the three model specifications. The estimates for λ, 

Experience, and # crops are consistent with the previous results in the other two dependent 
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variable specifications. λ again is identified as a positive factor affecting IPM adoption. The loss 

aversion parameter is significant at the 10% level in 2SLS and IV.Poisson. When we control for 

farmers who might not have understood our behavioral experiment, our estimates remain the 

same but their significance improves to 5% (Appendix table A3). Moreover, when we control for 

farmers who might not have understood our behavioral experiment, the estimates for σ for 2SLS 

and IV Poisson become significant at the 10% level. The two estimates for σ are -0.25 and -0.15 

for the two models respectively. These results indicate that risk aversion decreases the likelihood 

of Basic IPM adoption by about 16% for the IV Poisson estimate, all else held constant.  

Being from a farm where the male and females share equal decision-making 

responsibility increases the likelihood of Basic IPM adoption as compared to being from a farm 

with only a male decision maker. The number of crops grown increases the likelihood of Basic 

IPM adoption, which was also found in the previous regressions. Farmers who believe most 

government extension workers can be trusted adopt more Basic IPM practices than farmers that 

do not (p < 0.01). Training count is found to have a negative effect on Basic IPM adoption when 

specified as 2SLS. However, when re-specified using the IV. Poisson model, regression 3, 

Training count is non-significant. Perhaps the lack of effect of training reflects the fact that the 

topics covered in most training sessions are targeted at more Advanced IPM. Similar to the 

results found in the previous section, it appears that farmers in Tharaka-nithi adopt more Basic 

IPM practices than farmers in the other two counties, all else held constant.  

 
Table 21: Basic IPM regression 
  OLS 

(1) 
2SLS 

(2) 
IV.Poisson 

(3)     

education -0.10 -0.11 -0.06  
(0.09) (0.14) (0.06)     

female -0.13 -0.08 -0.06  
(0.10) (0.14) (0.06)     
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both male and 
female 

0.39** 0.57* 0.21* 
 

(0.17) (0.31) (0.12)     

experience 0.01 0.02*** 0.01**  
(0.01) (0.01) (0.00)     

acres 0.04 0.06 0.02  
(0.03) (0.06) (0.03)     

# crops 0.50*** 0.33** 0.14** 
 (0.11) (0.15) (0.07) 
    

borrow 0.02 -0.03 0.00  
(0.11) (0.14) (0.07)     

workable age -0.00 0.04 0.03  
(0.03) (0.05) (0.03)     

% income -0.00 -0.01* -0.00  
(0.00) (0.01) (0.00)     

trust Gen -0.11 -0.02 -0.03  
(0.13) (0.19) (0.09)     

trust Ext. 0.32** 0.62*** 0.32***  
(0.14) (0.18) (0.10)     

trust Sales -0.05 -0.20 -0.10  
(0.13) (0.19) (0.08)     

α 0.00 -0.08 -0.02  
(0.12) (0.19) (0.08)     

σ -0.28*** -0.18 -0.12  
(0.10) (0.15) (0.07)     

λ 0.01 0.03* 0.02*  
(0.01) (0.02) (0.01)     

nyeri -0.25* -0.54** -0.28***  
(0.15) (0.24) (0.10)     

kirinyaga -0.09 -0.59*** -0.28***  
(0.13) (0.21) (0.10)     

Training count 0.02** -0.17** -0.14  
(0.01) (0.07) (0.09)     

Intercept 1.35*** 1.66*** 0.52***  
(0.25) (0.31) (0.16) 

  
   

N 404 403 403 
R2 0.16   
Note: robust standard errors are listed in parentheses. * significant at 10%; ** 
significant at 5%; *** significant at 1%. 

 
 
 
 
5.6 Conclusion: IPM adoption 
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The results of the IPM adoption regressions above show clear differences in estimates 

which could shed some light on why different conclusions were made with respect to the 

presence of endogeneity. The estimate for Training count in every specification for Advanced 

IPM was found to be a positive factor while it does not appear to have an effect on Basic IPM 

adoption. The consistent positive effect of borrowing to financing last year’s crop production and 

number of acres farmed in each of the Advanced IPM models is not found to affect the likelihood 

of Basic IPM adoption. Additionally, farms where male and female share equal responsibility, as 

compared to farms where males make decisions alone, and whether the farmer trusts most Ag. 

extension officers increase the likelihood of Basic IPM adoption, while the same variables are 

not significant factors influencing Advanced IPM adoption. These differences indicate the 

uniqueness of the respective IPM adoption categories, which may explain why different 

conclusions were found with respect to endogeneity for Advanced IPM and Basic IPM.  

 With regard to the influence of the CPT behavioral parameters, λ has a consistent positive 

effect on IPM adoption regardless of response variable specification and sample used. This 

implies that farmers who are more loss averse adopt more IPM technologies on average. This 

result could reflect farmers’ attempts to reduce income losses due to pest infestations by 

increasing the diversity of their pest management practices. All CPT parameter effects on 

Advanced IPM adoption are not present in the selection or the intensity equation of the double 

hurdle model using the entire sample. However, when we use the subsample that controls for 

farmers’ comprehension, the effect of the loss aversion parameter is identified in the selection 

equation (p < 0.05). Thus, loss aversion increases the likelihood of adopting any Advanced IPM 

technique rather than the intensity of adoption. The weighting parameter, α, for Advanced IPM, 

was found to be a significant negative factor. Though only significant at the 10% level in the 
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NegBin specification, the effect was the same across both samples. This result suggests that 

farmers who value prospects with higher certainty adopt fewer Advanced IPM than farmers who 

value prospects with lower probability. This could indicate the need to continue IPM training but 

shift towards educational methods best suited to reduce the uncertainty farmers have with 

Advanced IPM such as field demonstrations in which farmers can see with and without 

scenarios. This result could also reflect the inability of Advanced IPM techniques to remain 

consistent across seasons or that advanced techniques are not as consistent across seasons as their 

alternatives. The next section evaluates pesticide use and expenditures, but no evidence suggests 

that the weighting parameter is associated with higher pesticide application counts or 

expenditures. Thus, further research is needed to identify exactly why this trend occurs with 

Advanced IPM adoption in the region. 

 With regard to non-risk factors affecting IPM adoption, we find that women farmers adopt 

fewer Advanced IPM techniques than their male counterparts. The results of the intensity equation 

in table 20 regression 4 suggest that being female only affects the intensity of adoption and not the 

choice to adopt initially. After further review of Training count by gender of the farmer, we 

identify that females attended more IPM training sessions on average (1.19 more IPM training 

sessions) and are trained on IPM at about the same percentage as their male counterparts in our 

sample (about 34% of all females in the sample were trained on IPM). The Female Advanced IPM 

result is concerning, especially since some Advanced IPM techniques decrease the likelihood of 

pesticide applications, which could reduce female exposure to toxins during their child rearing 

years. Further research is needed to understand why being female decreases the likelihood of 

higher counts of Advanced IPM adoption. Similarly, for Basic IPM adoption, farms run by males 

and females who share equal responsibility adopt more Basic IPM practices than farms run by 
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males alone, all else held constant. Training count showed mixed results with regard to the IPM 

adoption. Training count is associated with higher Advanced IPM adoption, but reduces the 

likelihood of Basic IPM adoption. This result could suggest pest management topics at IPM 

training sessions should focus more on non-Basic IPM. With regard to differences between 

counties, farmers in Tharaka-nithi were found to adopt IPM practices at higher rates than farmers 

in the other counties. This could reflect the improved markets for Advanced IPM technologies or 

spillovers from the higher counts of IPM training that are seen in Tharaka-nithi as compared to the 

other counties. Though this work did not focus on farmer groups, KALRO helped to establish 

farmer groups in Tharaka-nithi between 2016 and 2019, which could have helped disseminate 

technologies in the region. The number of acres farmed and borrowing to finance crop production 

were found to increase the likelihood of Advanced IPM adoption, while years of horticulture 

experience plays a pivotal role in determining IPM adoption for all specifications. We believe that 

these results reflect a challenge for the next generation of farmers who are farming on smaller 

parcels of land. Not only will they need to increase their productivity to meet their own financial 

needs, but as a whole, the next generation needs to produce using less pesticides so Kenya’s 

horticulture production can meet global markets where higher profits can be generated.   

 
5.7  Pesticide Applications and Pesticide Expenditures summary statistics 

 
The average number of Pesticide applications for the three crops is about 7.5 

applications. Tomato growers have the most pesticide applications, roughly 8, followed by 

French bean growers with 5 and cabbage growers with 4.5. Pesticide expenditures follow a 

similar pattern with tomato growers spending the most with $100, followed by French bean 
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growers with $42 and cabbage growers with $36.5. The average across the three crops is roughly 

$82. 

Table 22. Pesticide Applications and Pesticide Expenditures per acre (USD) descriptive statistics 

 Observations Min Max Mean Std.dev 

Pesticide Applications 440 0 96 7.67 7.40 

Tomato Pesticide Applications 249 0 96 8.11 8.06 

Cabbage Pesticide Applications 185 0 24 4.63 3.67 

French bean Pesticide Applications 96 0 20 5.20 2.99 

Pesticide Expenditure 428 0 1119.28 82.54 119.73 

Tomato Pesticide Expenditure 250 0 1119.38 101.11 144.85 

Cabbage Pesticide Expenditure 171 0 261.19 36.54 41.20 

French bean Pesticide Expenditure 93 0 223.88 41.98 45.68 

 

Figure 6.1 shows the distribution of the pesticide response variables, and both show a high 

density of observations for low pesticide application counts and expenditures per acre followed 

by a gradual decline. 

Figure 5.2 Distribution of pesticide response variables 

 

Table 23 shows the pest severity for the last growing season. The averages for all 

specifications indicate that pest severity was around ‘medium’ for the last growing season.  

 
Table 23. Pest severity last season 

 Observations Min Max Mean Std.dev 
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Severity 441 0 3 1.93 0.78 

Tomato severity 254 1 3 2.02 0.82 

Cabbage severity 182 0 3 1.81 0.75 

French bean severity 95 0 3 1.93 0.78 

 
5.8 Pesticide Application and Expenditure IV tests 

The same process that was used to determine the need to instrument Training count and 

the validity of instruments for IPM adoption models was followed for the two variables that 

evaluate the impact of IPM adoption on Pesticide applications and Pesticide expenditures. In 

both specifications we found heteroskedasticity present and thus robust standard errors were used 

and Wooldridge’s endogeneity and overidentification tests. Panels 1 and 4 of table 24 represent 

regressions that used Both as an instrument for training count. Though we fail to reject 

exogeneity and overidentification in the models, both of the first stage F statistics are 

considerably under the 10 “rule of thumb”, reflecting their inability to provide consistent 

estimates. Re-specifying the instruments using % IPM and D. Mrkt in separate 2SLS regressions 

show that D. Mrkt is the most consistent predictor of Training count, but we fail to reject that 

Training count is exogenous. Thus, both models will treat Training count as exogenous. Similar 

results are found when we re-specify 𝐴𝑑𝑜𝑝𝑡#& as 𝐴𝑑𝑜𝑝𝑡#9, representing a vector of the adoption 

decision for each individual IPM technique. 

 
Table 24: Instrumental variable tests for pesticide response variables 
  
  
  

Total Pesticide Applications Total Pesticide 
Expenditures per Acre 

 
Both 
(1) 

% IPM 
(2) 

D. Mrkt 
(3) 

Both 
(4) 

% IPM 
(5) 

D. Mrkt 
(6) 

Weak Instrument 
   

   
F (1,217) 5.29 2.89 9.5 5.41 2.67 10.02 

 
 (0.03) (0.00)  (0.10) (0.00) 

Endogeneity       
Robust Sore Chi2(1) 1.82 4.27 0.05 0.56 0.24 0.25 
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(0.18) (0.04) (0.83) (0.46) (0.62) (0.63) 

Robust Regression F (1,216) 1.75 4.14 0.04 0.55 0.23 0.23 
 

(0.19) (0.04) (0.83) (0.46) (0.63) (0.63 
Overidentification       

Score Chi2(1) 1.66 NA NA 0.06 NA NA 
  
  
  

(0.20) NA NA 0.81 NA NA 

Observations 394 394 394 394 394 394 

 

 

5.9  Pesticide applications and Pesticide expenditures regression results 

Pesticide applications 

Table 25 shows the factors affecting Pesticide applications. The model is specified as 

OLS and Poisson in panels 1 and 2 respectively. All the results are similar between model 

specifications except for Trust Sales, which is not significant in OLS and significant using the 

Poisson model. With respect to the risk parameters, the results in this section are the same when 

using the sub-sample of farmers that passed at least one of the comprehension tests (Table A4 of 

the Participant Comprehension: CPT section of the Appendix). Α and λ are not found to be 

significant factors in determining the number of pesticide applications. However, the risk 

aversion parameter, σ, is positive and significant (Poisson p < 0.05). The direction of its effect 

was expected and suggests that farmers who are more risk averse apply pesticides more times per 

season than their less risk averse counterparts, ceteris paribus. This result is consistent with the 

results found in Liu and Huang (2013). However, we did not find a positive relationship with the 

loss aversion parameter with pesticide use as the Liu and Huang study did.  

Holding all else constant, the Poisson model finds that male and females who share equal 

responsibility for farm decisions, compared to males who make farm decisions alone, have 23% 

more Pesticide applications on average (p < 0.10). The number of crops has a strong positive 
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relationship with the dependent variable (p < 0.01). Specifically, each additional crop grown 

increases the likelihood of higher seasonal Pesticide applications by 72%. Trust Gen. and Trust 

Sales are both significant factors affecting pesticide applications (p < 0.10 and p < 0.05 

respectively), but trusting most people increases Pesticide applications by 31%, while trusting 

salespeople reduces Pesticide applications by 32%. The first result coincides with our 

expectations. However, the second is surprising because agricultural input salespeople’s salaries 

are likely tied directly to use of pesticides. No differences are found between farmers from Nyeri 

and Tharaka-nithi, but farmers from Kirinyaga are expected to make 54% more pesticide 

applications that their Tharaka-nithi counterparts. Unexpectedly, both Severity and Training 

count did not significantly affect pesticide applications in either model. Furthermore, neither 

Advanced IPM nor Basic IPM appear to affect farmers’ Pesticide applications. This result is 

problematic for IPM programs in the region that hope to improve the health of the communities 

and open up the country’s horticulture sector to exports by reducing exposure to pesticides.  

However, without being able to isolate the effects of individual programs in the region, we 

cannot say that all IPM programs are not being effective at making an impact in this regard.  

 
 Table 25: Pesticide applications  

  
OLS 
(1) 

Poisson 
(2) 

   
education -0.07 -0.01 

 (0.81) (0.09) 
   

female -0.48 -0.06 
 (0.66) (0.09) 
   

both male and 
female -1.46* -0.21* 

 (0.79) (0.12) 
   

experience -0.01 0.00 
 (0.04) (0.00) 
   

acres -0.16 -0.04 
 (0.11) (0.03) 
   

# crops 5.20*** 0.54*** 
 (1.12) (0.10) 
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borrow -0.33 -0.04 

 (0.79) (0.09) 
   

workable age -0.18 -0.03 
 (0.21) (0.03) 
   

% income 0.01 0.00 
 (0.04) (0.00) 
   

trust Gen 2.01* 0.27* 
 (1.19) (0.14) 
   

trust Ext. 0.70 0.08 
 (1.35) (0.15) 
   

trust Sales -2.26 -0.28** 
 (1.49) (0.14) 
   

α 0.62 0.08 
 (0.96) (0.11) 
   

σ 2.14* 0.24** 
 (1.13) (0.10) 
   

λ -0.07 -0.01 
 (0.11) (0.01) 
   

nyeri 0.97 0.11 
 (0.85) (0.11) 
   

kirinyaga 3.49*** 0.43*** 
 (1.33) (0.15) 
   

training count -0.08 -0.01 
 (0.08) (0.01) 
   

severe 0.73 0.07 
 (0.73) (0.08) 
   

advanced IPM 0.46 0.06 
 (0.54) (0.06) 
   
Basic IPM 0.33 0.04 
 (0.62) (0.07) 
   
Intercept -2.42 0.90*** 
 (2.61) (0.29) 
N 395 395 
R2 0.21  
Note: robust standard errors are listed in parentheses. * 
significant at 10%; ** significant at 5%; *** significant at 1%. 

 
 

Table 26 shows the same regression presented in table 25, but the individual IPM 

techniques, k, are used instead of the aggregated IPM categories, a. In order to keep the table 

concise, only the individual IPM techniques are shown and all the farmer and farm 

characteristics, county fixed effects, and risk variables are suppressed from the table. We find 



 

83 
 

that PRV, Select, Trays, and None are all associated with increased seasonal pesticide 

applications. Specifically, farmers who use PRVs and select healthy seedlings/sanitizing seed 

treatment apply 46% and 63% more Pesticides applications than farmers that do not use those 

practices respectively (p < 0.01). Furthermore, farmers who do not use any IPM techniques apply 

pesticides 48% more times than farmers who use IPM techniques, all else held constant (p < 

0.05). Farmers who use Trichoderma, Microbial, and Remove apply 51%, 65%, and 23% less 

pesticides than farmers who do not utilize those IPM techniques (p < 0.10, p < 0.01, and p < 0.05 

respectively), all else held constant. 

  
Table 26: Pesticide applications using 
individual IPM techniques 

  
OLS 
(1) 

Poisson 
(2) 

   
PRV 2.16** 0.38*** 

 (0.89) (0.12) 
   

select 5.34** 0.49*** 
 (2.50) (0.13) 
   

trichoderma -4.13 -0.41* 
 (2.56) (0.23) 
   

trays 10.98 0.95*** 
 (7.00) (0.27) 
   

solar 1.08 0.04 
 (1.97) (0.14) 
   

sticky 1.58 0.11 
 (1.56) (0.12) 
   

microbial -4.10** -0.50*** 
 (1.85) (0.19) 
   

bio -2.68 -0.20 
 (1.89) (0.15) 
   

nets 1.93 0.15 
 (1.52) (0.16) 
   

mulch 0.44 -0.03 
 (1.44) (0.10) 
   

remove -1.80** -0.21** 
 (0.79) (0.09) 
   

none 2.74* 0.39** 
 (1.61) (0.18) 
   

Intercept -3.68 0.78*** 
 (2.73) (0.27) 
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N 354 354 
R2 0.33  
Note: robust standard errors are listed in parentheses. * 
significant at 10%; ** significant at 5%; *** significant at 1%. 

 
 
Pesticide expenditures 
 
 Table 27 shows the results for total pesticide expenditures in 2019 USD per acre last 

season, regressed on the independent variables previously used but the RHS variable X is 

transformed to X’ which removes Acres from the vector of explanatory variables. For the reasons 

addressed in the discussion about Training count in table 23, the dependent variable is treated as 

exogenous. All else held constant, we see that both the weighting and loss aversion parameters 

do not appear to have affected per acre pesticide expenditures last season. The risk aversion 

parameter however, σ, has a strong positive relationship with the dependent variable (p < 0.01). 

The coefficient on σ of 56.46 implies that if the farmer is one standard deviation more risk averse 

than the average farmer, and they will spend $28.23 more per acre on pesticides than the average 

farmer. We find that farmers who have more education than completed primary school spend on 

average $31.71 per acre less than farmers with lower education levels (p < 0.05). Similar to what 

was found with total pesticide applications, farms that are managed by male and female partners 

who make farm decisions jointly spend less on pesticides per acre than farms run by males alone.  

(p < 0.05). Specifically, they spend $33.51 less than male farmers, all else held constant. Pest 

severity has a strong positive relationship with the dependent variable (p < 0.05). A marginal 

increase in average pest severity for the crops farmed increases per acre pesticide expenditures 

by $15.61 per acre, ceteris paribus. Though no differences were found between the number of 

pesticide applications for Nyeri and Tharaka-nithi farmers, farmers in Nyeri spend $30.56 less 

per acre on pesticides than farmers from Tharaka-nithi (p < 0.10).  
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Table 27: Pesticide expenditures  

  
OLS 
(1) 

  
education 31.71** 

 (12.62) 
  

female -13.30 
 (14.61) 
  

both male and 
female -33.51** 

 (15.06) 
  

experience -0.25 
 (0.84) 
  

# crops 5.51 
 (10.27) 
  

borrow -8.74 
 (11.75) 
  

workable age -0.22 
 (3.86) 
  

% income -0.22 
 (0.27) 
  

trust Gen 5.83 
 (18.87) 
  

trust Ext. -1.43 
 (18.43) 
  

trust Sales -19.49 
 (16.55) 
  

α -19.29 
 (16.00) 
  

σ 56.46*** 
 (15.80) 
  

λ -1.50 
 (1.71) 
  

nyeri -30.56* 
 (18.45) 
  

kirinyaga 19.17 
 (21.25) 
  

training count 2.36 
 (2.23) 
  

severe 15.61** 
 (7.89) 
  

advanced IPM -5.17 
 (4.29) 
  

Basic IPM -0.84 
 (6.58) 
  
Intercept 49.56 
 (32.82) 
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N 395 
R2 0.15 
Note: robust standard errors are listed in 
parentheses. * significant at 10%; ** 
significant at 5%; *** significant at 1%. 

 
 

Similar to table 26, table 28 shows only the effects of individual IPM techniques on 

pesticide expenditures per acre and suppresses farm characteristics, county fixed effects, and risk 

parameter effects. We find that farmers who used PRV’s last season had higher pesticide 

expenditures than those who did not (p < 0.05). Farmers who used microbial pesticides and 

removed damaged plants were found to have lower pesticide expenditures per acre, all else held 

constant. Specifically, farmers who used microbial pesticides spent $70.53 less than farmers who 

did not, ceteris paribus (p < 0.01). Removing damaged plants is associated with a pesticide cost 

savings of $33.70 per acre (p < 0.10).  

Table 28: Total pesticide expenditures 
using individual IPM techniques 

  
OLS 
(1) 

  
PRV 29.04** 

 (12.48) 
  

select 17.33 
 (18.95) 
  

trichoderma -12.42 
 (31.35) 
  

trays 24.50 
 (23.76) 
  

solar -24.87 
 (28.51) 
  

sticky -11.30 
 (17.34) 
  

microbial -70.53*** 
 (22.59) 
  

bio 23.10 
 (44.23) 
  

nets 4.47 
 (16.49) 
  

mulch 4.62 
 (19.19) 
  

remove -33.70* 
 (18.23) 
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none -11.80 

 (22.15) 
  

Intercept 40.57 
 (37.22) 

N 335 
R2 0.15 
Note: robust standard errors are listed in parentheses. * 
significant at 10%; ** significant 
at 5%; *** significant at 1%. 

 
5.10  Conclusion: Pesticide applications and Pesticide expenditures 

 
 Similar to the results found by Liu and Huang (2013), we find that more risk averse 

individuals apply more pesticides and spend more money on pesticides, and the weighting 

parameter does not influence pesticide applications or expenditures (Liu and Huang 2013 

measured pesticides in Kg/hectare). Conversely, we find that loss aversion does not play a 

significant role in determining pesticide applications or expenditures for Kenyan 

horticulturalists. Kenyan farmers who are one standard deviation more risk averse than the 

average farmer are expected to spend $28.23 more per acre on pesticides than the average 

farmer.  

 Gender impacts identified by the pesticide models show males and females who make 

farm decisions jointly make fewer seasonal pesticide applications and spend less per acre than 

males who make farm decisions alone, all else held constant. Further analysis of perceptions of 

pesticide risk with respect to gender of the primary decision maker could offer insight into this 

result but is beyond the scope of this project. Trust Gen., Trust Ext., and Trust Sales do not 

appear to have significant effects on per acre pesticide expenditures. However, Trust Gen. (p < 

0.10) and Trust Sales (p < 0.05) are found to increase and decrease the number of pesticide 

applications respectively. The first result could reflect the connectivity of horticulture farmers in 

the community who communicate pesticide decisions to their neighbors and friends, which 

influences their pest management decisions. The latter result is unexpected given the fact that 
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salaries of agricultural input suppliers are directly tied to the number of pesticide applications. 

Though IPM offers alternatives to pesticides, neither IPM training count nor the aggregated IPM 

adoption categories were found to have significant effects on either of the response variable 

specifications. However, when separating the aggregated IPM adoption categories into their 

respective activities we found that certain IPM techniques within the aggregated categories had 

opposite effects on the latent variables. Furthermore, we identified that farmers who used no IPM 

techniques had higher levels of pesticide applications per season than IPM adopters. Within the 

Advanced IPM technique category we found that selecting healthy seedlings/sanitizing seed 

treatment and using nursery trays had significant positive effects, while use of Trichoderma and 

microbial pesticides had significant negative effects on the count of seasonal pesticide 

applications. Additionally, with respect to Basic IPM adoption, use of a PRV was identified as a 

significant positive factor while removing damaged plants reduced the number of pesticide 

applications on average, all else held constant. A similar pattern was found for pesticide 

expenditures per acre with respect to Basic IPM adoption for PRV and Remove. These 

conflicting relationships with regard to the estimated effects within IPM category a could explain 

why the model that used the aggregated IPM categories did not identify a significant effect.  

In conclusion, it appears that IPM adoption has a stronger effect on pesticide applications 

then it does on pesticide expenditures, and that the relationship that individual IPM techniques 

have with the latent variables are unique to the respective IPM techniques. Some techniques 

appear to be used in conjunction with pesticides, while others are used instead of conventional 

pest management methods. However, the methods that have a positive effect on the response 

variable appear to be IPM techniques used at the beginning of the season PRV, Select, and Trays 

where the need for pesticides are limited. Conversely, the IPM techniques Trichoderma, 
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Microbial, and Removed are pest management practices that can be used throughout the growing 

season which are associated with lower pesticide use. Farmers who did not adopt any IPM 

techniques across the three crops were found to apply pesticides more than farmers who practice 

IPM.  

 

Chapter 6  Conclusion 

Our study investigated the factors that affect IPM adoption, seasonal pesticide 

applications, and seasonal pesticide expenditures for Kenyan vegetable farmers. Comparison 

between the results of the 2016 and 2019 surveys showed a population that is more dependent on 

their vegetable production as an income source in 2019. Our findings show that IPM adoption 

and impacts of IPM adoption on pesticide applications and expenditures per acre were mixed. 

Tomato farmers saw an increase in IPM adoption of six of the eight IPM practices and a 

reduction in adoption of two. Cabbage farmers’ IPM adoption increased for three practices and 

decreased fort five. French bean farmers’ IPM adoption increased for three practices, stayed the 

same for one, and decreased for two of the six IPM practices. The pesticide impact variables, 

Pesticide applications and Pesticide expenditures, also indicated mixed results with respect to 

the effects of IPM techniques within IPM category a. We found that IPM practices primarily 

used at the beginning of the season were associated with increases in pesticide applications and 

conversely a decrease in pesticide applications for IPM techniques that can be used throughout 

the season. Moreover, we found that farmers who did not use any IPM practice are expected to 

have 48% more pesticide applications than farmers who practice IPM. 

With respect to the CPT parameters in the preceding regressions, a comparison of the 

results between the full sample and the sample that passed the second comprehension test show 
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minor differences. α saw no change, σ became a significant factor in Basic IPM (p < 0.10; Table 

21), and λ’s significance increased between samples (table 20 and 21). Specifically, λ increased 

in significance in the Advanced IPM and Basic IPM regressions and became significant in the 

selection equation for the Double Hurdle model (Advanced IPM table 20). We believe that these 

results suggest that the marginal effects of CPT parameters can be estimated accurately without 

rigorous participant training, which can decrease participant’s time burden and monetary 

program costs when collecting participant’s risk preferences.  

The loss aversion parameter’s positive effect in each regression unambiguously shows 

that farmers who are loss averse adopt more IPM practices than their less loss averse 

counterparts, while the parameter was nonsignificant in the pesticide response variable 

regressions. One explanation of this result is that loss averse farmers are utilizing IPM 

techniques in each category to mitigate the risk of losses in income due to pest infestations. 

Because the aggregated IPM categories did not show a negative relationship with the pesticide 

impact response variables, this result does not suggest a preference for IPM over conventional 

pesticides. What this result could suggest is vegetable growers’ preference for a diverse pest 

management portfolio, with IPM practices being a component of the entire pest management 

portfolio. If our previous assumption is true, and given the fact that # crops was found to have a 

strong positive relationship with the likelihood of IPM adoption, this suggests that vegetable 

farmers are taking a holistic approach to pest management and utilizing IPM practices based on 

the specific needs of their crops. This is a good sign for IPM in Kenya as this is a central tenet to 

successful IPM.  

Farmers who place higher value on prospects with certainty were found to adopt fewer 

Advanced IPM practices than farmers who place more value on prospects with lower probability. 
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This result may reflect uncertainty with the expected benefits of Advanced IPM practices. One 

way to reduce uncertainty is through IPM training, but this result may imply a need to apply new 

methods to farmer training to reduce uncertainty. Perhaps more hands-on opportunities through 

farmer field days and using government extension workers to help with the training sessions 

would be beneficial in reducing uncertainty of the expected benefits of Advanced practices. The 

weighting parameter was not a significant factor of either pesticide response variable regression.  

The risk aversion parameter is a significant factor in determining Pesticide applications 

and Pesticide expenditures. More risk averse farmers apply more pesticide applications and 

spend more on pesticides per acre. These results suggest that the income risk effect from pest 

infestations are greater than the health risk effects associated with applying pesticides for 

Kenyan vegetable growers on average. This result should influence future IPM efforts to tailor 

training to account for this market preference. Therefore, if Kenyan vegetable growers are not 

motivated by health risk reduction, marketing IPM as a way to reduce the risks of pesticide 

poisoning may not be an effective marketing strategy to increase the expected benefits of an IPM 

practice, Bi,k, over the needed threshold for that practice’s adoption, Ti,k. We are not saying that 

pesticide poisoning is not a problem affecting Kenyan vegetable farmers. The 38% increase in 

pesticide poisoning between the 2016 and 2019 survey shows that the risks and externalities of 

pesticide poisoning are present and increasing on vegetable farms in Kenya. 

The social network variables regarding farmer’s trust of agricultural information suggest 

that government extension workers are a positive influence on IPM adoption. Specifically, for all 

IPM categories farmers who trust government extension workers adopt more IPM practices than 

those who do not. Trusting most people in general (Trust Gen.) and trusting most agricultural 

input suppliers (Trust Sales) are not significant factors that determine IPM adoption levels. 
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However, Trust Gen. increases the likelihood of higher seasonal pesticide applications, which 

suggests that Kenyan vegetable growers are influenced by farmers within their social network to 

apply more pesticides. Farmers who indicated they trust agricultural input suppliers apply fewer 

pesticides than farmers who do not. This last result does not coincide with our previous 

expectations and suggests a need for further investigations into Kenyan vegetable farmers’ 

interactions with agricultural salespeople to understand why this relationship is found. 

Future IPM research efforts should focus on understanding why females are less likely to 

adopt Advanced IPM practices then their male counterparts and work to tailor the next generation 

of Kenyan horticulturalists to produce using every tool in their arsenal. We understand the 

financial limitations of both research groups and Kenyan farmers that could limit both IPM 

dissemination and adoption but believe IPM could be a valuable tool to get Kenyan products in 

global markets. The results of the behavioral experiment suggest tailoring IPM programs to 

promote IPM as a method to reduce seasonal crop losses could be a method to enhance IPM 

adoption. Because the average farmer who receives any IPM training was trained about 6 times, 

and each training session increased the likelihood of using Advanced IPM practices by about 5%, 

if 100 farmers attended six training sessions, we would expect about 30% of the farmers to use at 

least one Advanced IPM practice on their farm. If IPM adoption is the only goal of IPM training, 

this could suggest the need to change dissemination strategy or make adjustments to IPM 

training sessions. However, this is not to say all IPM programs operate at the same efficiency, 

and that IPM adoption is the only goal of training sessions. In reality, IPM training offers a great 

opportunity for farmers to present farming issues in their community, ask questions about 

challenges they are facing, and offers a platform to teach holistic pest management methods that 

encompass both IPM use and conventional pest methods.  
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In conclusion, it appears that IPM adoption has a positive and negative impact on 

pesticide decisions, which depends on the IPM practice being used. However, we are unable to 

quantify the net environmental and health benefits without knowing more precisely the pesticide 

quantity used during the season. Additional impact assessment of IPM programs in the region 

would be helpful in assessing the benefits of the various IPM programs operating in Kenya.  
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Appendix 

Kahneman and Tversky Behavioral Experiment 1979 

For problems 1 through 9 Kahneman and Tversky (1979) asked participants to select between 
participating in the gamble represented in column A or B. Where the outcome represents the 
value of the respective winning or loss for that gamble. N represents the number of participants 
and the bracketed value represents the percent of respondents that selected that gamble.  
 
Even though he expected value of Gamble A is greater than the expected value for column B 
participants consistently selected Gamble B. Thus, suggesting editing the prospect in terms of the 
its outcomes weights and not their respective probabilities. 
 

Problem 1: Select between   
A B 

Outcome Probability Outcome Probability 
2,500 0.33 

2,400 1 2,400 0.66 
0 0.01 

N=72 [18]  [82] 
 
In problem 2 is derived by taking out a .66 chance of winning 2,400 from both gamble A and B. 
The change in preference from Gamble B to A with this removal is further evidence to support 
the need of a weighting function.  
 

Problem 2: Select between   
A B 

Outcome Probability Outcome Probability 
2,500 0.33 2,400 0.34 

0 0.67 0 0.66 
0 0.01     

N=72 [83]  [17] 
 
Problem 3 we see that even though the expected value of both prospects are the same the 
preference of Gamble A identifies the empirical evidence to support overweighting small 
probabilities. 
 

Problem 3: Select between   
A B 

Outcome Probability Outcome Probability 
6,000 0.001 3,000 0.002 

N=66 [73]  [27] 
Even though the expected values of the two gambles are the same 84% of participants select 
Gamble B after they have theoretically been given 1,000. This suggest the framing presented in 
EU is not consistent with empirical evidence that implies that the reference for the decision is 
based off of the values of the prospects and not the individuals final asset or wealth.  
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Problem 4: In addition to whatever you own, you have 
been given 1,000. You are now asked to choose between 

A B 
Outcome Probability Outcome Probability 

1,000 0.5 500 1 
N = 70 [16]  [84] 

 

Similar to Problem 4 this provides further evidence for CPT framing and evidence to support the 
risk loving preference in the domain of losses. 

Problem 5: In addition to whatever you own, you have 
been given 2,000. You are now asked to choose between 

A B 
Outcome Probability Outcome Probability 

-1,000 0.5 -500 1 
N = 68 [69]  [31] 

 
 

Notice in Table 1 the negative prospects are just the positive prospects multiplied by -1, ceteris paribus. 
The table provides empirical evidence that suggests that individuals are characterized as risk averse in the 
domain of gains and conversely in the domain of loss.  
 

  

Outcome Probability Outcome Probability Outcome Probability Outcome Probability

Problem 6 4,000 0.8 3,000 1 Problem 6' -4,000 0.8 -3,000 1

N = 95 [20] [80] N = 95 [92] [8]

Problem 7 4,000 0.2 3,000 0.25 Problem 7' -4,000 0.2 -3,000 0.25

N = 95 [65] [35] N = 95 [42] [58]

Problem 8 3,000 0.9 6,000 0.45 Problem 8' -3,000 0.9 -6,000 0.45

N=66 [86] [14] N=66 [8] [92]

Problem 9 3,000 0.002 6,000 0.001 Problem 9' -3,000 0.002 -6,000 0.001

N = 66 [27] [73] N = 66 [70] [30]

Positive Prospects Negative Prospects

Table 1
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Behavioral Experiment 
 
 
Enumerator script for Behavioral experiment 
 
“Thank you for your time your responses will be used to improve vegetable production in the 
region and thus accurate responses are important. Please respond to the following questions as 
accurately as possible. If you don’t understand a question, please inform the enumerator and 
he/she will aid you in understanding.” 
 
“There are 3 series of questions that involve hypothetical amounts of money. Series 1 contains 
14 question, Series 2 contains 14 questions, and Series 3 contains 7 questions. Please take as 
much time as you need to answer each question. Would you like to proceed?” 
 
Practice 1 
 
Take out the bag with the 9 white stones and 1 black stone. Let the farmer study the bag and let 
them know that there are 10 stones total with 9 white and 1 black stone. Ask the farmer, "Which 
color stone has the highest likelihood of being selected if one stone was to be selected at 
random?" 
 
Practice 2 
 
Take out the bag with the 3 green stones and 7 orange stones. Let the farmer study the bag and 
let them know that there are 10 stones total with 3 green and 7 orange stones. Ask the farmer, 
"Which color stone has the highest likelihood of being selected if one stone was to be selected at 
random?" 
 
“For this part of the survey you will be given 80KSH. Additionally, in this section we will play a 
game where your final earnings will depend partly on your decisions and partly on chance. There 
are 3 series of questions that involve a decision to participate in the gamble presented in Option 
A or Option B. The gamble that will cost you nothing and will not pay out the Shilling values 
that you see. However, I (the enumerator) have a piece of paper that has a percentage written on 
it that will be used to determine the true values of each gamble, your final earnings could be 
more or less than 80 Kshs we will give you. Your final payment will be determined by your 
responses. It is important to note that you will not have to pay more than the 80 Kshs that we will 
give you for this part of the survey. The percentage will be revealed at the end of the experiment 
and a number between 1 and 35 will be drawn at random. The numbers 1-35 represent the 
number of rows in series 1-3 [Please show/explain this to the farmer]. The number that is drawn 
will identify the row that will be played for real money using the percentage value to determine 
the final values of the Options. Please imagine that you are playing for the Shilling values 
indicated in the series and make your decision based on the Shilling values and the mix of 
colored stones.  Let’s start with an example.” 
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Example 1 
 

 
 
“[Please show the individual the first example and its respective bags.]   Before you are two 
options: Option A and Option B. Each option uses 10 stones with a different mix of colored 
stones. Notice that options A and B have different Shilling values for each color stones. Row 1 
represents a question asking you to choose between participating in the gamble using the mix of 
stones and respective Shilling values in Option A or Option B. If you choose to participate in the 
hypothetical gamble using the stones in Option A for example, the colors will correspond to the 
Shilling value presented in that option. The stones will then be placed in a different bag and one 
stone will be drawn at random. The color of stone drawn represents the value in Shillings that 
you would receive. It is important to note that there is no right or wrong answer. If you choose to 
participate using the gamble presented in Option A which uses 3 green stones and 7 orange 
stones.  [Pull out green stone] If a green stone was selected at random you would receive 300 
Ksh  [Replace green stone and pull out an orange stone] If an orange stone was selected, you 
would receive 70 Ksh. ~~repeat process for Option B~~ Option B uses 1 black stone and 9 white 
stones. If a black stone was selected at random you would receive 500 Ksh and if a white stone 
was selected, you would receive 35 Ksh. It is important to note that there is no right or wrong 
answer. If a stone is to be selected at random from one of the options which option would you 
select? Option A or B?” 
 
Series 1 
 
“Now we will proceed with the experiment.  Series 1 and Series 2 contain 14 rows, and Series 3 
contains 7 rows. Each row is to be considered as a question like the ones previously practiced. 
The question being “Based on the shilling values presented in each row and the mix of colored 
stones and each option. If one stone was to be pulled randomly from a bag would you prefer to 
gamble using the stones in Option A or Option B? Please take as much time as you need to 
answer each question and know that there is no right or wrong answer.”  
 
Take out series 1 and proceed 
 
“Series one has 14 questions like the ones we just practiced. Please take a second to look over 
the series. Notice that Option A uses 3 green and 7 orange stones and their respective Shilling 
values for each question in the series. Now look at Option B. It uses 1 black stone and 9 white 
stones. Please study the questions in the series and notice the changes in shilling values for each 
question in the series. When you have finished studying the series let the me know (enumerator). 
It is important to note that there is no right or wrong answer. Please answer the question to the 
best of your ability based on the number colored stones and the Shilling values for each option. 
Please identify the FIRST question number where you would switch participating in the gamble 

35 Ksh  500 Ksh  70Ksh  300Ksh 

10 Stones: 3 Green and 7 Orange 10 Stones: 1 Black and 9 White 
Option A Option B

1
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presented in Option A to Option B. However, you do not have to switch to Option B if you do 
not want to. Take a moment to review the series and when you are ready identify your decision.” 
 
Example 2. [Please show the individual the second practice series with their respective bags.]  
 
“Let’s do another example   Once again you see there are two options: Option A and Option B. 
However, the values that each color stone represents has changed from the previous gamble. 
Both options use 10 stones total but a different mix of stones. Option A uses 9 white stones and 1 
black stone. If you selected to participate in the gamble in Option A and a white stone was 
selected at random you would receive 300 Ksh and if black stone was selected, you would 
receive 200 Ksh. Option B uses 7 orange stones and 3 green stones. If an orange stone was 
selected at random you would receive 560 Ksh and if a green stone was selected, you would 
receive 35 Ksh. If a stone is to be selected at random from one of the options which option would 
you select? Option A or B?” 
 
Series 2 
 
“Series 2 has 14 questions like the previous section. Please take a second to look over the series. 
Notice that Option A uses 9 white stones and 1 black stone and their respective Shilling values 
for each question in the series. Now look at Option B. It uses 7 orange stones and 3 green stones. 
Please study the questions in the series and notice the changes in shilling values for each 
question in the series. When you have finished studying the series let the enumerator know. It is 
important to note that there is no right or wrong answer. Please answer the question to the best of 
your ability based on the number colored stones and the Shilling values for each option. Please 
identify the question number where you would switch participating in the gamble presented in 
Option A to Option B. However, you do not have to switch to Option B if you do not want to. 
Take a moment to review the series and when you are ready identify your decision.”  
 
Series 3 
 
“Again, remember this is a gamble that will cost you nothing and will not pay out the exact 
Shilling values that you see. However, please imagine that you are playing for the money 
presented and make your decision based on the Shilling values presented in each gamble.  Series 
3 has 7 questions. Notice that both Option A and B both use the same bag of stones 5 white 
stones and 5 orange stones. In this series you have the possibility to lose money as indicated by 
the negative values in the orange columns. Please study the questions in the series and notice the 
changes in shilling values for each question in the series. When you have finished studying the 
series let the enumerator know.   It is important to note that there is no right or wrong answer. 
Please answer the question to the best of your ability based on the number colored stones and the 
Shilling values for each option. Please identify the question number where you would switch 
participating in the gamble presented in Option A to Option B. However, you do not have to 
switch to Option B if you do not want to. Take a moment to review the series and when you are 
ready identify your decision.” 
 
Final Payment 
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Please ask the farmer to draw a number between 1-35. Identify which number has been drawn. 
 
Reveal the 2% percentage value. Proceed with the gamble that the farmer prefers and the row 
that was drawn at random. Issue and record payment. 
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Participant Comprehension: CPT 
 
Results: IPM Adoption 
 

Table A1 below shows the regression for IPM Count using the sample that passed both 

comprehension tests. No change is seen with respect to the CPT parameters. Alpha and sigma 

remain nonsignificant predictors of IPM Count, while lambda remains highly significant and its 

respective estimates do not change for the panels that control for endogeneity. 

Table A1: IPM Count using Training Count as the 
endogenous variable instrumented by distance market. 
CPT Pass subsample 

  
OLS 
(1) 

2SLS 
(2) 

IV.Poisson 
(3) 

    
education 0.12 0.21 0.08 

 (0.18) (0.20) (0.08) 
    

female -0.27 -0.24 -0.12 
 (0.20) (0.19) (0.07) 
    

both male and 
female 0.44 0.37 0.05 

 (0.32) (0.40) (0.12) 
    

experience 0.03*** 0.04*** 0.02*** 
 (0.01) (0.01) (0.00) 
    

acres 0.38*** 0.41*** 0.13*** 
 (0.08) (0.08) (0.02) 
    

# crops 0.86*** 0.76*** 0.25*** 
 (0.21) (0.27) (0.08) 
    

borrow 0.38* 0.34 0.11 
 (0.21) (0.21) (0.07) 
    

workable age -0.10 -0.09 -0.03 
 (0.07) (0.07) (0.03) 
    

% income 0.00 0.00 -0.00 
 (0.01) (0.01) (0.00) 
    

trust Gen -0.38 -0.41* -0.19** 
 (0.24) (0.22) (0.08) 
    

trust Ext. 0.38 0.61** 0.29** 
 (0.25) (0.27) (0.11) 
    

trust Sales 0.07 -0.05 -0.02 
 (0.23) (0.23) (0.09) 
    

alpha -0.02 -0.02 -0.00 
 (0.23) (0.21) (0.09) 
    

sigma -0.23 -0.22 -0.10 
 (0.20) (0.19) (0.08) 
    

lambda 0.07*** 0.08*** 0.03*** 
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 (0.02) (0.03) (0.01) 
    

nyeri -1.90*** -2.06*** -0.79*** 
 (0.29) (0.29) (0.11) 
    

kirinyaga -1.41*** -1.72*** -0.71*** 
 (0.24) (0.30) (0.13) 
    

training count 0.06*** -0.05 -0.02 
 (0.02) (0.08) (0.03) 
    

Intercept 1.43*** 1.61*** 0.58*** 
 (0.46) (0.46) (0.16) 
N 359 358 358 
R2 0.31 0.24  

* p<0.10 
 ** 

p<0.05  *** p<0.01  
 
 

Table A2 shows the Advanced IPM regressions using the subsample that passed the CPT 

comprehension tests. The regression on the subsample shows no change in sigma, which remains 

nonsignificant. The weighting parameter alpha remains significant at 10% and decreases 

marginally from -0.43 to -0.42. Lambda increases in significance in regression 3 from 5% to 1% 

and is identified as a significant positive factor in the selection equation of the Dbl. Hurdle 

model (p<0.05).  

Table A2: Advanced IPM Practices using training count 

  
OLS 
(1) 

Poisson 
(2) 

NegBin 
(3) 

Dbl. Hurdle 
(4) 

    Selection Intensity 
education 0.17 0.11 0.18 0.13 0.05 

 (0.16) (0.19) (0.19) (0.16) (0.11) 
      

female -0.21 -0.35* -0.39* -0.17 -0.08 
 (0.17) (0.20) (0.22) (0.18) (0.11) 
      

both male and 
female 0.13 -0.09 -0.05 -0.01 -0.05 

 (0.28) (0.25) (0.26) (0.25) (0.19) 
      

experience 0.03*** 0.05*** 0.05*** 0.03** 0.02* 
 (0.01) (0.01) (0.01) (0.01) (0.01) 
      

acres 0.25*** 0.23*** 0.21*** 0.06 0.15*** 
 (0.07) (0.03) (0.05) (0.07) (0.03) 
      

# crops 0.44** 0.49*** 0.44** 0.29 0.14 
 (0.18) (0.17) (0.19) (0.18) (0.13) 
      

borrow 0.38** 0.38** 0.36** 0.34** 0.04 
 (0.18) (0.17) (0.18) (0.17) (0.12) 
      

workable age -0.03 -0.01 -0.01 0.04 -0.05* 
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 (0.06) (0.06) (0.06) (0.06) (0.03) 
      

% income 0.01* 0.01* 0.01 0.01 0.01* 
 (0.01) (0.00) (0.01) (0.01) (0.00) 
      

trust Gen -0.22 -0.38* -0.32 -0.51** 0.20 
 (0.20) (0.21) (0.22) (0.20) (0.13) 
      

trust Ext. 0.05 0.28 0.42 0.13 0.25 
 (0.22) (0.29) (0.29) (0.24) (0.16) 
      

trust Sales 0.07 -0.01 -0.11 0.04 0.03 
 (0.20) (0.26) (0.28) (0.21) (0.16) 
      

alpha -0.14 -0.35 -0.42* -0.25 -0.09 
 (0.20) (0.22) (0.24) (0.21) (0.12) 
      

sigma 0.05 0.14 0.19 -0.09 0.15 
 (0.17) (0.19) (0.27) (0.18) (0.18) 
      

lambda 0.05*** 0.07*** 0.08*** 0.05** 0.02 
 (0.02) (0.02) (0.03) (0.02) (0.02) 
      

nyeri -1.96*** -3.36*** -3.38*** -1.95*** -0.91*** 
 (0.25) (0.50) (0.61) (0.37) (0.29) 
      

kirinyaga -1.39*** -2.33*** -2.32*** -1.22*** -0.87*** 
 (0.21) (0.35) (0.35) (0.24) (0.15) 
      

Training count 0.05*** 0.04*** 0.04** 0.04*** 0.00 
 (0.02) (0.01) (0.01) (0.02) (0.01) 
      
constant 0.20 -1.04** -1.06** -0.65* -0.01 
 (0.40) (0.44) (0.44) (0.39) (0.25) 
       
      
d   0.22   

   (0.23)   
      

Lnsigma    -0.60***  
    (0.06)  
      
sigma    0.55  
    (-0.03)  
       
N 359 359 359 359 359 
R2 0.27     

* p<0.10 
 ** 

p<0.05 
 *** 

p<0.01  
  

 
 

Table A3 shows the factors of Basic IPM using the subsample that passed both 

comprehension tests for the behavioral experiment. The weighting parameter alpha remains a 

nonsignificant factor while sigma and lambda do see some change using the sample that 

controlled for participant comprehension. Sigma which was not identified as a significant factor 
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in the previous regression for Basic IPM becomes a negative factor (p<0.10).  Sigma’s estimate 

in regression 3 suggest that more risk averse farmers are less likely to adopt Basic IPM than less 

risk averse farmers, all else held constant. Lambda which was only significant at the 10% level in 

the regression presented in table 20 increases to the 5% level while the estimate for 2SLS 

increases by 0.01.  

 
Table A3: Basic IPM Count using training count as the 
endogenous variable instrumented by D. Mrkt. 
  OLS 

(1) 
2SLS 

(2) 
IV.Poisson 

(3)     

education -0.04 0.06 0.03  
(0.09) (0.12) (0.06)  

   
female -0.06 -0.04 -0.05  

(0.10) (0.13) (0.07)  
   

both male and 
female 0.31* 0.21 0.08  

(0.16) (0.20) (0.10)  
   

experience 0.00 0.01* 0.01**  
(0.01) (0.01) (0.00)  

   
acres 0.13*** 0.17*** 0.09***  

(0.04) (0.05) (0.02)  
   

# crops 0.43*** 0.28** 0.14** 
 (0.11) (0.11) (0.06) 
    

borrow -0.01 -0.07 -0.01  
(0.10) (0.12) (0.06)  

   
workable age -0.07** -0.06 -0.03  

(0.03) (0.04) (0.03)  
   

% income -0.01** -0.01*** -0.01**  
(0.00) (0.00) (0.00)  

   
trust Gen -0.16 -0.17 -0.12  

(0.12) (0.15) (0.08)  
   

trust Ext. 0.32** 0.59*** 0.34***  
(0.13) (0.17) (0.09)  

   
trust Sales 0.00 -0.15 -0.10  

(0.12) (0.18) (0.09)  
   

alpha 0.12 0.11 0.09  
(0.12) (0.16) (0.08)  

   
sigma -0.28*** -0.25* -0.15*  

(0.10) (0.13) (0.08)  
   

lambda 0.02 0.04** 0.02**  
(0.01) (0.02) (0.01)  

   
nyeri 0.05 -0.16 -0.14 
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(0.15) (0.23) (0.11)  

   
kirinyaga -0.02 -0.46** -0.27**  

(0.12) (0.20) (0.12)  
   

Training 0.01 -0.14** -0.12*  
(0.01) (0.06) (0.07)  

   
Intercept 1.23*** 1.50*** 0.43***  

(0.23) (0.26) (0.15) 
  

   

N 358 358 358 
R2 0.16   
* p<0.10  ** p<0.05  *** 

p<0.01 
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Results: Pesticide Applications and Expenditures per Acre 

Table A4 presents the total pesticide applications being regressed on covariates using the 

subsample that passed both participant comprehension tests. No change is observed for alpha and 

lambda, while sigma decreases by 0.01 but remains at the 5% significance level.  

 
Table A4: Total number of pesticide 
applications last season 

  
OLS 
(1) 

Poisson 
(2) 

   
education -0.24 -0.01 

 (0.93) (0.10) 
   

female -0.91 -0.10 
 (0.76) (0.10) 
   

both male and 
female -1.42* -0.20* 

 (0.86) (0.12) 
   

experience -0.03 -0.00 
 (0.05) (0.01) 
   

acres -0.19 -0.02 
 (0.29) (0.03) 
   

# crops 5.17*** 0.52*** 
 (1.23) (0.11) 
   

borrow -0.23 -0.03 
 (0.85) (0.10) 
   

workable age -0.09 -0.02 
 (0.24) (0.03) 
   

% income 0.01 0.00 
 (0.04) (0.00) 
   

trust Gen 2.15 0.28* 
 (1.37) (0.15) 
   

trust Ext. 0.77 0.09 
 (1.45) (0.16) 
   

trust Sales -2.30 -0.27* 
 (1.60) (0.15) 
   

alpha 0.83 0.10 
 (1.01) (0.12) 
   

sigma 2.16 0.23** 
 (1.34) (0.11) 
   

lambda -0.02 -0.00 
 (0.13) (0.01) 
   

nyeri 1.58 0.19 
 (1.02) (0.13) 
   

kirinyaga 3.82** 0.46*** 
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 (1.58) (0.16) 
   

training count -0.08 -0.02 
 (0.08) (0.01) 
   

severe 0.69 0.06 
 (0.83) (0.09) 
   

advanced IPM 0.60 0.07 
 (0.63) (0.06) 
   
Basic IPM 0.13 0.01 
 (0.62) (0.07) 
   
Intercept -2.48 0.92*** 
 (2.88) (0.31) 
N 350 350 
R2 0.33  

* p<0.10 
 ** 

p<0.05  *** p<0.01 
Pesticide Expenditures per Acre 

Table A5 shows the regressions for total pesticide expenditures per acre in 2019 USD 

using the subsample that passed both participant comprehension tests. The estimate for sigma 

decreases by 1.12 and still remains highly significant (p<0.01).  

 
Table A5: Total pesticide 
expenditures per acre last 
season in 2019 USD dollars 

  
OLS 
(1) 

  
education 30.16** 

 (13.89) 
  

female -12.41 
 (15.73) 
  

both male and 
female -30.95* 

 (15.94) 
  

experience -0.32 
 (0.85) 
  

# crops 3.78 
 (11.39) 
  

borrow -3.76 
 (12.23) 
  

workable age -3.55 
 (4.16) 
  

% income -0.07 
 (0.25) 
  

trust Gen -1.17 
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 (19.94) 
  

trust Ext. -4.47 
 (18.15) 
  

trust Sales -16.55 
 (16.41) 
  

alpha -16.82 
 (16.78) 
  

sigma 55.34*** 
 (18.73) 
  

lambda -0.38 
 (1.88) 
  

nyeri -38.24* 
 (21.27) 
  

kirinyaga 4.40 
 (22.10) 
  

training count 2.23 
 (2.55) 
  

severe 11.57 
 (7.60) 
  

advanced IPM -4.59 
 (3.65) 
  

Basic IPM -1.49 
 (7.74) 
  
Intercept 73.54** 
 (32.31) 
 30.16** 
N 352 
R2 0.12 

* p<0.10 
 ** 

p<0.05 
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Results for IPM adoption regressions using IPM Trained 
 

With regard to IPM training, there is the possibility that motivated farmers would be 

more likely to attend training sessions than their less motivated counterparts. Including this 

variable in the model without accounting for endogeneity could bias our estimates and lead to 

misleading result. Whether the farmer  received IPM training (IPM Trained) could be correlated 

with the error term in our models, motivating the research to instrument the variable. The 

instruments considered are distance to the nearest market D. Market, and percentage of IPM at 

the sub county level, % IPM. Both of these potential instruments are assumed to meet both of the 

requirements for a valid instrument, i.e. highly correlated with the endogenous variable and not 

correlated with the error term in the adoption equation. Table A6 uses a linear probability model 

for the dummy variable Trained (1 = farmer has been trained on IPM) with robust standard errors 

provided in parenthesis.  

The percentage of IPM Training at the subcounty level has a significant postive 

relationship with the potential endogenous variables (p=0.01). However, distance from the 

farmers house to the nearest market is not significant, therefore, only % IPM will be considered 

as a valid instrument for the regressions with the IPM Trained. 

 Table A6: Testing for Instruments 
  

 (1) 

  Trained 

_Intercept 0.03 

  (0.07) 

D. Mrkt -0.01 

 (0.01) 

% IPM 0.01*** 

 (0.00) 

N 445 

R-sq 0.075 

adj. R-sq 0.070 
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Table A7 presents the instrument/endogeneity tests for the three different dependent 

variable specifications that instrumented Trained with % IPM. The Breusch-Pagan Cook-

Weisberg chi2 test was used to determine if heteroskedasticity was present in the regressions (Ho 

is that there is constant variance). We reject the null for all response variable specifications. 

Therefore, robust standard errors are used for each specification. With respect to the first stage 

endogeneity test we followed Wooldridge 1995. The results show that % IPM is a suitable 

instrument for IPM Trained (F stat >10). However, we fail to reject exogeneity using Basic IPM 

while we reject exogeneity of Trained IPM for Count IPM and Advanced IPM. Therefore, IPM 

Trained will be instrumented using % IPM for the first two specifications and treated as 

exogenous for Basic IPM.  

ALL Breusch-Pagan Cook-Weisberg chi2 (18) 143.81 (prob > chi2 0.00) 
ADV Breusch-Pagan Cook-Weisberg chi2 (18) 226.73 (prob > chi2 0.00) 
BAS Breusch-Pagan Cook-Weisberg chi2 (18) 33.12 (prob > chi2 0.02) 
 

Table A7: Results for endogeneity and validity tests using % IPM as instrument for trained. 
  Count IPM 

(1) 
Advanced IPM 

(2) 
Basic IPM 

(3) 
Weak Instrument     

 F (1,217) 18.14 18.14 18.14  
Endogeneity  (0.00) (0.00) (0.00) 

 Robust Sore Chi2(1) 25.2 48.31 0.17 
  (0.00) (0.00) (0.68) 
 Robust Regression F (1,216) 26.64 58.13 0.16 

    (0.00) (0.00) (0.69) 

Observations 404    
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Results: IPM Count 

Table A8 presents the regression results for IPM Count using IPM % as an instrument for 

trained. Using the IV.Pois specification,we find that sigma as a strong negative effect on 

adoption which could implies that risk averse farmers adopt fewer IPM techniques than less risk 

averse farmers, all else held constant (p<0.10). The other CPT parameters are nonsignificant 

predictors of IPM Count.  

With respect to non-CPT parameters, farms that are run jointly by a male and female 

adopt more IPM practices than farms run by males alone. The results for acres (total number of 

acres farmed between the three crops) show that as the total number of acres increases so too 

does the likelihood of higher IPM Count (p<0.05). The highly significant and positive results for 

# Crops suggest that as farmers cultivate more of the three crops of interest, they are more likely 

to adopt IPM practices in general (p<0.01). We believe this suggests that Kenyan farmers are 

tailoring pest management strategies to the specific needs of each crop which is a good sign for 

IPM in the region. The highly significant negative values on Nyeri indicate that being a farmer 

from Tharaka-nithi makes you about 80% more more likely to adopt IPM practices than if that 

same farmer was from Nyeri, ceteris paribus. Whether or not the farmer was trained on IPM, 

IPM Trained, shows that receiving IPM training does make an impact on IPM adoption. 

Specifically, 2SLS shows that on average being trained on IPM increases IPM adoption by 4.9 

practices (p<0.01). Similarly, transforming the result of regression 3 to IRR shows that being 

trained makes farmers four times more likely to adopt any of the IPM practices that farmers that 

have not been trained (p<0.01), ceteris paribus.  

 
Table A8: IPM Count using Trained as the 

endogenous variable instrumented by % IPM 

  
OLS 
(1) 

2SLS 
(2) 

IV.Pois 
(3) 
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education -0.03 0.12 0.04 
 (0.17) (0.28) (0.09) 
    

female -0.32* -0.26 -0.11 
 (0.19) (0.28) (0.09) 
    

both male and 
female 0.87*** 0.90** 0.25** 

 (0.31) (0.41) (0.11) 
    

experience 0.03** -0.02 -0.00 
 (0.01) (0.02) (0.01) 
    

acres 0.14*** 0.10* 0.03** 
 (0.05) (0.06) (0.02) 
    

# crops 0.87*** 1.08*** 0.40*** 
 (0.20) (0.32) (0.09) 
    

borrow 0.46** 0.47* 0.13 
 (0.20) (0.27) (0.08) 
    

workable age -0.05 -0.13 -0.04 
 (0.06) (0.09) (0.03) 
    

% income 0.00 0.00 0.00 
 (0.01) (0.01) (0.00) 
    

trust Gen -0.19 -0.34 -0.10 
 (0.23) (0.31) (0.09) 
    

trust Ext. 0.31 -0.58 -0.11 
 (0.26) (0.44) (0.16) 
    

trust Sales -0.01 0.38 0.03 
 (0.23) (0.37) (0.12) 
    

alpha -0.08 0.11 -0.06 
 (0.22) (0.35) (0.11) 
    

sigma -0.29 -0.37 -0.16* 
 (0.18) (0.30) (0.10) 
    

lambda 0.06** 0.02 0.01 
 (0.02) (0.04) (0.01) 
    

nyeri -1.76*** -1.35*** -0.60*** 
 (0.26) (0.45) (0.13) 
    

kirinyaga -1.11*** -0.09 -0.10 
 (0.23) (0.46) (0.17) 
    

trained 0.76*** 4.90*** 1.40*** 
 (0.18) (1.28) (0.37) 
    

Intercept 1.47*** 0.55 0.15 
 (0.45) (0.69) (0.28) 
     
IPM %    

    
    

Control    
     
N 404 404 404 
R2 0.28   

* p<0.10 
 ** 

p<0.05 
 *** 

p<0.01  
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Advanced IPM 
 

Table A9 shows the results for Advanced IPM Count using IPM %. IV.Pois is not shown 

because it did not converge. This could be due to the distribution of the response variable 

violating the assumptions of the model (70% of farmers that did not adopt any Advanced 

Practice causing). The 2SLS are presented but might not be the best model given the nature of 

the dependent variable. The 2SLS results suggest that the CPT parameters are nonsignificant 

factors of Advanced IPM. With respect to non-CPT covariates, # Crops, Borrow, and IPM 

Trained are positive factors of Advanced IPM while Trust Ext., and Nyeri are negative. Again, 

the estimate on # Crops suggests that farmers are using IPM techniques based on the specific 

needs of a crop and not using the same techniques across crops (p<0.05). Similar to the results 

identified in table 19, borrowing to finance crop production last year increases the likelihood of 

Advanced IPM adoption. IPM Trained is identified as a positive factor of Advanced IPM like 

result of Training Count in table 19. Further, the result for Nyeri is also consistent with previous 

results that found that Tharaka-nithi farmers adopt more Advanced IPM than farmers from Nyeri. 

A result that conflicts with the estimates provided in Table 19 that used Training Count instead 

of IPM Trained is the negative relationship Trust Ext. has with the response variable.  

 
 

Table A9: Advanced IPM results using 
IPM Trained as the endogenous 

variable instrumented by % IPM 

  
OLS 
(1) 

2SLS 
(2) 

   
education 0.07 0.23 

 (0.13) (0.25) 
   

female -0.20 -0.13 
 (0.14) (0.26) 
   

both male and 
female 0.46** 0.48 

 (0.23) (0.39) 
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experience 0.02* -0.03 

 (0.01) (0.02) 
   

acres 0.10** 0.06 
 (0.04) (0.05) 
   

# crops 0.39*** 0.60** 
 (0.15) (0.30) 
   

borrow 0.44*** 0.45* 
 (0.15) (0.26) 
   

workable age -0.05 -0.13 
 (0.04) (0.09) 
   

% income 0.01 0.01 
 (0.00) (0.01) 
   

trust Gen -0.09 -0.25 
 (0.17) (0.30) 
   

trust Ext. -0.04 -0.97** 
 (0.19) (0.39) 
   

trust Sales 0.05 0.46 
 (0.17) (0.33) 
   

alpha -0.07 0.13 
 (0.17) (0.32) 
   

sigma -0.02 -0.11 
 (0.14) (0.26) 
   

lambda 0.05*** 0.01 
 (0.02) (0.04) 
   

nyeri -1.48*** -1.05*** 
 (0.20) (0.41) 
   

kirinyaga -0.96*** 0.10 
 (0.17) (0.41) 
   

IPM trained 0.74*** 5.06*** 
 (0.13) (1.20) 
   

Intercept 0.09 -0.88 
 (0.33) (0.63) 
    
N 404 404 
R2 0.28  

* p<0.10 
 ** 

p<0.05 
 *** 

p<0.01 
 
Basic Practices 
 

Table A10 presents the results for the dependent variable Basic IPM Practices using IPM 

Trained. Sigma, Both Male and Female, # crops, Trust Ext., and Nyeri estimates remain 

consistent across model specifications. The goodness of fit test for the Poisson regression 
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identifies that the model is appropriate for the data (deviance GOF 208.78 (p>0.10) Pearson’s 

GOF 166.56 (p>0.10)) 

 The risk aversion parameter, sigma, is found to have a strong negative relationship with 

Basic IPM adoption. Hence, risk averse farmers are adopting fewer Basic IPM practices on 

average than their less risk averse counterparts (p<0.05). This could reflect a preference towards 

other pest management practices where they believe higher incomes can be generated. The 

weighting parameter, alpha, and loss aversion parameter do not appear to be a factor of Basic 

IPM when using the dummy variable for IPM Trained. Farms where male and females share 

equal responsibility for farm making decisions wrt. male run farms (Both Male and Female) 

adopt more basic practices on average (p<0.05). Specifically, Both Male and Female is expected 

to increase the likelihood of Basic IPM adoption by about 19%. The positive significance of # 

Crops suggests that farmers use a different mix of Basic IPM techniques across the crops of 

interest and growing one more of the three crops increases the likelihood of Basic IPM adoption 

by 23% on average, ceteris paribus. Farmer’s trusts towards government extension officers 

makes a large positive impact on the probability of Basic IPM adoption. Specifically, it increases 

the likelihood of Basic IPM adoption by about 21% (p<0.01).  With respect to county 

differences, Tharaka-nithi farmers adopt 15% more Basic Practices than farmers from Nyeri, 

however no differences are found between Tharaka-nithi and Kirinyagan farmers. With respect 

to the results presented in Table 20: Basic IPM Count using training count as the endogenous 

variable instrumented by D. Mrkt, a comparison shows the relationship Both Male and Female, # 

Crops, Trust Ext., and Nyeri have with the response variable between models are the same. 

Conversely, Experience, Lambda, and Kirinyaga are not found as significant factors of Basic 

IPM adoption in the regression used in table A10 while they are when Training Count is used 
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instead of IPM Train (Table 20). Similarly, sigma was not identified as a significant factor in 

Table 20 but is a significant factor in table A10.  

 
 

Table A10: Basic IPM using IPM Trained  
  OLS 

(1) 
Poisson 

(2) 
NB.Reg 

(3)     

education -0.10 -0.05 -0.05  
(0.09) (0.05) (0.05)  

   
female -0.12 -0.07 -0.07  

(0.10) (0.05) (0.05)  
   

both male and 
female 0.41** 0.17** 0.17**  

(0.17) (0.07) (0.07)  
   

experience 0.01 0.00 0.00  
(0.01) (0.00) (0.00)  

   
acres 0.04 0.02 0.02  

(0.03) (0.02) (0.02)  
   

# crops 0.48*** 0.21*** 0.21*** 
 (0.11) (0.05) (0.05) 
    

borrow 0.01 0.01 0.01  
(0.11) (0.05) (0.05)  

   
workable age 0.00 0.00 0.00  

(0.03) (0.02) (0.02)  
   

% income -0.00 -0.00 -0.00  
(0.00) (0.00) (0.00)  

   
trust Gen -0.10 -0.05 -0.05  

(0.13) (0.07) (0.07)  
   

trust Ext. 0.35** 0.19*** 0.19***  
(0.14) (0.07) (0.07)  

   
trust Sales -0.06 -0.04 -0.04  

(0.13) (0.06) (0.06)  
   

alpha -0.01 -0.00 -0.00  
(0.12) (0.06) (0.06)  

   
sigma -0.27*** -0.14*** -0.14***  

(0.10) (0.05) (0.05)  
   

lambda 0.01 0.01 0.01  
(0.01) (0.01) (0.01)  

   
nyeri -0.28* -0.14** -0.14**  

(0.15) (0.07) (0.07)  
   

kirinyaga -0.15 -0.08 -0.08  
(0.13) (0.07) (0.07)  

   
Training 0.02 0.01 0.01  

(0.10) (0.05) (0.05)  
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Intercept 1.38*** 0.40*** 0.40***  
(0.25) (0.12) (0.12) 

  
   

    
    
    
N 404 403 403 

 
 

 
 


